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ABSTRACT i 

The purpose of t h i s t h e s i s i s t o develop a s o l u t i o n t o the problem 

of determining the minimal spanning tree with degree r e s t r a i n t s f o r a given 

non-directional graph. 

Section 1 gives an introduction t o the problem. A set of 

d e f i n i t i o n s describing the graphical terminology used i n the body of the 

t h e s i s , i s presented along with a d e s c r i p t i o n of the problem. At the end 

of t h i s section a few applications of the problem are given. 

Section 2 ou t l i n e s the method of so l u t i o n used. The algorithm 

incorporates a branch and bound technique and t h i s problem solving method 

i s discussed i n general i n the f i r s t part of the section. Some other 

app l i c a t i o n s of branching and bounding are also discussed. Next, the 

complete algorithm i s described along with a proof of optimality. A sample 

problem i s worked through t o i l l u s t r a t e the method of s o l u t i o n . 

Two d i f f e r e n t minimal spanning tree algorithms, one by R.C. Prim, 

the other by J.B. Kruskal, are used i n the main core of the s o l u t i o n 

algorithm. These two approaches are discussed with the a i d of a sample 

problem, at the end of Section 2. 

Computer programs were written t o t e s t the algorithms. Several 

sets of data were compiled f o r various s i z e s of graphs and values of degree 

r e s t r i c t i o n s . The r e s u l t s of these runs were tabulated and are discussed 

i n Section 3 . Next, a comparison i s made of the method discussed here and 

a so l u t i o n involving l i n e a r programming. 

Section 3 also presents some u s e f u l h e u r i s t i c approaches at sub-

optimization which e f f e c t i v e l y reduce the amount of computation. 

Section 4 summarizes the r e s u l t s of Section 3 and in d i c a t e s the 

best approach t o use f o r a s p e c i f i c problem. 
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INTRODUCTION 1 

1.1 D e f i n i t i o n s 

A g r a p h G c o n s i s t s o f a f i n i t e s e t P o f nodes Pi>?2> " '>^n and a 

s e t R o r o r d e r e d p a i r s o f d i s t i n c t nodes o f P. E a c h p a i r o f nodes 

( x , y ) € R i s c a l l e d l i n k o f t h e g r a p h G. 

A s s o c i a t e d w i t h each g r a p h G, we have a d i s t a n c e m a t r i x L w i t h 

e l e m e n t s 1- ( i = l , 2, ... ,n; ' j = l , 2. .. ,.n; i ^ j ) o f t h e g i v e n g r a p h . Node 

i i s c a l l e d t h e i n i t i a l node o f l i n k 1^ • and node j i s c a l l e d t h e 

t e r m i n a l node. L y denotes t h e l e n g t h o f t h e l i n k f r o m i t o j . 

A p a t h i n a g r a p h i s a s e t o f l i n k s l - j _ , ±2> • • • > s u c h t h a t t h e 

t e r m i n a l node o f t h e l - j _ l i n k c o r r e s p o n d s t o t h e i n i t i a l node o f t h e 

1-̂ +1 l i n k f o r i = l , 2 , .. . s-1. 

A g r a p h i s c o n n e c t e d i f t h e r e i s a p a t h j o i n i n g e v e r y p a i r o f 

nodes i n t h e g r a p h . 

I f l j _ j = l j . j _ f o r a l l i , j e P we s a y t h e g r a p h i s s y m m e t r i c . 

A l i n k i s s a i d t o be i n c i d e n t w i t h t h e nodes i t j o i n s . 

I f x i s an i s o l a t e d node o f g r a p h G t h e n ^ c , ^ ' . ^ R and £ , ^ ^ R 

f o r a l l i e P. 

A c o n n e c t e d g r a p h c o n t a i n i n g n d i s t i n c t nodes and n - l d i s t i n c t 

l i n k s w i t h no i s o l a t e d nodes i s c a l l e d a s p a n n i n g t r e e . The degree 

of any node o f a g r a p h i s e q u a l t o t h e number o f l i n k s i n c i d e n t w i t h 

i t . 

When t h e degree o f e v e r y node o f a t r e e i s l e s s t h a n o r e q u a l 

t o two, t h e t r e e d e f i n e s a H a m i l t o n i a n p a t h . 

A f e a s i b l e s o l u t i o n t o a c o n s t r a i n e d o p t i m i z a t i o n p r o b l e m i s a 

s o l u t i o n w h i c h s a t i s f i e s t h e c o n s t r a i n t s o f t h e p r o b l e m . 

A minimum s p a n n i n g t r e e has a t o t a l l i n k l e n g t h no g r e a t e r 

t h a n t h a t o f any o t h e r s p a n n i n g t r e e . 



1.2 Problem Description 2 

The minimum n-node spanning tree problem with degree r e s t r a i n t s 

r, may be defined as follows: 

Given n d i s t i n c t nodes and an associated symmetric distance 

matrix, f i n d the minimum spanning tree such that the degree of each 

node i n the tree i s less than or equal to r. 

This type of problem occurs i n the backplane wiring of 

computers. The connector pins are the nodes of the graph and the 

lengths of wire required t o jo i n any two pins are the l i n k s . The 

degree r e s t r a i n t s arise from the physical l i m i t a t i o n s on the number of 

connections which can be made at any pin. 

The problem also occurs i n other e l e c t r i c a l design applications, 

for example, i n the layout of integrated c i r c u i t r y and card modules. 

When the degree r e s t r i c t i o n i s equal to two, the problem becomes 

the determination of the shortest Hamiltonian path i n the graph. 

This i s closely related to the Travelling Salesman problem which i s 

one of the 'unsolved' problems of combinatorial mathematics. 

The number of d i s t i n c t spanning trees i n a complete symmetric 

graph with n nodes i s n 1 1 -^. The number of d i s t i n c t Hamiltonian paths 

i n t h i s graph i s ̂ '. The pro b a b i l i t y of a minimum spanning tree being 

a Hamiltonian path i s therefore given by the r a t i o of ̂ ' to n 1 1 -^. 

This r a t i o goes very quietly to i t s l i m i t of zero. For example, when 

n=10, the pro b a b i l i t y i s less than 0 .04 and when n=15 i t becomes less 

than 0.007. I t i s for t h i s reason that the solution of the problem 

becomes very time consuming when the degree r e s t r i c t i o n s equal two 

and n>15. 



2.1 B r a n c h a n d B o u n d M e t h o d s 3 

T h e t e c h n i q u e u s e d t o s o l v e t h i s r e s t r a i n e d o p t i m i z a t i o n 

p r o b l e m i s k n o w n a s b r a n c h a n d b o u n d . I t i s a m e a n s o f p r o g r e s s i n g 

t o w a r d s a n o p t i m a l s o l u t i o n , w i t h a s i g n i f i c a n t r e d u c t i o n i n t h e s i z e 

o f t h e s e t o f f e a s i b l e s o l u t i o n s r e q u i r i n g i n v e s t i g a t i o n . 

A l a r g e s e t o f f e a s i b l e s o l u t i o n s n o r m a l l y e x i s t s w h e n a n 

o b j e c t i v e f u n c t i o n z i s t o b e m i n i m i z e d , s u b j e c t t o a s e t o f r e s t r a i n t s . 

E a c h o f t h e s e f e a s i b l e s o l u t i o n s h a s a d i s t i n c t z v a l u e . T h e b r a n c h 

a n d b o u n d p r o c e s s b r e a k s u p t h i s s e t o f f e a s i b l e s o l u t i o n s i n t o 

s m a l l e r s u b s e t s a n d c a l c u l a t e s a l o w e r b o u n d f o r t h e z v a l u e s w i t h i n 

e a c h . s u b s e t . T h e s e s u b s e t b o u n d s a r e o b t a i n e d b y s o l v i n g a s i m p l e r 

p r o b l e m t h a n t h e g i v e n r e s t r a i n e d o n e . O n e o f t h e s e s u b s e t s i s 

s e l e c t e d a n d a g a i n p a r t i t i o n e d • i n t o b o u n d e d s u b s e t s a s a b o v e . T h e 

p a r t i t i o n i n g c o n t i n u e s u n t i l a f e a s i b l e s o l u t i o n , z ' t o t h e o r i g i n a l 

p r o b l e m i s i s o l a t e d . S u b s e t s w i t h a b o u n d g r e a t e r t h a n o r e q u a l t o 

z ' a r e n o t i n v e s t i g a t e d f u r t h e r . S u b s e t s w i t h a l o w e r b o u n d t h a n z ' 

a r e p r o c e s s e d i n t h e h o p e o f d i s c o v e r i n g a s m a l l e r f e a s i b l e , s o l u t i o n . 

T h e o p t i m a l s o l u t i o n z * i s r e a c h e d w h e n t h e b o u n d o n a l l s u b s e t s 

i s g r e a t e r t h a n o r e q u a l t o z * . 

A n i m p o r t a n t p o i n t i n b r a n c h i n g a n d b o u n d i n g i s t h e d e t e r ­

m i n a t i o n o f t h e o r d e r i n w h i c h t h e p a r t i t i o n e d s u b s e t s a r e t o b e 

p r o c e s s e d . T h i s g i v e s r i s e t o t w o b a s i c m e t h o d s o f s u b s e t s e l e c t i o n . 

T h e f i r s t o f t h e s e i s t h e r a t h e r o b v i o u s o n e o f c h o o s i n g t h e s u b s e t s 

i n t h e i n c r e a s i n g o r d e r o f t h e i r r e s p e c t i v e b o u n d v a l u e s . T h i s w o u l d 

e n s u r e a m i n i m u m a m o u n t o f c o m p u t a t i o n . T h e o n e d i s a d v a n t a g e w i t h 

t h i s m e t h o d i s t h a t a l a r g e a m o u n t o f i n f o r m a t i o n m u s t b e r e t a i n e d 

a t a l l t i m e s i n o r d e r t o d e t e r m i n e a n d t o d e f i n e t h e s u b s e t w h i c h 

s h o u l d b e s t u d i e d n e x t . 
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The second method i s that of investigating the subsets in 
some prearranged order u n t i l either a feasible solution i s obtained, 
or the bound on a subset exceeds the length of a known feasible 
solution. In other words, the f i r s t subset of a partition i s i t s e l f 
partitioned and so on u n t i l at, say, the kth level of partitioning 
a conclusion i s reached as above. Now the second subset of this kth 
partition i s investigated. This method is useful i f the ordering 
of the subsets i n each partition i s such that there i s a greater 
probability of finding the optimal solution in the i n i t i a l subsets. 

This latter method i s the one used here and more w i l l be 
said on the ordering of the partitions. 

Branch and bound methods have been used to handle a variety 
of problems. E.L. Lawler and D.E. Wood (4) give an excellent account 
of several applications. They include integer linear programming, 
nonlinear programming, the quadratic assignment problem and the 
travelling salesman problem. There i s also a note on applications 
outside the realms of mathematical programming; e.g. pure combina­
torics. 

The branch and bound technique used on the travelling 
salesman problem has been compared with other popular 'solutions' 
in an article by Bellmore and Newhauser (8). Here the branch and bound 
methods of Eastman (10), L i t t l e , et a l (3), and Shapiro ( l l ) are 
compared with the dynamic programming of Held and Karp (12) and the 
'(^.- optimization' of Lin (13). Shapiro's work appears to be the 
superior branch and bound approach and i s rated very highly for the 
solution of symmetric problems of up to 40 nodes. 



2.2 Description of the Algorithm 5 

The algorithm i s a search technique i n which one p a r t i t i o n s 

the set of spanning trees into subsets and calculates lower bounds 

on the length of a l l trees i n a subset. In t h i s way, spanning trees 

which meet the degree requirements are discovered, and the smallest 

one w i l l be the optimal solution to the restrained problem. 

The i n i t i a l bound i s found by solving the unrestricted 

minimum tree problem defined by the given distance matrix L with 

elements 1.. (i=l,2,...,n; j=l,2,...,n; i ^ j ) . I f the solution 

complies with the degree r e s t r i c t i o n s , the restrained problem i s 

solved t r i v i a l l y . I f i t does not s a t i s f y the r e s t r a i n t s , i . e . i f 

there exists at least one node i i n the tree of degree x with x > r , 

one branches into p subproblems where p i s the number of ways of 

selecting x-r d i s t i n c t l i n k s from x l i n k s . The above node i of 

degree x w i l l have x l i n k s incident with i t . Let these l i n k s be 

1]_,12, .. ,,l x, arranged i n the reverse order they are chosen i n the 

minimum tree algorithm. 

The p subproblems are created by prohibiting p d i s t i n c t 

sets of x-r l i n k s from being included i n minimum tree solutions. 

For subproblem 1, l e t l1=oe»,l2 =oo,..., l x_ r=oo; for subproblem 2, 

l e t 1]_ =oo,l 2 =oo J f..,l x_ r_]_ =oo, l x - r + l =O0;...; for subproblem p 

l e t l r + 1 = o o , l r + 2 =CO, . . . , l x =0<9. These sets of prohibited l i n k s 

are the lexicographical orderings of the p selections of x-r l i n k s 

from l i n k s 1-̂ , 1 2, . .., l x . 

Subset number 1 then consists of the set of a l l trees for 

which l i n k s 1-|_,12, .. .,l x_ r are prohibited, subset number 2 prohibits 

l i n k s 1 1 ? .. . , l x _ r _ i , ^x-r+l' e~ t c- I n s h o r t> w e a r e investigating 

all the possible ways of forcing the degree of node i to s a t i s f y the 



degree restraints r. It is convenient to refer to a node whose 

degree exceeds the restrictions as a 'trouble' node, and the as­

sociated links as 'trouble' links. The minimum tree solutions to 

these p subproblems become the bounds for their respective subsets. 

If the solution to subproblem number 1 is not a feasible solution 

to the restrained minimum tree problem, we branch again. This con­

tinues until a feasible solution is reached in a subset k. 

Now the algorithm examines the next subproblem in subset k 

as above. The subproblems are examined until either an improved 

feasible solution is found or the bound on a subset is' larger than 

the length of the current best feasible solution, in which case the 

subset is rejected. When a l l possible subsets have been examined, 

the best feasible solution is the optimal solution to the minimum 

tree problem with degree restraints. In the next section an example 

is worked through. 

It is convenient to use a pushdown stack to define the cur­

rent subproblem. As soon as a branch occurs in the algorithm a new 

entry is placed on the top of the stack. This entry gives the ordered 

l i s t of links connected to the trouble node which caused the branch. 

It also indicates which of these links are prohibited and which are 

allowed for the particular subproblem. This is accomplished by means 

of an x-r digit number, (x = degree of the trouble node) which 

indicates the current combination of prohibited links. This is best 

illustrated by an example. 

With x = 6 and r = 2 we have C(6,4) = 15 subproblems to 

investigate. Initially we have the combination pointer set at 1234 

which indicates that the first, second, third and fourth links of the 

ordered l i s t in the stack entry are prohibited in the first subproblem. 
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The fi f t h and sixth links are allowed to enter the solution. 

If this first subproblem yields an improved feasible solu­

tion, or exceeds the current bound, the combination pointer is changed 

from 1234- "to 1235 giving a new set of allowed links and prohibited 

links for the second subproblem. If not, a new entry is added to the 

stack, depicting the next branching subset. Eventually, an entry on 

the top of the stack will exhaust a l l possible combinations. When 

this is the case, this entry is deleted and the next lower level 

becomes the new top of the stack. As before the next combination is 

generated, etc. In this manner the other thirteen subproblems for the 

above example will be duly investiaged; i.e. the pointer will take 

on the values 1236, 1245, 1246, 2346, 2356, 2456, 3456. The 

algorithm terminates when the stack is empty. 

The algorithm completes an iteration when either an 

improved feasible solution is found or a solution exceeds the current 

bound. If the same trouble node occurs more than once in the branching 

processes during an iteration, a l l the trouble links for that node 

are 'bunched' together at one branch. This cuts down unnecessary 

duplication of subsets. 

If more than one node has a degree greater than r, the first 

one encountered by the unrestrained minimum tree algorithm is the one 

which determines the next set of subproblems. 

The order in which the links are chosen in the minimum tree 

algorithm is extremely important. It affects not only the determination 

of the first trouble node but also the ordering of the trouble links 

for the combination generator. 



This ordering of the links is dependent on the minimum 

spanning tree algorithm used and for this reason, two different methods 

are compared. 

These two methods, one by R.C. Prim (7), the other by 

J.B. Kruskal (6), will be discussed in section 2.5. 



V e r i f i c a t i o n o f O p t i m a l i t y 9 

T h e . p a r t i t i o n i n g u s e d e x p l o r e s a l l t h e n e c e s s a r y s u b s e t s , 

a n d e n s u r e s u s o f c o v e r i n g t h e e n t i r e s e t o f f e a s i b l e s o l u t i o n s . 

C l e a r l y , t h i s i s d u e t o t h e i n v e s t i g a t i o n o f t h e c o m p l e t e s e t o f 

p o s s i b l e c o m b i n a t i o n s a t e a c h b r a n c h i n g s t a g e . 

T h e a l g o r i t h m i s t e r m i n a t e d w h e n t h e b o u n d s o n a l l t h e s u b s e t 

p r o b l e m s a r e g r e a t e r t h a n o r e q u a l t o t h e l e n g t h o f t h e b e s t r e s t r a i n e d 

m i n i m a l t r e e . T o p r o v e t h a t t h i s i s t h e o p t i m a l r e s t r a i n e d s o l u t i o n , 

i t i s o n l y n e c e s s a r y t o s h o w t h a t e a c h t i m e a b r a n c h i s m a d e , t h e 

s u b p r o b l e m s d e f i n e d w i l l h a v e o p t i m a l s o l u t i o n s g r e a t e r t h a n o r 

e q u a l t o t h e l o w e r b o u n d a t t h e b r a n c h . 

L e t u s a s s u m e t h a t a p a r t i c u l a r s u b p r o b l e m k , p r o h i b i t i n g 

x l i n k s y i e l d s a m i n i m u m s p a n n i n g t r e e o f l e n g t h t . T h e d i s t a n c e 

m a t r i x f o r t h i s s u b p r o b l e m m a y b e d e s i g n a t e d D . 

k 
L e t t h i s t r e e o f l e n g t h t b e c o m p r i s e d o f t h e l i n k s 1-^, 

l g , . . . , 1 ^ p l p l j ^ , . . . , 1 , a r r a n g e d i n t h e o r d e r t h e y a r e c h o s e n b y 

t h e m i n i m u m s p a n n i n g t r e e a l g o r i t h m . ( A s s u m e t h a t t h e a l g o r i t h m 

e m p l o y s t h e r u l e o f c h o o s i n g t h e n e x t l a r g e s t l i n k w h i c h d o e s n o t 

f o r m a c l o s e d l o o p w i t h p r e v i o u s l y s e l e c t e d l i n k s . ) 

I f we e x c l u d e a n y o n e o f t h e l i n k s o f t h i s t r e e f r o m o u r 

m a t r i x D ^ , g i v i n g a m a t r i x D ^ ' , a n d s o l v e t h e new m i n i m u m t r e e 

p r o b l e m , we w i l l o b t a i n a s o l u t i o n o f l e n g t h t * w i t h f i t , 

• T o i l l u s t r a t e t h i s , , l e t u s e x c l u d e t h e l i n k 1^ f r o m D^., a n d 

s o l v e t h e new m i n i m u m t r e e p r o b l e m d e f i n e d o n D^.' . 

L i n k s ±]_,±2> • • • A i - 1 w i l l b e c h o s e n a s b e f o r e , b u t b e c a u s e 

l i i s p r o h i b i t e d , we m u s t i n v e s t i g a t e t h e n e x t l a r g e s t l i n k f r o m o u r 

m a t r i x D ^ ' t o c o n t i n u e t h e a l g o r i t h m . ( T h e n e x t ' l a r g e s t ' l i n k 1 ^ 

w i l l h a v e t h e r e l a t i o n l ^ S l - j ^ . T h e r e m a i n i n g s e q u e n c e o f m i n i m u m 



spanning tree links will be the links ..., 1 . + ^ , . . 1 

with l j _ + 1 , 1^,1 . . ., l s as above in the solution using the 

matrix and 1^' a new link with L^^l-^. Thus the total length t 

of this solution will be such that t'^>t. Clearly this will also 

be the case i f D, 1 has more than one link of the D, minimum tree k k 
prohibited. 

Since every possible subset has a bound which is greater 

than or equal to the length z of the best restrained solution, 

no other restrained solution can exist with a length smaller than 



Sample problem 11 

Given the following 8x8 distance matrix (Fig. l) and the 

degree restrictions r=2 we solve the unrestricted minimum tree 

problem. The minimum tree is given by the links 2-7, 4-8, 1-8, 

5-8, 5-6, 3-8, 2-6 with total length 603. Clearly, node 8 has 

degree 4 and our solution is not a feasible one for the restricted 

problem. 

Now the 4 links connected to node 8 are arranged in the 

order 8-3, 8-5, 8-1, 8-4 and the first of the C(4,2) = 6 subproblems 

is defined by setting link 8-3 = 0 0 and link 8-5 =CxO. The distance 

matrix for this subproblem'is shown in Fig. 2. The solution to this 

particular subproblem is defined by the links 2-7, 4-8, 1-8, 1-5, 

5-6, 2-6, 3-4 with total length 781. This turns out to be our first 

feasible solution since the degree of each node is less than or 

equal to two. The current bound for our optimal solution is therefore 

781. The second subproblem is defined by setting 8-3 = 0 0 , and 

8-1 = 0 0 . 

This search technique can best be illustrated by a tree 

diagram (see Fig. 3 ) . 

The nodes of the tree diagram represent unrestrained 

minimum tree subproblems and the branches t e l l which links have been 

set to infinity in the distance matrix; e.g. If we want to exclude 

the link x-y from a particular subproblem then xy would appear on a 

branch leading to i t . The number at each node denotes the length of 

the particular solution. A square node indicates a feasible solution 

to the restrained problem. 
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Subproblems with minimum tree lengths greater than or 

equal to the current best f e a s i b l e s o l u t i o n are not investigated 

f u r t h e r . Thus, the 2nd and 3rd subproblems with lengths greater 

than 781 are abandoned. 

The 4th subproblem which has l i n k s 5-8 and 1-8 set t o 

i n f i n i t y i n i t s distance matrix has a length of 735. The minimum 

tree f o r t h i s subproblem i s comprised of the l i n k s 2-7, 4-8, 1-5, 

5-6, 3-8, 4-5 and 2-6. This so l u t i o n i s not a f e a s i b l e one since 

node 5 has degree 3. Therefore t h i s 4th subset i s furth e r 

p a r t i t i o n e d i n t o 3 smaller subsets; the 1st one excludes the l i n k 

4-5, the second excludes the l i n k 6-5 and the l a s t excludes the l i n k 

1-5. Now the 1st of these smaller subsets i s examined. We continue 

i n t h i s fashion u n t i l a l l subsets (nodes of the tree diagram) have 

been investigated. 

The optimum so l u t i o n i s comprised of the l i n k s 2-7, 4-8, 

1-5, 3-8, 4-5, 1-6, 2-6 of length 767 and occurs when l i n k s 5-8, 

1-8 and 6-5 are pr o h i b i t e d . 
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1 2 3 4 5 6 7 8 

1 - 576 374 357 63 174 511 37 

2 576 • - 854 205 474 1 86 5 739 

3 3 74 854 - 332 872 587 846 156 

4 357 205 332 — 167 671 597 16 

5 63 474 872 167 - 142 326 61 

6 1 74 186 587 671 142 — 983 865 

7 511 5 846 597 326 983 - 622 

8 37 739 156 16 61 865 622 -

FIGURE 1 8 x 8 SAMPLE PROBLEM 

1 2 3 4 5 6 7 8 

1 - 576 374 357 63 174 511 37 

2 576 - 854 205 474 186 5 73 9 

3 374 854 — 332 872 587 846 GO 

4 357 20 5 332 - 167 671 597 16 

5 63 474 872 167 - 1 42 326 Co 

6 1 74 1 86 587 671 1 42 - 983 865 

7 51 1 5 846 597 326 983 - 622 

8 3"T 7 39 16 865 622 -
FIGURE 2 DISTANCE MATRIX FOR I S T SUB PROBLEM 

LINKS (3,8) AND (5,8) PROHIBITED 



781 

FIGURE 3 COMPLETE TREE DIAGRAM 



2.5 The Minimal Spanning Tree Algorithm 15 

The Branch and Bound method described solves a set of 

minimal spanning t r e e problems. Two d i f f e r e n t methods for generating 

t h i s set are compared. 

The f i r s t of these methods was developed by R.C. Prim (7). 

B a s i c a l l y , t h i s algorithm s t a r t s with any given node and finds i t s 

nearest neighbour, thus forming the f i r s t l i n k of the minimal t r e e . 

Then i t f i n d s the nearest node t o t h i s subtree by searching through 

the set of nodes not yet included i n the subtree. This process 

continues u n t i l the f u l l spanning t r e e i s formed. At a l l stages we are 

dealing with a subtree, thus there i s no need t o check for closed 

loops or connectedness. 

The algorithm i s very f a s t and uses a minimal amount of 

core storage. A t e s t program written i n Fortran on an IBM 7044 

found the minimum tre e f or an 80x80 complete distance matrix i n l e s s 

than one second. The big disadvantage with t h i s algorithm i s the fact 

that the minimal tree l i n k s are not chosen i n increasing order of 

magnitude. Since t h i s Branch and Bound method always examines the 

subset problems i n order,, there i s a greater p r o b a b i l i t y of f i n d i n g 

the optimal s o l u t i o n e a r l i e r i f the largest l i n k s connected t o a 

trouble node are prohib i t e d i n the f i r s t problem of each subset. 

This i s best accomplished i f these l i n k s are given t o the combination 

generator i n order of increasing magnitude. Due t o the nature of the 

combinations which are generated i n l e x i c o g r a p h i c a l order, the f i r s t 

problem of a given subset w i l l then exclude the x-r largest l i n k s 

(x being the degree of the trouble node f o r t h i s subset with x > r ) , 

the second problem w i l l exclude the x-r-1 largest l i n k s and the 

(x-r+l)th largest l i n k and so on for the remaining problems. 
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The l a s t problem of each subset w i l l of course exclude the x-r 

smallest l i n k s . 

The second algorithm developed by J..B. Kruskal (6) achieves 

t h i s ordering. I n i t i a l l y a l l the l i n k s of the distance matrix are 

sorted i n increasing order of magnitude. The f i r s t l i n k i n the 

sorted l i s t becomes the i n i t i a l l i n k of the minimal spanning t r e e . 

Links which do not form closed loops with e x i s t i n g l i n k s are then 

chosen i n order from the l i s t u n t i l the complete t r e e i s constructed. 

The disadvantage here i s that the sort time grows as the 

dimension n of the distance matrix increases. However, once the sort 

has been completed, the determination of the minimal t r e e i s much 

f a s t e r than the Prim algorithm. The sort only needs t o be done once 

i n order t o solve the many minimal t r e e subproblems which a r i s e i n the 

branching process. For a reasonable number of i t e r a t i o n s the sort 

time i s outweighed by the f a s t l i n k s e l e c t i o n and the o v e r a l l Kruskal 

time becomes f a s t e r than the Prim time. The number of i t e r a t i o n s 

necessary t o complete the algorithm depends on both the dimension n 

of the distance matrix and the degree r e s t r i c t i o n r for the problem. 

Complete symmetric distance matrices of various dimensions with 

elements obtained from a random number generator were used t o t e s t 

both the Prim and the Kruskal methods of s o l u t i o n on an IBM 704-4- • 

The r e s u l t s of these t e s t s are given i n Table 1. 

A L i b r a r y subroutine (14) i s used t o order the l i n k s i n the 

Kruskal method. The s o r t i n g i s accomplished by a merge-exchange 

technique and i t i s very f a s t . The number of i t e r a t i o n s necessary 

f o r the Kruskal method t o overcome i t s sort time and become f a s t e r 

than the Prim method, for the same number of i t e r a t i o n s , was 

tabulated f o r each value of n and r . For example, with n = 40 and 
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r = 3, the Kruskal method would be f a s t e r than the Prim method i f 

both took more than 25 i t e r a t i o n s t o terminate. An average value, 

over various sample s i z e s , was calculated f o r each n, r combination. 

In a l l cases fewer i t e r a t i o n s were required on the average by the 

Kruskal method. -Figures f o r three random matrices with n>50 

were shown f o r comparison. The Prim times to complete the algorithm 

f o r n = 20 and r = 2 were greater than 10 minutes on the average; 

therefore only 3 sets were given. 

The Table indicates that the Kruskal method should be used 

f o r graphs with f i f t y or less nodes. L i t t l e can be said of problems 

with n>50, since only a few examples were tested. In a l l cases, 

the Kruskal method terminated i n a smaller number of i t e r a t i o n s and 

each time, the number was w e l l above the c r i t i c a l value f o r that 

c l a s s . In t h i s range, the Kruskal sort times are becoming s i g n i f i c a n t ; 

f o r n = 80, the sort time was 11 seconds. 

• The following example with n = 8 and degree r e s t r i c t i o n s 

r = 2 given i n F i g . 4 w i l l i l l u s t r a t e the difference between the 

Kruskal and the Prim approach. The s o l u t i o n tree diagrams f or 

both methods are given i n F i g s . 5 and 6 . 

The numbers within the nodes represent the s p e c i f i c 

i t e r a t i o n . The Kruskal approach f i n d s the optimum so l u t i o n i n the 

f i r s t i t e r a t i o n and completes the algorithm i n 8 i t e r a t i o n s . The 

Prim method finds the optimum i n the 10th i t e r a t i o n and terminates 

i n 14 i t e r a t i o n s . This i s t y p i c a l behaviour f o r Prim versus 

Kruskal as Tables 1 and 2 c l e a r l y i n d i c a t e . Table 2 gives the 

average number of i t e r a t i o n s necessary to reach an optimal s o l u t i o n 

f o r both the Prim method and the Kruskal method. The sample s i z e 
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fo r each n, r set i s included beneath these average f i g u r e s . The 

r a t i o of the number of Kruskal i t e r a t i o n s t o the number of Prim 

i t e r a t i o n s i s also c a l c u l a t e d . 

In t h i s case, the reason the Prim approach was slower 

t o f i n d the optimal s o l u t i o n was that the Prim algorithm f a i l e d t o 

select the minimum t r e e l i n k s i n increasing order of magnitude. For 

example, l i n k 6-1 of length 172 u n i t s was selected before l i n k s 

6-7 and 6-3 equal t o 48 u n i t s and 83 u n i t s r e s p e c t i v e l y . Thus the 

subproblems p r o h i b i t i n g 6-3 and 6-7, both smaller i n length than 

l i n k 6-1, were investigated f i r s t . This gave a bound of 970 u n i t s 

on the optimal s o l u t i o n (See F i g . 6). I f the subproblem p r o h i b i t i n g 

l i n k 6-1 had been investigated f i r s t , as i n the Kruskal approach, 

the bound would have been 894 units and the 63 and 67 subsets would 

have been rejected with t h e i r bounds of 967 units and 944 u n i t s 

r e s p e c t i v e l y . The same lack of ordering occurs at the node 7, 

(Prim ordering; 7-1, 7-6, 7-8, 7 -4 ) . Fortunately t h i s does not 

create any extra i t e r a t i o n s because the 970 bound i s s u f f i c i e n t to 

r e j e c t the 9th and 10th subsets with bounds of 1,008 and 1,039 

r e s p e c t i v e l y . 
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ITERATION TIME (SECS.) AVERAGE 
SORT 

TIME(SECS.) 
KRUSKAL 

CRITICAL 
NUMBER OF 
ITERATIONS 

TO 
OVERCOME 
K. SORT 
TIME 

AVG. # ITERATIONS 
SAMPLE SIZE 

N R PRIM KRUSKAL 

AVERAGE 
SORT 

TIME(SECS.) 
KRUSKAL 

CRITICAL 
NUMBER OF 
ITERATIONS 

TO 
OVERCOME 
K. SORT 
TIME 

PRIM KRUSKAL 

10 2 .014 .010 .07 18 173 
2 9 

147 
2 9 

15 2 .027 .0 18 .2 23 2 4 1 2 
19 

1 123 
19 

2 0 2 .046 .026 .4 2 0 12252 
3 

7 6 7 2 
3 

2 0 3 .046 .026 .4 2 0 3 0 
4 0 

2 9 
4 0 

3 0 3 .09 4 .049 1. 1 2 5 127 
5 0 

126 
5 0 

4 0 3. .167 .078 2.1 2 5 
6 9 0 
2 3 

561 
2 3 

5 0 3 .260 .125 3.5 2 6 
5 5 8 
14 

510 
14 

6 0 3 .360 .165 5.6 2 9 719 
1 

581 
1 

7 0 3 .500 .200 8.0 27 9 8 5 
1 

7 3 9 
1 

8 0 3 .620 . 2 5 0 1 1 .0 3 0 
4 7 2 

1 
3 2 8 

1 

TABLE I COMPARISON OF PRIM AND KRUSKAL METHODS 
NUMBER OF ITERATIONS AND ITERATION SPEED 



N R 

AVERAGE NUMBER OF 
ITERATIONS FOR 

OPTIMUM SOLUTION RATIO 
K/P 

N R 
KRUSKAL PRIM 

RATIO 
K/P 

1 0 2 82 
29 

1 1 4 
29 0.745 

1 5 2 769 
1 9 

15 16 
19 0.508 

20 2 5422 
3 

6073 
3 0.890 

20 3 12 
40 

16 
40 0.7 50 

30 3 64 
50 

8 7 
50 0.735 

40 3 280 
23 

306 
23 0.9 1 5 

50 3 336 
1 4 

402 
1 4 0.835 

TABLE 2 COMPARISON OF ITERATIONS 
NECESSARY TO REACH OPTIMAL SOLUTION 
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1 2 3 4 5 6 7 8 

1 - 88 3 6 0 5 4 0 7 3 0 1 72 251 4 9 2 

2 88 — 5 6 0 2 5 9 5 3 8 4 8 3 321 4 2 0 

3 3 6 0 5 6 0 - 291 5 8 2 8 3 7 2 5 5 8 0 

4 5 4 0 2 5 9 291 - 8 5 9 9 1 6 2 4 3 4 7 5 

5 7 3 0 5 3 8 5 8 2 8 5 9 - 3 8 6 891 4 6 

6 172 4 8 3 8 3 916 3 8 6 - 4 8 2 3 3 

7 251 3 2 1 7 2 5 2 4 3 891 4 8 - 7 9 

8 4 9 2 4 2 0 5 8 0 4 7 5 4 6 233 7 9 

FIGURE 4 8 x 8 DISTANCE MATRIX 
TO ILLUSTRATE DIFFERENCE 

BETWEEN KRUSKAL AND PRIM 



F I G U R E 6 PRIM T R E E D I A G R A M 



3.1 Results f o r several (n, r ) combinations. 23 

Programs were written i n Fortran f o r both the Prim approach 

and the Kruskal approach. The programs were tested on an IBM 7044 

using complete symmetric distance matrices whose elements were random 

generated numbers. A d e s c r i p t i o n of the basic program i s given i n the 

appendix. Tables 3 through 10 give the r e s u l t s of several, runs on 

various combinations of distance matrix s i z e s , n and degree r e s t r a i n t s , .v.. 

The tables give the number of i t e r a t i o n s and the t o t a l times 

( i n seconds) required both t o terminate the algorithm and t o f i n d the 

optimum s o l u t i o n . These fi g u r e s are given f or both 'Kruskal' and 'Prim' 

as i n d i c a t e d . In almost a l l cases.the r e s u l t s f o r each sample set give 

a wide range of values. However, f o r the larger samples, averages are 

ca l c u l a t e d f o r both methods and included i n the tables for comparison. 

Table 3 with n = 10 and r = 2 i l l u s t r a t e s the a b i l i t y of the 

Kruskal method t o f i n d the optimal s o l u t i o n early. In 12 of the 29 

cases, the optimal s o l u t i o n i s found i n 10 or fewer i t e r a t i o n s and 

5 of these 12 solutions are found i n the f i r s t i t e r a t i o n . The average 

fi g u r e s show the Kruskal method t o be the superior one f o r t h i s 

combination of n and r . The Prim method terminated f a s t e r than the. 

Kruskal method on only one occasion and t h i s occurred when the number 

of i t e r a t i o n s f o r both methods was smaller than the c r i t i c a l value of 

18 (See Table l ) . For the same reason, the Prim method found the 

optimum s o l u t i o n f a s t e r i n 5 cases. The average number of i t e r a t i o n s 

necessary t o terminate the Kruskal method was 147. This was f e l t to 

be a high f i g u r e since 22 of the 29 values were smaller than i t . 

The same can be sa i d of the Prim average of 173. 

Table 4, c l e a r l y shows the s u p e r i o r i t y of the Kruskal method 
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for t h i s p a r t i c u l a r n, r combination. The gap between the completion 

times of both approaches widens as the problems become more complex 

( i . e . when more branching steps are required t o i s o l a t e a f e a s i b l e 

s o l u t i o n ) . For example, the problem which required 4048 Kruskal 

i t e r a t i o n s t o terminate, required 7719 Prim i t e r a t i o n s . Here- the 

Kruskal method f i n i s h e d 137.1 seconds f a s t e r than the Prim method. 

Occasionally, the Prim method w i l l take fewer i t e r a t i o n s 

than the Kruskal method ('Kruskal' took 1452 i t e r a t i o n s t o f i n d an 

optimal s o l u t i o n which 'Prim' found i n the f i r s t i t e r a t i o n ) . This 

i s due t o the fact that, i n a few cases, the best r e s t r a i n e d t r e e i s 

not the one which deletes i t s largest superfluous l i n k s f i r s t at some 

branching stage. However, the average number of i t e r a t i o n s over the 

sample set bears out i n favour of the Kruskal choice of l i n k s . 

Furthermore, i n 17 of the 19 instances, the Kruskal method terminates 

i n fewer i t e r a t i o n s . The average completion time for the Kruskal 

method was more than three times f a s t e r than that of the Prim method. 

Table 5 gives a few r e s u l t s f or n = 20 and r = 2. More 

success was again experienced with the Kruskal approach. Unfortunately, 

the large running times involved f o r both methods r e s t r i c t e d the si z e 

of t h i s data set. The four extra Kruskal solutions i n d i c a t e problems 

of such a degree of complexity that the Prim algorithm f a i l e d t o y i e l d 

an optimal s o l u t i o n i n a set time of 15 minutes. Once again we have 

a case where the Prim algorithm r e s u l t s i n fewer i t e r a t i o n s ( f i r s t 

problem). The fa c t that the completion times are only 2 seconds apart, 

when the Kruskal method performs approximately twice as many i t e r a t i o n s , 

i l l u s t r a t e s the f a s t e r i t e r a t i o n time of the Kruskal algorithm 

(See Table l ) . 

Table 6 i l l u s t r a t e s an 'easier' set of problems with n = 20 
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and r.= 3. As a matter of f a c t , 6 of these 40 problems have a 

t r i v i a l s o l u t i o n ; i . e . the s o l u t i o n t o the unrestrained minimal 

spanning t r e e problem meets the degree r e s t r a i n t s of two. For t h i s 

class of problem, the e f f e c t of the l i n k ordering i n the Kruskal 

algorithm i s not very s i g n i f i c a n t . There are r e l a t i v e l y few nodes 

of degree greater than three, and therefore most subsets w i l l have 

three subproblems. The ordering of the l i n k s i s more important when 

the subsets have more members, since i t w i l l take more i t e r a t i o n s t o 

reach a lower bound which might have been discovered i n one of the f i r s t 

few subproblems, i f the l i n k s had been ordered. 

The r e s u l t s are more c l o s e l y grouped and the averages give 

a better i n d i c a t i o n of the group. The average figures f o r the 

i t e r a t i o n s are quite s i m i l a r . In both cases, the average number of 

i t e r a t i o n s necessary t o reach the optimal value f a l l s below the 

c r i t i c a l value of 20 for t h i s group (See Table l ) . For t h i s reason, 

the optimum times f o r the Prim method are often the f a s t e r ones. 

(In 20 of the 40 cases the Prim method fi n d s the optimal s o l u t i o n 

f a s t e r . ) 

In the set of Table 7, the Kruskal method has better average 

times than the Prim method. This i s l a r g e l y due t o the f a s t e r i t e r a t i o n 

times of the Kruskal method, since the average number of i t e r a t i o n s f o r 

both methods are quite s i m i l a r . The two approaches have good success 

at f i n d i n g the optimal s o l u t i o n i n the f i r s t i t e r a t i o n . The Kruskal 

method accomplishes t h i s 14 times and the Prim method, 10 times. There 

are four or f i v e 'harder 1 problems i n t h i s set and a comparison of 

t h e i r solutions by both methods emphasizes the s u p e r i o r i t y of the Kruskal 

approach. A l l of the averages appear t o be too high. For'example, 43 

of the 50 values are smaller than the average values f o r the number of 
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i t e r a t i o n s necessary t o terminate both the Prim and the Kruskal 

methods. 

In Tables 8 and 9, the cla s s of problems becomes more d i f f i c u l t . 

A comparison of the average completion times and the average optimum 

times w i l l i n d i c a t e the large savings i n time, r e a l i z e d by using the 

Kruskal method over the Prim method. In every case i n Table 8, the 

Kruskal method terminates f a s t e r than the Prim method. In Table 9, 

only one problem i s solved f a s t e r by the Prim method and t h i s i s due 

t o the fact that the t o t a l number of i t e r a t i o n s necessary t o terminate 

the algorithm (16 i t e r a t i o n s ) i s l e s s than the c r i t i c a l value 

(30 i t e r a t i o n s ) . 

Table 10 gives some r e s u l t s f o r a few matrices l a r g e r than 

50 x 50. C l e a r l y the Kruskal method should be used i n t h i s region 

at a l l times. The i t e r a t i o n times i n Table 1 indi c a t e that for t h i s 

class of problems, the Kruskal approach can take more than twice as 

many i t e r a t i o n s and s t i l l f i n i s h f a s t e r than the Prim approach. 

The algorithms were not tested f o r problems with n>~80 and 

r = 3. In view of the previous r e s u l t s , i t i s f e l t that t h i s region 

would best be dealt with using the Kruskal method. I f the run-times.J 

become too large for t h i s c l a s s of problems, one of the H e u r i s t i c 

methods described i n section 3.3>may be used. 

The random numbers which formed the distance matrices f o r 

the preceeding examples were d i s t r i b u t e d i n the range 0 to 1000. 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PR 1M KRUSKAL PRIM 
END • OPTIMUM END OPT 1 MUM END OPT 1 MUM END OPTIMUM 

33 6 35 6 0.42 0.15 0.52 0.13 
12 2 12 2 0.22 0.10 0.20 0.05 
50 2 57 15 0.57 0.10 0.85 0.25 
88 33 114 59 0^92 0.42 1.62 0.90 
37 24 55 47 0.42 0.30 0.82 0.70 

124 52 180 106 1.24 0.59 2.68 1.65 

34 1 36 9 0.37 0.07 0.53 0.17 

. .5A2-. 566 480 6.05 . S..29 7.75 6.60 
24 12 55 46 0.30 0.20 0.78 0.67 
77 28 80 36 0.84 0.35 1.15 0.53 
25 20 23 18 0.30 0.25 0.35 0.28 
22 17 20 7 0.29 0.22 0.30 0.10 
21 1 147 127 0.25 0.09 2.00 1.75 

933 166 913 237 9.42 1.82 12.40 3.28 

' 22 1 26 1 0.27 0.07 0.37 0.02 
84 29 79 10 0.87 0.37 1.07 0.15 
68 61 73 63 0.74 0.67 1.05 0.92 
28 6 31 15 0.37 0.17 0.48 Q.2Z. 
20 1 32 15 0.25 0.07 0.47 0.25 

14 1 '• 99 93 0.20 0.08 1.42 1.33 
185 65 211 118 1.90 0.77 3.08 1.75 
160 139 338 316 1.65 1.45 4.70 4.40 
270 8 302 87 2.69 0.17 4.12 1.25 
951 928 956 934 L0.05 9.82 13.27 12.97 

8 1 35 30 0 .14 0.07 0.53 0.47 
77 35 135 71 0.82 0.44 1.92 1.03 

207 128 227 204 2.22 1.49 3-25 2.93 
146 138 146 138 1.65 1.57 2.04 1.93 
14 10 33 26 0.22 0.17 0.50 0.40 

A V E R IGES 

147 . 82 173 114 1 .57 0 .94 2.42, 1 .63 , 

TABLE 3 RESULTS FOR N = 10 R - 2 

SAMPLE SIZE = 29 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PR 1 M KRUSKAL PRIM 
END • 'OPT 1 MUM END OPTIMUM END OPTIMUM END OPTIMUM 

2503 2083 3292 1370 41.7 35.0 88.9 37.3 
880 716 1062 498 15.8 13.1 29.2 13.8 
84 1 546 482 1.5 0.2 15.3 13.6 

476 414 404 323 8.0 7.0 11.7 . 9.3 
60 19 83 19 1,1 0.5 2.5 0.6 
574 437 1379 1276 9.6 7.4 39.7 36.7 
95 1 109 9 1.6 0.2 3.2 0.4 

1942 4758- . 4588 31.4 25.9 138.5 133.5 , 
925 394 985 192 15.2 6.8 28.2 5.6 
172 1 415 334 2.9 0.2 11.5 9.3 

1344 1162 1832 428 23.3 18.8 52.8 12.4 
4048 3606 7719 3821 79.8 70.8 216.9 109.2 
114 1 115 1 2.0 0.2 3.4 0.1 
37 28 40 31 :0.7 0.6 1.2 • 0.9 

623 370 1011 234 10.5 6.4 28.6 6.8 
2871 1879 10155 8944 52.9 36.5 298.3 262.6 

—491 194 6366 ' 5842 8.3 3.3 184.1 169.1 
2091 1452 645 1 36.9 26.1 19.0 0.1 
2004 256 4905 418 34.9 4.8 134.4 11.7 

AVEI AGES 

1123 769 2412 1516 19.9 13.9 68.8 43.8 

TABLE 4 RESULTS FOR N = 15 R - 2 

SAMPLE SIZE = 1 9 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PRIM KRUSKAL PRIM 
END ' OPT I .MUM END OPT 1 MUM END OPT 1 MUM END - OPT 1 MUM 

2 - 4 4 3 1 7 6 2 1 2 2 9 3 3 9 6 1 . 2 4 4 . 3 5 9 . 4 1 6 . 6 

1 4 5 6 5 9 5 2 0 1 7 5 7 2 1 4 5 5 9 3 8 1 . 5 2 5 1 . 3 8 1 1 . 3 6 7 0 . 9 

6 0 0 7 4 9 8 6 1 7 9 5 6 3 3 2 3 1 5 0 . 8 1 2 6 . 8 8 3 9 . 3 1 6 7 . 4 

5 9 8 4 3 8 8 2 1 5 8 . 5 1 0 2 . 8 

6 9 5 6 , 5 7 3 7 . 1 8 7 . 3 1 5 6 . 2 

1 3 6 9 8 . 1 1 0 2 8 3 8 1 . 4 3 0 7 . 1 

2 - 9 8 1 3 2 2 6 9 7 7 8 1 . 4 5 9 4 . 7 

A V E R - L G E S 

1 3 2 4 4 9 9 3 5 3 0 0 . 3 2 2 6 . 2 

TABLE 5 RESULTS FOR N - = 2 0 R = 2 

SAMPLE SIZE = 7 
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I T E R A T I O N S R U N N I N G T I M E S ( S E C S ) 

K R U S K A L P R I M K R U S K A L P R I M 

E N D - O P T I M U M E N D O P T 1 MUM E N D O P T 1 MUM E N D O P T 1 MUM 

65 15 65 23 1.9 0.7 2.8 1.1 

7 2 7 2 0.5 0.4 0 .4 0 .1 

10 1 10 1 0.6 0.3 0.5 0 .1 . 

46 3 46 3 1.5 0.4 2 .0 0 . 2 

44 26 47 30 1.3 0 . 8 2.2 1.4 

16 14 22 20 0.5 0.5 1.1 1.0 

31 20 34 26 1.0 .8 1.7 1.3 

16 2 16 2 0 . 8 0.4 0 . 8 0 . 2 ' 

7 5 4 1 0.4 0.4 0 . 2 0 . 1 

13 6 13 13 0.5 0 .4 0 . 6 0 .6 

40 35 37 34 1.1 1.2 1.7 1.6 

1 1 1 1 0.3 0 . 3 0 . 1 0 .1 

22 . l£....... 22 14 0.7 0.5 1.0 0.6 

1 1 1 1 . 0.4 0.4 0 . 1 0 . 1 

7 1 7 4 0.5 0.4 0.4 0 . 2 

221 69 200 51 5.8 2.1 8 . 8 2.4 

1 1 1 1 0.4 0 .4 0 . 1 0 . 1 

1 1 1 1 0.4 0 .4 0 .1 0 .1 

1 1 1 1 0.4 0.4 0 . 1 0 . 1 

7 2 7 4 0.5 0 .4 0.4 0 . 2 

61 27 55 21 1.8 1.0 2.6 1.1 

4 1 1 0.4 0.4 0 . 2 0 . 1 

19 11 19 14 0.7 0.5 1.0 0.7 

1 1 1 1 0.3 0 .3 0 . 1 0 . 1 

56 35 56 35 1.4 1.0 2,6 1.7 

4 2 4 2 0.4 0 .4 0 . 2 0 .1 

16 14 16 16 0.7 0 . 6 0 . 8 0 .8 

4 1 4 1 0.4 0.4 0 . 2 0 . 1 

3 7 7 0.4 0.4 0.4 0.4 

38 11 32 10 1.1 0.5 1.5 0 .6 

31 20 34 21 1.0 0.7 1.6' 1.0 

TABLE 6 RESULTS FOR N - 20 R = 3 

SAMPLE SIZE = 40 
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ITERATIONS . RUNNING TIMES (SECS) 

KRUSKAL PR 1 M KRUSKAL PRIM 
END • 'OPT 1 MUM END OPTIMUM END OPT 1 MUM END • OPTIMUM 
19 14 46 44 0.7 0.6 2.2 2.1 

10 5 10 7 0.5 0 .5 0.6 0.4 

137 38 122 73 3 . 5 1.3 5.6 3.4 

22 2 22 2 0 . 9 0.4 1.1 0 .1 

79 71 79 73 2.3 2.1 3.7 3-4 

77 29 98 56 2 . 0 1.0 L. 7 2.8 
7 3 16 16 0.5 0 .4 0 . 8 0 . 8 

4 1 4 1 0.4 0.4 0 . 2 0 .1 

10 2 10 4 0.5 0.4 0.6 0.3 

AVER iGES 

29 12 30 16 1.0 0.6 1.4 0 . 8 

TABLE 6 RESULTS FOR N. = 20 R = 3 
(CONT'D) 

SAMPLE SIZE = 40 . 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PRIM KRUSKAL PRIM 
END : OPT 1 MUM END OPT 1 MUM • END OPTIMUM END OPT 1 MUM 
16 6 16 6 1.6 1.2 1.6 .7 

690 476 842 764 35.2 24.8 82.5 74.6 
100 33 100 200 6.3 3.1 10.0 2.2 
65 1 65 10 3.9 1.1 6.1 1.0 
49 30 49 30 3.2 2.4 4.8 3.0 

112 51 100 47 6.0 3.3 9.4 4.4 
52 1 109 7 3.4 1.1 11.4 .8 
1 1 1 1 1.1 1.1 .1 .1 

37 11 37 11 3.0 1.8 3.4 1.1 
264 185 367 325 13.9 10.0 35.0 31.0 
71 49 86 30 4.0 3.1 8.5 3.1 
16 8 25 19 2.1 1.8 2.5 1.9 ' 
. 1 1 1 1 1.0 1.0 .1 .1 
47 10 25 8 3.7 1.9 2.5 . .9 

650 513 620 527 30.2 24.0 60.6 51.6 , 
28 17 121 • 119 2.5 2.0 12.3 12.1 
31 11 28 16 2.8 1.9 .'•2'.'9 1.7 
13 2 13 2 1.5 1.0 1.2 .2 
73 21 121 84 4.6 2.1 11.9 8.3 
19 1 - 19 7 2.3 1.4 2.0 .8 
13 1 13 1 1.6 1.1 1.2" .1 

442 246 386 213 21.8 12.7 36.6 20.1 
55 15 61 50 3.7 1.7 5.9 4.8 
37 22 37 22 2.9 2.2 3.4 211 
4 1 4 1 1.3 1.1 .4 .1 
7 5 7 5 1.3 1.1 .7 .5. 

.1 1 1 1 1.0 1.0 .1 .1 

79 38 85 45 5.2 3.1 8.6 4.5 
7 6 7 6 1.2 1.2 .7 .6 
95 41 95 56 5.9 3.4 9.3 5.6 
13' 3 13 3 1.8 I 1.3 •4 , 

TABLE 7 RESULTS FOR N = 30 R = 3 

SAMPLE SIZE = 50 
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ITERATIONS ' RUNNING TIMES (SECS) 

KRUSKAL PR 1M KRUSKAL PRIM 
END •' 'OPTIMUM END OPTIMUM END OPT 1 MUM END OPTIMUM 

10 1 10 1 1.8 1.3 1.0 .1 
1 4 1 1.4 1.3 .4 .1 

,., 41. 6 41 6 2.6 1.1 3.9 .7 
53 38 38 20 3.7 2.0 3 7 2,1. 

2070 949 1880 1080 95.4 44.5 177.6 10? 3 
274 254 304 304 15.1 14.1 30.3 30 0 

10 1 ' 10 4 1.6 1.2 1:1 .5 
13 9 13 9 1.8 1.6 1.3 .9 
65 59 28 20 4.2 3.9 2.9 2.1 
7 1 7 1 1.5 1 . 3 7 l 

430 27 303 237 22.5 3.1 • 29.1 22.7 
4 2, 4. 2 1.3 1.2 .4 .2 

104 8 113 10 6.2 1.8 10.9- 1.1 
16 3 16 3 1.6 0.9 1.7 .3 
13 5 13 1 1.9 1 .5 1 .5 .3 
7 7 1 1 8 1 7 ,7 , ? 

7 1 7 4 1.6 1.3 .8 .5 
34 21 37 17 3.0 2.4 . 3.8 .' 1.8 
31 5 40 16 2.8 1.6 4.0 1.7 

AVER 

126 64 127 87 7.0 4.2 12.2 8.1 

. -

TABLE 7 RESULTS FOR N = 30 R = 3 

SAMPLE SIZE = 50 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PR 1M KRUSKAL PRIM 
END • ' OPTIMUM END OPTIMUM END OPT 1 MUM END OPTIMUM 

127 98 199 169 11.7 9.6 33.8 28.8 
1418 1299 1192 724 113.1 104.3 200.0 121.9 
331 131 319 116 29.9 14.5 55.6 20.1 

5529 2171 .6398 1196 405.9 165.5 1086.4 201.8 
34 14 38 1 3.8 2.4 6.8 .6 
25 1 64 1 3.6 2 .1 10.9 • 3 

441 317 418 294 37.4 27.7 70.2 49.5 
603 : 396 1186 1051 46.4 31.5 192.6 170.3 
85 76 85 77 8.1 7.5 14.6 13.3 
316 56 352 148 24.5 6.0 58.4 24.5 
61 46 73 56 6.5 5.4 12.9 9.9 
214 17 238 20 17.9 2.9 38.3 3.4 
982 5 1048 92 72.9 2.4 176.0 15.9 
201 69 297 139 16.2 6.8 48.4- 22.8 
399 200 522 272 3o;6 16.1 86.6 45.6 
' 25 1 25 10 4 .0 2.3 4.1 1.7 
49 25 58 . 38 5.7 4 .0 10.1 6.7 

1237 1082 2604 2257 101.0 88.8 428.9 372.2 
34 11 58 37 4.2 2.6 10.3 '. 7.0 

. 130 125 67 49 12.6 12.2 10.9 8 .0 
106 11 112 11 10.7 3.2 19.9 2 .1 

550 284 493 • 269 44.3 23.5 82.3 45.5 
16 5 22 13 3.3 2.5 3.7 2.2 

AVERj iGES 

561 280 690 306 44.1 23.6 115.7 51.0 

TABLE 8 RESULTS FOR N = 40 R = 3 

SAMPLE SIZE = 23 
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ITERATIONS RUNNING TIMES CSECS) 

KRUSKAL PRIM KRUSKAL PRIM 
END •' 'OPT 1 MUM ' END OPT 1 MUM END OPT 1 MUM END ' • OPT 1 MUM 
94 34 100 57 14.1 7.0 26.4 15.2 

830 333 926 643 95.2 40.6 238.6 166.5 
40 2 52 2 8.7 4.5 13.3 .8 

163 116 88 59 22.9 17.6 22.9 15.5 
28 9 64 57 6.4 4.4 17.2 ' 15.5 

145 79 382 345 21.9 14.5 98.5 89.1 
22 1 37 34 5.0 2.8 9.7 8.9 

3221 2284 ' 3437 2629 365.5 261.4 ' 834.1 685.0 
63 18 63 18 11.4 6.5 15.9 4.7 

826 536 86i_. 535 97.2 64.2 219.7 135.7 
241 224 . 283 266 31.2 29.3 70.6 66.4 . 
16 1 16 4 4.8 3.2 4.5 1.4 

427 380 490 467 51.8 46.5 130.3 124.4 
1033 679 1009 509 122.0 81.2 282.5.., 1 4 3 . 0 

AVEPJ GES 

510 336 558 402 61.3 4 1 . 7 146.0 105.0 

TABLE 9 RESULTS FOR N = 5 0 R = 3 

' SAMPLE SIZE = 1 4 
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ITERATIONS RUNNING TIMES (SECS) 

KRUSKAL PR 1M KRUSKAL PRIM 
END 'OPT 1 MUM END OPT 1 MUM END OPTIMUM END OPT 1 MUM 

N=60 R=3 

581 2 719 46 93.9 6.4 260.5 17.1 
298 259 1597 1578 51.4 45.6 584.4 577.6 

N=70 R=3 

739 611 985 918 171.9 144.0 494.5 460.7 

N=80 R=3 

328 140 472 274 90.0 52.5 295.6 • 171.8 
1009 873 487 224 269.2' 234.4 302.0 138.7 

TABLE 10 RESULTS FOR N > 50 R = 3 



Comparison With Linear Programming Solution 37 

A different approach at solving the problem has been 

proposed by N. Deo and S.L. Hakimi (5). They set up the problem as 

a.linear program in the following manner. 

The total length of n-l links chosen from the distance 

matrix must be minimized subject to the following conditions. 

(1) Every vertex must have degree less than an equal to the problem 

restraint, r. 

(2) There is no isolated vertex in the graph. 

In order to define the linear program, i t is necessary 

to introduce many additional variables. These variables are bounded 

and can only assume the values 0 or 1. They end up with a simplex 

tableau involving n(n+l) variables in "^"^) + 1 equations, which 

for n = 15 becomes 240 variables in 136 equations. 

The above restraints do not guarantee that the solution 

to the linear program will yield a tree. There is a possibility of 

closed loops existing in the solution. 

• Deo and Hakimi incorporate a tree test algorithm to 

determine the feasibility of the solution. If the solution fails 

this tree test, the next smallest vector is forced into the solution 

and the linear program is iterated again. 

An example is given of a 14 x 14--incomplete - symmetric graph 

with a degree restraint of two. It is solved on an IBM 709 in a 

matter of 249 seconds. The same problem was solved by the Prim 

method in 47 seconds and by the Kruskal method in 18 seconds on 

an IBM 7044- The internal logic and arithmetic organization of the 

two machines is quite similar but the cycle time of the 7044 is six 

times faster than that of the 709. Therefore a rough estimate of 



the running time of the Deo and Hakimi solution on the 7044 would 

be about 40 seconds. 

One advantage of the branch and bound approach is that we 

will always obtain a reasonably good upper bound on our optimal 

solution i f we run out of time. With this linear programming 

approach, we have no such estimate i f the problem takes longer 

than a set time. 



H e u r i s t i c Suboptimization Schemes 39 

The following i s an account of a few schemes designed to-

decrease s i g n i f i c a n t l y the amount of computation involved i n a 

problem at the r i s k of f a i l i n g t o f i n d the optimal solution, and 

accepting a near optimal s o l u t i o n i n a few cases. 

The f i r s t of these guarantees that our answer w i l l be 

within a p r e s p e c i f i e d amount of the optimal s o l u t i o n . Suppose 

we are w i l l i n g t o accept a f e a s i b l e s o l u t i o n which d i f f e r s from 

the optimal s o l u t i o n by no more than 10%. I f a f e a s i b l e s o l u t i o n 

i s discovered with a t o t a l length of 2000 un i t s , then we can r e j e c t 

a l l subsets with bounds of 1819 or more (1.10 x 1819 = 2000.972000). 

A few of these suboptimization runs were made, both with 

the Kruskal method and the Prim method. The r e s u l t s are given i n 

Tables 11, 12 and 13- In each of these runs a 10$. suboptimization 

l i m i t i s allowed. The actual deviation from the known optimal 

s o l u t i o n i s tabulated. At the bottom of each t a b l e , the average 

amount of work and time saved i s given f o r the data set. 

Table 11 shows an average deviation of 2% from the 

optimums and i n 11 of the 20 cases the optimal s o l u t i o n was found. 

This set of data contains more d i f f i c u l t problems than the set of 

Table 4, as indic a t e d by the higher average f i g u r e s . The 

suboptimization e f f e c t i v e l y reduces these averages by more than 

60% i n a l l cases. 

Table 12 gives a few r e s u l t s f o r n = 20 and r = 2. 

The savings there are a l l i n excess of 75%. 

The 10%> suboptimization run using the Prim method i s 

presented i n Table 13. In 16 of the 20 cases, the f i r s t f e a s i b l e 

s o l u t i o n reached i s within the 10$ l i m i t . This indicates that the 



4-0 

method gives a r e l a t i v e l y good i n i t i a l estimate of the optimal 

s o l u t i o n . The Kruskal method also gave t h i s good f i r s t guess, but 

because of the 2.1 second sort time, the average completion time 

over the same set was greater than the Prim method. 

The average amounts saved i n the Prim case were a l l greater 

than 85% with the average deviation from the optimal less than A % . 

The sort algorithm used f o r the Kruskal algorithm has a 

speed which i s pro p o r t i o n a l to N l n N, where N i s the s i z e of the 

unsorted l i s t . Since we are dealing with n x n complete symmetric 

matrices, these l i s t s are of s i z e " ( " " l ) . Therefore the net e f f e c t has the 
2 

sort times increasing by the order of n^ l n n (see Table l ) . 

The Kruskal algorithm i s f a s t e r f o r sparse matrices than 

f o r complete matrices since the sort time i s reduced due to the 

smaller l i s t of l i n k s r e q u i r i n g s o r t i n g . . At the moment, the Prim method 

i s not set up to deal with sparse matrices. The algorithm i s matrix 

oriented, with the p o s i t i o n of a l i n k i n the distance matrix representing 

the nodes which the l i n k j o i n s . Sparse matrices could be handled more 

e f f i c i e n t l y i f a l i s t of l i n k s was formed as i n the Kruskal algorithm. 

The d i f f e r e n c e between the completion time and the time when 

the optimal s o l u t i o n i s found i s often quite large (see Tables 3 to 10). 
) 

This suggests concluding the algorithm a f t e r some set.time and taking 

our current best f e a s i b l e s o l u t i o n as an estimate of the optimal 

s o l u t i o n . The cases f o r n>50 and r = 3 appear to back up t h i s approach, 

i n that many of the i n i t i a l f e a s i b l e solutions are quite close to the 

optimal.• 

In the f i v e problems with n >50, four produced f i r s t estimates 

within 10% of t h e i r optimum solutions and one gave a f i r s t estimate 

within 15% of i t s optimum s o l u t i o n . 
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A time l i m i t of 30 seconds was imposed on the Kruskal method 

f o r the 20 problems of Table 11. The optimal s o l u t i o n was found i n 12 

cases. The remaining problems averaged solutions within 13$ of the 

optimum. The largest deviation was 35$. The t o t a l time f o r the en t i r e 

set was 433 seconds. The time f o r the 10$ suboptimization run was 506 

seconds and the complete algorithm took 1392 seconds. 

The same time l i m i t was used on the 'easier' set of Table 4» 

The optimal s o l u t i o n was found i n 16 of the 19 cases. The remaining 

three answers were within 0.5$, 13$ and 11$ r e s p e c t i v e l y . The t o t a l 

time saved over the basic algorithm was 111 seconds. 

A survey of the a v a i l a b l e data was made to see.what per cent 

of the t o t a l number of l i n k s was a c t u a l l y processed i n a r r i v i n g at an 

optimal s o l u t i o n . This survey was taken on the Kruskal r e s u l t s and i s 

summarized i n Table 14. The average p o s i t i o n i n the sorted l i s t of l i n k s , 

where the f i n a l l i n k of an optimal s o l u t i o n occurred, was obtained f o r 

each set of data. These f i g u r e s were expressed as a percentage of the 

t o t a l number of l i n k s a v a i l a b l e ( n ( n ~ l ) ) - Percentage f i g u r e s were also 
2 

obtained f o r the maximum l i s t p o s i t i o n s of the optimum solutions i n each, 

set. From these r e s u l t s , a proposed l i m i t , on the percentage of l i n k s 

r e q u i r i n g i n v e s t i g a t i o n , was estimated f o r each n, r combination. For 

example, from Table 14, f o r n = 50, r = 3, i t i s estimated that we 

only need to examine the smallest 245 (0.20 x 1225 = 245) l i n k s of the 

distance matrix. 

The average number of l i n k s prohibited i n an optimal so l u t i o n 

also appeared to be an i n t e r e s t i n g s t a t i s t i c to inv e s t i g a t e . Table 15 

gives the average value and the maximum value of the number of l i n k s 

set t o OO at the optimal s o l u t i o n f o r each n and r studied. 

It was f e l t that a saving i n time could be r e a l i z e d by 

imposing these two l i m i t i n g conditions on the algorithm. V i z . , l i m i t the 



set of l i n k s studied to the smallest x% and at the same time l i m i t 

the number of l i n k s , y, set to i n f i n i t y (x and y are taken from Tables 

14 and 15 r e s p e c t i v e l y ) . 

A few runs were t r i e d using both the maximum and the average 

values given i n Table 15 f o r the y l i m i t . 

There was no e f f e c t i v e reduction i n the number of i t e r a t i o n s 

and i n some cases, extra i t e r a t i o n s were required. • It was f e l t that the 

l i m i t s imposed on the algorithm, excluded some subsets which would have 

given us a better estimate of the optimal so l u t i o n at an e a r l i e r stage. 

Thus our bound value f o r r e j e c t i n g subsets was higher and consequently 

some a d d i t i o n a l subsets were examined. I t appeared that the number of 

subsets r e j e c t e d by t h i s l i m i t i n g strategy was approximately equal to 

the number that would have been rejected i f these lower bounds had been 

established e a r l i e r . 

A combination of some of these ideas could be used where 

furthe r reduction i n time i s desired. For example, the percentage 

suboptimization could also be used with a lower time l i m i t since the 

complete s o l u t i o n t r e e i s much smaller than i t i s i n the main algorithm. 
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ITERATIONS RUNIUNG E04ES (S3CS.) 
• - cfl 

Create 
than 
Opti­
mum 

Kruskal Kruskal Suboptimur; Kruskal (ruskal Suboptimum 

• - cfl 

Create 
than 
Opti­
mum • End Dptirrium End Outiiuum End Opt imam End Optimum 

• - cfl 

Create 
than 
Opti­
mum 
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ITERATIONS RUTIXTIHG TIKES (SECS.) Jreate 
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Opti­
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TABLE 12 RESULTS FOR K = 20 R = 2 
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TABLE 13 RESULTS FOR U = 40 R = 3 

SAMPLE SIZE = 20 



N R 

% LINKS SEARCHED 
FOR 

OPTIMUM SOLUTION PROPOSED 
LIMIT N R 

AVERAGE MAXIMUM 

PROPOSED 
LIMIT 

10 2 3 8 % 5 8 % 6 0 % 

1 5 2 32% 6 0% 60% 

20 2 2 0 % 23% 5 0 % 

20 3 17% 36% 4 0 % 

30 3 1 4 % 21 % 3 0 % 

40 3 1 0 % 13% 20% 

50 3 9 % 1 5 % 2 0 % 

60 3 - 1 2 % 1 5 % 

70 3 — 10% 1 5 % 

80 3 - 6% 10% 

TABLE 14 KRUSKAL SEARCH LIMITS 



N R 

NUMBER OF LINKS 
SET TO CO AT 

OPTIMUM N R 
AVERAGE MAXIMUM 

10 2 6 1 1 

15 2 1 2 23 

20 2 1 8 26 

20 3 2 8 

30 3 3 9 

40 3 6 1 1 

50 3 6 1 0 

60 3 12 1 2 

70 3 6 1 0 

80 3 1 0 1 0 

TABLE 15 NUMBER OF PROHIBITED LINKS FOR N,R. 



Conclusions 

A branch and bound algorithm has been developed to solve 

the problem of f i n d i n g the restrained minimal spanning tree f o r a 

symmetric graph. 

Two options i n the basic algorithm are presented and both 

of these methods are used to solve a wide v a r i e t y of problems. The 

r e s u l t s i n d i c a t e that the Kruskal method i s the more e f f i c i e n t one 

of the two. The r e l a t i v e e f f i c i e n c y of the Kruskal method over the 

Prim method i s d i r e c t l y p r o p o r t i o n a l to the degree of complexity of 

the problem. In many of the ' d i f f i c u l t ' problems with degree 

r e s t r i c t i o n s equal to two and distance matrix dimensions of twenty, 

the Prim method f a i l e d to terminate within a f i x e d time of twenty 

minutes. • The Kruskal method solved t h i s same set i n an average 

time of f i v e minutes a problem. 

• On the other hand, the two methods are quite comparable 

f o r the 'easier' c l a s s of problems with degree r e s t r a i n t s of three 

and matrix dimensions no greater t h a n . t h i r t y . 

In most cases, the Kruskal method gives a better i n i t i a l 

estimate of the optimal s o l u t i o n than the Prim method. 

When the degree of d i f f i c u l t y of a problem i s such that 

even the Kruskal approach f a i l s to y i e l d an optimal s o l u t i o n i n a 

fi x e d length of time, then one or more of the h e u r i s t i c methods of 

section 3-3 may be used. Of these methods, the one which appears to 

give the largest time savings combined with smallest average deviation 

from the optimal s o l u t i o n , i s the percentage suboptimization technique. 
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The Kruskal method i s the superior one f o r dealing with 

sparse matrices, since the sort time i s les s than f o r complete 

matrices due to the reduction i n the number of l i n k s . 

The algorithms presented here were only developed f o r 

symmetric matrices, but the branch and bound portion would be 

exactly the same f o r the nonsymmetric case. Only the minimal spanning 

tree algorithms would have to be a l t e r e d to deal with nonsymmetric 

matrices. 
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APPENDIX 

Description of the Computer Program 51 

The algorithm was programmed i n Fortran IV f o r an IBM 70AA 

computer. F i g . 7 shows a general block diagram of the program. 

Box 1 of the f i g u r e denotes the minimal spanning t r e e algorithm 

where the tree l i n k s are selected from the given distance matrix. E i t h e r 

the Kruskal or the Prim algorithm i s used here. 

Box 6 indicates the routine f o r 'bunching' the l i n k s from l i k e 

trouble nodes. These sets of l i n k s are stored temporarily i n a matrix 

u n t i l a. f e a s i b l e s o l u t i o n i s reached, or the current bound i s exceeded 

(box 2). Then they are added t o the pushdown stack i n consecutive levelkj 

each l e v e l representing a d i f f e r e n t trouble node, (box A). 

The following routine i s incorporated i n t o the algorithm t o save 

unnecessary redetermination of the minimum t r e e l i n k s which were chosen 

before the degree r e s t r a i n t s were exceeded. As soon as a node exceeds the 

degree r e s t r i c t i o n s , the status of the current subproblem i s recorded; 

e.g. p a r t i a l t r e e length, selected l i n k s , trouble node, etc. as shown i n 

box 3- Then, using switch 1, the minimal tr e e i s completed without further 

checking of the r e s t r a i n t s . I f the length of t h i s t r e e i s smaller than 

the current f e a s i b l e bound, the superfluous l i n k s at the trouble node are 

excluded from the distance matrix, (box 5). The minimum spanning t r e e 

algorithm i s then r e s t a r t e d using the stored p a r t i a l t r e e information, 

(box 7). The time savings become very s i g n i f i c a n t when a trouble node 

occurs more than halfway through the minimum t r e e algorithm. 

As indicated i n box 8, the algorithm terminates when the 

pushdown stack i s empty. 
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