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ABSTRACT 

Previous calculations of the interaction of plane elastic waves in a 

uniform magnetic field in the Earth's liquid core showed negligible damping 

of such waves. Subsequent extensions of the theory have treated separately the 

damping of radial oscillations in a uniform field, and the effect of a field 

gradient on plane waves. 

It has been speculated that enhanced attenuation would take place for 

standing waves in a field gradient. An additional effect might also be expected 

from a proper treatment of the field geometry, as within the Earth both magnetic 

and free-oscillation fields can be expanded in spherical harmonics. 

In the present thesis a rigorous evaluation of magnetoelastic 

interactions in a spherical conductor is given, with a view to clarifying these 

predictions. The results show that within the Earth's core and at seismic 

frequencies the interaction is indeed weak. Typical values of the Q of the 
13 

damping due to magnetic effects are at least 10 . Consideration of a wide 

range of harmonics in the interaction fails to find a significant effect due 

to field geometry. The role of viscous damping is evaluated using a recent value 

for the core viscosity and typical viscous Q's were about 10"^. 

The possibility of gaining useful information from magnetic or viscous 

damping of the free oscillations is thus remote, but the importance of the 

results lies in their extension to core oscillations of longer periods. Such 

oscillations will also be underdamped and their velocity fields may be suitable 

for the new turbulent dynamo theories of the Earth's main magnetic field. 
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SECTION 1 

INTRODUCTION 

This thesis is principally concerned with the interaction between 

magnetic fields and elastic waves in a spherical electrically conducting 

body. Magnetoelasticity is a term often used with reference to the 

exchange of elastic and magnetic energy in ferromagnetic crystals 

(Landau and Lifshitz, 1960, p.155). In the present context the term 

is used, in a macroscopic sense, to describe the effect of a magnetic 

field on elastic deformations of a continuous medium. The treatment is 

directed towards evaluating such effects in the core of the Earth. 

1.1 Magnetoelastic Interations 

The Earth is known to have a surface magnetic field which is 

predominantly dipole and of internal origin (Ride and Roberts, 1961). 

This field cannot be a relic of the past and is considered to be 

generated continuously by some form of induction process in the Earth's 

core (Roberts, 1967, Ch.3). To maintain the associated currents the 

core must be electrically conducting. 

A large earthquake produces two types of elastic waves within 

the Earth. One type consists of two travelling body waves P,S, the 

other is a harmonic series of standing waves. These standing 

waves are called equivalently normal modes, free oscillations or 

eigenvibrations, and in recent years their study has considerably 

refined seismic models of the Earth's interior (Wiggins, 1972). 

Because a moving electrical conductor in a magnetic field experiences a 

Lorentz force, i t is natural to ask two questions. Are elastic waves, 

particularly free oscillations, attenuated by the magnetic field in the 



Earth's core? What does a measure of that attenuation indicate 

physically about either the magnetic field or the elastic properties 

within the core? 

The first important attempt to assess the interaction was made 

by Knopoff (1955). He calculated the effect of a static, uniform magnetic 

field on the propagation of plane waves in a semi-infinite medium. For 

values of magnetic field strength and conductivity probable in the 

Earth's core (Table 1), i t was found that negligible attenuation takes 

place. However propagation of (a) plane waves in (b) a semi-infinite 

medium in the presence of (c) a uniform magnetic field is not realistic 

for a l l interactions within the core. Subsequent developments, 

including the present investigation, have been aimed at removing these 

limitations. 

The next step was taken by Kraut (1965) who discussed the 

attenuation of the radial oscillations of a homogeneous conducting 

fluid sphere, retaining condition (c). Again the interaction was very 

weak, the longest period of oscillation, taken to be the fundamental 

radial mode observed for the real Earth, is decreased by less than 

two parts in 10 . This represents an effective Q of the oscillation 

of order 10 1 7. 

Nevertheless a further calculation was made by Lilley (1967) 

who conjectured that there is enhanced attenuation in the presence of a 

non-uniform field. This is caused by magnetic induction due to translation 

of an elastic element through a field gradient in addition to the 

induction due to volume dilatation of the element present in a uniform 

field. For travelling waves the effective damping was increased by an 
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order of magnitude within half a wavelength of the origin of the 

coordinate system (Lilley and Smylie, 1968). Although condition Cc) 

had now been relaxed, conditions Ca) and Cb) were reinstated. Lilley 

transferred the result to estimate the damping of the long-period 

eigenvibrations and deduced a Q of about 10^ might be reached. This is 

s t i l l a factor of 10 above indicated Q's for the normal modes and at 

least 10^ above current detection levels (Dratler et al., 1971). 

The geometry of the Earth's magnetic field in the core can be 

treated as a combination of spherical harmonic field components CBullard 

and Gellman, 1954) in an analogous way to the representation of free 

oscillations of a spherical elastic body CAlterman et al., 1959). This 

similarity in geometry between the magnetic and elastic fields suggests 

the possibility of a resonance interaction between field components 

which might enhance the damping effect. Further, the magnetic field in 

some parts of the core must be quite non-uniform, notably near the core-

mantle boundary because of the conductivity contrast between the outer 

core and lower mantle (Rochester and Smylie, 1965). 

The present thesis utilises the geometry of the core with 

spherical harmonic expansions of the magnetic and elastic fields and 

relaxes a l l three conditions (a), (b), (c) noted above. It is then 

possible to discuss magnetoelastic interactions in the Earth's core 

using realistic seismic models and taking advantage of current 

developments in geomagnetic dynamo mechanisms. The generality of the 

mathematical approach allows any harmonic displacement field to be 

substituted in place of the free oscillations e.g. Chandler wobble 

deformations and earth tide deformations, both of which are forced 

vibrations of degree two. 
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A recent study on the dynamical stability of the fluid core 

(Higgins and Kennedy, 1971) has raised serious doubts about the existence 

of large scale convective flow as required by conventional dynamo 

theory. As a result there is considerable interest in the possibility 

of turbulent dynamo action, possibly sustained by an oscillatory 

mechanism. The low viscosity predicted by Gans (1972) therefore gives 

further stimulus to a detailed study of magnetoelastic interactions 

in the outer core, as a mechanism of energy- dissipation. 

1.2 Review of the Free Oscillations 

Following a large earthquake, the Earth continues to vibrate in 

a set of normal modes, three of which are indicated schematically in 

Fig.l. The early history of the theory of these free oscillations is 

reviewed by Stoneley (1961). It is convenient to begin here with the 

work of Lamb (1882) on the free modes of a uniform, incompressible, 

homogeneous elastic sphere. Lamb's analysis showed that there are 

two basic modes of vibration which are now referred to as torsional and 

spheroidal vibrations. The former have no radial displacement and the 

simplest motion is a twisting about a polar axis. The lowest degree 

spheroidal mode is a radial contraction and expansion, and the degree 

two mode oscillates between a prolate and oblate spheriod (Fig.l). 

If the material of the Earth is allowed to be compressible and 

self gravitation is taken into account, the analysis becomes more 

complicated (Love, 1911, Ch.VII). Gravity not only acts as a restoring 

force to shorten the eigenperiods but also causes a large i n i t i a l 

state of stress throughout the Earth. The method of including this 

i n i t i a l stress in the equations of motion was presented originally by 

Rayleigh (1906). The Earth was by then known to be non-homogeneous 
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(Oldham, 1906) and Hoskins (1920). extended Love's theory to a radially 

heterogenous Earth, taking the elastic parameters to be simple 

algebraic functions of radius. 

Takeuchi (1950) used hand calculating machines on a closely 

related problem, that of determining the response of the Earth to tidal 

deformation. At the same time Bullen (1950) produced his second whole 

Earth model, model B. Benioff 0-954) then announced that a 57 min. 

period had been detected on seismic records following the Kamchatka 

earthquake of 1952. Although this was subsequently questioned as being 

an eigenvibration (e.g. Bullen, 1963, p.264), several workers began 

numerical calculations of the eigenperiods using computers (Pekeris and 

Jarosch, 1958; Jobert, 1957). The most widely quoted results of that 

time were published by Alterman et al. (1959) using a step-by-step 

integration of the equations of motion, modified from Love's analysis. 

The eigenperiods obtained by Alterman et al. were confirmed when 

seismic records of the Chilean earthquake of 1960 were examined (e.g. 

Benioff et al., 1961). 

In the last decade there has been considerable effort to 

improve the agreement between theoretical and observed eigenperiods; 

only a few developments need be cited in this review. The records of 

Benioff et al. showed very close multiplets of lines where a single 

frequency was expected theoretically, but there was l i t t l e hesitation in 

attributing this effect to the rotation of the Earth (e.g. Pekeris et al . , 

1961). In effect, the standing nodal patterns on the Earth's surface 

drift relative to a seismic station. This mode then appears split into 

2n+l components, where n is the degree of the mode. The effect of 

Earth oblateness on the eigenperiods has been studied by Dahlen (1968), 
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and recently Madariaga (1972) has given an analysis of the effect of 

large scale lateral heterogeneities on the torsional eigenperiods. These 

second order departures from spherical symmetry destroy the complete 

separation of the torsional and spheroidal free oscillations, and result 

in a certain amount of coupling between modes. 

Generally eigenperiods have been obtained by straightforward 

power spectral analysis, usually performed at each seismic laboratory 

following an earthquake of sufficient magnitude 6.5 ). Results to 

1968 were summarized by Derr (1969). However, by combining a large set 

of existing records from a single earthquake, Dziewonski and Gilbert 

(1972) have improved the identification of the eigenperiods. Following 

the Colombian earthquake of 1970 the records of Dratler et al. (1971) 

show very clearly the persistence of many overtones of the free 

oscillations. Such improvements in the quantity and quality of the 

observed eigenperiods have enabled Earth models to be developed consistent 

with the mode identifications (e.g. Haddon and Bullen, 1969). The 

recently developed Earth models are also better constrained, within the 

quality of the data, by improved fitting techniques (Backus and Gilbert, 

1970) . 

Damping of the free oscillations is generally attributed to 

anelasticity in the upper mantle (Jackson and Anderson, 1970). Although 

estimates of Q are somewhat uncertain due to the splitting and coupling 

of modes mentioned earlier, a typical Q is 300 but for the radial 

oscillation and most overtones a Q of 10^ seems indicated (Dratler et al. 

1971) . 

1.3 Review of the Geomagnetic Field 

In contrast to the generally excellent confirmation of theory by 



observations on the free oscillations, there is s t i l l considerable 

uncertainty as to how the Earth's magnetic field is sustained. Hide and 

Roberts (1961) have given a thorough description of the observations and 

basic theory, and a review by Weiss (19 71) summarises the current 

position. 

To explain the origin of the magnetic field associated with 

sunspots, Larmor (1919) first suggested a self-generating dynamo 

mechanism. This was criticised by Cowling (1934) who proved what is now 

known as Cowling's Theorem, which states that an axisymmetric field 

cannot be maintained. This ruled out the model proposed by Larmor. 

Elsasser (1946), in the first of a series of papers on magnetic induction 

in the Earth's core, discussed the physical conditions required for dynamo 

action to take place. 

Bullard (1949) initiated his own extensive contribution to dynamo 

theory by proposing a particular model suggested by dynamical motions 

likely within the core. Initially a dipole field is assumed to exist. 

The combination of the Earth's rotation and radial convection, driven 

thermally from the deep core, cause a non-uniform fluid rotation which 

turns the dipole field around the axis. The field lines then l i e in 

circles of latitude, in opposite sense on either side of the equatorial 

plane. The field generated is toroidal, with quadrupole symmetry, and 

has field lines similar to the displacement field T° of torsional 

oscillations (Fig.l. and Section 3.2). Because the conversion is an 

efficient process, driven continuously by rotation and convection, a 

strong toroidal field can be produced from a weak dipole field. 

To sustain the dipole field, the convective flow is imagined to 
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rise in columns and twist the toroidal field into loops through the 

Coriolis force. The loops are then supposed to coalesce and largely 

cancel leaving a dipole field as described in detail by Parker (1955). 

If the whole cycle is efficient then the dipole field can be maintained 

against ohmic dissipation. 

A detailed mathematical formulation of the dynamo process was 

given by Bullard and Gellman Q.954). A general method of expanding both 

the magnetic and flow velocity fields in spherical harmonics was 

initiated and the dynamo of Bullard was given exhaustive numerical 

treatment. Unfortunately a stable solution was not achieved, and there 

was some indication that energy would be passed to the higher harmonics 

of the magnetic field instead of returning to the dipole field. 

Improved numerical techniques (Gibson and Roberts, 1969) indicated 

the problem was not tr i v i a l , which seemed to confirm a demonstration by 

Braginskii (1964) that the velocity fields being used were too symmetrical. 

Noting Braginskii's result, Lilley (1970) introduced a third velocity 

component into the flow and this seemed to provide a more stable dynamo 

action. Subsequent calculations by Gubbins (1972) unfortunately showed 

this dynamo was also unstable. 

Meanwhile dynamo mechanisms had been investigated which were 

proved rigorously to work (e.g. Backus, 1958) but at the expense of 

rather a r t i f i c i a l velocity fields and a new approach was begun by 

Steenbeck et al. (1966) on the possibility of dynamo action in a 

turbulent fluid medium. Their work has been reviewed and extended by 

Moffatt(1970a) who's latest contribution indicates a random driving 

force can generate dynamo action under certain conditions (Moffatt, 1972). 



In a fluid of infinite extent a steady state can be reached in which the 

magnetic energy density is maintained above the level of kinetic energy 

density on the assumption of no mean flow. The presence of core boundaries 

tends to induce a mean flow, so further work is required before a successfu 

mechanism can be claimed. 

The large scale flow necessary for the original Bullard dynamo now 

is challenged on thermodynamic grounds by Higgins and Kennedy (1971). 

On the basis of new data for the effect of pressure on the melting point 

of metals and other solids, they argue that the melting point curve 

lies well above the adiabatic curve. The excess is estimated at 500°C 

at the core-mantle boundary if the two curves are coincident at the 

inner-core boundary. The outer core is considered fluid and so its 

temperature cannot be anywhere less than that given by the melting point 

curve. Simple dynamical arguments then lead to the conclusion that the 

outer core is everywhere near the melting point and is quite stable 

against radial convection. 

The effect of this result on dynamo theory has been mentioned 

briefly by Bullard and Gubbins (1971) and i t appears that oscillatory 

dynamos and those excited by inertial waves (Moffat, 1970b) hold some 

promise for the future. 

1.4 Viscosity 

If the outer core of the Earth behaves as a perfect fluid, then 

anelasticity cannot be a mechanism for attenuating seismic waves. The 

role of viscosity in the outer core then becomes the only alternative to 

magnetic dissipation of seismic energy. Although this thesis is mainly 

concerned with magnetic damping, the effect of viscosity is straight-



forward to calculate and will perform a minor role in the ensuing 

discussion. 

From the passage of P waves through the outer core, Jeffreys 

(1970, p.323) has estimated 5 x 10^ poise as an upper limit for the 

dynamic viscosity. As Jeffreys points out, this also includes the 

effect of bulk viscosity. The torsional vibrations of the Earth are 

confined to the mantle because the fluid core cannot support pure 

shear', this implies the core-mantle boundary is a free surface for the 

mantle vibrations. MacDonald and Ness (1961) have given a detailed 

account of the modification of the eigenperiod of 1° due to viscous and 

magnetic stresses across this boundary. It was found that there was 

negligible attenuation of the oscillation due to stiffening of the 

boundary by these stresses. Similar results were obtained by Sato and 

Espinoza (1967). 

Another approach to the viscosity of the outer core is to compare 

the relative attenuation of seismic waves which are reflected by the core, 

S.cS and transmitted through the core, SKS. Pairs of rays are chosen to 

have identical mantle paths. The results again give an upper limit on 

core viscosity in the region of 10"^ poise (Suzuki and Sato, 1970). 

These seismic estimates of viscosity are markedly higher than 

those from other sources (Malkus, 1968) probably because they represent 

upper limits. In an attempt to settle the question Gans (1972) makes use 

of Andrade's formula to determine the viscosity of iron at the melting 

point and arrives at the surprisingly low result of about 10 ^ poise 

for the dynamic viscosity. The kinematic viscosity is therefore about 
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the same as that of water at 20°C. This result indicates strongly that 

if the outer core is mainly molten iron, then i t behaves as a true liquid. 

Some of the quantities discussed in this section are presented 

in Table 1. 

Table 1 
Core Parameters 

Inner core radius 1215 km Appendix B 

b Outer core radius 3485 km II 

Frequency of typical 
oscillation 'v-lO-2 -1 

sec 
it 

Velocity of typical 
oscillation 5̂ x 10~4 -1 

cm sec 
ii 

ft* 
Maximum toroidal 
field strength 480 gauss 

Bullard and 
Gellman(1954) 

cr Electric 
conductivity 3 x 105 ohm m II 

1 Dynamic shear 
viscosity 0.08 poise Gans (1972) 

Permeability 4TTX 10~7 henry m ̂  -
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SECTION 2  

BASIC FORMALISM 

In this section the equations governing the motion of the 

medium and the behaviour of the magnetic field are reviewed. It is 

usual either to combine viscous and elastic forces and form the 

equation of viscoelasticity (e.g. Bland, 1960), or to add a magnetic 

field to hydrodynamics and call i t magnetohydrodynamics (e.g. Roberts, 

1967). Because viscous and magnetic effects are expected to perturb 

the free oscillations only slightly, for reasons given in Section 1.1, 

the basic equations are those of elasticity (love, 1911, Ch.VII). The 

equations might well be referred to as those of magnetoviscoelasticity. 

2.1 Physical Assumptions 

The Earth is to be treated as a spherical, radially heterogeneous, 

self-gravitating, compressible elastic body. With a quarter of i t 

removed, i t appears schematically as in Fig.2. The outer core, discovered 

first by Oldham (1906), extends just over half way to the surface: 

the inner core, proposed by Lehmann (1936), occupies about a third of 

the outer core radius. 

The outer core is traditionally assumed to be a liquid with zero 

rigidity (Jeffreys, 1970, p.285). From the P wave attenuation data already 

mentioned, Suzuki and Sato (1970) concluded that the outer core behaves 

more like a viscous liquid than a low-rigidity solid. Evidence on the 

stiffness of the core mantle boundary from the eigenperiods of torsional 
10 —2 

oscillations indicates an upper limit of about 10 dynes cm (Sato 

and Espinosa, 1967). This is in agreement with the limit obtained by 

Takeuchi (1950) from earth tide calculations. By contrast, the effect the 
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Fig. 2. Earth Model 



inertia of the core has on the amplitude of the 19 yr lunar nutation 
Q 

is shown by Jeffreys (1970,p.295) to place an upper limit of 10 dynes 
-2 

cm on the core rigidity. In comparison, the -mantle rigidity averages 12 - 9 about 10 dynes cm L. 

The inner core has been generally recognised to be solid (Bullen, 

p.242) and evidence from the eigenperiods of low degree oscillations 

definitely favours a normal solid rigidity (Dziewonski and Gilbert, 

1972, p.409). There is s t i l l some doubt as to the constancy of seismic 

properties within the inner core. The model used by Dziewonski and Gilbert 

(1972, Table 6) has both P and S velocities constant, whereas the model 

used in the present problem (Appendix B) has a small gradient in S 

velocity, and therefore also in rigidity. 

Because there is l i t t l e reason to do otherwise at this stage, 

the composition of the inner core is taken to be the same as the outer 

core (Jeffreys, p.203). The composition of the outer core is of interest 

because i t influences the electrical conductivity which in turn influences 

ohmic dissipation (Section 4.2). Recent work on the conductivity of liquid 

iron and metallic alloys by Gardiner and Stacey (19 71) and Jain and Evans 

(19 72), extrapolated to core pressures and temperatures, have confirmed 

Bullard's 1949 estimate (Table 1). 

The question of time scales is important. After an earthquake most 

oscillations die away within a few days of their excitation because 

of the finite Q (Dratler et al, 1971) whereas dynamo processes associated 

with variations of the geomagnetic field are by comparison stationary 

(Hide and Roberts, 1961). This enables the relative rotation of the 

mantle and core to be ignored and in Fig.2 both parts of the Earth are 



taken as fixed by the geographic coordinate system (Munk and MacDonald, 

1960, p. 11). The rotation of the Earth ensures that the main magnetic 

field is orientated with the geographic polar axis by dynamo action. 

The polar axis of the coordinate system for the free oscillations 

passes through the epicentre of the earthquake and will be inclined to 

the geographic polar axis in most cases. However there is no loss of 

generality in assuming the two axes coincident, because for a given 

earthquake location a simple transformation of colatitude 9 

allows for the subtended angle between the two axes. For example, for 

an earthquake at the equator no transformation is necessary for the 0S 2 

oscillation, and the radial mode has no preferred axis of symmetry (Fig.l). 

2.2 Mathematical Notation 

Elasticity theory is usually expressed in Cartesian tensor 

notation, and electrodynamics is nearly always formulated in vector 

notation. It has been decided to retain the appropriate usage to aid 

physical understanding, although in some equations both forms will be 

found. This may look inelegant but is s t i l l rigorous for an isotropic 

medium. As usual, repeated indices imply summation and i . . s I for i = j , 

otherwise S.. = 0. 

A displacement field is represented throughout by u_ and a velocity 

field by v, the three coordinates at a reference point are denoted by 

the components x.. The notation for a harmonic component of the magnetic 

field is T̂  or and for the spheroidal oscillations is 0 S m where s,n s s v n 
are the degree and p,m are the order of the associated Legendre functions 

and tf is the overtone. 
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2.3 Elastic Equations 

The most general form of the equations of motion for a volume 

element of density j> is 

ot a*.
 J 

where the substantive derivative refers to a fixed material element 

(Roberts, 1967, p. 16). The tensor TF„ represents the total stress 

field and F is the body force per unit mass. For the Earth, the body 

forces may be gravitational or rotational; the gravitational forces 

arise from either self gravitation or lunar and solar tidal effects. 

In the present treatment F^ is taken as entirely due to self 

gravitation and is derived from a potential V. The total stress can 

be expressed as 
7 T*j. S X ; j •+ X;j + «Y1;j 

where X. . is the elastic sress.T. . is the viscous stress and m. . is i j i j i j 
the magnetic stress. 

In a linear isotropic medium nu , the magnetic part of the 

Maxwell stress tensor (Stratton, 1941,p.98), is related to the components 

of magnetic induction by 

m 

Ho 

where is the permeability. Because B is a vector field, the magnetic 

stress acting over the surface of a volume is equivalent to a body force 

within that volume; in the present case the body force per unit volume 

can be written c ( I * H > 
(Roberts, p. 11) where J_ is the current density. The electric part of 

'the Maxwell stress can be neglected by the argument of no free charge 



(e.g. Elsasser, 1956, p.137). 

The viscous stress can be written in several forms, one which 

separates the different viscosities is 

(Landau and Lifshitz, p.214) where ^ are the coefficients of dynamic 

shear and bulk viscosities. The bulk viscosity is often neglected 

because the rate of shear deformation usually greatly exceeds the 

rate of compression; i t represents resistance to pure expansion 

(Jeffreys, p.3). 

As discussed by Love (1911, p.89) and in a more recent treatment 

by Smylie and Mansinha (1971), every point within the Earth is under a 

hydrostatic stress >?•• which balances the self gravitation 

Here £ > $0
 an^ P0

 a r e respectively the density, gravity and hydrostatic 

pressure in the i n i t i a l state, assumed to vary only with the radius r. 

Because a volume element carries its i n i t i a l stress with i t during a 

deformation (Rayleigh, 1906) , the element at a reference point had 

an i n i t i a l stress 
P;. - a. = - ( f t , -j> o3 0u f) * , 

where u r is the radial displacement. This viewpoint is not immediately 

obvious and originally caused some confusion in the treatment of self 

gravitation. 

In addition to the hydrostatic stress there is an additional 

elastic stress T.̂ . related to the deformation u^ by a general form of 

Hooke's Law (Love, 1944, p.102) 



where A, »vi are Lame's elastic parameters and A is the cubical 

dilatation, & s du^/dx . Physically, the meaningful parameters are 

the rigidity modulus and k ( = A } the bulk modulus. The total 

elastic stress tensor is 

To first order in displacements, the density change of the element 

is given by 

which leads to an additional gravitational potential satisfying 

Poisson's equation 

where G is the gravitational constant. Because F^ is derived from the 

total gravitational potential, 

f _ , V = V0 + V, and q = M . 

In taking the equations of motion (1) to represent the 

vibrations of an elastic medium the displacements can be considered 

infinitesimal, and to first order 

J ot J dt* 

The elastic equations are then obtained by substituting for TTj! and F 

from the above relations. 
P & - I -r £T;j - r ^ J l j + , (2) 

at1- c dx. ax. dat: ' 
where $'• represents the equivalent gravitational force per unit volume 



correct to fi r s t order in quantities small with the displacements 

(Hoskins, 1920, pp.7-8). Equations (2) have been given in symbolic 

form by Smylie and Mansinha (1971, p.332). It is convenient here to first 

write them 

where 

and then in the vector form 

L(u) = £ 
(3) 

where L is a form of vector operator. The terms in f_ are the two 

viscous volume forces, the second of which is zero if the medium is 

incompressible, and the magnetic volume force. 

2.4 Magnetic Equations 

In the core of the Earth the displacement current can be 

neglected so the field equations are, strictly considered, in pre-

Maxwell form, 
Vx E = - i i , X7.8 - 0 , VxH - 3 , B = M 0 H (4) 

(Elsasser, 1956). The vectors are E_, the electric field strength, B_, the 

magnetic induction, H, the magnetic field strength and jJ the conduction current 

density. Ohm's law is taken in a form suitable for the relation between 

current and field in a medium moving with velocity v, 

T = <r (E + vfx 6)
 }

 <
5

> 

where er is the electrical conductivity, (Landau and Lifshitz, p.205). 

By a suitable combination of (4) and (5) the current and electric field 



can be excluded. The result is known as the induction equation 

where is the magnetic diffusivity (ju00") -I 

The induction equation is of central concern in the next section 

so i t is useful to consider the role of the three terms. Remarks similar 

to the following can be found in most textbooks on the subject of 

magnetohydrodynamics (e.g. Roberts, 1967, Ch.2). 

The terms on the right hand side of (6) can be compared by 

dimensional analysis 
|V , ( *x_6)| = ^ 

IVx(V*8)l 

where, i f ITand d£ are a velocity and a length typical of the system, 

defines the magnetic Reynolds number. In a medium of high conductivity, 

R̂  is large and there is negligible diffusion of the field; the field 

is said to be frozen into the medium. Conversely, for small conductivity, 

R is small and the field will diffuse faster than i t can be maintained m 
by the flow. 

If the medium is stationary, so R̂  is zero, (6) is a diffusion 

equation and in a bounded medium the solution is an infinite series of 

decay modes CElsasser, 1946). In a spherical conductor of radius R 

the mode of longest decay has the form 

&(r,t) - 6 ( r ) e "
t / c
 , I , RVcr/V

l
 . (7) 

If, however, the field is stationary diffusion 

and induction are balanced. Since Elsasser (1946) and Bullard (1949) 

speculate!on the possibility of a geodynamo, there has been considerable 



effort to find a solution B_ which, is stationary and which has a steady 

dipole component. Even if a solution for B_ was found, v would have 

to obey the equations of motion to complete the dynamo mechanism. 

The combination of (2) and C6) presents an impressively difficult 

problem; (6) alone is not simple, as is well known from dynamo theory . 

Equations (2) have been linearised by Alterman et al (1959) without the 

viscous and magnetic terms. It is, in principle, possible to treat 

the additional forces in a manner similar to the Coriolis force 

(Pekeris et al, 1961) and compute the change in eigenperiod. A 

simpler approach is to solve the linearised induction equation and determine 

the energy lost by ohmic dissipation and thus obtain a measure of Q, 

2.5 Boundary Conditions 

It is appropriate to complete this section with a review of the 

boundary conditions for the magnetic field and the free oscillations. 

Because both fields span bounded media, they are modal in character and 

the boundary conditions are influential. 

For the free oscillations Pekeris and Jarosch (1958) ;give the 

following conditions; 

(a) Regularity of the displacements and stresses at r= 0 . 

(b) Zero surface stress on the deformed surface of the Earth. 

(c) The interior and exterior gravitational potentials and their 

gradients are continuous at the deformed surface of the Earth. 

In addition; 

(d) Within a liquid or at a liquid-solid interface, the transverse 

stress is zero. 

And, at any discontinuity within the Earth; 
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Ce) Displacements, gravitational potentials and their gradients^ 

and normal stresses are continuous. 

These are dynamic boundary conditions and apply to a l l free 

oscillations of periods an hour or less. If the frequency decreases 

to zero (the static limit), certain of the equations of motion become 

degenerate. To satisfy the surface conditions (b), (c), condition (e) 

has to be relaxed to allow one extra free constant within the Earth 

CSmylie and Mansinha, 1971, pp. 342-344). There is s t i l l some doubt as 

to which of the conditions in (e) have to be modified and not a l l authors 

agree (e.g.' Pekeris and Accad, 1972, p.241). Fortunately the difficulty 

does not arise for the normal modes. 

Condition (a) will be discussed further in Appendix B because 

i t has often been satisfied only approximately (e»g> Alsop,1963,p. 486). 

The boundary conditions for the magnetic field at a discontinuity 

in f o o r °~ a r e g i v e n by Stratton (pp.34-37) and are derived from (4). 

They are : 

(f) Normal component of B_ continuous, unconditionally. 

(g) Transverse component of B_ continuous if there is no 

surface current. 

(h) Transverse component of E_ continuous, unconditionally. 

The first condition is derived fromV.B*0. The second condition 

is derived from ^X H - T
 t
 from which 7.7=. 0 and is valid only if the 

conductivity is finite.on both sides of the boundary. Otherwise for an 

infinite conductivity on one side a surface current density exists. 

In the present treatment of the Earth, the mantle can be considered 



insulating as the time scale of core-mantle coupling, using a finite 

lower-mantle conductivity, greatly exceeds the time scale of the free 

oscillations. At the core-mantle boundary the normal components of B_ 

are continuous, and because there are no sources outside the core, by 
- 3 

dynamo hypothesis, the field _B falls off as r in the mantle. No 

electric currents can flow in the mantle and thus the normal component 

of must vanish at the boundary. 



SECTION 3  

THE INDUCTION EQUATION 

A solution of the induction equation is now obtained by a 

linearisation procedure. Sections 3.2 and 3.3 follow the treatment of 

the dynamo problem by Bullard and Gellman (1954, Sections 4 and 6). 

3.1 Linearisation 

The induction equation (6) is quite hard to solve unless i t is 

first linearised by a perturbation method. The elastic equations (3) can 

be included in the scheme, although mainly for completeness because 

they are not solved directly. 

Quantities are expanded in two ways, 

•& ' +fe > I J e i (8a) 

and 

i f =
 a

*/$t -To 4 i f , +ifa 
The following interpretations are implied; 

} (8b) 

B̂  Main core magnetic field, sustained by currents J_
0 

b_ Perturbation of JB
0
 by energy from v^ , sustained by j_ 

t^.v^ Displacement and velocity associated with fluid flow 

in the core. 

u_̂ ,v̂ , Displacement and velocity associated with the elastic 

free oscillations. 

—2'—2 Displacement and velocity fields caused by the interaction 

being perturbations of u.̂ , v^ 

f Body force for fluid flow. 
—o 

f_̂  Body force for free oscillations, zero by definition. 

f_2 Body force due to the interaction 



Because of time scales B , J and f are considered static. 
- o ' - o - o 

Perturbation quantities b_, j_, u_2> y_2» a n <^ —2 have the harmonic dependence 
>'uJt 

of the free oscillations, i.e. v/J=w,t£. 4,fcc. 

To perform the linearisation i t is necessary to assume two 

conditions 
|b| « |S 0I (9a) 

Ib|/IB0I « l»f.l /»!f.l , ( 9 b ) 

and define the zero-order induction equation to be 

-\7xVx| 0=: /vrcyio -^<r Vx(v;x80) . d o ) 

The unperturbed elastic equations are given by equation (3) for the 

free oscillations 

Equations (8a) and (8b) are now substituted into (3) and (6), conditions 

(9a) and (9b) are applied and equation (10) subtracted. To first order 

in small quantities the resulting equations are 

at 
and 

where 

assuming 
| V / ^ | ^ < 1 VT| I » unconditionally. 

In a conducting medium a perturbation of the steady field B_Q 

is equivalent to disturbing the field lines and producing Alfven waves 

(Roberts, Ch.5). In the present situation the elastic forces are 

controlling the behaviour of the medium and the field b_ is assumed to 



have the time dependence of v^. The hydromagnetic waves are thus in step 

with the free oscillations and are themselves standing waves in the core. 

The effect of finite viscosity and electrical conductivity is of course 

to attenuate the waves. If required, the equations following (11) can be 

used to compute the perturbation in the free oscillation velocity. 

Condition (9a) can be verified in the sequel; condition (9b) 

requires that the magnitudes of _v̂ , v^ must be compared. 

Bullard and Gellman (1954, p.273) assumed that the transverse 

component of v^ is a measure of the westward drift of the non-dipole 

surface field. As such i t is taken to represent the motion of the 

outer core past the mantle. An extrapolation of the observed drift of 

0.18° per year leads to maximum radial and transverse velocities of 

0.014 cm sec and 0.04 cm sec ^ respectively. 

The amplitude of v^ in the core requires the variation of 

amplitude of displacement with depth to be computed for a realistic 

Earth-model, as in Fig.3. In this calculation, the radial surface 

displacement is usually normalised to be unity, here 1 cm. In a recent 

study of the source mechanism of the 1964 Alaskan earthquake, Ben-Menahem 

et al.(1972) have given observed surface amplitudes. When suitably 

corrected for instrument response and displacement of the epicentre from 

the station, radial displacements at the surface are of the order of 1 mm 

for the low-degree spheroidal oscillations. This agrees with Nowroozi's 

(1965) estimate for QS 2 for the same earthquake. For those oscillations 

with appreciable kinetic energy in the core (Figs. 3,7 and 9) periods 

range from 3233 sec for QS 2 to 244 sec for 4S Q . Free oscillation 

velocities in the radial direction are thus in the range 10-^ to 10"^ 

cm sec-"*" with transverse velocities an order of magnitude smaller. 
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Fig. 3. Amplitudes of Spheroidal Displacements in the Earth. 
Computed from model JAM (Table 10, Appendix B) . 
Ful l lines are radial displacements, dashed lines 
are transverse displacements. 



Thus - . 
| 0 ~ * < I if, I / l \ f o l < I 

and conditions C9a) and (9b) are satisfied simultaneously i f 

lb I << l 8 o l *
 [ 0

~
l ( 1 2 ) 

3.2 Field Expansions 

At first' sight equation (11) looks similar to the induction 

equation (10) but there are differences to be noted. In (11) the free 

oscillation velocity v^ replaces the flow velocity v^ of (10) and 

contains an extra part to the field which is lamellar, v^ being 

solenoidal. Second, i f (11) is written in the form 

7 XV X b -f p
0
cr H - <u

0
o- Vx (V, x§J (13) 

the left hand side contains the field b_ induced by the interaction term 

(^"t ~f §>o) o n the right. Because of the perturbation approximation (9a) 

i t is unlikely that dynamo action will take place, particularly as ]B0 

is taken to be stationary with respect to b_. Nevertheless because of 

the spherical symmetry of the problem, field expansions can be used 

in a similar approach to that of Bullard and Gellman (1954, p.220). 

As discussed by Smylie (1965), the magnetic field is solenoidal 

and can be written as the sum of a poloidal vector S_ and a toroidal 

sector T_, by a theorem of Backus (1958). Thus 

where S and T are the defining scalars. The degree and order of a 

particular harmonic are s and p for the. main field B̂ 0 , and and k for ' 

the induced field b_. The defining scalars are expanded in spherical 



3 0 

harmonics 
QO S 

(15) 

for ji0and similarly for b_, the summation notations in (15) being 

equivalent. Following Smylie (1965) the associated Legendre functions 

(16) 

(17) 

are defined with the normalisation of Hobson (1955, p.93)7 

P/u) »(-i) po -H.V W l I P,V> , f * » 

P / V . P.V> , • 
For reference the components of the vector elements are given for 8 0 

(Smylie, 1965). Again (16) and (17) are similar for b_. 

The components of the free oscillation displacement field u_ 

are well known (e.g. Alterman et al., 1959, pp.84, 86), but it is useful 

to indicate how they are derived. The Helmholtz separation theorem 

(Morse and Feshbach, 1953, p.53) allows the displacement field to be 

written 

where L is a scalar and A a zero-divergence vector field. If the 

degree and order of a harmonic of the displacement field are denoted 

by n and m, the scalar L can be expanded as 



and the components of L : \ ? L , a lamellar vector( are 

3r 

(tr). = 

Because V x A is solenoidal, the defining scalars can be expanded as in 

(15) and the components written as in (17). The lamellar and poloidal 

fields have the same angular functions and they can be combined into 

a spheroidal vector field with components 

( s ; ) r - u r t r , f c ) p;v w 

(s:i = u i - f . t J d S T e * " * ' / <18> 

' StlA W s;*t> 

The toroidal part T m of V*A has the same radial components as the toroidal 
—n 

magnetic field, (17) although the radial function tjj| is usually written 

wm . The total displacement field is then the sum of two vector fields, n r 

and for a harmonic n, m 

where 

S n = r u. r t r „ e ^ -+ r i r n V ( K n e w 
is a spheroidal vector displacement and 

ir= w.-rj . v l P.V""*)' 
is a torsional vector displacement. 



The expansion of the displacement field in this way has been used by 

many authors, but a rigorous justification rests on the result of Backus' 

theorem. 

Because the rigidity of the outer core is negligible a purely 

transverse elastic motion has no restoring force. Therefore only 

spheroidal oscillations sample the core and the vector components of 

_u,̂  are given by the components of alone. 

expansions (14) - (18) into (13) leads to a rather lengthy 

manipulation of the angular functions. The procedure closely follows that 

described by Bullard and Gellman (1954, p.224) and Smylie (1965, p.172). 

Essentially the angular functions are grouped together in such a way that 

the poloidal and toroidal parts of (13) are separated. This is accomplished 

by multiplying (13) f i r s t by a poloidal vector S'̂  then by a toroidal 
k _ i vector T*£ whose radial functions are chosen to be r and 1 respectively. 

On integration over a spherical surface the orthogonality relations for 

the associated Legendre functions ensure the separation of the vector 

equation into poloidal and toroidal parts. 

toroidal parts each of which contains triple angular integrals K, L. 

A discussion of these integrals can be found in an appendix by Scott in 

Gibson and Roberts (1969). They are generally referred to as Gaunt and 

Elasser integrals and they depend on the six indices of the three fields* 

Substitution of the fields B_0 b_ and v. in the form of the 

The term also becomes separated into poloidal and 

by definition 



To ensure that k, m, p are a l l positive integers i t is necessary to have 

one superscript negative. Definitions of K and L and some of their 

relevant properties are given in Appendix A. 

The equation for the poloidal field is found to be 

- X C i . ( rS / ) C n h 4 - i ) - ^ ( £ 4 l ) - S ( S
+
. ) J K 

- J - t r ^ s ( 5 4 l ) S / [> -s(5-r<) + i ( i f ) ) ] K [ ( 1 9 ) 

and for the toroidal field 

(20) 

where v^has been written ifc)u_^. Although these two equations appear 

complicated, they have a simple physical interpretation which depends 

on the properties of K, L. 

Imagine a particular component of the velocity field 
P P 

interacting with a component of the main magnetic field, or Tg. 

Selection rules, Section 3.3, then determine the values of I, k which give 

non-zero K,L. The right hand sides of (19) and (20) are then summed over 

a l l n, m, s, p to provide the source term for each permissible t, k of the , 
perturbation field. The equation (13) can then be solved for the radial 

k k 
functions s^ and t^ to determine the harmonic of b_, the induced field. 



3.3 Selection Rules 

The selection rules are quoted from Scott in Gibson and Roberts 

(1969, p.588) for k, m, p and I, n, s positive definite integers. 

1. For K, L non zero; - k-+m+p = 0 

2. For K non zero; 

(i) £, + n + s is even. 

(ii) ji, n, s can form the sides of a triangle. 

3. For L non zero; 

(i) X + n + s is odd. 

(ii) JI, n, s can form the sides of a triangle, 

( i i i ) No two superfixes zero, e.g. m = p = 0. 

(iv) No two superfix-suffix pairs equal, e.g. m=p, n=s. 

Rules 2(i), 3(i) indicate that either K or L vanishes for any particular 

selection of I , n, s. Rules 2(ii), 3(ii) ensure that the sums on the 

right hand sides of (19) and (20) are finite, and this simplifies con­

siderably the evaluation of the perturbation fields. Beyond these 

observations further illustration of the selection rules is best left 

to a particular example. 

Before this is done however a remark should be made concerning 

the expansions (15) in comparison with the expansions of Bullard and 

Gellman. In (15) the spherical harmonies are complex to simplify the 

algebra. However, the radial functions are not necessarily real, but are 

only required to satisfy the relation 

(Smylie, 1965), where a * signifies complex'conjugation. This ensures 

that the field B is real providing a similar condition also holds for 
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the toroidal components. The dynamo expansions of Bullard and Gellman 

are in terms of sines and cosines and the two forms are of course 
m c m s 

equivalent. For example, for two real poloidal harmonic's S ' , S ' 
n n 

of the Bullard-Gellman dynamo, the related complex radial functions are 

where the superscripts c,s refer to cosine and sine functions. For 

the dynamo theory the radial functions of the velocity field are real 

to represent actual flows in the outer core. Because the free oscillations 

are usually formulated from complex harmonics the magnetic fields for 

non-zero order are also complex. 

It would be impractical to investigate a l l possible interactions 

in order to solve (19) and (20) completely. Instead the main magnetic 

field B Q will be assumed to consist of a single component, the axial 

quadrupole toroidal field T°.. Arguments have been forwarded in the 

Introduction as to why this component is expected to have appreciable 

strength in the outer core. Restriction to one component considerably 

simplifies the right hand sides of (19) and (20) as only the sums over 

n and m have to be considered. An interaction diagram can be constructed 

similar to that of Gibson and Roberts (1969, p.584) but with a fundamental 

difference. Instead of specifying a velocity field and examining magnetic 

field interactions, the main field is specified and the magnetoelastic 

interactions are evaluated. The diagram for T2 is shown in Fig.4. The 

presence of an s or t in. the diagram indicates a spheroidal oscillation 

of degree n and order m producing an induced magnetic field of poloidal 
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Fig. 4 . Interactions with the Toroidal Quadrupole Magnetic Field. 
The induced f i e l d is shown s for poloidal, t for toroidal. 



or toroidal type with an k harmonic. If a square is blank it means 

either K or L is zero by one or more of the selection rules. Harmonics 

up to 4,4 only are shown although the diagram continues indefinitely. 

Writing the radial function of T ° by the capital letter T to 

distinguish i t from the toroidal perturbation field, equations 

(19) and (20) then reduce to 

£ ( r S
k ) -2(iil)(rs>) - lopr r s / J(0 

dt* 1 <x \ (21) 
i ! ( r t / ) - 4 1 ^ ( * t / ) - - . * u ) ^ f l r r t / o »

 f 

where, for s = 2, p = 0, 

J

 4ffAU-»l) C
 2

 dr 

4 l T m + 0 [ » < ^ 0 -M**) - 6J j K £# rt| a 

In (21) the time dependence of the perturbation fields has been 
iu>b 

recognised as e and in (22) the Gaunt and Elasser integrals are 

given their indicial dependence to illustrate the formalism. 

3.4 Solution in the Outer Core 

Equations (21) now have to be solved in the outer core. At the 

inner-core boundary r is of the order of 10̂ m and for low degree spheroida 

modes CO is typically 10 ̂  rad. sec"^ The degree t of the induced field 

is likely to be a low integer, say typically $,= 5, then 

0 << |i'tOjA0er| ? to about IO - 8. 

(22) 



The equations are thus well approximated by 

dr l \ (23) 

i
l

 O t / ) - 3
L v

> 

where ot = loOp̂ o*. i t is convenient at this point to introduce the 

electromagnetic skin depth S (Landau and Lifshitz, p.195) and its 

relation to C K , 

A graph of S against period T of the field b_, or y_, is shown 

in Fig.5 for the periods involved in the present discussion. 

Independent solutions to the homogeneous form of (23) are 

e , e* for both fS^ and f ^ . Particular integrals can be found from 

these solutions and their Wronskian by a well known method (e.g. Morse 

and Feshbach, p.528). The solutions of (23), valid for < 5> CL are 

obtained in the usual way? 

a 

-e 'jVW^j ^ (24, 

where *<co 

(3 •= focCr -O , iS'= i'* (<v~a). 

The constants in (24) can be found by matching the solutions at 

the boundaries r = a, r = b to solutions determined for the inner core 

and the mantle." At the inner-core boundary a choice must be made on the 

induction probable in the inner core. Using equation (7) the longest 

r s / = C e 4 De - { e J e. 
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In T (SECS) 

Electromagnetic Skin Depths for the Core. 



decay time for a static field in the outer core is of the order of 

15000 yrs and for the inner core is of the order of 2000 yrs- However 

the main dipole field is at present decreasing, has polarity reversals 

which occur in less than 10^ yrs, and can be characterised by variations 

of the order of 10^ yrs (Kaula, 1968, p.133). Any harmonic component of 

these variations with a period of about 10^ yrs will penetrate through 

the entire inner core (Fig.5). This assumes the inner core has the 

same conductivity as the outer core. 

There is thus some evidence for a leakage of the field into the 

inner core, but the nature of the field is uncertain because the temporal 

variations in the outer core are not well analysed at the present time. 

Subsequently the inner core field will be ignored and the equations (21) 

are solved as a homogeneous system with f(r) = g(r) = 0. 

Letting OC r o t / * , y= r"Ŝ  the first equation of the pair 

(21) is a Bessel equation 

with a solution u s A x j (x), regular at the origin. A prime denotes 

radial differentiation and i' (x) is a spherical Bessel function. The 

solutions are to be evaluated at r = a, so X ~>7 ) . and for x large, 

(Abramowitz and Stegun, 1965, p.364). Near r = a, & 

and thus the solutions are 

(25) 



The boundary conditions for continuity in normal and transverse 

fi e l d s (Section 2.5) imply, using (17), 

Continuity in , L (
r

^
k

) a n d tji ? (*"-<K) (
2
6a) 

Assuming an insulating mantle, the radial component of j : - (Vxb) 

— / < • * © 

must vanish, thus 

t / = 0
 ?
 (

<r

=b) (26b) 

The poloidal f i e l d within the mantle is then obtained from (21) , and i t 

satisfies 

with solution p. i , 

where (d) is the f i e l d value at the Earth's surface. The poloidal 

f i e l d then satisfies 

d (raj
4

) 4 1st - o , C***l>) . (26c) 
fir

 ;  

There are now five boundary conditions (26a) - (26c) for the six 

constants in (24) and (25). The sixth condition is supplied by the 

requirement that the tangential electric f i e l d i s continuous at r = a. 

Using (4) and (5) 

and for the perturbation part of E_ this implies continuity in the 

tangential part of _ ^ f
 V
 )< b ) - * §

0
 ) . 

If \r, is continuous , then 

Continuity in i ( f t f c ) ? ( r =. A) (26d) 

supplies the last required condition. A discontinuity in v_̂  at the 

inner core boundary leads to a boundary toroidal f i e l d generated by shear 



(Smylie, 1965, p.175). This will not be treated in the present work. 

The boundary conditions (26a) - (26d) serve to determine the 

six constants A - F in (24) and (25). Omitting the algebra, the 

resulting expressions for the perturbation fields are 

- j ) - , * U . e j W d r - j a e 3 W * J 

In each of the integrals in these equations, the exponential becomes 

large at one end of the integration. The asymptotic evaluations can be 

easily obtained, almost by inspection (Jeffreys and Jeffreys, 1956, p.503), 

J<J, J l ' « 

Writing 

e - €- e 

for r"-ft. > ft-h where n is a small integer, 



With these approximations the perturbation fields are 

7 

(27) 

applicable everyshere in the outer core except for the boundary layer 

near r = a (Region III, Fig.6). The solutions f a l l naturally into two 

parts, the first is for Region I (Fig.6) and the exponential is for 

Region II. Equations (27) indicate that rs^ continues on into the 

mantle across r = b, while rt^ drops to zero within the boundary 

layer. 



Fig. 6 . Induced Field Regions in the Outer Core. 
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SECTION 4  

ENERGY CONSIDERATIONS 

The perturbation magnetic fields derived in the last section are 

generated by the kinetic energy of the free oscillations. To formulate 

exactly how the transfer of energy takes place, the energy balance is 

considered. The role of viscosity is treated as an integral part of the 

discussion. 

4.1 Energy Equations 

If the Earth were perfectly elastic there would be no damping of 

the free oscillations. The total energy of each harmonic is then divided 

equally between kinetic and potential energies, the potential energy 

being the sum of elastic strain energy and gravitational energy (Kovach 

and Anderson, 1967, p. 2162). It is useful to remember that over a cycle 

of an oscillation, velocity dependent forces result in dissipation of 

energy, whereas amplitude dependent forces do not. 

It is clear that one simple model cannot describe the behaviour 

of the Earth under a l l conditions within its interior (Jeffreys, pp. 6-13). 

The mantle behaves as a nearly perfectly elastic medium and the outer 

core has the properties of a fluid, notably low (or zero) rigidity. To 

describe the departures from elastic behaviour, the Kelvin-Voigt model 

(Bland, p. 2) is taken for the outer core because i t represents closely 

the frequency dependence of the attenuation of elastic waves in liquids 

(Knopoff, 1964, p. 635). The total stress field is taken as simply the sum 

of the elastic stress, which depends linearly on the strain, and the 

viscous stress which depends linearly on the strain rate. In this model, 

when the medium is stressed, there is a delay in the attainment of the 

strain that would occur in a purely elastic medium. The subsequent loss 

in elastic energy can be accounted for by the usual expression for 

dissipation in a viscous medium (Lamb,1932, p. 579). 



Consider now, within the core, a small element of material of 

volume JV, bounded by a surface &S and containing an internal heat energy 

U per unit mass. With reference to Section 3.2 for the interpretation 

of quantities, the rate at which body forces do work on the element is 

and the rate at which surface stresses do work is 

these forms are obtained by following Love (1944, pp. 93-94). Adding 

these two expressions, the total rate at which work is done on the 

element per unit time is 

fV. p -v T . djr, + T,*j to (28) 
J o a t J $Xj J d o ­

using the equations of motion (2). The equation of continuity, or mass 

conservation, requires that 

so neglecting the products of quantities small with the velocity, 

This is the rate of change of kinetic energy density. 

To interpret the second term of (28), the strain energy function 

W (Love, 1944, p. 94) is introduced and defined by 

(30) 

where is the strain tensor and C ,'• the strain deviator (Bullen, 

p. 32). The terms on the right hand side are the compressional and shear 

elastic energy densities. Denoting a time averaged quantity, by an 

overbar, W The tr.ird term in (28) is the rate of viscous 



dissipation per unit volume (Landau and Lifshitz, 1960, p.214). 

Combining the above relations (2), (28), (29) and (30) 

- - ^ ^ ^ - ^ ' l / h ^ ^ - ^ - r ^
 ̂ {3i) 

The rate of change of magnetic energy density can be written in a similar 

form (Roberts, p. 18), 

i / J - aM = -JL v. (£ * 8 ) ->r. f j x g j - I T
1

 C32) 

where the terms on the right are respectively, the outflow of energy 

from <W given by the Poynting vector, the rate at which work is done 

by the magnetic volume force against the deformation and the energy lost 

by ohmic dissipation. Elastic deformations are assumed adiabatic (Bullen, 

p. 74), so that heat conduction between the element and its surroundings 

can be ignored. The energy balance is maintained by the rate of increase 

of internal energy 

expressing the First Law of Thermodynamics. 

Equations (31) - (33) are now added and integrated throughout 

a volume V to obtain the change in total energy per unit time. 

+J(T
j +
 x

;j
) IT, n, A5 - j X (| x8). n dS

 C 3 4 ) 

In (34) Gauss' theorem has been used to get the surface integrals, n 

are components of the normal vector n. and S is the surface bounding V. 

The terms on the right hand side of (34) are interpreted as follows. 

The first term is the gravitational energy passing into V, the second 



term is the work done by the elastic and viscous stresses over the 

boundary S and the last term is the electromagnetic energy flowing out 

of V. 

If V is now taken to be the core, S is the core-mantle boundary. 

It can be shown that, because the mantle is considered an insulator, the 

Poynting vector vanishes just within the mantle. The mantle also has 

a high rigidity by comparison with the outer core and this indicates 

there is negligible transfer of energy across S by the viscous stresses. 

The energy within the core is thus maintained by the flow of gravitational 

and elastic energy. For plane xvave motion, the elastic energy flow is 

called the intensity of the wave (Morse and Feshbach, p. 151). Within 

the core the elastic and gravitational energy is stored as the potential 

energy of the displacement field. The internal heat energy of the core 

contains contributions from viscous and ohmic dissipation which are 

positive definite and therefore result in a net loss of energy per cycle. 

Finally there is a conservation of the energy transferred between the 

displacement field and the magnetic field through the action of the 

Lorentz force. 

Writing E, and E for the kinetic energy and the magnetic energy 
K. tn. 

within the volume V, 

and 

t r , - J 2)4. it J <r ( ' 

where is the rate of change of energy due to viscous dissipation. 
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In (35) v Is taken as the free oscillation velocity and the two equations 

of (36) can be linearised by using (8a) in order to assess the 

contributions of the main and pertubation magnetic fields. Consider the 

magnetic energy arising from this linearisation, 

The first term on the right hand side gives the magnetic energy stored 

in the main field and the second term is linear in b_ and so averages to 

zero over a cycle. The last term is the magnetic energy stored in the 

perturbation field, and is denoted subsequently by e . The ohmic r m 
dissipation rate reduces in the same way, 

where the first term is the dissipation in the main field and the second 

term averages to zero over a cycle. For the perturbation field 

4fUo 

and 

<ru> J ~~ m
 „ • - - OS) 

where a dot signifies time differentiation. Also averaged over a cycle, 

the kinetic energy and viscous dissipation are respectively, 

r , » w x j j * , . **cJV
 C 3 9 ) 4 J

 J

 ~ - 1 

and 
I - i f & dV

 t
40) 



Equations (38) - (40) are the basis for assessing the attenuation of the 

free oscillations. 

4.2 Ohmic Dissipation 

Consider first the kinetic energy. For spheroidal oscillations 

the displacement u. is given by the vector components (18) and these 

are substituted into (39) . The angular part of the volume integral can 

be evaluated using the spheroidal vector orthogonality properties 

(Smylie and Mansinha, 1971, p. 338). For a particular harmonic the time 

averaged kinetic energy in the outer core is 

C41) 

The quantities U and V denote the radial and transverse displacements 

for a mode where they are taken as 

In terms of the magnetic field, equation (38) for the ohmic dissipation 

per cycle is 

/u
0
ViO J 

Because the curl of a poloidal vector is a toroidal vector and vice-

versa, the angular part of this integral follows from the orthogonality 

properties of these vectors on a sphere (Smylie, 1965, p. 172). 

The energy dissipated per cycle by the perturbation field is 

Y
a
 X

 ^ ^ Tr'  1 V 1 1 J C42) 



where 

Because only self interactions are involved, i t is clear that a l l pert­

urbation fields dissipate energy. 

In a similar way, the magnetic energy averaged over a cycle 

becomes 

^ M 2 & 0 '-<-
k

'! 

(43) 

Expressions (42) and (43) are to be evaluated in the next section for 

particular interactions. 

4.3 Viscous Dissipation 

The stress-strain rate relations for viscous deformation can be 

written 

where 

It is easily shown that 

which can be compared directly v/ith the strain energy function W, 
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equation (30). Using (40) the viscous dissipation can ba expressed as 

• . 

where the time dependence of and £ j j i s that of CP£ . For 

comparison the elastic energy stored per cycle i s 

showing the close equivalence between Ey» and 

If the elastic and viscous parameters are constant within a given 

volume V, the ratio of the rate of viscous dissipation to elastic strain 

energy can be expressed in terms of these constants and the angular 

frequency only. To i l l u s t r a t e this property the following table i s 

presented, quantities being averaged over a cycle. 

Table 2 

Integrals for Viscous Dissipation  

and Elastic Energy 

Deformation Viscous Dissipation 

(joules) 
Elastic Strain 
Energy (joules) 

Ratio 

Compressional 

Shear 2 ^ ; ^ 

K 

4fTtJ \ 

~7T 

Explicit expressions for the elastic strain energy are given by 

Kovach and Anderson (1967 , p. 2157). The f i n a l form for the viscous 



dissipation can be written down by the analogy given above 

(44) 

where a prime denotes radial differentiation. Higgins and Kopal (1968) 

have derived the dissipation rate for shear viscosity but their final 

expression contains a typographical error. 

4.4 Q 

To measure the energy dissipation per cycle of an oscillation, 

a specific dissipation function Q is introduced 

where E is the peak energy and 5 _ the dissipation rate (Knopoff, 1964, 

dt 

p. 626). The particular energy to which E refers depends on the damping 

mechanism. For instance, in the mantle the damping is due to anelastic 

effects and so E refers to the strain energy stored per cycle (e.g. 

Anderson and Archambeau, 1964). Ohmic dissipation can be considered as 

an imperfection in inertia and thus E must strictly be taken as the 

kinetic energy. In practice, because energy dissipation is here only 

expected to be a small effect, i t makes l i t t l e difference which inter­

pretation is placed on E. 

One advantage of using Q as opposed to Q is that for a layered 
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system with energy per layer, Q ^ for a l l the layers is a linear 

combination of Q_^for each layer, 
-I 

i 

(Jackson and Anderson, 1970, p. 4). For a two-layered Earth, a core 

(c) and mantle (m), 
- 1 

(45) 

where E is the total energy. To observe a for the core from an observed 

Q for a mode, suppose a change of 10% can be detected seismically. i.e. 

A Q ^ 1 0 " * ' . Then from the previous equation, this implies 

If the mantle has an infinite Q or there is no kinetic energy in the 
m 

mantle, the observed Q will be the Qc for the core. In this case 

d^c (46) 
db 

so that the kinetic energy integral given by (41) can be extended over 

the whole Earth, for a Q due to dissipation only in the core. Following 

Knopoff (1964, p. 626), the Q defined by (46) can be related to a damping 

factor, for an oscillation with displacement u™ and angular frequency 

ui by 
n 

(47) 
where 

is applicable for the attenuation of a standing wave. 



In Table 2, the ratio of viscous dissipation to elastic strain 

energy is given for medium uniform in the viscous and elastic constants. 

Regarding viscous dissipation as an imperfection in elasticity, the 

ratio of energy lost to energy stored defines a Q. For shear the Q is 

and this agrees with the expression given by Knopoff (1964, p. 635) for 

acoustic loss in Kelvin-Voigt solid. 



SECTION 5 

PARTICULAR INTERACTIONS 

The discussion in the previous sections can now be applied to 

calculate the Q of an oscillation due to magnetic and viscous damping. 

The toroidal quadrupole field component has been chosen as probably the 

strongest field in the core, and therefore of greatest geophysical 

interest. Table 9 in Appendix A indicates there are no resonance inter­

actions to be considered and so the choice of a velocity field can be 

made on dynamical grounds. 

5.1. Radial Oscillations 

It is well known (Ness et a l . , 1961) that the fundamental radial 

oscillation has a high Q, which is explained by the small amount of shear 

energy, relative to compressional energy, in the mantle (Kovach and 

Anderson, 1964, p.2162). The radial overtones also have high Q's 

(Dratler et a l . , 1971), and i t can be seen from Fig.7 that a l l these 

oscillations have appreciable energy within the core. It is therefore 

natural to treat first the radial oscillations; they also have no 

transverse displacement and this simplifies the mathematical treatment. 

From the interaction diagram (Fig 4), the only field induced by 

the oscillations S
0
 is the. toroidal quadrupole t° . Defining T(r) as the 

radial function of the harmonic T° and U(r) as the radial displacement 

of the eth overtone of a radial oscillation, 

o.0r) - ; u > f * r ( r U r y > ( 4 8 ) 
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Fig. 7 . Amplitudes of the Radial Oscillations in the Earth. 



In this and subsequent equations a prime denotes a radial differentiation. 

The radial function for the induced field becomes 

rt°
t
 « - i ( r U T ) ' 4 i (rVl) * ( 4 9 ) 

using (27) and (48). The subscript b indicates the term (rUT) is 

to be evaluated at r = b. Similarly 

and so 

.CosLc=±) 4 (rVT)
h e

 j
 (5Q) 

The relative strengths of the induced and main magnetic fields 

can be estimated using (49). For a uniform field, T(r) is constant, 

Ifcal , U + U' 

V 1 C51) 

The perturbation expansion is thus invalid near the origin r = 0, and 

wherever the gradient of the displacement field is of order unity. 

Neither of these conditions hold in the outer core, the first does not 

because simply r a. The gradient of the radial displacement is 

generally of order 10 (Fig.7) and because the radial displacement is 

required to be continuous across r = a,b, large gradients are unlikely to 

occur at the boundaries. This limitation on the linearisation is similar 

to that described by Lilley and Smylie (1968, p.6529). 



The energy in the perturbation magnetic field, averaged over a 

cycle, is obtained from (43) 

b 

^ 5ju0 J a
 fca C* * ' <52> 

and can be computed directly using (50). Contributions from the boundary 

layer, (Region II, Fig.6) can be obtained analytically. The exponential 

terms in (50) decrease rapidly to zero within a few skin depths of r = b. 

Providing the term (rUT) does not grow exponentially within the boundary 

layer, and this is arranged by the choice of T, the term can be considered 

constant in the boundary layer. The contributions to (52) from the 

boundary layer are then 

where 

3 - (tZ& and a - lb" -b) 

On integration this contribution becomes 

and the magnetic energy is now 

(53) 

For the main field the magnetic energy density is @* /«2jW which gives 

for T° alone, 



The total energy dissipated per cycle is obtained from (42)f 

where (50) is appropriate for the first term in the integrand. The 

second term can be readily reduced by substituting with (49) and the 

rate of ohmic dissipation then follows, 

+ 2(rVT)' f^T^f l + Vl)'ccS\ + {«VT)"(u>si 

k j L r2 

ic 7 

The approximations 

are found to be valid near r = b and the rate of ohmic dissipation per 

cycle reduces to 

(55) 

The kinetic energy per cycle is simply 

(56) 

Following the discussion in Section 4.4, the limits to the last integral 

can be taken as 0 and d if the dissipation within the core is considered 

as the only energy loss in the Earth. 



The effective Q associated with the magnetic damping is thus, 

from (46), ^ 

• « (4TI E H ) " im , (57) 

where the peak kinetic energy is used in accordance with the definition 

of Knopoff (1964, p.626). 

Equations (53) to (57) are now used to compute the various 

quantities for the interaction. It remains to specify the radial 

functions U, T within the regions of the integrations. 

Consider first the radial displacement U. In Fig.7 the 

amplitude of the radial displacement is plotted versus radius for the 

purely radial mode and the first four overtones. A recent publication 

on the modes of the Alaskan earthquake (Dziewonski and Gilbert, 1972) 

does not l i s t observed eigenperiods above 4S Q for the radial 

oscillations (their Table 7). The amplitudes of U in Fig.7 

were established using a recent Earth model supplied by Jordan and Anderson 

(1972). Some details of the computations for the displacement field are 

to be found in Appendix B. As mentioned in the Introduction, the 

agreement between theoretical and observed eigenperiods gives considerable 

confidence in the broad properties of the Earth models currently in use. 

For the present purpose the choice of model is not critical because 

amplitudes are not very sentitive to minor changes in Earth structure. 

Choice of a radial function for the toroidal magnetic field is 

open to some speculation. Only approximate indications of the strength 

of T ° have been obtained by dynamo theory. Following Bullard and 

Gellman (1954, p. 275) the maximum field strength B is taken as 480 



gauss. To cover the simple types of f i e l d , three elementary fuctions are 

used in the computations. The f i r s t f i e l d , called Type A, assumes a 

constant value throughout the outer cere. The two functions called Types 

B and C have uniform gradients, and the fourth f i e l d , Type D, is a 

sinusoidal function with a variable number of oscillations in the radial 

direction (given by the index n). These functions are shown in Fig.8 

together with their radial forms and f i r s t and second derivatives. 

In Table 3 the magnetic energy within the core is shoxra for the 

various f i e l d s , computed from equation (54), together with the f i e l d 

and i t s f i r s t two derivatives at the core-mantle boundary. 

Table 3 

Main Magnetic Field Parameters 

Field Type Energy E J

 m 
Field at Core-Mantle 

(joules) Boundary (m.k.s . units) 

T T' T" 

x 10"
4 

x 10"
8 

x 10 

A 1.17 x 10
1 8 

480 0.0 0.0 

B 5.72 x 10
1 7 

480 2.1 0.0 

C 
17 

2.19 x 10 0.0 -2.1 0.0 

D 
(n = 1) 5.61 x 10

1 7 

0.0 -6.6 -.1.4 

Cn = 5) 5.86 x 10
1 7 

0.0 -33.2 15.5 

(n =10) 5.86 x 10
1 7 

0.0 66.4 1629.3 
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FIELD AMPLITUDE IN 
TYPE OUTER CORE 

RADIAL 
FUNCTION 

T(r)° Bm 

T' = O 

T" - O 

T(r)=Bm(r-a)(b-a) 

T' -Bm /(b-a) 

T" * O 

T(r) - Bm (b-r)/(b~a) 

T' =-Bm/(h-a) 

r = O 

T(r)s BmSlnft 

T's n?r Bm cos ft 

T''=-}j^)2BmSin,f 

ft ~ rnr (r-a)/(b~a) 

F i g . 8. Radial Functions for the Toroidal Quadrupole Field. 



5.2 Results for the P^adial Oscillations. 

The results of the computations of Q values are presented in 

Tables 4, 5 and 6. It is immediately clear that the Q's for the 

interactions are so high that the oscillations are virtually 

unattenuated. Observations of these Q's can probably be safely dismissed 

under a l l conditions. .Further evaluation and discussion of the results 

is interesting from a physical, rather than a practical, point of view. 

A comparison of Tables 4 and 5 for the fundamental radial 

oscillation confirms the gradient effect (Lilley and Smylie, 1968). 

From Table 3, field Type A has about twice the energy of Type B and when 

this difference is allowed for, the energy dissipated in the Type B 

field is an order of magnitude larger than that dissipated in the Type A 

field. For the overtones however the gradient effect is not evident, e.g. 

3S Q has a relatively large amount of dissipation for both field types. 

In Fig.7 it can be seen that 3S Q has the steepest gradient at r = b 

in Region II. The damping is thus seen to be dependent on the combinations 

of gradients in both T and U, as expected from the terms appearing in 

equation (55). 

It is also clear that most of the ohmic dissipation takes place 

in Region II where there is a large gradient in the induced field due 

to the requirement of no induction in the mantle. In Table 5, Region I 

dissipation has been excluded because i t is negligible. 

In Table 6, where the field Type D is sinusoidal, again most of 
2 the dissipation occurs in Region II, and i t is proportional to n 



Table 4 

Radial Oscillations in a Uniform Field 

Oscillation Period Kinetic Skin Induced Energy Effective 
(sees) Energy Depth Field Dissipated per Q 

per cycle (m) Energy cycle (joules) 
(joules) per cycle 

(joules) Region I Region II 

oSo 1227.65 2.9 x 10 1 5 32.2 4.4 x 105 0.0085 52.0 7xl0 1 4 

l S o 614.15 1.6 x 10 1 6 22.8 1.9 x IO6 0.035 430.0 14 
5x10 

2 o 398.56 2.3 x 10 1 6 18.3 4.7 x IO6 0.030 200.0 lx l O 1 5 

3 o 305.62 3.6 x 10 1 6 16.1 6.8 x 106 0.088 1000.0 14 
4x10 

/ s 243.64 5.5 x IO 1 6 14.3 1.2 x IO7 0.11 64.0 lx l O 1 6 

4 o lx l O 1 6 

ON 

On 



Table 5 

Radial Oscillations in a Field with a Uniform Gradient 

Oscillation Induced Field 
Energy per cycle 

(joules) 

Energy Dissipated 
per cycle (joules) 

Region II 
Type B Type C 

Effective 
Q 

Type B Type C 

S 1.0 x 105 200.0 49.0 14 
1.8 x 10 

7.6 x io14 

o o 

,S 8.9 x 105 210.0 39.0 14 
9.6 x 10 

5.2 x io15 

1 0 

oS 9.4 x 105 420.0 39.0 6.8 x 10 1 4 7.4 x io15 

2 o 

2.1 x 106 930.0 3.0 14 
4.8 x 10 

1.4 x io17 

3 o 

/S 3.4 x 106 180.0 30.0 15 
3.8 x 10 

2.2 x io16 

4 o 



Table 6 

Radial Oscillations in a Sinusoidal Field 

Oscillation n Energy per 
cycle inlnduced 
Field(joules) 

Energy Dissipated per 
cycle(joules) 

Region I Region II 

Effective 
Q 

1 9.3xl05 0.03 4.8xl02 13 
2.6x10 

•o
s

o 5 2.2xlO? 7.3 1.2xl04 12 
3.0x10 

10 . ... . 8.7xlO? 110.0 4.8xl04 2.6X1011 

1 6.6xl06 0.11 3.9xl02 14 
5.2x10 

i
s

o 5 1.3x108 21.0 9.7x103 13 
2.0x10 

10 5.1xl08 320.0 3.9xl04 12 
5.2x10 

1 3.9xl06 0.09 3.8xl02 14 
7.4x10 

2S0 5 4.6xl07 6.1 9.6xl03 13 
3.0x10 

10 1.8xl08 79.0 3.8xl04 12 
7.4x10 

1 5.5xl06 0.11 32.0 1.4xlOib 

3S0 5 5.0xl07 5.4 8.0xl02 14 
5.6x10 

10 1.9xl08 66.0 3.2x103 
14 

1.4x10 

1 6.5xl06 0.15 3.0xl02 2.4xl015 

4S0 5 4.0xl07 4.4 7.5xl03 9.2xl013 

10 1.4xl08 43.0 3.0x104 2.4xl0 1 3 
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This can easily be verified by substituting the radial function 

into (55). Thus Q is proportional to n , a clear indication of the 

gradient effect. It should be noticed however that for a sinusoidal 

field, the energy dissipated in Region I increases faster than n and 

for n greater than about 104, Region I becomes the dominant region 

for dissipation. This would be a rough field indeed, with a peak-to-

peak amplitude of nearly 10 gauss, and a wavelength about 200m. 

If a comparison is to be made between the fields here and the field 

functions resulting from dynamo theory, the choice of a sinusoidal 

field, with n = 1 is probably the closest (Bullard and Gellman, 1954, 

p.246). A typical Q for the radial modes can therefore be taken as 

10"^ for this type of field. 

5.3 Non-Radial Oscillations 

The discussion of Section 5.1 can be easily extended to the 

case of non-radial oscillations. With the notation used in Appendix A, 

equations (22) can be written. 

where, for the non-radial oscillations, the transverse displacement 

is added to the term on the right hand side of (48). The previous theory 

can then be extended by substituting 



in place of 

in the expressions (53) and (55). According to Table 9 (Appendix A), 

a, is zero for a l l the fundamental oscillations and so only toroidal 

fields will be induced. 

Several oscillations are chosen as representative motions in the 

outer core. Fig.9 shows a plot of the amplitudes with depth for the 

radial displacements of several overtones. The fundamental oscillations 

S , S , and S have been shown in Fig.3. The overtones of the 
O 2 ' O 5 ' 0 10 6 

spheroidal oscillations S2 are seen to have appreciable energy within 

the inner core, while the amplitudes of the overtones 2S 2 and S 

are large at the core-mantle boundary. Such oscillations, with most 

of their energy at the core-mantle interface, are referred to as Stoneley 

waves (e.g. Alsop, 1963, pp.498-499). 

In Table 7 results are presented for the ohmic dissipation of 

these modes with the energy dissipated given mainly for Region II as 

before. The energy dissipated is shown for each of the induced fields 

produced by the interactions in Fig.4 and Table 9 (Appendix A). To 

obtain the Q for the mode these energies are then summed to find the 

total dissipation. 

5.4 Viscous Damping 

Expression (44) gives the energy dissipated as viscous heating 

for an oscillation in the outer core. It is straightforward to program 
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Table 7 

Non-Radial Oscillations in a Sinusoidal Field (n=l) 

Oscillation Period Kinetic Energy Dissipated per cycle Effective 
(sees) Energy per 

cycle(joules) 
for each Induced Field(joules) Q 

t° 
14 

1.9x10 

C4 13 
1.5x10 0S2 3232.35 14 

1.9x10 36.9 119.0 13 
1.5x10 

1S2 1469.34 15 
5.7x10 33.7 109.0 14 

5.0x10 

2S2 904.32 2.7xl015 1.56 5.06 5.1xl0 1 5 

o 
t- r° t3 • t5 

0S5 1190.64 14 
5.2x10 28.7 0.81 14 

2.2x10 

1S5 729.40 14 
6.6x10 5.53 0.16 15 

1.5x10 

2S5 660.06 6.1xl016 584 16.5 14 
1.2x10 

o 
ho 

o 
fc12 

0S10 580.20 14 
3.8x10 0.28 2.5xl0~3 0.24 9.6xl0 1 5 

1S10 466.09 2.4xl015 21.2 0.18 17.7 7.7xl0 1 4 

2S10 416.03 14 
9.2x10 0.45 3.9xlO~4 0.37 1.4xl0 1 6 



this expression and insert the estimates for the viscous coefficients 

assumed for the core. Gans' (1972) estimate for
-

) is used (Table 1) 

but there is no available estimate for %
 s o

 It arbitrarily taken equal 

to ^ . To calculate the Q for the dissipation only shear energy is used. 

The evaluations are given separately for the contributions from the bulk 

and shear viscosities and are shown in Table 8, for those oscillations 

considered for magnetic dissipation. 

As expected, those oscillations with large amplitudes at the 

core-mantle boundary have more shear dissipation than the other modes. 

This does not necessarily lead to a lower Q for these modes because Q 

is amplitude independent (the energy of the mode also depends on 

amplitude). It can be seen that the shear dissipation for the fundamental 

radial mode
 Q
S

0
 is small compared to the other oscillations. This accords 

with the case of elastic strain energy in the mantle (Kovach and Anderson, 

1967), as i t should since the basic integral is the same (Table 2). 

Aside from, the radial oscillation a typical Q for shear viscous dissipation 

can be taken as 10''""', of the same order of magnitude as the magnetic Q. 



Table 8 

Viscous Damping 

Oscillation s V n 

Degree Overtone 

Energy Dissipated 
per cycle (joules) 
Shear Bulk 

Effective Q 
for Shear 
Dissipation 

Q. 

0 
1 
2 
3 
4 

4.0 x 10 
9.6 
22.9 
48.7 
82.3 

0.95 
7.2 
16.1 
25.5 
55.7 

9.2 x 1 0 ^ 
2.1 x 1 0 ^ ° 
1.2 x 1 0 ^ 
9.2 x 10^1 
8.4 x 10 4 

2 
0 
1 
2 

0.41 
1.78 
2.64 

2.8 x IO-2, 
4.9 x 10 ~ 

0.85 

5.8 x 1 0 ^ 
4.0 x 10 b 

5 
0 
1 
2 

1.53 
0.76 

100.64 

2.5 x IO - 3 

2.0 x 10 
4.8 

4.3 x IO1.5 

1.1 x 107)? 
7.6 x 10 ^ 

10. 
0 
1 

' 2 

0.24 
134.55 

0.70 

2.8 x 10" 3 

3 - ° - 2 1.4 x 10 

2.0 x 1 0 ^ 
2.3 x l o r * 
1.7 x 10 1 6 



SECTION 6 

SUMMARY AND CONCLUSIONS 

The outcome of the discussion in the previous Section is that 

the free oscillations of the Earth are negligibly attenuated by either 

the magnetic f i e l d or the f l u i d viscosity within the core. It remains 

now to give a brief summary of the results in comparison with former 

investigations, to indicate the direct geophysical consequences, and 

to offer some speculation on possible implications. 

6.1 Comparison with Previous Results 

As reviewed in the Introduction, Knopoff (1955) calculated that 

magnetoelastic interactions were unimportant within the Earth's f l u i d 

core. The work of Kraut (1965) and the refinements of L i l l e y and Smylie 

(1968) did not significantly alter this conclusion. The suggestion of 

Lilley- (19.67) that the gradient effect might lead to enhanced damping 

of standing elastic waves has now been followed up with the refined 

analysis presented in this thesis. 

The Q's obtained by Kraut and L i l l e y and Smylie were of the 

order of IO"*"
7

. The Q's determined from the present study are variable, 

depending, as:expected, on the oscillation chosen and the radial 

function of the toroidal magnetic f i e l d . For a f i e l d suggested by the 

Bullard-Gellman dynamo model, that is a half-sinusoid within the outer 

13 

core, the lowest Q obtained was 10 for the fundamental spheroidal 

oscillation
 0
S

2
 . At i t s strongest the interaction is thus a few orders 

of magnitude larger than previously obtained. The Q can be arbitrarily 

lowered by making the radial function rougher, but the j u s t i f i c a t i o n 

is minimal, and there does not appear to be a further mechanism for 



lowering the Q values obtained here. 

The reason for the difference between the Q's here and those 

obtained before l i e s in the rigorous treatment of the geometry of the 

fields and their gradients. However there can be no hope of measuring 

such high Q's seismically because of the domination of the mantle 

2 3 

dissipation, evident by the observed Q's of 10 to 10 . The speculation 

of L i l l e y i s seen to be unsubstantiated, indicating, as he himself 

recognised, the caution necessary in interpreting order-of-magnitude 

estimates. 

Due to the lowering of the viscosity of the outer core to the value 

suggested by Gans (19 72), the role of viscous dissipation is also 

insignificant. For the
 0
S

2
 o s c i l l a t i o n the Q due to shear viscosity is 

16 

now of the order of 10 , even higher than the magnetic Q. This does 

not allow for the effect of the second coefficient, or bulk, viscosity. 

6.2 Geophysical Implications 

Several comments can be made concerning the direct implications 

of the theory. It w i l l be assumed in the following that a 'normal' 

3 
free oscillation refers to the mode

 Q
S

2
 which has a period of 3 x 10 

13 

sees, and a Q of 10 , obtained from ohmic dissipation in the boundary 

layer (Region II) of a magnetic f i e l d of Type D with n = 1 (Fig. 8). 

Using equation (47), the damping time of such an oscillation in the 

core can be written 

U) (58 

8 
and i s equal to about 10 years. 



The dependence of the kinetic energy and ohmic dissipation on 

the pertinent parameters in the core, can be obtained by considering 

equations (55) to (57). Denoting dependency by the symbol^, from (55), 

and for Region I 

(M
0

a

cruJ<c
 ( 5 9 ) 

where U and B are typical values of oscillation amplitude and magnetic 

f i e l d strength, and r ^ is a representative core radius. Similarly from 

thus using (57), (59) and (60) 

W - l ^ — 7—~ 

6 
For a Q in the boundary layer 

^0 CT to & 

(60) 

(61) 

Q-tr ~ . (62) 

These expressions for Q, (61) and (62) , show a strong dependency 

on angular frequency such that, as the frequency is lowered, the 

dissipation in the. bulk of the core becomes more important. The skin 

depth also increases. Considering the boundary layer dissipation, the 

relation of Q with period is 

Period 
Q
z
 ~ Period , 

(63) 



so that for a displacement f i e l d
 Q
S

2
 at the period of the Chandler 

3 
Wobble fo-r example, the Q is about 10 . This is not directly applicable 

to the actual Chandler Wobble because at such a long period the 

displacement f i e l d is not expected to have the character of a free 

o s c i l l a t i o n . 

The results so far have been discussed for their negative aspect, 

that i s the unlikely use of the damping in determining the structure of 

the magnetic f i e l d within the core. However interesting implications can 

be suggested in connection with the behaviour of the interaction at 

periods longer than the free modes and their overtones . 

It has long been known that free oscillations can exist at 

longer periods than the fundamental for each degree of the harmonic 

expansion of the displacement f i e l d (Alterman et a l . , 1959). The 

presence of these oscillations depends on the density distribution within 

the core and Alterman et a l . found the oscillations for only one of 

their t r i a l Earth models, Bullen B. These oscillations have most of their 

energy in the core, and so by the previous reasoning might be expected to 

be undamped by magnetoelastic or viscous interactions. With damping times 

for two oscillations given by the ratio 

obtained from (58) and (63), the damping time of a core oscillation might 

be about 10
 7

 years i f there is no energy dissipation in the mantle. Is is 

difficult', as pointed out by Alterman et a l . , to understand how these 

core modes can be excited by a source in the mantle because of the very 

fact which makes them interesting here, namely their being confined to the 

core. 
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At periods corresponding to the bodily tides of the Earth, that 

is at periods at multiples of 12 hours, the Earth responds in a second 

degree forced oscillation. The theory of the oscillations of a real Earth 

model at such frequencies is not as straightforward as for the normal free 

modes because the Earth's diumal rotation might be expected to be 

important. Also, in the static limit (when the frequency is allowed to be 

zero), the behaviour of the liquid core becomes quite different from the 

dynamical case. As Smylie and Mansinha (19 71) have shown, the system of 

equations (equation (Bl), Appendix B) degenerates to a second order system 

with the motion determined entirely by gravitational forces. That i s , the 

core responds passively to the gravitational perturbations and the elastic 

stresses are no longer important. 

Pekeris and Accad (1972) have discussed the behaviour of the 

liquid core at tidal frequencies, but there is some doubt as to the 

correctness of their asymptotic theory in the manner of letting the 

angular frequency go to zero (Smylie, personal communication). The nature 

of the oscillations in the core at these frequencies is at the present 

stage unclear. 

The damping of these oscillations can however be inferred in a 

cautious manner from (63) and (64) without knowing precisely the 

displacements in the core, at least for an order of magnitude estimate. 

At periods of 24 hours the magnetic Q is found to be of the order of 

9 5 

10 and the damping time is about 10 years. These oscillations will then 

also be considerably underdamped and may be expected to persist as 

long as the longest temporal variations of the geomagnetic field. 



Such a coincidence of time scales is in a l l probability fortuitous, 

and could be dismissed entirely but for the following speculation. 

It has already been mentioned that the arguments of Higgins and 

Kennedy (19 71) have raised serious doubts as to the existence of the large 

scale convection of the core required for the conventional dynamo theory. 

The recent emphasis on turbulent induction processes (Moffatt, 19 72) and 

the development of models with a cellular flow in the core (Gubbins, 19 72) 

has indicated that alternative mechanisms are possible. A suitable energy 

source has yet to be established. 

As Moffatt indicated, the requirements on the velocity f i e l d are 

that i t should have no mean flow and that the motion lack reflexional 

symmetry. The time scale of the fluctuations also has to be long compared 

to the diurnal rotation, at periods of a month or more (Moffatt, 19 72, p. 

398). If the core does respond to oscillations of such long period, and 

this w i l l depend on the adiabaticity, or degree of s t a b i l i t y (Pekeris and 

Accad, 1972), the associated velocity fields may well satisfy the condition 

noted above. 

The results of the present work then ensure that the damping of 

such oscillations is only appreciable over geologic times, which may be 

an important contribution to future studies of the behaviour of the core 

of the Earth. 
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APPENDIX A 

THE GAUNT AND ELSASSER INTEGRALS 

In section 3.2 tv/o integrals K L are introduced which are the 

product of three angular functions. They are defined by 

K . c * J M i K *s * s**9dBdf 
3 -'D 

following Bullard and Gellman (1954, p.224). A l l the indices in these 

expressions are positive definite and the associated Legendre functions 

have been defined according to Hobson's normalisation. The selection 

rules, Section 3.3, follow from the behaviour of these integrals for 

various combinations of the indices. From the azimuthal parts of the 

integrals, 2tT 

C 
O 

unless -k+^-r p a. 0 t when this integral has the value 2tT : this i s 

the f i r s t selection rule. The other rules follow from a more detailed 

examination of the properties of the associated Legendre functions (e.g., 

Infeld and Hull, 1951, pp.52-54). 

As noted in Section 3.3, the properties of K L are used to establish 

the fact that only a f i n i t e number of interactions contribute to a 

particular induced f i e l d . Because this is an important constraint on the 

allowed interactions producing a self-inducing magnetic f i e l d , i t is not 

surprising to find K L discussed at some length in dynamo theory 



(e.g., Bullard and Gellman, 1954). An appendix by Scott in Gibson and 

Roberts (1969) contains a discussion of the properties of K L and a 

l i s t i n g of the values of two closely related integrals G
+

,E' for various 

indices. These are defined by 

fr* U,-v, hs.l) - J ' P/ ?;P/ d r 

where the associated Legendre functions are used in the Ferrer form as 

+ + 

used by Scott. The relations between K
#
L (Hobson's form) and G , E 

(Ferrer form) are found to be 

K 

L" -k, m,)s> 
i , rt, S 

f 

lu til 

for - |< ; m 4 f> ?i 0 , and 

K I , n , s 

I, n, 5 J 

for - k s r v w p & 0 • 

Equations (22), defining the source functions for the induced 

f i e l d s , can be written 

where U,T are the.radial functions for a displacement of harmonic n,m 

0 
and for a main magnetic f i e l d T

2
 respectively. The constants a^, b^ 



+ + 

and b̂ , are related to G , E by 

a, - c 

b, c 4 [>-*(*•»») -aiiW] G- + 

where . . > . . , , i 

In order to evaluate the magnetoelastic interactions, the values 

- + + 
of a^, b^ and b2 are determined for the various indices of G , E This 

+ + 
involves knowing G and E and these integrals were programmed using 

the formulae given by Scott (Gibson and Roberts, 1969). Table 9̂  shows 

the values obtained for G , E
 t
 a b^ and b^ for indices up to (4,4) 

for (n,m); only combinations which satisfy the selection rules are 

included. The constants a
t̂
 b^ and b^ for negative"m are found from 

Cr*(f>tS, rw-p, in,I) ~ pj $
t
V 

It can be seen from the table that, although G"*~,E
+

 can become large, 

the constants are generally a l l of order unity. This indicates there are 

no resonance interactions which might be expected to produce a large 

perturbation magnetic f i e l d . A search for a l l indices up to (10,10) for 

(n,m) and (s,p) also did not reveal a resonance value. It must be 

concluded that the geometry of the fields does not produce any particularly 

interesting effects. 



Table 9 

Gaunt and Elsasser Integrals 

ro n P s 1 G+ E + 
a l b l b2 

0 0 0 2 2 0.40 2.00 0.00 
0 1 0 2 1 0.27 1.20 2.40 
0 1 0 2 3 0.17 0.80 -2.40 
0 2 0 2 2 0.11 0.29 1.71 
0 2 0 2 4 0.11 0.51 -4.11 
0 3 0 2 1 0.17 -0.51 4.11 
0 3 0 2 3 0.08 0.13 1.60 
0 3 0 2 5 0.09 0.38 -5.71 
0 4 0 2 2 0.11 -0.38 5.71 
0 4 0 2 4 0.06 0.08 1.56 
0 4 0 2 6 0.07 0.30 -7.27 
1 1 0 2 1 -0.27 -0.60 -1.20 
1 1 0 2 2 -2.40 -0.33 
1 1 0 2 3 0.69 0.27 -0.80 
1 2 0 2 1 -2.40 -1.80 
1 2 0 2 2 0.34 0.14 0.86 
1 2 0 2 3 -4.11 -0.20 
1 2 0 2 4 1.14 0.26 -2.06 
1 3 0 2 1 0.69 -1.03 8.23 
1 3 0 2 2 -4.11 -0.57 
1 3 0 2 3 0.69 0.10 1.20 
1 3 0 2 4 -5.71 -0.13 
1 3 0 2 5 1.56 0.23 -3.43 
1 4 0 2 2 1.14 -0.63 9.52 
1 4 0 2 3 -5.71 -0.28 
1 4 0 2 4 0.98 0.07 1.32 
1 4 0 2 5 -7.27 -0.09 
• 1 4. •o 2 6 1.96 0.20 -4.85 
2 2 0 2 2 -2.74 -0.29 -1.71 
2 2 0 2 3 -41.4 -0.20 
2 2 0 2 4 6,86 0.09 -0.69 
2 3 0 2 2 -41.14 -1.43 
2 3 0 2 4 -137.14 -0.17 
2 3 0 2 5 21.82 0.11 -1.71 
2 4 0 2 2 6.86 -0.95 14.29 . 
2 4 0 2 3 -137.14 0.67 
2 4 0 2 4 8.31 0.03 0.62 
2 4 0 2 5 -305.45 -0.13 
2 4 0 2 6 46.99 0.12 -2.91 
3 3 0 2 3 -68.57 -0.17 -2.00 
3 3 0 2 4 -1440.00 -0.13 
3 3 0 2 5 174.55 0.04 0.57 
3 4 0 2 3 -1440.00 -1.17 
3 4 0 2 4 -101.82 -0.03 -0.55 
3 4 0 2 5 -7330.91 -0.13 
3 4 0 2 6 845.87 0.06 -1.45 
4 4 0 2 4 -3258.18 -0.11 -2.18 
4 4 0 2 5 -87970. 0.09 
4 4 0 2 6 8458.74 0.02 -0.48 
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APPENDIX B 

COMPUTING FREE OSCILLATIONS 

Numerical integration of the equations of motion of the free 

oscillations of a model Earth generally follows the treatment of Alterman 

et a l . (1959). The basic equations, formulated by Love (1911, Ch.VII), 

are f i r s t written in spherical polar coordinates and then transformed 

into linear first-order d i f f e r e n t i a l equations. With routine computing 

f a c i l i t i e s these equations can be integrated simultaneously using a 

step-by-step procedure, such as a Runge-Kutta algorithm. The method is 

well-known and details of the computations have been presented several 

times (e.g., Bolt and Dorman, 1961; Alsop, 1963). 

The purpose of this Appendix is to present details of the Earth 

model used in the computations of Section 5, and to examine the condition 

of regularity at the origin for the integration of the equations. 

B.l Starting Conditions 

Referring to Section 2.3 the equations of e l a s t i c i t y (2) can be 

written in the form of six coupled linear equations (Alterman et a l . . 1959) 
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4- «iS±L) ^ - j>J. 

X<5 

? ( B 1 ) 

where w is the angular frequency, and 

The six variables Yi-'-y^ have the following interpretations; 

(j( - \J radial displacement 

y a \X •+ 2^*U' change in normal stress 

_ \J transverse displacement 

u M T Y V ' - V ^ U J transverse shear stress 

p decrease in gravitational potential 

- P - 4-fi"G-J'pU change in gravitational flux density. 

The displacements U, V are identical with the radial functions 
Un ' Vn °^ e c l u a t i 0 1 1 (18), as the equations (Bl) refer to a spheroidal 

displacement of a particular degree and order. The cubical dilatation A 

and the perturbation in the gravitational potential are each written 



in spherical harmonic form 

thus defining the radial functions X,P. 

Two properties possessed by (Bl) C 3 n readily be identified: the 

first is that no derivatives of the elastic moduli occur, the second is 

that many of the coefficients on the right hand side are singular at the 

origin, r=0. The elastic moduli are not known accurately within the Earth 

and i t is to avoid errors involved in taking their derivatives that the 

form (Bl) is preferred. 

The singularity at the origin is avoided by several devices. The 

simplest technique is to begin the integration away from the origin and to 

establish starting values of the variables y_̂  by repeated integration. 

Three of the variables y^, y^, and y^ are zero at the origin and for a 

solid Earth i t would require only three integrations to obtain the 

values of y^, y^ and y^ at the starting depth. In practice an error is 

introduced by this method for those oscillations with displacements 

near the origin (Fig.3). A depth r 0 i s sought, generally by t r i a l and 

error (Bolt and Dorman, 1961, p. 2963), below which y^, y^ and y<- can be 

considered zero to the order of accuracy of the integration method. Such 

a starting set can be represented by 

f\ o o \ 

•JjK.) - ( 0 I O j , for i = 2,4,6 , 

and y^(r 0) = 0 for i= 1,3,5 . Clearly rQ'cannot be chosen as zero, for the 

derivatives of the y's are then singular. 



An alternative approach is to choose an r
0
 below which the Earth 

may be considered to be homogeneous (e.g. Wiggins, 1968). Within the 

sphere r = r
Q
 , the equations (Bl) are solved for c. homogeneous medium 

and the solutions , obtained analytically, are Bessel functions (Love, 

1911, Ch.VII). The integration i s then begun at r = r
Q
 with the values 

for y_̂  determined by the solution for r < r
0
 . These solutions are 

discussed by Takeuchi and Saito (1971) and are here reproduced in the 

same notation as in (Bl). One independent solution is given here by 

3.* 

y 3 r 

$0 a A -U>\]v 
J 

noting that Takeuchi and' Saito define y^ differently from above. 

Two other independent solutions are given by 

€.11 | i n h * > ) + f # U l U ) ( 

} 

(B2) 

(B3) 
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where 

and 

as given by Takeuchi and Saito. 

In the present work the singularity is treated by a power-series 

expansion about the origin for each of the six variables. The series are 

given by CO 

M. « ** L A
(y
 f

v

 (B4) 

for i = 1, 6 where of,V are integer variables and A,'yare constant 

coefficients to be determined. Gravity has the expansion 

where is the value of gravity within an arbitrarily small uniform 

sphere of density §
0
L°) near r = 0. 

Because of the complexity of the coefficients in (Bl), the derivations 

of the equations resulting from a substitution of (B4) are quite tedious. 

When lowest powers of r are compared for each equation, three independent 

values for W are allowed; -A s ̂ , fit v. ft -1 and For each (A there are 

six solutions to the simultaneous equations and a l l eighteen equations 

can be written by the form 



The index k determines the r-dependence of the f i r s t term in the series 

\c~o -for t > 2 , 4 (<* = n. or *-2) , L - L (S> a - i ) , 

1 C - 5 C - 1,3 

It i s found that for the case eisfHonly one constant i s required for the 

solution; ford--n,ft-2, two constants each are required giving a total 

of five independent constants. However the general solution near the 

origin must be taken as the linear combination 

and then the constants are reduced to three. The solution with these 

constants is 

9l 
A / ^ n - H 

+ 8 ' f n 

lJS> 

% c F ̂
n
"

1 

where two constants are given by 

The third constant i s contained in the system 

c

> c, 

(B5) 

( B 6 ) 

( 3 7 ) 
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where , . 

The set (B7) can be expressed in terms of only one constant by allowing 

the relation 

F s * ( 3-n ;Y ) A
 ( B 8 ) 

and with A = n, the constants in (B6) are identical with those in (B2). 

To show the equivalence between (B3) and (B5) with (B7) , the set 

(B3) is approximated by letting r-$0, (x=»0) whence 

% 
- -(nj> 4 t ) _L_ t**

x  

% £2/4h^n + 0 ] f jL. 4 . -

% v 2' 4 3 

- - u f r A ^ U i ) «L - f % ... 
r 2 * 4 * 

= - [ U ^ M 4 ^ 4 0 ^ 4 ^ ^ 

2 1 2 * 4 3 ; 

(B9) 

It is then found that (B5) with (B6) to ( B 8 ) is identical to (B2) and (B9), 

as they should be in the limit r-fcO. 

t 

The system (B5) has y and y_̂  zero for n^3 and is thus unsuitable 

for a Runge-Kutta integration procedure at the origin. Following the 

method of Smylie and Mansinha (1971, p. 344) a change of variable is now 
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maae 

(BIO) 

giving the expansions near the origin as 

£ i ~ Ar 4 AV-3 • 0 , 
/ 

£ . A ^ 

2 2 - g 4 B ' * l - v a , 2a' •= 0 

* i C r 4 C V * 4 . 0 , *; 
2 , = 0 4 J ) V i 4 

D , - o 

0 , 0 

h -- p r ^ fr'-r* 4 £fe = 0 , F > J 
valid at r = O. The system to be integrated is then 

i 
; 

\ (Bll) 

where C„ is the matrix of coefficients for the right hand side of (Bl). 

Two integrations throughout the Earth are required to obtain the constants 

A, F in (Bll); the most convenient choice is (1,0) and (0,1) respectively. 

The system (B12) can be integrated up to some radius r when the reverse 

transformation of (BIO) restores the system to (Bl). 

To isolate the third constant, a transformation of the form 

is required. Then, with A-F zero, 

£, •=. A' r a 4 . . . 

Z2< = 6 ' f + •*• 

z 4 

valid at r = 0. 

I, •=• o , 2,' - o 
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The equations of motion are in this case 

and one integration i s sufficient to find the constant. 

This method is then a rigorous way of starting the Runge-Kutta 

integration for the system (Bl). In practise i t has been found appropriate 

for low-degree spheroidal os c i l l a t i o n s , but i s inefficient for other 

oscillations because of error accumulation in the integration. 

The radial oscillations are simple to integrate because only 

three equations are involved 

y,' = -
 r

l P > •* P 3» 

if/ - [-u/v4M* - 2 J J 3, - * r J ax 
The starting solutions are 

3a * 6 -* 6'"*+--

with B r (SX-r2^)A . 
For the variables y^, y^

 a n

d y,- the starting set is (0,1,0) at r = 0, 

and at the eigenfrequency, where y^ changes sign, this set becomes 

i f d denotes surface values. 

B.2 Normalisation 

To stabilise the system (Bl) and prevent overflow in the 

computations for large n, the coefficients and the variables can be 

arranged to be of order unity by a simple scaling operation (Wiggins, 
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personal Communication), The appropriate changes are 

for the variables, and 

A x ID~
,a

 , ̂ y ID"'2

5 <r * 10" \ % * ' 0"3 , G * U>\ u> x lO3 , 

for the Earth parameters, the original values being in c.g.s. units. 

B.3 The Numerical Earth Model 

An Earth model was supplied by Jordan and Anderson (1972). 

A free o s c i l l a t i o n routine was written to obtain the amplitudes of the 

oscillations i n the core rather than rely on published amplitudes or 

a packaged program. The Jordan-Anderson model (denoted here by JAB1) 

was used for three reasons. It 

(a) has a solid inner core, 

(b) was supplied with a complete l i s t of properties and eigenperiods 

useful for checking the integrations, and 

(c) has a good least-squares f i t to observed travel-time data 

and observed eigenperiods. 

The properties of the model are shown in Table 10. Linear 

interpolation was used to interpolate the model as the results were found 

similar to those obtained by cubic spline interpolation. A fourth-order 

Runge-Kutta routine was used, supplied by the Computing Centre at the 

University of Br i t i s h Columbia and incorporating an automatic error 

control on the step size, after Christiansen (1970). 



Table 10 

Parameters for Earth Model JAB1 

Radius 

km 

Depth 

km 

Density 
-3 

gm cm 

Gravity 
-2 

cm sec 
X 

Bulk 
Modulus 

10^
2

dyne cm 

Rigidity 

xlO
1 2 

dyne cm 

0 6371 12.58 0.0 12.694 1.540 
100 6271 12.57 52.0 12.689 1.541 
200 6171 12.56 78.0 12.674 1.539 
300 6071 12.53 110.0 12.648 1.535 
400 59 71 12.52 144.0 12.643 1.532 
500 5871 12.51 178.0 12.642 1.531 
600 5771 12.51 .212.0 12.639 1.528 
700 5671 12.50 247.0 12.633 1.523 
800 5571 12.50 281.0 12.632 1.517 
900 5471 12.49 316.0 12.623 1.510 
1000 5371 12.46 350.0 12.610 1.499 
1100 5271 12.39 385.0 12.581 1.485 
1215 5156 12.28 423.0 12.513 1.467 

1215 5156 12.11 423.0 12.460 0.0 
1300 5071 12.08 450.0 12.444 0.0 
1400 49 71 12.04 482.0 12.411 0.0 
1500 4871 11.99 514.0 12.334 0.0 
1600 4771 11.93 546.0 12.219 0.0 
1700 4671 1.1.87 578.0 12.042 0.0 
1800 45 71 11. 80 609.0 11.805 0.0 
1900 4 471 11. 72 640.0 11.561 0.0 
2000 4371 11.64 671.0 11.307 0.0 
2100 4271 11.56 701.0 11.048 0.0 
2200 4171 11.47 731.0 IQ.785 0.0 
2300 4071 11.39 760.0 10.542 0.0 
2400 39 71 11.30 790.0 10.309 0.0 
2500 3871 11.21 818.0 10.032 0.0 
2600 3771 11.11 846.0 9. 718 0.0 
2700 36 71 11.00 874.0 9.388 0.0 
2800 3571 10.88 901.0 9.023 0.0 
2900 3471 10. 76 928.0 8.628 , 0.0 
3000 3371 10.62 954.0 8. 209 0.0 
3100 32 71 10.48 9 79.0 7. 797 0.0 
3200 3171 10. 33 1003.0 7.400 0.0 
3300 30 71 10.19 1026.0 7.026 0.0 
3400 29 71 .10.04 1049.0 6.676 0.0 
3485 2886 2.90 1068.0 6.373 0.0 

3485 2886 5.58 1068.0 4.523 2.948 
3510 2861 5.56 1064.0 4.510 2.934 
3550 2821 5.54 1059.0 4. 49 8 2.916 
3625 2746 * 5.50 1049.0 4.471 2. 871 
3700 2671 5.46 1041.0 4.412 2. 822 
3775 ' 2596 5.42 1034.0 4.309 2. 775 
3850 2521 5. 38 1027.0 4.194 2. 730 
3925 2446 5.34 1021.0 4.079 2.686 
4000 2371 5.30 1016.0 3.966 2.642 



Table 10 (continued) 

4075 2296 5.26 1011.0 3.863 2.601 

4150 2071 5.22 1Q08.0 3. 765 2.555 

4225 2146 5.19 1001.0 3.583 2.465 
4375 1996 5.11 999.0 3.487 2.422 

4450 1921 5.07 997.0 3.391 2.380 

4525 1846 5.04 996.0 3.309 2.336 
4600 1771 5.00 994.0 3.226 2.293 

46 75 1696 4.96 994.0 3.136 2.253 

4750 1621 4.92 993.0 3.058 2.214 
4825 1546 4.89 993.0 2.977 2.174 

4900 1471 4.85 993.0 2.888 2.136 
49 75 1396 4.81 993.0 2.819 2.089 
5050 1321 4.77 993.0 2.740 2.044 

5125 1246 4.72 994.0 2.651 1.998 

5200 1171 4.68 994.0 2.549 1.956 

52 75 1096 4.64 995.0 2.435 1.920 
5350 1021 4.59 996.0 2.346 1.871 

5425 946 4.55 997.0 2.253 1. 824 

5500 871 4.50 998.0 2.154 1.778 

5550 821 4.47 999.0 2.087 1.746 
5600 771 4.44 1000.0 2.020 1. 712 

5650 721 4.41 1000.0 1.957 1.677 

5700 671 4.38 1001.0 1.901 1.642 

5 700 6 71 4.05 1001.0 1.911 1.09 8 
5725 646 4.02 1001.0 1.846 1.092 
5750 621 4.00 1000.0 1.777 1.088 

5775 596 3.97 1000.0 1. 706 1.086 
5800 571 3.95 1000.0 1.632 1.084 
5825 546 3.92 999.0 1.558 1.084 

5850 521 3.90 999.0 1.482 1.084 
5875 496 3.87 999.0 1. 408 1.084 
5900 471 3.85 998.0 1.338 1.083 
5925 446 3.82 998.0 1.2 72 1.079 
5951 420 3.80 997.0 1.210 1.074 

' 5951 420 3.58 997.0 1.186 0. 780 
59 75 396 3.57 997.0 1.151 0. 775 
6000 371 3.54 996.0 1.118 0. 768 
6050 321 3.49 994.0 1.076 0. 739 
6100 271 3.44 992.0 1.067 0.695 
6150 221 3.39 990.0 1.066 0.648 
6175 196 3.37 989.0 1.051 0.633 
6200 171 3.35 988.0 1.009 0.633 
6225 146 3.34 987.0 0.962 6.637 
6250 121 3.33 986.0 0.889 0.656 

6271 100 3.32 986.0 0.810 0.681 

62 71 100 3.32 986.0 0.810 0.6 81 

6290 81 3.32 9 85.0 0. 730 0. 708 

6310 61 • 3.32 984.0 0.643 0. 738 
6330 41 3.31 984.0 0.568 0. 762 

6350 21 3.30 983.0 0.524 0. 769 

6350 21 2.79 983.0 0.427 0.322 

6360 11 2. 79 982.0 0.427 0.322 

6371 0 2. 79 981.0 0.427 0. 322 


