MINIMAL SPANNING TREES WITH DEGREE RESTRAINTS

by

ARCHIBALD McFARIANE

B.Sc., University of British Columbia, 1963

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF
MASTER COF SCIENCE
in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming to the

required standard

THE UNIVERSITY OF BRITISH COLUMBIA

October, 1968



.Vvln presenting this thesis in partial fulfilmenf of the requirements for
an advanced degree at the University of British Columbia, | agree that
the Library shall make it freely avéilable for reference and Study.v

| further agree fhat permission for extensive copying of this thesis
for schoiar]y purposes may be granted by the Head of hy Department or
by>his representatives. It is understood that copy{ng or publication.
of this thesis for financial gain shall not be allowed withéut my

written permission,.

Department of Computer Science

The University of British Columbia
Vancouver 8, Canada

Date November 20, 1968




ABSTRACT i

The purpose of this thesis is to deVelop a solution to the problem
of determining the minimal spanning tree with degree restraints for a given
non-directional graph.

Section 1 gives an introduction to the problem. A set of
definitions describing the graphical terminology used in the body of the
thesis, is presented along with a description of the problem. At fhe end
of this section a few applications of the problem are given.

Section 2 outlines the method of solution used. The algorithm
incorporates a branch and bouﬁd technique and this problem solving method
is discussed in general in the first part of the section. Some other
applications of branching and bounding are also discussed. Next, the
complete algorithm is described along with a proof of optimality. A sample
problem is worked through to illustrate the method of solution.

Two different minimal spanning tree algorithms, one by R.C. Prim,
the other by J.B. Kruskal, are used in the main core of the solution
algorithm. These two approaches are discussed with the aid of a sample
problem, at the end of Section 2.

Computer programs were written to test the algorithms. Several
sets of data were compiled for various sizes of graphs and values of degree
restrictions. The results of these runs were tabulated and are discussed
in Section 3. Next, a comparison is made of the method discussed here and
a solution involving linear programming. |

Section 3 also presents some useful heuristic approaches at sub-
optimizatioh which effectively reduce the amount of computation.

Section 4 summarizes the results of Section 3 and indicates the

best approach to use for a specific problem.



Section 1

Section 2

Section 3

Section 4

Bibliography

Appendix

TABLE QF CONTENTS

Introduction

Definitions

Problem Description

Method of Solution

Branch and Bound Methods
Description of the Algorithm
Verification of Optimality
Sample Problem

The Minimal Spanning Tree Algorithm

Discussion of Results

Results for Several (n, r) Combinations
Comparison with Linear Programming Solution

Heuristic Suboptimization Schemes

Conclusions

Description of the Compubter Program

ii

Page

11

15

23

37

39

48

50

51



10,
11.
12.
13.
14.

15.

Comparison of

Comparison of

LIST OF TABLES

Prim and Kruskal Methods

Iterations Necessary to Reach Optimal Solution

Results for n = 10, r
" " n=15 r
" " n=20,r
" " n=20, r
" " n=230,r
" " n =40, r
" " n=50,r
" " n>»50, r

Suboptimization

i

Kruskal Search Limits

Number of Prohibited Links for n,

Comparisons for n

r

15, r =2
20, r =2
40, r = 3
Combinations

iii

Page
19

20

- 27

28
29
30, 31
32, 33
34
35
36
43
bty
45
46
47



LIST OF FIGURES iv

Page
8 x 8 Sample Problem 13
Distance Matrix for lst Subproblem 13
Complete Tree Diagram 14
8 x 8 Distance Matrix to Illustrate the Difference Between
Kruskal and Prim » | 21
Kruskal Tree Diagram \ 2
Prim Tree Diagram . 22

Program Block Diagram 52



ACKNOWLEDGEMENTS v

I wish to thank Mr. H. Pachon of the Automatic Electric
Company for his suggestion of the topic. I would also like to thank
Dr. J.M. Kennedy for his assistance and encouragement during the
writing of this thesis.

Finally I wish to thank the British Columbia Telephone Compaﬁy
for their financial aid and alsc the Department of Computer Science for

making funds available during the summer of 1968.



INTRODUCTION 1
1.1 Definitions
A gggpg G consists of a finite set P of nodes Py,Po,...,P, and a
set R ov ordered pairs of distinet nodes of P. Each pair of nodes
(x,y) €R is called link of the graph G,

Associated with each graph G, we have a distance matrix L with

elements lij,(i=l,2,...,n;'j=l,2...,n; i#j) of the given graph. Node

i dis called the initial node of link 1ij

denotes the length of the 1link from i to J.

and node j is called the

terminal node. 1ij

A path in a graph is a set of links 17,1,,...,15 such that the
terminal node of the 1; link corresponds to the initial node of the
1;49 link for i=1,2,...s-1.

A graph is connected if there is a paﬁh Joining every pair of
nodes in the'graph. |

If 1 = 1. for all i,jeP we say the graph is symmetric.

ij J

A link is said to be incident with the nodes it Joins.

If x is an isolated node of graph G then(?,glﬁﬂR and {,9£R
for all ie€P,

A comnected graph containing n distinct nodes and n-1 distinct
links with no isolated nodes is called a spanning tree. The degree
of any node of é graph is equal to the number of links incident with
it.

When the degree of every node of a tree is less than or equal

to two, the tree defines a Hamiltonian path.

A feasible solution to a constrained optimization problem is a
gsolution which satisfies the constraints of the problem.

A minimum spanning tree has a total link length no greater

than that of any other spanning tree.



1.2 Problem Description 2

The minimum n-node spanning tree problem with degree restraints
r, may be defined as follows:

Given n distinct nodes and an associated symmetric distance
matrix, find the minimum spanning tree such that the degreebof each
node in the tree is less than or equal to r.

This type of problem occurs in the backplane wiring of
computers. The connector pins are the nodes of the graph and the
lengths of wire required to join any two pins are the links. The
degree restraints arise from the physical limitations on the number of
connections which can be made at any pin.

The problem also occurs in other electrical design applications,
for example, in the layout of integrated circuitry and card modules.

When the degree restriction is equal to two, the problem becomes
the determination of the shortest Hamiltonian path in the graph.

This is closely related to the Travelling Salesman problem which is
one of the 'unsolved' problems of combinatorial mathematics.

The number of distinet spanning trees in a complete symmetric

graph with n nodes is nn'2. The number of distinct Hamiltonian paths
in this graph is %!. The probability of a minimum spanning tree being

a Hamiltonian path is therefore given by the ratio of %E to nP =,
This ratio goes very quickly to its limit of zero. For example,_when
n=10, the probability is less than 0.04 and when n=15 it becomes less
than 0.007. It is for this reason that the solution of the problem
becomes very time consuming when the degree restrictions equal two

and n>15,



2.1 Branch and Bound Methods 3

The technique used to solve this restrained optimization
problem is known as branch and bound. It is a means of progressing
towards an optimal solution, with a significant reduction in the size
of the set of feasible solutions requiring investigation.

A large set of feasible solutions normally exists when an
objective function z is to be minimized, subject to a set of restraiﬁts.
Each of these feasiﬁle sQlutions has a distinet z value. The branch
and bound process breaks up this set of feasible solutions into
smaller subsets and calculates a lower bound for the z values within

-each subset. These subset bounds are obtained by solving a simpler
'problem than the given restrained one. One of these subsets is
selected and again partitioned.into bounded subsets as above. The
partitioning continues until a feasible solution, 2z' to the original
problem is isolated. Subsets with a bound greater than or equal to
z!' are not investigated further. Subsets with a lower bound than z'
are processed in the hope of discovering a smaller feasible solution.
The optimal solution z* is reached when the bound on all subsets

is greater than or equal to z*.

An important point in branching and bounding is the deter-
mination of the order in which the partitioned subsets are to be
processed. This gives rise to two basic methods of subset selection.
The first of these is the rather obvious one of choosing the subsets
in the increasing order of their respective bound values. This would
ensure a minimum amount of computation. The one disadvantage with
this method is that a large amount of information must be retained

at all times in order to determine and to define the subset which

should be studied next.



The second method is that of investigating the subsets in
some prearrangedvorder until either a feasible solution is obtained,
or the bound on a subset exéeeds the length of a known feasgible
solution. In other words, the first subset of a partition is itself
partitioned and so on until at, say, the kth level of partitioning
a conclusion is reached as above. Now the second subset of this kth
.partition is investigated. This method is useful if the ordering
of the subsets in each partition is such that there.is a greater
probability of finding the optimal solution in the initial subsets.

This latter method is the one used here and more will be
. sald on the ordering of the partitions.

Branch and bound methods have been used to handle a variety
of problems. E.L. Lawler and D.E. Wood (4) give an excellent account
of several applications. They include integer linear programming,
nonlinear programming, the quadratic assignment problem and the
travelling salesman problem. There is alsc a note on applications
"oubtside the realms of mathematical programming; e.g. pure combina-
torics. |

The branch and bound technigque used on the travelling
salesman problem has been compafed with other popular 'solutions!
in an article by Bellmore and Newhauser (8). Here the branch and bound
methods of Eastman (10), Little, et al (3), and Shapiro (11) are
compared with the dynamic programming of Held and Karp (12) and the
'2\— optimization' of Lin (13). Shapiro's work appears to be the
superior branch and bound approach and is rated very highly for the

solution of symmetric problems of up to 40 nodes.



2.2

Description of the Algorithm

The algorithm is a search technique in which one partitions
the set of spanning trees into subsets and calculates lower bounds
on the length of all trees in a subset. In this way, spanning trees
which meet the degree requirements are discovered, and the smallest
one will be the optimal solution to the restrained problem.

The initial bound is found by solving the unrestricted
minimum tree problem defined by the given distance matrix L with
elements 1iJ. (i=1,2,...,n; j=1,2,...,n; i#j). If the solution
complies with the degreé restrictioﬁs, the restrained problem is
solved trivially. If it does not satisfy the restraints, i.e., if
there exists at least one node i in the tree of degree x with x>r,
one branches into p subproblems where p is the number of ways of
selecting x-r distinet links from x links. The above node i of
degree x will have x links incident with it. Let these 1links be
11,15,...,1y, arranged in the reverse order they are chosen in the
minimum tree algorithm.

The p subproblems are created by prohibiting p distinct
sets of x-r links from being included in minimum tree solutions.

For subproblem 1, let 1ly=co,1ly =00,..., ly_y=00; for subproblem 2,
let 17 =00,15 =00,...,1lx_pr] =00, ly_p+1 =0Q0;...; for subproblem p
let 147 =00,1.4p =00,...,1; =00, These sets of prohibited links

are the lexicographical orderings of the p selections of x-r links
from 1links 17,15,...,14.

Subset number 1 then consists of the set of all trees for
which links 17,1,,...,1; ;. are prohibited, subset number 2 prohibits
1

links 17,...,1 etc. In short, we are investigating

X-r-17 ~x-rt+l>

all the possible ways of foreing the degree of node i to satisfy the



degree restraints r. It is convenient to refer to a node whose
degree exceeds the restrictions as a 'trouble' node, and the as-
sociated links as 'trouble' links. The minimum tree solutions to
these p subproblems become the bounds for their respective subsets.
If the solution to subproblem number 1 is not a feasible solution
to the restrained minimum tree problem, we branch again. This con-
tinues until a feasible solution is reached in a subset k.

Now the algorithm examines the next subproblem in subset k
as above. The éubproblems are examined until either an improved
feasible solution is found or the bound on a subset is larger than
the iength of the current best feasible solution, in which case the
subset is rejected. When all possible subsets have been examined,
the best feasible solution is the optimal solution to the minimum
tree problem with degree restraints. In the next section an example
is worked through.

It is convenient to use a pushdown stack to define the cur-~
rent subproblem. As soon as a branch occurs in the algorithm a new
entry is placed on the top of the stack. This entry gives the ordered
list of links connected to the trouble node which caused the branch.
It also indicates which of these links are prohibited and which are
allowed for the particular subproblem. This is accomplished by means
of an x-r digit number, (x = degree of the trouble node) which
indicates the current combination of prohibited links. This is best
illustrated by an example.

With x = 6 and r = 2 we have C(6,4) = 15 subproblems to
investigaté. Initially we have the combination pointer set at 1234

‘which indicates that the first, second, third and fourth links of the

ordered list in the stack entry are prohibited in the first subproblem.



The‘fifth and sixth links are allowed to enter the solution.

If this first subproblem yields an improved feasible solu-
tion, or- exceeds the current bound, the combination pointer is changed
from 1234 to 1235 giving a new set of allowed links and prohibited
links for the second subproblem. If not, a new entry is added to the
stack, depicting the next branching subset. Eventually, an entry on
the top of the stack will exhaust all possible combinations. When
this is the case, thié entry is deleted and the next lower level
becomes the new top of the stack. As before the next combination is
generated, etc, In this manner the other thirteen subproblems for the
above example will be duly investiaged; i.e. the pointer will take
on the values 1236, 1245, 1246, ..., 2346, 2356, 2456, 3456. The
algorithm terminates when the stack is empty.

The algorithm completes an iteration when either an
improved feasible solution is found or a solution exceeds the current
bound. If the same trouble node occurs moré than once in the branching
processes during an iteration, all the trouble links for that node
are 'bunched' together at one branch. This cuts down unnecessary
duplication of subsets.

If more than one node has a degree greater than r, the first
one encountered by the unrestrained minimum tree algorithm is the one
which determines the next set of subproblems.

The order in which the links are chosen in the minimum tree
algorithm is extremely important. It affects not only fhe determination
of the first troubie node but also the ordering of the trouble links

for the combination generator.



This ordering of the links is dependent on the minimum
spanning ‘tree algorithm used and for this reason, two different methods
are compared.,

These two methods, one by R.C. Prim (7), the other by

J.B. Kruskal (6), will be discussed in section 2.5.



2.3 Verification of Optimality ) 9

The partitioning used explores all the necessary subsets,
and ensures us of cbverihg the entire set of feasible solutions.
Clearly, this is due to the investigation of the complete sef of
possible combinations at each branching stage.

The algorithm is terminated when the bounds on all the subset
problems are greater than or equal to the length of the best restrained
minimal tree. To prove that this is the optimal restrained solution,
it is only necessary to show that each time a branch is made, the
subprobléms defined will have optimal solutions greater than or
equal to the lower bound at the branch.

Let us assume that a particular subproblem k, prohibiting
¥ links yields a minimum spanning tree of length t. The distance
matrix for this subproblem may be designaied Dk'

Let this tree of length t be comprised of the links 14,
12""’11—1’1i’1i+l’""1

the minimum spanning tree algorithm. (Assume that the algorithm

5 arranged in the order they are chosen by
employs the rule of choosing the next largest 1link which does not
form a closed loop with previously selected links.)

If we exclude any one of the links of this tree from our
matrix Dy, giving a matrix Dy', and solve the new minimum tree
problem, we will obtain a solution of length t' with t'>+%.

- To illustrate this, let us exclude the link 1; from D,, and

k°
solve the new minimum tree problem defined on Dk'.
Links 17,15,...,15_7 will be chosen as before, but because

1; is prohibited, we must investigate the next largest link from our

matrix Dy' to continue the algorithm. (The next 'largest! link 1

will have the relation 1m;:1i). The remaining sequence of minimum



10

spanning tree links will be the links li+i""’ lj’li"lj+l""’ lS

with 1544,..., L

matrix Dk and li' a new link with 11'2ﬂi' Thus the total length t!

of this solution will be such that t'>1t. Clearly this will also

1 lj+l""’ 1, as above in the solution using the

be the casé‘if Dk' has more than one 1link of the D. minimum tree

k
prohibited.
Since every possible subset has a bound which is greater

than or equal to the length z of the best restrained solution,

no other restrained solution can exist with a length smaller than z.



2.4 Sample problem ‘ ' 11

Given the following 8x8 distance matrix (Fig. 1) and the
degree restrictions r=2 we solve the unrestricted minimum tree
problem. The minimum tree is given by the links 2-7, 4-8, 1-8,

5-8, 5-6, 3-8, 2-6 with total length 603. Clearly,‘nodé 8 has
degree 4 and our solution is not a feasible one for the restricted
problem. |

Now the 4 links connected to node 8 are arranged in the
order 8-3, 8-5, 8-1, 8-4 and the first of the C(4,2) = 6 subproblems
is defined by setting link 8-3 =00 and link 8-5 =00. The distance
matrix for this subproblém'is shown in Fig. 2. The solution to this
particular subproblem is defined by the links 2-7, 4-8, 1-8, 1-5,
5-6, 2-6, 3~4 with total length 781. This turns out to be our first
feasible solution since the degree of each node is less than or
equal to two. The current bound for our optimal solution is therefore
781, The second subproblem is defined by setting 8-3 =00, and
8-1 =00.

This search technique can best be illustrated by a tree
diagram (see Fig. 3).

The nodes of the tree diagram represent unrestrained
minimum tree subproblems ahd the branches tell which links have been
set to infinit& in the distance matrix; e.g. If we want to exclude
the link x-y from a particular subproblem then ¥y would appear on a
branch leading to it. The number at each node denotes the length of
the particular solution. A square node indicates a feasible solution

to the restrained problem.



12

Subproblems with minimum tree lengths greater than or
equal to the current best feasible solution are not investigated
further. Thus, the 2nd and 3rd subproblems with lengths greater
than 781 are abandoned.

The 4th subproblem which has links 5-8 and 1-8 set to
infinity in its distance matrix has a length of 735. The minimum
tree for this subproblem is comprised of the links 2-7, 4-8, 1-5,
5-6, 3-8, 4-5 and 2-6. This solution is not a feasible one since
node 5 has degree 3. Therefore this 4th subset is further
partitioned into 3 smaller subsets; the lst one excludes the link
4—5, the second excludes the link 6-5 and the last excludes the link
1-5. Now the lst of these smaller subsets is examined. We continue
in this fashion until all subsets (nodes of the tree diagram) have
been investigated.

The optimum solution is comprised of the links 2-7, 4-8,
1-5, 3-8, 4;5, 1-6, 2-6 of length 767 and occurs when links 5-8,

1-8 and 6-5 are prohibited.



1| - |s7e| 374|357 63 | 174 | 501 | 37
2| s76| - |ss54|205]|4a7alise | 5 |[739
3| 374|854 - |332|872|587 | 846|156
4| 357 205|332 - |167 671 |597 | 16
5| 63 |474 (872|167 | - | 142 326 | 6l
6| 174|186 | 587|671 |142| ~ |983 |86Ss
7|sn | 5 |84ae|s97|326|983 | - |e22
8| 37 {739 | 156 | 16 | 61 | 865 |622| -

FIGURE I 8 x 8 SAMPLE PROBLEM

| 2 3 4 5 6 7 8

I - |576 {374 {357 | 63 | 174|511 | 37
2| 576 | - |854|205|474| 186 | 5 | 739
3[374|854 | — |332)|872] 587|846 | ™
4|357|205|332| - |167| 671 | 597 | 16

5| 63 [474 | 872|167 | - | 142]|326| %o
6| 174|186 | 587 | 671 [142| - |983 |865
7SN | 5 846597 |326 983 | - |622
837|739 |"OC | 16 | ™ | 865|622 | -

FIGURE 2 DISTANCE MATRIX FOR ISt SUB PROBLEM
LINKS (3,8) AND (5,8) PROHIBITED



603

GIVEN
DISTANCE
MATRIX

781

805

925

4}
487 <@
Y
> ws
30,
58, 18 OPTIMUM
SOLUTION
3};
7,
S
> \7}
v,
& 794
—
756 a% 788
=0
5
780

867

FIGURE 3 COMPLETE. TREE DIAGRAM

Y1



2.5 The Minimal Spanning Tree Algorithm 15
The Branch and Bound method described solves a set of
minimal spanning tree problems. Two different methods for generating
this set are compared.

_.The firgt of these methods was deveioped by R.C. Prim (7).
Basically, this algorithm starts with any given ﬁode and finds its
nearest neighbour, thus forming the firs% link of the minimal tree.
AThen it finds the nearest node to this subtree by searching through
the set of nodes not yet included in the subtree. This process
continues unfil the full spanning tree is formed. At all stages we are
dealing with a subtree, thus there is no need to check for closed
loops or connectedness.

The algorithm is verj fast and uses a minimal amount of
core storage. A test program written in Fortran on an IBM 7044 k
found the minimum tree for an 80x80 complete distance matrix in less
than one second. The big disadvantage with this algorithm is the fact
that the minimal tree links are not chosen in increasing order of
magnitude. Since this Branch and Bound method always examines the
subset problems in order, there is a greater probability of finding
the optimal solution earlier if the largest links connected to a
trouble node are prohibited in the first problem of each subset.
This is best accomplished if these links are given to the combination
generator in order of increasing magnitude. Due to the nature of the
combinations which are generated in lexicographical order, the first
problem‘of a given subset will then exclude the x-r largest links
(x being the degree of the trouble node for this subset with x>r),

the gsecond problem will exclude the x-r-1 largest links and the

(x-r+1)th largest link and so on for the remaining problems.



16
The last problem of each subset will of course exclude the x-r
smallest links.

The second algorithm developed by J.B. Kruskal (6) achieves
this ordering. Initially all the links of the distance matrix are
sorted in increasing order of magnitude. The first link in the
sorted list becomes the initial link of the minimal spanning tree.
Links which do not form closed loops with existing links are then
chosen in order from the list until the complete tree is constructed.

The disadvantage here is that the sort time grows as the
dimension n of the distance matrix increases. However, once the sort
has been completed, the determination of the minimal tree is much
faster than the Prim algorithm. The sort onlyvneeds to be done once
in order to solve the many minimal tree subproblems which arise in the
branching process. For a reasonable number of iterations the sort
time is outweighed by the fast link selection and the overall Kruskal
time becomes faster than the Prim time. The number of iterations
‘necessary to complete the algorithm depends on both the dimension n
of the distance matrix and the degree restriction r for the problem.
Complete symmetric distance matrices of various dimensions withv
elements obtained from a random number generator were used to test
both the Prim and the Kruskal methods of solution on an IBM 7044..
The results of these tests are given in Table 1.

A Library subroutine (14) is used to order the links in the
Kruskal method. The sorting is accomplished by a merge-exchange
technique and it is very fast. The number of:iterations necessary
for the Kruskal method to overcome its sort time and become fastef

than the Prim method, for the same number of iterations, was

tabulated for each value of n and r. For example, with n = 40 and



17

r = 3, the Kruskal method would be faster than the Prim method if
both took more than 25 iterations to terminate. An average value,
over various sample sizes, was calculated for each n, r combination.
In all cases fewer iterations were required on the average by the
Kruskal method. - Figures for three random matrices with n=50

were shown for comparison. The Prim times to complete the algorithm
for n = 20 and r = 2 were greater than 10 minutes on the average;
therefore only 3 sets were given, |

The Table indicates that the Kruskal method should be used
for graphs with fifty or less nodes. Little can be said of problems
with n>50, since only a few examples were tested. In all cases, |
the Kruskal method terminated in a smaller number of iterations and
each time, the number was well above the critical value for that
class. In this range, the Kruskal sort times are becoming significant;
for n = 80, the sort time was 11 seconds.

" The following example with n = 8 and degree restrictions
r =2 given in Fig. 4 will illustrate the difference between the
Kruskal and the Prim approach. The solution tree diagrams for
both methods are given in Figs. 5 and 6.

The numbers within the nodes represent the specific
iteration. The Kruskal épproach finds the optimum solution in the-
first iteration and completes the algorithm in 8 iterations. The
Prim method finds the optimum in the 10th iteration and terminates
in 14 iterations. This 1s typical behaviour for Prim versus
Kruskal as Tables 1 and 2 clearly indicate. Table 2 gives the
average number of iterations necessary to reach an optimal solution

for both the Prim method and the Kruskal method. - The sample size



18
for each n, r set is included beneath these average figures. The
ratio of the number of‘Kruskal iterations to the number of Prim
iterations is also calculated.

In this case, the reason the Prim approach was slower
to find the optimal solution was that the Prim algorithm failed to
select the minimum tree links in increasing order of magnitude. For
example, link 6-1 of length 172 units was selected before links
6-7 and 6=3 equal to 48 units and 83 units respectively. Thus the
subproblems prchibiting 643 and 6-7, both smaller in length than
link 6-1, were investigated first. This gave a bound of 970 units
on the optimal solution (See Fig. 6). If the subproblem prohibiting
link 6-1 had been investigated first, as in the Kruskal approach,
the bound would have been 894 units and the €§ and g? subsets would
have been rejected with their bounds of 967 units and 944 units
respectively. The same lack of ordering occurs at the node 7,
" (Prim ordering; 7-1, 7-6, 7-8, 7-4). Fortunately this does not
create any extra iterations because the 970 bound is sufficient to
reject the 9th and 10th subsets with bounds of 1,008 and 1,039

‘respectively.



19

CRITICAL -
AVG. # ITERATIONS
AVERAGE [NUMBER OF : |
ITERATION TIME (SECS) ITERATIONS SAMPLE SIZE
SORT TO
TIME(SECS.)] OVERCOME
N R PRIM KRUSKAL | KRUSKAL K. SORT PRIM KRUSKAL
TIME
10 2 014 | .ol0 07 18 173 147
‘ 29 29
5 2 027 ol8 2 23 2412 1123
19 19
20 | 2 046 | .026 4 20 '2252 fizz
20 3 046 026 .4 20 30 29
e 40 40
| 127 126
30 3 094 049 I 25
50 50
; : 690 561
a0 | 3 167 078 2.1 25 53 »3
) 558 510
50 | 3 .260 125 3.5 26 4 14
60 | 3 360 | .165 5.6 29 719 5?'
, 985 739
70 | 3 .500 .200 8.0 27 | o
472 328
80 3 620 250 | 11.0 30 | |
TABLE 1 COMPARISON OF PRIM AND KRUSKAL METHODS

NUMBER OF

ITERATIONS AND

ITERATION SPEED




AVERAGE NUMBER OF
ITERATIONS FOR
OPTIMUM SOLUTION | RATI0
N R i
KRUSKAL | PRIM K/P
: 82 114
e} 2 59 29 0.745
15 | 2 769 1516 | 6508
19 19
5422 6073
(0} 0.890
2 2 3 3
12 16
7
20 3 40 40 0 :50
64 87
30 3 50 50 0.735
280 306
40 3 3 23 0915
336 402
50 3 |4 | 4 0.835

TABLE 2 COMPARISON OF ITERATIONS
NECESSARY TO REACH OPTIMAL SOLUTION



| 2 3 4 5 6 7 8
- | 88 |360 540|730 | 172 | 251 [492
88 | — |560|259 538|483 (321 |420
360|560 | - |291 |582| 83 | 725|580
540 259 | 291 - | 859|916 243|475
730|538 (582|859 | - |386|891 | 46
172 | 483 83 916 [ 386 | - | 48 |233
251 [ 321|725 | 243|891 | 48| - | 79
492 420|580 | 475 | 46 | 233 | 79 | -

FIGURE 4 8 x 8 DISTANCE MATRIX

ILLUSTRATE DIFFERENCE
BETWEEN KRUSKAL AND PRIM

TO

21



e

41 |894 =—opTiMUM

FIGURE 5 KRUSKAL TREE DIAGRAM

T 3
967 14 | ]os
78
— 2) 12l
& 7€
759 (3)nsz 970
. 944 .
57 My 58 J\;)gge
63
&7 (7)ns2 (6) 1133
(8) 1023
N
- (9) 1008
qb
/
4. 7 ] g94 ~— OPTIMUM
78 &
3
\ =
>3 > 956
28
2 @ s

m 948

FIGURE 6 PRIM TREE DIAGRAM

22



3.1 Results for several (n, r) combinations. 23

Programs were written in Fortran for both the Prim approach
and the Kruskal approach. The programs were tested on an IBM 7044
using complete symmetric distance matrices whose elements were random
generated numbers. A description of the basic program is given in the
appendix. Tables 3 through 10 give the results of several runs on
various combinations of distance matrix sizes, n and degree restraints, .

The tables give the number of iterations.and the total times
(in seconds) required both to terminate thé algorithm and to find the
optimum solution. These figures are given for both 'Kruskal' and 'Prim!
as indicated. In almost all cases.the results for each sample sef give
a wide range of values. However, for the larger samples, averages are
calculated for both methods and included in the tables for comparison.

Table 3 with n = 10 and r = 2 illustrates the ability of the
Kruskal method to find the optimal solution early. In 12 of the 29
cases, the optimal solution is found in 10 or fewer iterations and
5 of these 12 solutions are found in the first iteration. The average
figures show the Kruskal method to be the superior one for this
combination of n and r. The Prim method terminated faster than the
Kruskal method on only one occasion and this occcurred whgn the number
of iterations for both methods was smaller than the critical value of
18 (See Table 1). For the ‘same reason, the Prim method found the
optimum solution faster in 5 cagses. The average number of iterations
neéessary to terminate the Kruskal method was 147. This was felt to
be a high figure since 22 of thé 29 values were smallef than it.
The same can be said of the Prim average of 173.

Table 4, clearly shows the superiority of the Kruskal method



24
for this particular‘n, r combination. The gap between the completion
times of both approaches widens as the problems becdme more complex
(i.e. when more branching steps are required to isolate a feasible
solution). For example, the problem which required 4048 Kruskal
iterations to terminate, required 7719 Prim iterations. Here the
Kruskal method finished 137.1 seconds faster than the Prim method.

Occasionally, the Prim method will -take fewer iterations
than the Kruskal method ('Kruskal' took 1452 iterations to find an
~optimal solution which 'Prim' found in the first iteration). This
is due to the faét that, in a few cases, the best restrained tree is
not the one which deletes its largest superfluous links first at some
branching stage. However, the average number of iterations over the
sample set bears out in favour of the Kruskal choice of links.
Furthermore, in 17 of the 19 instances, the Kruskal method terminates
in fewer iterations. The average completion time for the Kruskal
method was more than three times faster than that of the Prim method.
Table 5 gives a few results for n = 20 and r = 2. More

success was again experienced with the Kruskal approach. Unfortunately,
the large running times involved for both méthods restricted the size |
of this data éet. The four extra Kruskal solutions indicate problems
of such a degree of complexity that the Prim algorithm failed to yield
an optimal solution in a set time of 15 minutes. Once again we have

a cagse where the Prim algorithm results in fewer iterations (first
" problem). The fact that the completion times are only 2 seconds apért,
when the Kruskal method performs approximately twice és many iterations,
illustrates the faster iteration time of the Kruskal algorithm

(See Table 1).

Table 6 illustrates an 'easier' set of problems with n = 20



25
and r = 3. As a matter of fact, 6 of these 40 problemé have a
trivial scolution; i.e. the solution to the unrestrained minimal
spanning tree problem meets the degree restraints of two. For this
class of problem, the effect of the link ordering in the Kruskal
algorithm is not very significant. There are relatively few nodes
of degree greater than three, and therefore most subsets will have
three subproblems. The ordering of the links 1s more important when
the subsets have more members, since it will take more iterations to
reach avlower bound which might have been discovered in one of the first
few subproblems, if the links had been ordered.

The results are more closely grouped and the averages give
a better indication of the group. The average figures for the
iterations are quite similar, In both cases, the average number of
iterations necessary to reach the optimal value falls below the
critical value of 20 for this group (See Table 1). For this réason,
the optimum times for the Prim method are often the faster ones.

(In 20 of the 40 cases the Prim method finds the optimal solution
faster.)

In the set of Table 7, the Kruskal method has better average
times than the Prim method. This is largely due to;the faster iteration
times of the Kruskal method, siﬁce the average number of iterations for
both methods are quite similar. The two approaches have good success
at finding the optimal solution in the first iteration; The Kruskal
method accomplishes this 14 times and the Prim method, 10 times. There
are four or five 'harder' problems in this set and a comparison of
their solutions by both methods emphasizes the superiority of the Kruskal
approach. All of the averages appear to be too high. For-example, 43

of the 50 values are smaller than the average values for the number of



26
iterations necessary to terminate both the Prim and the Kruskal
methods.

In Tables 8 and 9, the class of problems becomeé more difficult.
A comparison of the average completion times and the average optimum
times will indicate the large savings in time, realized by using the
Kruskal method over the Prim method. In every case in Table 8, the
Kruskal method terminates faster than the Prim method. In Table 9,
only one problem is solved faster by the Prim method and this is due
to the fact that the total numbef of iterations necessary to terminate
the algorithm (16 iterations) is less than the critical value
(30 iterations).

Table 10 gives some results for a few matrices larger than
50 x 50. Clearly the Kruskal method should be used in this region
at all times. The iteration times in Table 1 indicate that for this
class of problems, the Kruskal approach can take more than twice as
many iterations and still finish faster than the Prim approach.

The algorithms were not tested for problems with n>80 and
r = 3. In view of the previous results, it is felt that this region
would best be dealt with using the Kruskal method. If the run'times:
become too large for this class of probléms, one of the Heuristic
methods described in section 3.3,may be used.

The random numbers which formed the distance matrices for

the preceeding examples were distributed in the range O to 1000,



27

SAMPLE SIZE

1"

29

I TERAT IONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
END fopTimum| EnD  fopTiMuM| END OPTIMUM | END ] OPTIMUM
33 6 35 6 0.42 0.15 0,52 0.13
12 2 12 2 0.22 0,10 0.20 0.05
50 |2 57 15 0.57 0.10 0.85- 0.25
88 33 114 59 0.92 0.42 1.62 0.90
37 24 55 47 0.42 0,30 0.82 Q.70
124 52 180 106 1.24 0.59 2.68 1.65
34 1 36 9 10.37 0.07 | 0.53 | 0.17
540 | ges L 566 | s80 16,05 500 | 7.75 | 6,60
24 12 55 46 0.30 0.20 0.78 0.67
77 28 80 36 0.84 0.35 1.15 0.53
25 20 23 18 0.30 0.25 0.35 0,28
22 17 20 7 |o.29 0.22 | 0.30 | 0.10
21 1 147 127 0.25 0.09 2.00 1.75
933 | 166 o13 | 237 loue 1.80 li2.40 | 3,28
- 22 1 26 1 0.27 0.07 0.37 0,02
84 29 79|10 0.87 0.37 1.07 0.15
68 61 73 63 0,74 0,67 1 1.05 0.92
28 31 15 0.37 | 0.17 0.48 0.27
20 1 32 15 0.25 0.07 | 0.47 0.25
14 1 99 93 0.20 0.08 1,42 1.33
185 65 211 118 1.90 0.77 3.08 1.75
160 | 139 338 316 1.65 1.45 4.70 4,40
270 | 8 302 87 2.69 0.17 4.12 1.25
951 928 956 934 [10.05 9.82 1313.27 112.97
g 1 35 30 0.14 | 0.07 0.53 | 0.47
77 35 135 71 lo.g2 044 | 192 | 1.03
207 | 128 227 204 2.22 1.49 3.25 2.93
146 | 138 146 138 1.65 1.57 2.0/ 1.93
14 10 33 26 0.22 0.17 0.50 0.40
AVERKGES | |
147 82 173 114 1.57 0.94 2.2 1.63
TABLE 3  RESULTS FOR N = 10 R 5




28

SAMPLE SIZE

| TERAT | ONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM

END -JOPTIMUM| END [ OPTIMUM| END OPTIMUM | _END | OPTIMUM
2503 2083 3292 | 1370 41.7 35.0 88.9 37.3
880 716 1062 498 15.8 13.1 29.2 13.8
8, 1 546 482 1.5 0.2 15.3 13.6
476 414 4,04 323 8.0 7.0 11.7 9.3
60 19 83 19 1.1 0.5 2.5 0.6
574 637 | 1379 | 1276 9.6 7., | 397 | 36.7
| 95 1 109 9 1.6 0.2 3.2 0.4
Liosa | 1508 | 4758 | 4588 | 31.4 25,9 | 138.5 | 133.5
925 | 39 985 192 15.2 6.8 28.2 5.6
172 1 415 334 2.9 0.2 | 11.5 9.3
1344, 1162 1632 428 23.3 18.8 52,8 12,4
4,048 3606 | 7719 | 3821 | 79.8 70.8 | 216.9 | 109.2
114 1 115 1 2.0 .2 3.4 0.1
37 28 | 40 31 0.7 0.6 1.2 .9
623 370 | 1011 | 234 105 | 6.4 | 28.6 .8
2871 1879 | 10155 | 8944 52.9 36.5 | 298.3 | 262.6
491 194 | 6366 | 5842 8.3 3.3 l184.1 | 1691
2091 1452 64,5 1 36.9 | 26.1 | 19.0 | 0.4
2004 256 4905 418 34.9 .8 134.4 11.7

AVERAGES
1123 769 2412 | 1516 19.9 13.9 68.8 43,8
TABLE 4  RESULTS FORN = 15 R 2
= 19




29

I TERATIONS RUNNING TIMES (SECS)
KRUSKAL PRIM 'KRUSKAL PRIM
END -f OPTIMUM END oPTIMUM| END OPT IMUM END | OPTIMUM
2443 1762 1229 339 61.2 4t .3 59.4 16.6
14565 9520 17572 14559 381.5 251.3 811.3 670.9
6007 986 17956 3323 150.8 126.8 839.3 167.4
5984 | 3882 | 158,5 | 102.8
6956|5737 187.3 | 156.2
13698 .| 11028 381.4 307.1
129813 22697 781.4 59, .7
AVERfGEs
13244 9935 300, 3 226.2
TABLE 5  RESULTS FOR N. = 20 R 2
SAMPLE SIZE = 7




30

SAMPLE SIZE

40

I TERAT |ONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
END -fopTiMuM| END  fopTiMum| END OPTIMUM | END | OPTIMUM

65 15 65 23 1.9 0.7 2.8 1.1
7 7 0.5 0.4 0.4 0.1
10 10 0.6 0.3 0.5 0.1
46 3 46 1.5 0.4 2.0 0.2
bh 26 47 30 1.3 0.8 2.2 1.4
16 1 22 20 0.5 0.5 1.0 | 1.0

31 20 34 26 1.0 .8 1.7 1.3
16 | 2 1 16 2 0.8 0.4 0.8 0.2
"~ 7 5 4 1 0.4 0.4 0.2 0.1
13 6 13 13 0.5 0.4 0.6 0.6
40 35 37 34 1.1 1.2 1.7 1.6
1 1 1 1 0.3 0.3 0.1 0.1
22 14 22 14 0.7 0.5 1.0 0.6
1 1 ' 0.4 0.4 0.1 0.1
7 7 0.5 0.4 0.4 0.2
221 69 200 51 5.8 2.1 8.8 2.4
1 1 1 1 0.4 0.4 0.1 0.1
1 1 1 1 0.4 0.4 0.1 0.1
0.4 0.4 0.1 0.1
7 0.5 0.4 0.4 0.2
61 27 55 21 1.8 1.0 2.6 1.1
4 1 4 1 0.4 0.4 0.2 0.1
19 11 19 1/ 0.7 0.5 1.0 0.7
1 1 1 1 0.3 0.3 0.1 0.1
56 35 56 35 1.4 1.0 2.6 1.7

. 2 . 2 0.4 0.4 0.2 0.1
16 14 16 16 0.7 0.6 0.8 0.8
4 1 4 0.4 0.4 0.2 0.1
4 7 0.4 0.4 0.4 0.4
38 11 32 10 1.1 0.5 1.5 0.6
31 20 34 21 1.0 0.7 1.6 1.0

TABLE 6 RESULTS FORN = 20 R = 3




31

| TERATJONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
enD -fopTiMum]  END OPTIMUM | END OPT IMUM END | OPTIMUM
19 1/ 46 4, 0.7 0.6 2.2 2.1
10 5 10 7 0.5 0.5 0.6 0.4
137 38 122 73 3.5 1.3 5,6 3.4
22 2 22 2 0.9 0.4 1.1 0.1
79 71 79 73 2.3 2.1 3.7 3.4
77 29 08 56 2.0 1.0 s 2.8
3 16 16 0.5 0.4 0.8 0.8
1 4 1 0.4 0.4 0.2 0,1
10 2 10 4 0.5 0.4 0.6 0.3
AVERAGES
29 12 30 16 1.0 0.6 1,4 0,8
TABLE 6 RESULTS FOR N = 20 R 3
(CONT D)

SAMPLE SIZE




32

ITERAT [ONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM

END -JOPTIMUM| END |OPTIMUM| END OPTIMUM| END | OPTIMUM
16 6 16 6 1.6 1.2 1.6 .7
690 476 842 764 35,2 24.8 82,5 74.6
100 33 100 200 6.3 3.1 10.0 2.2
65 1 65 10 3.9 1.1 6.1 1.0
49 30 49 30 3.2 2.4 4.8 3.0
112 51 | 100 47 6.0 3.3 9.4 "
52 1 109 7 | 3.4 1.1 11.4 8
1 S 1 1.1 | 1.1 1 1
37 11 37 11 3.0 1.8 3.4 1.1
264, 185 | 367 325 | 13.9 10,0 35.0 31.0
71 49 86 30 4.0 3.1 8.5 3.1

16 25 19 1 1.8 2.5 1,9
1 1 1 1.0 1.0 1 .
47 10 25 8 3.7 1.9 2.5 . .9
650 513 620 527 30.2 24.0 60.6 51.6
28 17 | 121 119 2.5 2.0 | 123 | 121
31 11 28 16 2.8 1.9 279 1.7
13 2 13 2 1.5 1.0 1.2 .2
73 21 121 84, 4.6 2.1 '11.9 8.3
19 1 19 7 2.3 1.4 2.0 .8
13 1 13 1 1.6 1.1 1.2 1
42 246 386 213 21.8 12.7 36.6 20.1
55 15 61 50 3.7 1.7 5.9 4.8
37 22 37 22 2.9 2.2 3.4 2.1
4 1 . 1 1.3 1.1 4 1
7 1.3 1.1 7 5
B 1 1 1.0 1.0 1 1
79 38 85 45 5.2 3.1 8.6 4.5
7 6 7 6 1.2 1.2 7 .6
95 41 95 56 5.9 3.4 9.3 5.6
3 3 13 3 1.8 1.3 1.3 4

TABLE 7 RESULTS FORN = 30 R = 3

SAMPLE SIZE 50



33

I TERAT IONS  RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
eno fopTimum| END  foPTIMUM| END OPTIMUM | END | OPTIMUM
10 1 10 1 1.8 1,3 1.0 A
4 4 1.4 1.3 YA .1
41 41 2.6 1.1 3.9 7
53 38 38 20 3.7 2.0 3.7 2.1
2070 949 1880 1080 95.4 L5l 17761 1003
274 254 304 304 15.1 4.1 30.3 0.2
0] 1 10 4 1.6l 1.2 1.1 5
13 9 13 of 1.8 .61 1.3 9.
65 59 28 20 4.2 3,9 2.9 2.1
7 1 7 1 1.5 1.3 7 -
430 27 303 237 22.5 3.1 29.1 22.7
4 2 4 2 1.3 1.2 4 2
104 g 113 10 6,2 1.8 10,9. 1.1
16 3 16 | 1.6 0.9 1.7 3
13 5 13 1 1.9 1.5 1.5 3
7 1 7 1.8 1.7 7 2
7 1 7 1.6 1.3 .8 5
34 21 37 17 3.0 2.4 3.8 1.8
31 5 40 16 2.8 1.6 4.0 1.7
AVERAGES
126 64, 127 87 7.0 o2 12.2 8,1
A
TABLE 7.  RESULTS FOR N = 30 R
SAMPLE SIZE = 50



34

SAMPLE SIZE

23

I TERAT IONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
- END ~(OPTIMUM END OPT IMUM END OPT IMUM END { OPTIMUM
127 o8 199 169 11,7 9.6 33.8 28,8
1418 1299 1192 724 11310 104,31 200,01 121.9
331 131 319 114 29.9]  14.5 55,6 20.1
5529 2171 6398 1196 405.9]  165.5 | 1086.4 201,38
34 14 38 1] 3.8 2.4 6,8 6
25 1 64 1 3.6 2.1 10,9 .3
441 317 418 29/ 37,4 27.7 70.2 49.5
603 23961 1186 1051 46.40  31.5) 192.6| 170.3
85 76 g5 7 8.1 7.5 14.6 13.3
316 56 352 148 24,5 6,0 58,4 24,5
S 6l 46 73 56 6.5 541 12,91 9.9
214 17 238 20 17.9 2.9 38.3 3.4
982 5 1048 92 72.9 2.4 176.0 15,9
201 69 297 139 16,2 6.8 48,41 _22.8
399 200 522 272 30,61 16,1 86,6 45,6
25 1 25 10 4.0 2.3 4ol 1,7
49 25 58 . 38 5,71 4.0 10,1 6.7
1237 1082 2604 2257| 101,00 8.8 | 428.9| 372.2
34 11 58 37 4.2 2.6 10.3)1 7.0
130 125 67 49 12.6| 122 10.9 8.0
106 11 112 11 10,7 3.2 19.9 2.1
550 28/, 493 269 4.3l 23.5 82.3 45,5
16 5 22 13 33l 2.5 3.7 2.2
_AVERAGES
561 280 690 306 sl 2361 1157 51.0
TABLE 8 RESULTS FORN = 40 R = 3




35

- SAMPLE SIZE

i

14

I TERATIONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
END | OPTIMUM END OPT IMUM END OPT IMUM END ~ ] OPTIMUM
9, 34, 100 57 14.1 7.0 26.4, 15,2
830 333 926 643 95,21 40,6 | 238.6 | 166.5
40 2 52 2 8.7 4.5 13.3 .8
163 116 g8 59 22,91 17,6 291 155
28 9 64, 57 6.4 4.4 17.2 15,5
145 79 382 345 21.91 14,5 98,5 89,1
22 1 37 34 5.0 2.8 9.7 8.9
3221 | 2284 | 3437 2629| _ 365.5| 261.4 | 894.1 | 685.0
63 18 63 18 114 6.5 15.9 L7
826 536 864, 535 97,21 642 | 2197 | 1357
241 224, 283 266 31.2] 29,3 70,6 66.4
16 1 16 4 4.8 3,2 /) 1.4
427 380 490 467 51,81 46,5 | 130.3 | 124.4
1033 679 | 1009 5001 122,01 81,2 1 2825 1 143.0
AVERAGES
510 336 558 02| 61,3 417 | 146.0 | 105,0
TABLE ¢  RESULTS FOR N = 50 R 3



36

ITERAT |ONS RUNNING TIMES (SECS)
KRUSKAL PRIM KRUSKAL PRIM
END OPT IMUM END OPTIMUM| END OPT IMUM END OPT I MUM
N=60 R=3
581 2 719 46 93.9 6./ 260.5 17.1
298 259 1597 1578 51.4 45.6 584 .4 577.6
N=70 R=3
739 611 985 918 1171.9 144.0 | 2945 | 460.7
N=80 R=3
328 140 472 274, 90.0 52.5 295.6 .| 171.8
1009 873 487 224 269.2 | 234.4 302.0 | "138.7
TABLE 10 RESULTS FOR N > 50 R = 3




3.2 Comparison With Linear.Programming Solution 37
A different approach at solving the problem has been
proposed by N. Deo and S.L. Hakimi (5). They set up the problem as
a.linear program in the following manner.

-The total length of n-1 links chosen from the distance

matrix must be minimized subject to the following conditions.
- (1) Every vertex must have degree less than an equal to the problem
restraint, r. .
(2) There is ﬁo isolated vertex in the graph.
In order to define the linear program, it is necessary
to introduce many additional ﬁariables. - These variables are bounded
and can only assume the values O or 1. They end up with a simplex
tableau involving n(n+l) Variables in Eigigl + 1 equations, which
for n = 15 becomes 240 variables in 136 equations.
The above restraints do not guarantee that the solution
to the linear program will yield a tree. There is a possibility of
closed loops existing in the solution.

- Deo and Hakimi incorporate a tree test algorithm to
determine the feasibility of the solution. If the solution fails
this tree test, the nexit smallest vector is forced into the solution
and the linear program is iterated again.

An example is given of a 14 x l4-dnceomplete-symmetric graph
with a degree restraint of two. It is solved on an IBM 709 in a
matter of 249 seconds. The same problem was solved by the Prim
method in 47 seconds and by the Kruskal meihod in 18 seconds on
an IBM 7044. The internal logic and arithmetic organization of the
two machines is quite similar but the cycle time of the 7044 is six

times faster than that of the 709. Therefore a rough estimate of



38
the running time of the Deo and Hakimi solution on the 7044 would
be about 40 seconds.

- Cne advantage of the branch and bound approach is that we
will always obtain a reasonably good upper bound on our cptimal
solution if we run out of time. With this linear programming
approach, we have no such estimate if the problem takes longer

than a set time.



3.3 HeuristicvSgboptimization.- Schemes E 39
| The fqllOWing is an accounf of a few scheﬁés designed to--
decreéée significantly the émount of cbmputation invol&ed in a
problem at the risk of failing to find the optimal solution, and
acéepting a neér dptimal solution in a few cases.
The first of these guarantees that our answer will beu
' wifhin a prespecified amount of the opfimal solution. Suppose
we are willing to accept a feasible solution which differs from
fﬁe.optimal solution by ﬁo more fhaﬁ 10%. If a feasible solution
is discovered with a total length of 2000 units, then we can reject
-éll.subsets wifh bounds of 1819 or more (1.10 x 1819 = 2000.972000).

A few of these subbptimization runs were made, both with
the Kruskal method and the Prim method. The results are given in
Tables 11, 12 and 13. In each of these runs a 10%. suboptimization
1imif is allowed. The actual deviation from the known optimal
solution is tabulated. At the bottom of each table, the average
amount of work and time saved is given for the data set.

Table 11 shows an average deviation of 2% from the
optimums and in 11 of the 20 cases the optimal solution was found.
This set of data contains more difficult problems than the set of
Table 4, as indicated by the higher average figures. The
suboptimization effectively reduces these averages by more than
60% in all cases. ‘

Table 12 gives a few results for n = 20 and r = 2.

The savings there are all in excess of 75%.

The 10% subpptimization run using the Prim method is

presented in Table 13. In 16 of the 20 cases, the first feasible

solution reached is within the 10% limit. This indicates that the



40
method gives a relatively good initial estimate of the optimal
solution. The Kfuskal method also gave this good first guess, but
because of the 2,1 second sort time, the average completion time
over the same set was greater than the Prim method.
The average amounts ‘saved in the Prim case were all greater
than 85% with the average deviation from the optimal less than 4%.
The sort algorithm used for the Kruskal algorithm has a
speed which is proportional to N In N, where N is the size of the
unsorted list. Since we are dealing with n x n complete symmetric
matrices, these lists are of size n(g—l)_ Therefore the net effect has the
sort times increasing by the order -of n° 1n n (see Table 1).
The Kruskal algorithm is faster for sparse matrices than
for complete matrices since the sort time is reduced due to the
smaller list of links requiring sorting. . At the moment, the Prim method
"is not set up to deal with sparse matrices. The algorithm is matrix
oriented, with the position of a link in the distance matrix representing
the nodes which the link joins. Sparse matrices could be handled more
efficiently if a list of links was formed as in the Kruskal algorithm.
The difference between fhe completibﬁ time and the time when
the optimal sg}ution is found is often quite large (see Tables 3 to 10).
This suggests concluding the algorithm after some set time and taking
our current best feasible solution as an estimate of the optimal
solution. The cases for n»50 and r = 3 appear to back up this approach,
in that many of the initial feasible solutions are quite close to the
optimal. -
. In the five problems with n >50, four produced first estimates

within 10% of their optimum solutions and one gave a first estimate

within 15% of its optimum solution.



41

A time limit of 30 seconds was imposed on the Kruskal method
for the 20 pfoblems of Table 11. The optimal solution was found in 12
cases. The remaining problems averaged solutions within 13% of the
optimum. The largest deviation was 35%. The total time for the entire
set was 433 seconds. The time for the 10% suboptimization run was 506
seconds and the complete algorithm took 1392 seconds.

The same time limit was used on the 'easier' set of Table 4.
The optimél golution was found in 16 of the 19 cases. The remaining
three answers were within 0.5%, 13% and 11% respectively. The total
time saved over the basic algorithm was 111 seconds.

A survey of_the available data was made to see,What per cent
of the total number of links was actually processed in arriving at an
optimal solution, This survey was taken on the Kruskal results and is
summarized in Table 14. The average position in the sorted list of links,
where the final link of an optimal solution occurred, was obtained for
each set of data. These figures were expressed as a percentage of the
total number of links available (Eﬁg:il). Percentage figures were also
obtained for the maximum list positions'of:the optimum solutions in each
set. From these results, a proposed limit, on the percentage of links
requiring investigation, was estimated for each n, r combination.,  For
example, from Table 14, for n = 50; r = 3, it is estimated that we
only need to examine the smallest 245 (0.20 x 1225 = 245) links of the
distance matrix.

The average number of links prohibited in an optimal solution
also appeared to be an inferesting statistic to investigate. Table 15
gives the average value and the maximum value of the number of links
set to 00 at the optimal solution for each n and r studied.

It was felt that a saving in time could be realized by

imposing these two limiting conditions on the algorithm., Viz., limit the

>



42
set of links studied to the smallest x% and at the same time 1limit
the number of links, y, set to infinity (x and y are taken from Tables
14 and 15 respectively).
A few runs were tried using both the maximum and the average
values given in Table 15 for the y limit.

There was no effective reduction in the number of iterations
and'in some cases, extra iterations were required. - It was felt that the
limits imposed on the algorithm, excluded some subsets which would have
given us a better estimate of the optimal solution at an earlier stage.
Thus our bound value for rejecfing subsets was higher and consequently
some additional subsets were examined. . It appeared that the number of
subsets rejected by this limiting strategy was approximately equal to
the number that would have been rejected if these lower bounds had been
established earlier,

A combination of some of these ideas could be used where
further reduction in time is desired. For example, the percentage
suboptimization could also Be used with a lower time limit since the

complete solution tree is much smaller than it is in the main algorithm,



ITERATTIONS RUMITHG TIHAS (S2CS. ) frente

Kruskal Krugkal Suboptimu: Kruskal Kruskal Suboptimiws ghal}

‘ - : pti~

~ Bnd _ Dotimunm End Optirum End 1 Optimunm End Quitinugp [ MHA
2091 | 1452 340 226 ~ | 36.9 26,1 | 6.1 | 4.2 | o
200/, 256 2.0 1 35.0 4.8 16.0 | __.2 1 _ 5
2059 | 14951 | 8586 | 2291 71.1 272.4 | 152.6 | 42,0 | 6.
3276 | 2989 | 1103 509 55.4 - | 50.8 | 185 | 9.0 | 5.
1914 1578 705 443 |.38.2 | 3.4 | 14.1 | 8.8 | 5.
313 1 66 1 5.3 .2 1.2 | .2 | 0.
8171 1100 1538 449 134.1 1 -19.1 24.8 7.8 .1 0.
1779 1141, 322 | . 223 30.7. 20,1 | 5.5 | 4.0 0.
19720 7274 {9349 | 4166 1337.7 | 128.,5 | 158.1 | 73.0..__ 2.
3992 2588 | . 1370 08 | 72.4 ) 48.6 24.8 1. 17.2_ .} . .2,
4866 3380 | 2034 | 1376 | 84.3 59.7 | 34.8 | 24,1 | 4.
554, 160 | 202 36 .2 2.8 | 3.7 4 08  .|._.3.

62 1 15 1 .2 .2 VN Y- 0

218 1 20 1 3.6 .2 WA 2 | o
588 555 275 |- 266 | 10.6 - 10.1 4.9 | 4.8 0.

| 1689 |._1018 526 393 | 28.5 17.57 2.0 1 6.8 | 0
753 | 636 Iy 367 329 13.8 11.9 6.5 1. 6.0 | 0
3t | 2766 720 | 589 | 63.3 | 49.3 | 12.9 1109 | 0o
192 1 16, 1 3.5 2 o |2 |0
3358 | 2978 641 1 58.3 52,0 |_11.2 | 3.2 | 7.
AVERRGES 3

3988 | 2241 | 1456 | 610 | 9.6 40.2 | 25.3 |11.2 |20
AMDUNT| SAVED .

63% 73% 62% 72% e

TABLE 11 RESULTS FOR ¥ = 15 R = 2
SAIPLE SIZE 20



béy
%
TTERATIONS RUNIING TIMES (SECS.)  Lreatel
Kruskal Kruskal Suboptimur Kruskal Kruskal Suboptimum ghir}
pti-
End. _ Pptimum End Optinum End Optimum End Optimum | W
2443 1762 613 324 - 61.2 bty 3 5.4 ) 8.3 | 5
14565 9520 3504 64, 381.5 251.3 | 89.3 } 2.4 | 6
....5984 | 3882 1031 715 158.5 02,8 1 281 1.19.9. 4 . 3
6007 4,986 1553 543 150.9 126.8 i 37.7 | 14.3 | 1
AVERAGES N
71249 5037 1675 412 188.0 131.3 42.6 1.2 1.3.7
AVOUNT {SAVED S S
77% 92% 77% 9%
e s ecms ,{
TABLE 12 RESULTS FOR T = 20 R= 2
SAMPLE SIZ% = 4



45

%
TTERATTIONS RUMNING TIMES (SECS.) Greatelr
Prim . Prim Suboptimun Prim | Prim Suboptimum g;i?_
Fnd  Dptinum End Optimunm End __| Optinum End Optipup | Mo
199 169 22 1 33.8 28.8 3.7 STy S S
1192 724, 179 158 200.0 | 121.9 | 30.1 | 26.7 | 1
319 | 116 19 11 55,6 20.1 3.2 .19 1.0
6398 1196 467 1 (1086.4 | 201.8 | 79.0 | .5 | 4
38 1 29 1 | . 6.8 | .6 | 5.2 | . .7 | 0O
6/, 1 13 1 10.9 .3 2.2 | .31 0
418 294 25 1 70,2 49.5 A T Y 2.
1186 1051 79 1 192.6 | 170.3 | 13.3 A 6
85 77 31 17 14.6 _13.3 5.3 | 3.0 + 4
352 148 112 1 58,4 24,5 | 18,7 .\ ..3..]...8.
73 56 25 1 12.9 9.9 | 4.6 319 ]
238 20 25 1 38.3 34 AW W33
1048 92 397 1 176.0 15.9 66.4 | .6 | 8
297 139 16 1 48.4 22.8 2.7 3 |2 ]
522 272 78 1 86.6 45.6 13.1 S L7
25 . 10. 13 1 4.1 1.7 2.1 | .2 4.1
58 38 13 1 10,1 6.7 2.3 1.3 1. 2.
2604 2257 436 1 428.9 372.2 1720 ) .3 _ 1.9
58 37 19 1 10.3 7.0 3.3 |5 | .7
67 49 40 28 10.9 8.0 6.5 4.6 0
AVEHAGES ]
762 337 102 12 127.8 56,2 17,1 | 2.1 13.9
AMOUNT |SAVED ol
 86% %% 86% W%L
TABLE 13 RESULTS FOR W = 40 R= 3
SAMPIE SIVZE = 20



% LINKS SEARCHED
FOR
N g |OPTIMUM soLuTioN [PROPOSED

LIMIT

AVERAGE [MAXIMUM
10 2 38% 58% 6 0%
15 2 32% 6 0% ‘ 60 %
20 2 20% 23% 50%
20 3 17 % 36% 40°%,
30 3 14% 21% 30%
40 3 10% 13 % 20%
50 3 9% |- 15% 20%
60 3 - 12 % 15 %
70 3 - 10% 15%
80 3 - 6 % |b°/°

TABLE 14

KRUSKAL SEARCH LIMITS

46



NUMBER OF LINKS
SET TO OO AT
OPTIMUM

N R .

AVERAGE |MAXIMUM
(X0) 2 6 I
) 2 12 23
20 2 I8 26
20 3 2 8
30 3 3 9
40 3 6 Il
50 3 6 10
60 3 2 12
70 3 6 10
80 3 10 10

TABLE IS5 NUMBER OF PROHIBITED LINKS FOR N,R.



Conclusions

A branch and bound algorithm has been developed to solve
the problem of finding the restrained minimal spanning tree for a
symmetric graph.

-Two.options in the basic algorithm are presented and both
of these methods are used to solve a wide variety of problems. The
results indicéte that the Kruskal method is the more efficient one
of the two. The relative efficiency of the Kruskal method oVer the
Prim method is directly ﬁroportional to the degree of complexity of
the problem. In many of the 'difficult' problems with degree

restrictions equal to two and distance matrix dimensicns of twenty,
.the Prim method failed to terminate within a fixed time of tWenty
minutes. - The Krﬁskal method solved this same set in an average
time of five minutes a problem.

- On the other hand, the two methods are quite comparable
for the 'easier' class of problems with degree restraints of three
and matrix dimehsions no greater than thirty.

Iﬁ most cases, the Kruékal method gives a better initial
estimate of the optimal solution than the Prim method.

When the degree of difficulty of a problem is such that
even the Kruskal approach féils to yield an optimal solution in a
fixed length of time, then one or more of the heuristic methods of
section 3.3 may be used. Of these methods, the one which appears to
give the largest time savings combined with smallest average deviation

from the optimal solution, is the percentage suboptimization technique.



49

The Kruskallmethod is the superior one for dealing with
sparse matrices, since the sort time is less than for complete
matrices due to the reduction in the number of links.

The algorithms presented here were only developed for
symmetric matrices, but the branch and bound portion would be
exactly the same for the nonsymmetric case. Onl& the minimal spanning

tree algorithms would have to be altered to deal with nonsymmetric

matrices.



10.

11.

12.

13.

14.

BIBLIOGRAPHY : 50

Edwin F. Bechenbach, "Applied Combinatorial Mathematics" (Wiley).

Claude Berge, "The Theory of Graphs and Its Applications", A. Doig
(trans.), Methnen, London, 1962.

J.D.C. Little, K.G. Murtz, D.W. Sweeney, and C. Karel, "An Algorithm
for the Travelling Salesman Problem", Operations Research 11,
972-989 (1963).

E.L. Lawler and D.E. Wood, '"Branch-and-Bound Methods: A Sufvey”,
Operations Research 14, 699-719 (1966).

Narsingh Deo and S.L. Hakimi, "The Shortest Generalized Hamiltonian
Tree", 3rd Allerton Conference on Circuit and System Theory (1965).

J.B. Kruskal, "On the Shortest Spanning Subtree of a Graph and the
Travelling Salesman Problem", Proceedings of American Mathematical
Society, Vol. 7, pp 48-50, 1956.

R.C. Prim, "Shortest Comnection Networks and Some Generalizationm,
Bell System Technical Journal, Vol. 36, pp 1389-1401.

M. Bellmore and G.L. Newhauser, "The Travelling Salesman Problem:
- A Survey", Operations Research 16, 538-558, (1968).

C.A.C.M, Algorithm No. 154.

W.L. Eastman, "Linear Programming with Pattern Constraints", Ph.D.
Dissertation, Harvard, 1958.

Shapiro, D., "Algorithms for the Solution of the Optimal Cost Travelling
Salesman Problem", Sc.D. Thesis, Washington University, St. Louis,

1966.

M. Held and R.M. Karp, "A Dynamic Programming Approach to Sequencing
Problems", Journal S.I.A.M. 10, 196-210 (1962).

Lin, S., "Computer Solution of the Travelling Salesman Problem",
Bell System Techn. G 44, 699-719 (1966).

University of British Columbia Computing Centre, ML UBC SORT.



APPENDIX
Description of the Computer Program 51

The algorithﬁ was programmed in Fortran IV for an IBM 7044
computer. Fig. 7 shows a general block diagram of the progfam.

Box 1 of the figure denotes the minimal spanning tree algorithm
where the tree links are selected from the given distance matrix. ZIZither
the Kruskal or the Prim algorithm is used here.

Box 6 indicates the routine for "punching' the links from like
trouble nodes. These sets of links are stored temporarily in a matrix
until a feasible solution is reached, or the current bound is exceeded
(box 2). Then they are added to the pushdown stack in consecutive leveld,
each level representing a different trouble node, (box 4).

The following routine is incorporated into the algorithm to.save
unnecegsary redetermination of fhe minimum tree links which were chosen
before the degree restrainis were exceeded. As soon as a nodg exceeds the
degree restrictions, the status of the curreﬁt subproblem is recorded;
e.g. partial tree length, selected linké, trouble node, etc. as shown in
box 3. Then, usihg switch 1, the minimal tree is completed without further
checking of the restraints. If the length of this tree is smaller than
the current feasible bound, the superfluous links at the trouble node are
excluded from the distance matrix, (box 5). The minimum spanning tree
aigorithm is then restarted using the stored partial tree information.
(box 7). The time savings become very significant when a trouble ncde
occurs more than halfway through the minimum tree algorithm.

As indicated iﬁ box 8, the algorithm terminates when the

pushdown stack is empty.



52

START
R
READ N,R ADIuST
AND DISTANGCE
DISTANCE MAT RIX
MATRIX
A
GENERATE
NEXT

TURN SWI OFF
COMBINATION
{

4] ADD BUNCH
MATRIX'TO PDS
AND SET UP
THE COMBINATIONS

MIN. TREE X
, AT EACH LEVEL !
NO

'] cuoose
NEXT LINK

HAVE
ALL
cowmB.
ON TOP OF

BUNCH
MATRIX
EMPTY

EXCEEDS
CURRENT
BOUND ?

REDEFINE
TOP OF

FEASIBLE

TION
SOLUTI ? PDS
5
'JSET SUPERFLUOUS [
‘TROUBLE' LINKS PDS
EMPTY 2

DEGREE
RESTRICTIONS
0.K.

TO @D N
DISTANCE MATRIX

3] RECORD
CURRENT STATUS 6] GROUP
OF PARTIAL TROUBLE PRINT
TREE AND v LINKS N { - opTimaL
‘TROUBLE' NODE BUNCH MATRIX \ SOLUTION

7]
INITIATE
RESTART
PROCEDURE

1 l R

TURN SWi ON

FIGURE 7 PROGRAM BLOCK DIAGRAM



