A MARINE MAGNETIC SURVEY

IN THE

MACKENZIE BAY / BEAUFORT SEA AREA

 ARCITLC CANADA. byROCQUE GOH
B.Sc. Honours, Universi.ty of Salford, England, 1968.

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF

 THE REQUIREMENTS FOR THE DEGREE OF MASTER OF SCIENCE in the Departmentof
GEOPHYSICS

We accept this thesis as conforming to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA Apri1 1972

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, I agree that the Library shall make it freely available for reference and study.

I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Department of Geophysics
The University of British Columbia
Vancouver 8
Canada

5 Apri1 1972

ABSTRACT

This thesis presents an investigation of the variations in the magnetic field obtained in the Mackenzie Bay/Beaufort Sea area of the Canadian Arctic.

It was found that the variations obtained at sea were strikingly correlated with those recorded at Point Atkinson, a fixed station on land, 150 miles from the survey area. In addition, it was found that the higher frequencies present in the marine records were severely attenuated with respect to the corresponding frequencies in the Point Atkinson recordings. It was concluded that the Mackenzie Bay/Beaufort Sea area is geomagnetically anomalous and that this situation is probably caused by higher electrical conductivity material underlying, the Mackenzie Bay/Beaufort Sea area, abutting lower conductivity material of the North American craton underlying Point Atkinson. This conclusion has important implications relating to the tectonic history of the Canadian Arctic.

(ii)

TABLE OF CONTENTS
ABSTRACT (i)
LIST OF FIGURES (iii)
LIST OF MAPS (iv)
LIST OF FLOW CHARTS (v)
ACKNOWLEDGMENTS (vi)
INTRODUCTION 1
CHAPTER 1 DATA COLLECTION 4
CHAPTER 2 DATA REDUCTION 9
CHAPTER 3 DATA CORRECTION AND MARINE MAGNETIC MAPS 18
CHAPTER 4 AN ANOMALY IN GEOMAGNETIC VARIATIONS 33
CONCLUSIONS 55
BIBLIOGRAPHY 57
APPENDIX I DECCA NAVIGATION SYSTEM CHARACTERISTICS 61
APPENDIX II TABLE OF COMPUTER PROGRAMS \& NOTES ON PROGRAMS 63
APPENDIX III SOURCE LISTINGS OF COMPUTER PROGRAMS 73

FIGURE 1	A Simple Model of Geomagnetic Induction	34
FIGURE 2	Comparison between Shipboard Magnetic	43
	Variations and Station Magnetic Variations	
FIGURE 3	Detailed Profiles Comparing Marine and	44
	Station Magnetic Variations	
FIGURE 4	Detailed Profiles Comparing Marine and	45
	Station Magnetic Variations	
FIGURE 5:	Power Spectra for Mackenzie Bay data.	48
FIGURE 6	Power Ratio between Mackenzie Bay Marine	49
	data and Point Atkinson Station data	
FIGURE 7	Graphs showing Attenuation at Higher	54
	Frequencies for Geomagnetic Variations	
	recorded at Mould Bay \& Castel Bay	
	compared with Sachs Harbour	
FIGURE 8	Navigation Program 'DECNAV' - Test of	72
	Interpolation Routines used in program	

(iv)

LIST OF MAPS

MAP 1 Ship's Track Plot 24
MAP 2. Anomalous Field - Marine Magnetics 25
Map
MAP 3 Residual Station Magnetics Map 26
MAP 4 . RMS Fit Map 27
MAP 5.... Location Map 38
MAP 6 Map showing geographical 52
relationship.between geomagneticsituations and tectonics

LIST OF FLOW CHARTS

FLOW CHART 1 Overall Data Reduction Flow Chart 10
FLOW CHART 2 Program 'PTAPE DECODER' Flow Chart 69
FLOW CHART 3 Program 'DECNAV' Flow Chart 70
. FLOW CHART 4 ... Program 'MAGNAVM' Flow Chart 71
(vi)

ACKNOWLEDGMENTS

I would like to thank Dr. Tad Ulrych, first of all, for his encouragement and unflinching support as thesis advisor throughout this work. Dr. Laurie Law and Dr. Ron Niblett unselfishly gave many ideas on geomagnetic anomalies during discussions with them--much of this thesis must be credited to them. Dr. Roy Hyndman established many basic plate-tectonics and g.v.a. concepts in my mind. In addition, his criticism of this work has resulted in a much more comprehensive thesis than would have been possible. I am also very grateful to many at the Atlantic Oceanographic Laboratory of the Bedford Institute, particularly Ron Macnab, Brian MacIntyre and Dr. S. P. Srivastava. Ron Macnab held a superb informal-school at sea and started the magnetic data collection off on the right foot; Brian MacIntyre has fielded the many requests for assistance with this project--undoubtedly he has spent much time and patience doing this; Dr. Srivastava generously gave access to and commented on data from the CSS HUDSON and CSS BAFFIN in their work in the Arctic the same year.

With respect to data collection, this thesis would not have been possible without support from all members of the cruise on the CSS PARIZEAU--particularly the Master, Captain Colin Angus and the Chief Hydrographer, Stan Huggett. In addition, I would also like to thank Dr. Don Tiffin of the west-coast Marine Sciences group,

Geological Survey of Canada in Vancouver for his generous support of this project. Brian Clarke of the Marine Sciences Branch, Department of the Environment (formerly the Canadian Hydrographic Service) must be mentioned for his prowess in computer-program bug-finding.

Much time was spent on the computer-processing of the large amount of data gathered jn this survey. I have obtained meaningful results only with the help of the superb staff at the Computing Centre here at the University of British Columbia

Numerous others have given hearifelt encouragement and made studies at this university a great pleasure. To each and every one, I am very grateful.

The purpose of this thesis was to carry out, integrate and interpret a marine magnetic survey in the Mackenzie Bay/ Beaufort Sea area in the Canadian Arctic. The survey was conducted on board the Canadian government oceanographic ship, CSS PARIZEAU, in the summer of 1970.

The first chapter, deals with data collection and contains details of the equipment used as well as general statistics regarding the survey.

Chapter 2 is concerned with data reduction and includes discussion of the method of reduction, processing and of the computation techniques involved. The actual computer programs which were written and used for the data reduction are detailed in Appendix II. The source listings are given in Appendix III.

Data correction is dealt with in Chapter 3. It was
found that the marine magnetic data reflected the magnetic noise and diurnal variations which were monitored at a fixed shore station at Point Atkinson, approximately 150 miles east of the survey area. However, though remarkably well correlated, the magnetic noise recorded at sea was found to be severely attenuated compared to the noise recorded at Point Atkinson. Further, the attentuation was found to be highly frequency dependent. This observation suggested that a geomagnetic variation anomaly exists in the intervening area
between the Mackenzie Bay area and Point Atkinson--this anomaly was investigated further and is discussed in Chapter 4. Due to the geomagnetically anomalous conditions, reliable corrections for magnetic noise cannot be made to the Mackenzie Bay marine magnetic data which are therefore presented as uncorrected maps.

The geomagnetic variation anomaly found, named the Mackenzie Bay geomagnetic variation (g.v.a.) is investigated and discussed in Chapter 4. The frequency attenuation characteristics of the anomaly parallel those of another anomaly known to exist at Mould Bay on Prince Patrick Island approximately 600 miles towards the north-east(Whitham, 1963). A third anomaly at Alert on Ellesmere Island(Whitham et al, 1960), approximately another 700 miles north-east from Mould Bay, brings to three the number of anomalies now known in the Canadian Arctic.

Geomagnetic variation anomalies appear to occur preferentially in the zone affected by a tectonic plate boundary. Study of those anomalies known throughout the world that are not explainable by the coast effect support this concept(Law and Riddihough; 1971). This is because tectonic and geological situations that would give rise to geomagnetically anomalous conditions occur in the tectonically active zones at plate boundaries. The Mackenzie Bay anomaly is no
exception--it occurs in the region suggested to be the edge of the stable North American craton(Geol. Surv. of Canada, 1969; King, 1969).

It is apparent from this survey that noise corrections for marine magnetic. surveys within a geomagnetically anomalous zone, particularly in the high latitudes present extremely serious problems. This is especially true if the shore monitor station is far removed from the survey area. The problems encountered in the present survey probably also apply to the magnetic data collected by the CSS BAFFIN and the CSS HUDSON during the same period especially since both ships surveyed areas suspected to be over the central region of the Mackenzie Bay geomagnetic variation anomaly.
$\because . .$. . Further investigation of the Mackenzie Bay geomagnetic variation anomaly is required before more quantitative results can be obtained. Of particular interest would be to determine the extent of this anomaly. There would be strong plate tectonic implications if it is found to extend and connect up with the Mould Bay anomaly to the north-east.

CHAPTER 1

dATA COLLECTION

INTRODUCTION

The marine magnetic data was collected from the CSS PARIZEAU by the usual method of towing a total-field precession magnetometer sensor astern. A magnetic reading was obtained every six. seconds and the readings were recorded, along with the G.M.T. time every minute, on a paper-tape punch. In addition, ..the positions of the ship at various times were logged... Interfacing of the paper-tape data and the ship's positions produced the required result of the ship's position with a marine magnetic reading and time attached.

In all, 44 days were spent in the survey area, resulting in approximately 3600 nautical miles of magnetic data. Subsequent editing, integrating and processing yielded 134000 magnetic readings on which this thesis is based.

In general, the accuracy of the survey is regarded as good. The magnetometer is capable of ± 1 gamma precision while the navigation is regarded as being accurate to ± 110 meters. THE MARINE MAGNETOMETER

The instrument used to measure the Total Magnetic Field at sea was a Barringer Oceanographic Magnetometer, Type 0M-104. This is a precession-type magnetometer, accurate to ± 1 gamma (Barringer, 1970). It was towed approximately 600 feet astern of the ship at depths in the order of 50 feet below the surface of the sea.

DATA LOGGING

Two sets of data were logged for the survey.

The first set consisted of the Total Field readings obtained from the marine magnetometer--these readings and the G.M.T. times at which they were taken were recorded on punched paper-tape, encoded in Eriden-code. The G.M.T. times were derived from an electronic. clock on board.

The second set of data consisted of the ship's positions and the G.M.T. times at which it occupied these pasitions.

Combining the two sets of data produced the magnetic readings, the positions at which these were taken and the corresponding times. Computations of the positions and the combinations of the two sets of data are covered in Chapter 2.
tHE NAVIGATION SYSTEMS

Two navigation systems were used for this survey--a DECCA 6F system and a DECCA Minifix system (registered trade names owned by the Decca Navigator Company). Both systems utilise the same principles of operation--electromagnetic waves are radiated from three shore stations, these waves forming.standing wave patterns. Between the three stations, two such patterns. are set up--so that in plan view, one would see essentially two sets of waves, similar to the two sets of waves that would be generated if three stones were simultaneously thrown into a pond, a short distance apart. Note that two sets of waves are required for a position to be obtained since two lines of intersection (i.e. two co-ordinates) are needed to define a position in any two-dimensional co-ordinate system. For the 6F and Minifix Decca systems used, the patterns of the waves are not circular as are ripples in a pond-they are hyperbolic as shown in Figure 8, because they are interference patterns. Decca waves for the 6 F and Minifix systems used, are waves of constant phase difference between the two sets of circular waves radiated by two stations. These waves are hyperbolae since for any hyperbolae, the differences between the distances from points along the hyperbolae to the two foci are constant. The constant distance difference is expressed as a phase difference for the Decca system--so that
the hyperbolic waves are waves of constant distance differences which means they are waves of constant phase differences.

It is usual to use another term for Decca waves-lanes, akin to lanes of traffic. All positions obtained through the use of a Decca system (such as the $6 F$ and Minifix system) are therefore obtained in terms of Decca lanes, akin to obtaining one's position at a city intersection by noting the streets. forming the intersection--except Decca lanes intersect one another at different angles since they are hyperbolae themselves. It should be remembered that implicit in the word 'lane' is the fact that all lanes are hyperbolic in plan view.

In using Decca navigation systems, three kinds of errors can be expected. The first is a Repeatability Error-a measure of how accurately one may repeatedly position oneself within a given system. This error is larger for positions further away from the shore stations since, the further out to sea, the more obscure the intersections between lanes become. Repeatability of the Decca 6F system in the survey area is approximately ± 100 meters--that of the Minifix system is smaller (CHS, 1970).

The second kind of error is one caused in part by pattern variations. Patterns may shift as a result of the warming of the atmosphere with daylight. To determine pattern shifts, pattern readings were monitored at a fixed station
over the period of the survey. It was found that pattern shifts were less than ± 0.06 lane for the period of the marine magnetic survey (CHS, 1970).

The third kind of error is related to the magnetic survey alone. The ship's position was recorded only for the start and end of each line run--no positions were recorded in between and it was assumed that the ship maintained constant speed for the duration of the line. Since the lines run were relatively short--2 hours sailing time or 32 nautical miles approximately-- the error in this assumption is not too serious. The ship's path of travel in between the start and end of the line was either a straight line or a hyperbola. The straight. line case occurs when the ship's course is direct-while the hyperbolic case occurs when the course is along some Decca lane, staying to within ± 0.05 of a lane, this accuracy being ascertained from the ship's logs.

Combining the estimates of the three kinds of errors involved, the r.m.s. error that can be expected in the position of the ship is approximately ± 110 meters. Errors measured in lanes were converted to errors in metres by using the fact that the baseline lane width, i.e. the maximum lane width, for the Decca 6F system is 561 metres.

The system characteristics for both Decca 6F and Decca Minifix systems is given in Appendix I.

CHAPTER 2

DATA REDUCTION

INTRODUCTION

Most of the programs required for the computer-processing of the data were written as part of this thesis. A list of the programs is given in Appendix II.

The overall sequence of data processing is shown in Flow Chart 1. The papertapes which contain, encoded in Friden, a time parameter and the total field reading taken at that time, were transcribed onto magnetic tape. This tape was then decoded using the program 'PTAPE DECODER'. The navigation data, recorded by hand separately, consisted of a time parameter and the Decca co-ordinates of the ship at various times. Program 'DECNAV' converted these Decca co-ordinates into more recognisable geographic and UTM co-rrdinates, with proper interpolations in time suitable for the next stage of processing. Having time/total field on the one hand, and time/co-ordinates on the other, the next stage of processing was to match the two on a basis of time. This was done by the matching program 'MAGNAVM'. In addition to matching, 'MAGNAVM' also computed the regional field and the anomalous field readings for each set of co-ordinates produced by 'DECNAV'. The output of 'DECNAV', being a series of scattered data points, was then prepared for plotting--this necessitated gridding the data onto

FLOW CHART I

OVERALG DATA REDUCTION FLOW GHART

- $+\cdots$.
a rectangular grid acceptable to plotting/contouring programs available at the University of British Columbia. The gridding and plotting were done by 'GRID' and 'PLOTIER' respectively.

In addition to the total field readings obtained from the ship-towed magnetometer, a. Station Magnetometer was set up at Point Atkinson, approximately 150 nautical miles from the survey area. This magnetometer (a Barringer precession magnetometer similar to the one used at sea--accuracy ± 1 gama) monitored the total magnetic field at the single location so that any fluctuations in this field would represent the 'magnetic noise' present at the time--this magnetic noise would include any time variations in the Earth's magnetic field. NAVIGATION INTERPOLATION SCHEME

Special mention has to be made of the scheme of interpolation used in the navigation program 'DECNAV'. During the survey, only the start positions/times and end positions/times were recorded for each line traversed. It is known from ship's logs, that in between the start and end, the ship kept to within a pre-selected path within certain limits of error. This pre-selected path was either a straight line or a hyperbolic Decca lane. Interpolations for the straight line path are simple enough--since, knowing the starts and ends of the line, we can
interpolate linearly. For the hyperbolic case, however, a heuristic approach was developed and used.

Knowing the Decca lane travelled on by the ship, any number of reference lane-positions can be computed. The ship would have travelled over these lane-positions within the limits of steering error. The next step is to determine the total distance covered by the line traversed and this is done by adding up the distances between successive lane-positions. From the start and end times, the time taken to cover this distance can be found--dividing the distance by the time would give the average speed of the ship for that line. Since positions are required on a time-interval basis e.g. every two minutes, the interpolations have to be carried out in time-fashion. Using the ship's speed and the time taken to traverse the line, the distance intervals corresponding to any chosen time-interval can be computed since these distance intervals correspond to intervals along a hyperbolic line. The lane-positions previously computed are used. The distances between successive lanepositions are known. Hence, interpolations can be carried out between successive lane-positions on a distance-interval basis.

As a test, the navigation program performing these interpolations was fed the start and end parameters for a line of known location. The line was selected for its high degree of hyperbolicity (i.e. it was highly curved) which should produce
maximum errors in the interpolation scheme used. The most hyperbolic lines for systems such as the Decca 6F and the Decca Minifix are to be found in the areas closest to the shore stations as shown in Map 5. For the actual survey, none of the lines traversed were as hyperbolic as the test line shown in the map. Using the test line parameters, both hyperbolic and linear interpolation schemes used in 'DECNAV' were tested and the Figure 7 shows the results. It is seen that the positions computed for the highly-hyperbolic test line fit the test line location very closely(to within $\pm 100 \mathrm{~m}$. at least) and it appears that the heuristic approach taken here is valid.

THE MATCHING PROGRAM 'MAGNAVM'

Special mention has also to be made with regard to the matching program 'MAGNAVM'. For data such as these being processed, it is seldom possible to record continuously-discontinuities in data are inevitable e.g. due to equipment malfunction. In attempting to match two sets of data such as the navigation and the magnetics, discontinuities in the data have to be accounted for. To this end, 'MAGNAVM' is capable of matching two sets of data with discontinuities in either set. This ability proved useful since MAGNAVM was able to match the navigation data to not only the marine magnetic data but also to the station magnetometer data which were recorded at entirely different time-intervals.

GENERATION OF THE MAPS

In this final section on Data Reduction, the generation of the maps is discussed. Four maps are presented later on in this thesis--these are:
(i).. The Track Plot--a plot of the ship's positions $\therefore \quad \therefore \quad$. for the whole survey,
(ii) The Anomalous Field--Marine Magnetics Map, (iii)... The Residual Station Magnetics Map, (iv) The RMS Fit Map.
(i) The Track Plot - to generate this, the track-plotting program, 'TRACKER', was used. 'TRACKER' reads in the ship's positions for the whole cruise and plots all or a fraction of these positions. For this survey, the ship's positions for the whole cruise were available at two minute time intervals (two minutes are equivalent to approximately 3200 feet in distance)-of these positions, every fifth was plotted so that the Track Plot, Map 1 , is a plot of the ship's position every tenth minute or approximately 16000 feet. The number of positions shown in this map is roughly 1300.
(ii) The Anomalous Field--Marine Magnetics Map--for this map data points at two minute time intervals were used, approximately 6700 in all. These data points were gridded onto a square grid and then contoured.
(iii) The Residual- Station Magnetics Map - The Station Magnetometer data (at 5 minute time-intervals) were matched to the navigation data (at 2 minute time-intervals). This resulted in a data point every 10 minutes or roughly 1300 for the survey. These data points were gridded onto a square grid and then contoured.

For both the Anomalous Field--Marine Magnetics Map and the Residual Station Magnetics Map, all the data points had to be gridded prior to contouring. The contouring programs available at the University of British Columbia at the present, are able to contour only data on a rectangular or square grid-- they are unable to contour scattered data. This just means that the data points to be contoured have to be regularly spaced such that adjacent data points are the same distance apart on a rectangular grid. To 'load' all the data points onto a grid requires a large number of computations-because the value at each point on the grid is affected by the values of any of the scattered data points close to it. In other words, when many scattered data points are close to a grid point, the value that is assigned to this grid point must take into account each of the scattered data points, taking into account the proximity of the point as well. Obviously the closer a scattered data point is to a grid point, the more weight must be attached to the value of the scattered data point when attempting to assign a value to the grid point.

The whole process of gridding scattered data points onto a square grid is done by weighting--each grid point acquires a value which is the mean of all scattered data point values close to it, with these scattered data point values weighted in some fashion as to reflect their proxinity to the grid point. Various techniques of computing the weights have been used--but the one available at the University of British Columbia adopts a heuristic appraoch. For each grid point, the area surrounding it is divided into octants. The closest scattered data point within each octant is weighted by a factor of ($1 / \mathrm{d}^{2}$) where d is the distance between the particular scattered data point and the grid point; and the mean of the weighted points in all octants is calculated and assigned to the grid point in question. Should more than four adjacent octants be empty of data points, the grid point in question is assigned a large negative number which causes the contouring program to bypass it. With the large number of data points obtained for this survey, and realising the large amount of computer-time involved in gridding these onto even the smallest grids, it was decided to load all the data points for the survey onto a 50×50 grid. This causes aliasing of data but aliasing is not regarded as serious for two reasons. Firstly, the magnetic variation spectrum falls off rapidly with increased frequency as Chapter 4 shows. Secondly, the amount by which aildsing will affect the
data is not significant when compared with corrections for magnetic noise monitored during the survey, which cannot .be made (see Chapter 3).
(iv) The RMS Fit Map- this map was obtained by a pseudo- 'RMS-fit' technique. The RMS values of two input maps, one the signal map and the other the noise map, are first computed--the noise map is then multiplied by a factor equal to the ratio of the RMS values of the two maps, such that the noise map has the same RMS value as the signal map. The modified noise map is then subtracted from the signal map.

Interpretation of all maps mentioned here is covered in Chapter 3.

.CHAPTER 3

DATA CORRECTION

In the two previous chapters, aspects of data collection and data reduction were covered--in this chapter, the problem of data correction is discussed.

For this survey, the data corrections are of two types-the first being correction for Regional Field, and the second being correction for magnetic noise. The term 'magnetic noise' is used in a collective sense and includes both the time variations and the magnetic 'noise' usually most obvious during magnetic storms.

REGIONAL FIELD CORRECTIONS

For areas such as the Mackenzie Bay/Beaufort Sea area, where the regional magnetic field is not well-known, one can, at best, predict on a theoretical basis, what the regional field should be. The predicted theoretical field, called the IGRF (International Geomagnetic Reference Field), is based upon theoretical considerations of how best to model the magnetic field of the Earth. Out of these considerations, a mathematical expression is evolved (Cain, 1965) from which the regional field may be computed for a given geographic location. However, there are complications--the mathematical expression, commonly called the PGRF (Polynomial for the Geomagnetic Reference Field) cannot simulate the complicated magnetic field of the Earth for all regions at all times. To do this accurately,
spatial variations are allowed for in the PGRF in the form of coefficients, called the PGRE coefficients. Different sets of coefficients apply to different areas and therefore a consistent level of accuracy in the prediction of the Earth's magnetic field in all areas is maintained. Calcalations of suitable coefficients entails tortuous mathematical computations and for this survey, the PGRF coefficients were, thankfully supplied by Kon Macnab of the Atlantic Oceanographic Laboratory of the Bedford Institute.

With these PGRF coefficients in hand, correction for the regional field was made by computing it for every geographic location in the survey. The anomalous field is then computed as the difference between the total field and the regional.

MAGNETIC NOISE CORRECTIONS

As previously mentioned, the term 'magnetic noise' is used here in the collective sense to include both the diurnal variations in the Earth's magnetic field, and the magnetic 'noise'. commonly prevalent during magnetic storms. For our purposes, $:$ both: these are extraneous and not geological effects and must therefore be removed.

For most magnetic surveys, the magnetic noise present is established by monitoring it at some locale close to or within the survey area for the duration of the survey. This is
done by setting up a magnetometer at some fixed location-such a magnetometer is commonly called a Station Magnetometer. Being at a fixed point, the station magnetometer necessarily measures only the ambient field at that point plus any time variations in the Earth's magnetic field there, thesc variations being both the diurnal type and the 'storm' type. By removing the ambient field, the time variations at the station magnetometer may be extracted and represent a record of the magnetic noise present in the area during the survey.

In general, magnetic noise sources are located high up in the ionosphere so that the noise present at a station magnetometer is also present in the general survey area if it is close by. The practice in correcting for magnetic noise is therefore to subtract the time variations of the magnetic field at a station magnetometer from the magnetic readings recorded at simultaneous times over the survey area.

For this survey, the station magnetometer was set up at Point: Ackjinson approximately 150 nautical miles eastward from the survey area. The station magnetometer readings were digitised at 5 minute intervals to give a record of the magnetic noise during the whole survey. In addition to supporting this survey in this manner, the station magnetometer at Point Atkinson also supported magnetic surveys run concurrently by the CSS BAFFIN and the CSS HUDSON in contiguous areas along the Arctic coast nearby.

Figure 2 shows several days of station magnetometer readings compared to several days' marine magnetic surveying in the Mackenzie Bay/Beaufort Sea area. This figure shows three features.

The first feature is that the readings at both the survey area and at the station magnetometer are highly correlated. This implies that the readings taken at sea in the survey are heavily doped with magnetic noise.

The second feature is that the amplitudes of the magnetic noise signal measured at the station magnetometer are generally much larger than the similar signal recorded at sea. This is particularly true for noise of higher frequencies as Figure 2 shows. We therefore appear to have some suppression of higher frequency signals--a major problem in the correction of the data for magnetic noise.

The third feature of Figure 2 is the apparent phase displacement between magnetic noise recorded at the station magnetometer and that recorded at sea. It appears that this phase displacement is variable in sign-oon some occasions the station magnetometer signal leads the signal recorded at sea, on other occasions the reverse is true. This variability in phase displacements between station magnetometer signal and that recorded at sea further complicates the correction of the sea-data for magnetic noise. The reasons are as follows.

In the first instance, the commonly used method of correction - subtraction of station magnetometer variations from the survey data - is certainly not useable for this survey. For example, in Figure 2, at approximately Day 249; the large variations of roughly 400 gammas displayed by the station magnetometer; when subtracted from the smaller variations of roughly 150 gammas recorded at sea, would result in an apparent anomalous field of -250 gammas which is clearly due to the magnetic noise -- the station magnetometer profile points this out.

In the second instance; because the amount of suppression of the magnetic field appears to be dependent on the frequency of the magnetic variations, and because the phase displacement between staṭion-recorded noise and sea-recorded noise seems to be variable, it would not be meaningful to broadly assume that the suppression is constant over the survey area, and compute a suppression factor.

Magnetic noise corrections for this survey therefore appear not to be meaningful - the marine magnetics maps prepared are in fact; an attenuated reflection of the magnetic noise. It is in this context that one must views the maps which are presented in the next section.

MARINE MAGNETICS MAPS

As mentioned in the previous section, correction for magnetic noise (diurnals and storm variations) appear to be impossible for this survey. Bearing this in mind, the following maps are presented:

Map $1 . .$. The Ship's Track Plot
Map 2 ... The Anomalous Field - Marine Magnetics Map
Map 3 ... The Residual Station Magnetics Map
Map $4 \ldots$ The RMS Fit Map
MAP 1 SHIL: TRACK FLOT

This shows positions occupied by the ship at every tenth minute of time. In relation to this, the other maps presented here can be examined.

Map 2, The Anomalous Field - Marine Magnetics Map, was generated from data points at 2 -minute intervals. This means that the number of positions of the ship displayed in the Track Plot (Map 1) is approximately one-fifth the number used to generate the Anomalous Field - Marine Magnetics Map.

Map 3, The Residual Station Magnetics Map, was generated from data points at 10 -minute time intervals. Since this time interval is the same as that of the Track Plot, the positions shown on the Track Plot are approximately those used to generate the Residual Station Magnetics Map.

As a matter of interest, it can be seen on the Track Plot that many of the skip's tracks are hyperbolic in shape, the result of sailing 'down a Decca lane'.

MAP 2 - ANOMALOUS FIELD - MARINE MAGNETICS MAP

- As mentioned previously, this is a map of the Anomalous Field calculated by subtracting the theoretical regional(IGRF) field from the Total Field measured at sea. 'Two features are apparent.

The first feature is the large 'anomaly' at the south end of the map. It's peak amplitude is of the order of 200 to 250. gammas.. However, it is felt that this 'anomaly' is due almost totally to magnetic noise - this will be shown in the discussion of the next map.

The second feature is that the 'anomalies' shown on this map appear to be linear i.e. stretched out, along the ship's track. This is true of the large 'anomaly' at the south end of the map and of several 100-gamma 'anomalies' at the north end of the map. These lineations can be seen by inspecting this map, Map 2, and the Track Plot, Map 1, simultaneously. These features are again attributed to magnetic noise. If magnetic noise is strong, the marine magnetometer towed by the ship will record the noise. If the noise is of relatively high frequency, of the order of 60 minutes say, then in the 60 minutes the noise takes to cycle from one amplitude extreme to the other, the ship travelling at about

16 knots will have travelled roughly 16 nautical miles. The marine magnetometer will then appear to have recorded an 'anomaly' 16 nautical miles long. Should the ship continue to travel and the noise continue to cycle, then the marine magnetometer would record a series of 'anomalies', each 16 nautical miles long. On a map; such 'anomalies' would appear as a series of closures, with perhaps a mean value contour (roughly the zero-gamma contour for an Anomalous Field Map) following 'alongside' all these little closures--so the net result would probably be a map showing linearshaped features with pockets of closed contours dotting the crests of these features.

Finally, if as we suspect, the 'anomalies' shown on this Anomalous Field - Marine Magnetics Map are almost entirely due to magnetic noise, and, as we shall see in the next discussion, they are almost all accounted for in this way, then it may be surmised that the survey area must have little magnetic character of its own, at least in relation to the smaller 100-gamma 'anomalies' due to the magnetic noise. If the area has strong magnetic character of the order of 100 gammas or so, then these would alter the map in such a way that it would be unlikely that a large number of the 'anomalies.' shown on the Anomalous Field - Marine Magnetics Map could be attributed to magnetic noise. That the area has little magnetic character is not a surprising inference since it is known, from exploratory wells drilled onshore, that sediment thicknesses
are of the order of 13000 feet. The first exploratory well in the area, B.A. Shell 10E Reindeer D-27, bottomed in sediments at 12668 feet (Chamney, 1970).

MAP 3 - RESIDUAL STATION MAGNETICS MAP

This map was generated by taking the magnetic noise recorded by the station magnetometer at Point Atkinson and matching it on a time basis to the ship's locations throughout the survey. If there had been no magnetic noise present during the survey, this map would show no relief at all. However, as in the case of the previous map, the Anomalous Field - Marine Magnetics Map, two features are apparent.

The first feature, the large 'anomaly' at the south end of the map, is also present on this map (Map 3) except the peak value of the 'anomaly' is of the order of 400 gammas instead of roughly 200 gammas.

The second feature, that of lineation of the 'anomalies' along the ship's tracks, is also seen in this map.

The most interesting result in comparing the two maps the first map which was hoped to be mainly signal and the second map which is the noise map - is that the two are highly correlated. Almost all 'anomalies' shown on the first map (the Anomalous Field -. Marine Magnetics Map) are mirrored by similar 'anomalies' on the second map (the Residual Station Magnetics Map). We
therefore conclude that almost all 'anomalies' recorded at sea are caused by magnetic noise.

But in addition to this, the two maps highlight the initial conclusions regarding the suppression of the magnetic variations in the survey area (see first part of this chapter for the discussion). For example, the large 'anomalies' at the south ends of the two maps, though highly correlated, are very different in amplitude - the one recorded at sea is only half as strong as the one recorded at the station magnetometer at Point Atkinson. On the other hand, the 100-gamma 'anomalies' at the north ends of the two maps appear to have similar amplitudes in both maps-- thus, in this instance, little or no suppression is present.

This strong suppression of the magnetic variations is particularly interesting and leads to the conclusion that we are in fact observing a geomagnetic variation anomaly in a rather unorthodox manner. A discussion of this phenomenon will be presented in Chapter 4.

MAP 4 - THE RMS FIT MAP

By fitting the r.m.s. value of the Residual Station Magnetics Map to that of the Anomalous Field - Marine Magnetics Map, a sort of r.m.s. fit between the two maps was performed (see end of Chapter 2 for details) and the result is shown in Map 4. This map shows two features.

The first feature is that the large 'anomaly' in the south end of the two maps fitted together, is still present. This indicates the r.m.s. fit technique has failed to remove it, a result that is not surprising since it was found that the ratio of the r.m.s. values of the two maps fitted together was roughly $0.9--$ looking at the two fitted maps (Maps 2 and 3), we can see that a r.m.s. ratio of roughly 0.5 would be required for the large 'anomaly'.. to be removed by the r.m.s. fit technique has successfully removed most of the smaller amplitude magnetic noise and in turn re-emphasizes the high degree of correlation between the Anomalous Field - Marine Magnetics Map and the Residual Station Magnetics Map.

CHAPTER 4

AN ANOMALY IN GEOMAGNETIC•VARIATIONS

In the previous chapters it was shown that analysis of the marine magnetic data collected in this survey was complicated because magnetic noise corrections were impossible to apply. This was due to the fact that magnetic noise variations recorded at sea in the survey area were found to be suppressed in amplitude at the higher frequencies, when compared to variations recorded at the station magnetometer located on shore at Point Atkinson.

The suppression of the higher frequency magnetic variations indicated that a geomagnetic variation anomaly (g.v.a.) was present. This chapter deals with the investigation of the nature of this anomaly. A brief introduction to g.v.a.'s is first given. The evidence for a g.v.a. in the Mackenzie Bay area is presented in the latter part of the chapter.

A geomagnetic variation anomaly, as the name implies, is an anomaly in geomagnetic variations. It is, as Schmucker(1970) pointed out, essentially a difference between the geomagnetic variations recorded at two stations that constitutes an anomalous condition. To understand what g.v.a.'s are, consider the following model, shown in Figure 1.

Consider a magnetic disturbance (source field) due to, say, an ionospheric line current, I_{1}. These are called the primary magnetic disturbance and the primary current respectively, for reasons which will be clear later.

When the primary disturbance impinges upon some point, P, on the Earth's surface, as is seen in Figure 1, it produces a primary magnetic field F_{1}, there. This field will induce currents in the Earth, the strength of the induced currents depending on the conductivity of the Earth in the region. If the Earth were perfectly conductive the fields of the induced currents may be represented by an image current, I_{2}, of exactly the same strength as the primary current but flowing in such a manner as to produce opposite effects to those produced by the primary current. Hence, with an image current I_{2} of equal magnitude, the induced field, F_{2}, at the point P will be of the same magnitude as the primary field F_{1}. The resultant field at P, being the vector sum of these two fields, F_{1} and F_{2}, will be along the horizontal, with no vertical component at all. The vector F_{z} shown in figure will not exist.

However, with a non-perfectly conducting Earth, the image current I_{2} will have a smaller magnitude compared with the primary current I_{1} so that the magnitude of the induced field at P will be smaller. The resultant field at P, F_{R}, again the vector sum of F_{1} and F_{2}, will now be inclinded to the horizontal and will therefore have a vertical component F_{z} as shown in Figure 1 . Clearly, then, both the resultant magnetic field F_{R} and the vertical magnetic field F_{z} depend on the conductivity of the Earth. Spatial variations in F_{R} and F_{z} will, assuming a spatially
uniform source for the magnetic disturbance, reflect conductivity variations in the Earth. The above model is only valid for regions of the earth that are approximately horizontally layered. The field relationships are more complex near regions of lateral conductivity variations.

Now consider what happens when the magnetic disturbance varies with time. As this disturbance impinges upon the Earth, the depth of penetration depends on various factors summarised in the expression:

Skin Depth, $d=\left(\frac{2}{\sigma \mu \omega}\right)^{1 / 2}$ in MKS units.
This expression shows that the depth at which the amplitude of the magnetic disturbance falls to $1 / e$ of its initial value, the skin depth is inversely proportional to the electrical conductivity σ : to the magnetic permeability of the material μ, and to ω the angular frequency of the magnetic disturbance. In other words, higher frequency disturbances are more rapidly attenuated with depth than lower frequency disturbances.

Then if we consider a conductive layer, we find that the vertical variations for high frequencies are strongly attenuated (strong image currents) while low frequency variations pass through the layer and are little attenuated (weak image currents).

WORLDWIDE G.V.A.'S
G.v.a.'s have been described in many parts of the world. Some can be attributed to the effect of nearby deep oceans since a deep ocean affect.s geomagnetic variations both as a highly conductive body (Mason 1963) and as a relatively highly conductive oceanic crustal province. This effect, called the cost effect, naturally accounts for only those g.v.a.'s near deep oceans. The rest of the g.v.a.'s in the world must be due to other causes.

Many explanations for non-coastal g.v.a.'s have been proposed. All of these rely on apparent electrical conductivity contrasts between two areas. Hyndman and Hyndman(1968) and Caner(1970) for example, suggest hydration as a cause for increased conductivity in certain parts of the crust. This hydration, perhaps in the form of interstitial water, may, as suggested by Hyndman and Cochrane(1971), in their study of the area of the continental shelf of Eastern Canada, be associated with evaporite, salt layers. Uyeda and Rikitake (1970) have also shown that many g.v.a.'s are related to areas of high heat flow.

In the Canadian Arctic, two g.v.a.'s have been documented-one at Alert on Ellesmere Island first reported by Whitham et al (1960) and the other at Mould Bay on Prince Patrick Island first reported by Whitham (1963). Mould Bay is shown in Map 5. Both g.v.a.'s appear to be due to the presence of a highly conducting layer deep

MAP 5 LOCATION MAP (after Goel. Surv. Conodo, 1969)

Known North American craton arec shoded.
in the Earth's crust. The Alert anomaly involves lateral conductivity contrasts. Only the Mould Bay anomaly is examined in detail here since it.is the one to which the Mackenzie Bay anomaly is probably related.
the mould bay anomaly
The anomaly in the Mackenzie Bay area appears to be related to the Mould Bay anomaly for two reasons--the first is that the frequency suppression characteristics of the two anomalies are similar, and the second is the proximity of the two anomalies. Before examining the data for the Mackenzie Bay anomaly in detail, a summary of information currently available for the Mould Bay anomaly is presented.

Whitham (1963) reported that at Mould Bay, geomagnetic variations of short periods were severely attenuated. The energy density curves for the anomaly showed a 10:1 energy density attenuation for variations of 40 -minutes period when compared to variations of 100 -minutes period. Ionospheric causes of the anomaly were eliminated by normalising Mould Bay records to records obtained at Resolute Bay on Cornwallis Island which is felt to be in a'non-anomalous' zone. Various models were used in attempts to simulate the frequency characteristics of the Mould Bay anomaly-the one which fitted best has a highly-conductive($\left.10^{-11} \mathrm{e} . \mathrm{m} . \mathrm{u}.\right)$ layer 20 km . thick at the bottom of the Earth's crust. Whitham suggested
thermal doming of mantle material into the crust as the cause of this layer, but this necessitated regional upwarping of the $1400^{\circ} \mathrm{C}$ isotherm in order to produce the required conductivity. At this temperature, ionic semi-conduction in olivine is believed to yield the required 10^{-11} e.m. u. conductivity for the model. Calculations also showed the thermal time constant of such a body i.e. the time taken for anomalous heat flow to reach the Earth's surface, or, the time required for anomalous isotherms to develop at the surface, would be of the order of 10^{5} to 10^{6} years. Available aeromagnetic profiles over the area discounted basement mineralisation as the cause of the g.v.a. Finally, evidence indicates the anomaly is not accountable for by the coast effect since, firstly, Point Barrow in Alaska does not. show anomalous geomagnetic characteristics such as those observed at Mould Bay in spite of the fact that Point Barrow is closer to deep ocean than Mould Bay is, and, secondly, Mould Bay appears to be too far away from deep ocean to be affected by it. Data obtained by Zhigalov(1960) show that the effects of deep ocean (deeper than 2 km) are not noticed 130 km away. Ocean depths of even 500 metres appear to be at least $150 \mathrm{k}_{\mathrm{m}}$ away from Mould Bay as shown in Map 5. Further work was done on the Mould Bay anomaly in 1964 by Law et al (1965) who measured the heat flow at ten stations in M^{\prime} Clure Strait. It was found that heat. flow values in the area,

130 km scuth of Mould Bay, were only 0.84 HFU or 57% of the world average, so that if thermal doming is the cause of the Mould Bay anomaly, then the anomaly must either be non-existent 130 km south of Mould Bay, or, the thermal doming causing the anomaly must be younger than 10^{5} to 10^{6} years (Quaternary), the thermal time constant for such a.doming.

Later work at Pedder Point on Eglington Island(see Map 5) 100 km south of Mould Bay in the direction of the heat-flow stations, indicates that the area is geomagnetically 'anomalous' (Whitham, 1965) i.e. suppression of the higher frequency magnetic variations is present. This, therefore, means that the Mould Bay anomaly is probably not due to thermal doming, since the regional upwarping accompanying such a doming would have to vanish in the 30 km separating the southernmost known anomalous area, Pedder Point, and the thermally non-anomalous heat-flow stations in M^{\prime} Clure Strait. Of course, the heat-flow values obtained in M^{\prime} Clure Strait. may be questionable, particularly because of the existence of very deep permafrost.

Other geophysical studies have been made of the Mould Bay anomaly. Niblett (1967) reported that in a period of 2 months in 1965, a swarm of 2000 microearthquakes occurred 15 km southeast of Mould Bay at a depth of approximately 6 km . Studies of these microearthquakes have shown their cause to be probably tectonic and not volcanic and their relationship to the Mould Bay
anomaly is believed to be highly speculative (Niblett and Whitham, 1967). Other seismological studies do not show any specific results supporting the idea of thermal doming.

A MACKENZIE BAY G.V.A.
Evidence for a g.v.a. in the Mackenzie Bay area derived from marine magnetic data collected during this survey is now presented: So far, it has been shown that a geomagnetically anomalous condition exists if geomagnetic variations recorded at one location differ markedly from those recorded at another location over the same period of time. In particular, for the Mould Bay anomaly, the g.v.a. characteristics are suppression of the vertical field:which implies severe attenuation of the higher frequency components of the total geomagnetic field variations (Whitham et al, 1960), since the main field lines are nearly vertical at this geomagnetic latitude.

As mentioned earlier, during the whole of this survey, a station magnetometer was in operation on land at Point Atkinson (see Map 5 for location) approximately 150 miles from the survey area. Two other oceanographic ships were making studies in the immediate area; particularly the CSS BAFFIN in an area north of Point Atkinson.
\therefore Figure 2 shows the time-series plots of the magnetic variations recorded by the station magnetometer at Point Atkinson compared with the variations recorded at sea. More detailed plots of the two recordings were made and these are shown in Figure 3

FIGURE 2 COMPARISON 日ETWEEN SHIPBOARD mAGKETIC
varations and station macnetic varlations

and Figure 4. Three features are noticed in these figures.
The first feature is that in almost all plots shown there is remarkable correlation between the variations recorded at the two locations.

The second feature is that, though there is remarkable correlation between the variations recorded at the two locations, the variations recorded at sea show a strong attenuation of the higher frequency components. In a1most all cases, the variations recorded at sea are much smoother in appearance, lacking the 'spikiness' of the variations recorded at Point Atkinson. Any high frequency components of the variations evident.from Point Atkinson records that still appear in the variations recorded at sea, are strongly attenuated in amplitude.

The third feature of these plots is that there appear to be phase differences between the variations recorded at the two locations. These differences do not appear to be constant.

These three features are typical of a g.v.a. --in particular, they appear to be similar to those of the Mould Bay anomaly (Whitham, 1970).

Geomagnetic variation anomalies are usually investigated with three-component magnetometers. With such instruments, it is then possible to obtain not only time-series records of geomagnetic variations but also directions can be established since all three components are known. In this survey, since only the Total field was measured, no directionality of the geomagnetic variations can
be determined. All that is known is that there is suppression of the total field in amplitude and that there is attenuation of the higher frequency components of the geomagnetic variations. The frequency characteristics of the Mackenzie Bay g.v.a. are now examined.

Figure 5 shows the power spectra for the same time period of station magnetometer variations and of the marine magnetometer variations. Comparing the two curves, it is apparent that the higher frequency components shown in the marine magnetometer records are severely attenuated compared to those-of the station magnetometer. From power spectra such as these, an attempt to compute power ratios at various frequencies was made. Figure 6 shows the power ratios computed from selected time periods of the survey. Though substantial scatter is present, the figure does show that magnetic variations of periods around 20 minutes are attenuated severely compared to variations of. 100 minutes.

The power spectra were computed using the periodogram method (Jones 1965). The trend was first of all removed from each time period segment and end effects were minimised by tapering the end of each segment using a cosine bell function.

Since the differences in geomagnetic variations are between ..the two locations of Mackenzie Bay and Point Atkinson, the g.v.a. must lie in the intervening region. Further delineation of the g.v.a. is suggested by data obtained by the CSS BAFFIN. When compared to the same station magnetometer records, the marine magnetic data recorded at sea by the CSS BAFFIN see Map 5 appear to show little or no suppression of the magnetic variations

FIGURE 5

POWER SPECTRA

FIGURE 6 POWER RATIO BETWEEN MACKENZIE BAY MARINE DATA AND PT. ATKINSON STATION DATA
(Srivastava, pers. comm.). This infers that the CSS BAFFIN survey area and Point Atkinson must lie in the same 'geomagnetic zone'。 In that case the Mackenzie Bay g.v.a. must lie between the Mackenzie Bay area on the one hand, and the CSS BAFFIN survey area and Point Atkinson, on the other.

Summarising the evidence, therfore, it is seen that the Mackenzie Bay g.v.a. appears to have similar geomagnetic characteristics as the Mould Bay g.v.a. From the locations of the magnetic variation records examined, the Mackenzie Bay g.v.a. must lie between the general Mackenzie Bay area and Point Atkinson.

IMPLICATIONS OF THE MACKENZIE BAY G.V.A.

Probably the most exciting implications of the Mackenzie Bay are those related to plate tectonics. Law and Riddihough(1971) in their study of the geographical relation between tectonic environments and all g.v.a.'s known in the world, show that all g.v.a.'s not explainable by the coast effect appear to occur at plate boundaries. Classifying all these non-coastal g.v.a.'s in terms of their tectonic environments, they show that all these g.v.a.'s fall into one of three tectonic environments with the exception of Japan. The tectonic environments are --"along the edge of stable cratons; within fold belts; along major fault and rift structures" (Law and Riddihough, 1971). Law and Riddihough add that this should not be surprising since the various geological
situations such as hydration of certain parts of the crust and high heat flow regions believed to cause the electrical conductivity contrasts associated with g.v.a.'s do occur preferentially in the zones affected by a plate boundary. Japan appears to fall into a separate tectonic classificatinn of its own, that of an island arc. However, studies of g.v.a.'s in island arc situations are very sparse and Japan may be an exceptional structure.

In particular, Law and Riddihough show that for North America, all known g.v.a.'s not attributed to the coast effect either lie at the edge of the North American stable craton or within fold belts. Map 6 shows their ideas.

In the Canadian Arctic, the two previously documented g.v.a.'s do indeed fall into one of the three tectonic environments. They lie within fold belts. The Alert anomaly lies within a region of "Eugeosynclinal (magmatic) folding that sweeps across Ellesmere Island and continue in a north-easterly direction over the northern tip of Greenland" (Niblett and Whitham, 1970). The Mould Bay anomaly lies within another fold belt, the Parry Islands Fold Belt.

As Map 5 shows, the edge of the North American craton appears to run northwards along the Mackenzie River, then northeastward.to.cut across Banks Island and finally eastward to the Eastern Arctic. That it cuts across Banks Island is significant.

Preliminary data from g.v.a. stations occupied on Banks Island (Figure 7) by the Geomagnetic Division of the Earth Physics Branch of the Department of Energy, Mines and Resources show that a g.v.a. exists between Sachs Harbour to the south of Banks Island and Castel Bay, to the north of Banks Island. Castel Bay records show suppression of higher frequency magnetic variations so that the material underlying the Castel Bay area is of higher conductivity compared to that underlying Sachs Harbour.

Looking at the location of the Mackenzie:Bay g.v.a. then, (Map 5) we see that though it lies close to the edge of the North American craton, the edge as drawn on the map (Geol. Surv. of Canada; 1969) lies to the south. Further work on the Mackenzie Bay g.v.a. should resolve this discrepancy by defining the extent of the anomaly better, but for now, it appears that the craton edge does pass through the region between the Mackenzie Bay and Point Atkinson as the g.v.a. infers.

Since the Mackenzie Bay anomaly, the Mould Bay anomaly and the anomaly recorded at Banks Island all appear to lie in the Parry Islands Fold Belt, it may be speculated that all three are related. Again, further work in the area is necessary; it may .then be possible to relate with more confidence, the g.v.a.'s in the region to the tectonics. The tectonics of this region may be important in our understanding of the evolution of the Canada Basin.

The marine magnetic data obtained in this survey is heavily doped with magnetic noise--this is clearly seen when the records obtained at sea are compared with records obtained simultaneously on land by a fixed station magnetometer at Point Atkinson. There is remarkable time-correlation between the two sets of data. The high frequency components of the data taken at sea are severely attenuated in comparison with the land data. In addition, some phase displacement is evident. The net result is that the noise variations monitored by the station magnetometer cannot be directly applied to the marine magnetic data as corrections. It appears that no technique available can be used to apply these corrections to yield reliable results. Since little magnetic character is evident amidst all the noise, it is inferred that the Mackenzie Bay/Beaufort Sea area surveyed has little magnetic character. This is not surprising in view of the fact that the area is the site of vast thicknesses of sediments.

The frequency attenuation of the variations recorded at sea and monitored at Point Atkinson in the Mackenzie Bay survey area, suggest a geomagnetic variation anomaly lies in the intervening region. This g.v.a., called the Mackenzie Bay g.v.a., appears to have similar geomagnetic characteristics as the anomaly at Mould Bay--whether the two anomalies are connected is not known.

Further work on the Mackenzie Bay g.v.a. would determine this as well as provide more quantitative data.

Since this was not a proper g.v.a. survey in the usual sense, the cause of the Mackenzie Bay g.v.a. cannot be determined. But it is interesting to note that it lies in the region thought to be where the edge of the North American is presently located. The relationship of this anomaly to its tectonic environment adds strength to the concept that g.v.a.'s tend to occur in the zones affected by plate boundaries, since, it would appear, such zones among all others should provide the necessary tectonic and geological situations conducive to the formation of zones of contrastin electrical conductivities thought to cause g.v.a.'s.

From the experiences of this survey, it is suggested that all magnetic surveys conducted in the as yet ill-defined areas affected by the Mackenzie Bay g.v.a. or any of the other Arctic g.v.a.'s for that matter, be treated with great care especially with regard to correction of the data for the large amplitude.magnetic noise variatons so common in the Arctic. For marine surveys, a buoy or sea-floor station magnetometer located within the:survey area may give the most reliable data for use in these corrections.

BIBLIOGRAPHY

Barrett, D.L. (1968), Frequency modulation of a Shipborne Proton Magnetometer signal due to the hydrodynamic instability of the towed vehicle, J. Geophys. Res., 73, 5327-5334 (Bedford Institute Contribution No. 110).

Barringer(1970), Manual for Barringer Oceanographic Magnetometer Model OM-104, Barringer Research Limited, 304 Carlingview Drive, Rexdale, Ontario.

Bigelow, H.W. (1963), Electronic Surveying: Accuracy of Electronic Positioning Systems. J. Surv. Mapping Div., Amer. Soc. Civil Engs., 37-76, October.

Bullard, E.C. (1970) Geophysical Consequences of Induction Anomalies. J Geomag. Geoelect. 22, 73-74.

Cain, J.C. (1965) Goddard Space Flight Center, Maryland, Report No NASA TM-X-55379/X-612-65-400.

Caner, B. (1969) Long Aeromagnetic Profiles and Crustal Structure in Western Canada. Earth Plan. Sci. Letts., 7, 3-11.

Caner B. (1970) Electrical Conductivity Structure in Western Canada and Petrological Interpretation, J. Geomag. Geoelect., 22, 113-129.

Chamney, T.P.(1971) Tertiary and Cretaceous Biostratigraphic Divisions in the Reindeer D-27 Borehole, Mackenzie River Delta., Geol. Surv. Canada Paper 70-30.

CHS. (1970), Calibration Data for Decca Navigation Chains used in Hydrographic Survey of the Mackenzie Bay/Beaufort Sea areaCSS PARIZEAU 1970. File No. WA-10070. Canadian Hydrographic Service, Victoria, B.C., Canada.

Churkin, M. (1969) Paleozoic Tectonic History of the Arctic Basin North of Alaska., Science, 165 549-555.

Demenitskaya, R.M. and Karasik, A.M. (1965), Magnetic data confirming that the Nansen-Amundsen Basin is of normal oceanic type - in, Continental Margins and Island Arcs, Geol. Surv. Canada Paper 66-15.

Dietz, R.S. and Shumway, G. (1961) Arctic Basin Geomorphology. Geol. Soc. Amer. Bull., 72, 1319-1330.

Eardley, A.J. (1960) History of Geologic Thought on the Origin of the Arctic Basin, Geology of the Arctic, 1, G. O. Raasch, Univ. of Toronto Press.

Geological Survey of Canada (1969) Tectonic Map of Canada, Geology and Economic Minerals of Canada, R. J. W. Douglas.

Heezen, B.C. and Ewing, M. (1960) The Mid-Oceanic Ridge and its Extension through the Arctic Basin, Geology of the Arctic, G.O. Raasch, Univ. of Toronto Press.

Hope, E.R. (1969) Geotectonics of the Arctic and the Great Arctic Magnetic Anomaly, J. Geophys. Res., 64, 407-427.

Hyndman, R.D. and Cochrane, N.A. (1971) Electrical Conductivity Structure by Geomagnetic Induction at the Continental Margin of Atlantic Canada. Geophys. J., 25.

Hyndman, R.D. and Hyndman, D.W. (1968) Water Saturation and Electrical Conductivity in the Lower Crust. Earth Plan. Sci. Letts., 4 , 427-432.

Johnson, G.L. and Heezen, B.C.(1967) The Arctic Mid-Oceanic Ridge. Nature, 215, 724-725.

Jones, R.H. (1965) A Reappraisal of the Periodogram in Spectral Analysis. Technometrics, ㄱ, 531-542.

Kerr, J.W. (1967), Nares Submarine Rift Valley and the Relative Rotation of North Greenland, Bull. Canadian Petrol. Geol., 15, 483-520.

King, D.B. (1969) The Tectonic Map of North America, U.S. Geol. Survey, 1:5,000,000.

King, E.R., Zietz, I., and Alldredge, L.R. (1969) Magnetic Data on the Structure of the Central Arctic Region: Geol. Soc.. Amer. Bull., 77, 619-646.

Law, L.K. and Riddihough, R.P. (1971), A Geographical Relation between Geomagnetic Variation Anomalies and Tectonics. Can. J. Earth Sci., 8, 1094-1106.

Law, L.K., Paterson, W.S.B., and Whitham, K. (1965), Heat Flow Determinations in the Canadian Arctic Archipelago. Can. J. Earth Sci., 2, 59-71.

Law, L.K., DeLaurier, J., Andersen, F., and Whitham, K. (1963), Investigations during 1962 of the Alert Anomaly in Geomagnetic Variations. Can. J. Phys., 41, 1868-1882.

Mason, R.G. (1963), Spatial Dependence of Time-variations of the Geomagnetic Field at Oahu, Hawaii, Trans. Amer. Geophys. Union, 40 (abstract only).

Morley, L.W. (1963) The Areal Distribution of Geomagnetic Activity as an Aeromagnetic Survey problem near the Auroral Zone. Trans. Amer. Geophys. Union, 34, 836-840.

Niblett, E.R. and Whitham, K. (1970) Multi-disciplinary studies of the Geomagnetic Variation Anomalies in the Canadian Arctic. J. Geomag. Geoelect., 22 99-111.

Niblett, E.R., Whitham, K., and Caner, B.(1967), Electrical Conductivity Anomalies in the Mantle and Crust in Canada, The Application of Modern Physics to the Earth and Planetary Interiors, S.K. Runcorn, NATO Advanced Institute Conference at Newcastle-upon-Tyne, England.

Ostenso, N.A.(1962) Geomagnetism and Gravity of the Arctic Basin, Proceedings of the Arctic Basin Symposium at Hershey, Philadelphia on October 1962, Co-ordinated by J.E. Sater, Arctic Institute of North America.

Packard,: M.E..(1954) Free Nuclear Precession Magnetometer. Varian Associates, Palo Alto, California, March 19.

Parkinson, W.D...(1964) Conductivity Anomalies in Australia and the Ocean Effect, J. Geomag. Geoelect., 15, 222-226.

Riddihough, R.P. (1971), Diurnal Corrections to Magnetic Surveys An Assessment of Errors. Geophys. Prospecting, 19 551-567.

Rikitake, T. and Whitham, K. (1964), Interpretation of the Alert Anomaly in Geomagnetic Variations, Can. J. Earth Sci., 1, 35-62.

Rikitake,..T. (1966) Electromagnetism and the Earth's Interior 2, Developments in Solid Earth Geophysics, Elsevier, Holland.

Roden, ${ }^{-R}$. B. (1964) The Effect of an Ocean on Magnetic Diurnal Variations, Geophys. J., 8, 375-388.

Schmucker, U. (1964), ..Anomalies of Geomagnetic Variations in the \therefore. Southwestern...United States, J.. Geomag.. Geoelectr., 15, 193-221.

Schmucker, U. (1970) An Introduction to Induction Anomalies, J. Geomag. Geoelect., 22, 9-33.

Sykes, L.R. (1965) The Seismicity of the Arctic, Bull. Ses. Soc. Amer., 55, 519-536.

Tailleur, I. (1969) Speculations on North Slope Geology. Oil Gas J., 215 , sept 22.

Untiedt, J. (1970) Conductivity Anomalies in Central and South Europe. J. Geomag. Geoelectr., 22, 131-149.

Uyeda, S. and Rikitake, T. (1970) Electrical Conductivity Anomaly and Terrestial Heat Flow. J. Geomag. Geoelectr., 22, 75-90.

Vogt, P.R. and Ostenso, N.A. (1970) Magnetic and Gravity Profiles across the Alpha Cordillera and their relation to Arctic seafloor spreading. J. Geophys. Res.; 75, 4925-4937.

Vogt, P.R., Ostenso, N:A. and Johnson, G.L. (1970) Magnetic and Bathymetric data bearing on sea-floor spreading north of Iceland. J: Geophys. Res., 75, 903-920.

Whitham, K. (1963) An Anomaly in Geomagnetic Variations at Mould Bay in the Arctic Archipelago of Canada. Geophys. J., 8, 26-43.

Whitham, K. (1965) Geomagnetic Variation Anomalies in Canada. J. Geomag. Geoelectr., 17, 481-498.

Whitham, K. and Andersen, F. (1962) The Anomaly in Geomagnetic Variations at Alert in the Arctic Archipelago of Canada. Geophys: J., ㄱ, 220-243.

Whitham, K. and Niblett, E.R. (1961) The Diurnal Problem in Aeromagnetic surveying in Canada. Geophysics, 26, 211-228.

Whitham, K., Loomer, E.I. and Niblett, E.R. (1960) The Latitudinal Distribution of Magnetic Activity in Canada. J. Geophys. Res., '65, 3961-3974.

Wold, R.J., Woodzick, T.L. and Ostenso, N.A. (1970) Structure of the' Beaufort Sea continental margin. Geophysics, 35, 849-861.

Zhigalov, L.N. (1960) Some features of the Variation of the Geomagnetic Vertical component in the Arctic Ocean. Translated from Geomagnetic Disturbances (Collection of Articles No. 4 relating to Section 3 of IGY Program), Academy of Sciences, Moscow, by E.R. Hope. Directorate of Scientific Information Services, Defence Research Board Canada. DRB Translation T 358R.

APPENDIX I

DECCA 6F INAVIGATION SYSTEM CHARACTERISTICS

DECCA MINIFIX NAVIGATION SYSTEM CHARACTERISTICS

Frequency 1702 kHz
Propagation speed $299650 \mathrm{~km} / \mathrm{sec}$.

Master (Shingle Point)	69°	001	01.497"	N	Zone 8		7	656	233.87
	137°	28'	49.528"	W		E		400	817.93
Slave I (Kay Point)	69°	05'	$03.893^{\prime \prime}$	N	Zone 8	N	7	664	007.32
	136°	07'	32.287"	W		E		455	153.98
Slave II (Pitt Island)	69°	15'	55.932"	N	Zone 8	N	7	687	. 375.22
	138°	19^{\prime}	$56.160^{\prime \prime}$	W		E		368	354.65

Baseline lengths \quad Master - Slave I $\quad 54907.60$ metres	
	Master - Slave II 44995.60 metres

APPENDIX II

TABLE OF COMPUTER PROGRAMS

PTAPE DECODER
DECNAV + DECCA $+\mathrm{DISTAN}+$ MINTY + UNMINT

MAGNAVM + IGRF + TMINT + UMIN
GRID + MXGEN
PLOTTER + MXPAND + PLOT2D
TRACKER
SMPLOTTER
ONEDEE

The following section gives brief notes concerning the above programs.

PROGRAM COMMENTS

PTAPE DECODER

This program reads in Friden-encoded data, checks for completeness and correctness of a whole data unit (one minute's data), decodes the characters, forms data words from these characters, and outputs the data words in EBCDIC (numeric decimal characters). see Flow Chart 2.

DECNAV + SUBROUTINES
The main program, DECNAV as shown in Flow Chart 3, reads in the Start/End Times, the Decca co-ords for the Start/End, the Decca navigation system in use (6 F or Minifix) and the type of track run (straight line or hyperbolic) for each line. It computes/ interpolates between the Start/End of the line and outputs Times and Geographic/UTM co-ordinates at specified time intervals. The interpolations performed are either linear for a straight-track or hyperbolic for a hyperbolic lane-run.

The subroutine DECCA is adapted from a version generously loaned by the Canadian Hydrographic Service (now the Marine Sciences Branch, Department of Environment). DECCA converts Decca co-ordinate readings into Geographic or UTM co-ordinates.

The subroutine DISTAN computes the distance in nautical miles, between two points given the geographic co-ordinates of these points.

The subroutine MINTY converts the Time parameters recorded during the survey, Sequential Day/GMT Time (e.g. Day 267, Time 2345 hours), into a more manageable single quantity for computing purposes, Sequential Minutes.

The subroutine UNMINT undoes what MINTY does - namely, it converts Sequential. Minutes back into Sequential Day/GMT Time. This is done purely because Sequential Minutes are very large numbers which do not lend themselves to easy reading, and because Day/time are used. in the ship's operations.

MAGNAVM + SUBROUTINES
The main program, MAGNAVM, reads in the Magnetic Data (Day/Time/ Mag) on the one hand, and the Navigation Data (Day/Time/Co-ordinates) on the other. It then matches the two sets of data on the basis of the time parameter (Day/Time). Flow Chart 4 shows how this is done.

MAGNAVM calls the subroutine IGRF which computes the Regional Magnetic Field (IGRF value) at a point given the Geographic co-ordinates of that point.

The two other subroutines that MAGNAVM calls, subroutines TMINT and UMIN, are the real-number versions of the previously-mentioned subroutines MINTY AND UNMINT respectively.

GRID + SUBROUTINE MXPAND
The main program, GRID, sets up the data, X-Y co-ordinates of the scattered data points, so that they are ready to be gridded onto a square-grid necessary for plotting. The gridding is done by the subroutine MXGEN which 'remembers' how it generates this grid after it has done it once. This 'memory' is fed to the subroutine MXPAND used in the next stage of processing.

MXGEN and MXPAND are both programs written and generously loaned by Mike Patterson of the Department of Geography of the University of British Columbia.

PLOTTER + SUBROUTINES
The main program reads in the Z value (may be Total Field reading for instance) for the scattered data points fed into the above Main Program GRID. Since the subroutine MXGEN, used in conjunction with GRID, remembers how to generate the grid, and passes this information to the subroutine MXPAND, MXPAND merely reads in the Z co-ordinate and places it in an appropriate location in the square grid to be generated after weighting. this Z co-ordinate according to. the gridding information。

This 'remembering' of the gridding procedure results in having to actually grid the scattered data points just one - because once the gridding information is recorded, any set of Z co-ordinates for the same scattered data points can be gridded very quickly. As an example, gridding 6700 scattered data points onto a 50 by 50 square gxid suitable for plotting takes approximately 500 seconds of CPU
time for the UBC IBM System/360/67. If this gridding had to be done for say, three sets of Z co-ordinates e.g. Total Field, Regional Field, and Anomalous Field, the amount of computer CPU time would be 1500 seconds CPU time.

However, using MXGEN/MXPAND and 'remembering' the gridding procedure results in 500 seconds $C P U$ for gridding the first set of Z co-ordinates but only 1.5 seconds CPU for gridding each subsequent set of Z co-ordinates.

After gridding via MXPAND, the main program PLOTTER calls the subroutine PLOT2D which plots and contours the data-grid. PLOT2D was written by Dr。 T. J. Ulrych of the Department of Geophysics of the University of British Columbia, who unselfishingly loaned it. The contouring routines called by PLOT2D are those available at the University of British Columbia.

PLOTTER generated the maps shown as Map 1 to Map 4.

TRACKER
TRACKER plots the ship's positions for the whole cruise. A position every minute or a position every ' n ' minutes are plotted where ' n ' is selected by the user. For this cruise, a position every 10 minutes was plotted as seen in Map 1.

SMPLOTTER
SMPLOTTER merely plots selected periods of station magnetometer data. The periods are selected by the user who supplies the program with the station magnetometer data, usually on magnetic tape. SMPLOTTER scans the data for, and plots, the periods selected, along with the appropriate axes etc... The station magnetometer traces in Figure 3 and Figure 4 were generated by this program.

ONEDEE
ONEDEE reads from the user, instructions as to which marine magnetic lines(traverses) are to be plotted in profile. It scans an input tape containing marine magnetic data for all lines, picks out data for the line selected, and scales/plots the data for that line in time-series. Profiles of marine magnetic data shown in Figure 3 and Figure 4 were plotted by this program.

FLOW CHART 2

PROGRAM 'PTAPE-DECODER' - FLOW CHART

2

- comutto memomal dearl a amomilous lamom tielos

 momart - enan oata monit
 minotr - may dapa mourat

APPENDIX III

This contains the source listings of all the programs used in the reduction of data for this survey, with the exception of the Subroutines MXGEN and MXPAND which were written by and available only from Mike'Patterson of the Department of Geography at the University of British Columbia.

A table of all the computer programs.can be. found at the beginning of Appendix:II, while Flow Charts for three of the major programs"can be found at the latter part of the same Appendix II.
** COMPUTING CENTRE WILL bE OPEN EASTER HOLIDAYS, EAN TC 5PN ***
 \$SICNON RGOH T=3C $P=75$ COPIES $=4 \mathrm{C}$ PRIO $=\mathrm{L}$

* + LAST SIGNCN WAS: 10:54:15 THU MAR 3C/72

USER "RGCH" SIGNEC ON AT C8:36:10 CN FRI NAR 31/72
\$COPY *SOURCE*a \rightarrow CC *SINK*

C**THIS FRCGRAN DECCCES FRICEA-CC[EL FAFERTAPE NUMBERS INTO DECIMAL NUMBERS
C PERFORNS VARIOLS CHECKS, AVERAGES THE [ATA \& WRITES THE G/P CN COMPUTER-TAPE.
C written fer mariae-mag cata - cay,time, lo mags. recque gch ubc june. ig71.

C————PCNT=(I/P) PAPERTAPE FRANE CCLNT. CCAT=(C/P) [ATA-FCINT CCUNT WIIFIN
C AN O/P BLDCKISIZE SET BY OCNT NAX.I. FCR EACH PAPERTAPE, G IS THE NO.
C CF C/P ELGCKS SC that the tctal nc. of cata-points ofp for that p-tape,
C (TCCNT), IS GIVEN BY: ICCAT=((G-1)*ELKSIZE)+CCNT(FOF LAST ELCCK)
C----IN EACH MINUTE OF PTAPE, THERE ARE FPN FRAMES/MINLTE, hFN CATA-WORDS/NIA. WITH TNAG MAG-REACINGS OF WHICF PERtAPS VMAG ARE VALID(MAGS).
c-----fCR the pafertape, there are ffef franes/cata-fcint whict. incluces tre SEPARATOR-FRAME) OF WFICH FPK FRANES NAKE LF A CATA hORC.
C----FII IS A CCUAT WHICF IS INCREMENTED EVERY TIME A FIll) CHARACTER IS FGUNE hHETHER THE [ATA FCLLCWING IT IS VALIL GR ACT.
 THEIR CORRESPONCING TRUE(LECINAL) NLMBERS RESPECTIVELY.
C----CHARI I IS an array cCntaining successive characters that make lp a nunber EACH DF htich is stored in a numberl) array, wfe leng. the numbers are NANIPULATEG ANE THEN O/O INTG THE DATA() ARRAY WHICH IS C/F CN MAGTAPE.
C-----CATAI , IS THE FINAL ARRAY INTO wHICH THE DATA IS PLT PRIOR TO O/P CN NAG tafe. ItS lccations centain cay, tine e avnag in successive locations. nc cther data is o/p on the nagtape. a lnag=average cf i minute's mag-reacings. C-----A DATA-FOIAT IS DEFINEC AS A NUMBER DESCRIBING A DATA PARANETER BE IT DAY CR TIME GR AVMAG. SC, CCAT, THE CATA-POINT CCUNT, UPS IN THREES FOR EACH MINLTE OF DATA [ECCDED ANC [/F.
C-----FRAMEI, IS ARRAY CONTAINING 1 MINUTE'S PAPERTAPE FRANES
C CLNM() \& FRIME) ARE (THER ARRAYS OF THE SAME SIZE AS FRAME().
C----DLIM=TOTAL NO. OF MAG-REACINES FCUND(IN A PTAFE) CUTSICE LIMITS SPECIFIED.
C----BUMF= TOTAL NO. OF PAPER TAPE FRAMES FGUND INCECCDEARLE(IA A PTAPE).
C
C********O/P ELCCKSIZE - CPTINUN BLCCKSIZE FOR URC IEN $260 / 67$ IS $4 C 9 \in$ BYTES.
C WRITE FQRNAT FCR C/P TAFE=IE PER [ATA-hCRD. WE HAVE 3 CATA-WCRDS (DAY, TIME \& AVMAE) PER DATA-SET, HENCE 15 BYTES. SO MAX. BLCCKSIZE=4096/15 C $\quad=27 \mathrm{C}$ [ATASETS(NINS. $=4$ RR. 3ZNINS). SC SET OCNT=2TC*3=81C MAX.

C********DON'T FORGET - ASSIGN O/P MAGTAPE TO I/O UNIT 3:!:!:!:!:!:

C
IMFLICIT INTEGER*4(A-Z)
[INENSICA CFAR(4), NUMEER(12), F(12), T(12), FRAME(Cl), FRIME(EC), +DUNN(EC), data(8lC)
C-------I/P CATA CONSTANTS
DATA FPW,FPCP,FPM,TMAG,WPM,F(1),F(2),F(3),F(4),F(5),F(6),F(7),F(8)
$+, F(5), F(10), F(11), F(12), F(13), T(1), T(2), T(3), T(4), T(5), T(6), T(7)$,
$+T(8), T(9), T(1 C), T(11), T(12), T(13) / 4,5,60,1 C, 12,1,2,19,4,21,22,7,8$,
$+25,32,128,98,84,1,2,3,4,5,6,7,8,5,0,12 \varepsilon, 58,84 /$
 C

98 PTNO $=30$
C------SET UP CCUNTS FOR EACF PAPERTAPE PROCESSED
c. $\quad B \cup M F=0$
$\mathrm{PCNT}=0$
Fll=0
$6=1$
$C L I N=C$
C
Cれ*******SET CCNT UP(OCNT CHECKED TO SEE IF O/P BLOCKSIZE REACHE[) C CCAT=0 UNTIL FIRST NIAUTE'S GCOD DATA FCUND(SEE 142 G 17C) 1 CC OCNT $=0$
C
C********SCAN PAPERTAPE FOR F(11) CHARACTER
101 CALL FTAFE(IFFAME, $\varepsilon 11, \varepsilon 21)$
PCAT $=$ PCAT +1
$102 \mathrm{~K}=1$
$104 \operatorname{FRANE}(K)=I A E S(I F R A M E)$
IF(FRANE(K).EG.F(11)) GC TC 106
C-------F(II) NCT FCUND. SCAN AGAIN. (DRINT MSG IF THIS IS NCI START OF PTAPE)
C (MSG NOT FRINTED IF FRAME (K) = C WHICH IS GENERAIED EY blank papertape)
IF(FRANE (K).EG.C) GC TC 1 Cl
IF (CCNT.GT.C) hRITE(t, T) FRANE(K), CCNT, NUMEEF(1), NUMEER(2)
7 FORMATIX, 'LOST FII. FOUND', I5, '. NC DATA LOSI IF END CF PAPERT +AFE SECTICA. CCNT=', I4, ' - AFFROX DAY', I4, '/TINE', IE, ' ** + ****!
GO TO 101
C--------F(Il) FOUND. PRINT MSG \mathcal{E} READ IN REST CF FRAMES FOR 1 NINUTE OF DATA C KEEPING PCAT GCING
$1 \mathrm{C} 6 \mathrm{~F} 11=\mathrm{F} 11+1$
IF(FII.GT.1) CO TO 1C7
WRITE(6,1) FTNO, PCNT
1 FCRNATI'C', $3 x$, 'PAPERTAFE NC. ', I2/1X, 'FIRST F(11) CHERACTER FO +UNE AT FRAME NO. ', IE)
$107 \mathrm{CO} 120 \mathrm{~K}=2$, FFN^{2}
CALL PTAFE(IFRAME, \&11, हि21)
FRAME(K)=IABS(IFRANE)
$P C N T=P C N T+1$
120 CCATINUE
C------NOh have 1 ninute's franes. creck sefaratofs present.
13C IF(FRAME (FPCP+1).NE.F(12)) GC TO 142
$N=W F N-1$
DO $139 \mathrm{~N}=2, \mathrm{~N}$

IF(FRAME(L).NE.F(13)) GO TO 142
13c CCATINLE
go to lec
C
C********SEPARATORS GOOFED LP. BONB hHCLE PROGRAN IF FCNT.GT. GCO \& STILL NO GCCL C DATA FCUNC YET. CTHERKISE SCAN INSIDE ARRAY FOR F(ll) TC RESTART. C TEST FCR BGMB-DUT CNLY NALE FCF START CF PTAFE(I.E. ELOCK 1)
142 IF(G.GE.2) GO TO 143
IF(FCNT.GE. $600 . A N C . O C N T . E Q . C)$ GO TO $4 C C$
143 DC $144 \mathrm{~J}=2, \mathrm{FPN}$
IF(FRAME(J).EQ.F(11)) GO TO 147
144 CONTINUE
C-------f(11) nct IN ARRAY - PRINT NSG \& RESTART SCAN CF PTAFE FOR F(11)

Write (6,g) ocnt, nunber(1), numeer(2), frame
9 FORNATIIX, 'SEFARATORS GCOFEL $\&$ FII NOT IN ARRAY. CNE MINLTE''S DA +TA LOST AT CCNT=', I4, ' - AFPRCX [AY', I4, '/TIME', I5, ' ******

GO TO 101
C-------F(11) IA GRRAY. UP FII COUNT. SHIFT ARRAY SC J IN IST ARRAY LOCATICN C LSE DUNNI 1 fOR TEAFCRARY ARRAY. PRINT NSG, LCCATION \& GCCFEC ARRAY 147 F11=F11+1

WRITE(6,8) CCNT, NUMEER(1), NUMBER(2), FRAME
ε FCRNATIIX, 'SEFARATORS GCCFEC \& FIl IS IN ARRAY. CNE MINUTE'S CAT +A MAY BE LOST AT CCNT=', I4, ' - AFPRCX [AY', 14, '/TIME', I5, " $+* * * * * * / 1 X$, 'GCCF IS IN THIS ARRAY'1/1X, 3CI4/1X, 3CI4)
[0 $148 \mathrm{JJ}=1$, FFN
$148 \operatorname{DUNM}(J J)=0$
$\mathrm{JJ}=1$
DC $149 \mathrm{AN}=\mathrm{J}, \mathrm{FFN}$
DUNN(JJ) =FRAME (NN)
$\mathrm{J} J=\mathrm{J} J+1$
149 CCNTINUE
$N=F P M-J+1$
$J J=1$
DO $151 \mathrm{~N}=1, \mathrm{M}$
$\operatorname{FRANE}(\mathrm{N})=\operatorname{CUNM}(J J)$
JJ $=\mathrm{j} J+1$
151 CONTINLE
C--------READ IN SOME MORE FRAMES TO FILL ARRAY. THEN CHECK SEFARATORS aGAIN. $L=F P M-J+2$
DO $153 \mathrm{~K}=\mathrm{L}, \mathrm{FPN}$
CALL PTAPE(IFRAME, \&11, 521$)$
FRANE (K) =IAES (IFRAME)
PCNT=PCNT+1
153 CONTINLE
GO TO 130
C
C********SEPARATCRS C.K. SET FRINE()=FFANE() : FRIMEI) USEC FCR SPOT-CHECKS C LP OCNT, PRINT NSG IF CCNT=1 - IHEN CECCCE CATA FRANES.
160 CO $165 \mathrm{P}=1$, FPM
FRINE(P) $=$ FRANE (F)
165 CONTINUE
17 C OCNT $=0 \mathrm{CNT}+1$
IFICCNT. GT. I.OR.Q.GT.1) CO TC 171
TCAT=PCNT-FFN+1
WRITE(E,2) FIl, TCNT
2 FCRNATIX, 'FIRST MINUTE WHERE SEPARATORS C.K. AFTER ', I5, ' FIl +CHARACTERS FCLAC - AT FRANE NC. ', I5/)
C-------SET lP valid-mag cClat utict dfops as each invalid nag fcunc
171 VMAG $=$ TMAG
C
C*********DECCDING.
tackle all words in cae ninute.
172 CO $199 \mathrm{I}=1$, WPM
$J Z=(I * F F[F)$
$I Z=J Z-(F P O P-2)$
C------TACKLE EACH FRAME, STORE IN WORD ARRAY FORNING NUNBERS FROM WORDS
C AS EACH hCRE STOREC.
$N=1$
CO $177 \mathrm{~K}=[2, \mathrm{JZ}$
C--------rere is tre key cecol ing line - find what friden character each frane C IS \& then set frane tc cerresfcacing truelcecinali number.

DO $174 \mathrm{~J}=1,1 \mathrm{C}$

IF(FRANE(K).EG.F(J)) GO TO 176
174 CCATIALE
C----frane nct cecodeable - ifvalid characteripiafe puncting error?)
C ncte i contaolec ey statement 171
C----(A)IF NAG-FRANE, ZERO hHCLE HCRIINUNEER(I) \& [ROP VALIC-NAG COUNT $E C N T=P C N T-F P M+K$
IF(I.LE. C$) \in O$ TO 175
WRITE(6,10) FRAME(K), ECNT, CCNT, NUMBER(1), NUMBER(2)
1C FCRNATIIX, 'FRICEN CFARACTER', I5, ' INVALIC:MAG-FRANE NC.', IT, ' + - OCNT IS', I4, '. MAG-READING ZERCED. AFFRDX DAY', I4, '/TINE', +15, (*******!
NUNBER(I) $=0$
VMAE = VMAG-1
BUNF $=$ BUNF F FPW
GC TC 199
C-----(B) IF DAY CR TIME FRANE, 9999 WHCLE hCRD \& COATINUE NEXT WORD
175 WRITE(6,2$)$ FRANE(K), ECNT, C(NT, NLMBER(1), NUNBER(2)
3 fornatilx, 'friden character', 15, ' INVALID:DAY/tine frame no.', +I7, ' - CCAT IS', I4, '. CAY/TINE SET TO ¢̧ŞS. APPRCX DAY', I4, '/ +TIME', I5, (*****
NUMEER(I)=ççs
$B U N F=B U N F+F F W$
GO TO LSS
C------FRANE CECCDEABLE. SET FRANE TO TRLE AC. \& FCFM GORC FRON CHARACTERS.
176 FRAME (K)=T(J)
$\operatorname{CRAR}(N)=\operatorname{FRANE}(K)$
$M=M+1$
177 CONTINUE
C
C********COAVERT CHAR ARRAY IATC SINGLE NUNEER(AUTO SKIPPED IF NUMBER=0 OR ©乌cg)
C------GET LAST CIGIT
NUMBER(I) $=\operatorname{CHAR}(F P W)$
C-------NCh GET GTHER CIEITS. ACTE 'I' CONTROLLEC EY DO STATEMENT LII.
TEMF $=F P h-1$
DO $182 \mathrm{Z}=1$, TENP
FAC=FFW-Z
$\operatorname{NUMBER}(I)=\operatorname{ALMEER}(I)+(C F A R(F A C) *(10 * * Z))$
182 CONTINLE
C
C********NCW CHECK NAG-REACINES WITHIN CHOSEN LIMITS SO BAD VALUES REJECTEO
FOR NACEAY, HI-LINIT=XSCCO GANMAS, LC-LIMIT=X7500 GANNAS (UNDERSTOOC X=5)
187 IF(I.LE.2) GO TO 199
IF(AUNEER(I).GT.9000.CR.NUMEER(I).LT.7500) GO TO 192
C------MAG-REACING INSICE LINITS - C.K.
GO 10 195
C-------NAE -READING OUTSICE LIMITS - ZERO MAG, DRCP VMAG-CCLNT \& UP OLIM-CCUNT
152 WRITE(t, 4$)$ NUNBER(1), NUMEEF(2), NUNEER(I)
4 FORNATIIX, 'DAY', I5, '/TINE', IE, - MAG-REACING CF', 15, ' GFF
+LIMITS SO WAS SET TO ZERD ***************1)
NLNEER(I) $=0$
VMAG $=V^{M} A G-1$
OLIM=OLIM+1
199 CCNTINUE
C
E**x*****NOW HAVE NUMBER ARRAY WITH DAY, TINE \& VNAG-NAES. IF VNAE=0, PRINT MSE,
C SET AVMAG=C FOR O/P (ON TAPE)
2CC IF (VMAG.GT.C) EC TO 202
2 Cl AVMAG=0
WRITE(, 5) NUMBER(1), NUNGER(2)
5 fermatilx, 'nc valic mags at all at day i, i5, - - time ', is)

```
C-------VNAG NCT ZERG - SET LP '[ATA' ARRAY TC C/P AS A ELCCK. STORE DAY-TIME
C -AVMAG CYCLICLY AND WRITE CN O/P TAPE CNCE BLCCKSIZE REACHEC.
C-----(AISTCRE CAY IN 'DATA' ARRAY
    2C2 DATA(CCNT)=NUNEER(1)
C-----(E)STORE TINE
    OCNT=OCNT+1
    DATA(CCNT)=NUNEER(2)
    IF(VMAG.GT.C) GO TO 2C4
C------VMAG=C SO BYPASS MAG-AVERAGING & SET AVMAG=0
    CCAT= CCNT+1
    AVNAG=0
    GO 10 20G
C----(C)STORE AVMAG - CALC(LATE AVMAG FIRST(RCUND INTEGER UPGARCS)
    204 CCNT=CCNT+1
        SUN=0
        DC 207 I=3, WPM
        SUN=SUN+NUMEER(I)
    2C7 CONTINLE
    AVMAG=1.*SUN/VNAG+.5
    2CS CATA(OCNT)=AVMAG
C********FFCR SFCT-CFECK, FRIMT FTAPE FRAMES & CECCDED O/P FOR VISLAL COMPARISCA
C EVERY 3O MIAS CF CATAPFERIOC SET EY XX IN MCD(CCNT,XX) WHERE XX IS THE
C OCNT PERIOC=(PERIOD IN MINSI*3 (SINCE I NIA. DATA C/F UPS OCNT BY 3)
    210 IF(NCD(CCNT,90).EQ.0) WRITE(E,6) OCNT, Q, FRIME, NLMEER, AVMAG
    6 FCRNAT(1X, '....SPCT-CHECK AT CCNT CF', I4, 'C/P ELCCK NO.', I3/
        +1X, 'THE FRIDEN-CODEC FRANES ARE '/1X, 3CI4/1X, 30I4/1X, 'THE DECO
        +CEC C/P NUMEERS ARE '/1X, 1215/1X, 'CONPUTED AVERAGE NAG-READING =
        + AVNAG = 5', [4,' GANNAS')
C
C*******CHECK IF BLOCKSIZE REACHED - YES? NRITE CN O/P TAPE LITH IS FORNAT.
C ELOCKSILE NAX. OF 810 CHOSEN AS PER CONNENTS AT START CF PROGRAM.
    IF(CCNT.LT.&IC) GO TC 101
    WRITE(3,SSS) DATA
    999 FCRNAT(90(915))
        G=G+1
        GO 10 100
C
C********WHEN ENC CF PTAPE FOUNC(CALL PTAPE EXIT &11)
C------WRITE CATAI ) ARFAY ZERCIAG UNLSEC LCCATICNS. CALCULATE TOTAL O/P
C DATA-FCINT COUNT(TOCNI) FCR THE PTAPE.
    11 KK=CCNT+1
    DC 220 IK=KK, 810
    DATA(IK)=C
    220 CGNTINUE
        WRITE(3,999) [ATA
        TOCNT=(Q-1)*&1O+CCNT
        MINCT=TOCNT/3
        TEMPO=CCNT
        TENFC1=TENPC-1
        TEMPO2=TENPC1-1
        WRITEIE,12) PTNO, PCNT, ELNF, MINCT, Q, OLIN, DATA(TENPC2),
        +DATA(TENFCL), [ATA(TENPC)
    12 FCRNATI'O', 4X, 'FINAL STATISTICS FOR PAPER-TAFE NO.", IZ/IX, "PTAP
        +E FRANES COLNTED = ', IT, ' - NUNBER INDECCDEABLE =*, I5/1X,"NUMB
        +ER CF NINUTES DF CATA D/P =', I5, 'IN',I2, ' BLOCKS CN MAGTAPE'/
        +1X, NLNEER CF MAG-REACIAGS CUTSIDE SET LIMITS =', I4/IX, 'END OF
        +PTAPE FOLND AT DAY', I4, ', TINE', I5, ', AVAAE 5', 14, ' GANNAS'/
```


C------URITE END-CF-FILE CN C/F MAGTAPE \& CFARGE CN TO NEXT PAPERTAPE

```
    ENLFILE 3
    PTAC= FTAC+1
C------GCTC 5CC INSTEAC IF EXIT AFTEF I FTAPE WANTEL. FCRMAT STMT GGS O.K.?
    GO TO 99
C
C********WHEN ENC CF ALL FTAPES FCUNC(CALL PTAPE EXIT &21)
C REPEAT STEFS AS &ll EXIT BLT EXTRA hRITE NSE & EXTRA ENCFILE
    21KK=CCNT+1
            CC 221 IK=KK, 810
            DATA(IK)=C
    221 CONTINUE
            WRITE(3.999) [ATA
            TCCNT=(Q-1)*810+CCNT
            MINCT=TOCNT/3
            TEMPO=CCNT
            TENPOL=TENPC-1
            TEMPO2=TEMPC1-1
            WRITE(E,12) PTNO, PCNT, BLNF, MINCT, Q, CLIN, DATA(TENPC2),
            +DATA(TENPCI), [ATA(TENPO)
            WRITE(\epsilon,22)
```



```
C------WRITE TKC ENDFILES ON C/F MAGTAPE AND GUIT
            ENDFILE 3
            ENCFILE 3
            EO TO 5CO
C
C********BCNB CUT CPTION
    4CC WRITE(E,31) PTNC
        31 FORMATIX, |**** BOMB DUT ***** SEPARATORS GOCFED EVEN AFTER FIRS
            +T ECO PTAPE FRANES READ. CHECK INFUT CATA. PTAPE NO. = ', I3)
    500 STOP
            EN[
```

\$CCFY \ddagger SKIF \ddagger SIAK $*$
\＄CCPY＊SCURCE＊かっCC＊SINK＊かっCC
C＊＊＊＊＊＊DECCA NAVIGATICN PRCGRAM＇DECNAV $* * * * * *$
C
C DAY／TIME／DECCA CO－DRDS OF AN OBSERVER ARE READ IN ANO
C DAY／TINE／SEGUENTIAL MINUTES／GEQGRAPHIC CO－ORDS ARE COMPUTED．
C DECCA CO－ORDS INPUT ARE FOR START／END OF A LINE－THE TYPE OF LINEISTRAIGHT
C OR HYPERBOL IC）AND THE DECCA CHAIN（GF OR NINIFIXI USED ARE I／P ：THE PROG
C WILL INTERPCLATE（STRAIGHT OR HYPERBOLIC）ACCORDINGLY，AND USE THE APPROPRIATE
C CHAIN PARAMETERS．
C．．BEFORE COMPILING／EXECUTING，SET UP DECCA CHAIN PARAMETERS \＆OPTION LIST．
C LCNT，MCNT＝COUNTS TO PRINT CHAIN PARAMETERS ONGE ONLY．
C＊＊＊LCGICAL UNIT $6=$ LINE PRINTER， $5=$［ECCA CO－ORD DATA（PRECEDED BY FORMAT） $4=$ PROGRAN C／P（USUALLY CCMPUTER TAPE）．
C $\quad 8=$ DEBUGGING \＆MINOR ERROR NSG DIP－SET＝＊CUNMY＊TC KILL．
INFLICIT REAL＊8（A－H，O－Z）
INTEGER＊4 DAY，TIME
DIMENSION LINE（2），FNT1（20），FMT2（2C），CAY（1000），TIME（1000），PATT
$+1(1000)$, PATT2（1000），MINUET（1000），GN（10C0），GE（1000），DLAT（1000）
＋，DLON（1000），DIST（1000），FIXX（1CC0），FIXY（1000），OMIN（ICOO），BDIS
＋T（1000），I YAD（1000），ENIT（1CCC），GEOGX（1000），GEOGY（1000）
DATA H／＇H＇／，Q／＇L＇／，P／＇M＇／，S／＇S＇／
CONMON FIXIN，H，Q，P，S，LCNT，MCNT
C．．．．．．OPTION LIST．PLEASE SET UP ACCORCING TO REQUIREMENTS．
C FIXIN IS fix interval in decca lanes－fixes will be ccmputed every
C FIXIN LANES FOR INTERPOLATION（IF HYPERBOLIC）．
C ZMINT＝TIME INTERVALIIN INSI BETWEEN FINAL O／F FIXES COMPUTED．
C ZMINT＝2．0
C SET IDTM＝0 IF DAY／TIME／MINUET／POSITIONS O／P WANTED．
C IDTM＝1 IF DAY／TINE／PCSITICNS C／P WANTED．
C IDTM＝2 IF MINUET／POSITICNS C／F WANTEC．
C SET UTM GRID CONSTANTS AT STMT 1000.
C FIXIN＝1．0 SET UP AFTER STATEMENT \＃9C．
IDTM＝0
ZMINT $=2.0$
C．．．．．．READ IN FORMAT BEING USED FOR DECCA CO－ORD I／P． READ（5，50）（FMTI（I），I＝1，20）
50 FORMAT（2CA4）
C FOR MACBAY，（1X，I5，1X，I4，1X，I4，1X，F7．3，1X，F7．3，1X，A1，1X，A1，1X，A3）
C．．．．．．SET UP COUNTS．RESET NOT NEEDED－PRINT ONCE CNLY PER PROGRAM EXECUTION．
80 LCNT＝1
MCNT $=1$
C．．．．．READ IN LINE I．D． $10 A Y / T I M E / C E C C A$ CO－ORDS／SELECTIONS．
C SELECTICNS：CHAIN＝N FCR MINIFIX CHAIN． CHAIN $=$ S FOR GF CHAIN（BOTH CHAINS ARE DECCA SYSTEMS）． TRACK $=$ H IF SHIP＇S TRACK IS HYPERBOLIC． TRACK＝L IF SHIP＇S TRACK IS A＇STRAIGHT＇LINE． LINE CODE＝1：START CF LINE（E．G． 10011 FCR START OF LINE LI） ＝9：END OF LINE IE．G．9COIL FOR END OF LINE 11）． $=99999$ IF LAST CARD．
90 I＝1
FIXIN＝1．0
101 READ（5，FMT1，ERR＝8000，END＝9000）LINE（1），DAY（I），TIME（I），PATTI（I），PAT
＋T2（I），CHAIA，TRACK，PTAC
C．．．．．．CHECK IF LAST CARD．
IFILINE（1）．NE．99999）GO TO 120
WRITE（6，110）

110 FORMAT(IX, 'NORMAL JOB TERNINATICN')
STOP 1
C.....CHECK IF CARD IS FOR START OF LINE.

120 LCHK=LINE(1)/10000
IF(LCHK.EQ.1) GO TO 125
C CARD IS NCT FOR START OF LINE. PRINT MSG \& READ NEXT CARD. WRITE $(6,126)$
126 FORMAT(IX, 'THIS IS NCT CARD FOR START CF LINE.....') WRITE 6, 8050)
WRITE(6,FMT1) LINE(1), DAY(I), TIME(I), PATTI(I), PATT2(I),CHAIN,TRACK + , PTNO
GO TO 90
125 CALL MINTY(DAY(I),TIME(I),MINUET (I))
C PRINT 127, I, DAY(I), TINE(I), NINUET(I)
C 127 FORMAT ($1 X$, 'FOR $I=$ ', I 5, DAY/TIME/NINUET=', 3(LX,I7))
C.... READ IN NEXT CARD ANC CHECK IF FOR END OF SAME LINE. READ AGAIN IF NOT.
$130 \mathrm{~J}=1000$
READ (5,FMT1,ERR=8080, END=9000) LINE(2), DAY(J), TIME(J), PATTL(J), P
+ATT2(J), CHAIN, TRACK, PTNO
LDIFF=IABS(LINE(2)-LINE(1))
IF(LDIFF.NE. 8COOO) GC TC 146
CALL MINTY(DAY(J), TIME(J), MINUET(J))
C PRINT 136, J, DAY(J), TIME(J), MINUET(J)
C 136 FORNAT ($1 X$, 'FOR $J=1,15$, DAY/TIME/MINUET=', 3(1X, I7))
GO TO 160
146 WRITE $(6,150)$
150 FORMAT (IX, *** ERROR...START/END CARL-PAIR NOT FOUND. CARDS ARE:) WRITE(6,FMT1) LINE(1), DAY(I), TINE(I), PATTI(I), PATT2(I),CトAIN,TRACK +, PTNO
WRITE(6,FMT1) LINE(2), DAY(J), TIME (J), PATTI(J), PATT2(J), CHAIN,TRACK +, PTNO
153 GO TO 9C
C.....HAVE START/END CARDS FOR SAME LINE. CHECK WHAT INTERPQLATION NEEDED.

C 'H' FOR HYPEREOLIC : 'L' FOR STRAIGHT LINE.
160 WRITE (6,162)
162 FORMAT(1X, 'START \& END OF LINE BEING PROCESSED)
WRITE $(6,8050)$
WRITE (6,FMTI) LINE (1), DAY(I), TIME(I), PATTI(I),PATT2(I),CHAIN,TRACK + , PTNO
WRITE(6,FMT1) LINE (2), DAY(J), TIME(J), PATT1(J), PATI2(J),CHAIN,TRACK +, PT NO
IF (TRACK.EQ.H) GO TO 170
IF (TRACK.EQ.G) GO TC $7 C C$
C.....TRACK TYPE UNSPECIFIED. ERROR.

WRITE $(6,165)$
165 FORMATIIX, 'TRACK TYPE UNSPECIFIED FOR THIS LINE....')
WRITE 6,8050$)$
WRITE(6,FMTI) LINE(I), DAY(I), TIME(I), PATTI(I), PATT2(I), CHAIN,TRACK + , PTNC

WRITE (6,FMT1) LINE (2), DAY(J), TIME(J), PATT1(J), PATT2(J),CHAIN,TRACK +, PTNO
GC TO 90
Cれ****HYPERBOLIC INTERPOLATICA NEEDED.
C HAVE DECCA CO-DRDS FOR START/END CF LINE DETERNINE WHICH IS TRACK LANE.
170 IF (PATT1(I).EQ.PATT1(J)) GO TO 210
IF(PATT2(I).EG.PATT2(J)) GC TO 280
C.... SOMETHING LRONG. NO TRACK LANE FOUND. PRINT MSG G READ NEXT CARD. WRITE(6,19C) LINE (I)
 GO TO 90

```
C.....PATTERN l (RED) IS OUR TRACK LANE. GET lOVER PATtERN 2 READING SO WE
C KNOW IF FIXIN IS POSIT IVE OR NEGATIVE.
    210 IF(PATT2(I).LT.PATT2(J)) GC TO 222
C PATT2(J) IS LCWER READING. SET FIXIN NEGATIVE.
        FIXIN=-FIXIN
C.....COMPUTE POSITIONS WITH SBRTN DECCA FROM PATTZ(I) TO PATT2(J) EVERY
C FIXIN LANES. REMEMBER FATT I IS CCNSTANT. SO USE PATTI(I) ONLY.
    222 CALL DECCA(LIVE(1),PATTI(1), PATT2(I),GN(I),GE(I),DLAT(I),DLON(I),C
        +HAIN,&90,&9999)
C PRINT 223, I, J
C 223 FORMAT(IX, 'AT 222, VALUE OF I IS', IT,' - J IS,', I7)
        I= I+1
        K=I-1
        PATT2(I)=PATT2(K)+FIXIN
C.....MAKE SURE LAST POSITION(PATT2(J)) IS COMPUTED.
        IF(PATT2(I).LE.PATT2(J)) GO TO }22
C.....IF EQUAL TO, LAST POSITICN(FCR PAITZ(J)) ALREADY CCNE - SO EXIT.
    IF(PATT2(K).EQ.PATT2(J)) GO TD 300
C.....NOT EQUAL,MUST BE GREATER. SO COMPUTE FOR PATTERN2(J) AFORE EXIT.
        PATT2(I)=PATT2(J)
        CALL DECCA(LINE(1),PATTI(1),PATT2(I),GN(I),GE(I),DLAT(I),DLDN(I),C
        +HAIN,&90,&9999)
            GO TO 302
C.....PATTERN 2 (GREEN) IS TRACK LANE. REPEAT AS STMTS 210-22C BUT PATT2 CONST.
    280 IF(PATT1(1).LT.PATTI(J)) GD TO 292
        FIXIN=-FIXIN
    292 CALL DECCA(LINE(I),PATTI(I),PATT2(1),GN(I),GE(I),DLAT(I),DLON(I),C
        +HAIN,&90,&9999)
C PRINT 293, I, J
C 293 FORMAT(IX, 'AT 292 VALUE OF I IS ', IT, " - J IS ., I7)
        I= I+1
        K=I-1
        PATTI(I)=PATTI(K)+FIXIN
        IF(PATTl(I).LE.PATTl(J)) GO TO 292
        IF(PATTI(K).EG.PATTI(J)) GO TO 300
        PATTI(I)=PATTI(J)
        CALL DECCA(LINE(1),PATTI(I),PATT2(1),GN(I),GE(I),DLAT(I),DLON(I),C
        +HAIN,&90,&9999)
            GO TO 302
C.....fIXES ALL COMPUTED. GET DISTANCE EETWEEN FIXES & TOTAL LINE LENGTH.
C.....TDIST=TOTAL LENGTH OF LINE.
C THIS IS THE 'K' EXIT - Value of 'I' TOO HIGh by 1.
    300 I =I-1
C
    302 L= I
C PRINT 303, L
C 303 FORMAT(1X, 'AT 302, L IS !, [6)
        TDIST=0
        DC 350 N=2,L
        N=N-1
        CALL DISTAN(DLAT(N),DLCN(M), DLAT(N),CLON(N),DIST(N))
C PRINT 340, M,N,DLAT(M),DLON(M),DLAT (N),DLON(N),DIST(N)
C 340 FORMAT(1X,'FOR M/N=',2(1X,I3),' DLAT(N)/DLON(M),DLAT(N)/CLON(N)/DI
C +ST(N) ARE',5(1X,F10.3))
C PRINT 343,N, DIST(N), TDIST
C 343 FORMAT(1X,'FCR N=',I3,' DIST(N)',F1O.3,' ADDS UP TO TDIST OF',FIO.
C +3)
    350 TDIST=TDIST+DIST(N)
C.....NOW HAVE ARRAY OF FIXES & dISTANCES BETWEEN THEM. COMPUTE SHIPIS SPEED.
        ELAPSE=DFLCAT(MINUET(J)-NINUET(1))
```

C PRINT 360, ELAPSE, NINUET(J), MINUET(1)
C 360 FORMAT(IX, 'ELAPSE=',F6.1,' - SHOULD BE', I6,' MINUS ', I6)
SPEED=(TDIST/ELAPSE)*60.
WRITE (6,380) LINE(1), TDIST,ELAPSE,SPEED
380 FORMAT (IX, 'CHECK : LINE ', I5,' - SAILED 'F8. 3, ' NN IN . F8. 3 , 'M +INS - SPEEC $=$ 'F8.3. ' ${ }^{\prime}$ KNOTS')
C.....SET MI NUTES-BETWEEN-FIXES-INTERVAL REGUIRED.

C 1 MINUTE APPROX. EQUAL TO 1600 FEET AT 16 KNOTS.
C 450 ZMINT $=2.0$
C.....DIVIDE START/END TINES CF LINE BY ZMINT TO GET 'ZFIX', THE NO. OF FIXES

C FOR LINE DIVIDE LINE LENGTH TDIST' EY ZFIX IG GET DISTANCE INTERVAL
C BETWEEN FIXES 'FDINT'.
ZFIX=ELAPSE/ZMINT
FDINT=TDIST/ZFIX
C....GET INTEGER(ZFIX), ADO 1 - THIS IS NO. OF FIXES WE END UP WITH FOR LINE NFIX $=(I[I N T(Z F I X))+1$
C PRINT 460, ZNINT,ZFIX,FCINT,ELAPSE,LINE(1)
C 460 FORMAT (1X, 'EVERY',F5.2, MIN GIVES',F7.2,' FIXES',F7.2,' DIST APART
C + OVER',F8.3,'MIN FOR LINE \#', I6)
$C \neq * * *$ INTERPOLATION LOOP. USE AFIX AS LOOP CONTROLLER.
C FDIST=CUMULATIVE DISTANCE TWEEN FINAL D/P FIXESIFDINT MINS. APART).
C DOIST=CUMULATIVE DISTANGE TWEEN DECCA POINTS COMPUTED ABOVE.
C CAUTION:DDIST SHOULD ADC UP TO TDIST (LINE LENGTH) BUT NEVER QUITE DOES.
475 DDIST=0
FCIST $=0$
C SET UP FIRST D/P FIX.
$480 \mathrm{FIXX}(1)=\mathrm{GN}(1)$
FIXY(1)=GE(1)
OMIN(1)= DFLOAT (MINUET(1))
C PRINT 483, OMIN(1),FIXX(1),FIXY(1)
C 483 FORMAT(1X,'FIRST O/P FIX SET UP. CMIN(1)/FIXX(I)/FIXY(1) ARE', $3(1$
$+X, F 10.3)$)
C.... NCW GET OTHER FIXES WHICH NEED INTERPCLATION THOUGH. FIX TO BE COMPUTED MUST ALWAYS BE DEFINEC EY POINTS(J) \& POINTS(I).
$J=2$, NFIX $-I=J-1 \quad$ NFIX=NO. OF O/P FIXES.
$M=1, N \quad-L=M-1 \quad N=N O$. OF POINTS CO-DRDS KNOWN(DECCA COMPUT. ABOVE)
$M=1$
500 DO $600 \mathrm{~J}=2$, NF IX
$I=\mathrm{J}-1$
FDIST=FDIST+FDINT
C. PRINT 505, J, FDIST, FDINT

C 505 FORMAT ($1 \mathrm{X},{ }^{\prime}$ FDR $J=, 13,{ }^{\prime}$ FDIST/FDINT ARE', $2(1 X, F 8.3)$)
C.....CHECK IF FIX CEFINED BY DECCA POINTS IN HAND.

510 IF(FDIST.GT. DDIST) GC TC 525
C....DEFINED - GET DIFF' \& GO TO [NTERPOLATING STATEMENTS.

DIFF=CDIST-FCIST
GC TC 550
C.....NOT DEFINED. UP M G GET NEh DDIST. RECHECK DEFINITICN EY NEW POINTS.

C 525 PRINT 529, J, DDIST, FDIST

$525 M=M+1$
$L=M-1$
DOIST=DCIST+CIST(L)
C PRINT 533, M,L, DOIST, CIST(L)
C 533 FORMAT (IX, 'AT $525+, \mathrm{N} / \mathrm{L}$ ARE', $2(1 X, I 3)$, CCIST/CISTIL) ARE', $2(1 X, F 8$
$\mathrm{C}+.31)$
GO TO 510
C.....INTERPOLATING STMTS. FIX DEFINED RY FCINTS(M) \& POINTS(L).
$550 \mathrm{FIXX}(J)=G N(M)-((\operatorname{GN}(M)-G N(L)) * D I F F) / D I S T(L))$
FIXY(J)=GE(M)-((GE(M)-GE(L))*DIFF)/DIST(L))

```
    OMIN(J)=ONIN(I)+ZNINT
C PRINT 571, J,M,L
C 571 FORMAT (1X,'FOR J/M/L OF', 3(1X,I5),' WE HAVE *')
C PRINT 573, FIXX(J), DLAT (M), CLAT(L), CIST(L)
C 573 FORMAT(1X, 'FIXX(J),DLAT(N),DLAT(L), DIST(L) ARE', 4(IX,F10.3))
C PRINT 577, DIFF, J
C 577 FORMAT(1X,'DIFF IS',F10.3,' FOR J OF',I 3)
C PRINT 579, OMIN(J),ONIN(I),ZMINT,I
C 579 FORMAT(1X,'OMIN(J)/OMIN(I)/ZMINT ARE*,3(1X,F10.1),* FOR I=',I6)
    600 CCNTINUE
C....ALL INTERPOLATIONS DCNE - GC TO G/P AREA.
    GO TO 1CCO
C**STRAIGHT TRACK LINE. WE HAVE START/END - SO =ONVERT TO GEOG-POSNS FIRST.
    700 CALL DECCA(LINE(I),PATT1(I),PATT2(I),GN(I),GE(I),DLAT(I),OLON(I),C
        +HAIN,&9C,EG999)
            CALL DECCA(LINE(2),PATTI(J),PATT2(J),GN(J),GE(J),DLAT(J),DLON(J),C
        +HAIN,E90.&9999)
C.....NOW HAVE 2 GEOG POSNS. CCMPUTE SHIP'S SPEED.
            CALL DISTAN(DLAT(J),DLON(J),DLAT(I),DLON(I),DIST(1))
            TDIST=DIST(1)
            ELAPSE=DFLOAT(MINUET(J)-MINCET(1))
            SPEED=(TDIST/EL APSE)*60.
            WRITE(6,380) LINE(1),TDIST,ELAPSE,SPEED
C.....FROM 2 GEOG POSNS G ZMINT(STMT 450) GET NC. OF FIXES NEEDED FOR LINE.
    ZFIX=ELAPSE/ZMINT
    NFIX=(IDINT(ZFIX))+1
C GET DIFFERENCES IN LAT/LCN BETWEEN POSNS.
    DIFGN=GN(J)-GN(I)
    DIFGE=GE(J)-GE(I)
C....CONPUTE GN/GE INCREMENTS BETWEEN INTERPOLATIONS - CALLED UPGN/UPGE.
    UPGN=DIFGN/ZFIX
    UPGE=DIFGE/ZFIX
C.....NOW INTERPCLATE. REMEMEER NFIX=(INTEGER PART(ZFIX))+1=NO.OF FIXES.
C INITIALISE FIXX, FIXY, CNIA.
    FIXX(1)=GN(1)
    FIXY(1)=GE(1)
    ONIN(1)= DFLOAT (MINUET(1))
    DO 800 IM=2,NFIX
    IN=IM-1
    FIXX(IM)=FIXX(IN)+UPGN
    FIXY(IM)=FIXY(IN) +UPGE
    OMIN(IM)=OMIN(IN)+2NINT
    800 CONTINUE
C....HAVE ALL FIXES. GO TO O/P AREA.
    GO TO 1000
C***** O/P AREA.....
C ALL FIXES IN UTM CO-ORDS DONE. CONVERT TO GEOG CO-ORDS, THEN O/P
C ACCORDING TO TYPE OF 'TIME' O/P DESIRED. NOTE NFIX=NO. OF FIXES.
C SF=SCALE FACTOR; DR=DEGREE-RADIAN CCNVERSION FACTCR;
C ORE=FALSE EASTIVG; ORN=FALSE NORTHING; I ZCNE=UTN ZONE.
    1000 SF=0.99960
    DR=0.01745329252
    ORE=5CCCOO.
    ORN=0.
    IZCNE=8
    GL=I ZONE*6.
    GL=183.-GL
    DC. 1002 K=1,NFIX
    CALL B51211(AA2,B2,FIXY(K),FIXX(K),SF,ORE,ORN)
    GEOGX(K)=AA 2/DR
```

```
    1002 GEOGY(K)=(B2/DR)+GL
    IF(IDTM.EQ.2) GO TO 1C10
    IF(IDTM.EQ.1) GO TO 102C
    IF(IDTM.EQ.0) GO TO 1020
    WRITE(6,1004)
    1004 FORMATIIX, 'FATAL ERROR - TYFE CF TINE [/F WANTED UNRECOGNISED')
    STOP &
C.....NINUTE-ONLY O/P WANTED. NO MORE COMPUTATIONS NEEDED.
    1010 WRITE(4,1012) LINE(1), NFIX
    1012 FORMAT(16,1X,16)
    WRITE(4,1013) (OMIN(I),FIXX(I),FIXY(I),GEOGX(I),GEOGY(I),I=1,NFIX)
    1013 FORMATIF10.2,1X,F15.3,1X,F15.3,1X,F15.8,1X,F15.8)
            GO TO 1050
C......DAY/TIME WANTED. CONVERT MINUET BACK.
    1020 DO 1024 I=1,NFIX
            CALL UNNINT(CMIN(I),IYAC(I),EMIT(I))
    1024 CONT INUE
C.....NOW O/P ACCORDING TO IDTM CHOSEN.
            IFIIDTM.EQ. 1) GO TO 1028
C.....IDTM=0 - DAY/TIME/MINUET O/P WANTED.
            WRITE(4,1026) LINE(1), NFIX
    1026 FORMAT (16,1X,16)
            WRITE(4,1027) (IYAD(I),ENIT(I),CNIN(I),FIXX(I),FIXY(I),CEGGX(I),GE
            +OCY(I), I=1,NFIX)
    1027 FCRMAT(I5,1X,F7.2,1X,F10.2,1X,F15.3,1X,F15.3,1X,F15.8,1X,F15.8)
            GO TO 1050
C.....IDTM=1 - DAY/TIME ONLY D/P hANTED.
    1028 WRITE(4,1029) LINE(1), NFIX
    1029 FORMAT(I6,1X,I6)
            WRITE(4,1030) (IYAD(I),ENIT(I),FIXX(I), FIXY(I),GEOGX(I),GEOGY(I),
            +I=1,NFIX)
    1030 FORMAT(15,1X,F7.2,1X,F15.3,1X,F15.3,1X,F15.8,1X,F15.8)
C.....O/P WRITTEN. SIGNAL THIS. WRITE ENCFILE ALSO.
    1050 WRITE(6,1053) NFIX,LINE(1)
    1053 FORMAT(IX,I5,' FIXES O/P ON UNIT 4 - LINE',I6,' PROCESSED'/I
            END FILE 4
            GO TO 90
C......READ ERROR. TRY AGAIN. TERMINATE ONLY OF ENDFILE OR 'gcçgq-LAST CARD'.
    8000 WRITE (6,8010)
    8010 FORMAT(1X, ***** READ ERRCR ON FCLLCWING ... ')
            WRITE (6,8050)
    8050 FORMAT(2X, 'LINE DAY TINE PATT1 PATT2 C T PT#')
            WRITE(6,FMTI) LINE(1),DAY(I),TINE(I),PATTI(I),PATTZ(I),CHAIN,TRACK
            +, PTNO
            GC TC 90
    8080 WRITE (6,8010)
            WRITE (6,8050)
            WRITE(6,FMT1) LINE(2),DAY(J),TIME(J),PAITI(J),PATT2(J),CHAIN,TRACK
            +,PTNO
            GO TO 90
C*****ENDFILE ENCOUNTERED. BOMB OUT.
    9000 WRITE(6,9010)
    9010 FORMAT(1X, **** ENDFILE ENCCUNTERED. ERRCR OR LAST CARC NOT ''9999
            +9"''1
            STOP 9
C*****NAV SYSTEN UNSPECIFIEC. BOMB OUT.
    9999 STOP 3
            END
```



```
    SUBROUTINE DECCA(MFIX,R1,R2,GN,GE,DLAT,DLCN,CHAIN,*,*)
```

```
C*** DECCA NAVIGATIOV PROGRAN - COURTESY NARINE SCIENCES VICTORIA ****
C.. CECCA RECEIVES THE DECCA CE-ORCINATES OF AN OBSERVER & COMPUTES HIS/HER
C POSITICN FIRST IN UTM & THEN IN GEOGRAPHIC CC-ORDINATES.
C..TWO DECCA SYSTEMS WERE USEC IN THE MACBAY AREAICALLED THE 6F & THE MINIFIX
C SYSTENSI - SO DECCA DETERMINES WHICH IS BEING USED BEFDRE COMPUTATIONS
C CONMENCE.
C..ALL CO-GRDINATES ARE ASSUMED BY DECCA TE BE IN THE SANE UTN ZONE.
C
C...LINE=I.C. OF LINE OR POINT BEING PROCESSED.
C RI/R2=PATTERN I & PATIERA 2 DECCA CD-ORDINATES OF OBSERVER.
C DLAT/DLON=LAT & LON CF ORSERVER RETURNED BY DECCA. DEGREES CNLY(E.G. 4G.FI
C* SET UP PARAMETERS FIRST. UTM-ZONE, CHAIN PARS & SCALE FACTOR FOR AREA.
C
    IMPLICIT REAL*8(A-H,C-Z)
    COMMON FIXIN, H, Q, P, S, LCNT, MCNT
C DATA P/'M'/,S/'S'/
C.... SET UP PRINT COUNTS. LCNT FOR GF, MCNT FOR MINIFIX.
C MCNT=1
C LCNT=1
C 109 READ(5,110,END=880) MFIX,R1,R2,CHAIN
C 110 FORMAT (1X,I 5,1X,F7.2,1X,F7. 2,1X,A1)
C.....SET UTM-ZONE.
    IZCNE=8
C....SET SCALE FACTOR, USUALLY MEAN SCALE FACTCR FOR WHOLE AREA.
    SF=0.S996
C......SET CHAIN PARAMETERS.
C V=SPEED OF PRCPAGATICN CF E.M. WAVES IN KM/SEC.
C QI=FREQUENCY FOR SLAVE 1 IN KHZ.
C Q2=FREQUENCY FOR SLAVE 2 IN KHZ.
C IF SYSTEM IS SINGLE FREQUENCY, MAKE Q2=01
C XM,YM = EASTING AND NCRTHING CF NASTER STATION
C XS1,YSl=EASTING AND NORTHING OF SLAVE 1
C XS2,YS2=EASTING AND NORTHING OF SLAVE 2
C.....SKIP 6F CHAIN PARS IF MINIFIX IS SYSTEM EEING USED.
    IF(CHAIN.EG.P) GO TO 312
    IF(CHAIN.NE.S) GO TO 900
C.....6F SYSTEMS PARAMETERS ARE:
    308 V = 259650.0
            Q1=355.92
            Q2=266.94
            YM=7731381.78
            XM=502649.21
            YS 1=7762342.307
            XS 1=636554.457
            YS 2=7722501.814
            XS2=347563.076
C.... CHAIN PARAMETERS COMING UP - PRINT WHICH CHAIN FIRST.
C WRITE (6,310) OR WRITE (6,311)
    310 FORMAT(/1X, 'FOR DECCA EF SYSTEN')
    311 FORMATI/1X, 'FOR DECCA NINIFIX SYSTEM')
C CHAIN PARANETERS FORMAT.
C WRITE (6,321) IZONE,SF,V,YM,XM,YS1,XS1,YS2,XS2
    321 FORMAT\IX, 'CHAIN PARAMETERS INPUT ARE ...'/1X, 'AREA-WIDE : UTM-
        +ZCNE', I3, & SCALE-FACTOR 'FG.7/LX, VELOCITY OF PROPAGATION AS
        +SUMED IS * F1O.2," KN/SEC*/1X," NASTER CC-DRDS IN UTM = NORTHING *
        +,F12.3." - EASTING ,F12.3/1X,"SLAVE 1 CO-ORDS IN UTN = NORTHING:
        +,F12.3,' - EASTING 'F12.3/1X,'SLAVE 2 CO-ORDS IN UTM = NORTHING '
        +,F12.3.' - EASTING ,F12.3/)
C.....PRINT CHAIN HEADING & PARAMETERS ONCE - CISPLAY ONLY
        IF(LCNT.GT.1) GO TO 120
```

```
    WRITE (6,310)
    WRITE (6,321) IZONE,SF,V,YM,XM,YS1,XSI,YS2,XS2
    LCNT=LCNT +1
C....SKIP CVER ETHER CHAIN NCW.
    GO TO l20
    C.....SET UP MINIFIX.SYSTEM PARAMETERS NOH. MACBAY SLAVE I/SLAVE ? REVERSED.
    312V=299650.0
        Q1=1702.
        Q2=1702.
        YS1=7664C07.32
        XS1=455153.98
        YM=7656233.87
        XM=400817.93
        YS 2 = 7687375.22
        XS 2=368354.65
C.....PRINT CHAIN HEADING & PARAMETERS CNCE FCR DISPLAY.
    IF(MCNT.GT.L) GO TD 120
    WRITE (6,311)
    WRITE(6,321) IZONE,SF,V,YM,XM,YS1,XS1,YS 2,XS2
    MCNT = MCNT +1
C
C-----COMPUTE BASELINES
    120 A1=DSQRT((XM-XS1)**2+(YN-YS1)**2)
    A2= DSORT ( (XY-XS2)**2+(YN-YS 2)**2)
    X1=XS 1-XM
    X2=XS 2-XM
    Y1=YS 1-YM
    Y2=YS 2-YM
    AK=X1 #Y2-Y1* X2
    ZQ=(A1**2*Y2-A2**2*Y1)/2./AK
    ZT=(A2**2*)
    Vl=V*SF
ЭC AKl=1.-((R1*V1)/(Q1*A1))
    AK2=1.-((R2*V1)/(Q2*A2))
    ZP=((A2*Y 1*AK 2)-(A1*Y2*AK 1))/AK
    ZS=((A1*X2*AK1)-(A2*X1*AK2))/AK
    ZR=((A1**2*Y2*AK1**2)-(A2** 2*Y1*AK2**2))/2./AK
    ZV=((A2**2*X1*AK2**2)-(A1**2*X 2*AK1**2))/2./AK
    B1=ZT-2V
    B2=ZQ-ZR
    B 3=ZP**2+ZS**2-1.
    B4=ZP* B2
    B5=ZS*B1
    B6 = B4+B5
    B7=B6**2
    B8=B3*(B2**2+B1**2)
    IF(B7)20,20,30
    RACIC=B7-B8
    IF(RADIC)40,40,50
    D=(-B6-DSQRT(RADIC))/B3
    IF (D)60,60,70
    D=(-B6+CSGRT (R\triangleDIC))/B3
    IF(D) 80,80,70
    X=ZP*D+B2+XM
    Y=ZS*D+B1+YM
    GN=Y
    GE=X
    GO TO 1C00
    WRITE(6,12) MFIX, R1, R2
```

```
12 FORMAT(IX,'SOLUTION INVALID. NO FIX FCR LINE *,IT, 'WHICH IS PATTL
        +',F8.3, ' - PATT2 'F&. 3)
        RETURN 1
; STGP
40 WRITE(6,13) MFIX, R1, R2
13 FORMAT(IX,'SOLUTION IMAGIN. NO FIX FOR LINE ,IT, :WHICH IS PATTI
    +',F8.3,: - PATT2 !, F8.3)
        RE TURN 1
C STOP
30 WRITE(6,12) MFIX, R1, R2
        RETURN 1
C STOP
1C00 SCFACT=SF
        DR=0.01745329252
        ORE = 5COCOO.
        ORN=0.
        GL=I ZONE*6
        GL=183.-GL
=
C CONVERSION FROM GRID TC GECGRAPHIC
C
    CALL B51211(\triangleA2,E2,GE,GN,SCFACT,ORE,ORN)
C
    AL2=AA2/DR
    IAL2=AL 2
    XMIN=(AL2-I AL2)*60
    MIN=XMIN
    ASEC=(XMIN-4IV)*60
    ALC2=B2/DR+GL
    IALO2=ALC2
    XMIN=(ALO2-IALO2 ) %60
    IMIN=XMIN
    BSEC=(XNIN-ININ)*60
C84 WRITE (6,22)MFIX,R1,R2,GN,GE,IAL2,NIN,ASEC,IALC2,IMIN, ESEC,IZONE
C22 FORMAT('0', 2X,I5,5X,F8.3,3X,F8.3,3X,F11. 3,F12.3,4X,2I 3,F6.2,6X,
C 5213,F6.2,5X,12)
C
C....CONVERT DEG/MINS/SEC TO DEGREES-CMLY.
    DLAT=IAL 2+(MIN/60.) +(ASEC/3600.)
    DLCN=IALO2+(IMIN/60.) +(ESEC/3600.)
C WRITE(6,86) MFIX,DLAT,DLCN
C 86 FORMAT(1X, I5, 2X,F1C.4, 2X,F10.4)
C GC TC 109
C 880 STCP 8
    RETURN
C.....ERROR EXIT. NAV SYSTEM LNSPECIFIED.
    900 WRITE(6,901)
    9O1 FORMAT(2X,'#क* ERROR - NAV SYSTEN NEITHER MINIFIX NOR 6F ***')
    STOP }
    RETURN }
    END
        SUBROUTINE 851211 (DA,DC,GE,GN,SCFACT,ORE,ORN)
        IMPLICIT REAL*8(A-H,O-Z)
C GRID TC GEOGR. ANY SPHEROID PROGRAN B51211 (P203)
C
C
C. **INPUT,
C
C GE = EASTING
C GN = NORTHING
```

SCFACT $=$ CENTRAL SCALE FACTOR
CRE $=$ FALSE EASTING
ORN = FALSE NORTHING

* CUTPUT*

DA $=$ LATTITUDE, NORTH(+), SOUTH(-)
$D O=$ CIFF. OF LONGITUDE, $(+)$ FOR POINT WEST OF MERIDIAN
$A 1=6378206.4$
$P 2=0.676865799730-2$
DELT $=0.68147849459 \mathrm{D}-2$
$A 1=$ EQUATORIAL SEMI-AXIS
P2 $=$ EXCENTRICITY SQUARED
$D E L T=P 2 /(2 .-P 2)$
$X=-(G E-$ ORE $) / S C F A C T$
$Y Y=(G N-O R N) / S C F A C T$
$Y=D A B S(Y Y)$
$\mathrm{C} 1=.75 * \mathrm{P} 2$
$\mathrm{C} 2=\mathrm{C} 1 \div \mathrm{P} 2 * .9375$
C3 $=$ C2*P2*. 972222222
C $4=$ C $3 * P 2 *$. 984375
C $5=A 1 *(1 .-P 2)$
P3=P2*.5
$P 4=1 .-P 3$
P5=D SQRT(P4)
P6=P4*P5
$P Z=P 4 * P 4$
$P X=P 6 \div P 4$
$P Y=P 2 * P 2$
$P 7=1 . /(1 .-P 2)$
$P 8=P 7 * P 7$
$P 9=P 8 * P 7$
$Y A=(Y-4984727.1000) / A 1$
$Y B=Y A * Y A$
$Y C=Y B * Y A$
$A T=.7853981634+P 6 * Y A * P 7-.75 * P 2 * P Z * P 8 * Y B+P Y * P X * P 9 * Y C$
IPASS=0
$2 \times 1=1.0$
$Z X=0.0$
25 CONTINUE
IPASS = IPASS +1
IF ($2 \times 1-2 X) 28,28,27$
28 IF (IPASS-2)27,27,26
$27 \quad Z \times 1=Z X$
$\operatorname{CS} 1=\operatorname{DCOS}(A T)$
CS2 $=\operatorname{CS} 1 * \operatorname{CS} 1$
SS 2=1.-CS 2
SS1=DS GRT (SS2)
$\mathrm{GX}=\mathrm{P} 2 * \mathrm{SS} 2$
$H X=G X * G X$
$0 X=H X * G X$
$P X=O X * G X$
$Q X=P X * G X$
$\mathrm{BN}=1 .+.5 * \mathrm{GX}+.375 * \mathrm{HX}+.3125 * \mathrm{OX}+.2734375 * \mathrm{PX}+.24609375 * \mathrm{QX}$
$B N 2=B N 1 * B N L$

```
    RHC=C 5*BN2*BN1
    DO=CS 1#SS 1
    PK=DO*SS 2*.66666666667
    QK=DO+PK
    SU=AT+C1*(AT-DO)+C 2*(AT-GK)
    IF(AT-.175) 2,2,1
    1 PK=PK*SS2*.8
    QK=QK+PK
    SU=SU+C 3*(AT-QK)
    IF(AT-.525) 2,2,3
3 SU=SU+C4*(AT -QK-PK*SS2*.8571428571)
2 DI=C 5ヶSU
    XX=Y-0I
    DELA=XX/RHO
    DELB=DELA*DELA
    DELC=DELB*DELA
    ZJK=1.E-4
    ZX=DABS (XX)-2JK
    GB2=-3.*P2*SS1*CS1*BN2
    GB3=.75*GE2*CE2-3.*P2*(CS2-SS2)*BN2
    AT=AT+DELA+GB2*DELB*.5+GB3*DELC*. 16666666667
    IF(ZX)26,25,25
26 CONTINUE
    CS1=DCOS(AT)
    CS2=CS1*CS1
    SS2=1.-CS2
    SS1=DSGRT (SS2)
    GX=P2*SS2
    HX=GX*GX
    OX=HX*GX
    PX=OX*GX
    QX=PX*GX
    BNI=1.+.5*GX+. 375*HX+.3125*OX+. 2734375*PX+. 24609375*QX
    T1=SS1/CS1
    T2=T1*T1
    T4=T 2*T 2
    T6=T4*T 2
    AN2 = DELT *CS 2
    AN4=AN2*AN2
    AN 6=AN4*AN2
    AN8=AN4*AN4
    Q1=X/(Al*BN1)
    Q 2=Q1*Q1
    Q4=Q2* G2
    Q6=Q4*Q2
    H1=Q1/CS1
    H2=Q2*(1.+2.*T 2+AN 2)*. 1t666666667
    H3=Q4*15.+6.*AN2+28.*T2-3.*AN4+8.*T 2*AN2+24.*T4-4.*AN6+4.*T2*AN4+
    124.*T2*ANG)*0.83333333330-2
    H9=Q6*(61.+662.*T2+1320.*T4+720.*16)/5040.
    DO=H1*(1.-H2+H3-H9)
    H4=T1*Q2*(1.+AN2)*.5
    H5=Q2*(5.+3.*T2+AN2-4.*AN4-S.*AN2*T2)*0.8333333333D-1
    H6=Q4*(61.+90.*T 2 +46.*AN 2+45.*T4-252.*T 2*AN2-3.*AN4+100.
    1*AN6-66.*T 2*AN4-90.*T4*AN2+88.*AN8+225.*T4*AN4+84.*T2*ANG-192.*T
    12*AN8)*0.27777777778D-2
    H7=Q6*(1385.+3633.*T2+4C95.*T4+1575.*T6)*0.49603174603D-4
    DA=AT+H4*(-1.+H5-H6+H7)
    IF(YY) 10,20,20
    DA= -DA
```

20 RETURN
END

SURROUTINE DISTAN(X1,Y1, X2,Y2,DIST)
C SERTN CGMPUTES DISTANCE BETWEEN TWO POINTS ON THE EARTH.
C SUPPLY LAT/LCNG OF PCINTS(X/Y) IN DEGREES ONLY(E.G.69.52).
C SBRTN USES TRIG EQN OF P. 62 'BASIC NATHS FOR ENGNRS' BY F.M. WOOD
C QUEEN'S UNIVERSITY SEPT. 1CE4.
C 1 NAUTICAL MILE $=6076.1$ FEET $=1.151$ STATUTE MILES $=1.852 \mathrm{KM}$.
C F=OEGREES-RADIAVS CONVERSION FACTOR. G=RADIANS-DEGREES CONVERSION FACTOR.
INFLICIT REAL*8(A-H,O-Z)
$\mathrm{F}=3.14159 / 180$.
$\mathrm{G}=10800.13 .14159$
$\operatorname{ARCRAD}=(\operatorname{DARCOS}((\operatorname{DCOS}(190 .-X 1) * F)) *(\operatorname{DCOS}((90 .-X 2) * F))+(D S I N(190 .-X 1$
$+) * F)) *(\operatorname{DSIN}((90 .-X 2) * F)) *(\operatorname{CCOS}((Y 1-Y 2) * F))))$
DIST=ARCRAD*G
RETURN
END

SUBROUTINE MINTY(DAY,TINE, MINUET)
C**THIS SBRTN CONVERTS SEQUENTIAL DAY AND GMT-TIME IN HOURS(E.G. 1859 HRS),
C INTO 'NINUTES-DF-THE-YEAR'(NINUET) - E.G. 12345Th EMT Minute of the year.
C**USE INTEGER ROUND-DFFS TC EXTRACT HRS \& NINUTES SEPARATELY FROM 'TIME'.
IMPLICIT INTEGER*4(A-Z)
C EACH DAY CONTRIEUTES 24 HRS WHICH IS 1440 MINUTES.
10 DMIN=DAY* 1440
C CHECK IF TIME=CCCO(MIDNITE).
IFITIME.NE.0000) GO TO 30
HMI N $=0$
MMIN=0
GC TO 40
C EXTRACT HCURS FROM 'TIME' - EACH HOUR CONTRIBUTES 60 MINUTES.
30 HRS = TIME/100
HMIN=HRS*60
C EXTRACT MINUTES FROM 'TIME'. MINUTES=(TIME-IHRS). SUN CONTRIBUTIONS. IHRS $=$ HRS $=100$
MMIN $=(T I M E-I H R S)$
40 MINUET $=$ DM IN + HM IV +MMIN
C PRINT 50, CAY, TIME, MINUET
C 50 FORMAT (IX, 'DAY/TIME [F', I5,'/', $15, '$ CONVERTEE TO MINUET DF', I7)
RETURN
END

SUBROUTINE UNMINT (ONIN, IYAC,EMIT)
IMPLICIT REAL* $8(A-H, O-Z)$
IFIOMIN.NE.O) GO TO 10
$I Y A D=0$
EMIT $=0$.
GO TO 20
10 IYAD $=$ IDINT (OMIN/1440.)
DMINS=ONIN-((DFLOAT (IYAC)) $\ddagger 1440$.
HOUR=IDINT (DNINS/60.1
RMINS = DNINS - (HOUR*60.)
EMIT $=$ HOUR* $100 .+$ RNINS
C PRINT 3, OMIN, IYAD, ENIT
C 3 FORMATIIX,'MINUET OF',F9.2,' CONVERTED TO DAY/TIME OF', I7, '/',F7
$\mathrm{C}+.21$
20 RE TURN
END


```
    FRGGRAN REACS IN NAVIGATICN DATA(FROM AN I/P DEVICEI & ATTENPTS IC
        NATCH NAGNETIC CATAIREAC IN FRCN ANCTHER I/F CEVICEI TC IT. THE MATCHED
        CATA ARE THEN O/P TD A THIRD DEVICE. NAG/NAV' ARE MATCHEC - 'MAGNAVM:
    - IAV DATA - CHRCAC PARAMETER + X/Y CO-ORD PARAMETERS I MATCH THEREFORE EASED
    MAG DATA - CHRCNC PARANETER + NAG READING, ON CFRCNO PARAMETER
    3 WAYS(EACH) OF NAV & MAC [ATA I/P. SEE OPTION LIST.
    . NAV FARANETERS FRECECEC EY A 'N OR 'V' WHERE PDSSIBLE E.G. VNIN, NDAY.
    NAG fARANETERS FRECECEC EY A 'N' CR'G' WHERE POSSIBLE E.G. NMIN, GDAY.
    ***** OPTICN LIST
        WITH APPROPRIATE FORNAT STMTS, THE FOLLQWING MAY RE CHOSEN:
            1) NAVIF=1 IF NAV CATA I/F IS MINUET+X-Y CO-CRDS(LAT-LCN)+UTM N-E.
            Z) =2 [AY+TINE+X-Y C[-ORDS
            3) = 3 DAY+TINE+NINUET+X-Y CC-CRCS.
            A) NAGIP=1 IF MAG [ATA I/P IS MINUET+MAG READING.
            B) =2 [AY+TINE+MAG.
            C) =3 CAY+TINE+MINUET+MAC.
    ....SET UP NAVIP & MAGIP VALUES IN STMT 3.
    (MINLET=SEGUENTIAL MINUTES [F THE YEAR FRCM CCCO HRS JAN. IST EACH YEAR).
    ....SET LP NAVIGATICN 'FIX TINE INTERVAL', FTINT, IN STMT 3.
    **** LOGICAL I/O UNITS TO BE ASSIGNED:
        UNIT G = LINE PRINTER (PROCESSING NSGS & ERROR MSGSI - CEFAULTS.
        5 = CARC REACER(*S[LRCE*) - [EFAULTS.
                4 = NAVICATION DATA - NG DEFAULT.
                3=NAG EATA - NO DEFAULT.
                2 = C/P AAV+MAG NATCHEC CATA - NC LEFAULT.
                & = ERRCR MSGS - *SINK* IF MSCS hANTEC* *DUNNY* CTHERWISE.
    ***** SUBROUTINES REQUIREC:
            A) UNNIAT - CONVERTS NIAUET TC DAY +TIMC - MAACATCRY.
            B) TMINT - CCNVERTS DAY+TIME TO MINUET - CNLY IF NAVIF=2 CR MACIP=2.
            CI IGRF - COMPUTES REGIONAL MAG FIELD FOR GIVEN LAT-ICN - NANDATORY.
        INFLICIT REAL*8(A-H,O-Z)
        INTEGER*4 [F
        DIMENSION VTINE(1000), VNIN(1C(C),NLAY(10CC),XN(1000),YN(1CCO),MDAY
        +(1000),NTINE(1C00),MINUEN(1CCO),GTIME(ICCC),GMIN(1000),NAG(1000),
        +GDAY(1000),ZT(1COO),ZX(1C00),ZY(1CCO),ZM(1000),YDAY(1000),GNAG(100
        +C),GEOGX(ICCC),GEOGY(ICCC),ZLAT(ICCO),ZLCN(ICOC),IZCAY(ICCOI,ZTIME
        +(1000),ZIGRF(1000), ZANOM(1CCC)
C #*** SET UP CCNSTANTS & CFTICNS.
C
        LNCNT:COUNT WHICH CCNTRCLS FESET OF NAG [ATA CCUNT AS EACH BLK READ IN.
        MTCH=1 SKIPS MAG-BLOCK CHFCKING RCLTINE - FIRSI NATCH NACE.
        3 NAGIP=2
        NAVIP=3
        FTINT=2.C
        LNCNT=1
        NTCH=O
C**** SET LP NAV [ATA FCRNAT & REDO IN NAV [ATA.
C
C
        FOR BEAUMAC CATA, NAV FORNAT IS LINEA + NC.CF FIXES AS FER FORMAT 5.
        FCLLOWEC EY FIXES +TINE AS PER FORNAT G.
        5 FORNAT(IG,1X,IG)
        6 FORMAT(I5,1X,F7.2,1X,F1C.2,1X,F15.3,1X,F15.3,1X,F15.8,1X,F15.8)
C **** SET UP COUNTS ETC..
C NECF=CCLNT CF NO. OF SUCCESSIVE ENDFILES READ FCR NAV CATA.
```

```
        MEOF=CCLNT LF NO. OF SLCCESSIVE ENDFILES FEAL FER NAG CATA.
        OP=O/P LATA PDINT CCUNT.
C****START PRCCESSING LINE ****
    lC NECF=C
        MEOF=0 SET UP IN STNT 7C
        CF=1
        JV=1
    1360 10 (2C,3C,4C), NAVIP
    WRITE(6,15)
    15 FGRNAT(//IX,'I/F DATA FCRNAT UNRECCGNISEC. EXECUTICN TERNINATED'I
    STOP G
C ....START REACING IN NAV DATA.
    20 READ(4,5,EN[=50) LINE, NFIX
        READ(4,6,ENC=\epsilonC) (VMIN(K),XN(K),YN(K), K=1,NFIX)
        GC TO 70
    30 REAC (4,5,ENC=50) LINE, NFIX
        READ(4,6,ENC=6C) (NDAY(J), VTIME(J),XN(J),YN(J), J=1,NFIX)
        CO ミ5 L=1,NFIX
        VCAY(L)= CFLCAT(NDAY(L))
    35 CALL TNINT(VDAY(L),VTIME(L),VMIN(L))
        GC 1070
    4C REAC(4,5,END=5C) LINE, NFIX
        REAC(4,6,ENC=60) (NDAY(N),VTIME(M),VMIN(M),XN(N),YA(N),GECGX(M),GE
        +CCY(N),N=1,NFIX)
        GO TO 70
C**** ENDFILE ENCOUNTERED. IF CNE ONLY, KEEP GCING. IF TWC, GUIT.
    50 NECF=NEGF+1
        IF(NEOF.GT.1) GC TC 55
        GO TO 13
C*** END OF CATA SINCE TWO SUCCESSIVE ENCFILES FCUND.
    55 WRITE(6,57) LIAE
    5 7 \text { FORMAT(//IX,'LAST LINE PRCCESSEC - LINE',IE/IX,'TWC SUCCESSIVE ENC}
        +FILES READ ON UNIT 4 - END CF NAVIGATICN DATA ASSUNED')
        STCFO
C**** ENDFILE ON READING NAV CATA. SONETHIAG WRCNG - GO TC NEXT LINE.
    60 WRITE(t, 62) LINE
    6 2 ~ F C R N A T I / 1 X , ~ ' U N E X P E C T E C ~ E N [ F I L E ~ I N ~ N A V ~ D A T A ~ - ~ A P P R O X . ~ L I N E ~ \# ' , I G / I X ~
        +, 'DATA IGACREC - GOING (A TC NEXT LINE'/)
C**** NAV DATA READ IN D.K. - NCh SET LP NAG CATA FERNATS,THEN READ l CATA PLK
C BEAUNAC CATA = MAEIP=2, ULCCK=270(3I5) WHERE 2I5=IDAY,ITIME,MAG.
    7C NECF=0
        NEOF=C
        IMAG=270
C**** SIGNAL THAT NAV CATA REAC IN O.K.
        WRITE(E,T3) LINE
    73 FORMAT (IX, 'NAV CATA FCF LINE NO.',IG," READ IN C.K.')
C ....IF LINE BEING FROCESSEC IS AFTER FIRST(LINE), DON'T READ ANY MAGS BUT
        JlST CONTINUE NATCHING.
        .ANY TIME NAG cATA IS REAC, KG MUST EE RESET = 1.
    77 IF(LNCNT.GT.1) GO TO 184
    78 KG=1
        GC TO (80,&5,SC), NAGIF
        7 FORMAT (9O(SI 5))
        WRITE (6,15)
        STCP 7
    8C READ(3,7,ENC=55) (GNIN(I),NAG(I), I=1,INAC)
        GO TO 10C
    85 READ(3,7,EN[=55) (MDAY(I),MTIME(I),MAG(I),NDAY(I+I),MTINE(I+1),MAG
        +(I+1),NDAY(I+2),MTINE(I+2),MAG(I+2), I=1,268,3)
        CO 87 N=1,IMAG
```

```
        GCAY(N)=EFLCAT(MDAY(N))
        GTINE(N)= DFLOAT(MTIME(N))
    8 7 \text { CALL TMINT(GCAY(M),GIINE(N),GNIN(N))}
    GC TC 100
    CC READ(3,7,ENC=95) (MOAY(I),NTINE(I),GNIN(I),MAG(I), I=1,INAG)
        GO TO 1CC
C**** ENOFILE ENCOUNTERED. QUIT CNLY IF 2 SUCCESSIVE EOFS READ.
    C5 NECF=NECF+1
        IF(NEOF.GT.1) GO TO &7
        GO TO }7
C***% END CF [ATA. NO MORE MAG [ATA TO MATCH NAV DATA.
    S7 WRITE(E,G&) GNIN(1)
    G& FORMATI//IX, 'NAG DATA ELOCK STARTING AT NINUET CF',F1O.2,' LAST TO
        + EE READ'/IX,'TWO SUCCESSIVE ENDFILES READ ON UNIT ב - ASSUMED NO
        +NCRE NAG DATA'//
            STOP I
C **** BOTF MAG & NAV DATA READ IN O.K. CHECK NAG DATA FOR CEC VALUES.
C SUCF AS [AY OR TIME = SG99, OR MAG = O IN BEAUMAC DATA.
C SKIP DAY/TIME CHECK IF NACIF=1.
    1CO MECF=0
            IF(MACIP.EQ.1) GO TO 115
            [C 110 N=1,INAE
            IF(MDAY(N).EQ.Cg99) GC TC 106
            IF(NTIME(N).EQ.9999) GO TO 1C6
C...SPECIAL IF STNTS FOR EEAUNAC CATA - DAYS 155 & GES INVALID.
            IF(NDAY(N).EQ.155) GC TC 1CG
            IF (MDAY(N).GT. 365) GO TO 1CE
            GC TC 110
        1C6 GNIN(N)=C与S¢S¢.9
            WRITE(\epsilon,lO&) LINE, MCAY(N), NTINE(N)
    108 FORMAT(IX, 'FOR LINE',IG,' - GMIN SET TO S¢SGSg.G FCR DAY/TIME OF',
            +2I6]
        11C CCNTINCE
        115 DO 120 N=1,IMAC
            GNAG(N)=CFLCAT(NAGIN))
            IF(GMAG(N).NE.C.) GC TC 12C
            GNAG(N)=-G¢SG.S
            WRITE(6,117) LINE, MDAY(N), NTIME(N)
```



```
            +=0 SO SET TO - ¢ ¢99.9 FOR PLOTTING \psi*****')
    120 CCNTINUE
C**** NAG DATA REAEY FOR NATCHIAE TC NAV [ATA ON EASIS OF SEGUENTIAL MINLTE
C PARAMETERS 'GNIN' & 'VNIN' RESPECTIVELY.
C CHECK IF MAG BLOCK IN HAND IS TOO FAR ALONG IN TINE FCR MATCH.
                IF SO, BACKSFACE CNE FILE [F NAG CATA.
                            IF FIRST NATCH MADE ALREACY, SKIF TC STNT 230.
        13C IF(MTCF.EQ.1) CO TO 23C
            IF(GNIN(1).NE.C99999.9) GO TC 132
C ...GNIN(1) NCT USEAELE FCR TEST - USE NEXT GNIN INSTEAD.
    IF(VMIN(1).GE.GMIN(2)) GC TC 180
            GC TC 134
    132 IF(VMIN(1).GE.GNIN(1))GC TC 180
C ....BACKSPACE REGUIRED. SKIF CVER FILENARK EY REACING, USING ENC= EXIT.
    134 BACKSPACE 3
            WRITE(6,135) LIAE, GMIA(1), VMIN(1)
    135 FORMAT(/1X,' BACKSPACE UNIT 3 CALLED - GNIN MUST EE .GT. VMIN'
            +,F13.3,'.GT.',F13.3,' ?:/)
            READ(3,140,ENC=145) ECF
    14C FCRNAT(FE.3)
C ....EOF NOT ENCOUNTERED - SCNETHING GRONG. SKIP TC NEXT LINE.
```

WRITE (6, 143) LINE
143 FORMAT//IX,' ENDFILE nCT FCUNC CN REAC/EACKSPACE LIAE A', I6, ' +NOT PROCESSED'/)
GC TC 10
C BACKSPACE/SKIF - EOF C.K. RECFECK NAG ELCCK IF C.K.
145 hRITE $(6,147)$ LINE
147 FORMATIIX,' LINE \#',IE,' EACKSPACE/SKIP-EOF O.K.'1 GO TO 130
C $\% * * *$ MAG ELOCK IN HAND IS C.K. $\# \#$ NATCH BEGINS $\# *$
C SCAN NAGS TILL GMIN MATCHES VMIN. IF NOT FOUND, CHECK
C LLRING EACH SCAN: IF GNIA IS NISSING, GNIN IN HAND WILL BE -GT. VNIA.
C RQUND Thc - first match nace - fest shcule ee easy to natct.
C Make sure he're not olt of data. bonb out if nay, get next block if nag.
18C IF (JV.GT.NFIX) GO TO 187
IF(KG.GT.INAG) GO TO 78
184 IF(VMIN(JV).EG.GMIN(KG)) GO TO 2CO
Cnc match. creck if scannec past missing gmin. if nct, get next gmin.
IF(GMIN(KG).EG.S9S999.g) GC TC 195
IF(GMIN(KG).GT.VMIN(JV)) GC TO 1 SC
CnCT SCANNEC PAST - WANTED GNIN STILL AHEAC - SCAN FOR IT. $K G=K G+1$
GO 1018 C
187 WRITE($6,1 \varepsilon 8)$
188 FCRNAT(//IX,' DUT OF NAV CATA BEFDRE FIRST MATCH - SONETHING WRO
+NG $1 / 11$
C GEt next Nav line cata.
LNCNT $=\mathrm{LNCNT}+1$
GC TC 10
C SCANNED pASt - WANTED GNin missing. eet next vmin e retry matct. 1GC WRITE (E, 193) JV,KG,VMIN(JV),GMIN(KG)
193 FERNATIX, AT 190 - SCANAEC PAST COS GMIN NISSING. JV/KG ARE', 2IT, + ' VMIN(JV)/GNIA(KG) AFE',2F13.3)
$J V=J V+1$
GO TO 180
CGNIN NCT USEAELE - SKIP tC MEXT GNIN ANC RETRY MATCH. $195 \mathrm{KG}=\mathrm{KG}+1$
GO $10 \quad 18 \mathrm{C}$
C **** MATCH RCUNC CNE WON. FIRST MATCH FOUND. PRINT NSG.
C PAD MAG hITH FIRST DIGIT '5' - COMPUTE REGICNAL(IGRF) \& ANOMALY.
$2 C C \quad 2 T(O P)=V N I N(J V)$
$Z X(C P)=X N(J V)$
$Z Y(C P)=Y A(J V)$
ZLAT(OP) =GECGX(JV)
ZLCN(OP) $=$ GEGGY(JV)
CALL UNNINT (ZT (OP), IZLAY (OP), ZT JME (OP))
ZN(CP) =GNAG(KG)+5COOC.
CALL IGRF(ZLAT(CP), ZLCN(CF), ZIGRF(OP))
ZANOM(OP)=ZN(CF)-ZIGRF(OP)
WRITE (8,207) LINE,VMIN(JV),GNIN(KG), ZX(OP),ZY(CP), ZM(OP)
2C7 FORMAT(IX,'LINE *', ϵ, 'FIRST MATCH FCLNC AT NAUTINE',FI2.3,' - NA +GTIME',F12.3/1X,'CORRESP X-Y \& MAG ARE',3F15.3)
Cuf c/f cata feint ccunt.
$O P=O P+1$
WRITE(ع, ¿CG) OP
209 FCRMAT (IX, 'AFTER 200, EP IS NOW', I7)
C ****NOW STARTS NATCH RQLND ThC. REST CF [ATA.
$220 \mathrm{JV}=\mathrm{JV}+1$
$K G=K G+1$
IF(KG.LE.INAG) GO TO 221
MTCH=1

```
        G0 T0 78
    221 CCNTINCE
    WRITE (8,223) JV,KG
    223 FORNAT(1X, 'AFTER 2CC-22C, JV/KG ARE',2I7)
    230 [F(VNIN(JV).EG.EMIN(KG)) GO TC 300
C ...WANTED GNIN TC COME, NISSING CR G99999.9. NCTE GMIN CAN EE .LT.VMIN
C 'CCS TIME INTERVALS IN NAG & NAV [ATA NAY CIFFER.
C IF GMIN.LT.VMIN, GET NEXT MAG WH.ICF MAY BE WANTED ONE.
    IF(GMIN(KG).GT.VMIN(JV)) GC TC 23E
    KG=KG+1
    IF(KG.LE.IMAG) GO TO 2?0
    NTCH=1
    GC TC 7&
C ...GMIN.GT.VMIN - IF GMIN=Scscscs.g GEI NEXT NAG. IF NCT GET NEXT NAV 'COS
C WANTEC GMIA NISSING.
    236 IF(GMIN(KG).EG.S99999.9) GC TO 2tO
    WRITE(Q,243) GMIN(JV),GCAY(JV),GTINE(JV)
    243 FORMATIIX,'NAE MINUTE',FIC.3,' MISSING OR NO GOOD. DAY/TINE CF ',
        +2F10.3,'####れますが**')
        JV = JV +1
        IF(JV.LE.NFIX) GO TO 23C
        CF=CP+1
        60 10 400
C ....GMIN=çccsc.c - GET NEXT NAG.
    260 KG=KG+1
        IF(KG.LE.INAG) GO TO 230
        MTCH=1
        60 10 70
    C **** CNE NCRE MATCH MACE. STCRE IN O/P ARRAYS AND TRY NEXT MATCH.
C AGAIN PAD NAG WITH FIRST [IGIT '5' - CONPUTE REGICNAL & ANOMALY.
C DCN'T lQAD dATA intc C/f affay if eac magsitimes rejectec alreacy)
    300 IF(CMAC(KG).NE.-9999.g) GO TC 304
        WRITE(6,302) VNIN(JV)
    3C2 FORMAT(lX,'***** AT APPPRCX NINUET CF',FIO.2,' NAG VAlUE WAS ZERO
        + - NO DATA O/P FOR THAI TIME *****1)
        IF(JV.LT.NFIX) GO TO 220
        OP=CP+1
        CO TO 400
    304 2T(CP)=VNIN(JV)
        ZX(CP)=XA(JV)
        ZY(CP)=YN(JV)
        ZLAT(OP)=GECGX(JV)
        ZLCN(CF)=GECGY(JV)
        CALL LNNINT(ZT(CP),IZCAY(CP), ZTIME(CP))
        ZM(OP)=GNAG(KG)+5CCCC.
        CALL IGRF(ZLAT(OP),ZLON(OP),ZIGRF(OP))
        ZANCN(CF)=2N(CF)-ZIGRF(CP)
        WRITE(\varepsilon,3CS) VMIN(JV),GNIN(KG),ZN(CP),ZX(CF),ZY(OP),ZLAT(CP),ZLON(
        #OP)
    309 FCFNAT(1X,'NATCHEL VMIN/EMIN=',2F1C.3,' MAG/X/Y=',3F15.2, 2F15.8)
C ***** SPOT CHECK MSG.
        IF(MOD(OP, 1C).EQ.O) WRITE(t, 2ll) LINE,CP,VNIN(JV),XN(JV),YN(JV),GE
        +CGX(JV),GECGY(JV),GMIN(KG),MAG(KG),IZDAY(OP),ZTINE(OP),ZT(OP),ZX(O
        +P),ZY(OP),ZLAT(CP),ZLCN(CF),ZN(CF)
    311 FORMAT(IX,'SPCT CHECK - LINE #',IE,' - ',I3,'TF CATA POIMT .....'/
        +1X,'I/P NAV - MINUET= ',F9.1,' - XN=',F10.1,'
    +YN=',F10.1,' GECGX=',F13.8,' GEOEY=',F13.8/1X,4X,'MAG - N
    +INLET= ',F9.1, 7OX,'NAE=',I5/1X, C/P - [AY/TIME/M
    +INUET=',[4,'/', FE.1,'/',Fg.1,' - XN=',FIC.1,' YN=',F1C.1,' LAT
    +=',F13.8, ' LON=',F13.8,' NAE=',F7.1)
```

```
C ...CHECK IF END CF LINE REACHEC. IF YES, WRITE O/P ARRAY G GET NEXT LINE.
    IF(JV.EQ.NFIX) CO TO 4CC
C...NCT END CF LINE. UP O/P CATA POINT COUNT & TRY NEXT MATCH.
    OP=CP+1
    GO TO 220
C** LINE MATCHEC. WRITE C/P ON UNIT 2 & PRINT NSG.GO ON TO NEXT LINE.
    4CO HRITE(2,409) LINE, CF
    4C9 FORMAT(1X,I G,IX,IG)
        WRITE(2,413) (IZDAY(J),ZTIME(J),ZT(J),ZX(J),ZY(J),ZLAT(J),ZLCN(J),
        +ZN(J),ZIGRF(J),ZANCN(J), J=1,CF)
    412 FORMAT(I4,1X,F6.1,1X,F11.2,1X,F12.3,1X,F12.3,1X,F13.8.1X,F13.8,1X,
        +F7.1,1X,F7.1,1X,F7.1)
C ...WFITE ENC-CF-FILE OA UNIT 2.
        ENDFILE 2
        WRITE(6,417) LINE, OP
    4 1 7 ~ F O R M A T ( I X , ~ ' L I N E ' , ~ I G , ~ M A T C H E O ~ \& ~ O / P ' , I G , ' ~ F I X E S : ~ G O I N G ~ C N ~ T O ~ N E ~
        +XT LINE'//)
C ...UP LNCNT SC KG ISN'T zESET=1 'CCS NEXT LINE MAC MAY EE IN BLCCK IN HANC.
    LNCNT=LNCNT +1
    GC TO 10
    END
C**)
    subroutine igrf(dlat,dlon,gigrf)
C
C PRGGRAN CCNPLTES INTERNATICNAL GECMAGNETIC REFERENCE FIELCITHE THEORETICAL
C REGIONAL MAGNETIC FIELD FC? THE EAFTFI AT ANY LOCATICN. CGNPUTATICNS
C ARE DONE FROM PGRF COEFFICIENTS SET FOR AREAS DEFINED.
    FGRF COEFFICIENTS FOR AREAS NLST BE SET IN PRCGRAM & IF MCRE THAN ONE SET
        CF COEFFICIENTS ARE REGLIREC, ENSUFE IF: STATEMENTS MILL INITIALISE THE
        AFPROPRIATE COEFFICIENTS ACCORDING TC CO-CRDS CF THE LOCATICN I/P.
            I/F LCCATICN LATITLCE & LONGITUCE(DLAT & DLCNI IN DECINAL CEGREES AND
            c/f hill eE the igrf value(gigRF).
        COMPUTATIONS ACAPTED FROM BEDFCRD INSTITUTE PROGRAN FGYRX4.
        ***& SET I/C UNIT 5 = PGRF CCEFFICIENTS I/P DEVICE.
                            8 = NESSAGES & CEELG PRIATS. FOCGUE GCH JAN 1972.
        IMPLICIT REAL*&(A-H,O-Z)
C ****SET LAT/LCN LINITS OF AREA COVERED EY COEFFICIENTS.
C BLATA=BIG(HI) LAT CF AREA A; SLATA=SNALL(LO) LAT OF AREA A; ETC..
    BLATA=75.
    SLATA=69.
    ELCNA=137.
    SLCNA=125.
    BLATB=75.
    SLATB=69.
    BLCNB=149.
    SLCAB=137.
C LC READ(5,23,END=99) DLAT,CLCN
C 23 FORMAT(F2C.1C,F2O.1C)
    X=CLAT
    Y=DLOA
C ****CHECK IF LON IS IN LON DEFINED BY AREA A CR AREA B.
    IF(Y.GT.ELCNA) GO TO 3C
    IF(Y.LT.SLCNA) GO TO 30
C ...Y IS IN AREA A IN lCA value - creck lat value.
    IF(X.GT.ELATA) GO TO 4C
    IF(X.LT.SLATA) GO TO 40
C ...LAT & LON C.K. - LOCATICN X/Y IS IN AREA A.
    GO TO 300
C****ACT IN AREA F'S LON - CFECK IF IN AREA B'S LON - IF NOT, QUIT.
    3C IF(Y.GT.ELCNE) GC TC 999
```

IF(Y.LT.SLONB) GO TO Gç
Clch in area e - check lat - if not, quit. IF(X.GT.ELATE) GO TC SS9
IF (X.LT.SLATB) GO TC Şs
Clat \& lon c.k. - location x/y is in area b. GC $104 C C$
C ****y NOT IN AREA A LAT-hISE BLT IN LCN-WISE CNLY. CHECK IF IN AREA B LAT-WIS
4C IF (X. GT. RLATB) GO TO GSG IF (X. LT. SLATE) GO TO 999
Cin area b lat-hise - check lca-wise. IF (Y.GT.ELONB) CO TO GCS IF(Y.LT.SLCNE) GO TO 999
C....lat e len c.k. - locatica x/y is in area e. GO TO 4CC
C *** INITIALISE AREA A'S PGRF COEFFICIENTS.
3CC AO $=4.247960403 E 04$
A $1=-3.451645372 \mathrm{E} \mathrm{C} 3$

$A 3=1.219554554 E 01$
$A 4=4.2425 C 833 C E O 1$

$A 6=1.204275482 E-01$
A7 $=-1.412472$ CC5E-0.
$A 8=-3.374476887 E-01$
$A 9=1.047481346 E-01$
$B 0=6.987690585 E-04$
$\mathrm{B} 1=1.26898563 \mathrm{SE}-03$
B2 $=-1 . \operatorname{t2184C51CE-C3}$
B3=5.364373コ2をE-C4
$B 4=-3.242870896 E-04$
GO 10 50C
C ****INITIALISE AREA B'S PGRF COEFFICIENTS.
$400 \quad A 0=2.020575714 E \quad 05$
$\mathrm{Al}=8.973467845 \mathrm{E} \quad 02$
$A 2=-1.48522 \varepsilon 462 \mathrm{E} 03$
$A 3=2.048578270 E 01$
$A_{4}=-8.203015717$ E 01
A $5=-7.30114745$ CE CO
A6 $=-2.832256954 \mathrm{E}-\mathrm{C} 1$
$A 7=1.811406643 \mathrm{E}-01$
$A 8=1.116083454 \mathrm{E} \quad 00$
$A 9=4.3825 \varepsilon 7 T 24 E-02$
$\mathrm{BO}=5.5 \in \epsilon \in \mathrm{CCC9} \mathbf{1 E}-04$
$\mathrm{Bl}=-5.341548291 \mathrm{E}-04$
$B 2=9.374785339 E-06$
$B 2=-4 . \epsilon 3 ¢ 254727 E-03$
$\mathrm{B} 4=-6.4853 \mathrm{C} 55 \mathrm{C} 2 \mathrm{E}-05$
GC TO 500
5CC GIGRF $=A 0+A 1 * X+A 2 * Y+A 3 * X * Y+A 4 *(X * * 2)+A 5 *(Y * * 2)+\Delta 6 *(X * * 2) * Y+\Delta 7 * X *(Y *$ $+* 2)+A 8 *(X * * 2)+A S *(Y * * 2)+B C *(X * * 3) * Y+B 1 * X *(Y * * 3)+B 2 *(X * * 2) *(Y * * 2)+B$
$+3 *(X * * 4)+E 4 *(Y * * 4)$
hRITE (8,33) DLAT, DLCA,GIGRF
 GC TO 97
C ****DLAT/DLCN FGR LCGATICN nct in afeas for which coefficients supplied.
¢SG GIGRF=-1CE3C
WRITE($\epsilon, 957)$ CLAT, DLON
 GC TO 97
C $\varsigma \varsigma$ STOP

97 RETURA END

SUBROUTINE TMINT(DAY,TINE,SNIN)
C this sleroltine cgnverts seguential day+tine into sequential minutes. IMPLICIT REAL* $8(A-H, C-Z)$
C $\quad 4$ REAC (s, $t, E N D=\varsigma \varsigma)$ DAY, IINE
C 6 FCFMAT (F10.3,1X,F10.3)
C EACH DAY CCATRIELTES 144C. NINLTES.
1C DNIN: DAY:1440.
C (HECK IF TINE=OCCO. (MIDNITE) SO WE DON'T TRY TO DIVIDE BY C.
IFITINE.NE.C.) GO TO 30
-MIN=C.
$X M I N=0$.
GC TC 40
C EXTRACT HRS fRCN 'TIME' \& CCNVERTS FFS TC MINUTES.
3C IFRS=IDINT(TINE/100.)
FMIN $=$ IHRS $\% 60$.
C Extract ninutes fren. 'time'.
JHRS $=1$ HRS $* 1 C C$
HRSJ=DFLOAT (JHRS)
$X^{N} I N=T I N E-H R S J$
4C SMIN=DNIN+HNIA+XMIN
C WRITE $(8,5 C)$ CAY,TIME,SNIN
C 5 C FORMATIIX, 'OAY/TIME OF',FIC. $3,1 X, F 1 C .3$, ' CCNVERTED TO SMIN CF', FI5
C +.31
C GC TO 4
C 99 STOP
RETURN
END

SUEROUTINE LNNINT(DMIN, IYAD, ENIT)
INFLICIT REAL*8(A-H,C-Z)
IFIOMIN.NE.CI GC TO 10
$I Y A C=0$
ENIT=0.
GC TC 20
1C IYAE=IDINT(CMIN/1440.)
CMINS=OMIN-((CFLOAT (IYAD))*1440.)
HCLF=IDINTICNINS/60.)
RMINS=DNINS-(HOLR*6C.)
EMIT=FOUR*1CC.+RMINS
C FRINT 3, CNIN, IYAD, EMIT
C Z FCRMATIIX,'NINUET CF',FG.2,' CCNVERTEC TC [AY/TIME OF', IT, '/', F7 $+.21$
20 RETURN
End

[^0]```
$CCFY *SCURCE*a|CC *SINK*
C 市桃粎*** GRIDDER
 GRICDER IS A FRCGRAN UFICF IS USEC IF SEVERAL Z-VALLES ARE TC BE GRICDED ANC
 PLCTTED. NORMALLY, EACF SET OF Z-VALUES HAS TO BE GRIDDED SEPARATELY BUT
 THIS LSES UP UNECESSARY CPL TIME SINCE THE GRIDOING FOR EACH SET OF Z-VALLES
 IS THE SANE PRCVIDED THE SANE X-Y CC-cFCS AFE USEC EACH TIME.
 SINCE THE GRILCING IS THE SANE FOR EACH SET OF Z-VALUES, IF WE CAN RECQRC
 THE GRICEING INSTRUCTICNS FOR A SINGLE GRIDDING RUN, WE CAA THEN LSE THESE TC
 LCAD(hEIGHTING CCRRECTLY ETC..) ANY NUNEER CF SETS OF Z-VDLUES. TFIS IS WHAT
 GRIECER DOES - IT 'REMENBERS' THE GRIDDING INSTRUCTIONS.
 THE GRICDIAG FRCGS ARE COLRTESY OF MIKE PATTERSCN, DEPT CF GEOGRAPHY, LEC.
 IN CALL NXGEN(XF,IX,YP,IY,CATA,N):N=+7CCC IF NXEEN-CLTPUT TO SEQ. FILE
 =-7CCC
 MAG TAPE.
 FCR TAPE, FRECECE THIS PRCG EXEC BY NCUNTING TAPE G LAEELLING IT &ITH A
 CATA-SET NAME VIA THESE CRNNANCS : $CCPY *SCURCE* TO *TAPE*áCC
 DSN NXGEN-DUTPUT
 $ENDFILE ... THESE CCNNANDS CN GARDS.
 CONCANTENATE SBRTN MXGEN/NXPANE TE RE SLRE...
 SET LOGICAL LNITS 4 = I/F FCRMAT [F CATA TC EE EFICCEC.
 & X-Y CC-CRDS OF GRIC ORIGIN(2F2C.5)
 & NAX X-Y C[-CRDS OF GRID(2F2C.5)
 E +1 [R - F FGR ISIGN - SIEN CF N(I2)
 3= X-Y CC-CROS CF PCINTS TO BE GRIDCEE.
 I = GRI[CER O/P - THESE ARE IHE GRIDEING INSTRLCTICNS.
 TG CHANGE GRID SIZE, CHANGE CINENSICNS CF XF & YF AND IX a APPROX STNS 3C+
 ** WARNING : DO NOT LSE DCLBLE PRECISICN NUMBERS **
 DINENSICN FNTI(20), XP(5C), YP(5C), DATA(3,7COC), ATAD(3,7(CC)
 NPTS=1
C ...READ IN I/P FCRMAT
 REA[(4,10) FMTI
 1C FERNAT(20A4)
CREAD IN X-Y CC-ORDS TC EE GFICCEE.
 20 REA[(3,FNTI,END=95) (DATA(I,NPTS), I=1,3)
 NFTS=NPTS+1
 GC T0 20
CEND OF FILE READ - ASSLNEC NO MORE DATA TC BE GRIDDED.
 99 NFTS=NFTS-1
 IF(NPTS.LE.O) GO TO GCC
 WRITE(\epsilon,ZC) NPTS
 3C FORMAT(1X,'LAST DATA POINT READ IN WAS NC',IG,' ANC WAS ...')
 WRITE(6,FNTI) ([ATA(I,NPTS), I=1, 彐)
C....SET IX-IY GRIC SIZE.
 IX=50
 IY=IX
C....NCW READ IN X- & Y-CCCRCS CF GRIC ORIGIN - TO BE PLOT ORIGIN ALSC.
 REAC(4,4C) XMINT, YMINT
 REAC(4,4C) XMAXT, YMAXT
 4C FCRNAT(2F20.5)
 WRITE(t,41) XNINT, YNINT
 41 FORMAT(1X, 'I/P GRID ORIGIN CC-ORDSIN X-Y..',2F15.3)
 WRITE(6,14) XNAXT, YMAXT
 14 FORMAT(1X,'I/F NAX CC-CRCS CF GRIE IN X-Y ..',2F15.3)
CREAD IN SIGN TC KNCW IF NXGEN O/P IS FILE(+VE) CR TAPE(-VE).
 READ(4,42,EAD=43) ISIGN
 42 FCRNAT(I2)
```

```
 WRITE(t,4t)
 46 FORMAT(1X,'SIGN SPECIFIED : +l=FILE; - l=TAPE O/P FOR MXGEA')
 GC TC 5C
CNC SIGN SPECIFIEC - ASSLNEC FILE C/P - ISICN=+1.
 4 3 \text { WRITE (6,44)}
 44 FGRNAT(IX, 'NC SIGN SPECIFIEC - ASSUMED MXGEN 0/P TO GO CN FILE')
 ISIGN=1
CNOh REFERENCE ALL DATA X-Y CCOR[S TO ORIGIN SFECIFIED.
 50 CO 52 I=1,NPTS
 ATAC(1,I)=(CATA(1,I)-XNINT)
 5% ATAC(2,I)=(CATA(2,I)-YMINT)
 WRITE(E,51) ATAD(1,NPTS), ATAD(2,NPTS)
 51 FCRNAT(IX,'RECRIGINE[LAST [ATA FCINT : X = ',F15.3,' Y =',F15.3)
CSET LP GRIC CRCSSING CECRDS XP() & YF().
C RENEMBER ORIGIN IS (XNIAT, YMINI)....
 XF(1)=0.
 YP(1)=0.
CSET LP GRID INCRENENTS.
 CXP=(XMAXT-XMINT)/(IX-1)
 CYF=[XF
 DO 53 K=人, IX
 XP(K)=XP(K-1)+DXP
 53 YF(K)=YF(K-1)+[YP
 WRITE(E,E4) XF(l), YF(l), [XF
 54 FORNATIIX,'GRIC IS TC EE ORIGINEC AT X=',F15.3,' Y=',F15.3,' WITH
 +GRIC INTERVAL=',Fl0.3,' AXES UNITS')
 WRITE (t,G2) XF(IX), YF(IY)
 G2 FORMATIIX,'GRID STRETCHES TC }x=1,F15.3,' y =',F15.3
CSET UP NO of POINTS 'N' - +VE If File, -vE if tape oip fCR NXGEN.
 N=^FTS*ISIGN
CCALL GRID GENERATOR - MPTS +VE IF FILE, -VE If TAPE FGR MXGEN O/P.
 CALL MXEEN(XP,IX,YP,IY,ATAD,N)
 WRITE (6,55)
 55 FORNAT(IX,'MXGEN CALLED & ALL FOINTS GRICEEC')
 STOP I
CNO CATA TO BE GRIDDED SINCE ENDFILE READ ON FIRSI ROUND.
 cCC WRITE(6,gCS)
 ¢CG FORNAT(/lX,'NC DATA IC EE GRICLEC?? UNIT 3 EMFTY??')
 STCF 9
 END
```



```
C
 MXGEN LISTING AVAILABLE CNLY FROM
C NIKE FATTERSCN [EPT [F EECGRAPYY UEC
```

```
4COPY *SKIP *SINK*
```

```
$COPY *SOURCE*0\negCC *SINK*Q नCC
 Z-COORDS I/P ARE WEIGHTEL ETC.. BY MXPAND.
 AFTER THE Z-COORDS ARE GRICDED, SBRTN PLOTZC' IS CALLEC TC PLOT THE DATA.
 THIS PROG WRITTEN INITIALLY FOR MAX OF 7OOO DATA POINTS TO BE ON
 A 50 X 50 GRIC.
 SET THE I/O UNITS l = NXGEN C/PIGRID GENERATING/WEIGHTING INSTRUCTIONS
 OBTAINED FRCN NXGEN RUNI
 2 = Z-CDORDS TO BE GRIDDED/PLOTTED.
 4 = Z-CCORD FCRNAT FOLLOWED BY ...
 PLOT-SIZE ALCNG Y-AXIS.
 NO. OF CONTOURS TO BE PIOTTED IN RANGE OF }Z\mathrm{ ,
 X-CCCRD/Y-COORD OF PLOT ORIGIN,
 INCRENENTS/PLCT INCH ALONG X- E Y-AXES RESP.
 7 = GRIDDED DATA : O/P IN BINARY.
 9 F FLOT COMMANDS O/P.
 ** RUN THIS PROG WITH MXPAND AND FLCT2D ETC.. CONCANTENATED.
 MXPAND/MXGEV ARE COURTESY OF MIKE PATTERSCN, GEOGRAPHY, UBC
 PLCT2D AND SCAL2D COURTESY OF TAD ULRYCH, GEOPHYSICS, UBC.
 THIS JIG-SAW PIECEWCRK FUT TOGETHER 10 FEB 1972 ROCQUE GOH GEOPHYSICS UBI
 COMMON/DEBUG/FLAG
 LCGICAL FLAG
 FLAG=.TRUE.
 DIMENSICN FMT(20), XP(5C), YP(50), GRID(50.50), CATA(7000)
C ****READ IN Z-COORD FDZMAT FROM UNIT }
 READ(4,10) FMT
 10 FORMAT(20A4)
 WRITE(6,12) FMT
 12 FORMAT (IX, '2-COORD FORNAT IS..", 2OA4)
C ****READ IN PLCT PARAMETERS - INITIALISE PLOT SUBROUTINES.
 CALL PLOTS
 READ(4,20) SZY
 READ(4,22) NCONT
 READ(4,24) XCCOR, YCCCR
 READ(4,24) DX, DY
 READ(4,22) IX
 20 FORMAT (F20.5)
 22 FORMAT (I2)
 24 FORMAT (2F20.5)
 WRITE (6,30) SZY,NCONT,XCOOR,YCOOR, DX, [Y, IX, IX
 30 FORMAT(IX, 'PLOT PARANETERS I/P ARE../IX, 'SILE Y = , F10.3,3X,
 *'NO. OF CONTOURS IN RANGE =',IG/1X, 'X- & Y-COORDS OF PLGT ORIGIN
 +=', 2F13.3/IX, INCREMENTS ALONG X- & Y-AXES ARE', 2F10.3/1X, 'GRI
 +D IS TO BE', IG, ' X ', 16/)
C ****CALL YSIZE IF LARGE PLOT REQUESTED.
 IF(SZY.GT.10.5) CALL YSIZE(29.0)
 I Y = I X
 IDIMX=IX
 ICM=IX
```

$$
\lambda Z S /(T-\lambda I) 1 \forall J 7 \pm=\lambda 0 \quad 10^{\circ} 0^{\circ} 17^{\circ} \lambda(0) \nexists 1
$$

$$
\times Z S /(I-X 1) 1 \forall 07 f=x 0 \quad\left(0^{\circ} 0^{\circ} 17^{\circ} \mathrm{xa}\right) \neq 1
$$

$$
\lambda \jmath+(I-\lambda I) \perp \forall]\urcorner \pm / \lambda 7 S *(I-I) \perp \forall 0\urcorner f=(I) d \lambda
$$


 NOI IJヨyIJ $X$ ヨHI NI ヨZIS ヨHL ヨNIWyヨl ヨO

0ヨ7ヨ日大า ヨコ OL ynoinjo HIT גyヨAヨ SヨSOOHO HIT
 $\wedge$ ON甘 X NI SLNENヨ 8 ONI $\exists H I$ ヨy甘 人O ONV X］




WO甘」 ג7NO ヨาgV7IVAV 9NILSIT ONVdXN $コ$

ON3
I dJIS
（．＊＊＊107d $0009 \forall$ ヨYIT SY007＊＊＊，＇XI／／IVWYOJ 08 （08．9）ヨlIyM aniold 77v3



 （SL＇9）ヨ11 8M




 （09＇9）ヨ118M

－NEOXN NO甘」 SNOILJח甘LSNI כNIGJIy9 SNIS S SQyOOJ－Z QI甘9＊＊＊＊ว （SIdN）$\forall \perp \forall 0$（LNJ‘9）ヨlI $8 M$
 SIdN（25＊9）ヨ1IyM

I－SIdN＝SIdN 05
＊SINIOd $\forall I \forall 0$ ヨyOW ON JヨWnSS甘－Oォヨy ヨilyan 0ヵ 01 09
I＋SIdN＝SLdN
 I＝S1dN
 $I=H I 7$
$\times I=N J T$

```
 CALL AXIS (0.,CY,1H, -1,SZX,O.,XCOOR,DX)
 CALL AXIS(O.,CY,1H,+1,SZY,90.,YCOOR,[Y)
 CALL PLOT(C.,SZP,+3)
 CALL PLOT(SZX,SZP,+2)
 CALL PLCT(SZX,CY,+2)
 C NOW SCALE the map
 CALL SCAL 2D(G,IDM,JDM,IX,IY,GMAX,GMIN,NCCNT,CNAX,CNIN,CINT)
 C WRITE tHE RELEVANT ValuES
 WRITE(6,111) GMIN,GNAX,CMIN,CMAX,CINT
 111 FORMAT(//' MINIMUM VALUE CN NAP =',1PE15.5/' NAXINUM VALUE ON MAP
 +=',1PE15.5/' MINIMUM CONTOUR VALUE =',1PE15.5/' MAXIMUM CONTOUR VA
 +LUE =',1PE15.5/' CONTCUR INTERVAL ='1PE15.5///1
 C PLOT THE CONTOURS
 C LABEL EVERY LTH CONTOUR ONLY
 IF(LTH.EQ.O) LTH=1
 SEP1=3.0
 IF(SZY.LT.6.1) SEP1=2.0
 IF(SZY.GT.10.5) SEP1=4.0
 LCCP=-1
 NUMC=(CMAX-CMIN)/CINT+1.1
 CN=CMIN
 DC 3 I=1,NUMC
 LOCP= LOOP+1
 SEP=0.
 IF(LOOP.EQ.1) SEP=SEP1
 CALL CNTOUR(XP,IX,YP,IY,G,IDM,CN,SEP,CN)
 CN=CN+CINT
 IF(LOOP.EQ.LTH) LOOP=C
 cCNTINUE
 SXS=SZX+5.0
 CALL PLOT(SXS,C.,-3)
 RETURN
 END
```



```
SUBROUTINE SCAL2D(G,IDN, JDN, IX, IY,GNAX,GMIN,NCONT, CMAX,CNIN,CINT)
C SCAL2D SCALES THE MAP FOR PLOTTING
C G(IX, IY) IS THE DATA TO BE SCALED 3F OUTSICE DIMNS. (IDM,JDM)
C GMAX and gmin are the max and min values of g
C NCONT IS THE NUMBER OF CONTOURS
C CMAX and cmin are the max and min contour values
C CINT IS THE CONTOUR INTERVAL
```



```
DIMENSICN G(ICM, JDM), A(5), B(5)
C FIND MAX \& MIN DF G
GMAX \(=-10\). CE 6
GMIN \(=10.0 \mathrm{E} 6\)
DC \(10 \quad \mathrm{I}=\mathrm{I}, \mathrm{IX}\)
DO \(10 \mathrm{~J}=1, \mathrm{I} Y\)
IF(ABS(G(I,J)).GT. 10.OE2O) GO TO 10
\(I F(G(I, J) . G T . G M A X) \in M A X=G(I, J)\)
IFIG(I;J).LT.GMIN) GNIN=G(I,J)
CONTINUE
10 CONTISE
C RANGE IS OIVIDED INTO NCONT PARTS
\(D G=(G M A X-G M I N) / F L O A T(N C O N T)\)
C FIND ORDER OF INTERVAL INT
INT=ALOGIC(DG)
C INCASE INT IS -VE
IFIOG.LT.1.O) INT=INT-1
\(D G N=D G / 10 . C * \#\) INT
C CGN NOW LIES BETWEEN \(1.0 \& 10.0\)
```

```
C choose the beSt contcur value
 DATA A(1),A(2),A(3),A(4),A(5)/1.0,2.0,2.5,5.0,10.0/
 TEMP=11.0
 DC 20 J=1,5
 B(J)=ABS(DGN-A(J))
 IF(B(J).LE.TEMP) IVALU=J
 IF(B(J).LE.TEMP) TEMP=B(J)
20 CONTINUE
 CINT=A(IVALU)*10.0**INT
C 0.0 MUST BE A CONTOUR
 ITEMP=GNIN/CINT
 CNIN=CINT*(ITEMP-I)
 ITEMP= GMAX/CIVT
 CNAX=CINT*(ITEMP+1)
 RETURN
 END
```

\$SIGNOFF

```
$CCFY *SOURCE*刀口CC *SINK*
C ********* TRACKER
C
C
C
 THIS PROG hRITTEN INITIALLY FER MAX OF 7000 CATA POINTS ..
```



```
C
C
C
C
C
C
C
 PROG PLCTS SHIP'S TRACK - GIVEN SHIP'S CC-CRES, EVERY NFLCT-TH POSITION
 IS PLOTTEL SET UP 'NPLOT' IN STMT #G
 2 = SHIF'S FCSITICAS TE BE PLCTTEC
 4 = Z-COORD FORMAT FOLLOWED BY ...
 FLCT-SIZE ALCAG Y-AXIS,
 nc. cF gcatcurs te ee plottec in range of z,
 X-CCORDIY-COORD CF PLCT ORIGIN,
 INCREMENTS/PLOT INCH ALCNG X- & Y-AXES RESP.
 9 = FLCT CONMANCS O/P.
 WrItTEN tO flCt CSS pARIZEAL IGTC NAG CATA : 28 FEE 1972 RCCQUE GCH UBC
 connon/deeug/flag
 LCGICAL FLAG
 FLAG=.TRUE.
 DIMENSION FNT(2C), X(700C), Y(7CCC)
C ****EVERY NPLCT FCSITIONS ARE PLOTTEC ...
 c NFLCT=5
C *&**READ IN SHIP'S POSITIONS FCRMAT FRON LNIT 4
 REAC(4,10) FMT
 1(FORNAT(20A4)
 WRITE(6,12) FNT
 12 FORMATIIX, 'SFIP''S POSITIONS CO-ORD FORMAT IS..", 2OA4)
C *****READ IN PLCT FARAMETERS - INITIALISE PLCT SUBROLTINES.
C NCCNT NOT REQUIRED FER IHIS FROG - SC THIS IS JUST A cUNNY READ..
 CALL PLOTS
 REAC(4,20) SZY
 READ(4,22) ACCAT
 READ (4,24) XCCCR, YCCCR
 REAC(4,24) [X, DY
 READ(4,22) IX
 ZC FORMAT(F2C.5)
 <2 FORMAT(I2)
 24 FCRNAT(2F2C.5)
 WRITE(E,3C) SZY,NCCNT,XCCCR,YCCCF,[X,CY,IX,IX
 30 FORMAT(IX, 'PLGT PARAMETERS I/P ARE..'/lX,'SI lE Y =', FIC.3,3X,
 +'AC. CF CCNTCURS IN RANGE =',IE/IX, X- & Y-COCRDS OF PLCT CRIGIN
 +=', 2F13.3/1X. 'INCRENENTS ALCNG X- E Y-AXES AFE', 2F10.3/1X, 'GRI
 +D IS TO BE', It, ' X ', I\epsilon/)
C ****CALL YSIZE IF LARGE fLOT REGUESTEC.
 IF(SZY.GT.1C.5) CALL YSIZE(29.0)
 I Y=IX
 ICINX=IX
 ICN=IX
 JDN=IX
 LTH:=1
C ****NOW READ IN Z-COORDS TO BE GRIDDED/PLOTTED.
 NFTS=1
 4C READ(2,FNT,ENC=50) (X(APTS), Y(APTS))
 NPTS=NPTS+1
 GC TO 40
C ****ENDFILE READ - ASSUMED NE NCRE [ATA PCINTS.
 5C NPTS=NPTS-1
```

```
 WRITE(6,52) NPTS
 52 FORMAT(IX, 'NC. CF DATA FCIATS REAC IN =',IG,', LAST DATA PCINT:')
 KRITE(E,FNT) x(APTS), Y(NFTS)
C***NOW REFERENCE ALL SHIP CO-ORDS TC NAP CRIGIN & SCALE THEN TC PLOT-INCHES
 CC 69 I=I, APTS
 X(I) =(X(I)-XCC(R)/DX
 69 Y(I)=(Y(I)-YCOCR) /DY
C ****NCW FLCT AXES ...
 CALL AXIS(O.,O.,1H,-1,SZY,0.,XCCCF,DX)
 CALL AXIS(C.,C.,1H,+1,SZY,SC.,YCECR,CY)
C #***NOW PLOT EVERY NPLOT-TH POSITION - SHIFT TO FIRST POSITICN *PEN UP' . .
 CDLL FLCT(X(1),Y(1),+3)
 DO }75\textrm{K}=1,NPTS,NPLO
 75 CALL SYMEOL(XIK),Y(K),C.C 35,2,GC.,-1)
C****THAT'S ALL - TERNINATE PLOT SURROLTINES
 CALL PLOTAC
 WRITE(E,EC)
 8O FORMAT(//IX, , *** LOOKS LIKE A GCCD PLCT *****)
 STCF 1
 END
```

\$CCPY *SKIP *SINK*

PRCG PLCTS STATION MAG CATA - CATA FORNAT CCMPATIBLE WITH ATLANTIC OCEANOGRAPHIC LABORATCRY STATICN NAC CATA ...... GEEZ[ICIFATEWRITINGTHISONE $\ldots 3$ MARCH 1972 ROCQUE GOH GEOPHYSICS URC SET I/OLNITS $8=\mathrm{MAG}[A T A T C$ BE PLOTTEC(STATION NAG)

5 = CCNTRCL CCNMANCS - TIME-PERICDS TO EE PLOTTEC
$S=P L O T$ COMMANDS O/P
WRITTEN PRINARILY TO PLOT ATKINSCN POINT STATION MAG - IGTC
INFLICIT REAL*8(A-H,C-Z)
REAL*4 XPLOT (ICCO), YPLOT(ICCC)
DINENSICA MAG(1000), SMAE(ICCC),STIME(ICCC),SMIN(ICCO),
$+P X(1 C C O), P Y(1 C C O)$
CONMON/DEBUG/FLAG
LOEICAL FLAG
FLAG = . TRUE.
C $* * * N M A G=N O$ CF STATION NAG REACINGS PER HCLR IN CNE RECORE... NMAG=12
C $* * * L F C I N T=$ LCAE FOINTER USEC FCR LCADING C/F ARRAYS
$1 \varepsilon \operatorname{READ}(5,2 C, E N D=\varsigma \varsigma 5)$ PSCAY,PSTINE,FEDAY,FETINE
LPOINT=1
20 FCRNAT (4F20.3)
CALL TNIAT (FSCAY,PSTINE,FSMIN)
CALL TNINT(PEDAY,PETINE,FEMIN)
WRITE (6,30) PSUAY, PSTINE, PECAY,PETIME
$3 C$ FCRNATI' YCL HAVE ASKEC FCR THE FCLLChING [ATA TC BE PLCTTEC...'/

+FE.1/' I'LL TRY TO FIND AND PLOT IT .....'/I
C * w w w REA IA NAG CATA E CHECK IF IT IS TO EE PLOTTED....
35 MECF $=0$
$4 C$ REAC(8,45,END= $5(0)$ MDAY, MHOLR, (MAG(I), I=1,NMAG)
45 FCRNAT(2X, 13,1X, 12,1216)
DC $50 ~ N N=1, A M \Delta G$
SMAC(MM) =FLCAT(MAG(MM))
SDAY=FLCAT (NDAY)
SFCLR=FLCAT (NHCUR)
STIME (NM) $=($ SHCUR* $100.1+F L C A T((N M-1) * 5)$
CALL TNINT(SDAY,STIME(NM), SNIN(MM))
5C CCATINLE
$D C E 1 M M=1, N M A G$
IF(PSMIN.EQ.SMIN(MM)) GD TD $\in C$
IF(FSNIA.LT.SNIN(MM)) GO TO SBC
51 CCATINLE
WRITE(E,52) MDAY, NHCL?
52 FORMATI'SKIPPED RECORD FCR DAY/HOUR',2I6,".......")
GC TC 35
C $* * * * F[L N D$ MAG CATA NEECED - STAFT LOAEING IMTC C/F AFFAYS..
6C WRITE(E, 64) SMIN(MM)
64 FCRNATI' FCUNE CATA TO RE PLOTTED AT SEQUENTIAL MINUTE = , F15.2) hRIJE (E,GE) PSNIN, FENIN
66 FORMATY' CCNPARES WITH START-MIN OF',F10.2.' \& END-NIN CF',F10.2) CO $70 \mathrm{~K}=\mathrm{NN}, \mathrm{NMAG}$
PX(LPCIAT)=SMIN(K)
PY(LPOINT) $=$ SMAG (K)
IF(PEMIN.LE.SNIN(K)) GO TO GI

LFCINT=LPCIAT+1
7C CONTINLE
C * * * * READ IN MAGS \& KEEP LOADING TILL END OF PERIOC WANTEG IS SENSEC ....
C NCTE LCAC FCIATER IS REACY FOR NEXT LOAD
77 READ (8,45,END= CCO) NCAY, MHCLF,(NAG(I), I=1,NNAG)
CO $80 \mathrm{~J}=1$, NMAG
SNAC(J)=FLCAT(MAG(J))
SOAY=FLCAT (MCAY)
SHOLR =FLOAT (NHCLR)
STIME J$)=($ SLOUR*ICC.) $+($ FLCAT $(1 J-1) * 5))$
CALL TNIAT(SCAY,STIME(J),SMIN(J))
PX(LPOINT) $=$ SMIN(J)
PY(LPOINT)=SMAG(J)
IF(FENIN.LE.SNIN(J)) CO TO SI
LFCINT=LFCINT+1
EC CONTINLE
GO 1077
C ****EAUFF DATA LCACEC ....
91 LFCINT=LPGINT-1
C .....CrECK FCR ZERC yAGS - IF ZERC, SET TO NAG VALUE CLOSEST TC IT ..
C
THIS ISA'T THE MOST SATISFACTORY OF SETTING ZERG READINGS, BUT ...
DC S2 I=1,LFOINT
IF(PY(I).GT.C.) GC IC S2
[ $F(I . E Q .1) \quad P Y(I)=P Y(I+1)$
IF(I.GT.1) $F Y(I)=P Y(I-1)$
G? WRITE(E, ¢4) PX(I), PY(I)
94 FORMAT(/' MAG.LE.ZERO AT SMIN OF',FIC.2,' - SO SET TC',FIC.2)
92 CCATINUE
WRITE(E,95) PX(1),PX(LPCIAT),FSMIN,PENIN
S5 FORMAT//' FIRST \& LAST DATA FCINTS LOACEC ARE ..../' FIRST SNIN=', +F10.2,' - LAST SMIN=',FIC.2,' - ARE THEY REQUESTED POINTS WHICH AR +E',2F15.2)
C ****READY TC PLOT - SET LP PLCT bCLNDARIES ....
CALL CERMAX(PX,LPOINT, PXNAX)
CALL DERNIN(PX,LPCINT,PXNIN)
CALL DERNAX(PY,LPCINT,FYAAX)
CALL DERNIN(PY,LPCINT,FYNIN)
$C Y=50.0$
$D X=30.0$
C ****FIND NICELY RCUNDED CC-CRD ECUNCARIES ....
YOR = (FLOAT(IDINT(PYMIN/DY))) \#DY
XCR=(FLCAT(ICIAT(PXMIN/EX)))*CX
GRITE(E,IC2) X[R, YCF
102 FORMAT(' PLCT WILL BE ORIGINEC AT $\left.x={ }^{\prime}, F 10.2, \quad-\gamma={ }^{\prime}, F 1 C .2\right)$
YMAX = ((FLCAT(IDINT(PYMAX/CY))) $\approx C Y)+D Y$
XMAX $=($ (FLCAT $(I C I N T(P X N A X / E X))) *[X)+$ DX
$S Z X=(X N A X-X(R) / E X$
$S Z Y=(Y M A X-Y O R) / D Y$
IF(SZY.GT.10.) CALL YSIZE(29.0)
WRITE(E,ICE) SZX, SZY
108 FORMAT(' PLOT SIZES WILL BE - $X=1, F 10.2,{ }^{\prime}-Y=, F 10.21$
C ****SCALE DATE TC FLOT INCFES ....
DC lls $K=1$, LPCIAT
$\operatorname{XPLOT}(K)=(P X(K)-X O R) / O X$
115 YFLCT(K) $=(P Y(K)-Y C R) / E Y$
C ****AND WE START TC FLCT ....
CALL PLOTS
CALL AXIS(C., C.,'STATION NAG(GAMMAS)',+19,SZY,GC.,YGR,DY)
CALL AXIS(O.,0.,'TIME - NINUTES',-14,SZX,C., XOR,DX)
CALL LINE (XFLCT, YPLOT,LPCINT,+1)

XSYM $=S Z X+C . E$
CALL NUNEER(XSYM,0.5,C.14,PSDAY,90.,-1)
CALL WHERE $(X, Y)$
$X=X \subseteq Y M$
$Y=Y+0.84$
CALL NUNBER(X,Y,0.14,PSTINE,90..-1)
$X=X \subseteq Y M$

CALL WHERE $(X, Y)$
$X=x \leq y N$
$Y=y+0.42$
CALL NUMEER $(X, Y, 0.14$, PEDAY, $\mathcal{C} C,-1)$
CALL WFERE $(X, Y)$
$x=x \leqslant y N$
$Y=Y+C . \varepsilon 4$
CALL NUMBER (X,Y,0.14,PETINE,SC.,-1)
C $* * * * R E-C R I G I N$ FLCT FOR NEXT CNE ....
$X A E W=\subseteq Z X+1 C .0$
CALL PLCT (XAEK,C., - З)
WRITE $(6,120)$ PSDAY,PSTIME, PEDAY, PETIME

GO TO $1 \varepsilon$
C ****THESE ARE THE EXITS .....
SCO WRITE(6,903)
scz fornat(/' inslfficient nag cata - flct nct generatec')
STOP 9
980 WRITE 6,983$)$
¢̧̧ FORNAT(/' NAG [ATA HAS HELES - FRCE CANNCT PLOT IT')
STOP 7
¢95 WRITE $(6,997)$
¢̧7 fCRNAT(' EACFILE ON LNit 5 - nc MOFE plotting requested')
CALL Plotnd
STCP 1
End

SUBROLTINE TNINT(DAY,TINE,SNIN)
IMPLICIT REAL*8(A-H,O-Z)
1C DMIN=DAY*1440.
IFCTIME.NE.C. 1 GO TC 30
HN IN=O.
$X N I N=0$.
GC 1040
3C IHRS=IDINT(TINE/100.)
HM IN $=I$ IR S $* 60$.
$J H R S=I H R S * 1 C C$
HRSJ=DFLOAT (JHRS)
XMIN=TINE-HRSJ
40 SNIN = DNIN+HNIN+XMIN
RETIRN
END

SUBRCUTIAE [ERNAX(X,N, [MAX)
IMFLICIT REAL* $8(A-H, C-Z)$
DINENSION X(N)
DNAX $=-10$.E 30
DC $20 \mathrm{I}=\mathrm{I}, \mathrm{N}$
IF (X(I).GT. CMAX) DNAX=X(I)
20 CONTINUE
WRITE(6,35) [NAX
35 FORNAT(' NAXINUN VALLE FCLA[ =', F15.2)

RETLRN

## END


SURROUTINE CERNIN(X,A,ONIN)
IMPLICIT REAL* $8(A-H, O-Z)$
DIMEASICA X(A)
DMIN $=+10 . E 3 C$
CO $20 \quad \mathrm{I}=1, \mathrm{~N}$
IF(X(I).LT. LMIN) CMIN=X(I)
3C CCATINLE
WRITE(, 37) ONIN
37 FORMAT(' MINIMUM VALLE FCUNO $=$, F15.2)
RETURN
END
\$COPY *SKIP *SINK*

```
$COPY *SOURCE*妇CC *SINK*
C ****** ONEDEE PLOTTER ******
C
C preg plots mag cata in tine sefies - one-cinensionally ..
C DATA MLST BE ORGANISEC IN LINES WITF LINE# & CF PCINTS PRECECING EACF
c line data ...
C & = mag cata tc ee plottec
c = PLCT CCNNAADS C/P
 WRITTEN PRIMARILY TO PLOT BEAUFCRT SEA/NACKENZIE BAY NAG CATA
 GRITTENINAHURRY 2 NARCH 1972 ROCQUE GOH GEOPHYSICS URC
 DIMENSION SNIN(10CO), ZNAG(1CCO), DUNNY(10CO)
 COMMON/DEBUG/FLAG
 lOGICAL FLAG
 FLAG =.TRUE.
 IFLAG=C
C ****READ IN CONTROLS CARDS TC KNOW WHICH LINE IS TC BE PLCTTED ...
 18 READ(5,20, ENC=¢95) PLINE
 20 FORNAT(F2C.3)
CdON'T READ IN ANY mAG dATA IF IFLAG>C ...
 IF(IFLAG.GT.0) GO TO 27
CREAD IN data and check if It IS tC eE plCtTED...
 MEOF=0
 22 REA[(8,25,END=30) LLINE, NPTS
 25 FORMAT(1X,IE,1X,16)
 QLINE=FLOAT(LLINE)
CCFECK IF LINE IN HANO IS TO BE PLOTTED ...
 27 IF(FLINE.EG.GLINE) CO TO 40
 IF(FLINE.LT.QLIAE) GC TC 35
CdATA NOT TO be plotied - Skip and get next SEt
 IFLAG=0
 NECF=0
 READ(8,2\varepsilon,END=ç1) (DLNNY(I), I=1,NPTS)
 28 FORNAT(F10.2)
 WRITE(6,26) GLINE
 26 FORMAT(' LINE '',F10.2,' SKIFFED [VER'')
 GO TO 22
 30 NE[F=NECF+1
 IF(NECF.GT.1) GO TO 33
 GC TO 22
C %***TWC ENDFILES REAC - NO NORE MAG [ATA TO plot ..
 33 hRITE(6,34) PLINE
 34 FORMAT(' LAST LINE PRCCESSEC hAS',F1O.2,' - TWC EOFS CN LNIT 8')
 CALL PLOTND
 STCF }
C ****LINE TO BE PLCTTED NCT FCUAC - GET NEXT CCATRCL CARE
 35 WRITE(t, ?, G) PLINE
 36 FORNAT(/' LINE 缺',F10.2,' NOT FOUND - NOT PLOTTED')
 IFLAG=1
 MEOF=0
 GO TO 18
C ****FCLND liNE TC EE flCTTEC - FEAC IN liAE [ATA ...
 4C MEOF=C
 IFLAG=0
 REA[(8,50,EN[=991) (SMIN(K),ZMAG(K), K=1,NPTS)
 5C FCRNAT(12X,F11.2,55X,F7.1,16X)
 WRITE(t,53) PLINE
```

53 FCRMAT(' FLCT [ATA FOR LINE A',F10.2, REAC IN - LAST DATA POINT') WRITE(6,50) SNIN(NPTS), ZMAE(NPTS)
C ****SET UP PLOT FARAMETERS
$C Y=50$.
$[x=30$.
C ****훟N MAXININ VALUES CF SNIN \& ZNAG....
CALL DERMINISNIN,NPTS, SSMINI
CALL CERNAX(SNIN,NPTS,ESNIN)
CALL DERMIN(ZNAG,NPTS,SZPAG)
CALL DERNAX(ZNAG,NPTS, EZAAG)
C ****FIND FUNDRED-GAMMA VALLE JLST BELCh LCWEST ZNAG..
$Y C R=(F L C A T(I N T(S Z M A G / C Y))) * C Y$
C ****FIND PLOT-INCH JUST EELCh LChEST SNIA....
$X O R=(F L C A T(I N T(S S M I N / C X))) \div D X$
WRITE (6,55) XCR, YOR
55 FORNAT(' PLCT hILL BE CRIGINEL AT $\left.X=1, F 10.2,{ }^{\prime}-Y={ }^{\prime}, F 1 C .2\right)$
C ****Find hundred-gamna valle Jlst agove figtest nag ...
YMAX $=((F L C A T(I N T(B Z M A G /[Y))) * D Y)+D Y$
SZY=(YNAX-Y(R)/CY
IF (SZY.GT.IC.) CALL YSIZE(ZS.C)
C ****FIND dAY JUST HIGHER THAN THE LARGEST SNIN VALUE ..
XNAX $=($ (FLCAT(INT(BSMIN/EX) ) $A$ CX $)+$ CX
SZX=(XNAX-XCR)/EX
WRITE (, , EG) XMAX, YMAX
56 FCRNAT(' NAXIMUM CO-ORCS ARE $X=1, F 1 C .2,{ }^{\prime}$ : $Y=1, F 10.21$
WRITE( $\in$, 巨7) SZX, SZY
57 FORMAT(' PLCT SIZES WILL RE - X-AXIS =',FIC.2,: Y-AXIS =',F10.2)
C ****SCALE DATA ...
CC $7 \mathrm{C} \quad \mathrm{N}=1, \mathrm{APTS}$
SMIN(M) $=(\operatorname{SNIN}(N)-X D R) / D X$
7C $Z M A G(M)=(Z N A G(M)-Y O R) / D Y$
C $\ddagger * * * \subseteq I A R T$ PLCTTIAG - AXES FIRST, POINTS NEXT ...
CALL PLCTS
CALL AXIS(C., C.,'MARINE NAG - GAMMAS',+19, SZY,CC.,YCR,DY)
CALL AXIS(O.,O.,'TIME - NINUTES',-14,SIX,C., XOR,OX)
CALL LINEISNIA,ZMAG,NFTS,+1)
C ****RE-ORIGIN PLCT AXIS FCR NEXT PLOT ...
$X N E W=S Z X+5.0$
CALL FLCT(XAEh,O.,-3)
C ****GET NEXT CCNTROL CARD FCR NEXT FLCT... WRITE( $\epsilon, 78)$ PLINE
78 FCRNAT(' LINE $\mathrm{A}^{\prime}$,f10.2,' PLOTTEC')
GO TO 18
C ***
991 WRITE (6,992)
¢ç fernati' lnexfectec encfile enceunterec on unit e - mag cata')
STOP 9
C ***執 MORE LINES TO BE PLOTTED ...
¢95 WRITE (6,996) FLINE
sce fornati' last line plottec',flo.2,' - nornal terminaticn')
CALL PLOTND
STCF 1
Enc
SUBRCLTIAE CEFMAX (X,N, CNAX)
OINENSION X(N)
CMAX $=-10$.E3C
CC $20 \mathrm{I}=1$, 1
IF(XII).GT. CMAX) CNAX=X(I)
20 CONTINUE
WRITE(6.35) CNAX

35 FORNAT(' NAXINUN VALLE FCLAC =', F15.2) RETURN
END
SUBROLTIAE EERNIN(X,A,CNIA)
DIMENSION X(N)
$\operatorname{LM} I N=+10 . E 3 C$
DC $30 \quad \mathrm{I}=1, \mathrm{~N}$
$\operatorname{IF}(X(I) . L T .[N I A) \quad D N I A=X(I)$
3C CONTINUE
WRITE(6,37) CNIA
37 FCRNAT(' MIMINUN VALLE FCLNE =', F15.3)
REILRN
END
\$CCFY-A *FUNCH*


[^0]:    \$CCFY *SKIP*SINK*

