,vTHE‘GAME:OFfPENIOMINOES
by
MICHAELfKUTTNER
"B:Sc:; UnivérSity Collegé London; 1966

A thesis submitted in partial fulfilment of

the requirements for the degree of
MASTER OF SCIENCE
in the Department
of

COMPUTER SCIENCE

We accept this thesis as conforming to

the required standard,

THE UNIVERSITY OF BRITISH COLUMBIA

December, 1972

In presenting this thesis in partial fulfilment of the requirements for
an advanced degree at the University of British Columbia, | agree that
the Library shall make it freely available for reference and study,

| further agree that pemission for extensiQe copying of this thesis
for scholarly purposes may be granted by the Head of my Department or
by his representativeﬁ. It is understood that copying or publication
of this thesis for financial gain shall not be allowed without my

written pemission.

Department of (}5Wﬂ€l) Tlgz 51:/633(35

The University of British Columbia
Vancouver 8, Canada

pate @L‘?[(L("

" "ABSTRACT

A study in game-playing programming is made using the game of
pentominoes which has a very large branching factor and where there
exists almost no precise, factual information to guide the conduct of
the play.

The difficulties encountered imply that.some apparent advantages
of heuristic techniques are more heavily problem-dependent than is
usually conceded.

A guiding device capable of learning is incorporated which
significantly improves the program's play: in competition with versions

lacking it and shows subjective improvement with human competition.

TABLE

"OF 'CONTENTS

contents

INTRODUCTION ¢ « « « « o &

THE GAME PLAYING MILIEU .,
1.1 General Considerations

1.2 Polyominoes ., ... -

1.3 The Game of Pentominoes

THE PENTOMINO PROGRAM ., .
2.1 Basic Representations

2.2 Necessary Improvements

THE 'INTELLIGENT' ADDITIONS AND THEIR EFFECTS

3.1 Aids to Move Selection

3.2 Experimental Results

CONCLUSIONS &« & & o o o &
REFERENCES « ¢ ¢« & ¢ « & &

APPENDICES . - L] L) L) . . .

1 Operation of the Programs

2 Lis tings - L] L] L) L L

Y

o @ e o e o

page

15

15

18

26

26

32

39

43

45

45

48

ii

iii

ACKNOWLEDGMENT

I wish: to egpreségmy thanks'tO'Dr:.Richard Rosenberévfor his
patient .supervision dﬁriﬁé the‘prépératioﬁ of thié theSis;'to the
National Research Council of Canada part of this work being carried
out under'grant A-5552 and to.Shéila Tayior for endﬁring typing from

. my handwriting.

INTRODUCTION

The traditional reason, employed by people working in heuristic
problem solving, for choosing game playing as a vehicle for their
experimental research is that situations of great difficulty arise but
there are very few formal parameters involved. It is known that there
are no psychological or social factors influencing their models, merely
a few simply defined rules.

However, it turns out with most games much played by humans that
there is a body of knowledge that provides guidance for players far
beyond the given rules and the complete search space. The knowledge,
specific to some games, that guides players also guides programmers and
may make general heuristic techniques less likely to evolve.

A game has been chosen - pentominoes - where very little is known,
indeed. Furthermore, since it involves spatial judgment and combinatorial
considerations, it is by no means completely straightforward to write a
program for it,

Initially, thought centred on finding an internal representation
which might be useful for manipulation in a manner analogous to a human
approach to this game., As will be seen there had been one program
described before but the representation had to be much modified; like
most early polyomino programs it was concerned only with counting or
dissection of rectangles into sets of pentominoes.

The choseﬁ representation had effects on how the program would
"visualise" the state of the board. It seemed pointless to redirect it,

place it under the same constraints as a human, since its model of board

2.

state produced its own advantages. We might waste time dealing with an
area of the board which seemed to be open and yet accommodated no pieces.
The program however would dismiss this area'immediately; Fortunately

or unfortunately, these differences would lead the program development
towards a situation where differentlstrategies'shOuld be deployed against
a human or a machine opponent. This highlights the curious situation
(foretold by Good [11l] for a different reason) in which machines play
chess only against other machines; viz. the annual ACM tournament.

The first step in building and testing this game-playing program
was to develop the basic code for manipulating the board and pieces and
to include a random move generator to enable moves to be made, games to
be played and statistics and other information to be gathered. These
routines revealed for the first time the total size of the move tree and
the number of choices at each ply.

Since a position with 100 choiéesvfor a move is quite close to the
endlof the game one should hope to determine the consequences of all
moves fairly thoroughly, but having to calculate them anew for every
square on the board made this computationally too time consuming. So it
became apparent that some extra basic facilities are needed. These are
described in Section 2.2. Firstly, a large table was constructed to
provide a list of possible moves for any given neighbourhood. A program
was written to construct lists to restrict them to manageable proportions,
an interesting problem in itself. Then to sustain, minimally, the analogy
with a human player, an exhaustive search is required for the very late

stages of the game when it is clear that a complete analysis is necessary.

Heuristics are futile with only two pieces remaining to be played.
Because it takes place at the end of the game a simplified alpha-beta
search can be used. It will be clear that even here the environment
constrains the search to be depth first and nothing else.

With these routines preésent the program can play at a reasonable
rate and becomes foolproof near the end. There remains to consider how
to make the program play better in the early stages and more importantly
in the crucial part of the game before an exhaustive search is feasible,
Chapter 3 describes what has been done to convert the detailed numerical
information gathered by the updating and mové-making routines of the
program into something like the 'gestalt' concepts of a human player.

In one view this simply condenses to a mapping of position into a smallish
set of numerical wvalues. In another, it represents an evaluation function
that can be applied to positions in the latter parts of a game, once the
idea is established of the importance of the moves preceding the search,
Supporting routines were written that create and maintain a table of
values that give a judgment on whether particular kinds of positions are
good or bad. The goodness is measured by the only means that have turned
up; pragmatically - did one win when that kind of position occurred in
previous games? '

Clearly there are too many positions to give each a distinct value
so they are grouped by a numerical computation, a form of mapping that is
described in Section 3,1, Also it is seen that, since the evaluation is
based on past performance, therefore the ability is inherent to improve

future results. The results in this chapter show the significant

improvement in playing strength over the earlier version.

Results with human opponents were more difficult to evalua£e since
the machine that moved randomly until near the end obtained a remarkably
good record, better than 257, we estimate, against all kinds of opponents

from programmers all the way up to beginners. It is clear that pentominoes

is an odd game,

CHAPTER 1 THE GAME-PLAYING MILIEU

1.1 General Considerations

Interest in mechanisms behind the playing of games is probably
almost as old as games themselves. Work on mathematical solutions to
puzzles of all kinds is always taking place. The fraud of Maelzl's
chess automaton last century illustrated, if nothing else, a demand
for and fascination‘with machines of that kind. 1In 1914 the Spanish
inventor L. Torres.y Quevedo produced a machine that wins the chess
endgame of king and rook against king. He commented, "the limits within
which thought is really.neceésary need to be better defined...the auto-
méton can do many things that are popularly classed as thought."

The advent of computers revolutionised the possibilities. The
original paper of Shannon [22] sparked much work in chess although there
were already some hand-simulations around at the fime.- In fact nothing
in his general suggestidns need be confined to chess; there is equal
applicability to checkers, tic—tac—toe,'the eight-puzzle and many other
popular ?astimes.

However there have been many more reasons for computerised game-—
playing than the entertainment of games. Samuel's work with checkers
[20] and [21] has stood as one of the most successful efforts in the
field. His intention was to have the program play just as well as
possible and to this end he incorporated as much information about
valuable checker board positions as he could provide himself and from
expert players. In addition, he used polynomial evaluation functions,

efficiently coded representations and was one of the first to use the

alpha-beta search algorithm, before it had even been christened.

Samuel's interest was not in simulation of human thought processes
but in demonstrating intelligent'results using some techniques peculiar
to digital computing. On the other hand, many people have been employing
games for just such simulations. Newell, Shaw and Simon's chess player
[16] is one of the earliest examples. They were not so much concerned
with results from the most efficient programming but with the underlying
problem solving processes. Games have always been useful in this area
because of their formal simplicity that yet leads to very complex
behaviour.

-Chess has always had a special place in the programming of games
and in artificial intelligence because it has been considered the game
of thought, par exceilence, the mastery of which would be considered to
require intelligence by all but the definitional recidivists who hold
that thinking is what machines don't do.

Many groups of people have built chess playing programs without any
specific research goal but to make a machine play better than other
machines or other people. A landmark here was Greenblatt's program [12]
which included very efficient code, extensive routines for the generation
of plausible moves and time saving tree pruning methods. This program
beat Dreyfus who had written that such things were impossible [5]. It
has been enrolled in the U.S. Chess Federation, has played in tournaments
and it seems that further efforts along the same lines have little to

contribute to the state of knowledge in the field.

7.

Heuristic searching in problem solving has often used games as the
environment for experiments: The Graph Traverser (Doran and Michie [6])
worked with the eight and fifteen-puzzles; Slagle [23] developed an
almost unbeatable program that plays Kalah while producing refinements
in tree searching and pruning techniques.

Most work in computing with games is aimed at uncovering some things
unrelated to the games themselves (with the exception of chess mentioned
above); either methods of human thought in problem solving or general
heuristic methods. However in almost all cases there is a considerable
body of knowledge beyond the rules that relates to the playing of the
~game., Each game has its own special approach that may make generalisable
results harder to come by. There is one further class of games that have
been used as research tools; those where little is known or what is kﬁown
is supposed to be ignored. Zobrist's work with Gb, [24], using numerical
values to represent visual organisation of the stomes on a Go board, is

a good example and it is into this area that this work falls.

1,2 'POlz ominoes

Golomb [10] describes the n-ominoes as generalisations of the
domino., See, for example, Figure 'l, They are groups of simply connected
unit squares in two dimensions. We shall be considering only pentominoes
during the course of this study. From Figure 1, there are 12 basic
S5-celled animals and they have been ordered and nicknamed F, I, L, N, P,
T, U, V, W, X, Y, Z for convenience and due to the mild resemblance in

their shapes.

Monomino

Domino
Trominoes

" Tetrominoes

Pentominoes

THE N-OMINOES FOR N < 5

(a) (b) (c) (d)
F N
I L
T
U
W X Y Z
Figure 1

(e)

9.

When one allows rotations and reflections there are then 63 different
orientations to be accommodated; consisting of one for the 'X' piece to
as many as eight for such as the 'F' piece (Figure 2).

Pentominoes have been mentioned in several places in the puzzle
literature; perhaps one of the earliest was in the 74th problem of
Dudeney [7] in 1908 who described how a chess board was broken over the
head of the Dauphin by Prince Henry. While the Prince was busy escaping
it was discovered that the board had been broken into 13 pieces - 12
pentominoes and the square tetromino, the problem incidentally was merely

to reconstruct the board.

1.3 The Game of Peéentominoes

Martin Gardner has written several articles on pentominoes in the
Scientific American [9], based on communications with Golomb and he has
included descriptions of possible games and some examples.

The rules adhered to while programming are quite arbitrary and
merely represent some choices among many variants., A few things have
been borne in mind of course; for example, it must not be possible to
employ a simple algorithm in order to win and it should preferably be a
reasonable game to play.

The rules that we shall use throughout are the following:-

(i) A rectangular checkerboard is available for play which need
not necessarily have all its squares free,
(ii) A subset of the 12 pieces are available (in practice usually
all of them). A move is made by selecting one of these pieces

and placing it uniformly in some vacant space é6n the board.

5]

—enl

Wio~ N Wi
oo sl o W P L D

1
-
B

j[lfﬁi
N

o

l

-

=

|
|

' S~

5 .

50 1 |6

T
|

| tel 1]

|

{'¢*”]7I
]

M
[ool]

Figure 2

[4 THE 63 PENTOMINO ORIENTATIONS:
43V ' :

LT W
48
49
50
Si51 X
i52Y
53
54
55
5 -
57
58
159
60
61
62
63

@
o
N : - ‘ _ : :
cw oy o s o HEls wn el W s W RS W o N VU W N 00 N O UL 0 I 00 N ON DN B Lo 1 R

11.

This piece is then no longer available to be chosen again
and may not be moved.

(iii) A game is between two players_who must move alternately.

The player who is unable to move loses.

Certain rectangles recommend themselves for use. The 8 x 8 is
natural, the 6 x 10 is the 'squarest' rectangle into which the 12 pieces
can be made to fit exactly, the 6 x 6 board for the special reason that
it is thé smallest rectangle whose game outcome is unknown.

Most of our work is confined fo the 6 x 10 board, concerning which
it has been said that there are, "at least 5 moves, at most 12, no draw,
more openings‘than.chess." Indeed the program calculated that there are
2056 possible ‘choices for an opening move (not all of them essentially
different). |

'In Polyominoes [10], Golomb writes concerning strategy,

"1. v.Try'té'move in such a way that there will be roém for an even
number of pieces.

2. | If a player cannot analyse the situation, he should do some~

thing‘to complica;e'the placement so that the next player will

have even more difficulty analysing it than he did."

Also in the'Scientific American ﬁ9], October 1965, '"The most usefﬁl
strategy is to try to split the board into separate and equal areas.
Then there will be an'excellént chance that the opponent's move can be
matched by your next move and so on."

Thus, it is clear how well this game fulfils our requirement that

nothing be well known in advance.

12,

FSAMPLE GAME SHOWING SQUARE NUMBERING SCHEME

(1)

(h)
Figure 3

(g)

P ,\\,x_ s v]
4 & \\\ s e '
o \ NN
. A v AW\\\\\A?
! b N 2
~ _ - /./rof// /M/,, \\\\ ~
w h © R A7
: i ~ ! : H S~
‘ ! - \\\ sy s
: i SN
i ! i, Al
i M . H \\\ \x \\. .\\M\
: : H H : e 7 pd s
” 7
VB TITS O N0 T O
Rl s I B e B I T A TR~
...... == o o S
| =N !
4O . N P
RS BRI S B ~ |~
mo O QK N ~ ~
e & O 0 RSN
BRI PR S S BN NN //./
e M on R
R e s T LW/
e YOy BT ;
o Q\ / \\\\ - r W\. . |
- —ie - N " Ay Vg B sy 7 4 R
o T . S T
“ :) s \\ S
‘ < P \“ 2N Al
I j _ £ Coor M , K
; ! : : ; i : ~
L e A Do I e U T IOS SRS AU S O e
NEEEEEEC e E
- PSS SUOUN SUUURNIE SUNUUUNE ISP NP OO S S i I R - LAY
T SNWW777Z
: M : i NN P VL
g ; B - C/./% NS o
. i i M%W%%V 2

13.

A sample game is illustrated in Figure 3. The second player's
moves in (b) and . (d) are attempts to maintain symmetry, but one can see
that the concept lacks precision since no two pieces are alike. In (f)
he abandons this plan and loses. In this case it is quite likely that
he would haQe lost also by playing 'symmetrically'. 1In (g) the first
player's fourth move ensures a win by placing the 'W' so as to divide
the remaining area neatly enough into two areas into both of which one
piece will fit.

The second player cannot circumvent the loss by playing the piece
that fits in the second area into the first since both the 'N' and the
'T' fit into either area. Note also that there are ten free squares in
the upper area and one could fit the 'W' and 'Y' pieces in there together
but not here sinée both have already been played.

The eighth and ninth moves need not even be played since the outcome
is fully detérmined by now. As an aside, a not too sophisticated version
of the program discovered the winning move when confronted with the
position after move 6, though it was different from the move shown.

Referring to the 6 x 10 game, Golomb is quoted in [9] October 1965,
"...complete analysis is just at the limit of what might be performed by
the best high speed electronic computer given a generous allotment of
computer time and a painstakingly sophisticated program.”

We have noted that there are 2056 opening moves, one quarter of which
are essentially different., Sélecting a typical 9 move game we find in
this instance over 1100 choices after 2 moves have been made (after one
move the average is over 1400). After 4 moves, 504 choices remained; and

after 6, 1043 and so on.

14.

A survey of many sample games reveals at least two things clearly.
Firstly, the total number of nodes in the move tree séems to be of the
order of 1021. A generous allowance for duplication of positions would
leave ~3 x 1015 positions to be examined. An increase in efficiency of
this program of 105'or 106 would reduce the time required to search the
tree exhaustively to'BO‘Xéaré. In other words, combinatorial considera-
tions eliminate the above mentioned possibility of a brute force approach.

Secondly; what must be noticed is the inexorable narrowing of the
tree width from its overwhélmingly large start to the inevitable conclusion
of the game at most 12 moves later (an average of just under 9, in fact),
Just before the conclusion the game is trivial, just before that the
position may be analysed, (meaning here that the outcome will be deter-
mined by inspection at length) but before that the situation is probably
impossible. Considerable advantage must be taken of this structure, as-
will be seen later. It is possible to construe this as a major part of

our knowledge of the game.

15.

CHAPTER 2 " THE PENTOMINO PROGRAM

2.1 '‘Basic Representations

The first attempts to manipulate polyominoes computationally
stemmed from attempts simply to-count them, an open problem. Read [18]
was one of the earliest and at that time it was not fully agreed how
many l0-ominoes there are. This led to programs designed to do the
same thing, the greatest attempt so far being by‘Lunnon [13] who has
enumerated n-ominoes for n < 20 using about 150 hours of background
computer time on an Atlas.,

Counting like this and dissection of rectangles requires a machine
representation for the pentominoes. In determining.that there are 2339
ways of filling the 6 x 10 rectangle with all 12 pieces, Fletcher [8]
used a representation based on the leading square of some pentomino as
centre, the orientation being determined by the displacements of the
remaining cells from the first within a 512 square grid which also
contained the board.

Using this leading square approach he was obliged to execute a
couple of special tests to reject impossible board situations., Because
of this, the lack of symmetry properties, and the fact that the influence
of a single piece from its leading square could extend over most of the
board, that representation was rejected for this project.

The program employs the 'centre' of each pentomino, always a unique
cell; the one that minimises the sum of the rook-wise distances to all
the other cells. In Figure 1 the ceﬁtre is the square that contains the

letter of the alphabet. Clearly the 'distance' to any other cell is

16.

never more than 2 units. The 1l2-neighbourhood shown in Figure 4, is used
extensively, as well as its associated cell-ordering scheme. Any of the
- 63 orientations will fit in the 12-neighbourhood when the centres coincide.

This device is used to represent a piece and also parts of the board,
internally, by translating to strings of bits.

Firstly a piece. For example orientation 50, which is W 4 is shown
in Figure 5. This is uniquely represented by cells 1, 2, 5 and 7 in the
12-neighbourhood; alternatively by the bit-string (from 1 to 12) 0011 0101
1111 with zeros indicating the cells of the piece.

In complementary fashion the state of the board with respect to any
particular square that we choose can be represented. In Figures 6 and 7
the neighbourhood of square 26 has cells 2, 4, 6 and 8 free so we can
represent it as 0101 0101 0000 at this time.

Now this square 26 can be isolated, and in order to see which pieces
can be moved here (a move meaning that the centre of the piece will be
placed on this square) one needs merely to 'OR' its neighbourhood bit
string with the bit strings for the orientations, and if the result is
all ones then there is a 'hit'. For example, square 24 would have
0101 0001 1010 and orientation 42 which is U 4 has 1010 1100 1111,

Now (0101 0001 1010) 'OR' (1010 1100 1111) is (1111 1101 1111)
thus U 4 will not fit in square 24, However for square 26 and orienta-
tion 60 or Z 1

(0101 0101 0000) 'OR' (1010 1010 1111) = (1111 1111 1111)
and it clearly fits.

In the program the board is kept as a simple array, but each square

17.

9
81415
1213 %éi 1 10§ .
2] 6| 17
11 Figﬁre 4 Figure 5
. THE 12-NEIGHBOURHOOD SQUARES OCCUPIED BY
: ' : ORIENTATION W 4 -

T
S
R £t
7
s
s

s

0101 0101 000

PRSI P -
- r T CE P

' Figure 6 _ Figure.7

APPLICATION OF 12-NEIGHBOURHOOD TO MOVE DETERMINATION

77757 IETT A
i) G ¢ Z
% | L*‘";%}
0101 0111 0000 0101 0111 1000
Figure 8 ‘ Figure 9
BIT STRINGS FOR CERTAIN NEIGHBOURHOODS
| & 7
O e A 22597
% R A7,
1101 0111 1100

. 0101 0111 1100

Figuré 9a Figure 10

18.

is kept informed of the status of its 12-neighbourhood by having its
bit string updated when moves are made nearby;

When executing, the program is informed of the board dimension andl
the piece availability, and then calls the routine that initialises the
neighbourhoods correctly. 1If a move is made another routine is called

that updates the situation, eliminates the piece and so on.

The bit-matching tests just described are quite efficient but there
are usually 60 squares to consider and 63 orientations to watch and to
do every test every time would consume too much time even before we
start thinking of doing some analysis of positioms.

There are 212 or 4096 different possible neighbourhoods. It would
be»useful if we could decide which neighbourhood was applicable, dial
it up somewhere and receive a short list of candidate orientations, all
of which are known to fit., However this would entail, instead of cal-
culation, maintenance of 4096 tables each of up to 63 items, an unlikely
trade-off unless we were desperate.

Still, there are some things to notice. The list for Figure 7 would
be 60 only, and would be a subset of the list for Figure 8 which is 42,
60; which in turn is a subset of that for Figure 9; i.e., 11, 18, 42, 60,
Figure 93 and Figure 9 are equivalent for this purpose., We can also see
from the bit strings involved that 0000 0000 0000 requires a null list,
while 1111 1111 1111 returns the full 63 orientations, and to go from the
one to the other changing one bit at a time is equivalent to finding paths

on a 12-cube,.

19.

Perhaps one could produce the smallest possible list of orientations
which would have the property that it could be indexed for any neigh-
bourhood and return the correct subset. A method of constructing this
shortest list could not be discovered during the course of this work.

So, whét has been written instead‘is a program that builds as few
lists as possible to satisfy the requirement and conéarenate them into
a super-list. This turned 6ut to comprise 4974 items, a considerable

savings over the threatened 212(26 - 1) or aboutv250,000. With this
super-list must be éssociated merely the 4096 indexes and lengths of
sub-1lists. |

Thus what is done is this: for any neighbourhood, the big list is
indexed to return the list of orientations that fit and these need only
be checked for piece availability.

Two examples will illustrate this. Firstly, referring to Figure 9a,
the binary number 010101111100 is converted to decimal 1404. A couple
is sought which will give rﬁe location and size of the move list. To
this end one looks into the big list at location (2 x 1404)>+ a constant
offset of 4975 = 7783.

Consulting the chart at this location, (these parts of the lists are
exhibited in Appendix 2B) one finds the couple (2185 4). So, the four
possible moves are at 2185 in.the big list. These are seen to be orienta-
tion 11, 18, 42 and 60. The moves are L 1, L 8, U 4, and Z 1 as was
verified by inspection.

- The second example,ingure 10, provides binary 110101111100 or

decimal 3452. 4975 + 3452 + 3452 = 11879. At this location one finds

20.

(3274 14). The 14 orientations at 3274 are 3, 8, 11, 18, 21, 22, 25,
32, 38;'42;.43, 49;’54, and 60. These moves are F 3, F 8, L 1, L 8,
N 3; N 4; N7, P 6; T 4; A l; W3,%Y 3; and Z'l;

The second problem to be faced says that even if we had some
heuristics to guide move selection on some more or less reliable basis,
when we are sufficiently close to the end of the game, and the search
tree is narrowing fast; fhen it is essential to stop and analyse the
position thorqughly; or risk overlooking the right move. That is, to
any player of this game, brute force analysis.takes over eventually.

Of course, deciding when this is possible during the course of a game
is as challenging as the analysis itself. Because of the sudden termi-
nation feature, there has to be a complete search implemented somewhere,

This is trivial to do at the very end, and increasingly arduous
earlier on until the time required to do it is clearly not available.
Much judgment in playing the game is concerned with choosing the point
when one must be exhaustive instead of making estiﬁations. It is
possible that one part of a successful strategy will be to arrange that
it is you and not your opponent that will be left with a position of
that sort.

Carrying the analogy to the machine it is equally clear that regard-
less of what else it is doing, when the game is detectably close enough
to its finish, the program also must make an exhaustive search.

A reasonable estimate of proximity to the end is a count of the
number of orientations remaining for a player to choose from in the

current position, perhaps modified by the degree to which they are con-

21.

centrated on a few squares on the board. The more widely they are
scattered, the harder it is to decide the result, as a rule.

Theoretically, the 6 x 10 pentomino board and its state can be
represented by a string of 60 bits, on or off for occupancy. Unfortu-
nately the game is unlike checkers in that there is much more to a move
than changing a couple of bits. In fact, given only this bit string it
is difficult to calculate what is possible, let alone do it. If one
wants to carry along l2-neighbourhoods and other useful information
then the storage requirements in core (hundreds of bytes per position)
mean that only very few nodes could be expanded at once in core, and
even then much time would be used maintaining these neighbourhood
statuses,

The method was selected whereby the board is not stored at all at
each node but only the move made to reach the node. An abbreviated
" board (without details of move counts etc.) is maintained and movement
up and down the game tree is made by playing and unplaying moves on this
'fast' board. |

By this means, large numbers of variations can be saved and all of
the remaining moves in the game can be played merely by moving down the
tree. In fact, there is less value than might appear in saving the
tree, The search can only be made quite close to the end of the game.
Two moves later, when next the opportunity arises, the search will by
now have become trivial,

Since the positions are not stored at nodes, the search is depth

first by necessity. If this were not so the tree width, even at this

FORMAT FOR THE TREE SEARCH

Figure 11

TN

 [Initial

22,

LEVEL O
Unex-~
panded
Node
LEVEL 1
%;___l_,
'E' Unek—
panded
Node
|
cal
=3
o .
. z -
LEVEL 2

L

23.
late stage, is too wide for a breadth first search. The lowest depth
reached is a terminal position which 'evaluates' simply to win or lose,
which makes minimaxing and application of the alpha-beta procedure very
straightforward,

There are two kinds of nodes in the tree, 'expanded' and 'unexpanded'.
Nodes representing moves on the board are the expanded nodes. From one
of these is developed an unexpanded node, in effect half a level lower
down, which indicates upon which square of the board attention is being
focused. In general several orientations may be placed with this square
as centre, and these become the expanded nodes.

From the initial node, the full set of unexpanded nodes are developed
one for each square available as a move centre. From one of these at a
time the moves are played by developing the expanded nodes, then the full
set of unexpanded from the current expanded node, and so on (see Figure
11).

Most nodes contain pointers to father, brothers, son etc., locations
for ply level, whom to move, backed up values; etc, The unexpanded nodes
record the board square and the status of the 12-neighbourhood, the
expanded nodes the piece and its orientation as the move played.

The search routine is written in PL/I without using pointer variables.
The search space is an array of fixed size whose garbage collection is
simply controlled in a manner just as easy to implement in Fortran, say.
Each node points to the next available location; the final item points to
0 (see Figure 12). When a node is freed, the node that was pointing to

0 now points to it and it now points to 0. On the IBM 360/67, if the

Location
No. of pf Next
Ttem.. Ttem
1 2
2 3
3 4
4 5
5 6
3000 0
Initially

Location
No. of of Next
Item Item
1 2
2. 3
3 4
4 0
5 6
3000 4
After Freeing Item &4
Figure 12

GARBAGE COLLECTION FOR THE TREE SEARCHING ARRAY .

24,

25.

chainings were restricted to within discrete pages then there would be
relatively few occasions for pointing across page boundaries; However
in PL/I one doesn't control page alignments. Consequently there is some
deterioration if the search continues expanding nodes long beyond the
array size limit.

In practice, the search develops in excess of 200 nodes per CPU
second (somewhat less when the paging demands rise excessively). A
dozen integers are needed for a node plus a few bits. Each integer uses
2 bytes at least in this system. Thus each node uses 26 bytes and the
array of 3000 items occupies 78,000 bytes, not too heavy a price. Using
this array the search has been able to develop over 9000 nodes,

A limit of 60 move choices was sét as the point when the program
must make the full search; and 100 when playing human opponents. I have
encountered no case where it failed with this search space. There is a
very noticeable contrast in node development between those cases where
a winning move is found (invariably just a few CPU seconds at most) and
those where a loss must be establishedv(frequently more than 4000 nodes
or 20 seconds) i.e. if a win will be found, it will be found quickly.
My tests revealed that wins could be established in positions offering
well in excess of 100 choices, but that if the win was absent, the search
would overflow any reaéonable search space. (In other words, it is very
useful to know whether one can win before trying to find out). As it is,
there is evidence for the utility of cutting off the search early, when

the probability of a successful outcome is much reduced.

26.

CHAPTER 3 "THE "INTELLIGENT" 'ADDITIONS AND THEIR EFFECTS

3.1 "Aids to Move Selection

One of the final problems was how to replace the random move generator
by a new one and be able to notice the improvement.

The program collects numbers as its routine goes around updating
neighbourhoods after a move has been made; The routine counts the number
of squares where moves are possible, and for each one of those it counts
the number of orientations that are available and do fit in that square.

An example from a sample game after 2 moves on a 6 x 6 board is shown in
Figure 13, a total of 287 choices for a possible move with 19 possible
choices for a square as centre for that move. In Figure 14, after another
move there remain 137 moves and 13 centres,

These two numbers and their ratio do offer some idea of space re-
maining, roughly how many moves and prevalence of open areas in the position.
It is certqinly not known, a priori, how to convert these concepts into the
correct next move, However, once sevéral games have been played, there may
exist some reason to believe that 137:13 might indicate a position where
one was more likely to win than to lose, It might be found that 200:13
was unfavourable, also 137:18 and 137:8.

The program that uses such information to modify its behaviour can at
least be 'punished' for its mistakes and be hoped to learn to improve its
play.

The numerical measures are a form of feature extraction, If it had
happened that too many heterogeneous characteristics of the position had

mapped into the same small set of numbers then some alternative mapping

0 5-‘6[00

512815 //’V’/’/

,’/;

5 3539 910 /,/
0 9‘31359 7
/Z/ 323250

)
1

////,,f/// 120

0 19 31 8
2k 119121:0 |.

P2 A R
1120

e

i
R L

Figure 13 ’ Figure 14

COUNTS OF POSSIBLE ORIENTATIONS IN THEIR CENTRE SQUARESV

Figure 15 Figure 16

GAME POSITION TO ILLUSTRATF. INFORMATION GATHERING PROCESS

27.

28.

would have to be discovered. What have been used are figures that
represent concentrations of moves all over the board and from which the
influences of the pieces can be deduced; This approach is somewhat akin
to that of Zobrist in GO [24], since the influence of a bishop in chess
is clearly enough defined but that of an anticipated move of a GO stone
is not and of a Pentomino piece even less so;

In chess, and other games, one can have a clearly 'winning' positiQn
even though a forced conclusion cannot be demonstrated; for example, being
a queen ahead, other things being equal, This can be measured by a count
of relative material strengths, which will be part (or all) of a static
evaluation of a chess position, and is only the fact that these features
exist that makes such an evaluation possible.

In Pentominoeé, either a win (or loss) can be demonstrated (by
exhausting cases) or the position ' is nof clear. Strategical concepts,
such as symmetry and the size of the discrete, remaining areas have been
mentioned, but their effect is nevér such as to cause a player to give
up as most would when a queen down in chess.

One knows by experience that it may be wise to avoid certain kinds
of positions, areas, symmetries, etc. The intention is to have the
program develop similar kinds of information, pragmatically, gaining
better ideas about good and bad positions by the experience of games it
has played, using information that it has computed itself,

To this end one hundred games of random moves were generated within
the program and the details of move counts and concentrations stored for

each move. All the games were analysed from their terminating move back-

29,

wards until the positions were beyond reasonable study. A person would
not expect to spend more than 20 minutes on one position and the computer,
which had some routines developed to do the sSame thing; rapidly became

too expensive to use for this. At the position nearest to the start of
the game, where the outcome was still clear, the details were recorded
and built into a file later to be accessed and augmented by the program.

A 'random' géme here means the following: using an available random
number generator, a free square was selected, then one of the possible
orientations for that square was chosen and played. This process was
repeated until the game ended. The method is equivalent to choosing a
location, then selecting something to place there and is distinct from
at least one other random scheme that was not used, of taking a piece
and finding somewhere to put it.

An example position (FigurellS) will help reveal what kind of infor-
mation is to be stored. We guess that it is too difficult to examine
exhaustively (it may not be) so one more move is generated, move 6, the
T piece at square 49 in its fourth orientation, abbreviated T 4 49, see
Figure 16.

Now the result is easy to détermine. There are 114 choices of
moves in 15 available squares. The move suggested by the program, V 2 21
will win since exactly two moves remain.

Returning to Figure 15, assume that the program is turning over
moves., It computes that if it plays T 4 49, there will remain 114 moves
in 15 squares. We have seen that it would then.lose, so we want some

way to tell it that this is a position to be avoided so that no opponent

30.

should be lucky enough to be left with it.

So we make an entry opposite 114 under number of squares = 15, We
‘subtract 8 from the stored value. This valﬁe is arbitrary but is arranged -
in order to obtain a rippleveffect. If.ll4:15 is é poor bosition to
leave, then so may well be 113:15 or 115:15, only less conclusively so;
thus the subtractions go as follows:

111:15 = -1

112:15 - =2
113:15 -4
114:15 -8
115:15 -4
116:15 -2
117:15 . -1

The position befofe the T was placed had 161 choices in 27 squares.
Even though it cannot be'analysed (supposedly) we guess that it may have = -
opposite favourability from its successor (perhaps we should leave this

position to the opponent so he can leave us the good one). So we file

away:
158:27 +1
159:27 42
160:27 43
161:27 +4
162:27 +3
163:127 42

164:27 +1

31.

The numbers are smaller since we are less convinced. The position

before move 5 had 483 choices in 34 squares, as a last gesture we store:

" 482:34 -1
483:34 -2
484:34 -1

A set of routines have been written that receive a series of move
counts and the amount to be added or subtracted and rebuild the list
structure that will reflect updated values,

Currently, all the pointers and position evaluations are stored in
an array of just over 3400 numbers. The complete list is provided in
Appendix 2D, Its operation can be made explicit by giving an example
of how thg program uses it to compare potential moves.

Suppose that the program is trying to find the most favourable move
in the position drawn in Figure 15. It will play the moves hypothetically
and then examine the resulting positions to count the number of moves
remaining open and their respective centres. If this number of moves
lies between 49 and 520, there may be information to look up.

Imagine that one move leaveé 89 choices in 15 squares. The pointer
for 89 is found in the list offset by 47, i.e., location 42 (Appendix 2D).
Thus the values are to be found beginning at location 946. There are
pairs of scores, a value for move centre counts 13, 15, 16, 23 and 25.

The value given for 89:15 is -10, a poor choice.

As a second‘case, suppose that another move leaves the position

75:20. Now 75 - 47 = 28. Pointer at 28 = 798. Scanning through the

pairs starting at 798, the value for centre count = 20 is +1.

32,

Clearly the program will prefer the move that leaves this position.
In cases such as this one, all moves will be tested and the one with the

highest score will be chosen.,

On examining the 100 random games in some detail and incorporating
the assumption that the foolproof minimax search took over when there
were 60 or fewer choices for a move, we found that the first player wins
55 games and the second player wins 45.

36 games were played with the modified version of the program com-
peting against a version of itself which had no access to the guidance
tables, but did eﬁploy the search equally well at the end. An average
of 60 seconds CPU time per game and limited access to the computer
prevented really large scale tests,

When the modified program moved first (15 cases) it won 12 and lost
‘3. When it moved second, it won.1ll and lost 10. These results are
perhaps more remarkable than was expected. The newer version obtaining
a plus score in all cases, considering the unusual random effects in
this game (such as seeming to have a 'good position' but losing anyway.)

During the internecine phase of one program version playing against
another, the minimax search was initiated only when 60 or fewer move
choices remained‘(the limit - was 100 when people participated). As its
sole strategy, some version could be programmed to make every attempt
to avoid giving its opponent the chance to invoke the search routine.

By being the one to search first it could be suggested that a crucial

advantage would be gained since most other strategies could be claimed

33.

to be only marginally effective.

This was not so in practice:' Several times during games, a program
was forced to move without searching; Its opponent was then allowed the
futile gesture of exhaustively searching to discover that it was just
about to lose. In fact, no version used the search cut-off point in
decision making; mostly because it had to performiagainst people, and
they take no notice of such arbitrary, and to them undetectable, boundaries.

What of games between people and versions of the program? It would
have been very expensive to undertake the series of controlled experi-
ments required to be able to distinguish the 'smart' version from the
random program with search, because of the high random success rate and
the large amounts of CPU time needed for each game.

How should one measure the improvement in an under or overmatched
opponent? Not by counting victories. It ﬁust be noted that in the final
series of 6 controlled games with human subjects as opponents the machine
lost but once. That loss was with the improved version, the random ver-
sion won all its 3 games.

What one tries to search for instead (viz. Samuel [20]) is an
improvement in the class of individual moves. These moves would be
compared with those suggested by acknowledged good players (sadly, hard
to come by in Pentominoes).

Here is the most noticeable improvement, the newest version makes
individual moves that make sense intuitively to its opponent; so much so
that one subject ascribed to the rationality of its play his ability to

beat it when he did. The random player, on the other hand, was confusing;

34.

no one could tell what it was up to, as, of course, it was up to nothing
at all until the search phase.

There are four sgmple games in Appendix 2E for illustration. Game
one shows the random méchine moving second against its human opponent.
In Figure 17a the program has generated moves 2, 4 and 6, the last
being particularly indifferent. This game serves just as well as an
example of random versus random, they looked much like this.

The first player plans to leave just 2 moﬁes but makes the mistake
of using one of the two pieces that fit around squéres 6 and 12, The
proéram in its search uses the other one to finish the game. The line
of figures above the winning move shows that the search took less than
one CPU second tolexpand only about 46 nodes. The human could have won
by playing the N piece as shown in Figure 1l7c.

In game 2, the subject plays first and plays his first moves around
the edge of the board. The'program which now has access to its tables
plays its first move with ﬁhe intention of reducing the opeﬁ space and
plays in the middle of the board. Its position in Figure 18a is very
~difficult and the move it chpse seems to be a goéd try. Unfortunately,
its opponent can find the move of fhe T piece, in Figure 18c, leaving
moves of the N and Y pieces in the areas éhown. The program verifies
this in a 24-node search; its play now exhibits some purpose, whether
this is relevant to winning is another matter.

In game 3, the program moves first, and after 4 moves the position
it considers is Figure‘l9a. The move of the N piece that it plays

(Figure 19b) is remarkably strong, quite possibly winning against all

35.

N
NN

g
\,

Figure 17

7

%
e

L,

"y

7z

7

7 3
s

i

v

POSITIONS FROM EXAMPLE GAME ONE

4
v,

{ZZ?

b/

/

Figure 18

POSITIONS FROM EXAMPLE GAME TWO

36.

replies. The opponent's choice ofvthe U piece allows the game to finish
in one move, after a 121 node search. Placing the L piece in Figure 19c
looks like a better attempt to parry. Why it fails might entertain the
reader to discover,

In game 4 the program moves first again, (its first moves are very
likely to be different from each other;) Once again, after examining
the position after 4 moves (in Figure 20a) the program plays a fine move
(Figure 20b), Finding it annoyingly hard to analyse, its opponent played
the Y piece to close the area at the top of the board (Figure 20c).
After 5 seconds CPU time and over 1000 nodes the program's search yields
a forced win as shown. In all its games, the longest successful search
took 42 seconds CPU time expanding over 8200 nodes from a position with
100 move choices.

The author is forced to say that this program plays a respectable
game of Pentominoes since it once beat him when he was trying to win.
It may be pointed out that there is no 'algorithm' (or set of moves) which
would enable anyone to win against this program. This is not the case
with many game-playing programs that use an evaluation function. In their
cases, once a winning line has been found it can be repeated until the
programmer changes his program.

For one thing here, the first move is chosen randomly from 2056
(the random choice among equals is usually the most that an evaluation
function achieves in varying from game to game)., More crucially, the
results of all games are open to analysis, the results of which will be

reflected in a new edition of the move evaluation lists. Positions that

a » b
Figure 19

POSITIONS FROM EXAMPLE GAME 3

o l
f B H
: . i
i t !
‘ i
! ‘ H
i ! N !
a b

Figure 20

POSITIONS FROM EXAMPLE GAME 4

37.

38.

led to a loss will be penalised heavily enough to dissuade the program
from choosing moves that lead there. Appendix 2b contains the second
edition of the lists. One generally bad position had had a few favour-
able results during the random games, but not later against real
opposition.v These positions of later games were the information used

in the update.

CHAPTER 4 "CONCLUSTIONS

The problems encountered in this research give rise to conclusions
that can be extended beyond pentominoes to embrace much of the work in
~ game playing and heuristic searching.

As Minsky [15] writes, planning is now a more crucial aspect than
before (compared with searching) in the human problem solving areas of
artificial intelligence. He says this is because there is reason to
believe that human chess or checker players consider only dozens; or at
most, a few hundred different positions when deciding on a move. Some
programs have commonly evaluated hundreds of thousands. He claims that
these were early works and that later on thefe were reductions thanks
to development of some theory.

This theory, however, is heavily dependent on specialised knowledge
of a problem area of which the programmer is aware - the ability to
'evaluate' a position or node in a graph. Without this we suggest that
the theory might as well not exist for all the help it can offer,

It is clear from the closing remarks in the last cﬁapter that, in
some sense, this Pentomino playing program can 'learn'. However, we
deliberately omitted the routines that update the evaluation lists from
the main body of the program in order not to give an exaggerated impres-
sion. Since there is no alteration to the conceptual model into which
the new information is received, this 'learning' had much better be
called adaptation.

It does have the advantage of being selective. After the start given

to the program.by the analysis of the 100 games, not each trial has to be

40.

recorded in these tables. Thus the problem that was encountered in
BOXES [14] is avoided, which was that the effect of an erroneous move
~given early reinforcement was still apparent thousands of trials later.

It is suggested that the 'evaluation' of positions that is carried
out by the program is analogous in some ways to that of human players
of games who learn to abstract certain favourable features from their
positions, In spite of its very naive representation (in the form of
straightforward lists) in its own way it is more natural than the arti-
ficial calculations employed by many game playing programs, and perhaps
some of its effects could be incorporated into more orthodox forms.

'"Evaluation' is crucial not only to game playing but also to
heuristic search methods in general. How crucial it is has not been
made explicit. As we have seen, strategies result from knowledge of the
~ game or search space that is apart from the formal rules. When there is
almost no such knowledge, nodes in the search tree come to be indisting-
uishable. Slagle [23] finds a very useful evaluation function for
Kalah, if there had not been one the heuristic search would have stopped
before it began. Nilsson [17] is trying to improve searching by cost
estimation methods, the 'estimate' which must be available at any node
of the graph is an evaluation of course., In its absence, there is
nothing left.

In the GO-playing program of Ryder [19] the issue of position evalu-
ation has been shelved for the sake of calculating numerous local effects,
which enable him also to diseover plausible moves and to avoid the search

in a space that explodes combinatorially like few others do; hence his

41,

mere passing reference to the Work of Zobrist [24].

Pentominoes has a paucity of local considerations indeed, there
is so little strategical inforﬁation that it is doubly remarkable that
such an effective playing prégram_has'béen produced. The Game is a
counter-example to the argument that there will always exist'strategical
information to use when one wants to make an heuristic-type search., In
fact, humans make 'plausible moves' when they interact socially, not
based on rules of strategy or an evaluation function SO'much as using
the very iarge amount of. relevant infofmation that they have access to
internally. The deveiopﬁent, storage and use of complexAinformation
relevant ‘to playing gémes seems to be quite an important‘direction if
computef game- playing research is not going to descend to a competition
just to beat the latest digital chess champion. Minsky [15] suggested
that what is needed for summarising search trees is not a numerical
utility~like value but a description-like expression that can be used
for analysis.

In chess, Botvinnik [1] has produced a way of mathematically repre-
senting .the board, using horizons, which will make iﬁ easier to consider
plans and actions. Hé'pointed out that the chess playiné programs of
the last 20 years had got bogged down because they first coded a scheme
for a chess board and ﬁen failing to know firstly what they intended to
do. He expects to produce a very good player this way but his view seems
inadequate.,

Clarke [2] goes so far as to propose a special language for dealing

with chess. (Algol 64). This seems quite interesting, but like Botvinnik

42.

must face the problem of the large body of information accumulated by
experieﬁce.

‘De Groot [3] took protocols from many levels of chess players with
the intention of distinguishing a Grandmaster-from avMaster and so on.
This was a relétive failure. There were clearly things happening below
the level of the>most introspective protocol that the players were
unaware of. Another series of tests that he did ([3] and [4]) were more
revealing. A positioﬁ was exposed to various players for just a few
seconds, and they were then asked to reconstruét'the position. Only the
Grandmaster was able to produce the full correct position and also the
winning move! Lessef players, typically, recalled less. This only
applied to 'meaningful' chess positions.

The problem, of course, in computing, is how to build up a_'vocabu—
lary' that increases comprehension of chess positions in parallel. This
problem.of large amounfs of new knowledge will not only occupy game
playingiresearch but also the computer.linguists working with semantic
models.

The view, exemplified by Minsky [15], that 1,000,000 'facts' will
be enough for a great intelligence, is clearly inadequate‘even if some-
one knew what a 'fact' was. It is shown to be sé by-the current work
;f Papert et al. on‘comprehending very young children's stories. The
problem is one central fo all of Artificial Intelligence, not only to

game playing.

43,

REFERENCES

1] Botvinnik, M.M. (1970), Computers, Chess and Long Range Planning,
: Springer-Verlag.

[2] Clarke, M.R.B. (1971), "Some Ideas for a Chess Compiler", NATO
Symposium on Human Thinking -~ Computer Techniques for its
Evaluation, St. Maximin, France.

[3] De Groot, A.D. (1965), Thought and Ch01ce in Chess, G.W. Baylor (ed.),
The Hague and Paris: Mouton.

F4] . (1966), "Perception and Memory Versus Thought: Some 01d
Ideas and Recent Findings," in B. Kleinmuntz (ed.), Problem
Solving: Research Method, and’ Theory, New York, Wiley,
PPD. 19 50.

[5] "~Dreyfus, H.L. (1965), Alchemy and Artificial Intelllgence, Santa
Monlca, California, Rand Corp.

[6] Doran, J. and D. Michie (1966), "Experiments with the Graph Traverser
Program," Proc¢. R. Soc. (A), 294, pp.235-259.

(7] Dudeney, H.E..(1908), The Canterbury Puzzles, Dover (1958).

[8] Fletcher, J.G. (1965), "A Program to Solve the Pentominoes Problem
by the Recursive Use of Macros,'" Comm. ACM 8(10), pp.621-623.

[9] Gardner, M. '"Mathematical Games Department" in Scientific American

Magazine.
[10] Golomb, S. (1965), Polyominoes, Scribner's, New York.

[11] Good, I.J. (1968), "A Five-Year Plan for Automatic Chess," in E. Dale
‘ and D. Michie (eds.), Machine Intelligence 2, American Elsevier
Publishing Company, Inc. pp.89-118.

[12] Greenblatt, R., D. Eastlake and S. Crocker (1967) "The Greenblatt
Chess Program," Proc. FJCC, pp.801-810.

[13] Lupnon, W.F. (1971), "Counting Polyominoes,'" in Computers in Number
‘Theory, Atkin and Birch (eds.), Academic Press, New York,
Pp.347-372.

[14]1 Michie, D. and R.A. Chambers (1968), "Boxes: An Experiment in
' Adaptive Control," in E. Dale and D. Michie (eds.), Machine
‘Intelligence 2, American Elsevier Publishing Company, Inc.
pp.137-152.

[15]

[16]

[171

(18]

[191]

£20]

[21]

[22]

[231°

[24]

44.

Minsky, M. (1968), Semantic Information Proce831ng, Introduction,
'M.I.T. Press, pp.l1-31.

Newell, A., J;C. Shaw ‘and H.A. Simon (1963), '"Chess Playing Programs
and the Problems of Complexity," IBM J. Res. Dev., 2, pp.39-70.
Reprinted in E. Feigenbaum and J. Feldman (eds.), Computers
and Thought, McGraw-Hill Book Co., 1963.

Nilsson, N.J. (1969), "Searching Problem Solv1ng and Game Playing
Trees for Minimum Lost Solutions," in A.J.H. Morrell (ed.),
Information Process1ng 68, Vol.2, pp.1556-1562, North-Holland,
Ams terdam.

Read R.C. (1962), "Contributions to the Cell Growth Problem,"
Can. J. Math. XIV, pp.1l-20.

Ryder,'J.L. (1971), Heuristic Analysis of'Large Trees as Generated
in the Game of GO, Stanford University AIM-155.

Samuel, A.L. (1959), "Some Studies in Machine Learning Using the
Game of Checkers,'" IBM J. Res. Dev.3(3), pp.210-229. Reprinted
in E. Feigenbaum and J. Feldman (eds.), Computérs and Thought,
McGraw-Hill Book Co., 1963.

(1967), "Some Studies in Machine Learning Using the Game
of Checkers II - Recent Progress," IBM J. Res. Dev. 11(6),
pp.601-617.

Shannon, C.E. (1950), "Programming a Computer for Playing Chess,"
Phll ‘Mag. 41, pp.256-275..

Slagle, J.R. and J.K. Dixon (1969), "Experiments with Some. Programs
that Search Game Trees," JACM 16(2), pp.189-207.

Zobrist, A.L. (1969), "A Model of Visual drganisation for the Game
of GO," Proc. SJCC, Vol. 34, pp.103-112.

45.

APPENDICES

1. " 'Operation of the Programs

The main sections of this program were written in PL/I. Most of
the external supporting routines were written in Fortran;:due to being
exposed to some of the fine points of PL/I implementation and support.

The game-player PENTO expects its input to be in PL/I LIST format,
‘i.e., items must be followed by spaces.

One can begin by typing something like:

SR~ RSRI1:MHK@B + NEW:PLI1LIB PAR=FFF=RSR1:GGG

MHKPNF = RSR1:MHKPNF
The program spends a while reading in its rather cumbersome files and
then types 'INPUT NEW GAME SPECS',

We must then type in some numbers:

ABCDETFGH

A is the area of the board's rectangle (eg. 60)

B 'is the number of columns (6)

C is the number of rows (10)

D represents the number of squares of the rectangle that are

unavailable ‘

E is the number of pieces unavailable

F is the debugging mode (usually 0)

G is the minimaxing search limit (defaults to 60)

H is thé mode of play
Note: If D> 0; we must next input the list of the numbers of the squares

concerned, similarly if E > O the list of pieces concerned must follow.

46.

If F is not O then a plethora of helpful (to the programmer) values are
likely to be printed .out. The values that can be taken by H are as

follows (some are now redundant):

1 You move first; program plays randomly with search.

2 Program moves first, otherwise aS'l:

3 You play all the moves;

4 The program plays all the moves.

5 This was once used to gather statistics about first moves.

6 A device used to analyse some games while playing backwards.
7 Used to generate and file a series of random games (an amount

controlled by G).
8-10 Not used now.
11 You move first, program has access to search and all tables.
12 Program moves first, as 11,
To play a move one must type sométhing of this form:
'T' 3 45 remembering the space at the end or 'N' 7 34
To restart a game, type 999 instead of the 3., One can always termin-
ate with S$END.
One might also wish to update the file of move evaluations. Say,
for example, the choice to centre ratio 87:21 gave a bad result. And by
. extrapolation 196:28 a good one in the same game, and 402:38 was the state
the move before. Then one would input the following lines:
$SOURCE MHKLD
87 21.1 (in format 3I4)
196 28 2
402 38 3

$END

The following is the content of MHKLD:
$R MHKLOBJ 4=MHKPNF 5=*MSOURCE* 6=-WMK 7=%*MSINK*
$R *PERMIT PAR=MHKPNF NONE
SE MHKPNF
$C -WMK MHKPNF

$R *PERMIT PAR=MHKPNF RO

47,

‘Listings of Routines, Table and Games

The Pentomino Playing Program B

The Move Lists (Excerpts)

The Evaluation List Maintenance Program
The Move EvalﬁationATableé

Four Sample Games'Against‘Humah Opponents

1 o The Random Version with Search

2, 3 and 4 The Improved Version

48.

49,
PENTO: PROC OPTIONS({MAIN)3 (A) LISTING OF

DCL THE MAIN PROGRAM

CPUTIME ENTRY RETURNS(FLDAT BIN),.

(WTIM,NTIM) STATIC FLOAT BIN,

MVW INIT(50}),

MVYCNRWyMCNCRW,

MAVL(12) BIT(1), : ,

‘1 JINy 2 JX BIT{(4)y INIT(10000°%*B), 2 JL(12) BIT{1), MJ DEFINED JIN,

MFSTBD(256) INIT ((25612), ' - :

MKA{4008) STATIC,

MSLST(13166) STATIC,

MUD BIT(32) INIT{(32)*0%'B),

LINE DEC FIXED(953),

ASIZE, MO BIN(1554), MRCH{H), .

1 STATS(100)s 2 MOVES, 2 GSIZE, WESG CHAR{(8),

TIME ENTRY(BIN{31,0),BIN{31,0),BIN{31,0)),

(EMAT,EMUTsMITA,MITByMITCyMITD,MITE} BIN{31,01},

MGCNT INIT(1),

1 KVAR(7), 2 KPNO, 2 KONO, 2 KOSQ,

CARA CHAR{1l)» IR -

MMM(12) INIT((12)0) STATIC,

XXN FIXED BIN, :

PANTRY(12) BIT(12) INIT{(®100000000000'8,'0100000000003,
'001000000000'8,*000100000000*3,*000010000000*B,*000001000000"*8B»
*000000100000'8,'000000C010000%'8B,*00C000001000'8B,*000000000100*B»

* 0000000000108, *00000000Q001*B)» '

XPANTRY(12) BIT(12),

TFOPS(12) STATIC FIXED BIN INIT{1+49,11519+27+35,39, 43 4T451+52960),

SPONO(64) STATIC FIXED BIN INIT{(8)1,2, 27(8)3v(8)4:(8)5,(4)6,(4)77‘
(4)85(4)9,10,(8)11,(4)12)y '

SST{64) STATIC
‘ BIT(lZ) INIT('100001111111‘8,'0100101111119By'001011011111 By

*000111101111*8,*'000101111111*8,*100010111111°*8,
'010011011111'8,700101110111178,
*101011110101*B,'0101111110107"8,
1101010110111 *'8,*010111011011°8,'1010111011901°*B,
*010101111110'8,'010111101011°8,'1010011111017'8,
*010110111110'8,*10101101011178,
#100111101101'8,'110001111110"8B+7°011010110111"'8By
'001111011011° Ba'lOOllOlllllO'B,“110011010111 By
'011011101011'8,'00110111110178,»
'001001111111?8,°000110111111'B,*10C011011111°8,
'OiOOlllOllll’Bg'010001111111’8"001010111111’8,
0001110111118, °100011101111*8,
'OOOlllllllOl‘B,9100011111310’8,'OlOClillOlll'By’OOIOlllllDll'Br
'016101101111*8,°101000111111°'8,°010110011111*8,°101011001111?3,
*011011110011°*8,°001111111001°B8,7100111111100*8,7110011110110'8,
'100110101111'8,'110001011111‘3:’011010101111'8.'001101011111 By
-'000011111111°*8B,
°100011111101‘Bg’010011111110'8"001011110111’8,’000111111011'87-
'000111111110*B,*10001111011178,701001111101178,°001011111101?8,
°*101010101111'8,010101011111'8,%101001011111*8,°01011C101111°8),

1 SFT{64) STATIC, _ ’

2 MSFF(4) INIT({-1694-15s—-15316,-167-1513175-16219150169-175-151,416,
"‘151"191, 16""169"1' 161 171;—161—1'19151“179"1691, 16,
—324=162169329-29s—-191202% :
~325=162166179-121229015:—-17+-16916232+=159-29-1a1l>
~179~131429~169—159169329-29-141917,-32,-16,15,16,
"177-1916732v‘lé,“ng—21*19'—321-1671,}.7.71'2115v169

. ' 50.
—29=12169179=329=163-19159-17+~16+1+23-15+15162324

~16+=15419169=191ls1691T73=16+-1915,169=179-164-1,1,
"16"15,‘191'-1691'16'177-1(1115,1_6"‘171“16"’1916!
~191416+32:-162=2+-19169-32+1-169—10le—165142:16,y
"L?"lSv"lvl,"lé,_‘l’S’16’171—191,15,171“17"16,15,167
"321‘169 192,1)2116932""27'1716,329‘32,‘169‘2v"17
"177"1,160 177"169"‘159"11151"171_16’11171‘15119157161
’169‘1, 1.1161
=169=19169329=169—29=1912-32+-16913169~17142516s
—23=19194163-32+-163=19169-169=131329s-16+1,16932,
—173-16, 16117y-15"‘17lv151—161‘15,15:16;"‘1.7"’1?1‘917)'3
IXeKTESTH 1Y, 1Z,1ZAL(5),
MRAT BIN(15,5), MESG CHAR{8), DY FIXED BIN,
BTEST BIT(12), B8TS(12) BIT{1l) DEFINED BTESTy
PAVL(12) FIXED BIN,
PONQ{12) FIXED BIN INIT(8+42+898y8949494%49421, 8 4):
MONA{12) INIT(1+0s=190sl9ls=19-1505250,-2),
MDNB(12) INIT{Os130s~1s—1l9lsly—19-2-0,250})5 -
UPbi(12) BIT(12) INIT(®*011111111011°* By’101111111101’81’110111111110 B,
: *111011110111°8,*1111012111111°*8,°111110111111"B,
*111111011111°8,*111111101111°B,7111111110111"'8B,
' ’lllllllllOll'By'111111111191’81'111111111110 Bl
ALLSET BIT(12) INIT{((12)°1*8), '
ALLOFF BIT{12) INIT({12)'0°'B),
LNKA BIT(12)y
LK(12) BIT(1) DEFINED LNKA, _
CLNKB BIT(12), LJ{12) BIT{1) DEFINED LNKB8,
1 LNKEy 2 LNKF BIT{(4) INIT(*0000'B), 2 LNKD BIT{12}),
LNKG DEF LNKE,
XCHKA(4) FIXED(1) INIT(2:142,1),
XCHKB{4) FIXED(1) INIT{(4534,4,3),
YCHKA({4) FIXED(L) INIT(6:697:5),
YCHKB{4) FIXED(1) INIT{(5+7+8,48),
INT1 BIT(12) INIT('111001100111'8),
INT2 BIT(12) INIT{'101110011101'R),
TNT3 B8IT{(12) INIT(®110111001110°8),
INT4 BIT(12) INIT('0111C0111011°'B)> ' o
CALPH{12) CHAR{L) INITLYF v Iy "L ?y IN P 0T 5%, 0V oY XY, 'Y, 17"
) o
TMRLNK(12) STATIC FIXED BIN INIT(394+192+7+8+5+6511+12»9510)3;
ON ENDFILE (SCARDS) GOTO REPENT;
GOTO SEE; SAW: JONETM=0; :
IF MSLST(13166)-=63 THEN DO; .
PUT LIST{{MSLST{I) DD 1=13142 71O 13166)). STCP3; END3
GSTART:
PUT LIST (*INPUT NEW GAME SPECS'); PUT SKIP(Z)I'
S GET LIST {(LyM;NgNAsNPyKTEST4MVW,MDNDX)3
IF JONETM=0 THEN D005 JONETM=1;
IF MDNDX=6 THEN GOTO T0Q4;3 FRO:
. IF KTEST=-2 THEN PUT LIST(MKA);
END
JINITS,,JINIT=03
IF MDNDX-=7 THEN GOTO GSTARTAjS
MOVES({*)=03 GSIZE(*)=1;
. WESG=DATE; MITA=SUBSTRIWESG, 7)v
MITB=SUBSTR{WESGs+492);: MITC=SUBSTR{WESG,1,2);
MITE=MITA+100%MITB+10000*MITCs; EMAT=EMAT=MITE/L10000;
PUT LIST(DATE):; PUT SKIP; PUT FILE{PSTAT) LIST{DATE};
GSTARTA: IF L -~= M&N THEN DO3 ’
MXXN = 13 GO TO XX3 END;3

IF NA >= L | NP >= 12 THEN DO;
MXXN = 23 o .
XX: PUT LIST (*NO GAME',MXXN)3 GOTO REPENT; END;
IF MVW=0 THEN MVW=60;
XPANTRY (1) *O11111111111°83
XPANTRY (2) *101111111111*83
XPANTRY(3) "110111111111°83
- XPANTRY (&) *111011111111°3;3
DO K = 5 TO 12;
XPANTRY(K) = UPD(K); END3
IFf MDNDX=8 THEN DO;
KLODQ: IF MGCNT>MVW THEN GOTO REPENT; KH=03
KLOCOP: KH=KH+13; GET SKIP FILE{(PSTAT) LIST(CARA);
IF CARA='%* THEN DO; KH=KH-23; GOTO KLOGCR; END;
GET FILE(PSTAT) LIST(KONO(KH),KOSQIKH)); KI=13 .
KLOP: IF CARA=ALPH{(KI) THEN GOTO KLOQ; KI=KI+1l; GOTO KLOP;
KLOQ: KPNO(KH)=KI3; KONO{KH)=KONO(KH)+TFOPS{KI)-13 GOTO KLOGP;
KLOOR: IF LOOTT=1 THEN D03 LOOTT=03; MGCNT=MGCNT+#1l3
5070 KLDOQ; END;
KH=KH=-13 IF KH<1 THEN GOTO KLOOQ; END; -
BOARD: BEGIN3 DCL : '
ARCH{M) CHAR(1), . '
MVALLH, MCNCWyMVALLLy MCNHyMCNL,MYCNTA, MMAXFG INIT(O),
LNKC BIT{(12), - :
1 MCS(L), 2 MCNS, 2 MCNSQ, 2 MCNSD{8) BIT(1),
1 LSQ, -
2 NBOARDI(L),
4 LNK BIT(12),
4 MVCNT,
4 SWS,
6 CNTRE BIT(1),
6 INFSW BIT(1),
6 DEAD FIXED BINARY,
2 MVCNTALL INIT(O),
2 MCNCN INIT{O0);
DEAD,MVCNT=03
PAVL=03 MAVL='178;
MCNSD(*,1)='1"'8;
IF MDNDX=8 THEN DO; NA,NP=13 DO I=1 TO KH;3
PAVLIKPNO(I)}=13 BTEST=SST{KONO(I)); IZB=KOSQ(I)3
DEAD(12B8)=KPNO(I}; JJ=235 KK=13
DD WHILE(JJK6); IF BTS(KK)='0'B THEN DO3
17C=1ZB+MDNA(KK) +MEMDNB(KK) 3 ‘
~ DEAD(IZC)=KPNO(I)3 JJ=JJ+13 END;
KK=KK+13 END; END; GOTO INTL; END;
1F NA -= 0 THEN BESIN;
DECLARE A{NA} FIXED BIN;
GET LIST ((A(II) DO II = 1 T0O NA));
DO II = 1 TO NA; :
DEAD(A(IT)) = 1335 END: END:
IF NP ~= 0 THEN BEGIN;
DECLARE BINP) FIXED BINS
GET LIST ((8(II) DO Il = 1 7O NP));
DO II=1 TO NP3
MAVL(B(II))='0"8B
PAVLIBIII)) = 1
INTL: BEGIN;
DO I = 1 70 L3
LNK(I) = ALLSET;
IF 1 <= M THEN LNK(I) = LNK{I) & INT1; ELSE

itouw uon

s ENDs; - END;3

IF I<=M+M THEN LNK(I)=LNK(I) & UPD(9); S
IF I > M % (N - 1) THEN LNK(I) = LNK(I) & INT23 ELSE
IF I > M % (N -2) THEN LNK{I) = LNK{I) & UPD(11);
IF MOD(E,M) = 1 THEN LNK(I) = LNK{T) & INT3; ELSE
IF MOD(I,M)=2 THEN LNK{I)=LNKI{I)EUPD{12);
IF MOD(I,M) O THEN LNK(I) = LNKI(I) & INT&; ELSE
IF MOD(1,M) M - 1 THEN LNK(I) = LNK(I) & UPD{10G)3
END; '
IF NA=Q THEN GOTO INC;3
INB:
DO I =.1 TO L3
IF DEAD(I) -= 0 THEN DO;
LNKB = LNKI{I);
DO J = 1 7O 12;
IF LJ(J) == '0'B THEN DD.
K=1+MDNA(J)+M#MDNB(J) 3
IF DEADI{K) = 0 THEN DO
LNK(K) = LNK(K) & UPD(TMRLNK(J));
END INB; _
INC: DO I =1 TO L3 _
IF DEAD(I)-~=0 THEN GOTO NDINC;
LNKD = LNK{I);
LNKH=4975+LNKG+LNKG;
LNKI=MSLST(LNKH); IF LNKI=0 THEN GOTO NDIND;
LNKJ=MSLST{LNKH+1); IF NP=0 THEN DO;
MVCNT{I)=LNKJ; GOTO NDIND; END;
DO II=0 TO LNKJ-1; _ :
IF PAVL(SPOND(MSLST(LNKI+IX))) =0 THEN MVCNT(I)=MVYCNT{I)+1;
END; , o
NDIND:
IF MVCNT(I)>0 THEN DO CNTRE(I)-'l'B'
MCNCN = MCNCN + 13
MVCNTALL= MVCNTALL+MVCNT(I), END; ELSE CNTRE(I)=707'B3;
NDINC: END INC3 : '
MCNCW=MCNCN3;
END INTL3
CHIEF: BEGIN;
" VAGA: MXF=0;
IF (MDNDX=11)]{MDNDX=3)) {MDNDX=11) THEN GOTO THEFDE.'
IF {MDNDX=6)] (MONDX=12) THEN GOTO Apmv,

W

VYAGB:

IF MVCNTALL -= O THEN GOTO PMV;3
IWIN = 03
GEND:

IF MDNDX>2 THEN DO
MITA=1; MITB8=0; CALL TIMEIMITA,MITB,MITC);
MITC=MITC-MITD3
IF MDNDX=6 THEN
IF JINIT=1 THEN MESG=' SHMT WON®;
ELSE MESG='*SMT LOST®; END;3
ELSE IF MDNDX=99 THEN MESG='PARTIAL '3
ELSE MESG = * ;5 ELSE IF IWIN = 1 THEN

MESG = *1 WIN'; ELSE MESG = ' YOU WIN®3
PUT LIST (MESG,MGCUNT,JINITS,MITC)3
IF MDNDX=7 THEN DO PUT LIST{MOVESIMGCNT)sGSIZE(MGCLNT)) 3
PUT SKIP FILE(PSTAT) LIST("%' ,MOVES{MGCNT},,GSIZE{MGCNT))3
END3; PUT SKiIP(2)3

DO KK = 1 70 Nj

DO LL = 1 70 M3

DY = DEAD(M * (KK - 1) + LL)3

IF DY = 0 THEN ARCH(LL) = '0"; ELSE
IF DY < 13 THEN ARCHI{LL) = ALPH{DY);
ELSE ARCH(LL) = *#%; END;
PUT SKIP(2) EDIT (ARCH) {IM)(X({1)y A{1))); EnD;
PUT SKIP{3);
IF MGCNT=MVW THEN GOTO WINDUP3
MGCNT=MGCNT+13

- GOTO NDBD3 '

WINDUP: PUT SKIP(2) LIST{'NO. OF MOVES’,*NO. OF GAMES');
ASIZE,M0=0; '

DO I1=1 TO MGCNT;
ASTZE=ASIZE+GSIZE(II); MO=MO+MOVES{II);
MMM({MOVES(II))=MMM(MOVES{1II))+13 END;
MO=MO/MGCNT; ASIZE=ASIZE/MGCNT;
CO. I1I=1 TO 123 PUT SKIP LIST{II,MMMIII)); END;
PUT SKIP FILE(PSTAT) EDIT{MMM) (12(X(2),F{(2)));3 .
PUT SKIP(2) LIST(*TOTAL GAMES?','AVGE MOVES','AV PROD OF
PUYT SKIP LIST(MGCNT,M0,ASIZE)};
PUT SKIP FILEIPSTAT) LISTI{MGCNTMO,ASIZE);
‘GOTO REPENT; ’
PMV:
IF MDNDX<3 THEN :
IF MVCNTALLK=MVW THEN D03 CALL MMAX; _
1F MXF=1 THEN GOTO EPMV; GOTO APMV; END;
IFf MDNDX=8 THEMN DO; CALL MMAX3 GOTO KLOOR; END;

APMV: MITA=MCNCN; MITB=7; :

CALL KUTRANDIMITB,MITA,EMAT); MQDX=EMAT;
KLU = 03 KLUX = 13 KKK:

IF DEAD(KLUX) = 0 THEN

IF CNTRE(KLUX) = *1'8 THEN

KLU = KLU + 13

IF MQDX <= KLU THEN GOTO KKKA;

KLUX = KLUX + 13 GOTO KKKj; KKKA:
MITC=83; MITE=MVCNT{KLUX);
CALL KUTRANDIMITC,MITE.EMAT); KLAN=EMAT;
KWIZ = 03 J = 03 LNKD = LNK({KLUX);:
LNKI=MSLST(4975+LNKG+LNKG)s T1I=0;

GEN: DO WHILE (KLAN > KWIZ}; ‘ '
IF PAVL(SPONO(MSLST(LNKI+II)))=0 THEN KWIZ=KWIZ+1l3 .
1I=11+41; END;

J=MSLST{LNKI#+II-1);
1Z = KLUX3; IX = SPONO(J); 1Y = J — TFOPS(IX) + 13

EPMV: :

MRAT=MVCNTALL/MCNCN;

PUT SKIP EDIT (ALPH{IX)sIY,IZ,MVCNTALL,MCNCN)

IX12) A1) XU2) 5 FL2) 5, X{2)-F{2):X{2)V5F14),X{2),F12))3
IF MDNDX=7 THEN DO; PUT EDITIMRAT) (X12),F{54,2));

53.

CHOICES')3

PUT SKIP FILE(PSTAT) EDITIALPH{IX)>1Y»IZsMVCONTALL,MCNCN,MRAT)
(XU2) 9 A01)»X(2)4F{2)sX(2)sF(2), X(Z),F(4)1X(2)9F(2),X(2)vF(592)),.

- MOVES {MGCNT)=MOVES{MGCNT)+1;
GSIZt(MGCVT)”GSIZE(MGCNT)*HVCNTALL,,END.

PUT SKIPI{2);
CALL UPDT;

IF£ MYNDX = O THEN QUCH: DO;3 _

PUT LIST (?INV MV GEN®); STOP; END;

IF MDNDX=7 THEN IF MVCNTALL-~=0 THEN DO; LL,KKX=03
XY¥Z: LL=LL+1; KK=KK+1; '
MQCH(LL) 03

I[F DEAD(KK)=0 THEN TF CNTRE(KK)='1'8 THEN MQCH(LL) MVCNT(KK}'

IF LL-=M THEN GOTO XYZ;3

PUT SKIP(2) EDIT(MRCH) (6(X{1),F{2})); LL=03
IF KK<LL THEN GOTO XYZ; PUT SKIP(3); END;
IF MDNDX>10 THEN GOTO. THEFOES
I1F MDNDX=6 THEN GATD BSMTR;
. IF MDNDX > 2 THEN GOTO VAGAS
THEFOE:
IF MVCNTALL = 0 THEN DO;5; IWIN = 13
GOTO GEND; END3
THEFA: PUT LIST('YOUR MOVE?®)s PUT SKIP(1)3 GET LIST (CARA»J»IZ):
I1=13
CLOP: IF I1>12 THEN DO3 J=J+10035 GOTO CLOQ;s END3.. ’
IF CARA=ALPH(II)} THEN DOs J=Jd-1+TFOPS(IT); GCOTQ CLOQ3 END;
I1=1I+1; GOTO CLOP3; CLOQ:
I J.>9998 THEN STOP;
IF J >998 THEN DOs
MVCONTALL,MCNCN = 03 MDNDX=99; GOTO GEND; END3

CALL UPDT;
IF MVNDX = 0 THEN DD, :
PUT LIST {° IT IS STILL®*)3 GOTO THEFAS ENDs

IF MDNDX<3 THEN GOTO VAGSB;
IF MDNDX<11 THEN GOTO THEFOE;
JINIT=23

~ BSMTR:

IF MVCNTALL=0 THEN GDTO GENDs '

IF JINIT=2 THEN JINIT=13 ELSE IF JINIT=1 THEN JINIT=23
ELSE DO; MITA=8; MITB=10035 CALL KUTRAND(MITA»MITB MITC)
IF MITCD>50 THEN JINIT=2; ELSE DO;s :

JINIT,JINITS=1; END; JINITS=JINITS+13 _ :
MITE=1; MITA=0; CALL TIME{(MITE,MITA,MITD); END;

IF MVCNTALL<=MVW THEN DO; :

IF MXF=1 THEN GOTO APMV; CALL MMAX;

IF MXF-=1 THEN GOTO APMV; GOTO EPMV; END;

ELSE IF JINIT=2 THEN GOTO APMV;

ELSE MVSMPLR: BEGIN; ,
DCL 1 LOOKING{MCNCN), 2 LKLOC,s 2 LKORNy 2 MVCNRy 2 MCNCR,
2 MSCOR, 2 MVLDXy 2 MVFLP, -2 MVLSDP; ' :

MCNI=1;

JINDX=M+19; DO II=1 TO N3 JINDX=JINDX+16-M;3

DO JJ=1 TO M; KK=M*{1I-1)+JJ;

IF DEADI(KK)=0 THEN DO; MFSTBD{JINDX)=0;3

IF CNTRE(KK)=91?B THEN DO; MCNS{MCNI)=KK; MCNSQI{MCNI)=JINDX;
MCNI=MCNI+1; END3s END;

ELSE MFSTBD(JINDX)=13 JINDX=JINDX+13 END; END;

LKMCN=0; MVLDX=0; »
MVMKR: DO 11I=1 TO L

IF DEADI(TII)=0 THEN IF CNTRF(II}—’I’B THEN DO
LKMCN=LXKMCN+L; ULNKD=LNK(II);
MLOOK=MSLST{(4975+LNKG+LNKG) 3

IF MLOOK =0 THEN DO; '

PUT LIST('TRAP 10'); GOTO NDMVMKR; END;

MLKD=03; LKLOC({LKMCMN)=11; MVFLP(LKMCN)=MLQOK:;

MVLSDP (LKMCN}=MSLST(4976+LNKG+LNKG) 3 '
LKLP: LKORNW=MSLST{MLOOK+MLKD) 3

IF MAVL(SPONO{LKORNW))=21%8 THEN DO

MVLODX {LKMCN)=MLKD; LKORN{LKMCN)=LKORNW; GDTD MvaRs, END3
MLKD=MLKD+1; MVLDX({LKMCN)=MVLDX (LKMCN)+13 :
IF MLKD<MYLSDP(LKMCN) THEN GOTO LKLP;

PUT LIST('TRAP 11'); GOTO NDMVMKR;

MVYMKRS:

CALL FPLAY(LKDRNN.MCNSQ{LKMCN)yl), CALL KOUNT3

54,

MVCNR(LKMCN)=MVCNRW; MCNCR{LKMCN)=MCNCRW; 30

CALL FUNPLAY{LKORNWsMCNSQILKMCN)); _
1F KTEST=-3 THEN PUT L[ST(LDDKING(LKMCN)), NDMYMKR: END MVMKR;
MVTSTR: DO 11=1 TO MCNCN;
CALL SCDRER(WVCNR(II);MCNCR(II),WSCDR(II)). END3
IF KTEST=-3 THEN PUT LIST(MSCOR);
LXSCW=-20003
DO II=1 TO MCNCN;
IF MSCOR(III>LKSCW THEN DO3
LKPTR=I13 LKSCW=MSCOR(II); END;
1F MSCOR({II)=LKSCW THEN
1F MVCNR{II)<MVCNR(LKPTR) THEN LKPTR=I1; END;
IF LKSCW-~=-900 THEN GOTO CNTSCH;
FNDMV: IZ=LKLOC(LKPTR);
J=LKORN(LKPTR)3 IX=SPONO(J);
1Y=LKORN(LKPTR)-TFOPS{IX)+1; GOTO EPMV;
CNTSCH: IF MVCNTALL>700 THEN GOTO APMV;
DO II=1 TO MCNCN3
MVLDX{II)=MVLDX(II)+1;
‘DO WHILE(MVLDX{II)<MVLSDP{IT));
LKGRNW=MSLST{MVFLP(IT)+MVLDX{I1));
1F MAVL(SPONO(LKORNW)}=91?8 THEN DO;
CALL FPLAY(LKORNWMCNSQ{I1)s1)3
CALL KOUNT; CALL SCORER(MVCNRH,MCNCRWsLKSCOR);
IF LKSCOR>LKSCW THEN DO;
LKORN(IT)=LKORNW; MVCNR{ITI)=MYCNRW;
MCNCR{II)=MCNCRW; LKSCWsMSCORI{II)=LKSCOR;
LKPTR=11; END; - : |
CALL FUNPLAY{LKORNW,MCNSQ{IT))3; END;
MVLDX{I1)=MVLDX{II)+1; END; END3
GOTO FNDMV; END MVYSMPLR;
~ NCHIEF: END CHIEF; GOTO GSTART;
UPDT: PROCEDURE; .
IF 1Z > L | 1Z < 1 THEN DO3 -
PUT LIST (*NO SQUARE?'); GOTD MV; END;
IF DEAD(IZ) > O THEN DO 3
PUT LIST (*DEAD SQUARE®): GO TO MV; END;
IX = SPONO(J);
IF(J<1 1 J>63) THEN DO;
PUT LIST (*NO SUCH ORIENTATION'); GO TO MV3 END3 -
IF PAVL (IX) = 1 THEN DO;
PUT LIST (*PIECE USED UP?); GOTO MV; END;
BTEST = SST(J); -
IF ALLSET =~= (LNK{IZ) | BTEST) THEN DO;
PUT LIST (*NO FIT?); 50 TO MV; END;
PAVLIIX) = 13 MAVL({IX)=10"8;
INFSW (%) = 70'8;
IZA(1) = 125 DEAD(IZ) = IX3 JJ = 23
DO I = 1 TO 12 WHILE (JJ<6); -

IF BTS(I) = °0'B THEN DO;
1ZA(JJ)=TZ+MDNA(I)+M*MDNB{)3
DEAD(I1ZA(JJ))=IX; JJ=JJ+l; END; END;

DOUP: DO LL = 1 TO 53
IF CNTRE(IZA(LL)) = '1%B THEN DO
MCNCN = MCNCN - 13
MVCNTALL = MVCNTALL - MVtNTtIZA:LL)), END
LNKB = LNK(IZA(LL));
DO MM = 1 TO 123
IF LJ{MM) = *1%8B THEN DO;
K=TZA(LL)+MDNA(MM)+MxMDNB{MM) ;

1F DEADIK) = O THEN DO;
INFSW(K) = '1'8B3;

LNK{K) = LNK(K) & UPD{TMRLNK(MM));
END DOUP; _ ' '

CHK: DO NN =1 TO L3

IF DEADINN) -= 0 THEN GOTO NCHK;

IF CNTRE{NN) = 'Q'B THEN GOTO NCHK;

LNKDO = LNK({NN);

LMKH=4975+LNKG+LNKG; : -

LNKI=MSLST(LNKH); IF LNKI=0Q THEN GOTO CHB3

MVCNTA=03 LNKJ=MSLST{LNKH+1);

IF INFSW(NN)=%0'8 THEN DO3j DO {I=0 TO LNKJ-13
IF SPOND(MSLST(LNKI+II))}=IX THEN MVCNTA= MVCNTA+13 £ND3;
IF MVCNTA=MVCNT(NN) THEN GOTO CHB; »
MVCNTALL=MVCNTALL-MVCNTA; MVCNT{NN)}=MVCNTINN)-MVCNTA3;
GOTO NCHK; END3 ELSE D03 DO II=0 TO LNKJ-1; -

TF PAVL(SPONO{MSLST(LNKI+II)))=0 THEN MVCNTA= MVCNTA+13 END;3.
.1F MVCNTA=0 THEN GOTO CHB; -
MVCNTALL=MVCNTALL-MVCNT{NN) +MVCNTA; MVCNT(NNY=MVCNTA3

GOTO NCHK3; ENDs3 :

CHB: MVCNTALL=MVCNTALL-MVCNTI(NN); ,

CNTRE{(NN) = ?07B; MCNCN = MCNCN - 1;
NCHK: END CHK; '

MVNDX = 13 _
IF MMAXFG=0 THEN MCNCW=MCNCN;
RETURN;
MV: PUT SKIP(1); MVYNDX = O3 RETURN;
END UPDT;.

KDUNT: PROC3; MVCNRW,MCNCRW=03;
JINDX=M+19; DO MM=1 TO N3 JINDX=JINDX+16-M;
DO JJ=1 TO M3 KK=M%{MM=-1)+JJ3
IF DEAD(KK)=0 THEN IF CNTRE(KK)='1'B'THEN
1F MFSTBD(JINDX)=0 THEN DO;
CALL NEIGH{JINDX)3 MWIND= 4975+MJ+MJ,
IF MSLST{MWIND)>0 THEN DO;
LKLN=MSLST(MWIND+1); LKLC= MSLST(MWIND).
LKDP,LKCT=03
DO WHILE(LKDP<LKLN);
IF MAVL{SPONO(MSLST(LKLC+LKDP)))='1'8B THEN DU;
LKCT=LKCT+1; MVCNRW=MVCNRW+1; END;
LKDP=LKDP+13 END3
IF LKCT>0 THEN MCNCRW=MCNCRW+1;
END3; END3 JINDX=JINDX+13
'NDKOUNT: END KOUNT;:
SCORER: PROC(MSCMV,MSCMC,MSCORW);
MSCORW=03
IF MSCMV>520 THEN DO; MSCORW=-900; RETURN; END3;
IF MSCMV<49 THEN DO; MSCORW=-10003; RETURN; END;
IF MSCMC>46 THEN DO; MSCORW=-9503; RETURN: END;
- IF MSCMC<10 THEN DO; MSCCRW=-9803 RETURN; END;
MTSTNDX=MKA{MSCMV-4T7);
IF MTSTNDX=0 THEN RETURNS
NRLP: MKAW=MKA(MTSTNDX);
IF MKAW=0 THEN DO _
MSCORW=MKA{MTSTNDX-1)%.53; RETURN; END;
1F MKAWDMSCMC THEN DO;
MSCORW=(MKA{MTSTNDX- l)+M&A(MTSTNDX+1))*.5. RETURN 3 END3
IF MKAWCMSCMC THEN DO; '
MTSTNDX=MTSTNDX+2; GOTO NRLP; END;
MSCORW=MKA{MTSTNDX+1);

END SCORER;: ’ ' ' L 7.
- MMAX: PROCEDURE; :
DCL WRES BIT{2),
1 SPLIST(3000),
2 MDEP, 2 MLEN, 2 MNEI,
2 MLBR, 2 MRBR, 2 MSON, 2 MORN, 2 MLOCs 2 MLEV, 2 MNEX, 2 MFAT,
2 MINX, 2 MMOV BIT{2), 2 MRES BIT(2); ' ' -
MHRK=03; KODEC,NODEC=13
C MCNSFZ,MCNI,MMAXFG,MTRAV,MARK=13
MNEXZ=23
DO 1I=1 TO 123 B
IF PAVL(IT)=0 THEN MAVL{II)=?1°'Bs ELSE MAVLI{IT)=°0"85 END3
DO II=1 TO 2999; MNEX{(II)=II+1; END; _
MNEX({3000),MLBR{1),MRBR{L),MORNI(1),MLOC(1)=0; MMOVI1)=*0128;
MNETI{1),NORN,NLOC=03;" : :
MRES({1)="10%8;
MSON(1)=-9993; MLBR{1)s:;MRBR(1)=03
MWND=3000; MLEV{1)=1; MCNSD{%*,1)=°1'83;
JINDX=M+19; DO II=1 TO N3 JINDX=JINDX+16-M;
DD JJd=1 TO M; KK=M#&{I1I-11+J3J3
IF DEAD{KK)=0 THEN DO; MFSTBD(JINDX)=0; : :
IF CNTRE({KK)=%*1'8B THEN DO; MCNS{MCNI)=KK; MCNSQ{MCNI)=JINDX;
MCNI=MCNI+1; END; END; :
FLSE MFSTBD{JINDX)=13
JINDX=JINDX+13; END; END;
CONROT:
IF KTEST>3 THEN
PUT LIST{"CNRT*,SPLISTIMTRAV)); :
IF MTRAV=MARK THEN IF MRES(MTRAV)<'10?B THEN DO;
NTIM=CPUTIME; MBTM= VTIM-HTIM GDTO MMA; ENDs
ELSE WTIM=CPUTIME;
I1F MRES(MTRAV)=*11'B THEN GOTO ACREN;
IF MRES{MTRAV)='10'B THEN GOTO CRUN;
IF MSON(MTRAV)=0 THEN DO3
IF MNEI(MTRAV)-~=0 THEN DO3
IF MRBR{MTRAV)=0 THEN DO;
MRES{MFAT(MTRAV))=MRES({MTRAV);
CALL DLT{MTRAV);
IF MLBR(MTRAV)-~=0 THEN DO;
MTRAV=MLBR({MTRAV); MRBRI{MTRAV)=0;
MSON(MFAT{MTRAV))=MTRAV3; END;
- ELSE MSON{MFAT{MTRAV))=03
MTRAV=MFAT{MTRAV); GOTO COMNROT; END;
IF MLBR{MTRAV)~=0 THEN MRBR{MLBR{MTRAV))=MRBR{MTRAV);
CALL DLT{MTRAV); MTRAV=MRBR{MTRAV); ‘
MLABR{MTRAV)=MLBR(MLBRIMTRAV)); MSON{MFATIMTRAV))=MTRAV;
GOTO CGNROT; END3 ' .
MRES{MFATI{MTRAV))I=MRES{MTRAV)
CALL FUNPLAY(MGRV(MTRAV)yMCNSQ(M{NX(WTRAV))\.
MTRAV=MFAT{MTRAV); GOTO CONROT; END;
IF MNEI(MTRAV)=0 THEN DO;
IF MRES(MTRAV)='00*'B THEN DO;
- CALL FUNPLAY{MORN{MTRAV),MCNSQI{MINX{MTRAV)));
 MTRAV=MFAT{MTRAV); MRES{MTRAV)=300'8; GOTO CONROT3; END3-
I MMOVIMTRAV)='00'8 THEN TIF MLBR{MTRAV)~=0 THEN DOj;
IE=MLBR{MTRAV); MLBR{MTRAV)=0; IEAD: CALL DLT{IE)});
IF MLBR{IE)~=0 THEN DO; IE=MLBR(IE); GOTO IFAD; END; ENDj;
CALL FUNPLAY(MORN(MTRAV),MCNSQIMINX(MTRAV))); '
MTRAV=MFAT(MTRAV); MRES(MTRAV)='01'3; GOTO CONROT; END;
IF MMOV(MTRAV)='01'8 THEN IF MRES{MTRAV)='00'B THEN '

GOTO CONEXP; ELSE DO3
IF MLBR(MTRAV)=0 THEN GOTO MIDEL; : :
TE=MLBR(MTRAV); MLBR(MTRAV}I=0; IEBD: CALL DLT{IE);
IF MLBR(IE)~=0 THEN DO3; IE=MLBR{IE); GOTO I€EBD3 END;
MIDEL: IF MRBRIMTRAV)<=0 THEN GOTO ENDEL;
[E=MRBR{MTRAV); MRBR{MTRAV)=03 IECD: CaLL DLT{IE);
IF MRBR{IE)~=0 THEN DO3; IE=MRBRI{IE); GOTO IECD; END3
ENDEL: MTRAV=MFAT(MTRAV); -
MRES{MTRAV)=*01"8B; GOTO CONROY; END;
IF MRES{MTRAV)=¢00'B THEN DO;

MTRAV=MFAT{MTRAV); MRES{MTRAV)='00'B3 GOTO CONROT; END3

- CONEXP: IF MDEP(MTRAV)>=MLEN{MTRAV) THEN DO;
IF MRBRIMTRAV)=0 THEN DO;s
MRES{MFAT(MTRAV) }=MRES(MTRAV); -
MTRAV=MFAT (MTRAV); GOTO CONROT; END;
ELSE D03 MTRAV=MRBR{MTRAV); MSON(MFAT(MTRAV))=MTRAVS
GOTO CONROTs; END3 ENDs : :
MWOR=MSLST (MORN{MTRAVI+MDEP{MTRAV));
IF MAVL(SPONO(MWOR))='0?B THEN DO;
MDEP(MTRAV)=MDEP(MTRAV)+15 GOTO CONEXP; ENDs3
MWT=MTRAV; GOTO BCREN;
CRUN:
IF KTEST>4 THEN
PUT LIST(*CRUN'); ’
IA=MCNCW3; MWT=MTRAV; MWL=MLEVIMTRAV);
LCRUN: IF TA=0 THEN GOTO NDCRUN;

IF MCNSD(IAMWL)~="1'B THEN DO; IA=IA-1; GOTO LCRUN3 ENDs3 .

CALL NEIGH{MCNSQ(IA));

MWIND=4975+MJ+MJ;

IF MSLST(MWIND)=0 THEN DO3
MCNSDITIA,MWL)=%0'B; IA=IA-1; GOTO LCRUN; END;
IF MNEXZ=0 THEN GOTGQ NDISHT;
NODEC=NODEC+13
KODEC=KODEC+13;

MFAT{MNEXZ)=MTRAV;

MMOV (MNEXZ)=MMOV{MTRAV);

MULEVIMNEXZ)=MLEVIMTRAV);

MSON{MTRAV) ,MTRAV=MNEXZ;

© MNET(MTRAV)I=MJ;
MORN{MTRAV)=MSLST(MWIND);
MNEXZ=MNEX{MTRAV);
MLEN({MTRAV)=MSLST{MWIND+1);
MRBR{MTRAV) yMDEP(MTRAV)=03
MINX {MTRAVI=1A3;

MLOC(MTRAV)=MCNS{IA);
MRES{MTRAV)=111783 .

MLBR{MTRAV) ,MSONIMTRAV)I=-9993

MCRUNz IA=IA-~13 IF IA=0 THEN GOTO NDCRUN;
IF MCNSD(IA,MWL)~=°1¢B THEN GOTO MCRUN;
CALL NEIGH{MCNSQ{IA));
MWIND=4975+MJ+MJ; '

IF MSLST(MWIND)=0 THEN DO3 _
MCNSDI{TA,MWL)=0'8; GOTO MCRUN; END;3
1F MNEXZ=0 THEN GOTD NDISHT:;
NODEC=NODEC+1;

KODEC=KODEC+1;

MLBR({MTRAV)=MNEXZ; :

MEAT (MNEXZ)=MFAT(MTRAV);
MSOM{MFAT(MTRAV))=MNEXZ;
MLEV(MNEXZ)=MLEV{MTRAV);

58.

MMOV (MNEXZ)=MMOV{MTRAV)}
MRBR ((MNEXZ)=MTRAV;
MTRAV=MNEXZ;
MNEXZ=MNEX{MTRAM);

MNET [MTRAV)=MJ;
MORN{MTRAV)I=MSLST(MWIND);
MINX{MTRAV)=IA;
MLEN{MTRAV)=MSLST(MWIND+1)3
MDEP(MTRAV)=03;
MLOC(MTRAV)=MCNS(IA);
MRES{MTRAV)=711°8;
MLBR{MTRAV) ,MSON{MTRAV)I=-9993
GGOTO MCRUN; ,

NDCRUN: IF MWT=MTRAV THEN DO; MSON{MTRAV)=0;
IF MMOV(MTRAV)='00'8 THEN MRES(MTRAV)='01'B; ELSE
MRES{MTRAV)=*00"'B;

END;
ELSE MLBR(MTRAV)=03;
GOTO CONROT;

ACREN:

IF KTEST>4 THEN
PUT LIST{*CREN®*};
CREN: IF MDEP(MTRAV)>=MLENM{MTRAV) THEN DO;
IF MMOV(MTRAV)="00'8 THEN MRES(MTRAV)='01'83;
ELSE MRES{MTRAV)=?00'8;
'MSON{MTRAV)=03 GOTO NDCREN3 END;
MWOR=MSLST{MORN{MTRAV)+MDEP(MTRAV));
IF MAVL(SPONO{MWOR))='0'B THEN DO3
MDEP (MTRAV)=MDEP(MTRAV)+13 GOTO CRENj; END; -
BCREN:
IF MNEXZ=0 THEN GOTO NDISHT;:
NMODEC=NQODEC+13; ‘
KODEC=KODEC+1;
MDEP(MTRAV)=MDEP{MTRAV)+1:

- IF MSON(MTRAV)=-999 THEN MLBR{MNEXZ)=03

ELSE DO; MLBR{MNEXZ)=MSON{MTRAV); MRBR(MSDV(MTRAV))*“NEXZ,
MSOM{MTRAV)=MNEXZ; ~
MRES{MNEXZ)='10"'8;
IF MMOV({MTRAV)='01'B THEN MMOV{MNEXZ)='00'8;
ELSE MMOV(MNEXZ)='01°'B;
MNEI {MNEXZ)=0;
MORN(MNEXZ)=MWOR3 "
MLOC{MNEXZ)=MLOC (MTRAV);
MINX(MNEXZ)=MINX{MTRAV);
MFAT{MNEXZ)=MTRAV;
MRBRIMNEXZ) s MSONIMNEXZ)1=~9993
MLEVIMNEXZ)=MLEV{MTRAV)+1;
IF MLEV(MNEXZ)>8 THEN DOFL: DOj;
PUT LIST{*DPTH OFL*,NDDEC)3; MXF=-13 RETURN; END3
MTRAV=MNEXZ;
MNEXZ=MNEX (MTRAV);
CALL FPLAY(MWOR,MCNSQUIMINX{MTRAV)),MLEV{MTRAV));
NDCREN: '
GOTO CONROT;:
MMAS
WRES=MRES (MTRAV);

%= [F NORN-=0 THEN NODO: DO;
MTRAV=MSCON(MTRAV)3
CABLQ: IF MRBR(MTRAV)<=0 THEN GOTO ABGR;
MTRAV=MRBR (MTRAV); GOTO ABLQ;

59.

END;

http://MNEXZ-M.NE.Xt

- ABGR: IF MLOC(MTRAV)=NLOC THEN GOTO ABFD;
CALL DLT(MTRAV); MTRAV=MLBR{MTRAV); GOTO ABGR;
‘ABFD: IF MLBR(MTRAV)=0 THEN GOTO ABAD;
II=MTRAV; ABRD: II=MLBR{IL); CALL DLT{II);
IF MLBR(II)~=0 THEN GOTO ABRD;
ABAD: IF WRES='01'B THEN GOTO ABMW;
IF MSON(MTRAV)<KO THEN GOTO ABCR3S
MTRAV=MSON(MTRAV) 3
ABLR: IF MLBR(MTRAV})=0 THEN GOTO ABLSS
MTRAV=MLBR(MTRAV); GOTO ABLR; : '
ABLS: IF MORN(MTRAV)=NORN THEN GOTO ABFN3
- CALL DLT(MTRAV); IF MRBR{MTRAVI<O THEN GOTG ABCR;
MTRAV=MRBR{MTRAV}); GOTO ABLS;
ASCR: CALL DLT{MTRAV);
IF MNEXZ=0 THEN GOTO NDISHTS
MNET (MNEXZ) yMLBR{IMNEXZ)y MRBR{MNEXZ)=03
MRESIMNEXZ)="10'8; MMOVIMNEXZ)=°01'B;
IF MNEI{MTRAV)=0 THEN MLEVI{MNEXZ)=MLEVI{MTRAV); ELSE
MLEV{MNEXZ)=MLEV(MTRAV)+13
" IF MLEVIMNEXZ)>8 THEN GOTO DOFL3
MCNI=13; ABLP: IF MCNS{MCNI)-=NLOC. THEN DO3
MCNI=MCNI+1; GOTO ABLP; END;
MARK,MTRAV=MNEXZ; '
CALL FPLAY{NORN,MCNSQ(MCNI},MLEVIMTRAV));
NORNyNLOC=03
MNEXZ=MNEX{MTRAV); GOTO CONROT;
ABMW: MTRAV=MSON{MTRAV);
ABMP: IF MORN(MTRAV)-~= NORN THEN DOj3 -
MTRAV=MLBR{MTRAV); GOTO ABMP; END; :
ABFN: CALL FPLAY(NORN,yMCNSQ{MINX(MTRAV)}, MLEV(HTRAV))w
NORN,NLOC=0; END NODOs =*/ .
ABEX: MTRAV= HSON(MTRAV)a
IF MTRAV<=0 THEN DO; :
PUT FILE(EEE) LIST(SPLIST); MXF=—13 GOTO NDMMAX; END;3
IF MRES({MTRAV)='00'8 THEN DO; :
MXF=25 GOTO PUKES END;
/= DO WHILE{MRBR{MTRAV)}-=0);3
PUT LIST{!TRAP 27%);
MTRAV=MRBR{MTRAV); END3
MLEN=MLEN{MTRAV}; NTRAV=MTRAV;
00 WHILE(MLBR(MTRAV)}-~=0);
MYRAV=MLBR(MTRAV);
IF MLEN(MTRAV)<KNLEN THEN DO3
NLEN=MLEN{MTRAV); NTRAV=MTRAV; END;
END; MTRAV=NTRAV; END;
ABEY: IF MSON(MTRAV)<=0 THEN DO:
CALL DLT(MTRAV)3 MTRAV= MLBR(MTRAV), GOT0 ABEY. END3
IF MRES(MTRAV)='00'B THEN DO3
IF MLBR(MTRAV)>0 THEN DO; . "
IK=MLBR{MTRAV); MRBR{IK}=0; CALL DLT{(MFAT(IK)}; ENDS END; */
MTRAV=MSON{MTRAV}; ~ : ‘
J=MORN(MTRAV); IX=SPONO(J);
IY=J-TFOPS{IX)+1; [Z2=MLOCI{MTRAV);
CALL FPLAY{J,MCNSQUMINX{MTRAV)),MLEVIMTRAV});
MXF=13 PUKE:
PUT LIST(KODEC,MBTM,MTRAV,;NODEC,MXF);
RETURN;
/% - PUT SKIP({2); CALL UPDT;
I+ MVYNDX=0 THEN DOG;
PUT LIST{'INV MACH MOVE?'):; GOTC NDISHT; END;S

ENEMA: 1F MVCNTALL=0 THEN D03 IWIN=1;3 GOTO NDMMAX3 END3 6l.
ENEMO: PUT LIST{!YOU TO MOVE?'); PUT SKIP(2); , :
GET LIST(CARA,NORNsNLOC): '
11=13
FLOP: IF I1>12 THEN DO; NORN=NORN+100; GQOTO FLOQ3S END3
IF CARA=ALPH{TI) THEN DO3 NORN=NORN-1+TFQPS(II);
GOTO FLOQ; END; II=11+13 GOTO FLOP; FLOQ:
1F NORND>9998 THEN STOP; IF NORN>998 THEN DO
MYCNTALL,MCNCN=03; MDNDX=63 GOTO NDMMAX; END;
J=NORN; I1Z=NLOC;: ' o
CALL UPDT3; IF MVNDX=0 THEN DO3 _
PUT LIST(? IT IS STILL?);. GOTO ENEMO3; END3
IF MVCNTALL-=0 THEN
GOTO MMA; IWIN=O0; =%/
GOTO NDMMAX;
DLT: PROC(ID);
IF KTEST>1 THEN
PUT LIST(’DLT'.ID):
MNEX(ID) 0;
MNEX{ MWND) y MWND=1D3
KODEC=KODEC-1;
IF MSON{ID)<=0 THEN GOTO NDOLT; -
INLP: ID=MSON(ID); '
LPs IF MLBRUID)-~=0 THEN DO;
ID=MLBR(ID); GOTO LP; END;

ILLP:
IF MSON(ID)I<=0 THEN GOTO IMLP;

GOTO INLP3
IMLP: IF ID = IDW THEN GOTO NDDLT;

MNEX{ID)=0; . '
MNEX{MWND) s MWUND=1D3

KODEC=KODEC-13

IF MRBR(ID)I<=0 THEN GOTQ IOLP3

ID=MRBR{ID)3 GOTO ILLP3 - ‘
10LP: IF (MFAT(ID)L= O)](MFAT(ID)>3000) THEN DO

IF KTEST>1 THEN DO; -
PUT LIST{(SPLIST(IT) DO II=MAX{l,ID-100) TO MIN{3000,1D+1001));
END; GOTO NDDLT; END3 , .
1D=MFAT(ID); -
MSON(ID)=0; GOTO IMLP;
NDDLT: ID=1DW3 END DLT;
NDISHT: MBTM=CPUTIME-WTIM; LOOTT=1;
PUT LIST (?OVERFLOW®',MBTM,NODEC); MXF=-13;
IF MDNDX=8 THEN DO; PUT SKIP{3); GOTO NOMMAX3 END3
J% MTRAV=MARK3; GOTO MMA; =/
NDMMAX:T END MMAX; :
NEIGH: PROCEDURE(JJ);
MJ=03 ‘ _
IF MESTBD(JJ+1)=0 THEN D03 JL(1)=71'B; IF MFST3D(JJ#+2)=0
THEN JL{10)='18; _ .
IF MFSTBD{JJ-15)=0 THEM JL{5)=*1'B;
IF MFSTBD{JJ+17)=0 THEN JL{6)=*1'8; END;

IF MFSTBD(JJ-1)=0 THEN D03 JL(3)=*1°85 IF MFSTBD(JI-2)=0
THEN JL(12)}=%1"'8B;
IF MFSTBD{JJ-17)=0 THEN JL(S)“I‘B’

IF MESTBD(JJ+15)=0 THEN JL(7)=?1%B; END;

IF MFSTBD(JJ-16)=0 THEN D05 JL(4)=°1'B3 IF WFSTHO{JJ 32)=0

THEN JL(9)='1%8; -
IF MFSTBD(JJ-15)=0 THEN JL(5)='1°B;

Ui e

IF MFSTBD(JJ-17)=0 THEN JL{8)=%1'8; END;
IF MFSTBD(JJ+16)'O THEN DO3 JL{2)='1'8; IF MFSTBD(JJ+32)=O
THEN JL{11)=°1'83
IF MFSTBD{JJ+15)=0 THEN JL{7)=11%8; .
. IF MFSTBD(JJ+17)=0 THEN JL{6)=*1'B; END;
END NEIGH; '
KUTRAND: PROC(EMYT,KRNG,XRES);
DCL
(EMYT, KRNG KRES) FIXED BIN(31),
TRUNC FIXED DEC{2,0);: -
IF EMYT>7 THEN EMYT=8; ELSE EMYT=7;
CALL TIME(EMYT,0,EMAT);
TRUNC=EMAT; -
KRES={ {TRUNC+1)*KRNG)/ 10003 -
IF KRES<KKRNG THEN KRES=KRES+13:
END KUTRAND: _
FPLAY: PROCEDURE(IHO,IWLsMﬂLV),
" IF KTEST>4 THEN
PUT LIST('FPLY");
MAVL(SPONO(IWO0))='0'B;
MESTBD(IWL)=13
DO IH = 1 TO 43 MFSTBD{IWL+MSFF(IWOsIH))=1; END;
IF MMAXFG=1 THEN DO; .
DO IH=1 TO MCNCW; MCNSD{IHsMWLV)='0'8;
IF MCNSD(IH,MWLV-1)=1'1'8 THEN
IF MFSTBD(MCNSQUIH))=0 THEN MCNSO(IH, MwLV)-'l'B, "END3
END FPLAY; :
FUNPLAY: PROCEDURE(IWO,IWL)3
IF KTEST>4 THEN
PUT LIST{'FUNP?);
MAVL{SPONO(IWO))='118;
MESTBD(IWL)=03
DO IH=1 TO 43 MFSTBOD(IWL#MSFF{IWO,IH))=03 END;3
END FUNPLAY; o _
NDBD: END BOARD; IF MDNDX-~=7 THEN GOTO GSTART;
ELSE GOTO GSTARTA: ,
T0OO: GET FILE{MHKPNF) LIST({MKA(II) DO II=1 TO 4008)); GOTO FRO;
SEE: GET FILE(FFF) LIST({(MSLST(II) DO II=1 TO 13166)); GOTO SAW;
REPENT: PUT SKIP LIST(’THANK YOU AND BYE- BYE'),
END PENTO; :

10
20
30
40
50
60
70
80
90
100
110
120
130
140
150
160
170
180
190
200
210
220
230
240
250
260
270
280
290
300
310
320
330
340
350
360
370
380
390
400
410
420
430
440
4350
460
470
480
490
500
510
520
530
540
550
560
570
580

S0 84 S0 40 BB 60 b 40 00 46 BB 66 00 se B8 G0 64 B S U 66 64 s 6 4D 6L SU 46 B B0 e 3B Be 6 4% U4 G4 B0 S 0P ¥ 44 BE 0 e [Y B Y Y Y N T N T T A T N Y I I BN T 1] .‘v

35

45
23
14
35
59
44
14
63

32
54
38
25

28
47
56
55
39
16
38
60

17

31

58

57
24

10
43

34
60
26

33
58

31
54
14
49
23
42
18
59
41
21
18
40
26
40
20

(B)

51"

52
40
17
37
61
55
17

7

6
33
55
44
42

2
29
438
33
17
50
20
40

2
<

23
2
32
59
6
46
4
37
12
53
58
8
36
8
44
5
34
61
13
19
4
32
59
39
53
217
47
13
14
.14
24
22

50

35
62
23

EXCERPTS FROM THE COMPLETE MOVE LISTS

34
18
47
21
39

63

58
20
12
8
34
56
9
49
4
30
51
19
23
61
25
42
5
45
6
34
60
52
57
7
41
15
30
2
11
38
54
59
7
35
10
16
24
5
33
61
61
58

23

50
42
26
61
37
23
51
44
1
36

36

20
24
60
26
41
10

2
46
24
11

57
11
60

5
31
52
35
28

1
27
48
55
56

8

36

9
29
13

3

49
22
24
17
13
42
21

3

12

37
14
i8
29

7
35
63

2

1]
29
51
60
27

2
43

27

54
45
6

45

36
29

2
27
49
12
58
53
41
18
38
60

18

16

6 .

33
55
45
41

2
29

49.

28

4
13
38
11
23
19

I i

51
25
37
21
22
47
25
18

15 .
39.

20
42
34
8
37
i0
7
3
32

55

3
40
7
46
28

. 55
52.

19
2

46
42

3.

28
50
15
31
15
48
22
40
62
21

26
T

34
57
10
47

3
30
51

26

15
16

40

21
35
34
21
53
38
46
41
23
51
38
22
19
48

36

62
47
21
39
15
20

4
33

56

8
50
20

1
29
56
59
29

"3

9

48
o

30
51
22
21
25
61
23
42

3
43
27

12
" 35

58
12

63

5

-31

52
35
19
20
49
37
45
42

28

54
43
10
49
28

54

473
42
24
51
45
11
48
26
41
12
25

5

34
. 60

21
62
31

3

32

57
13
34

4

13

62

31
53

25
37
30

27

A

59
54
40
15

37

61

15

32
53
44
39
25
51
43

47 .
30

56

44
12

63
29

.55

.50

29
52
46
490
52

27

49
i7

30

36

62
32
12

48

33
62
42

&7

t;

63. .

16

32
54

38

43
39

28
50
32

50
19
39

63

22
14

34
58

10

47

27
52

46

19

1L

33
56

43 -

10
49

29

51

22
13

62

60
32

59 .

55
15

32
56
13

- 62

30
55
53
60
57
28
50
41
31

38
11
49
10

53.

36

60
48

7

24
41

44
26
13
36
59
14
63
30
53
54

18

33
63 .
58
25

- 33

57
16

31
57
56

30

51
63
48
22
40

54
17
58
11

16
16
52

8

590

600

610
620
630
640
650
660
670
680
690

700

710
720
730

- 740

750
760
770
780
790
- 800
810
820
830
840
850
860
870
880
890
900
910
920
930
940
950
960
970
980
990
1000
1010
1020
1030
1040
1050
1060
1070
1080
1090
1100
1110
1120
1130
1140
1150
1160
1170
1180

O3 48 68 S8 s 10 00 a6 Sk B0 +0 2 B3 G0 6 90 B % w8 S8 Be e 0 4P 63 B6 68 b ¥ CE B8 68 0 S0 Sh 00 be 4P ¥ 42 e W

e 80 4E e

s %3 en BV B8

b 0h 03 b s B0 4B % Ne

14

39
14
47
12
48

33
57

46
28
54
30

42
45
59

19

55
45

42
- 33

46
42

32
56
37
11

55

53

- 59

33
61

31

59

58
23
56

49

47
35
12
16
42
43

12
17
20
52
19

59

17
41
10
55
41
49

34
60
24

‘31

56

49

22
47
52
22
24
57
23

35
24

33
61
58
27

57

56
62

35
23

16

32
63

28
57
38
60
15
51
55
22
20
48
54
18
22
23
21
53
34

26

49

17
56
63
58
38

62
29

32

59
53
23
51
59
25
29

58

47

41
48
11

37
63
63
23
60
22
32

37
45
20

35
24
17
29

54
16
19
52
10

33

25
51
11
22
33
45
29
58
42
30

27
50
15
12
39
21
11
40
16
48

33

61

58
28
55
18

38

30
10

49

23
14
39
21
31
32

10 -

44
40

41

40

14

37

46
21
32
35

26
28

55
14

-50

27
52
21
42
41
56
31
59

33
14

43

28
51
39
22
61
24
18
42

52

35
17

29

56

33
36
13

51
18
40
17
41
43
39
34
14
26

48
36
13
17

. 39

41
33
44
13
27
30
57
45
61
29
53
32
50

32
62
18
35
16

30
53
63
33

37
22
47
18

.57

14
37

10 -

12
32
60
13
44
34

45

34

29
47
21
49
25

38

17

50

11

12
51

52 -

19

21

49
37

36

45
44
40
31

58
56

30
58
49
62
26

2
36

29

24

37

290

53

31
54

41

43
27
50
62
20
17
41
15
41
33

13

42

35
456
36

17

56
36

60

27
50
49

40
20

18

24
52

34
26
51

53

38
52
59

34
63

31
59

28
50

38
36
46
51
25

32

59

50

25

28
51
11
23
21
50

- 63

34
‘19

37

53

52

28

59
- 57

28

51

47
23
16
21

28
55
11

47
27

53

10
11
51
59

11

35

20

15

34
.25
61 -

40
45
57
53
27

- 33

61
23
61

30

29
54
40
36
26

51

36

35

12

51

56

- 60

30

63
62
30
53

15

51

36
27
43
29
57
46
60
28

54

12
18
54
25
21

37

A
19

36
27
49
44
10

48
52

54

31

Utre

35
63
23
15 .
31

32
55

45
27
53
25

38

44
54
15
52

19

29

32
20

" 34

31
. 54

30

. 54.
46

38
54
31
58

57

30
56

43

22
55

43

32
39
39.

13
38

- 38

A51

60
55
14
16

13

56 .
39

"1190
1200
1210
1220
1230
1240
1250
1260
1270
1280

1290

1300
1310
1320
1330
1340
1350
1360
1370
1380
1390
1400
1410
1420
1430
1440
1450
1460
1470
1480

1490

1500
1510

1520

1530
1540
1550
1560
1570
1580
1590

1600

1610
1620
1630
1640
1650
1660
1670
1680
1690
1700
1710
1720
1730
1740
1750
1760
1770
1780

G830 66 66 49 60 sa 66 sh s 63 60 W 8% Bu 00 ed S B0 46 S5 65 o8 50 o0 60 53 $0 66 a0 S0 B0 26 64 40 S5 S8 66 B0 S0 B0 B 26 eb 6D U8 64 B 04 64 66 40 o8 s4 %8 64 BE N 04 od

48
31

- 43
29
56

39
27
13
59
43
51
36

23 .

39
42

51
41
39

16

42
45
23
32
10

58

33
38
21
28
58
22
25
51
48
14
50
39
21

33
43

- 25

32
60

16

29
58
45
23
32
60
18
27
59

41

50
39
53

33

57
10
34
15
38
54
52
45
28
50

17

- 53

47
50
25
48
52
47
35
15

.24

34

32

43
29
61
33
27
53
52
17
51
61
24

37

37
30
34
44
26

.31

61
35
28
34
46
24
31
61
20
14

49

. 61

34
62
14
36
19
44

55
46
41

61

11
21
54
63
61
27

49

60

37
25
31

38

54
31

39

50
29
58
20
26
53
37
24

39
58
49

36

33
27

33

10
56
47
36
36
29
33
47
40
17
50

. 62

24

36

31
20
38
26
16

57
53

34
23
28
56
12
29
51
46

49

38

39

42
22

33
14

55

30
62
23
27
56

46
29

41

63
38
59
50
35
14

63
38

.57

48
35
23
48
27
51

30
48

38
58
46
51
35
26

5
58
56
19
36
47
30
63
15

30

52
57

51

43

48

50
27

37
61

. 56

31
40
36
28
59
20
42
34
21
49
21

47

62
37
20
19

49

62
37

62
28
53

53
44
61

53

61

: 42

37
53
54
44
27

10
33
47
46
60
32
35
22

31

58
13

51
40

41
10

34
16

45

31
61
30

18
47
27

50
10

51
22
48

36
10

51
20

50
34

S30 -
96

- 52

37
10

50

43

55
45
40
28
14
56
63
57

33
33
44

32
59
19

- 17
" 54

55
i2
18
54

50

48

12

‘36
62

32
41
31
62
48
28
51
17

'_54

51

- 45
15

51

35

31

- 61

46
12
18
51
15

56

52
31
17
35
18
37
55

34

60

34

21

56
58
15
22
55

62

51
15

38

33
17
48
11
57
30
54
45
11

55 -
18

52

46

44

‘13
53
16

53
60

32
63

25

43

65.

20
25
27
55
30

32

21
37
23.
17
26

- 29

49

28
26
13
40
36
11
30

63

30
43
29
62

18

24

57

- 20

48

29

41
14
53 -
60

32
63
15
28
57
54
24
57
56
17
30

“59

52
26
56

42

39

20

1790
1800
1810
1820
1830
1840
1850
1860
1870
1880
1890
1900
1910
1920
1930
1940
11950
1960
1970
1980
1990
2000
2010

2020

2030
2040
2050
2060
2070
2080
2090

2100

2110
2120
2130
2140
2150
2160
2170
2180
2190
2200
2210
2220
2230
2240
2250
2260
2270
12280
2290
2300
2310
2320
2330
2340
2350
2360
2370
2380

B0 54 08 46 20 48 B3 0 00 6 B SN HF 06 06 06 00 8¢ 94 26 B0 00 2D 04 40 SD 48 42 48 B0 ¥ e

a8 3% 40 b B0 48 24 BF 4V 48 48 88 48 s o8

¥ 8¢ wd 80 88 Ad 20 UV 60 44 38 4% o

52
31
49
26

56

18
60
33
15
58
48

24
51

40
15
57
40
28
59

51
32
11
48
18
55

29

14
46
32
24

21

20
29
28
12
40

39
26
19

35
11
36
28
56
57
37

‘53

51

53

29

33
25
44
33
51
29

24

35
22

61
18
29
52
14

48
12
34
47
30
63

55
49
16
53
22
56

34

39

34
48
41
23
34

30

15
62

41
35
34

39
40
46
31
61

39
56

54
56

36

35

59
35
36
33
17
57

37

25

12
54
42
30
57
12

51
22

60

31
58

22
56
60
40
58
27
57
438

36

11
36
47
32
22

49
52
47

14

49

32
42

50
11
21
59
40

62

39
32

61
53
10

- 23

41
38

15
27

50
31
61
22
20
53
33
13

32

23
59
16
61
24
29

.62

52
20

40
31
60
46
57
33
25

50
59
52
17
51

33
62

51
40
26
14
60

6

34 42 13 16
¢ 8 14 26
50 51 53 56
38 60 27 40
22 42 50 62
28 41 14 17
56 35 45 52
12 22 38 44
28 32 41 52
11 13- 19 34

7 8 21 28
49 51 S4 59
43 44 55 58
25 30 14 20

-9 16 26 59
62 1 4 5
33 34 35 37
55 28 10 17
33 41 50 61
27 29 31 32
58 62 56 10
17 23 . 28 41
19 52 1 16

4 5 8 21
35 37 39 49

12 2 41 10
28 29 32 33

9 54 8 13
26 27 40 60
14 10 12 7

37 43 46 1

33 36 38 50
62 16 13 42

9 18 24 57
30 31 49 53"
6 8 11 23
47 51 54 56
37 61 12 43
40 1 6 34
11 18 42 60 |

2 3 4 7

37 41 49 S1
38 43 55 58
29 34 47 48
27 28 30 31
51 61 63 13
13 16 40 60
20 23 36 45
26 27 28 30
53 56 59 63
24 29 48 57
5 7 14 17
37 41 50 51
1 29 34 48
7 8 27 30
54 61 14 20
9 16 1 6
27 28 - 31 32
17 20 23 36

1 34

47

66.
19
27
59
13
50

23

59
55
29
42
30
63
53
31

39
23

36
55

4T

- 26

51
17

36

11
13
20

.51

63
21
27
57
58
47,

54
42

32
16

31
18 -
20
21
53
18
31
36
52
35
45

45
30
61

16

26
45

58

47
32
12
10
39
13
19
48
56

38

63

11

27
54
53
38

" 21

31

54
19
17
37
28
650

57
24
21
63

. 60

33
19

32

62
23

2T

54

24
33
46
57
37
46

2390
2400
2410
2420
2430
2440
2450
2460
2470
2480
2490
2500
2510
2520
2530
2540

2550

2560
2570
2580
2590
2600
2610
2620
2630
2640
2650
2560
2670
2680
2690
2700
2710
2720
2730
2740
2750
2760
2770
2780
2790
2800
2810
2820
2830
2840
2850

2860

2870
2880
2890
2900
2910
2920
2930

2940

2950
29460
2970
2980

L %h B 8 30 65 36 06 S0 D 0 RS B B 4% 80 FE B8 00 B 04 B0 28 00 40 B8 06 60 WD HE P00 BV ¥ e N0 ll.ol 63 00 60 58 20 48 P B0 e0 5 08 eF 20 88 Us E B0 00 38 4s s BB e

36
31
25
20
28
19
26
30
59
57
41

53

61
22

42
27

62
61

14

30
19
39

© 51

59

42

- 63

17
24
29
16
58
37
54
21
11
57
38
11

50

59

22

19
19
32
38

35
44
47
37

2
32
33
23

- 31

47
39
31
60

51
34

56
30
15
33

25

48

28
16

31
26

55

39

50
20

20
37
32
26
24
30
57
37

23

10
62

‘18

62

55

28
39
34
35
43

45
55
60
49
40

4

393

5
49
58

33

28

34
29

54
36
26

63
39
50

29

51
48
32
35
30

- 55

36
44
30
27
13

56
48

31
41

40
52
43

20
17
28
43
43
54
27
42
35
35
63
60
49
55

30

59

53
23

8
51
40

41
35

38
23
17
56
13
27
37
31

61
30
58
58

- 33

44

031

56
38
45
31
29
16
30

62

53
49

61

50
59

36
20
32
55
54

25
50
44
14

51
58
33
10
23

54

36

14
53

62

50
63
40
36
21

16

30
45
39

31

60
38

52
48

48

33

19

31

27

14

21

15

51

21

46
46

36
" 58

59
38
62
5
17
52

54
29
51
12

36
17

55

46

51
52

17
56

51
15
13
49

1l

23
35
19
31
54

28

32
62

40

59
49

53
59
58
34
26

438

29
17
24

25

il
54
30
41

53

53

40

22
25

15
13

26
23
57

59
34
53

15 .

i1
21
63

27 -

63

L4
53
44
16
51
18
32
45
45
35
57
24
47

34
12

50
41

.15

20

58
12

38
35

14

33

S

37
58
31
ig
57

49
27

56

51

50
42
26
156

33
39
45

21
.63

42

56

22
46
28

20

12

55

30

15

48

27

61

27
- 58
46

16

37
59

51
49
48 .
12

40
61

22

55
39
10
27

15

4

50

52

53
36

. 39

14

21

28

25

31

51

.31

56

27
‘32

40
44
15
61

13

30

25

19
33
34
32
57
16

2990
3000
3010
3020
3030
3040
3050
3060
3070
3080
3090
3100
3110
3120
3130
3140
3150
3160
3170
3180
3190

© 3200

3210
3220
3230
3240
3250
3260

3270

3280
3290
3300

3310

3320
3330
3340
3350
3360
3370

3380

3390
3400
3410
3420
3430
3440

3450

3460
3470
3480
3490
3500
3510
3520
3530
3540
3550
3560
3570
3580

B8 68 de G630 ¢4 48 B &

B0 SH 0. U8 08 48 4D S BE 2% 00 e 2% 65 w6 4D 03 4 BE 30 ¥ e M0 o

68.

B0 0B 4% 40 86 0B Wb Fe S0 N6 BH 60 24 ¥¥ 44 8¢ ¢4 s ¥ e b0 s es NS S0 se 48

54

26

45 52 29 48 62 3 5 7 14 26
27 31 33 35 50 51 53 56 59 61
10 12 22 38 44 55 58 1 16 52
9 57 18 24 . 29 48 62 3 5 7
26 27 31 33 35 37 50 51 54 59
61 1 6 40 16 52 - 20 23 36 45
2 5 14 - 17 26 27 28 31 32 35
51 53 56 59 10 38 44 55 58 37
46 53 10 43 53 15 25 30 4 8
34 36 38 51 54 55 56 57 9 13
19 35 b4 45 52 59 7 24 37 12
43 58 2 21 41 3 -6 11 18 22
28 29 32 33 38 51 54 55 57 9
35 44 52 59 . 2 17 53 10 58 14
20, 31 1 5 6 23 27 28 32 36
38 40 51 55 56 - 2 21 37 17 46
53 30 49 63 7 24 41 . 2 7 41
17 53 30 49 63 3 4 6 8 23
28 29 32 33 34 36 42 47 51 56
60 30 31 39 14 20 53 10 15 25
58 33 43 54 9 44 59 11 21 32
2 6 28 35 37 51 52 55 57 58
10 17 23 36 45 46 53 56 8 13
59 3 42 32 49 60 22 25 - 38 44
2 4 .6 7 12 15 19 28 29 30
33 34 35 41 47 51 52 55 58 - 63
8 25 38 13 44 59 3. 22 42 4
7 12 15 19 29 30 . 33 34 35 51
52 55 58 | 3 22 38 18 43 54 8
25 42 11 21 32 49 60 3 18 54
9 59 16 26 27 50 . 62 3 8 42
18 54 27 50 62 11 21 32 40. 49
60 27 32 40 38 3 - 8 22 25 42
49 50 60 62 - 35 44 55. 10 45 56
12 22 33 17 - 23 28 41 4 19 35 .
15 44 55 5 26 39 1 8 13 16
25 27 30 31 34 38 51 52 58 59
9 37 43 54 57 4 15 55 5 39
12 22 33 50 61 28 33 41 35 4
5 19 26 39 47 50 61 63 5 14
56 10 55 12 22 33 50 61 26 35
44 45 5 26 35 14 45 56 4 19
39 33 50 61 4 5 39 14 56 33
50 61 17 23 238 41 47 63 13 19
34 52 - 36 45 4 8 30 35 51 53
56 59 9 37 46 54 57 18 24 29
57 36 456 9 45 52 '3 7 33 35
37 51 53 54 56 59 10 12 22 38
43 44 55 58 6 34 47 60 11 57
2 4 8 21 28 30 ‘32 37 49 51
54 63 15 25 38 43 55 - 58 1 29
48 62 16 52 3 5 7 26 27 31
33 35 50 51 59 61 12 22 38 44
55 58 15 25 30 58 10 53 4 8
34 36 38 51 55 56 13 19 35 44
45 52 59 2 30 49 63 17 53 4
6 8 23 28 32 34 36 47 - 51 56
60 13 19 35 45 52 59 14 20 31
53 10 58 37 43 46 1 5 27 . 36
38 51 55 56 57 16 35

4790
4800
4810

- 4820

4830
4840
4850
4860
4870
4880
4890
4900
4910
4920
4930
4940
4950

4960

4970
49380
- 4990
5000

5010

5020
5030
5040
5050
5060
5070
5080
5090
5100
5110
5120
5130
5140
5150
5160
5170
5180
5190
5200
5210
5220
5230
5240
5250
5260
5270
5280
5290
5300
5310
5320
5330
5340
5350
5360
5370

5380

&8 8B S5 S0 04 63 63 20 30 26 48 4 S 4

S0 06 08 28 e D 50 S8 #5040 BE B0 4 60 4% BU B 00 BF 20 M0 40 B0 B3 XS4 40 SN BB B3 B9 ES ww sa 6 B 9k B6 WD b P8 B KP4k e

+ VI U= 00 U1 N WU Ul = N Ut
QO NNNDIOCANNNOVDO~N-NNW O

OOOOOOOOOOQQOOC‘OOOOOOOOOOOOOOOOOOOOOOOOOO

oBsloleRejoNoloRofolefvie oo oo oo e Ro No Jo RN ool oleRo N e oo o loNo J o No oo ol ol

3

W N W b N VIRV RS] (o]
PPV OOONOVON~NFD®~ O

vHeNsNolNeoNoNeRoRsNoNoNoNoRNaloNoNoRoNoloRoNoNoRoloRoNuRoRloNoRoNoNoNoNeRoReo NoloNeNoNe)

5

62

18
59
51

32

5
31

51
33

51
26
59
30
53
30

o
w

OOOOOOOOOOOOOOOOOOOOOOOCOOOOOOOOOOOOOOOOO

i
Fal

7
24

53
37
27
35

o

WV N U W
—Oh LW~ W ke

QOOOOODOOOOOOOOOOOOOOOOOOOOOO.COOOOGOOOOOOO

27

W [W U e 0 WU = 00 W N N
Bt P P DN~ OO G O

- 0J
O W

C)CCOOOOOOOOOOOOOOOOOCOOOOCOOOOOOOOOOOOOOOO

NN
@© W

W WU~ S N VLD P
GO =d W1 O e e DU O

COoO0O0OLOOCO0AO0ODDO0CCOOTUOOOODOOLCOO0O0OTOOLOLO OO N

OQOOOO'OOOOO_OOOOOOOOOOOOOOOO-OOOOOOOOOOOOOOD

M WS W
SN N DO W

1911

Ul b NV N
—N N k0N ®

&

OO{OOOCC«‘OOOOOQOOOO0.000GOOOOOOOOOOCO{_OOOOOOOOOU‘\

%))
0

;P OUimU WMWY Ul WS
NOUVWN e WNUVTO N DV @

~OOOOOOOOOOOOOOOOOOOOOOOOOOOOOCOOC’C’OOOOOOOO

6590

6600

6610

6620
6630
6640
65650
6660
6670
6680
6690
6700
6710
6720

6730

6740
6750
6760
6770
6780
6790
6800
6810
6820
6830
6840
6850

6860

6870
6880
6890
6900
6910
6920
6930
6940
6950
6960
6970
6980
6990
7000
7010
7020
7030

7040

7050
7060
7070
7080
7090
7100
7110
7120
7130
7140
7150
7160
7170
7180

LI Y I 2 4

S8 G% ¥D 0 M 0% B4 B0 M) sb ek BE B S0 4B 8% 00 bs HF UG S 48 S0 00 00 B4 2 e BE 05 es 6 k% 30 28 90 3D 62 6 BU 2U KBS Be 2% 0b IB S0 4s S8 3 B9 s 96 v se 4B

820

eNeoRoNoNeRoNoNoRolnloRoloNoReNe]

O OO ODTOOOCCOOOCECTCHTNNMMDIERNOMHMONOMNPRMIEINNMCMNOEOONFEOMNMNOPTOOCEOCOROON

983
983

983
383

[eReNeR o)

1722

983
983

983
983
B20

820
820

1789
1789

820
1789
1789
2161

820

820
820

820
1789
1789
2161
1739
1789

os]
N
O

SO0 OO OCOLCCOCOoOOOCC

CODOD0CCOOCOCOOCOIODOPTMNNNMMNOMRMONOPLANNMEMIPF~NOFONOMMRERNONMMOOMFROOCOOON=OMFN

983
983

983 -

933

1722

O
[e+]
COoOWCTOTOOCO

s lNe)
w
w W

(@]

820

820

820
1789

1789

2161
1789
1789

820

820

820"

820

1789
2161

820
1789
1789

2161 -

SO OO0 OOC OO0

CODO00 OOt CCOCOOOONNRFRANNONONORMORAMNNNRNNOMONONOONOO OO O mMOOmNGNm

820

COCODOOO0O0OCODDOCOOO

OOOOOOOOCOOOOOOOO-{-\NNN#HNOP‘ONOWNNH$N<NONONOPONOOHQOWOOOP‘ONHOON

COO0O0O00ODVOOCODOO0

OCDOcDC)QCDOCDCJOCJOKDC)O(JN)¢F-$howrdh)ohéohdo-bh)NbJ$r“h)Or~0er)MiéO(DhJHCJOr~Or~C>O<DhJQCDH

7190
7200
7210
1220
7230
- 7240
7250
1260
1270
7280
7290
7300
7310
7320
7330
7340
7350
71360
1370
7380
7390
7400
7410
7420
7430
7440
7450
7460
7470
7480
7490
7500
7510
7520
7530
7540
7550
7560
7570
7580
7590
7600
7610
7620
- 1630

7640

7650
7660
7670
7680
7690
7700
7710
7720
7730
7740
7750
7760
7770
7780

€0 40 48 wo 0 S8 08 Bh sE 86 20 8% b 2

v 68 S ED B0 S8 BE 44 6D 90 SE S0 68 o8 63 00 B4 35 WS B0 36 Wb S0 dd 88 B8 08 24 M 03 A0 6% 08 B4 VO 6% ed D & 3 4 B0 0% e 24 8

(S)
o O~
COOC NN

754
1585
1585

754

154

499
499
2078
2173
2173

2185

2219

567
499

OOOOOOQOOOOOOOOOOOOOOOOOOOOOOOOOOOOOOO

CWNNCOCNNNMNNMCMOP I -RNOOO=m=Ooo00Q0O000C0CCo0COooCoooCcooCoCcCOoOoOCOTD

[eReoReoNoReNoloNoNoRooRalole N oNeRoNoNaRoNoNololoNoNoloNoNoloNoNeNoNoNo N

Vi
[o 00
OO~

1585
567
754

499
499
2078
2173
2078

2185

- 2185

567

154

567

H
P st
-

(o B o]

411

154
754
567
567
1585

499
2078
2078

2078

2078

2185
499
567

2185

(7135

MWL NNOPNEENNOOITNMFEROOCOm~0000000000000O0C0O0LCLOOCCO0TOOOOODCOOD

| 2185

OOOOOOO@OOOOOOOOOQOOOOOOOOCOOOOOOOOO

—P-bwwNO-b*‘WPNOONNNHMONOOHHbOOOOOOOOOOOOOOOOOOOO&ODOOOODOOOOOOO

» §S , o
s pos : 4
MOOMODOOOCOUODODCOO0DODOCOOOOOOODOLOCDOOR

Lo
e
O

754

154
567
1585
1585

499

2078

2078
2078

499
499
2219
2185
499

-0‘#NWWOQ-&*NHNOON.NNNHONNOOHOOOQ‘OO'OOOOOOOOOOOOQOOQ{OOCOOOO'OOOOQOO

~
=
L]

£ U
P

so

154

754
1585
1585

. 154

499
4993
2078
2078
2173

499

2219

2219
499

499

CO000 0000000000000 OTRCOIDOD

) O*G‘NNWOONNNHMO-&!\)P‘NNOONP‘OOQOOOOODOOOOOOOOO_QCOOOOOOOOOOOOQOOOOO

11390
11400
11410
11420
11430
11440
11450
11460
11470
11480
11490
11500
11510
11520
11530
11540
11550
11560
11570
11580
11590
11600
11610
11620
11630
11640
11650
11660
11670
11680
11690
11700
11710
11720
11730
11740
11750
11760
11770

- 11780

11790
- 11800
11810
11820

11830

11840
11850
11860
11870

11880

11890
11900
11910
11920
11930
11940
11950
11960
11970
11980

80 8% 30 0d s P 00

96 86 B¢ 04 4 o9 ba e3 48 be

“e 02 ob e e

B0 04 00 w8 86 46 30 26 56 48 BB 48 04 $3 20 b 90 S8 D B 402 03 6 40 4D 90 B 46 60 Be se 4 B3 03 e sk 83 se

1058
1058

1839

503
1839
1839
2827
1839

903

1058
1058

1839
903
2827
1839
903
1839

1471
2064
3192
3251

362

.1019

117
3288
3274
3219

3251 .

3274
1270
1270
3619

3629

1821
2064
1019
1471
2839

17
3219
4125
3274
3653
3653

1099

2853
2853
1933
3672

2827

3288
1652

—

P ' '
WONOCLHPISDODPDPOOPRFCOVOCOWUNONWOOWMRMONSTNPNOO=NTCCEANNEFEFND~ONRMSO

ot et
SO

CoPrTON PO

1

Pt
+

1058
1058

1839
903

2827

1839

903

1839

1058
1058

1058
1839
1839
2827
1839

903

2827

1652
2064

362
3251
2064
1019
3274
3288
1652
3219
3298
3274
1270
1270
4116
3629
3629

2064

2339
1471
2339

117
4107

© 4125

117
3653
1933
1099
4135
2853

362
3672

903
3288
4149

o

et

pot s

P _ <
O‘OOJ-‘O‘»DO‘-&‘N-#OGO\DNCD-“NO@-PO‘-J-‘N~DU‘IU‘I‘~OUJWSDWWMNWON-{-\NNNNNOONF‘OON-&-‘NN‘-&‘NOOHNO

1058
1058

1058
1839

1839

2827
1839
903
2827

1058
1058

1058
1058
2827
1839

© 903

1839
1839
2827
2064
1652
3192

362
3251
2064

117
3274
3288
1652
4107
3298

154
1270
3619
4116
3629
3629
4415
2839

117
2839
4125
4107

499

117

1099
1933
3653
4135

362

362
4425

903
2827
4149

o ’ .
COONOWERINNWRCODINOLYOTRENWUVOCOVMWFEWVMORWORRNSNSRNNOORNONPSNNAMNNODNK

s

[

r—

1058

1058

1058

2827

1839

903
1339
1839
2827
1058
1058

1058
1058

1839
. 2827
1839

903

12827

1839

903
2064
1933
3192
3219

3251

1019

117
1652
3288
3298

4107

154
754
1471
3619
3192

3629

4415
4415

117

117
4116
4125
3219

499
1099
1099
1933
3653
2853

362

362
4425
3672
2827
4135

s e

ot

p—

- 72,

1058
1058
1839
2827
1839

903

2827

1839 . -

503
1053

1058

1058

1839
- 903
1839
1839
2827
1839
903
1471
1933

3192

3219
362
1019

117

1652
3274
3298
3251

754
1270
1471
3619
3192

1821

4415
1019

117

2839
41156
3219
3219

i

13274

o (e

1039
3653

1933

2853
2853
1933

362
2827
3672
1652
4135

CONDHAINCCOMMBIMIMVIODOOWPHP NPT ODOONOOWOOVNMNNUVNWOEDNONRNDONMOOR DN DINN~NODOD

[
o $H

11990
12000
12010
12020
12030
12040
12050
12060

12070

12080
12090
12100
12110
12120
12130

12140
12150,

12160
12170
12180
12190
12200
12210
12220
12230

12240

12250
12260
12270
12280
12290
12300
12310
12320
12330
12340
12350
12360
12370
12380
12390
12400
12410
12420

12430

12440
12450
12460
12470
12480
12490
12500
12510
12520
12530
12540
12550
12560
12570
12580

4 WP 40 ¢ BB e e LA S0 N B0 20 00 S0 G4 BE 6% 6P G0 S0 S0 48 00 B0 00 S8 4% 45 40 48 P8 S0 60 B8 B0 e B8 8 66 46 44 B0 B4 S0 4D a4 65 SE b B9 A0 48

®é S8 b & M0 0 b

4149
3298

362
4158
4182

1099

4205
1821
1099
4232

903
2839
4232
3312

499

117
1965
1997
3325
1691

170
1997
1356

- 3325

3682

170
2867
170

1117
1965

1117

3692
3711
4432
2441
1306
3376
3682
1356

170
4270

‘3389

1058

3403
3415

2613
4280
1058
4442
3735
4242
3403
4306
1503
2881

223

223
4316
2441
2831

P

Ll) '
NV DUV WODXNTO WX O~NOONC~C

-

e e p
PO W

O DO N e U1 e el

ot ot s
LPRWOND

4149
1933

362
3312
4182
1270

4206

4182
1099
4158

903
1471
4232
1821

499

1997
1356
3325
3366

170
3338
13066
1306
3682
1356

170
2867

3692 .

1117
3632

3711 .
3711

2441
1691
4261
4252
1117
1306
4270
1997
3403
1058

223
3415

3338

3403
3735

.3389
1839

3389

. 3366

3415
2867
2881
2881
1965
4326

223
2542

[

[l ’ :
COPIOVINOWPLAONROCOPLPCOLOPPONPSODOCNWO -

13
18

13

10

12

12
13
10
18
19

W o

[=

[

[

[aad e L and
ONO SO

o (=
o oW

2853

1933
3312
3312
3619
1270

1821

4182
1019
4158
3672
1471
4135
1821

1099 |

1997
3325

1691

170
1997
3338

1691

3682
1306
4242

170
2867
1997
1117
3692
1965
4432
2441
4432
3376
3682
3376

3325

4270
4252
1356
3403

223

3389
42380
1058
3366
3735
4242
3735
4306
1503
4280
1058

223
4316

223
2881
4326

611

Pt
COOWROWTTLOVIWOUW

P b p e R Pt b
DO PWOLODLOWO PO

st
WOWNNONDINOCOND OLU SO~

- =
_OWO O WSO

st

p—

[

Pt
P

ot
(SSRey

2853
2827
3312
1270
3619
4206
1821
2064
1019

1471

3672
903
4135

3298 -

1099
1356
3325
1965

170

3338
1691

1306 -

3682

" 1356

3325
2867

- . 170

2867
3692
1117
1565

2441
1691

3711
4252
1117
1306
4270
1997
13556

170

223

3389
1058
3403
3415

2618

1839
3389

4442

3415
2867

3403

2881
1965
2881

223

2542
4316
2441

[

bt
CNPINNPTINP RV IVNNRTLPOCODOCOPPCRHTOWRONCTHTONMC R

[

i

p—

i -

o
o

12

3298

I3

2827

4153
1270
1099
42086

1821

12064
4232

1471

2839
903
3312
3298
117
1691

1997 .

3338
1691
3366

1306
4242

1306

2867 .

1997
1356

170

1965
3692
1117
4432

3711

3711
3376

3325

4261

4252

1356
1306

223
3389

-3403 .

1058
3366
3415
3333
3735
3735
3339
4280

1058

3366
4316

. 223

2881
4326

611
4326

223

[—
PO NE

ot

st
5

P r—

p o

st

pt e

Topd

IN) ot o
H P WD

- e

ot

= - : B ' ‘
POVWITROOCOCOCRLOPLYVIVIQUWINFNWOOWLPOPLPOPPANNSLOINLPONWIBWOW

12590
12600
- 12610
12620
12630
12640
12650
12660

- 12670

12680
12690
12700
12710
12720
12730
12740
12750
12760
12770
12780
12790
12800
- 12810
12820

12830

12840
12850
12860
12870

12880

12890
12900
12910
12920
12930
12940
12950
12960
12370
- 12980
12930
13000
13010
13020
13030
13040
13050
13060
13070
13680
13090
13100

13110

13120
13130
13140
13150
13160

e o8 S5 8 e

G0 B8 94 66 66 0 S0 60 B4 86 65 S0 B4 66 36 0 S0 e e 46 B0 20 46 60 40 S0 D6 e BE 4 24 Se 46 AP 00 0% e es 8 W

58 20 48 30 59 BE B0 AN % b

" 26 e

4335
1965
1839
1117
2542
3415
1356
1852
3782
4470
4566
3523
4014
3825
4505
3448
4626
4935
3908

754
4526
4903
3192
3544
3475
1621
3846

1852

3097
3158
3219

272

3865
4692
4858
3568
4077

2780

3338

- 2987
4363

2084
4280
1058
1439
3997
4526
2353
4956
2383
2011

223
2578
2289

303

567
1585
64

14

18
14
14
18

13
10
21
14

14
19
10
21
21
36

16

19
24
18
31
13
26
23
24
32
39

14

14
27
15
19
28

18

- 31

26
41
32
17
19
30
19
32
32
49
24
34
39
44
36
53

4335
1117
1839
4306

611
3376

170
3763
3782
4761
3429
4491
3070
4505

. 1852

4887
2926
3251
1156
3846
4825

4663

3192
4774

-2954%
2895 -

3846
3929

983
3884

715
2185
4692
4713
4545

4727

2618

- 3976
1234

3595
4053
1652

1789
2323
1195

47456
3042
4839
2383

2441

942
4792
1965
2734

518
2542

820

117

10
12
13
10
19
13
24

13
14

19

19
16
13
23
26

14
14
27
18
2%
31
19
17
30
24
39
34
10
14
21
10
21
21
36
18

24

31
32
24
39
15
28
19
26
32

41°

19

32

32
49
36
44
53

1839 -

1117
4261
3415
1356
1306

1852

3763
4449
3763
4581
3782
4014

1852

4612
3825
4566
2926
4626
4649
3744
4449
4774
3711
2895
1400
4597

2473

3097
790
2185
321
4713
4692

"3865

3810
3338
2501
4792
3595
3018
1652
2648
2323

362
3042
4872
2799
42056

223

864
2415
2578

674
2219

455

411

18

14
18
18

19
10
12

21

12
10
21
15

28"
23

10
12

21

13
24
24
39
15
23
28
30
26
41
10

.21

12

15

23

28

13
24
24
39
26
30
41
23

15
28

26
41
30
26
30
41
29
44
44
63

1839
4335
1965
3376

170

2542

1852
3744
44649
3810

3523

4491
3070
4597
4612

4505

2926
4626

3782

3346
3692
4839
3544
3629
1400

4677

2043
3929

983
3950
1324
1878
43919
4545
3568
3976

2618 -

3865
4397
3499
1722

4727 .

1%03
1933

362
4526
2799

1270

2255
4182
B64
4158
1117
1471
1753
1356
1

"0

24

13

14
13

14

13

14

14
27

10
14
21
19
15
28

19
14

18
24
31
10
21
21
36
26
32
41
16

.19

17
30
19
is
24
31
19

32
- 32

49

13

23
26
34
24
39
24
39
32
36

44
53

0

4261
4335
1117

1306
4306

611
3744
3763
4470
3810

4581

3429
3825
3825
4811
3448
4935

3782

754
4649
4663
4470
4345
1691

3475

4677
3744

2473
3950

- T15
1878
2712
3865
4545
3653
2501
2780
1234
3499
2987

4363
2682

2648
. 1156

4746
3125
2353
1270
4077
2129
1019
1535
2734

518

2219 -

i70
630
0

- 15

10
12
18
10
19

13

16
19

14.
14
27
17
19
30
14
10
21
18
31
24

19

.28 .
19 .

32
32
49

14 -

19

- 23

13
26
18
31

24
34
39
10

21

21
36
24
32
39
32
26
41
36
53
44
0

24

20

21
30
50

70

80

10
14

300

200

100

1000

1010

1015
1020
11030

IMPLICIT INTEGER*2 (A-Z)
DIMENSION A(4020),E(36,478)
DO 20 1=1,36 a

DG 20 J=1+478

E{l,J)=0

DO 21 I=1,4008,12

K=1+11"

READ (4,1212,END=90) {(A{Jd},
I=1 :

I=1+1

IF {(1-473) T70+,70,510
J=A{1Y

IF (J.LE.O0) GO TO 50
Q=A{J3)-9

R=1+2

E{QsR)=A(J+1)

J=J+2

IF (A{J)) 50,50.,80

READ (5914,END=1000) B,C,HD

FORMAT {(314) v
IF (B.LT.49) GO TGO 1600
IF (B.GT.520) GO TO 1000
IF (C.LT.10) GO 70 1000
IF {C.GT.46) G0 TO 1000
G=C-9

B=B-45 N

IF (D-2) 160,200,300
E{GeB)=E(G,B)-2
E{G,8-1)=E{(G,B-1)-1
E{GyB+1)=E{(G,B+1)-1

GO TO 10
E{G,B-3)=E{G+B=3)+1
FlGyB-2)=E{GyB-2)+2
E{G,B-1)=E{G,B-1)+3
E(GsB+1)=FE(GeB+1)+3
E(GsB+2)=E{(G,B+2)+2
E(G,B+3)=E{G,B+3)+1
E(GyB)=E(G,B}+4 '

GO 7O 10
E{G,B-3)=E{G,B-3)-1
E{G+B-2)=E(G.B-2})-2
E{GsB-1)=E(GsB-1)—-4
E{GsB+1)=E(G,B+1)-4
E{G,B+2)=E{G,B+2)-2
E{G,B+3)=E(G,B+3)~-1
E(GyB)=E{G4B)-3

GO TO 10

I=4

J=2

K=474

Al2)=0

L=0

L=L+1

IF (L.GT.36) GO TO 1100
IF (E{Ly1)) 1015,1010,1015
IF (A(J)) 1030,1020,1030
atdi=K

AlK)=L+9

CALK+1)=E(L, 1)

J=I:K)

(C)

75.

ROUTINE THAT BUILDS AND UPDATES
THE MOVE EVALUATION TABLES

1100
1110

1120

1200
1210
1212

1215

K=K+2

GO TO 1010

IF (A(K-1)) 1110,1120,1110
A(K)=0 ' o
K=K+1

IF {J.GT.472) GO TO 1200
I=1+1"

J=Jd+1

L=0

ALJ)=0

60 TO 1010

A{l)=K ,

WRITE (6,1212) A

FORMAT {1216) _

WRITE (7,1215) A{l)

FORMAT (16H ARRAY SIZE NOW ,14)
- sTOP .

END

76.

O WU W

3436

603
135
839
937
1065
1201
1303
1385

1461
1537 -

1637
1727
1835
1931

2053

2093
2165
2216
2302
2368
2414

2538
2630
26717

2753

2822
2886
2936

3008
3029
3053
3083

3148

3182
3214
3268

3300
3336
3390
3419
-4
16
-6
10
17

12

12
i7

- 3219

(D)

474
616
744
852
[946]
1084
1212
1312
1394
1470
1548
1644
1736
1842
1942
2050
2100
2174
2223
2311
2375
2419
2500
2545
2639
2682
2762
2795

- 2825

2893
2943
2961
0
3032
3056
3086
3114
0
3151
o
3185

0
0
3303
3343
3395
2424
18
...8A
15
..2 :
-4
15
-10
10
16
-2
-4

THE MOVE. EVALUATION LISTS
526

485
627
753
865
957

1105

1225

1321

1405

1479

1561

1649

1747

1849

1957

2065

2107

2183

2230

2320

2380

2428 .

2505

2552

2644
2687
2771
217938
2828
2896
2950
2964

0

O .

3059

-3089

3117
0
3156
0
3190
3226
0
0

- 3306

3352
o
3431
-8
13
-3
12

18

-11
14
-5
-4
13
L9

496

638
764
880
968
1124
1236
1330
1416
1484
1572
1654
1760
1860

1974

2068
2114

. 2192
2239
12327

2383
2437
2510
2559

2649
12692

2776
2801
2833

2901
2955

2969
0

0
3062
0
3122
0
3161
0
3197
3229
3273
0

0
3355
0
12
0

-4
16
-10
-1
16
-4
12
17
-2
-2

511
649
773
891

981

1141
1247

1337

1423
1487
1585
1663
1773
1871
1989
2073
2119
2197
2248
2334
2386
2448
2515
2566
2654
2699
2781

2806

2838

2908 -

2958

2974 -

0

0
3065
0
3127
0
3166
‘0
3204
3232
3276
3291
0
3353
0

-1
12

C

-5
14

0

-5
15
=5
-8
14

0

664
780
902
994

- 1154

1258
1344
1428
1490
1594

1672

1786
1882

2004 -

2076

2124

2200
2259
2341
2391
2461
2520
2577
2659
2706

O

2811
2845
2915
0
2983
0
0
3068

3142

552
700

[798]

916
1020
1176
1280
1362
1444
1504
16156
1694
1808
1904
2026
2082
2138

2279
2353
2401
2483
2530
2601
2726
2786
2819
2863
2921

2997

" 3014

3038
3074
3095
3130

" 3249
3285

3319
3373
3406

I/

569
713
811 -
923
1035
1185
1289
1371

" 1451

1515
1625
1707
1819
1913
2037
2085
2147
2206
2286
2358
2404
2492

2610
2667
2735
2789

2870

2924

3002
3019
3043
3077
3102
3133

- 3145

3176

3256
3288

3324
3380
3409

15
-5
i6

-8
10

17

10
16
-1

2879
12929

586
124
826
930 .
1050
1192
1296 -
1378
1456
1526
1630
1718

1828

1922
2046
2088
2156
2209
2293
2363
2409

" 2497

2535
2619
2672

2746

2792

3005

3024
3048

3080
3109

3136

3179
3209
3263

3329

"3385 -

3414

60
61
62
63
64
65
66

67 -

68
69
- 70
71
72
73
74
75

76

77

78

79
80
81
82
83
84
85
86

87

88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

- 108

109
110
111
112
113
114
115
116
117
118
119

22

-4 14 . =2 16 -1 -2 19 -4 20
-1 0 10 -8 13 -8 14 -1 18 -1
19 - -9 20 -2 0 10 -4 13 =4 18
-2 19 -6 20 -t 0 10 -3 13 -2
18 -4 19 -6 20 -8 0 10 -3 13
-2 18 -8 19 -9 20 -4 0 10 -4
13 -2 14 1 16 2 18 4 19 -4
20 -2 0 10 -8 13 -4 14 2 16
4 17 1 18 -2 19 -2 20 ~-1. 22
1 0 10 -4 13 -8 14 3 16 6
17 1 18 -1 19 -1 22 2 0 10
-2 13 ~4 14 4 16 8 17 1 22
4 0 10 -1 13 -2 14 3 16 6
22 6 0 13 -1 14 2 16 4 17
-5 22 6 0 14 1 16 2 17 -2
22 6 0 16 -1 17 -1 20 1 22
4 0 10 -1 16 -2 17 -1 20 2
22 2 0 10 -2 16 -5 20 3 22
1 0 10 -4 16 -10 20 4 0 10
-8 16 -8 20 3 0 10 =4 15 -1
16 =10 20 2 21 1 0 10 -2 15
-2 | 16 -5 17 -1 20 1 21 2 0
10 -1 13 -1 14 -1 15 -4 16 -2
17 -2 21 3 0 13 -2 14 -2 15
-8 16 -1 17 -4 21 4 0 13 -4
14 -4 15 ~4 16 -1 17 -8 21 3
0 13 -8 14 -8 15 -2 16 -2 . 17
-4 21 2 0 10 -1 13 -4 14 -4
15 -1 16 -4 17 -2 .21 1 0 10
-2 13 -2 14 -2 16 -8 . 17 -1 0
10 -4 13 -1 14 -1 15 -2 16 -4
0. 10 -8 15 -4 16 -3 0 10 -4
15 -8 16 -3 0 10 -2 15 -16 16
-4 0 10 -1 15 -9 16 -8 0 15
-6 16 -4 23 -2 0 13 -1 15 -7
16 -3 23 -4 0 13 -2 15 -10 16
-3 1 23 -8 25 1 0 13 -4 15 -8
16 -4 23 -16 25 2 0 12 -1 13
-8 15 -10 16 -8 23 -8 25 3 0
12 -2 13 -4 15 -5 16 -4 23 -4
25 4 0 12 -4 13 -2 15 -3 16
-2 23 -2 25 3 0 12 -8 13 -1
15 -3 16 -1 25 2 31 -1 0 10
-1 12 -4 15 -4 23 1 24 1 25
1 31 -2 0 10 -2 12 -2 15 -8
22 | 23 2 24 2 3 -4 0 10
~4 12 -1 15 -4 22 1 23 3 24
4 31 -8 0 10 -8 .15 -2 18 -1
20 -1 21 -1 22 -1 23 4 24)
31 -4 0 10 -4 13 -1 15 -1 18
-2 20 -2 21 -2 22 & 23 3 24
6 31 -2 0 10 -2 13 -2 18. -4
20 -3 21 ~4 22 5 23 2 24 6
31 -1 0 10 -1 13 -4 18 -8 20
-6 21 -8 22 7 23 1 24 4 0
13 -8 18 -4 20 -1 21 —4 22 9 -
24 2 0 13 -4 18 -2 20 1 21
-2 22 6 24 1 0 13 -2 18 -1
21 -1 22 4 0 13 -1 20 -2 21
1 2 0 20 -7 21 2 22 1

120

121
122
123
124
125
126
127

128 .

129
130
131
132
133

134

135
136
137
138
139
140
141
142
143
144
145

146

147
148
149
150C
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
156

167

168
169
170
171
172
173
174
175
176
177
178
179

0
20

~4

23

-1
20
-4

15

21

14
-16
17

15
-1
32

23

-1
27
20
18
=2

28

-1

26

-2
26

21
-4
19

28
-2
24

27
30

19
30
-5
23
-8
23
-12
23

29

24

180 .

131
182
183
184
185
186

187

188
183
190
191
192
193
194
-195
196
197

198 .

199
200
201
202
203
204

205

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
1223

224

225
226
2217
228
229
230
231
232
233
234

235

236
237
238
239

27

25

13

31

24

25

O ket W WON

240.

241
242
243
244
245
246
247
248
249

250

251
252
253
254
255

256

257
258
259
260

261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
236
287
288

1289
290
291
292
293
294
295
296
297

238

299

N

39

S 27

29

26

22

25

26

31

31

39 -

40

]
»—wowo.—-ww»wwr\n—-

W

N W

(I
Pt

N
o

: N
PO OW

300

301

302
303
304
305
306
3067
308
309
310

311

312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

337

338
339
340
341
342
343
344
345
346
347
348
349

350 -

351
352
353
354
355
3556
- 357
358
359

[SVIRES}

N

w
COOOVNOVOHFAFNOOVDOOW

N]
O O -~

S W W ww s W L
e POHWOOOWNMWONN

41

COOOOOCOTTOOO0OHMNGC

. W w
OWMN PHPOTTTORNOWWEO

w
-

ww
~~

li-Y-YoN-NoNoloNoNoNoNeo

CCOOC OO0V OU+UWWOD WO O

I Ww
ODONOSCOCNOOWWO

Y]

QOO0 CCOOO®O

30

|
OO0 COOOOOO M

QO TCCTCODLO OO W

4 _ N
COCDOOOODOOCT

COOOOO00OOOOWN O

oEsNoNeRoNoNoNoNoNoNoNi-Nole)

CoO00O00000O0

(E} SAMPLE GAMES

60 6 10 0 0 0 100 1 <§;>
YOUR HOVE
'w! 1.8 -

Y 2 29 1507 53
YOUR MOVE

it o2 21 |
NO FIT | :
IT IS STILL YOUR MOVE.

it 125

F 4 190 668 L3

YOUR MOVE
"u' 2 49

P L 59 283 26

YOUR MOVE
"1 6 25 < 3
8 | 0 . 46

Vo2 34 49 13 | | R

. 83.

INPUT NEW GAME SPECS o (zi\
60 6 10 0 ¢ 0 100 11 Y
YOUR MOVE | -

'V‘ 3 G

F- 1 33 1698 51

Y E
'

- Q

UR 0
'8e3

O <

p

=~

21 518 40

YOUR MOVE
'u' 3 2

I~ 2 51 173 24

YOUR MOVE
't 3 46 | _
23 | 0
Y 8§ 25 65 3 A
YOUR MOVE
'n' 1 17
YOU WIN ,, 9

(7777 £\ NN
ﬁﬂw@\ﬁw
s g . / ’ s, S .

A
s SN,
V

INPUT NEW GAME SPECS‘

84.

26

T 2 12 2056

YOUR HOVE
'p' 4 23

F 3 44 1070

YOUR MOVE
w' 29

N 7 4o 37¢C

E
0

YOUR MO
"u! 5

v
-4 53
3

v 1 25 42

T WIN

INPUT NEW GAME SPECS
60 6 16 ¢ 0 0 1GO 12

60

48

32

(]

10

N

INPUT NEW GAME SPECS

ON

85,

121

<

()]
<

P 1 31 2056
" YOUR MOVE.

'tV 3 22

L8 24 716 g
YOUR MOVE
'x' 1 8

F 1 46 L50 28
YOUR MOVE -
|y!__5.- 5

BT | 5
N. 7 34 L5 22

YOUR MOVE
Vv

''1 55

FHPUT NEW GAME SPECS
Send '

THANK YOU AND BYE-BYE
ZEXECUT]ON TERMINATED

INPUT WEW GAME SPECS
50 6 10 6 0.0 100 12 | ,

743

- 1‘055

