
Parallel techniques for construction of trees

and related problems

By

Teresa Maria Przytycka

Magister, Warsaw University

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in

THE FACULTY OF GRADUATE STUDIES
Department of Computer Science

We accept this thesis as conforming
to the required standard

THE UNIVERSITY OF BRITISH COLUMBIA

August, 1990
© Teresa Przytycka, 1990

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department of CompcU-e^ 2cc'&r? c £

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstrac t

The concept of a tree has been used in various areas of mathematics for over a

century. In particular, trees appear to be one of the most fundamental notions in computer

science. Sequential algorithms for trees are generally well studied. Unfortunately many of

these sequential algorithms use methods which seem to be inherently sequential. One of the

contributions of this thesis is the introduction of several parallel techniques for the

construction of various types of trees and the presentation of new parallel tree construction

algorithms using these methods. Along with the parallel tree construction techniques

presented here, we develop techniques which have broader applications.

We use the Parallel Random Access Machine as our model of computation. We

consider two basic methods of constructing trecs:tree expansion and tree synthesis.

In the tree expansion method, we start with a single vertex and construct a tree by

adding nodes of degree one and/or by subdividing edges. We use the parallel tree

expansion technique to construct the tree representation for graphs in the family of graphs

known as cographs.

In the tree synthesis method, we start with a forest of single node subtrees and

construct a tree by adding edges or (for rooted trees) by creating parent nodes for some

roots of the trees in the forest. We present a family of parallel and sequential algorithms to

construct various approximations to the Huffman tree. All these algorithms apply the tree

synthesis method by constructing a tree in a level-by-level fashion. To support one of the

algorithms in the family we develop a technique which we call the cascading sampling

technique.

One might suspect that the parallel tree synthesis method can be applied only to trees

of polylogarithmic height, but this is not the case.We present a technique which we call the

valley filling technique and develop its accelerated version called the accelerated valley

filling technique. We present an application of this technique to an optimal parallel

algorithm for construction of minimax trees.

ii

Table of Contents

Abstract i i

List of Figures v i

Acknowledgements v i i i

CHAPTER 1: INTRODUCTION 1

1.1. The Computation Model 2

1.2. Parallel Construction of Trees 5

1.3. A systematic approach to algorithmic problems 8

1.4. Basic definitions and notation 9

CHAPTER 2: BASIC TECHNIQUES FOR DESIGN OF P A R A L L E L

ALGORITHMS 12

2.1. Brent's scheduling principle 12

2.2. Prefix sum computation 13

2.3. List ranking , 15

2.4. Euler tour technique 17

2.5. Tree Contraction 18

2.5.1. A tree contraction algorithm 20

2.5.2. Bottom-up Algebraic Tree Computations 25

2.5.2. Top-down Algebraic Tree Computations 31

2.6. Cascading sampling 32

2.7. Parallel divide and conquer and the A l l Dominating Neighbors problem 40

iii

2.7.1. T h e A D N p r o b l e m and the v i s ib i l i ty tree 42

2.7.2. A n optimal algorithm for the A D N problem 44

2.7.3. Appl icat ions 47

2.7.3.1. T h e A l l Strict ly D o m i n a t i n g Ne ighbors (A S D N)

problem 49

2.7.3.2. C o m p u t i n g horizontal neighbors for vertices o f a

monotone polygon 50

2.8. S u m m a r y 53

C H A P T E R 3: P A R A L L E L T R E E E X P A N S I O N - C O N S T R U C T I O N O F T R E E

R E P R E S E N T A T I O N F O R C O G R A P H S 55

3.1. Definit ions and basic properties 57

3.2. Bunches and lines in a cotree 60

3.3. A top level description of the cotree construction algorithm 68

3.4. Implementation of the reduce operation 73

3.5. A d j a c e n c y matrix construction f r o m the cotree representation o f a

c o g r a p h 75

3.6. R e d u c t i o n o f the processor requirements 77

3.7. A n application o f the cotree construction algorithm - construction a tree

representation for a parity graph 78

3.8. S u m m a r y 80

C H A P T E R 4 : P A R A L L E L L E V E L - B Y - L E V E L T R E E S Y N T H E S I S :

C O N S T R U C T I O N O F B I N A R Y T R E E S W I T H A L M O S T O P T I M A L

W E I G H T E D P A T H L E N G T H 82

4.1. Bas ic Construction Scheme (B C ©) 86

4.2. Approximate sorting and merging o f approximately sorted sequences 99

4.3. Genera l Construction Scheme (9 ^ / 6) 101

iv

4.4. P a r a l l e l interpretations o f $"5/6 102

4 .4 .1 . 0 (l o g n) t ime n ^ ° f o g ^ ^ R J ^ processors p a r a l l e l

interpretation of gcs with error bounded by 0.172 103

4.4.2 A 0 (k l o g n log*n) time n processor parallel interpretation o f

gcs with error bounded by l/n^ 104

4 . 1 . 3 . 0 (k 2 l o g n) time n 2 processor paral le l interpretation o f gcs

with error bounded by 4 - 110

4.5. Sequential interpretations o f the 9^<^ 121

4.6. S u m m a r y 124

C H A P T E R 5 : V A L L E Y F I L L I N G T E C H N I Q U E A N D C O N S T R U C T I O N O F

M I N I M A X T R E E S 127

5.1. V a l l e y F i l l i n g Technique 130

5.2. L e v e l tree and its construction 132

5.2.1. Construction o f level tree 135

5.2.2. C o m p u t i n g the load function 137

5.3. A n optimal algorithm for alphabetic minimax tree problem 139

5.4. Other versions of the minimax tree problem 142

5.4.1. t-ary a lphabet ic m i n i m a x trees 142

5.4.2. Non-alphabetic t-ary minimax trees 148

5.4.3. M i n i m a x trees with real weights 153

5.5. S u m m a r y 153

C H A P T E R 6 : C O N C L U D I N G R E M A R K S 156

R E F E R E N C E S 164

I n d e x 169

v

L i s t o f f i g u r e s

Figure 2.1. A prefix sum computation 14

Figure 2.2. Prune and Bypass operations 21

Figure 2.3. Interpretation of Trees as Binary Trees 22

Figure 2.4. A tree contraction sequence 24

Figure 2.5. New labelling of edges after Prune and Bypass operations 28

Figure 2.6. Distribution by sampling 39

Figure 2.7. Visibility sequences 43

Figure 2.8. Hidden sequences (bold) 44

Figure 2.9. Hidden sequences (bold lines) 52

Figure 3.1. A cograph and its cotree 60

Figure 3.2. Notation concerning subtrees 60

Figure 3.3. A 0-bunch and a 1-bunch 62

Figure 3.4. Replacing a bunch by its representative 63

Figure 3.5. Relations ZQ(V,U,W) and Zj^u.w) 64

Figure 3.6. Restricting of the possible positions of nodes v,u,w satisfying

Z0(v,u,w) 65

Figure 3.7. A nonbranching node 66

Figure 3.8. A 0-line and a 1-line 66

Figure 3.9. Replacing a line by its representative 67

Figure 3.10. A tree containing 3 brunching nodes, 2 bunches and 1 line 68

Figure 3.11. Substitution of fragments for corresponding representatives 70

Figure 3.12. The worst case configuration for case (2) 72

Figure 3.13. Converting a cotree to a binary tree 76

Figure 4.1. The hierarchical data structure used by the n2-processor algorithm 115

vi

Figure 4.2. The summary of results of Chapter 4 125

Figure 5.1. A valley filling step 132

Figure 5.2. Level intervals 133

Figure 5.3. Embedded minimax tree 134

Figure 5.4. A level tree 135

Figure 5.5. Introducing the ordering of children 137

Figure 5.6. Binarization of a level tree 138

Figure 5.7. Construction of a balanced forest 139

Figure 5.8. A regular t-ary alphabetic minimax tree and a t-ary alphabetic minimax

tree 142

Figure 5.9. Path compaction (t = 5) 145

Figure 5.10: Leaflets compaction (t = 4) 147

Figure 5.11. A stair 150

Figure 5.12. Treads cutting 150

Figure 5.13. Stair climbing 151

Figure 5.14. Cliff climbing 152

Figure 6.1. Generalizations of the parallel dynamic expression evaluation problem 159

vii

Acknowledgements
First of all, I would like to thank my supervisor, David Kirkpatrick, for his guidance,

the support, and the encouragement that he has given me through my years at the
University of Biritish Columbia. I had the very good fortune to have studied under his
supervision.

I am also indebted to Derek Corneil for his guidance and hospitality during may half
year visit to the University of Toronto.

I would like to extend my gratitude to the members of my committee Feng Gao,
Maria Klawe, and Nick Pippenger for their suggestions on ways in which I could improve
my presentation.

I would like also to thank Jozef, my husband and coauthor of several papers, for his
love, encouragement, and introducing me to knot theory, topology, and hyperbolic
geometry.

Finally I would like to thank all UBC graduate students, faculty, and staff who made
my graduate study a rewarding experience. Special thanks to Nou Dadoun and Lisa
Higham for many stimulating discussions and reading of various drafts of papers (and
translating several of them into English); to Yueli, Jadranka, and Hilde for putting up with
me as an office mate.

This research has been founded in part by the University of British Columbia
Graduate Fellowship, the I.W. Killam Predoctoral Fellowship and the B.C. Advanced
Systems Institute Graduate Student Scholarship.

I would like to dedicate this thesis to my children Tomek and Pawetek who were born
during my graduate studies.

viii

Chapter 1: Introduction page 1

CHAPTER 1: INTRODUCTION

The concept of a tree has been used in various areas of mathematics for over one

century. Among the first people known to use this notion were Kirchhoff [Kil847] and

Cayley ([Call857],[Call859]). Since then trees have appeared over and over again in

different branches of mathematics, physics, and computer science. In computer science,

especially, trees appear to be one of the most fundamental notions. It is hard to enumerate

all aspects in which trees are used in computer science. Let us mention here their

application as data structures (in particular hierarchical data structures), as a systematic way

of exploring graphs, and as a representation of other objects (for example expressions,

certain families of graphs). Parallel algorithms have brought a new application of trees,

namely as a structure supporting scheduling techniques. For this reason parallel algorithms

use trees even more critically than corresponding sequential algorithms.

Sequential algorithms for trees have been generally well studied. Unfortunately many

of these sequential algorithms use methods which seem to be inherently sequential. One of

the contributions of this thesis is the introduction and investigation of several parallel

techniques for the construction of various types of trees and the presentation of new parallel

tree construction algorithms using these methods. Along with parallel tree construction

techniques we develop techniques which have broader applications.

The remainder of this chapter is devoted to a brief introduction to parallel computation

related to trees. In Section 1.1, we introduce our parallel computation model. In Section

1.2, we briefly discuss parallel techniques for trees and relate our work to other work in the

Chapter 1: Introduction page 2

field. The section also provides an overview of Chapters 3-5. In Section 1.3, we introduce

the notion of an algorithmic schema, which provides a tool for a uniform presentation of

computational techniques. In Section 1.4, we introduce basic definitions and notation

concerning trees. In Chapter 2, we present general parallel techniques which support our

tree construction techniques. We then describe in more detail our contribution to tree

contraction (Section 2.5) and the cascading sampling technique (Section 2.6). In Section

2.7, we briefly discuss the parallel divide-and-conquer technique and its application to an

algorithm for the All Dominating Neighbors problem which is used in Chapter 5.

l.l.The Computation Model

We use the Parallel Random Access Machine (PRAM) as our model of computation

([ForWyl87],[Gol76]). This is a synchronous parallel model of computation in which all

processors have access to a common memory in addition to their local memory. We

assume that a processor can access any cell of the shared memory in unit time. The

processors are indexed by natural numbers and each processor knows its index. We

consider the following PRAM models classified according to the manner of resolving

read/write conflicts:

- Exclusive Read Exclusive Write (EREW) PRAM - no concurrent reads or writes are

allowed,

- Concurrent Read Exclusive Write (CREW) PRAM- concurrent reads are allowed but no

concurrent writes,

- Concurrent Read Concurrent Write (CRCW) PRAM- concurrent reads and writes are

allowed.

According to the method of resolving write conflicts we consider several further

submodels of the CRCW PRAM model. In the COMMON CRCW PRAM model,

C h a p t e r 1: I n t r o d u c t i o n page 3

processors are allowed to write simultaneously under the condition that they write exacdy

the same value. In the ARBITRARY CRCW PRAM model, among processors which try to

write simultaneously, an arbitrary processor will succeed, and in the PRIORITY CRCW

PRAM model, the processor with the highest index will succeed.

The above models are not equivalent. The most powerful among them is the

PRIORITY CRCW PRAM and the weakest is the EREW PRAM. However any algorithm

which runs on the PRIORITY CRCW PRAM can be implemented on the EREW PRAM

using the same number of processors with the time complexity multiplied by a logarithmic

factor (see for example [Vis83]). A discussion of relations between PRAM models can be

found, for example, in the survey of Karp and Ramachandran [KarRam86] and

[FicRagWid88], [Bop89].

The PRAM model of computation is an idealized model of computation. Existing

parallel machines usually consist of a number of small processors connected in a fixed

network. However the methods used with a network model are usually closely related to

the topology of the network. The PRAM model neglects the hardware constraints existing

in real parallel machines. Thus it allows us to concentrate on the logical structure of the

problem which makes it very convenient for the theoretical study of parallel computation.

On the other hand, the PRAM model can be efficiently simulated by more realistic models

of computation ([UpfWig87], [AltHagMehPre87], [HerBil88], [HoPre89], [KarUpf88],

[Ran87], [Her89]).

Let n be the size of a problem. We evaluate the performance of a parallel algorithm

which solves the problem using two parameters: t(n) and p(«), where t(n) (resp., p(n)) is

equal to the maximum, over all instances of size n, of the number of time units (resp., the

number of processors) used by the algorithm. Since we can always save a constant factor

in the number of processors at the cost of the same constant factor in the running time we

Chapter 1: Introduction page 4

omit the "big oh" when specifying the number of processors. The total work of a parallel

algorithm is defined as the product p(n)t(n). We are especially interested in designing

algorithms whose running time is polylogarithmic (i.e. is 0(log k «) for some constant k)

using a polynomial number of processors. The class of problems which can be solved by

such algorithms is denoted by NC. This class was first defined by Pippenger [Pip79] and

is broadly accepted as the class of problems which can be solved "fast" using a

"reasonable" number of processors. An important property of the class NC is that it is

invariant under the choice of model of computation over a broad range of models including

the PRAM models described above, uniform circuit models [Bor77],[Ruz81], Alternating

Turing Machines [ChaKozSto81][Ruz80], and Vector Machines [PraSto79] (see also the

survey of Karp and Ramachandran [KarRam86]).

While designing efficient parallel algorithms we are searching for algorithms which

minimize total work. Our secondary goal is to minimize the time factor. We usually

compare the performance of a parallel algorithm with the time complexity of the best known

sequential algorithm to solve the given problem. A parallel algorithm is said to achieve

optimal speedup over a sequential algorithm which solves the same problem if the total

work of the parallel algorithm is of the same order as the time complexity of the sequential

algorithm. The notion of optimal speedup clearly depends on the model. Typically, we look

for optimal speedup on the weakest possible PRAM model. For many algorithms presented

in the thesis the use of concurrent reads improves the time complexity while the use of

concurrent writes is not essential. Therefore, unless otherwise specified, we use the CREW

PRAM model as our default. If the use of concurrent writes is known to improve the time

complexity of the algorithm we note this explicitly.

We use the adjective "optimal" in connection with some of our algorithms. Whenever

we refer to an algorithm as an optimal parallel algorithm the total work performed by the

algorithm is of the same order as the sequential lower bound for the problem, and the

Chapter 1: Introduction page 5

sequential algorithm obtained by simulating the parallel algorithm by one processor satisfies

the constraints for which the lower bound was established.

1.2. Parallel Construction of Trees

While many sequential tree construction algorithms are well studied (we have optimal

sequential algorithms for a large number of tree construction problems) designing parallel

tree construction algorithms is not an easy task. Many sequential tree construction

algorithms se_em to be inherently sequential. For example, currently no deterministic

efficient parallel algorithm to construct the Depth First Search (DFS) tree for an arbitrary

graph is known. In fact it has been shown ([Rei85]) that given a graph with fixed

adjacency lists the problem of computing of the lexicographic DFS order is P-complete (i.e.

given any polynomial-time sequential algorithm A with input of length n we can construct,

in 0(log n) space, an instance of the lexicographic DFS problem which has a positive

solution exactly when A accepts its input). Also the best algorithm known for constructing

the Breadth First Search (BFS) tree for a directed graph takes 0(log2n) time using M(n)

processors, where M(n) denotes the number of processors needed to multiply two n x n

matrices in 0(log n) time. The best upper bound on M(n) is currently M(n)=0(n2-376)

[CopWin87], Thus this algorithm does not achieve optimal speedup.

We consider two basic methods of constructing trees, namely tree expansion and tree

synthesis. In the tree expansion method we start with a single vertex and construct the tree

by adding nodes of degree one and/or by subdividing edges. Typical examples of

sequential algorithms constructing trees using this approach are algorithms for finding the

BFS and the DFS spanning trees of a graph, Prim's algorithm for finding the Minimum

Spanning Tree (MST) [Jar30], [Pri55], [Dij59], and most recursive and top-down tree

construction algorithms. In a parallel setting this technique consists of introducing an

C h a p t e r 1: I n t r o d u c t i o n page 6

independent set of nodes forming new leaves or subdividing edges at each parallel step.

Thus it is closely related to the tree contraction method ([MilRei85], [Rei85], [GibRyt87],

[ColVis86c], [AbrDadKirPrz87], [GazMilTen87], [AbrDadKirPrz88], [GibRyt89])

discussed in Section 2.5. We introduce the parallel tree expansion method in Chapter 3.

We use this technique to construct the tree representation for graphs in the family of graphs

known as cographs. In the same chapter we outline a parallel construction of a tree

representation for graphs in the family of graphs known as parity graphs. Some of the

results of Chapter 3 are reported in [KirPrz87] and [PrzCor89]. Cographs, like various

other families of graphs have a recursive description which allows us to represent theni

with the help of a tree. Among other families of graphs which permit a tree representation

are parity graphs [BurUhr84], outerplanar graphs [Gol80], Halin graphs [Sys84], chordal

graphs [G 0 I 8 O] , partial k-trees [G 0 I 8 O] (in particular, series-parallel graphs), and graphs

generated by-eontext free grammars [Sli82]. Because of the number of parallel techniques

related to trees, families of graphs which have tree representations often admit efficient

parallel algorithms to solve problems which are difficult for general graphs (see for

example [BerLawWon85], [He86b], [Ede87], [DahKar87], [NaoNaoSc87],

[AbrDadKirPrz89], [RytSzy89]).

In the tree synthesis method we start with a forest of single node subtrees and

construct the tree by adding edges or (for rooted trees) by creating parent nodes for some

roots of the trees in the forest. Kruskal's algorithm for constructing a minimum cost

spanning tree and algorithms to construct other families of weighted trees which minimize

certain cost functions serve as examples of the tree synthesis method. A number of such

families of trees (for example Huffman trees, Binary Search Trees) can be constructed

using the parallel dynamic programming technique of Miller, Ramachandran, and Kaltofen

([MilRamKal86]). A major limitation of this technique is its high processor cost. In certain

circumstances one can significantly reduce the number of processors used by the parallel

Chapter 1: Introduction page 7

dynamic programming algorithm [AtaKosLarMilTen89]. It also appears that a slight

relaxation of the optimality criterion can lead to more efficient parallel algorithms. We

define the error of a tree to be the difference between the cost of the tree and the cost of an

optimal tree for the given input. In the relaxed version of a problem, instead of looking for

an optimal solution we are searching for an almost optimal tree, i.e. for a tree whose error

is small. Following this idea, we present in Chapter 4 a family of parallel and sequential

algorithms to construct various approximations to the Huffman tree. In particular,we

present an algorithm which achieves almost optimal speedup (0(logn \og*n) 1time using n

processors) over the Huffman algorithm and produces a tree with a very small error. This

result has been achieved by applying a cascading sampling technique - a new technique

related to that used in Cole's merging sort algorithm [C 0 I 8 6] . The best currently known

parallel algorithm for (exact) construction of the Huffman tree is due to Atallah et. al.

[AtaKosLarMilTen89]. It runs in 0(log 2 «) using n2/log n CREW processors. Some of

the results presented in this chapter were reported in [KirkPrz90]. All algorithms presented

in Chapter 4 apply the tree synthesis method by constructing a tree in a level-by-level

fashion. At each parallel step we construct parents for elements which are (up to some

approximation) on the same level of the constructed tree. The relaxation of the problem

allows us to concentrate on trees of logarithmic height and consequently leads to a fast

algorithm.

One might suspect that the parallel tree synthesis method can be applied only to trees

of polylogarithmic height, but this is not the case. In Chapter 5 we present a technique

which we call the valley filling technique. Our technique can be considered as an

accelerated version of the technique proposed independently by Atallah et. al.

[AtaKosLarMilTen89]. We present an application of this technique to an optimal parallel

1log*n={min i: logWn <!} where log(0« donotes i times composotion of the log function

Chapter 1: Introduction page 8

algorithm for construction of minimax trees. This, as a special case, leads also to an

optimal parallel algorithm for construction of trees from a given sequence of leaves'

heights, improving one of the results of Atallah et. al. [AtaKosLarMilTen89].

1 . 3 . A s y s t e m a t i c a p p r o a c h t o a l g o r i t h m i c p r o b l e m s

In this_section we present a formal framework for the presentation of computation

techniques and families of algorithms. Sections 2.2, 2.3, 2.5 of Chapter 2 provide

examples (of increasing difficulty) of the application of this method. The reader may

choose to read this section together with one of those sections.

While describing an algorithmic technique we try to abstract a common method used

in a family of algorithms. In our approach we would like to see the description of the

method and an algorithm which solves a problem using the given method to be in a similar

relation as an abstract algebra and its model. To achieve this goal we describe

computational methods with the help of algorithmic schemes. An algorithmic scheme is a

partially uninterpreted algorithm. This notion was probably first introduced in 1960 by

McCarthy ([McC60]) and subsequently developed and popularized by Paterson and Hewitt

([PatHew70]). We define an algorithmic scheme as a sequence & = <J9,p1,...,pn, Ax,

F> where Pi,...pn are names of procedures or functions, Ax is a set of axioms defining

properties of Pi,...,pn, IP is a program which in addition to the terms of a programming

language contains names pi,...,pn, and J9 is the domain of the input. One can think of IP

as an algorithm whose meaning depends on the definitions of Pi,...,pn- A sequence

pj,...,pn is called an interpretation of the algorithmic scheme Cl if pj,...,pn is a sequence

of procedures and functions satisfying axioms Ax. An interpretation of an algorithmic

scheme IP uniquely determines an algorithm, namely the algorithm obtained from F by

substituting names Pi,...,pn for procedures pj,...,pn. Thus we usually identify an

Chapter 1: Introduction page 9

interpretation with the algorithm it defines. For a simple application of this description

method see, for example, Section 2.2.

We can also view an algorithmic scheme as universal description of a family of

algorithms. We take a great advantage of this approach in Chapter 4 where the use of an

algorithmic scheme not only simplifies the description but also allows us to state and prove

properties common to all algorithms in the family.

We use algorithmic schemes in descriptions of many but not all techniques depending

on how much can be gained by using this sort of formalism. We often replace an axiomatic

presentation of properties of procedures and functions by a less formal but more intuitive

description.

1.4. Basic definit ions and notat ion

Our graph theoretical terminology is standard (cf. [AhoHopU1174], [Tar83],

[Knu68]). A tree is a connected graph without cycles. A tree together with a distinguished

node, called the root, is called a rooted tree. This thesis mainly concerns rooted trees so we

omit the adjective "rooted" whenever no confusion arises. Let U be the set of nodes of a

rooted tree T. Nodes of degree one (for a rooted tree nodes of degree one different than the

root) are called leaves. A node which is not a leaf is called an internal node. For a node

UG U we use /-r-(u) to denote the length of the unique path from the root to u. /T(u) is

refered to as the depth of node u in tree T. The value m^|T(u) is called the height of T.

The ith level of a tree is the set of all nodes of depth i. By convention we think of a tree as

having the root at the top and the leaves at the bottom.

For any two nodes u,ve U if u belongs to the path from the root to node v then u is

an ancestor of v and v is a descendant of u. If in addition u and v are connected by an

Chapter 1: Introduction page 10

edge then u is the parent of v (we denote it by parentis)) and v is a child of u. Nodes with

a common parent node are called siblings.

A rooted tree is called a t-ary tree if every internal node has at most t children. A

rooted tree whose every internal node has exactly t children is called a full t-ary tree. A full

binary tree all of whose leaves belong to at most two adjacent levels is called an almost

balanced binary tree.

An ordered tree is a tree together with an ordering of each internal node's children.

We think of this ordering as the left-to-right ordering. In particular, for an internal node of

an ordered binary tree we distinguish its left child and right child. If v is an internal node of

an ordered binary tree then right(w) denotes its right child and left(v) denotes its left child.

An ordering is often implicit in a representation of a tree. Typically our tree construction

algorithms construct ordered trees.

A subtree rooted at an internal node u of a tree T is the tree induced on the set of

nodes which are descendants of u (including u).

We also consider trees whose leaves are labelled with elements from some set. A

family of ordered trees such that the right to left order of the leaf labels is fixed is called a

family of alphabetic trees. If the leaves of a tree are labelled by elements from R+ then we

are dealing with (leaf) weighted trees. Let V be a set of leaves. A (leaf) weighted tree is a

tree together with a function w: V—> R + (where V is the set of leaves of T) called the

weight function. The value w(v) is called the weight of the element v. Frequently the

weight function can be extended to all nodes by defining the weight of an internal node to

be some function of the weights of its children.

Chapter 1: Introduction page 11

T w o weigh ted trees, T and T ' , are i somorph i c i f there exists a weigh t preserv ing

i s o m o p r h i s m f r o m T to T ' . T w o weigh ted alphabetic trees, T and T 1 , are i somorph ic i f

there exists a weight and order preserving i somorph i sm f rom T to T ' .

L e t <T be a finite f a m i l y o f weigh ted (possibly alphabetic) trees. A funct ion c :

cT—> R+ such that i f T , T e 3* are i somorphic then c (T) = c(T') and i f T " is a subtree o f T

then c (T") < c (T) is c a l l ed a cost function. A tree T * e <T such that c (T*) = m i n c (T) i s

ca l led an optimal tree with respect to the cost Junction c.

Chapter 2: Basic techniques for design of parallel algorithms page 12

CHAPTER 2: BASIC TECHNIQUES FOR DESIGN
OF PARALLEL ALGORITHMS

In this chapter we present general parallel techniques which support our tree

construction techniques, and we describe in more detail our contribution to the tree

contraction technique (Section 2.5) and the cascading sampling technique (Section 2.6). In

Section 2.7, we discuss the parallel divide-and-conquer technique and present a divide-and-

conquer algorithm for the All Dominating Neighbor problem which will be used in

Chapter 5.

2.1 . Brent 's scheduling pr inc ip le

Brent's scheduling principle [Bre74] is a method which is often used to reduce the

number of processors used by a parallel algorithm. Consider an algorithm which performs

t(n) parallel steps sj,...,st(n). Assume that in step Sj the algorithm performs x± parallel
* n)

operations. The number of processors used by the algorithm is m = max xj. Let x = ^ X j .
i=l

We can simulate step Sj of the algorithm with p<m processors in at most T^-l time. Thus

the total time needed to simulate the entire algorithm using p processors is bounded by — +

t(«). This technique, known as Brent's scheduling principle, allows us to reduce the

number of processors if a large number of processors are idle during a substantial part of

the computation. An example of such a computation is the prefix sum algorithm presented

in the next section. It should be noted that to apply Brent's scheduling principle one must

Chapter 2: Basic techniques for design of parallel algorithms page 13

know how to associate each processor to its job. This problem is called the processor

allocation problem and may be nontrivial in general.

2.2. Pref ix sum computat ion

Associated with an array X=[x lv..,xn] of n real numbers is an array S=[slv..,sJ of
j

prefix sums, where Sj = (j=l,...,«). The prefix sum problem is, given an input array

i=l

X compute the array S of its prefix sums. A parallel prefix sum algorithm was probably

first proposed by Ofman ([Ofm63]), however more attention has been given to a later paper

of Ladner and Fischer ([LadFis80]). The algorithm can be described as follows: Build an

almost balanced binary tree (embedded in the plane) whose consecutive leaves correspond

to the consecutive elements of the input array and such that every internal node knows the

address of the preceding node from the same level (which we call its left neighbor if such a

vertex exists). Then for every internal node v compute the sum of the elements

corresponding to the leaves of the subtree rooted at v. This can be done in 0(log n) time

with n processors by a bottom-up computation (see Figure 2.1 a). Now process the

vertices in top-down fashion. For every internal node v the value of its right child is set to

be equal to the value of v and the value of its left child is increased by the value of the left

neighbor of v (if it exists). At the end of this computation the i-th leaf has the value of the i-

th prefix sum associated with it. An 0(log n)-time «-processor EREW PRAM

implementation is obvious. To reduce the number of processors to n/log n we apply

Brent's principle, assigning each of n I log n processors to a block of log n successive

leaves. In this way the obvious simulation of the 0(«)-processor implementation incurs an

additional additive overhead of only 0(log n) time.

Chapter 2: Basic techniques for design of parallel algorithms page 14

a)

20 20

11- -#•20 A A
-• l l - ^ 18-• 20

A A ^ A 2 1 3 5 4 3 1 1 b) 2 3 6 11 15 18 19 2C

Figure 2.1. A prefix sum computation

The method used to solve the prefix sum computation problem can be described by
the following algorithmic scheme (we assume for simplicity that n = 2 m):

where:
JS) is a domain,
0 : JS) x JS) -> JS,
Ax : x,y,ze JS) => x©(y0z)= (xffiy)©z

F: Input: array X=fx1 x nl of elements from JS).
Output :S= [si,...,sn]
Scheme: For all i do sp := XJ;

For k:=l to m do for each i=l,...,2m"k do s ^ s ^ a - i S s 1 ^ ;
For k:=m to 1 do for each i=l,...,2mk do skl2i:=ski;

S ^ i - l ^ i - i e s * - ! ^ ;
For all i do S j : = s;° ;

It is easy to see that for any interpretation of © which satisfies the axiom in Ax the
above scheme yields an algorithm which computes S j = xi © X2 © . . . © X j . Furthermore if
© can be computed in O(T) time with F processors then the corresponding interpretation
of tP A can be implemented in 0(T log n) time with IP n processors. To reduce the
number of processors to Pn/log n we apply Brent's principle, assigning each of

Chapter 2: Basic techniques for design of parallel algorithms page 15

P n / log n processors to a block of log n successive leaves and simulate the O(Pn)

processor implementation with Pn / log n processors just as we simulated the n processor

implementation of the prefix sum algorithm with nAog n processors.

Note that if X is a boolean array and © is interpreted as the "or" function then the

above scheme leads to an algorithm which computes the "or" function of the boolean

values given in the array in 0(log n) time using n/log n EREW processors. Cook, Dwork,

and Reischuk [CooDwoRes86] showed that the "or" function requires time Q.(log n) on a

CREW P R A M no matter how many processors or memory cells are used. Therefore the

above algorithm achieves the best possible bound. Berkman, Breslauer, Galil, Schieber,

and Vishkin [BeBrGalSchVis89] showed that the time factor can be reduced to 0(loglog n)

(preserving the total work up to a constant factor) if a CRCW model is used.

2.3. L is t rank ing

The list ranking problem is to compute, for each element of a list of elements, its

distance from the end of the list. The list ranking problem can be solved using a method

closely related to the prefix sum method. The list ranking problem is equivalent to a suffix

sum computation, provided that the input sequence is presented in the form of a list and all

elements have an assigned value equal to one. Wyllie [Wyl81] proposed a simple list

ranking algorithm which can be viewed as an interpretation of the following algorithmic

scheme (we assume for simplicity that n = 2m):

ZK = < J 9 , © , A x , F >

where:

J9 is a domain;

© : JS)x <£>-> J9,

Ax : x,y,ze <© => x © (y © z) = (x © y) © z

Chapter 2: Basic techniques for design of parallel algorithms page 16

F : Input: X = [xi,...,xn] ; SUCC= [succ1,...,succn]
where X is an array containing elements of the list and sucq is equal to the
index in X of the element following Xj in the list;

Output: D=[di,...dn] where dj= 0 X j
j=i...«

Scheme: For log n iterations repeat
in parallel for i =1 ..n do X(i):=X(i) ©X(SUCC(i));

SUCC(i): =SUCC(SUCC(i)).
in parallel for i =1 ..n do D(i):=X(i);

To obtain a parallel algorithm for the list ranking problem we simply set Xj=l for
i=l,..n and interpret © as addition.

In general if © can be computed in O(T) time with F processors then the above
algorithmic scheme leads to an 0(T log «)-time and Fn -processor algorithm. The
technique used in this scheme is also called the pointer jumping technique. Much effort has
been made to find a list ranking algorithm which solves the problem in 0(log n) time using
only ft/log n processors. Like the prefix sum computation this is the best one can do on a
CREW PRAM model. The algorithm given by Wyllie [Wyl81] has been gradually
improved through a series of deterministic and randomized results ([Vis84],
[KruRudSni85], [MilRef85], [AbrDadKirPrz87b]). A deterministic algorithm achieving
these complexity bounds (on a EREW PRAM) has been given by Cole and Vishkin in
[ColVis86]. Because of the large constant in the time factor this algorithm is mainly of
theoretical interest. Subsequently, a simpler optimal algorithm (which involves reasonable
constants) has been proposed in Anderson and Miller [AndMil88]. Any of these algorithms
can be abstracted to obtain an algorithmic scheme leading to an 0(T log n)-time Prc/log
tt-processor algorithm.

Chapter 2: Basic techniques for design of parallel algorithms page 17

2.4. Euler tour technique

The Euler tour technique [TarVis84] provides a general method for reducing

computation of certain functions on trees (for example preorder number, number of

ancestors) to list ranking. The basic idea is to replace each tree edge by a pair of directed

edges with opposite directions, and consider an Euler path which starts and ends at the

root. This Euler path, together with some labeling forms the input to a list ranking problem.

Assume, for simplicity, that the input tree is a binary tree. To describe the technique we

present an algorithm to compute the left-to-right numbering of tree leaves:

Example 2.1. Computing the left-to-right numbering of leaves of an input tree

Input: a rooted binary tree T;

Output: left-to-right numbering of leaves

STEP 1. Build a unique list L corresponding to the input tree :

Each node v of T is split into three nodes V T , V L and V R . For each of the resulting

nodes we define a next field as follows. If v is a leaf then vr.next = V L and VL-next

= V R . If w is the right child of v then VL.next = wj and WR.next = V R . If w is

the left child of v then v-r.next = wj and WR.next = What results is a l i s t that

starts atrootx and ends at r o o t R and traverses each edge of T once in each direction.

This is the unique list L corresponding to the input tree.

STEP 2. Reduce the computation of the tree function to some interpretation of 33 ift, which

takes the list L as its input.

Label the elements of L as follows: x T j = 1, x L j = x R j = 0 if Xj corresponds to a leaf

and x T j = x L j = x R j = 0 otherwise and interpret © as addition. It is easy to confirm

that after running this interpretation of 33 (R, on the list L , the value at each x T j

corresponding to a leaf is equal to the left-to-right number of this leaf.

Chapter 2: Basic techniques for design of parallel algorithms page 18

2.5. Tree Contraction

The tree contraction problem occurs most naturally in the context of dynamic

expression evaluation for an expression presented in the form of a parse tree. The size of an

expression is defined by the number of leaves of the parse tree. Brent [Bre74] showed that

expressions of size n could be rewritten in straight-line code of depth 0(log n). His

approach is a top-down approach and its natural dynamic implementation seems to require

0(log 2«) time. Miller and Reif [MilRei85] describe a deterministic algorithm for dynamic

expression evaluation which runs in 0(log n) time with 0(n) processors. A similar result

has been independendy reported by Rytter [Ryt85]. A single step of the algorithm of Miller

and Reif converts the current binary parse tree to a simpler one by removing, in parallel, all

leaves (RAKE operation) and compressing maximal chains of nodes with only one child

(COMPRESS operation). During the RAKE operation we compute the values of the

expressions at internal nodes all of whose children are leaves. We also modify the

functions associated with internal nodes whose number of children has been reduced as the

result of the RAKE operation, to obtain functions with the number of arguments equal to

the number of children. During the COMPRESS operation we perform a symbolic

computation consisting of the composition of the one argument functions associated with

the nodes on the compressed paths. Miller and Reif show that after 0(log n) such steps the

given tree will be reduced to its root (and thus the expression defined by the tree is

computed).

Miller and Reif apply their method to construct parallel algorithms for problems

which can be reduced to computation on trees. They give a randomized algorithm for

testing isomorphism of trees, a deterministic algorithm for constructing a tree of 3-

connected components of a planar graph, as well as other algorithms. Among the important

contributions of Miller and Reif [MilRei85] is their abstraction of the problem of tree

contraction. This leads to a separation of the problem from its familiar applications

Chapter 2: Basic techniques for design of parallel algorithms page 19

(notably, dynamic expression evaluation) and places it, along with list ranking, among the
fundamental problems of parallel computation. A natural side effect has been the
identification of new and unforeseen applications [DadKir87], [He86], [GibRyt86].

Another approach to dynamic expression evaluation is presented by Gibbons and
Rytter [GibRyt86]. Their algorithm runs in 0(log n) time using 0(«/log n) processors.
They assume, however, that the input (the string representing the expression to be
computed) is given in an array and is hence preordered. They prove that the algorithm can
be applied to compute an algebraic expression in any algebra with finite carrier.

Cole and Vishkin [ColVis86c] propose an alternative method for computation on
trees. They solve the tree contraction problem by parallel reduction to the list ranking
problem. In this respect their approach is similar to the approach described in this thesis.
Our reduction, an abstraction of the technique used for the parallel preprocessing of region
trees for fast (sequential) subdivision search [DadKir87], is simpler and more explicit than
that of Cole and Vishkin; in particular, it completely avoids the centroid decomposition
techniques that lie at the heart of their reduction. Similar algorithms have been proposed
independendy by Gibbons and Rytter [GibRyt88] and Kosaraju and Delcher [KosDel88].

All the algorithms considered above share a basic similarity: in each parallel step a
parse tree is shrunk by independent vertex removal. For this reason the technique used for
dynamic expression evaluation is called the tree contraction technique. One can see a tree
contraction technique as a scheduling technique. Namely, for each processor we decide to
which node it is assigned at a given time unit. The processor assigned to a tree node at a
given time is available for performing a computation which consists either of computing a
subexpression or performing a symbolic computation. Additionally the nodes which have
been assigned a given time unit are removed from the tree at this time unit.

Chapter 2: Basic techniques for design of parallel algorithms page 20

The tree contraction method appears to be a very powerful technique. Thus several

researchers have tried to formalize a class of problems which can be solved using this

technique. He [He86b] defines the binary tree algebraic computation (BTAC) problem and

applies Miller and Reif s technique to obtain a parallel algorithm for this problem. Roughly

speaking, the B T A C problem is to compute the value of an algebraic expression given in

the form of a parse tree under the assumption that the algebra in which the computation is

performed has a finite carrier. A more abstract approach has been taken by Abrahamson,

Dadoun, Kirkpatrick and Przytycka [AbrDadKirPrz87] and Miller and Teng [MilTen87].

Our description again follows [AbrDadKirPrz87] but an influence of [MilTen87] should be

noted.

2 . 5 . 1 . A t r e e c o n t r a c t i o n a l g o r i t h m .

We w i l l assume that trees are presented as an (unordered) array of vertices each of

which has associated with it a parent pointer and a doubly-linked list of children. (Of

course, it is possible to efficiently convert to or emulate such a representation starting with

other more primitive representations.) (Successive) vertices on any list of children are said

to be (immediate) siblings.

Let T be any binary tree with vertex set V(T). A sequence of trees T\, T2,...

is said to be a tree contraction sequence of length A: for T if,

(i) T\=T \

(ii) V (7 i) c v d i J ;
(iii) I V(T k) I < 3 ; and
(iv) i f v e V(Ti.i) -V(Ti) then either

(a) v is a leaf of T\.\ , or
(b) v has exactly one child, x, in 7Vi, x e V(T{), and the parent of v

in T_\ is the parent of x in Tv

Chapter 2: Basic techniques for design of parallel algorithms page 21

Figure 2.2. Prune and Bypass operations

It is clear from the definition that successive trees in a tree contraction sequence are

formed by "independent" executions of the following two fundamental operations (see

Figure 2.2): Prune(v) — leaf v is removed from the current tree; and Bypass(v) — non-

root node v with exactly one child x is removed from the current tree, and the parent w

of v becomes the new parent of x (with x replacing v as a child of w). By "independent"

we mean that if v is pruned or bypassed then its parent is not bypassed. In this way tree

modifications are ensured to be local and executable in parallel.

Chapter 2: Basic techniques for design of parallel algorithms page 22

Figure 2.3. Interpretation of Trees as Binary Trees

We say that a contraction sequence is a-compact if it has length at most odog n.

The tree contraction problem is to construct, for an arbitrary tree T, an a-compact

tree contraction sequence for T where a is some universal constant.

For our applications it is not necessary to construct the sequence explicitly; it suffices

to associate with each node v the index i of the highest indexed tree containing v in the

sequence, together with pointers to the parent and child (if any) of v in T{. Since the tree

contraction problem for a nonbinary tree T can be naturally reduced to a tree contraction

problem for a binary tree T' obtained from T by a binarization step (see Figure 2.3) we

Chapter 2: Basic techniques for design of parallel algorithms page 23

concentrate on binary trees only. We should also note that the operations RAKE and

COMPRESS used in the tree contraction algorithm of Miller and Reif [MilRei85] can be

implemented with the help of the Prune and Bypass operations.

The pair of operations Prune(v) followed by Bypass(parent(v)) (where v is any leaf)

form a conceptual unit in our algorithm. The algorithm proceeds in phases, each of which

consists of a batch of these basic contractions performed in parallel. The independence of

the underlying operations is guaranteed by a simple global schedule for leaf removal. Let

the leaves be numbered in left to right order. A leaf is removed in phase t if the rightmost 1

in its leaf index is in position t.

Our binary tree contraction algorithm has the following simple description:

procedure contract (7)

(* Assign leaf indices from 0 to rt - 1 *)

for each leaf v in parallel
index(v) <— left_to_right leaf index of v

(* Contraction iterations. *)

repeat Tlog nl times
for each leaf v in parallel

w <— parent (v)

if index(v) is odd and w * root
then if v is a left child

then prune (v)
bypass(w)

if v is a right child
then prune (v)

bypass (w)

else index(v) <— index (v)/2

Note that the innermost if statements, though they have opposite conditions, are

intended to be executed in sequence, with appropriate synchronization in between. Thus,

Chapter 2: Basic techniques for design of parallel algorithms page 24

each iteration of the repeat loop has four slots in which prune or bypass operations may

be executed. Accordingly, we associate four elements of the tree contraction sequence

with each iteration of the repeat loop, describing the tree after each of the four slots. It is

also helpful to view the behavior of the algorithm at two other levels. It is immediate from

the description that each prune operation is immediately followed by a bypass. Hence in

each successive pair of slots a number of composite prune-bypass operations are executed

in parallel. Each pair of these composite slots (making up an entire iteration of the repeat

loop) serves to eliminate all of the leaves with odd parity in the current tree together with

their parents. An example of a tree contraction sequence produced by procedure contract

is given on Figure 2.4.

Figure 2.4. A tree contraction sequence

L e m m a 2.2. Procedure contract constructs a 2-compact tree contraction sequence.

P r o o f : It suffices to demonstrate that the prunes and bypasses are performed

independently. Since prunes and bypasses are never executed simultaneously, it need only

be demonstrated that no vertex v and its parent w are ever bypassed simultaneously.

Suppose this is not the case. Without loss of generality, v is the right child of w. Since

they are bypassed simultaneously, they must both have leaves as left children. But since

o

6/2

Chapter 2: Basic techniques for design of parallel algorithms page 25

these leaves are adjacent in the left to right order and since the index array maintains each
leafs left-to-right rank in the current contraction iteration (except, possibly, for the left
child of the root), v and w must have indices of opposite parity, a contradiction. •

Theorem 2.3. Procedure contract provides an 0(log n)-time and 0(n / log n)-

processor EREW PRAM deterministic reduction of tree contraction to list ranking.

Proof: We can compute the left-to-right numbering of the leaves of the tree in 0(log n)

time with n/log n processors using the Euler tour technique (Example 2.1). Thus it suffices
to prove that the iterated contraction step of procedure contract can be implemented in
0(log n) time using 0(rc/log n) processors. An 0(log n) time, 0(n) processor
implementation is immediate; if one processor is devoted to each leaf then each phase can
be carried out in 0(1) time. To reduce the number of processors to rc/log n we apply
Brent's principle as in the prefix sum computation scheme (Section 2.2) •

It follows from Theorem 2.3 that the results for list ranking carry over directly to tree
contraction. We summarize the most important consequence in the following:

Corollary 2.4. The tree contraction problem can be solved deterministically in 0(log n)

time using 0(« / log n) processors on a EREW PRAM.

2.5.2. Bottom-up Algebraic Tree Computations

A tree contraction algorithm gives a method for solving a large class of parallel tree
computation problems. This class includes, for example, dynamic expression evaluation
([MilRei85], [GibRyt86]). He [He86a] and Gibbons and Rytter [GibRyt86] noted that any
algebraic expression with operands from an algebra with carrier of fixed finite size can be
computed in the cost of tree contraction. This result provides efficient parallel algorithms
for several optimization problems, for example minimum covering set, maximum

Chapter 2: Basic techniques for design of parallel algorithms page 26

independent set and maximum matching, when the underlying graph is a tree [He86] or has

a tree representation [AbrDadKirPrz88], [RytSzy89].

In fact, we can relax the assumption that the carrier of the algebra is of fixed finite

size and put some restrictions on the operations only. We can generalize He's binary tree

algebraic computation problem in the following way: Let JS) be a set and JFe [f \f:

JS) x JS) -> JS)} a set of two-variable functions over JS). The objective of bottom-up

algebraic tree computations is to take any ordered regular binary tree T whose leaves are

labelled by elements of JS) and whose internal nodes are labelled by elements of CF and to

evaluate the algebraic expression associated with T (where functions at internal nodes

denote operators and elements labelling leaves are operands).

It is natural (and helpful) to generalize the above notion to include a set of functions

9e {g I g : JS)—> JS)}, including the identity function, which serve as edge labels and

influence the computation in the obvious way. The triple (JS), defines a bottom-up

algebraic tree computation (B-ATC) problem.

An indexed set CF of functions is called (T, P) - universal if there exists a universal

algorithm to compute the value of any function from ^ in any point of its domain in time

T using IP processors.

We can formalize a class of problems which can be solved using the tree contraction

method the help of the following algorithmic scheme :

J 3 _ C i t r G =<<©,9,cr>

where:

JS) - a domain

9<= {gig: JS) -> JS) };

y c {f|f: JS) xJS) -> JB };

Chapter 2: Basic techniques for design of parallel algorithms page 27

Ax: (decomposability axioms)
(i) 9 and CF are (T, P) - universal for some T and IP;

(ii) for all gi, gj, e 9» /m G & and ae JS) the functions gs and g t given by

gs(x) = gi(/ m(gj(x), a)) and gt(x) = gi(fm(a, gj(x)))

both belong to 9 and their indices s and t can be computed from i, j, m and a by an

algorithm which runs in T time using P processors

IP: Input: A binary tree T with internal nodes labelled with functions ̂ from and edges

labelled with functions from 9 and leaves labelled with elements from JS) .

Output: The value of the expression defined by the parse tree T.
Scheme: Run the procedure contract(T) labelling the new tree edges as follows: Let e

be an edge whose one endpoint is a leaf labelled a and the other endpoint is
internal node v. Let gj be the label of the edge leading from v to its nonleaf son
and & be the label of the edge leading from v to its parent. The edge introduced
by an application of Prune to the a leaf labelled a and Bypass to its parent v is
given the label gs(x) = gi(fm(gj(x),a)) or gt(x) = gi(fm(a, gj(x))) depending
on whether a is the left or the right child of v.

The idea of the algorithm is perhaps most easily understood by referring to the

transformations of Figure 2.5.

A B-ATC problem which satisfies the decomposability axioms (i) and (ii) defined

above is called decomposable.

Theorem 2.5. For any interpretation of the "03 Cl <TC scheme and for any input tree the

associated algebraic expression can be evaluated in time 0(T log ri) using P «/log n

processors.

Proof: This follows immediately from the tree contraction algorithm and the

decomposability axioms.

Chapter 2: Basic techniques for design of parallel algorithms page 28

Figure 2.5. New labelling of edges after Prune and Bypass operations

Remark 2.6: We should note that we can easily modify the computation scheme in such

a way that we will also compute all the functions in internal nodes. In order to do so each

bypassed node maintains a pointer to the lower level endpoint of the bypassing edge (i.e.

the node whose computation has to be finished in order to finish the computation of the

given node). For example, in Figure 2.5 the bypassed node labelled/m retains a pointer to

the leaf labelled a and the root of the subtree Y. After finishing the computation of the

function in the root we add a new phase to the algorithm. In this phase we allow all the

internal nodes to finish computing the values of the function assigned to these nodes. Note

Chapter 2: Basic techniques for design of parallel algorithms page 29

that for every internal node v removed at some iteration of the procedure contract one of

its children remains in the tree. Furthermore to finish the computation at v it suffices to

know the value of this child. In the last tree of the tree contraction sequence the values at all

nodes are computed. Thus we can complete the computation at the remaining vertices by

processing them in the reverse of their order of elimination in the contraction sequence.

We refer to the TF5 Cl <TG computation scheme modified as in Remark 2.6 as the full

B _ d . c T G computation scheme.

Note that any algebra with a finite carrier has an associated instance of

tT3_Cl <T"G (with T and IP being constants). It is also easy to see that general {+, -, *, /}

arithmetic computations can be described as an instance of the H5_Ci cTT3. In the example

given below we present an interpretation of the U3_Cl «Ttj which we use in our optimal

algorithm to construct minimax trees (Chapter 5).

Example 2.7: Let T be a tree of n leaves such that every internal node u is labelled with

an integer number Xu. Consider the following bottom-up assignment of values to the tree

nodes:

To compute this labelling one can use the following interpretation of the B_Cl <T £5

scheme:

Define the following indexed families of functions (M denotes the set of natural

numbers):

1 if u is a leaf
value(u) -

rvalueOi!) +value(u2) ~|
I _ | if u has children uj and

Chapter 2: Basic techniques for design of parallel algorithms page 30

3-={f m:N x N->N lm>0; f m(x,y) = l ~ ^ l } •

Associate with each edge of T the identity function gQi and with each internal node
u the function f^. We show that <N,9,3r> is an interpretation of the H3_Cl <Tt!.

It is obvious that the value of any function from the family 9 or ̂ can be computed

in a constant time from its argument(s). Thus to prove that <N,9,3 r> defines an instance

of the U3_Cj eft! it suffices to prove that for any i,j,k,l,m the following holds:

(i) gij(fm(gk,i(x),a)) = gq;P(x) for some q and p and q,p can be computed in 0(1) time from

i,j,k,l,m; and

(ii) gij(f m(a,gj f)i(x))) = g q > p(x) for some q and p and q,p can be computed in O(l) time

from i,j,k,l,m;

We need the following fact:

Fact: For any real number z and integer n (n>0)

Proof: If LzJ = z then the equality is obvious. So assume LzJ < z. Note that |_zj = nk+m

for some k,m >0 and m<n. So z = LzJ + e = nk+m + e for some 0 < e <1 and [z] -

nk+m+1.

Thus n n n 1

On the other hand 1 - 1 = | n k + m + e] = | n 1 n 1 1

, m+el
k+ = k+1.

n

Since f m is symmetric it suffices to prove only (i). But by the fact above we have:

gi,j(fm(gk,l(x). a)) =

§k+la+mla,lmj(x)-

m + I rx+(k+la+mli)~|
- 1 mlj 1

Chapter 2: Basic techniques for design of parallel algorithms page 31

Thus to compute value(u) for every node u we assign the element 1 to each leaf and

apply the above interpretation of the full U3_Cl ETG scheme. As a consequence the problem

of Example 2.7 can be evaluated in time 0(log n) using «/log n processors.

2.5.2. Top-down Algebraic Tree Computations

The tf3_Ci <Ttj provides a useful abstraction of many bottom-up tree-based

computations. In a number of applications it is necessary to consider top-down (or perhaps

a combination of bottom-up and top-down) computations based on trees. For this purpose

we introduce <T_Cl <Ttj - the Top-Down Algebraic Tree Computation scheme. Formally:

£r_eisrt! =<<© ,y>

where:

JS) - a domain

? c {f i f ; JS) -> JS) };

Ax: (i) y is (T ,P) - universal for some P and T ;

(ii) y is closed under composition and for each h\, hj e ^ the index of hi 0 fy can be

computed from i and j by an 0(T)-time P-processor universal algorithm.

P: Input: A binary tree T with edges labelled with functions from & and the root labelled

with an element, a, from JS) .

Output: For each internal node or leaf,v, evaluate the function fv(a) defined as follows:

f v(a)=g(fp a r e n,(v)(a)) where g is the function associated with the edge

(\,parent{\)).

Scheme: Run the tree contraction algorithm. Each edge e introduced by a bypass

operation can, as part of the tree contraction process, be labelled by the

composition of the functions associated with the nodes and edges on the path

(in T) joining the endpoints of e. The vertices of T are considered in the reverse

Chapter 2: Basic techniques for design of parallel algorithms page 32

order of their elimination in the tree contraction sequence. It is straightforward
to confirm that the values of vertices in tree Ti can be computed in time T
knowing the values of vertices in tree Tu.

Theorem 2.8: For any interpretation of <T_0. <TC and for any input tree the value

associated with each vertex can be computed in Tlog(rc) time with Pn/log n processors.

Proof: This follows immediately from the tree contraction algorithm and axioms (i)-(ii).

2.6. Cascading sampling

This section is devoted to a technique which was developed to support parallel

algorithms based on a sequence of merging steps.

The idea of using a "sampling" technique for a problem related to merging was first

explored by Cole [C 0 I 8 6] in connection with his optimal parallel merge sort algorithm.

Cole's idea has been generalized further by Atallah, Cole, and Goodrich [AtaColGoo87] to

a method called the cascading divide-and-conquer technique. Our technique differs from

Cole's technique but shares certain important similarities. Both techniques allow a speedup

of a computation which is naturally divided into log n levels. (For example, in a divide -

and-conquer algorithm the levels corresponds to the depths of recursive calls). Usually one

applies a sampling technique to allow pipelining ([C 0 I 8 6] , [Kos89]). In our approach, the

sampling elements are computed during a preprocessing step. They do not allow starting a

computation on a higher level prior to finishing the computation on lower levels, but they

make it possible to apply a more efficient algorithm on each of the levels.

Let f be a function which given a sorted sequence produces a sorted sequence of no

longer length and let # denote the merge of two sorted sequences. Consider the following

problem: given m sorted sequences d l v . . ,dm (m < log n) of total length at most n

Chapter 2: Basic techniques for design of parallel algorithms page 33

compute the following sequences f(d m) , f(d m . 1 #f(d m)) , f(dm_2#f(dm. 1#f(dm))),

The method of computing such a sequence of sequences would depend on the properties of

the function f. Our technique can be helpful when the nature of the function f is such that

sequences f(d m) , f(dm_i#f(dm)), f(dm_2# f(dm_i#f(dm))),... are most naturally computed

one after another using m consecutive steps. Several examples of such functions are given

below.

Example 2.9 :

b) f(x l 5 ,x r) = xj+O, x 2+x 1,....,x r+x r_ 1 ;

c) Let g: M x N x N -> (true, false). Define f as follows:

f(x2,....,xr) = Xi.,....,Xj where I=ii,....,i s is a subsequnce of the sequence l, . . . ,r

T o illustrate the cascading sampling technique in a possibly simple way we ignore

function f and show a method of computing sequences d m , dm_i#dm, dm_2#dm_ 1#dm, ...

one after another in m consecutive steps. One can solve the above problem by applying

Valiant's merging algorithm ([Val75], [BorHop85]) 0(log n) times interleaved with

computation of the values of the corresponding functions. This leads to an 0(log n loglog

«) - t ime tt-processor solution to the problem.

In our approach, to speedup the algorithm, we precede the sequence of mergings by

a preprocessing step. We say that sequence dj belongs to level i . The goal of the

preprocessing is to divide the merging problems into subproblems which can be solved

independently such that at least one of the sequences occurring in a subproblem is "short".

a)

such that j belongs to I if and only if g(j-l,j,j+l) is true.

Chapter 2: Basic techniques for design of parallel algorithms page 34

Since the time used by Valiant's algorithm is 0(loglog r), where r is the length of the

shorter list, this may speedup the computation significantly.

The preprocessing step consists of log*« sampling steps. Informally, in the s t h

sampling step, for every level i < n, every (2 s) t h element from this level is merged into the

level i+1. Then, among the elements which arrive at level i+1 every second element is

merged into level i+2 and so on until level i + [~log(s)rcl is reached1 or no elements are left.

Formally, let V sj be the sorted sequence of elements on level i after the s t h sampling step.

Initially V S J=VJ°=VJ. Let dist(V,y) denote the distance of the element y from the beginning

of the sequence V. For every sequence V k _ 1 j define a family of sorted sequences

Ssi,i>Ssi,2>— m m e following way:

S s j t = {xl Bye V s _ 1 j s.t. x=y and <i/.sT(Vs_1j,y)=2s+t-1m for some integer m};

Informally, S s j t is the sequence of elements which are originated at level i in the

sampling step s and which arrive on level i+t.

Then VSj is defined as Vs-1
j#(#S s

i j t)
a+t=j

t<| log(s)n I

Elements produced in the sampling process are called sampling elements. A l l other

elements are called real. To simplify the description we assume that we add sampling

elements at the beginning and at the end of every list. For each sampling element x in level

i there is a unique element y in level i-1 such that x = y (we say that x = sample(y)) . The

element y is called the source element for element x. A source element may also be a

sampling element. For any sampling element, x, define source(x) to be equal to the source

element of x. Sampling elements which have been generated in the same sampling step

form sequences using the pointer source. The element (real or generated in an earlier

1 logWn denotes i times composition of the log function

Chapter 2: Basic techniques for design of parallel algorithms page 35

sampling step) which is pointed at by the pointer source of the last element of such a

sequence is said to be the origin of the given sequence. Let u i , u 2 , be a pair of sampling

elements from the same level i such that there are no other sampling elements between

them. The subsequence of elements which lies between uj and u 2 is called a basic

sequence. If u^ and u 2 bound a basic sequence then the sequence of elements from the

level i-1 which lies between the source of u^ and the source of u 2 is called the gap

associated with this basic sequence. The number of elements in a gap is called the size of

the gap.

Remark 2.10: To merge two sequences on successive levels i-1 and i it suffices to merge

each basic sequence from level i with its corresponding gap on level i-1 (after application of

the function fj.j to all its elements). Thus if after the preprocessing step the size of a gap is

bounded by g(n) then the whole algorithm can be implemented in loglog g(n) time with n

processors.

Two important properties of the sampling process are given by the following lemmas.

L e m m a 2.11. After log*n sampling steps, each gap size is no more than 2 l o 8 * n + 2 .

Proof: In the proof of the lemma we use the following simple facts:

Fact 1: a) LxJ < L—J m+m; b) M < L—J m+m +1. m m

Consider an interval [a,b] on level j . Let us restrict our attention only to those

elements whose samples may belong to this interval. Thus we consider only elements v

from levels i=l,2,...,j-l such that if ve V j . t then ve [a,b]. We call these elements interval

elements. Let ns[be the number of interval elements on level i after s sampling steps (for

simplicity we assume the convention that for i less than 1, ns[is equal to zero). The proof

of the lemma is based on the following fact:

Fact 2: ns

{ < 2 s n s

i + 1 + 3riog(s)nl+2s+1.

Proof of Fact 2: We prove Fact 2 by induction on s. For s=l we have:

Chapter 2: Basic techniques for design of parallel algorithms

n \ < r̂ o

i.ii+....+r̂ -̂ oi_riog n 1] a n d

î+l * "°i+l+ L^0iJ+""+Lgi^f °i-Tlog
so n \ - 2 \ + 1 < (« P r 2 T^O.]) + (T ^ O . J . ^ O . ^ J) + ...+ r-J-^0._ r i o g ^

< (2+l)riog «1+ r ^ j ^ j « 0 i - r i o g all (by Fact lb)

<3riog /xi+i.

Assume now that ns-^ < 2 s " 1 « s - 1

i + 1 + 3flog(s-1)n]+2s. But

" $ i S "S"''+ rjys-1i-l>..^r2Str|o^u.. îf,og(s)„ll and

Therefore

< (̂ s-l.̂ l̂ s-l.j) + (T^s-li_11.2sL-lTns-li_1j)+...

< 2s+l + (Tlns-lj.iX^Vij + - 2 ^ - 1 . l J) H

•••"UlogCsUl"8"11-̂ 11

Therefore

n s j -2 s / i s j

< 2S+1 +

2 + 1 - (2 S - 2) ^ (^ S - l i - r ' ^ I J +

< 2S + 3TlogW»l -2 + r - i 7 ; ± ^ s . V l o g (s) | i l l .

^ V r i o k i i " 5 " ' ^ ' 0 8 ' ^ 1 - 1 -

But by the inductive hypothesis we have:

^ - • i J l 0 ^ i a " S - ' ' - r ' ° ^ 1

2 5 ' O g (S - ') " 1 - 2 S .

Chapter 2: Basic techniques for design of parallel algorithms page 37

> 2 S - l I 1 ^S-1i-riog(s)nl-3riog(s-1)nl-2s

2 s+riog(s)«Tl 2S-1 J

^ ^-^.rio^^^-SflogCs-Dnl^s _ 2 s _ x (b y F a c t 1 (a))

L 2s+riog(s)n"Ll J

- ^ ^ l o g C s U l ' 1 ^tosW-T 1

 2 S + r i o g (s) n l . i 1

Therefore

« i s - 2 S / z i + 1 s < 2«+ 3riog(s>«l -2 + [3 ^ ° g (s 1 } ^ + 2 S] + 2s-l + 2 < 2*+ 3riog(s)«l +1+ 2*-* <
2S+I 10g(S)rt r l

3riog(s>«l + 2 S + 1 . •

N o w we can continue the proof o f the L e m m a 2.11. L e t a,b be the real numbers wh ich

bound weights o f elements in a gap, say on level j . Cons ider the last sampling step. In this

step level j receives only elements from level j-1. After the last sampling step in any gap on

level j there are at most 2 l o S* r t elements f r o m level j . B y Fac t 2, level j-1 has at most

2 2 1 ° g * " + 3riog (1 °g*'0rcl+2 l o g*' I + 1 <2 2 1 o g*' ' + 1 interval elements. E v e r y 2 l o g * » o f them are

sent to level j . T h u s in a gap on level j there are at most 2 l o g * n + 1 elements originated at

level j-1 and 2 l o g * n elements f r o m level j . T h i s proves that the number o f elements in the

gap is bounded by 2 l og*"+ 2. •

L e m m a 2 . 1 2 : Af ter the sampl ing process the total number o f elements is bounded by

3 « .

Proof: L e t a s be the number o f elements after s m sampling step. Obvious ly :

ag = n and

a s ^ a s . ! + ^ - = a s . i (l + ^)

B u t it is easy to check (by induction) that a s < 3n(l - -\-).

N o w we show how to implement the sampling process in 0(l o g * « log n) time with n

processors.

Chapter 2: Basic techniques for design of parallel algorithms page 38

I M P L E M E N T A T I O N O F T H E S A M P L I N G P R O C E S S : Since, by L e m m a 2.12, in any

sampling step we have at most 3n elements we have one processor per constant number of

elements. H o w e v e r , we must per form some computat ion w h i c h assigns elements to

processors. Initially we have one processor per real element. Inductively assume that

processors l , . . . , j have been assigned r elements and processors j + l , . . . , « have been

assigned r-1 elements. In the s t n sampl ing step the processor associated with a g iven

element checks whether this element is the origin of a sequence of sampling elements and i f

so, how long this sequence is. (Note that in the s t h sampl ing step the / t h element in a

sequence is the origin o f a chain o f length max{i I / =0 m o d 2 s + i _ 1}) . Since the length o f a

sampling sequence is bounded by log n the generation o f such a sequence can be done in

0 (log ri) time using one processor per sequence.

T o assign processors to new sampling elements we number these elements in such a

way that i f v and u are two sampling elements and the origin o f v is at a level higher than

the or ig in o f u, or origins o f v and u are at the same level but the origin o f v precedes the

origin o f u, then v receives a smaller number than u. Note that every "old" element (i.e. an

element wh ich is not introduced as a sampling element in the given sampling step) knows

the n u m b e r o f new sampl ing elements it has orig inated. S o us ing the pref ix sum

computation we can compute for every "old" element the number of new sampling elements

preceding it. Since, for every new sampling element y, its posit ion in the sequence o f new

sampling elements originated by the same element, say x, is k n o w n in order to obtain the

number o f y , it suffices to add this posit ion number to the number o f new sampl ing

elements preceding x. After numbering all new sampling elements the element numbered m

is assigned to the processor numbered (j+m)mod n. T h i s solves the prob lem o f processor

allocation.

It remains to insert new sampl ing elements into their proper posit ions in the

sequences produced in the previous sampling step. T h i s can be done by a g lobal sorting

Chapter 2: Basic techniques for design of parallel algorithms page 39

algorithm. Note that it is important that the sorting procedure which we are using is stable

(i.e. it preserves the order of equal elements). If it is not, we can number all elements (in a

way similar to the way we numbered all new sampling elements) and sort pairs (number of

the element, its value) lexicographically. Since the number of sampling steps is 0(log*n),

the whole sampling process can be implemented in 0(log*n log n) time with n processors.

In the description of the cascading sampling method we assumed that f is the identity

function. Now we can discuss properties of f which are needed to apply the technique. The

basic property which we need is, what we call, the distribution by sampling, and can be

described as follows (compare Figure 2.6).

(f (X l , x r) # y i „ . . y s) = ^ , (x 1 . . .x^y 1 . .y i , 1 l ly i | | f y i (^ + 1 . . . x#%+1..yj)

C ^ •••• *)

(f(x l t x r))

*2
sample (yj

Figure 2.6. Distribution by sampling

Let xi,....,xr and yi,....,y s be two sorted sequences and let II denotes the

concatenation of sequences. Function f converting a sorted sequence into a sorted sequence

is said to be distributive by sampling if for any yj we can compute value sample(y[) and

function fy. whose complexities are bounded by the complexity of f and such that for any yj

if xi,....,xt < sample(yi) < x t + 1 ,....,xr then

Chapter 2: Basic techniques for design of parallel algorithms page 40

f y .(x 1 , ,x t)#y 1 , ,y i . 1 II yj II f y i (x t + 1 , ,x r)#y i + 1 , . . . ,y s = f(x l 5....,x r) #

y l 5 , y s .

For the function given in Example 2.9a sampleiy) is simply y/2. Function fy. is a

modification of the function f and insures a special care of the boundary elements x t and

x t + l so that if t is odd then the resulting sequence f y i(xi,....,x t)#yi,....,yj_i II yj II

f y i (x t + i , , x r) # y j + Y s contains elements x t +x t + 1 , x t +2+x t +3, ... rather than 2xr,

xr+i + xr+2' x r+3 + x r+4»— (which would occur when we simply apply f to subsequnces

x l v . . . ,x t and x t + 1,....,x r). A more detailed description of the application of the cascading

sampling technique to a problem very similar to the one presented in Example 2.9 a is

given in Chapter 4 (section 4.4.2).

2.7. Parallel divide and conquer and the All Dominating
Neighbors problem

In the divide-and-conquer technique a problem is divided into independent

subproblems which are solved recursively. The solution to the problem is obtained from

the solutions to its subproblems. In parallel implementations of this technique, we solve the

subproblems in parallel. There are two aspects in which this technique is related to tree

constructions. First, it can be used for constructing certain types of trees (for example the

visibility tree discussed later in this chapter). Second, this technique can be naturally

visualized with the help of a tree. Namely, we can represent the recursive partition of the

problem with the help of a tree T such that every internal node of T corresponds to one

subproblem, and its children correspond to the partition of the subproblem associated with

the given node into further subproblems. To solve a problem one has to compute solutions

to all subproblems in a bottom up fashion. This computation can be implemented by

performing h iterations (where h is the height of the tree) such that at the i * iteration we

Chapter 2: Basic techniques for design of parallel algorithms page 41

compute the solutions to the problems defined by the internal nodes which are on level h-

i+1 of the tree T. In particular, if T has height |~log nl then such an implementation

requires Q(log n) time and Q(«) processors (and therefore Q(nlog n) total work), even if

the problem admits a linear time sequential algorithm. The usual way of dealing with this

problem is to reduce the number of processors using Brent's scheduling principle, or to

apply a sequential algorithm for the subproblems of logarithmic size (i.e. subproblems

associated with internal nodes from level Tloglog n\) and a parallel algorithm for all other

subproblems. A natural generalization of the latter approach is to divide the computation

into a finite number of phases such that at each phase we compute, using different

algorithms, solutions to the problems associated with internal nodes from a certain range of

levels. In this chapter we present such a 3-phase algorithm which leads to an optimal

solution for the following problem: given a sequence of real numbers find, for every

element x in the sequence, the dominating neighbors of x, that is, the closest predecessor

and successor of x which are at least as large as x. We refer to this problem as to the All

Dominating Ufiighbors (ADN) problem. This problem is a natural generalization of list

merging (simply concatenate one list in descending order and the other in ascending order

and solve the problem for the merged list), and appears to have a number of interesting

applications. The A D N problem has a natural geometric interpretation which we describe in

the next section. An optimal algorithm for the A D N problem leads to simple optimal

algorithms for the following problems: triangulation of monotone polygons [BrSchVis88],

all closest neighbors problem for a convex polygon [SchVis88], triangulation of a sorted

point set, and computing horizontal neighbors for vertices of a (horizontally) monotone

polygon. The solution to the A D N problem is also used as an important building block of

our optimal algorithm to construct minimax trees which we present in Chapter 5.

Merks [Mer86] considered a problem which can be easily translated to the A D N

problem as a part of his algorithm for point set triangulation. Merks' algorithm runs in

Chapter 2: Basic techniques for design of parallel algorithms page 42

0(log n) time using n processors on a CREW PRAM. Subsequently, an optimal 0(log n)-

time fl/log rt-processor CREW P R A M algorithm (as well as an 0(loglog n) time rc/loglog n-

processors C R C W P R A M algorithm) for the A D N problem was proposed by Berkman,

Breslauer, Galil, Schieber, and Vishkin [BeBrGalSchVis89]. We present here a different

CREW P R A M algorithm which achieves the same complexity bounds. This algorithm

illustrates the 3-phase divide-and-conquer strategy and is needed for completeness of the

results in Chapter 5. Both the algorithm of Berkman et. al. and our algorithm reduce the

problem to merging certain pairs of sorted sequences. We introduce a data structure called

the visibility tree, which is exploited by our algorithm. A slight modification of our

algorithm (including a slight modification of the visibility tree) leads to a simple optimal

algorithm for computing horizontal visibility in a horizontally monotone polygon.

2.7.1. The A D N problem and the visibility tree

Assume that we are given a set of points S in the plane such that no two points have

the same x-coordinate. For a point (x,y)e S we define its left (resp., right) closest greater

element as the element (x',y') e S such that y' > y, x' < x (resp., x' > x) and the

distance lx-x'l is minimized (if such an element exist). Since the problem is at least as

difficult as sorting the point set on their x-coordinates, we assume that elements of V are

sorted by x-coordinate. Only the order of the elements is of importance (not the exact

values of their x-coordinates) and therefore sorting reduces our initial problem to the

following: Given a sequence yi, . . . ,y„ of reals, find for every element yjin the sequence,

the dominating neighbors, that is, the closest predecessor and successor of yj greater than

or equal to yv We refer to this problem as to the All Dominating Neighbors (ADN)

problem.

Chapter 2: Basic techniques for design of parallel algorithms page 43

Consider a graph theoretical chain (i.e. a connected graph all but two of whose

vertices have degree two and the two remaining vertices have degree one). A planar

embedding of such a chain is called a polygonal line. A polygonal line, C, is said to be

monotone with respect to a straight line / if every line orthogonal to / intersects C in at

most one point. If / is a horizontal line then C is said to be horizontally monotone. Assume

that C is horizontally monotone (in particular, no two vertices have the same x-coordinate).

There is a natural ordering of vertices of C, namely the ordering corresponding to the

increasing order of x-coordinate. For any vertex v of a polygonal line C its horizontal

neighbors are the points on the intersection of C with the horizontal line through v which

are closest to v on both sides. It is easy to see that if C is a horizontally monotone

polygonal line then the problem of finding horizontal neighbors can be reduced to two

instances of the A D N problem.

We now introduce basic notions whose properties are used by our parallel algorithm

for the A D N problem.

a) a right visibility sequence (bold) b) a left visibility sequence (bold)

Figure 2.7. Visibility sequences

Let V = v o , v 1 , . . . , v „ , v n + i where vi,... ,v n is a sequence of reals and vo=v n + 1 = co .

For each i , l < i < « define dp(i) = max{j<il Vj> v,}(dominating predecessor) and

^(i)=min{j>il Vj> Vj} (dominating successor). A maximal subsequence Vj l v . . ,Vj r of a

sequence Vi, . . . ,v i + k such that ij=i and ij+i = ds(ip (resp., ij_i = dp(ij)) is called the right

(resp., the left) visibility sequence for the sequence Vi, . . . ,v i + k (see Figure 2.7). Note that

Chapter 2: Basic techniques for design of parallel algorithms page 44

a right visibility sequence is a nondecreasing sequence and a left visibility sequence is a

nonincreasing sequence.

As an immediate consequence of the above definition we obtain:

Lemma 2.13. Let Si=Vi,...,Vi+k and S2 = V j + k + i , . . . , V i + k + / . Let U^ui1,...,".,-1 be the

right (resp., the left) visibility sequence for the sequence Si, and U2=ui2,...,ut

2 be the

right (resp. the left) visibility sequence for the sequence S2- Then the sequence

u^ 1,...^, 1,^ 2,...^ 2 (resp., ui^.L.Uj^ui 2,...^ 2), where Uj 2 (resp., Uj 1) is the first

element of U2 (resp., the last element of Û) which is greater than or equal to Uj.1 (resp.,

u i 2) is the right (resp., the left) visibility sequence for the sequence

Vj , . . . v i + k , v i + k + 1 , . . . v i + k + / .

As we have mentioned before, the ADN problem is a natural generalization of list

merging. An optimal log n-time n/log n processor parallel algorithm for list merging was

presented by Shiloach and Vishkin [ShiVis81], Like list merging, the ADN problem has a

simple linear sequential solution. Consider, for example, the function ds. We process the

elements of the sequence one after another. At stage i of the algorithm the elements which

do not yet have the value ds computed and whose index is less than / are stored on a stack.

The elements stored on the stack form a decreasing sequence. Initially the stack contains

element vi. At stage i we process element vj. Note that i is equal to dsQ) for all elements Vj
on the stack which are less than or equal to Vj. We remove these elements from the stack

and put vj on the stack. Note that the elements stored on the stack at this stage of the

algorithm form the left visibility sequence for the sequence Vi=vi,...,Vi_i.

In our parallel algorithm visibility sequences are used in a different way. We divide

the input sequence into two subsequences of approximately equal size, then each of them

into two subsequences and so on. This recursive partition is represented by an almost

balanced binary tree T such that elements of V are in the leaves of T and a node u of T is

Chapter 2: Basic techniques for design of parallel algorithms page 45

associated with the subsequence of V spanned by the leaves of the subtree of T rooted at u.

Let Si=Vj,...,Vj+]c be the sequence spanned by the leaves of the left child of u and s2 =
vi+k+l'--'vi+k+/' b e m e sequence spanned by the leaves of the right child of u. Let

Ui=uĵUj.1 be the left visibility sequence for the sequence sj, and U2=ui2,...,ut

2 be the

right visibility sequence for the sequence s2. Assume that û l<u^ (the case when u^>u^

is symmetric). Then the sequence ui2,...,Uj_i2 where Uj 2 is the first element of U 2 which

is greater than or equal to uj 2 is called the right hidden sequence associated with node u

and the sequence u2

1,...,ur

1 is called the left hidden sequence associated with node u (see

Figure 2.8). Tree T together with the visibility sequences and hidden sequences associated

with every internal node is called the visibility tree.

2

a left hidden sequence a right hidden sequence

Figure 2.8. Hidden sequences (bold)

2.7.2. A n optimal algorithm for the A D N problem

Assume that we are given an input sequence V and its visibility tree. (We associate a

visibility/hidden sequence with a node by giving pointers to the first and the last elements

of the list). Note that every input element (except for the end elements) belongs to exactly

one hidden sequence. Thus it suffices to compute dp(x) and ds(x) for all elements vx from

a hidden sequence. In the following description we assume that vx belongs to the left

hidden sequence associated with an internal node u (the case when v x belongs to the right

hidden sequence is symmetric). In order to compute dp(x) it suffices to find the first

Chapter 2: Basic techniques for design of parallel algorithms page 46

element in the left visibility sequence associated with the left child of u which is greater than

or equal to v x. The value ds(x) is equal to the index of the first element of the right visibility

sequence associated with the right child of u which is greater than v x . This element either

belongs to the right hidden sequence associated with v or is equal to U j 2 (recall Figure 2.8).

It can be decided in constant time which of the two cases holds. The only case which

involves more than constant time per element is finding ds(x) in the case when it is one of

the elements of the right hidden sequence associated with u (recall our assumption that v x

belongs to a left hidden sequence). We find ds(x) for all elements to which this case applies

with the help of a merging algorithm. We merge the right hidden sequence with the

corresponding left hidden sequence in such a way that in the case of equality the elements

from the right sequence follow the elements from the left sequence. Then for every element

from the left sequence we search for the closest element from the right sequence following

it. This reduces our problem to the problem of merging at most n pairs of sequences such

that each pair is associated with one internal node of the visibility tree. The total number of

elements in all such sequences is bounded by n. These merging problems can be batched

into one merging problem of size n. To do this we number the internal nodes of the

visibility tree, say in the postfix order (using for example the Euler tour technique described

in section 2.4), and associate with each element in a right or left hidden sequence the

sequential number equal to the number of the internal node with which the given sequence

is associated. Then we concatenate left and right sequences separately in the order of the

sequential numbers of their elements. This gives us two sequences each lexicographically

sorted according to the triple (sequential number, value of the element, side) where

side=left for elements from a left hidden sequence and side=right for the elements from a

right hidden sequence. We define left<right and simply merge the sequence in 0(log n)

time using rc/log n processors ([ShiVis81]). The third element of a triple ensures that in the

case of equality the elements from a right sequence follow the elements from the

corresponding left sequence.

Chapter 2: Basic techniques for design of parallel algorithms page 47

It remains to show how to construct the visibility tree in 0(log n) time using n/log n

processors. We construct the tree in bottom up fashion using Lemma 2.13. Let u be an

internal node and let U i , U2, and U j 2 be defined as in the previous section (recall Figure

2.8.). Assume again that u i 1 < u t

2 (the case u^1 > u t

2 is symmetric). Then:

- the right visibility sequence associated with u is the concatenation of the right visibility

sequence of the left child of u and the sequence U j 2 , . . . , u t

2 ;

- the left visibility sequence associated with u is equal to the left visibility sequence of its

right child;

- the left hidden sequence associated with u is U2 1 , . . . ,u r

1 ;

- the right hidden sequence associated with u is u i 2 , . . . , ^ . ! 2 ;

Thus the computation of the visibility and the hidden sequences for an internal node

reduces to finding the vertex U j 2 . We assume in the description that > u t

2 ; the case u\l

< u t

2 is symmetric. The algorithm is divided into three phases (the levels of tree nodes are

numbered in the leaves-to-root order):

PHASE 1: Computing sequences associated with internal nodes on levels 0 to floglog n\

Each of the rc/log n processors computes the sequences associated with internal nodes of

one subtree rooted at an internal node from level Tloglog n~] using a sequential linear

algorithm.

During the remaining phases the visibility sequences are represented as follows:

(i) Each sequence is subdivided into subsequences of size at most log n and each of them

is represented by an array,

(ii) Each subsequence is assigned to one processor and each processor is assigned to a

constant number of subsequences.

(iii) The processor assigned to a subsequence keeps the length of the subsequence, the

address of the first element, and a pointer to the first (for the left visibility sequence) or

Chapter 2: Basic techniques for design of parallel algorithms page 48

the last (for the right visibility sequence) subsequence of the sequence in its local

memory.

This representation can be computed during the first phase of the algorithm and then

preserved through the rest of the algorithm in the following way: Assume that we compute

a right visibility sequence for an internal node and assume that the element Uj 2 has been

computed. Let b be the subsequence containing Uj 2. Then the new sequence contains all

subsequences of the right visibility sequence of the left child, the part of the subsequence b

containing all elements greater than or equal to Uj 2, and all subsequences of the right

visibility sequence which follow b. We assign the processor previously associated with b

to the part of the sequence b which is in the new visibility sequence. The rest of the

processors are associated with the same subsequences as before. The information described

in point (iii) can be updated for each subsequence in constant time.

PHASE 2: Computing sequences for internal nodes on levels floglog nl+1 to 2floglog n\.

We process the nodes on these levels in a bottom-up fashion. For every internal node v

every processor associated with a subsequence of the right visibility sequence associated

with the left child of u tests if u^1 lies between the first and the last element of the

subsequence to which it is assigned. If so it applies a binary search algorithm to compute

Uj 2. So the total amount of time spent in the second phase is 0((loglog ri)2).

PHASE 3: Computing sequences internal nodes on levels 2Tloglog nl+1 to flog wl.

We assign Llog n\ processors to each internal node on level 2Tloglog nl+1 and define these

processors as special processors associated with the given internal node. The special

processors for an internal node on a level greater than 2Tloglog nl+l are defined as the

special processors of its right child. We perform Tlog nl-2Tloglog n\ parallel steps. As in

the second phase, for every internal node u from the currently processed level, every

processor associated with a subsequence of the right visibility sequence associated with the

Chapter 2: Basic techniques for design of parallel algorithms page 49

left child of v tests whether uj 1 lies between the first and the last element of the

subsequence it is assigned to. If so we assign the special processors assigned to u to the

elements of this subsequence and find Uj 2 in one step taking constant time. Thus this phase

of the algorithm can be implemented in 0(log n) time with n/log n processors.

This gives a divide-and-conquer algorithm which provides an alternative proof of the

following theorem:

Theorem 2.14. [BeBrGalSchVis89]: The ADN problem can be solved in 0(log n) time

using n/log n processors on a CREW PRAM.

2.7.3. Applications

As we mentioned at the beginning of this chapter, an optimal algorithm for the ADN

problem has a number of interesting applications. We present here two such applications.

First we present a reduction of the All Stricdy Dominating Neighbors (ASDN) problem to

the ADN problem. The solution to the ASDN is also used in our optimal algorithm to

construct minimax trees presented in the next chapter. Then we present an optimal

algorithm to compute horizontal visibility in a horizontally monotone polygon. Our

algorithm uses a modified version of the visibility tree.

2.7.3.1. The All Strictly Dominating Neighbors (ASDN) problem

We present a simple optimal algorithm which computes, for every element in an input

sequence, the strictly dominating neighbors, that is, the closest predecessor and successor

which are strictly greater than the given element (if such an elements exists). We refer to

this problem as the All Strictly Dominating Neighbors (ASDN) problem. We show a

simple solution to the ASDN problem which is based on the solution of the ADN problem.

Consider, for example, the problem of computing for every element Vj of the input

Chapter 2: Basic techniques for design of parallel algorithms page 50

sequence its strictly dominating successor (sds(i)). Let T be the forest formed by elements

of the input sequence and pointers ds. For all elements Vj such that vi<v,jS(i) we set

sds(i)=ds(i) and remove from T edges (i,ds(i)). This splits T into a number of lists of equal

elements and with equal values of sds. The last element of each such list has its sds already

computed. So the values of sds for the remaining elements can be found by an application

of a list ranking algorithm ([AndMil88],[ColVis86]).

2.7.3.2. Computing horizontal neighbors for vertices of a monotone polygon

A simple modification of the A D N algorithm presented in section 2.7.2 leads to an

optimal algorithm for computing horizontal visibility (i.e. determining the horizontal

neighbors of every point of a polygon) in a horizontally monotone polygon.

Let P be a monotone polygon. Assume, without loss of generality, that it is

decomposed into the upper polygonal line and the lower polygonal line, i.e. two polygonal

lines monotone with respect to a horizontal line. Let Y= yi, . . . ,y„ be the sequence of y-

coordinates of vertices of P listed in the order of increasing x-coordinate. (Note that given

the two polygonal lines which comprise P one can compute Y in 0(log n) time with rc/log n

processors by a merging algorithm).

In order to find for any vertex v its horizontal neighbors it suffices to find the edges

of the polygon which contain those neighbors. Our algorithm to find horizontal neighbors

is based on the same idea as the algorithm to solve the A D N problem described in section

2.7.2. We also build a visibility tree (with leaves labelled by elements of Y) and find

horizontal neighbors by merging hidden sequences. However the visibility information

stored in the internal nodes of the visibility tree is more complex. This only leads to

difficulties of a technical nature which, as one will easily observe, can be solved by

considering a number of simple cases.

Chapter 2: Basic techniques for design of parallel algorithms page 51

Let S be a set of edges. A point p from an edge e of S is called left (resp., right)

horizontally visible in S if there exists a horizontal line through p such that e is the first

(resp., the last) edge cut by this line. An edge which contains a point which is left (resp.,

right) horizontally visible in S is said to be a left (resp., right) horizontally visible edge.

Let T be an almost balanced binary tree with leaves labelled in left to right order by

elements of Y and let v be an internal node of T. Let E v be the set of edges with at least one

endpoint belonging to the set of vertices spanned by the leaves of the subtree of T rooted at

v. We associate with each such node v, its left and right visibility information which

consists of two, possible empty, parts :

(i) the subset of edges from E v which belong to the upper polygonal line and are

horizontally visible in E v ;

(ii) the subset of edges from E v which belong to the lower polygonal line and are

horizontally visible in E v .

It is not difficult to see that the computation of the visibility information of an internal

node from the visibility information of its children can be carried out using the same

method as used for the A D N problem, with an additional constant factor in the time

complexity.

In a natural way we associate with each internal node at most three pairs of hidden

sequences. (The three general cases are presented in Figure 2.9.) Hidden sequences can be

computed using a method similar to the method described in section 2.7.2 for the A D N

problem with only additional constant factor in the time complexity. As in the case of the

A D N problem, every vertex of the polygon belongs to exactly one hidden sequence. Given

a vertex in a hidden sequence we can find its horizontal neighbors using a method similar to

the method described in section 2.7.2. Thus we reduce the problem to merging of 0(n)

sequences of total length equal to n. As we have pointed out in the previous section this can

be done in Q(log n) time with n/log n CREW processors.

techniques for design of parallel algorithms page 52

the first pair of hidden sequences

the second pair of hidden sequences

the first pair of hidden sequences

the second pair of hidden sequences

the third pair of hidden sequences

the first pair of hidden sequences

the second pair of hidden sequences

the third pair of hidden sequences

Figure 2.9. Hidden sequences (bold lines)

Chapter 2: Basic techniques for design of parallel algorithms page 53

2.8. Summary

This chapter introduced general parallel techniques and algorithms which support our

tree construction techniques. In Sections 2.1 trough 2.4, we described well-known parallel

techniques: Brent's scheduling principle, list ranking, and the Euler Tour technique.

In Section 2.5, we discussed the tree contraction technique. The simple tree

contraction algorithm presented in this section is joint work by Abrahamson, Dadoun,

Kirkpatrick, and Przytycka [AbrDadKirPrzy87]. This work, together with other results

([ColVis86c], [GibRyt86], [KosDel88], [He86a], [MilTen87], [GibRyt88]) provides a

step towards a simplification and a formalization of the tree contraction technique

introduced by Miller and Reif [MilRei85] and independently by Rytter [Ryt85]. In Sections

2.5.2 and 2.5.3, we introduced (based on [AbrDadKirPrzy87], [He86a], and [MilTen87])

the Bottom-up and Top-down Algebraic Tree Computation algorithmic schemes. In

example 2.7, we showed a nontrivial interpretation of the scheme. In that example, we

presented an algorithm to compute a certain tree labelling which is used later in Chapter 5.

In our solution we made an essential use of all components provided by our 1ft_Cl cTG

scheme: functions associated with internal nodes, functions associated with edges, and

nontrivial indexing of these functions.

In Section 2.6, we introduced the cascading sampling technique. The technique can

support parallel algorithms based on a sequence of merging steps. As we pointed out the

technique is loosely related to the cascade merging paradigm introduced by Cole [C0I86]

and generalized by Atallah, Cole, and Goodrich [AtaColGoo89]. This technique is used in

Chapter 4 of the thesis to obtain one of the basic results of this chapter.

Finally, Section 2.7, was devoted to the parallel divide and conquer technique and to

an optimal parallel algorithm for the Al l Dominating Neighbors (ADN) problem. The

Chapter 2: Basic techniques for design of parallel algorithms page 54

solution to this problem is used in Chapter 5. The first optimal algorithm to solve the A D N

problem was presented by Berkman et. al. ([BeBrGalSchVis89]). In Section 2.7, we

presented an alternative solution based on a divide and conquer strategy. Often one can

naturally parallelize a sequential divide and conquer algorithm. Thus, finding a divide and

conquer algorithm for a given problem can be an important step towards the design of an

efficient parallel algorithm for the problem. To obtain an optimal parallel algorithm the

divide and conquer strategy has to be usually supported with other parallel techniques (e.g.

Brent's principle, cascading divide and conquer [AtaColGoo87], multi-way divide-and-

conquer [Goo87]). In order to obtain an optimal solution to our problem we used an

interesting 3-phase divide-and-conquer strategy.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 55

CHAPTER 3: PARALLEL TREE EXPANSION -
CONSTRUCTION OF TREE
REPRESENTATION FOR
COGRAPHS

In this chapter we present the parallel tree expansion technique and its application to

the design of a parallel algorithm to construct a tree representation for graphs belonging to

the family known as cographs.

In the parallel tree expansion technique we construct a tree starting from a single node

by the iterative addition of sets of vertices of degree one (leaves) or two (subdividing

edges). The method is closely related to parallel tree contraction described in Section 2.5.

Let Tj be the-tree obtained in the i * iteration. We say that Tj is an expansion of Tu. Let N

be the number of steps used to construct the tree. Note that the sequence TN,TN-I. . . ,TO is

a tree contraction sequence. In this sense the tree expansion can be viewed as the reverse of

the tree contraction method. We generalize further the tree expansion technique by replacing

nodes and/or edges by connected subtrees.

It is well known that many problems on graphs are NP-hard [GarJoh79], however

these problems can often be computed efficiently for some restricted families of graphs. It

is often the case that graphs belonging to such families can be represented with the help of a

tree. Such a tree representation may follow (for example for cographs and series parallel

graphs) from a natural recursive definition of the graphs in the family. A different idea lies

behind the tree representation for the graphs from the family of graphs known as chordal

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 56

graphs. A chordal graph (i.e. a graph without chordless cycles) can be represented with the

help of the clique tree. The nodes of the clique tree are in one-to-one correspondence with

the maximal cliques of the corresponding graph, and for every vertex in the graph the

maximal cliques containing the given vertex form a connected subtree in the clique tree. An

interesting subfamily of the family of chordal graphs is provided by k-trees. A k-tree is a

graph which can be recursively constructed from a k-complete graph by adding new

vertices such that each new vertex is adjacent to all vertices of an existing k-complete

subgraph. A partial k-tree is a graph embeddable in a k-tree with the same vertex set.

Obviously, trees are 1-trees. Series parallel graphs are partial 2-trees. Observe that the

recursive definition of k-trees defines a tree structure on graphs from this family.

Given a tree representation of a graph, we may use parallel tree computation

techniques (for example the tree contraction) to efficiently compute some graph properties

which seem to be very difficult to compute for general graphs. This motivates the problem

of designing efficient parallel algorithms to recognize membership in the given class and to

construct the corresponding parse tree. He [He86b] solved this problem for the class of

two terminal series parallel graphs (TTSP graphs). His algorithm constructs a binary

decomposition tree if a given graph is a TTSP graph. Given a multigraph with n vertices

and m edges the algorithm runs on a CRCW P R A M in 0 (l o g 2 « + log m) parallel time

using 0(n+m) processors. Naor, Naor and Shaffer [NaoNaoSc87] proposed parallel

algorithms to construct a clique tree representation for chordal graphs and for computing

properties of chordal graphs using this representation1. Rytter and Szymacha [RytSzy89]

presented an NC algorithm for the recognition and construction of a parse tree for graphs

which can be generated recursively using a context-free grammar. They also proposed

1 Parallel algorithms for chordal graphs ware also discussed by Edenbrant ([Ede87]) and Dahlhaus and
Karpinski ([DahKa86], [DahKa87]). Currently the best performance achieve the algorithms presented by
Klein ([Kle89]). Dahlhaus and Karpinski ([DahKa89]) also addressed a related problem of computing
Minimal Elimination Order for an arbitrary graph.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 57

parallel algorithms for such problems as edge coloring, vertex coloring, and hamiltonian

cycle, which take the parse tree as the input.

A parallel algorithm for the construction of cograph tree representation described

below was first proposed by Kirkpatrick and Przytycka [KirPrz87]. This algorithm serves

here as an illustration of the parallel tree expansion method. The algorithm runs in 0(log2n)

parallel time using 0 (n 3 / l o g 2 «) processors on a CREW PRAM, where n is the number of

vertices. In the next four sections we outline an implementation using 0 (« 3 / i o g «)

processors. Section 3.7 describes the reduction to 0(n3/log2n) processors. Independently,

several other algorithms have been proposed for this problem ([Shy88], [Nov89],

[AdhPen89]). Each of the algorithms uses a different method and performs a construction

using time and processors resources which are comparable to those used by our

algorithm.2 Przytycka and Corneil [PrzCor89] presented an algorithm for the recognition

of parity graphs which can be easily converted to an algorithm which produces a parse tree

for graphs from this family. We sketch this algorithm in section 3.7.

3.1. Definitions and basic properties

A complement reducible graph, also called a cograph, is defined recursively in the

following way:

(i) A graph on a single vertex is a cograph;

(ii) If G j , G 2 are cographs, then so is their union ; and

(iii) If G is a cograph, then so is its complement.

Cographs are easily seen to satisfy the following property (cf. [CorLerSte81]):

^Recently Novick [Nov90a] claimed to be able to reduce the processor cost to 0(n2).

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 58

Property 3.1. An induced subgraph of a cograph is a cograph.

Cographs are precisely the class of graphs which do not contain P 4 as an induced

subgraph (P4 is a path of four vertices). This characterization suggests a simple parallel

algorithm for the recognition of cographs that operates in O(l) time using 0 (« 4) CRCW

processors. Such an algorithm, however, will not necessarily reveal the simple recursive

structure that is imposed by the cograph definition and exploited in many cograph

algorithms.

Cographs were first introduced and studied by Lerch in [Ler71],[Ler72]. As a family

of graphs, cographs have arisen independently in connection with several different

mathematical problems. In the work of Sumner [Sum74], motivated by empirical logic,

cographs are defined as Hereditary Dacey graphs (HD-graphs). In Burlet and Uhry

[BurUhr84], cographs are referred to as 2-parity graphs and are related to a broader class

of graphs called parity graphs. A family of graphs equivalent to cographs is also defined by

Jung in [Jun74] and called D*-graphs. In this same paper is shown that D*-graphs are

equivalent to comparability graphs of multitrees. Corneil, Lerch and Stewart [CorLerSte81]

show that cographs are the underlying graphs of the family of digraphs known as transitive

series parallel graphs. For more information about cographs (including various equivalent

characterizations) see [CorLerSte81].

The definition of a cograph suggests a natural parse tree representation. However this

way of presenting a cograph may not be unique. A unique representation is provided by the

so-called cotree [CorLerSte81]. A cotree, T Q , is the tree presenting the parsing structure

of a cograph G in the following way :

- The leaves of T Q are the vertices of G.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 59

- The internal nodes of T Q represent the operation complement-union (that is, the graph

associated with an internal node is the complement of the union of the graphs associated

with its descendent nodes).

- Each internal node except possibly the root has two or more children. The root has a

single child if and only if the graph is disconnected.

This representation can be constructed in 0(n+m) sequential time (including testing if

the given graph is a cograph) [CorPerSte85]. The cotree representation is used in the

formulation of linear algorithms for determining the maximum independent set, chromatic

number, graph isomorphism, number of cliques and other properties of cographs (see

[CorLerSte81]). Abrahamson, Dadoun, Kirkpatrick and Przytycka [AbrDadKirPrz87] and

Adhar and Peng [AdhPen89] present N C algorithms for a number of such problems. These

algorithms also make use of the cotree representation of cographs.

In order to simplify the description of algorithms which use the cotree representation

of a cograph, each node x of a cotree T is assigned a label, label(x), in the following way:

- label(root) = 1; and

- if y is a child of x then label(y) = 1 - label(x).

Figure 3.1 illustrates a cograph G and its labelled cotree T Q . The labelling of a node

x records the parity of the number of complement-union operations on the path between x

and the root.

To minimize confusion, we talk about vertices when we refer to a graph and about

nodes when we refer to a cotree.

The nodes of a cotree labelled by 0 are called 0-nodes and those labelled by 1 are

called 1-nodes. We also use the following notation: n denotes the number of vertices in G,

T v denotes the set of neighbors of the vertex v in G, and lcax(vi,V2) denotes the lowest

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 60

common ancestor of nodes vi and V2 in the tree T (the subscripts G and T are omitted if it

is obvious to which graph or tree we refer).

G:

b c

Figure 3.1. A cograph and its cotree

It is easy to confirm that:

Property 3.2. Two vertices u and v in a cograph G are adjacent iff in the cotree T

defining G, the lcax(w,v) is a 1-node.

To ensure readability of our figures we use the following notation:

A A

Arbitrary subtree
(possibly empty except for the root)

Nonempty subtree

Figure 3.2. Notation concerning subtrees

3.2. Bunches and lines in a cotree

In this section we study properties of cotrees which are interesting and useful for

parallel computation. In particular, we examine how the relative position of a given node in

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 61

the cotree can be determined from information about the neighborhood of the

corresponding vertex in the associated cograph. We introduce notions of bunches and lines

which describe collections of vertices in a cograph. These are used by our algorithm as

basic building blocks for cotrees.

Define the following relations between vertices of a graph G:

(1) SO(M,V) <=> T v - {u} = T u - {v} and u,v are not adjacent,

(2) SI(M,V) <=> r v - {u} = T u - {v} and u,v are adjacent,

(3) Zo(v,«,w) <=> (i) T v © T u = [u} , where © denotes the symmetric difference

(ii) r u - v * T v - u , and

(iii) w is not adjacent to either of v or to u,

(4) Z I O M M V) <=* (i) r v © r w =

(ii) r v - v ^ T u - u , and

(iii) w is adjacent to both v and u.

The vertices satisfying relation Sj (i = 0,1) are called siblings. The vertices satisfying

So are called weak siblings and the vertices satisfying S i are called strong siblings. The

following theorem [CorLerSte81] provides another characterization of cographs:

Theorem 3.3. G is a cograph if and only if any nontrivial induced subgraph of G has at

least one pair of siblings.

Lemma 3.4. Two leaf nodes vi and v2 have the same parent in the cotree T Q iff the

corresponding vertices vi and v2 are siblings in G.

Proof : (=>) Assume that vi and v2 have the same parent in the cotree T. Note that for

any vertex v such that v # vi and v #v2 , lca(v,vi) = lca(v,v2). Hence, by Property 3.2,

any vertex adjacent to vi is adjacent to v2 and TV 1 - {v2} = TV2 - {v\}.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 62

(<=) Assume that v i , V2 have different parents. Let v = lca(vi,V2). At least one of the

paths from v to v,- (i = 1,2) in cotree T is longer than one. Assume w.l.o.g. that the path

from v to vj is longer then one. We can find an internal node u on this path which has a

label different from v. Thus, there exists a node w (w # vi and w & V2) such that

lca(w,vi) = u and lca(w,V2) = v. But this means that w is connected to exactly one of vi,

V2 , so neither So(vi,V2) nor Si(vi,V2) holds.B

A maximal set of weak siblings is called a 0-bunch set and a maximal set of strong

siblings is called a 1-bunch set. A smallest connected subgraph of the cotree T containing a

0-bunch set is called a 0-bunch and a smallest connected subgraph of the cotree containing

a 1-bunch set is called a 1-bunch (see Figure 3.3). The vertex with the smallest index

among the vertices in a bunch set is called the representative of this set.

(0) (i)

0-bunch 1-bunch

Figure 3.3. A 0-bunch and a 1-bunch

If we replace a bunch set in a cograph G by its representative, say v, then, by

Property 3.1, the graph G' = (V',E') obtained in such a way is also a cograph. Consider

the following construction of a tree T' from the tree T:

(1) If vertices in the bunch set are the only children of some internal node then substitute

the representative of the bunch set for the bunch to which they belong (see Figure

3.4a)).

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 63

(2) If the vertices in the bunch set are not the only children of some internal node then

remove from T all vertices in this set except for the representative (see Figure 3.4b)).

V

Figure 3.4. Replacing a bunch by its representative

Note: The labels of the bunch set's representative and its parent are different ensuring that

this substitution is reversible.

Lemma 3.5. The tree T' obtained from the tree T in the way described above is the cotree

of the cograph G'.

Proof: Note that for u,w e V'-{v}, label(lcax(«,w)) = label(lcaT'(M,w)). Also

label(lcaT(«,v)) = label (lcar(M,v)). So, by the definition of G' and Property 3.2, the tree

T' is the cotree of G'. •

The vertices in relation Zj (i = 0,1) also occupy special positions in the cotree. They

are specified by the following lemma:

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 64

L e m m a 3.6: The relation Zo(v, u,w) holds iff v,u, and w are positioned in the cotree as

illustrated in Figure 3.5a. Similarly, the relation Z.\(v,u,w) holds iff v,u, and w are

positioned in the cotree as illustrated in Figure 3.5b.

Figure 3.5. Relations Zn(v,w,vv) and Z\(v,u,w)

Proof: We will prove the lemma for the relation Zn only. The proof for the relation Zj is

similar.

(<=) Assume that v,u, and w are positioned as illustrated in Figure 3.5a. By Property 3.2,

v and w have no neighbors in Ti. Assume f ^ Ti and t & v,u,w then lca(v,?) = lca(w,f)

and (i) follows. As immediate consequences of the cotree definition we have (ii) and (iii).

(=>) From (i) and (iii) we have that v and w are not adjacent, v and u are adjacent, u

and w are not adjacent. This implies the position of the nodes as in Figure 3.6a. From (i)

we know that there are no nodes between a and b, u and a , w and b, and from (ii) we have

additionally T v T u. This implies the more restricted position of the nodes shown in

Figure 3.6b. Finally, point (i) restricts us to the positions shown in Figure 3.5a. •

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 65

(0).

W

V
u

a) b)

Figure 3.6. Restricting of the possible positions of nodes v,u,w satisfying Zo(v,u,w)

A vertex u for which there exist vertices v,w such that Zo(v,u,w) or Zi(v,«,w) is

called a contractible vertex. The corresponding leaf in a cotree is a contractible leaf. If a

node has a contractible leaf as a child then it has exactly two children, one of them being a

leaf and the other being a nonleaf.

A contractible sequence is a maximal sequence of distinct vertices (leaves in the

cotree) ui,U2,...,Uk such that there exist two vertices v,w for which Z[(v,ui,U2),

Zi-i(w/,W2,M?), Zi(M£_7,M£,w) a l l hold, and there does not exist an x such that

Z\-i(x,v,ui) holds.

Define a branching node as an internal node having more than two children or

having more than one leaf as a child. Note that any nonbranching node appears in the

cotree as node v in Figure 3.7.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 66

Figure 3.7. A nonbranching node

A smallest connected induced subgraph of a cotree containing a contractible sequence

is called a line . A line is a 0-line if the lowest level internal node is a 0-node and a 1-line

otherwise. By Lemma 3.6, lines have the form presented in Figure 3.8. The set of

vertices associated with a 0-line is called a 0-line set and the set of vertices associated with

a 1-line is called a 1 -line set. The leaf which has a lowest level in the cotree among other

vertices in a line (i.e. vertex v; in Figure 3.8) is called the representative of the given line

set.

(0) (i)

i l

a) 0-line b) 1-line

Figure 3.8. A 0-line and a 1-line

Let G' be the cograph obtained from G by replacing a line set by its representative.

Let T' be the tree obtained by removing from T all elements of a line set and their parents

except the representative and its parent. The parent of the representative takes as its new

parent the (former) parent of the highest level vertex in the line set (see Figure 3.9).

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 67

Figure 3.9. Replacing a line by its representative

Lemma 3.7. The tree T' obtained from the tree T in the way described above is the cotree

of the cograph G'.

Proof: Similar to the proof of the Lemma 3.5. •

As an example, in Figure 3.10, af and g are branching nodes, {v\,V2,a} and

{v8,V9,g} induce 0-bunches and {v^,V4,V5,b,c,d} induces a 1-line. The vertex vi is the

representative for the first bunch and the vertex vg for the second. The vertex V3 is the

representative for the line.

Note that in this example all line sets and bunch sets are disjoint. This is true in

general as formalized by the following lemma:

Lemma 3.8. Let each of U,W be a line set or a bunch set. If U * W then UnW = 0.

Proof : By Lemmas 3.4 and 3.6, an element of a bunch set cannot belong to a line set.

Note also that Si(w,«) and Sj(u/v) implies i = j and Si(v,«), so an element of a 0-bunch set

cannot belong to a 1-bunch set. If U and W are both line sets or both bunch sets then

U n W * 0 contradicts the maximality of U and W. •

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 68

3.3. A top level descript ion of the cotree construct ion a lgor i thm

We will assume that the input graph is connected. If it is not we can run a parallel

algorithm for finding connected components ([HirChaSaw79]) and join the cotrees

obtained for each connected component according to the cotree definition.

Let the input graph be Go = (Vo,Eo). Assume for now that Go is a cograph and

denote its cotree by To. The idea is to partition the set of vertices into subsets, remove from

each subset all but one vertex (its representative), and reduce the problem to constructing

the cotree for the graph induced on the diminished vertex set. Repeating this step, we

obtain a sequence of graphs Go = (Vo,Eo), G i = (Vi,Ei) Gk = (Vk,Ek), such that Vi

is obtained from Vj . i by performing a partition of Vi and then removing all but one vertex

in each set of the partition. The sequence should have the property that the cotree T[.\ for

Gi-i can be constructed easily as an expansion of the cotree Ti for Gi. A natural approach is

to partition Vj into bunch sets. Unfortunately, the length of the sequence of graphs which

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 69

is constructed in this way is proportional to the length of the longest path in the cotree To

which may be proportional to IVol if To is unbalanced. This is the reason why line sets

must also be considered.

By Lemma 3.8, the set of vertices of a cograph can be partitioned into 0-bunch sets,

1-bunch sets, 0-line sets, 1-line sets and single vertex sets. For any set U from a partition,

we can consider the smallest connected subtree of the cotree T which contains elements of

this set as leaves. This subtree will be called the fragment ofT induced by U. Note that in

the proposed partition the only possible fragments are bunches, lines or single vertices.

The algorithm proceeds in stages. In stage i, it produces a triple (Gi,Ui,Fi) such that

the sequence of triples produced by the algorithm satisfy the following conditions :

(i) The first element of the sequence is the triple (Go,{ {v},ve Vo},{Vo}),

(ii) Uj ={LTi1,....,Uit} is a partition of V j - i ,

(iii) Vj+i = {ui1,...,^1} where up is the representative of Uy,

(vi) Gi=(Vi,Ei) is the subgraph induced by V i ,

(v) Fj = {Fi1,..., Fi1} where Fp is the fragment of Ti-i induced by Up,

(vi) The last element in the sequence is the first triple (GfcUioFk) for which lUkl = 1.

Note that the cotree T k is just the only fragment in F k . For i = k,...,l, we construct

cotree T u from cotree T[.

We define the operation reduce which i) partitions the vertex set into bunch sets, line

sets and single vertex sets, ii) finds representatives for those sets, iii) constructs

corresponding fragments, and iv) constructs the graph induced by representatives of the

partition. In the next section we show how to implement this operation in polylogarithmic

parallel time. In section 3.6, we outline an algorithm for constructing the adjacency matrix

of a cograph from its cotree representation. In the remaining part of this section we show

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 70

that the length of the sequence (Go,Fo,Uo),...,(Gk,Fk,Uk) constructed using the reduce

operation is 0(log n) and that having this sequence we can construct the cotree To in

polylogarithmic parallel time.

Consider a leaf u of the cotree T[. Let r denote a label. Let u be the representative of

a set U in the partition Uj. The following diagram summarizes the substitutions of

fragments for representatives (sometimes together with its parent) in the tree Tj to obtain the

tree Tj-i. Their validity follows from Lemmas 3.5 and 3.7.

type of set

represented by u

associated

fragment

position of u

in the cotree T-

position of the fragment

in the cotree T ^

single vertex set . u

r-bunch set

(r)

/ N
Vj v 2 -.. vk

7
u n v 2 v k

r-bunch set

(r)

/ N
Vj v 2 -.. vk

u
/ K

n v2 v k

r-line set X
u

(r) y \ k

Figure 3.11. Substitution of fragments for corresponding representatives

To prove that the length of the sequence is 0(log n), we note that the operation reduce

satisfies the following properties:

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 71

Property 3.9. Consider the set B of vertices in the graph (i.e. leaves in the cotree) which

are in bunch sets of the partition. After a single application of the reduce operation at most

[IBI/2 J of these vertices remain.

Property 3.10. Let the partition have k line sets. Consider the set L of vertices in the

graph which are in line sets of the partition. After a single application of the reduce

operation exactly k of these vertices remain.

These properties imply the following theorem :

Theorem 3.11. After Wog^/iQn] applications of the reduce operation a cograph is

reduced to a single vertex.

Proof : It suffices to show that a single application of the operation reduce removes at

least 1/10 of the current leaves. Suppose that the operation reduce is applied to a cograph

with t vertices. Let B be the set of vertices in the cograph which are in bunch sets of the

partition. Consider the following cases :

(1) IBI > 115. Then, considering only leaves removed from bunch sets of the partition, the

number of vertices left is less than or equal to t - IBI + IBI/2 = t - IBI/2 < 9/101.

(2) IBI < 115. Let k be the number of branching nodes in the cotree. Notice that k < IBI -1

and the number of contractible sequences is at most k. Add the root to the set of

branching nodes. With each branching node (except the root) we can associate a path of

internal nodes in such a way that the first node, say v, is a branching node and the last

node is the closest ancestor of v whose parent is a branching node. For every such

path there are at most four leaves which are children of nodes in the path and are not

contractible leaves (see Figure 3.12 for the worst case configuration). So after a reduce

operation the number of leaves which are left is at most IBI/2 + 4k + 1 < 9/2 IBI -3 <

9/101. m

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 72

Figure 3.12. The worst case configuration for case (2)

The algorithm outlined above is based on the assumption that the given graph was a

cograph. It can be modified to work without this assumption as follows:

(* construct the sequence of triples (Gi,Ui,Fi) *)
M := riog9/10nl
i :=0;
U 0:={ {vjtJIvjteVJ;
for 1 < k < n d o F 0 k = {v£};
while lUil > 1 and i < M do in parallel

i :=i+ 1;
(* construct the next triple (Gi,Ui,Fi) *)
reduce; - see section 3.4 for details
od;

if i > M
then the input graph is not a cograph;

else (* construct the cotree *)
Tj := Fi 1 ; (* there is only one fragment in Ft *)
while i>0 do in parallel

i :=i - 1;
obtain Ti by substituting for each representative of the partition Ui+i the

corresponding fragment from Fj+i
od

(* check if correct *)
Construct the cograph G' defined by cotree To; — see section 3.5 for details
if G V G Q then the input graph is not a cograph.

Chapter 3 : Parallel tree expansion-construction of tree representation for cographs page 73

3.4. Implementation of the reduce operation

The reduce operation is used to partition the vertices of a graph into bunch sets, line

sets and single vertices. It also identifies representatives of those sets and constructs

corresponding fragments. We describe this operation in two phases. In the first phase, we

define the main steps of the operation. In the second phase, we describe the implementation

of those steps. We also note when to check conditions which might disqualify the input

graph as a cograph. Some of the technical details of the implementation are left to the

reader.

The reduce operation proceeds as follows :

1. For each pair of vertices v,w, check if v and w are siblings.

2. Find bunch sets, their representatives and construct corresponding bunches.

3. For each pair of vertices v,w, check for a vertex u such that Z\(v,u,w) (i=0,l). Such a

vertex u is a contractible vertex. If there exists a vertex x such that Z\.\(u,w,x) then

u,w are successive contractible vertices.

4. Find line sets, their representatives and construct corresponding lines.

5. Obtain Gi+i by removing from Gi all vertices not chosen as representatives.

A more detailed description of the implementation follows:

STEP 1. For each pair of vertices v.w. check if v and w are siblings.

This step can be implemented in 0(log n) time with «3/log n processors. For each pair of

vertices v,w compute the exclusive or of columns v and w of the adjacency matrix

excluding rows v and w and then sum the elements of the resulting vector. This can be

done for every such pair of vertices in 0(log n) time with n/log n processors using the

prefix sum computation technique. Store the results of this step in an n xn array A by

assigning A(v,w) = 1 if the resulting sum is zero (i.e. v and w are siblings) and A(v,w) =

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 74

0 otherwise. If there exist no sibling vertices (this can be checked in 0(log n) parallel

time) then the graph is not a cograph.

STEP 2. Find bunch sets, their representatives and construct corresponding bunches.

Using the pointer hopping technique and the array A, each vertex can determine the vertex

with the smallest index among its siblings. This can be done in 0(log n) time with

0(«2/log n) processors. The unique vertex whose index is smaller than the index of its

lowest indexed sibling is the representative of its bunch. The processor associated with this

vertex determines its bunch-type (0-bunch or 1-bunch) and builds the parent node of the

bunch. Al l the vertices in the bunch set construct pointers to the bunch parent (whose

address is known via the representative which is known to all the vertices in the bunch set).

To allow the construction of the cotree a new copy of the representative is constructed

along with a pointer to its associated bunch. This copy participates in the next iteration.

STEP 3. Find successive contractible vertices.

The implementation of this step is similar to that of step 1 but in this case if the

corresponding prefix sum computation produces 1 then the position at which the difference

occurs indicates the vertex u. Note that the relation T u * T v has been checked in the

previous step and that condition iii) can be checked in constant time. First, check for the

relation ZQ. Store the result in the array A by assigning A(v,w) = u iff ZQ(V,U,W) and

A(v,w) = 0 if otherwise. It is possible for A(v,w) = A(v',w') = u * 0. However, if the

graph is a cograph then if A(v,w) = u * 0 and A(v,w') = u ' * 0 then u = u'. For each

vertex u , it can be determined if u is an entry of A and, if so, a pair (v,w) can be chosen

such that A(v,w) = u. (This can be done in 0(log n) time using a total of 0(«2/log n)

processors by exploiting the structure of A). If the pair (v,w) is chosen for vertex u then

this is recorded in vector BQ by setting BQ(V) = u and Bo(w) = w.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 75

In a similar way, we can check for the relation Z\. If for vertex u the pair (v,w)

satisfying Z\(v,u,w) is chosen, then it is recorded in vector Bi by setting Bi(v) = u and

B\(u) = w.

STEP 4. Find line sets, their representatives and construct corresponding lines.

Note that uj,U2 are two successive contractible vertices iff there exist vertices v and w

such that Bj(v) = uj , B[(ui) = U2 , = U2 and Bi-i(«2) = w. This follows from the

fact that:

Bj(v) = uj , Bi(«7) = «2 => Zi(v,ui,U2) and

B i _ i (M i) = «2, Bi_i(M2) = w => Z\.\(ui,U2,w)-

Thus we can construct a table B such that B(uj) = U2 iff uj and U2 are two successive

contractible vertices. From this we can construct the corresponding contractible sequence.

This step can be implemented in 0(log n) time with 0(n2/logn) processors using standard

pointer hopping techniques. As in the case of a bunch, we construct copies of

representatives. Each copy keeps pointers to the beginning and to the end of its associated

line.

Summarizing the discussion above, we have the following lemma:

Lemma 3.12. If the input graph is a cograph then we can construct its cotree in 0(log2n)

parallel time, using 0(n /̂log n) processors.

3.5. Adjacency matrix construction from the cotree

representation of a cograph

The algorithm to construct the adjacency matrix [AhoHopU1174] from the cotree

representation of a cograph is based on Property 3.2 and is an interpretation of the <T-

Cl tT G algorithmic scheme.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 76

Replace the cotree T by a binary tree T such that newly introduced internal nodes

have the same label as the node whose split led to the given node (see Figure 3.13).

T: (l) T'
e

Figure 3.13. Converting a cotree to a binary tree

To construct the i-th row of the adjacency matrix we apply the instance of <T—Cl <T"G

algorithmic scheme where 9 = {id, zero, one I id(x)=x; zero(x)=0; one(x)=l} and the input

tree is the tree T with the labelling of the edges in which an edge is labelled by the constant

function equal to the label of its parent vertex if the parent vertex is marked, and the identity

function otherwise.

After the computation defined by this <T-Cl <TG, the value computed in a leaf j (j * i)

is equal to one iff i and j are adjacent in the cograph represented by T. It is easy to confirm

that 9 satisfies the decomposability axioms (i)-(ii) of cT-Cl cTtj, so by Theorem 2.8 the i-

th row of the adjacency matrix can be constructed in 0(log n) time with n/log n processors.

To construct the entire adjacency matrix, 0 (« 2 / l o g n) processors are used to implement this

procedure for all rows in parallel.

The construction above, together with Lemma 3.13, implies the following lemma:

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 77

Lemma 3.13. We can test if an arbitrary input graph is a cograph and, if so, construct its

cotree in 0(log2n) parallel time, using 0(« 3 / log n) processors.

3 . 6 . Reduction of the processor requirements

In this section, we describe a general technique which can be used to reduce the

number of processors used by a CREW PRAM algorithm which computes entries of some

vector and satisfies some properties stated in the following lemma. This idea is a minor

generalization of a processor allocation technique used by Vishkin in [Vis84].

Lemma 3.14. Let v and w be -̂vectors and let Alg be an algorithm consisting of M =

O(logn) parallel phases, where

(i) in each phase Alg updates entries v[j], for all j satisfying w[j] ^ 0, and

(ii) Alg sets some fixed fraction c> 0 of the non-zero entries of w to zero.

Suppose that each entry of v can be independently updated in t(n) time using p(n)

processors. Then Alg can be implemented to run in 0((rfn/)+loglog «)log n) time using

0(p(n) rt/log n) CREW processors.

Proof: An implementation using 0(r(nJlog n) time and 0(p(n)n) processors is obvious.

To achieve the desired processor reduction, it is helpful to introduce a variable b which

gives the number of non-zero elements of w and an array C whose ith value, for 1 < i < b,

gives the index of the ith non-zero element of w. With the help of C, it is straightforward to

implement one phase of Alg in 0(t(n)\b(\og n)/«l)time using 0(p(n) n/log n) processors.

Now, C can be updated, following the update of w, in 0(log n) time using 0(n I log n)

processors using standard parallel prefix techniques. Hence the first aloglogrc steps,

where a = l/(log(l/(l-c))), can be implemented at a total cost of 0(t(n)+ log log n) time

using 0(p(n)/n log n) processors. Thereafter, each step can be implemented in 0(t(n)) time

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 78

using 0(p(n) n/log n) processors by the straightforward implementation. Hence, the total

cost is 0((r(,«j+loglog «)log n) time using 0(p(n) nflog n) CREW processors. •

In our cotree construction algorithm, the most expensive operation is to compute

relations Si and Zj. To compute these relations we compute the entries of array A. Note that

the computations in each column of A are performed independently. Thus we can treat A as

a vector of vectors and apply Lemma 3.14, assuming p(ri)=n2/log n, t(n) = log n and c =

9/10. This construction together with Lemma 3.13 gives the following:

Theorem 3.15. We can test if an arbitrary input graph is a cograph and, if so, construct

its cotree in 0(log 2«) parallel time, using 0(rc3/log2rz) processors.

The high processor cost of our algorithm follows from the cost of computing the

relations Si and Zi. One can observe that it is possible to reduce the number of processors

used in the computing of Si by applying a sorting algorithm to rows of the adjacency

matrix. Reducing the number of processors involved in computing the relation Zj remains

an open question.

3.7. A n appl icat ion of the cotree construction a lgor i thm -

construct ion of a tree representation for a par i ty graph

The cotree construction algorithm can be used as a fundamental building block in

the construction of a tree representation for a richer family of graphs called parity graphs. A

graph is called a parity graph if and only if for every pair of vertices all minimal chains

joining them have the same parity. Parity graphs are perfect [Sac70] (i.e. for every induced

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 79

subgraph H of a parity graph the size the maximum independent set in H equals the size a

minimum clique cover in H), and are a subclass of the Meyniel graphs [Mey84]. The class

of parity graphs includes bipartite graphs and cographs. Burlet and Uhry [BurUhr84]

noticed that parity graphs can be obtained from a single node by certain construction rules,

namely the creation of weak or strong siblings and the operation called extension by a

bipartite graph. Thus we can associate a parse tree with every parity graph; this parse tree,

however, need not be unique.

Burlet and Uhry [BurUhr84] presented a polynomial time sequential algorithm to

recognize parity graphs and construct the corresponding parse tree. They show how to

reduce a given parity graph to a single vertex by operations which are reverses of the three

creation operations. Their algorithm explores the BFS (Breadth First Search) layering

structure of parity graphs. They proved that if No,Ni,...,N p are BFS layers, then the

induced subgraph on each of the Ni forms a cograph. (In [BurUhr84] cographs are called

2-parity graphs.) Furthermore the relationships between vertices in neighboring layers are

not arbitrary. Consider the level Nj. One can distinguish certain families of nested sets of

vertices in each BFS layer with the property that elements from each set S of the family

have the same set of neighbors in both the layer Ni_i and in the subgraphs induced by

Nj-S. The relationship between elements from levels Ni and Nj+i is more complex but one

can observe that if S is a maximally nested set then elements from S have the same set of

neighbors in Ni+i. Thus the graph induced by such a set can only be reduced with the help

of cograph operations, i.e. by the sequential removal of siblings. Furthermore such a graph

is reduced either to an empty graph or to a set of independent vertices which do not have

connections with the rest of the elements in the layer. The sequential algorithm of Burlet

and Uhry considers the BFS layers starting from the most distant one from the root of the

BFS tree, and within each layer constructs the corresponding family of subsets, and then

processes them starting from a minimal one.

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 80

A nontrivial parallelization of this approach has been presented by Przytycka and

Cornell [PrzCor88]. It turns out that not only can all BFS layers be processed in parallel,

but also within each layer all sets in the corresponding family can be processed in parallel,

treating all sets contained in a given set as "black boxes". Within each set we use only

cograph operations. Thus we can construct the corresponding part of a parse tree using the

techniques described in the previous sections. From the properties of the operation of

extension by a bipartite graph it follows that if such a "black box" has a connection to other

vertices in the level, then we are able to reduce it to the empty set with the help of an

operation which is the inverse of an extension by a bipartite graph. Otherwise the elements

to which the "black box" is reduced form a part of a bipartite graph which is detected and

reduced (with the help of the operation which is the inverse of an extension by a bipartite

graph) on other level. The algorithm given by Przytycka and Comeil runs in 0(log2n) time

with rc4/log2rc processors on a CREW PRAM model.

The idea of using the BFS layering structure of a graph for performing parallel

computation has been generalized by Novick [Nov90b] to obtain a parallel algorithm for the

split decomposition of an arbitrary graph. Przytycka and Corneil [PrzCor88] showed how

the BFS layering structure of a parity graph can be used to find a maximum clique in

0(log 2 «) parallel time with « 2/log 2n processors.

3.8. Summary

This chapter we presented a parallel tree expansion technique. In a parallel tree

expansion technique, beginning with a single node we construct a tree by an iterative

replacement of nodes and/or edges by connected subtrees. With this technique we

developed the first NC algorithm for construction of the cotree representation of graphs

from family of graphs known as cographs (see also [KirPrz87]). First, we identified

Chapter 3: Parallel tree expansion-construction of tree representation for cographs page 81

properties of cographs which make it possible to reduce a cograph to a single vertex such

that each intermediate graph is a cograph in at most clog n steps (where c is a constant).

Furthermore, the cotree of the cograph which results from a reduction step can be

efficiendy expanded to the cotree of the reduced cograph.

In our algorithm, we first reduce the input graph to a single vertex, then construct the

cotree representation for this vertex, and finally, we interatively expand this cotree to the

cotree representation of the input graph. Alternative solutions to the parallel cotree

construction problem were independently obtained by several other researchers ([Shy88],

[Nov89], [AdhPen89]).

In general, the basic limitation of the tree expansion method is that it may be difficult

to determine whether (and how) to expand a particular edge or a vertex in a given iteration

of the tree expansion process. However in the case of the cotree construction problem this

method gives a simple and elegant solution.

In the last section of this chapter, we sketched an application of a cotree construction

algorithm to the problem of computing in parallel a tree representation for a graph from a

family of graphs known as parity graphs. In our construction, we relied on the specific

structure of BFS layers of a parity graph ([BurUhr84], [PrzCor89]). Our ideas have been

extended by Novick [Nov90b] to obtain a parallel algorithm for the split decomposition of

an arbitrary graph.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost
optimal weighted path length

page 82

CHAPTER 4 : P A R A L L E L L E V E L - B Y - L E V E L
TREE SYNTHESIS: CONSTRUCTION
OF BINARY TREES WITH ALMOST
O P T I M A L W E I G H T E D P A T H
LENGTH

In this chapter we explore a parallel bottom-up level-by-level tree synthesis technique

in connection with a family of parallel algorithms to construct trees with almost optimal

weighted path length.

The idea of constructing trees which give an approximate solution to the problem of

constructing of an optimal tree has been widely explored in the sequential setting. Early

approximation algorithms for the optimal binary search tree problem ([Meh75], [Bay75],

[Fre75]) applied a top-down technique. Allen [A1182] showed that the cost of some

common classes of approximately optimal binary search trees relying on a top-down

approach could not be bounded above by the cost of an optimal tree plus a constant.

Larmore [Lar86] presented a bottom-up subquadratic algorithm which produces a binary

search tree whose cost is bounded above by the cost of an optimal tree plus a constant.

Bottom-up techniques also appear to be very useful in a parallel setting. Atallah et. al.

[AtaKosLarMilTen89] gave an 0(log(l/e)log2n)-time n2flog2n processor algorithm which

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 83
optimal weighted path length

finds a binary search tree whose weighted path length is within e of that of the optimal tree.

Their algorithm uses a dynamic programming technique.

Part of the motivation of looking for approximate solutions is to understand the

tradeoff between the accuracy of a solution and its cost. There is an additional motivation,

namely that a slight relaxation of an optimization problem, in which only an approximately

optimal solution is sought, can be solved efficiently by restricting attention to trees from a

certain family. In the parallel case families of trees of polylogarithmic height seem to be of

special interest. Within such a family it is possible to obtain efficient parallel algorithms

which produce a tree in a level-by-level fashion.

A level-by-level bottom-up technique is strictly applicable if we know the depths of

the leaves of the constructed tree. In this case, we can construct the tree in d iterations,

where d is the height of the tree, such that in the i t n iteration we construct the parents of

nodes on level d-i+1. On the other hand if we know the depths of the leaves of a tree we

can construct the tree in 0(log n) time with «/log n processors using the accelerated valley

filling technique described in Chapter 5. However we can also consider a level-by-level

approach if we do not know the depths of the leaves but instead for every leaf v we can

compute a value rank(v) such that rank(v)>/T(v) (i.e. rank(v) bounds the depth of the leaf v

in the constructed tree T). Then we can spread the vertices into levels according to the rank

function. Now, during the i t n iteration of such a level-by-level construction each vertex

which is on level d-i+1 either obtains a parent, which goes to level d-i, or is itself promoted

to level d-i. In this chapter we apply this level-by-level construction to obtain various

algorithms for producing binary trees with approximately optimal weighted path length.

The problem of finding a tree with optimal weighted path length is related to the

problem of constructing an optimal code. Let V={vi , . . . ,v r t } be a set of letters and let V V (V J)

be the frequency of the occurrences of letter Vj in a word. The goal is to find a binary code

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 84
optimal weighted path length

for every letter of V such that no code is a prefix of any other code and minimizes the

average word length, defined as 5^(v)w(v) (where /(v) is the length of the code of v).
v e V

Equivalently, one can search for a binary tree T whose set of leaves is equal to V and which

minimizes the cost function c(T)= ̂ /x(v)w(v), where /j(v) denotes the length of the path

v e V

from the root to the leaf v in the tree T. For the remainder of this chapter we call such a tree

an optimal tree. The notion of an optimal tree extends in an obvious way to the case where

w is a weight function such that w: V->R+. However, in this case the problem can be

reduced to the normalized problem by dividing the weight of each element v, w>(v), by

W = £ w (v) - Thus we assume W =1. Note that this does not imply that the cost of an

veV

optimal tree is bounded by a constant. In fact it may achieve log n (for lower bounds on a

weighted tree path see for example [Meh85]).

An optimal tree can be constructed in 0(n log n) sequential time by an algorithm due

to Huffman ([Huf52]). The tree produced by Huffman algorithm is called Huffman tree. It

can be shown (see [Huf73]) that an optimal tree (whose leaves may appear in an arbitrary

order) can be realized with a tree whose leaves appear in the sorted order. This observation

together with the parallel dynamic programming algorithm of Miller, Ramachandran and

Kaltofen [MilRefKal85] leads to an 0(log 2«)-time «6-processor parallel algorithm for

construction of an optimal binary tree (see [Ten87] for a detailed description). An improved

algorithm has been proposed by Atallah, Kosaraju, Larmore, Miller, and Teng

[AtaKosLarMilTen89]. In their algorithm the special structure of the dynamic programming

problem has been used to produce a polylogarithmic time algorithm using n 2 processors.

This algorithm still does not achieve an optimal speedup over the Huffman algorithm. The

question (cf. [AtaKosLarMilTen89]) of whether there exists a parallel algorithm which

constructs an optimal tree in polylogarithmic time using n2~e processors remains open. In

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 85
optimal weighted path length

the same paper, an approximate solution to the problem is proposed. Let T*y be an optimal

tree for set V and let T be an arbitrary tree with leaves equal to V. The error of tree T, AT,

is defined as c(T)-c(T*y)- A tree whose error is small is called almost optimal. Atallah,

Kosaraju, Larmore, Miller, and Teng [AtaKosLarMilTen89] presented an algorithm which

produces a tree T with AT < 1 in 0(log n) time using nllog n processors if the input

sequence is sorted according to the weights. Also the parallel algorithm to produce an

almost optimal binary search tree presented in the same paper can be used to construct a tree

T with AT<l/nk in 0(klog2«) time and with «2/log2« processors.

We present a family of parallel and sequential algorithms to construct an almost

optimal binary tree. Each of our algorithms is an interpretation of the algorithmic scheme,

called the General Construction Scheme (QtS/b), defined in Section 4.3. The use of an

algorithmic scheme allows us to state a general theorem which estimates the error obtained

when constructing a tree using one of our algorithms.

In Section 4.1, we present the Basic Construction Scheme (tfi'G)̂ which defines a

family of bottom-up tree constructions. This scheme leads to efficient algorithms provided

that there do not exist elements of very small weight. We prove that an algorithm which is

an interpretation of tI3Ĝ 6 cannot produce a tree with error greater than 1. We also present

a modification of tBT5,£ which reduces the maximal error to 0.172. The algorithmic

scheme Q"iZ/6 defined in Section 4.3 is a modification of 1ft T!,©. This scheme leads to

efficient algorithms for sets including elements of arbitrarily small weight. In Section 4.4,

we present a number of parallel interpretations of 9̂ > - In particular, we give an 0(log
loglog n

ri)- time and n £ *—processor EREW algorithm which constructs a tree with error at

most 0.172, an 0(klog n log*«)-time and n-processor CREW algorithm which produces a
tree with error at most -r-, and an 0(k2log «)-time rfi -processor CREW algorithm which

nK
produces a tree with error at most 4-. The algorithm obtained as the result of the second

nK

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 86
optimal weighted path length

parallel interpretation of 9 ^ ̂ achieves almost optimal speedup over the Huffman

algorithm and produces a tree with a very small error. This result has been achieved by

applying the cascading sampling technique presented in Section 2.6. In the Section 4.6, we

present two sequential algorithms which are also interpretations of 9 ̂ > ̂ • The first of
them produces a tree with error at most and runs in O(krc) time assuming a RAM

model with bounded register capacity. The second algorithm produces a tree with error at

most a n c ^ a * s o m n s * n Otk") time but it uses an integer sorting algorithm which

assumes a RAM model of computation with unbounded register capacity. Section 4.7

contains some concluding remarks together with a table summarizing our results and related

work.

One should be aware of another source of error which we have not addressed in this

work, namely the error resulting from representation of real numbers on a computer. Our

algorithms use only comparison, addition, division by 2,mod, and TI, with the exception

of the third parallel algorithm which uses also division by n. One can show that Huffman's

algorithm is numerically stable. Similarly our 0(klog n log*n) algorithm is numerically

stable. It is also worth noting that if the input sequence is given as a sequence of integers

representing relative frequencies rather than probabilities then we can reformulate our

algorithms (with the exception of the second integer sorting), so that they will perform only

integer operations using words of size comparable to the size of maximal input element.

4.1. Basic Construct ion Scheme

An optimal tree can be constructed by the following simple algorithm due to

Huffman:

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 87
optimal weighted path length

T H E H U F F M A N ALGORITHM:

While IVI > 1 do

Let v i ,v 2 be the pair of elements from V of smallest weight. Construct internal

node u with v^ and v 2 as children and define w(u)=w(vi)+w(v2).

V:=V-{vi,v2}u{u}.

Huffman's algorithm can be implemented to run in 0(n log n) time. However, if the

input sequence,V, is sorted according to weights then the Huffman tree can be constructed

in linear time. Let Q be (initially empty) queue of internal nodes of the constructed tree

nodes. We also treat V as a queue. Then the following algorithm constructs the Huffman

tree in linear time :

CONSTRUCTION OF T H E H U F F M A N T R E E F R O M A SORTED SEQUENCE OF

WEIGHTS:

While IQuVi > 1 do

let v i be a node such that w(vi)=min {w(first(Q), w(first(V)},

delete vi from the corresponding queue;

let V2 be a node such that w(v2)=min {w(first(Q), w(first(V)},

delete V2 from the corresponding queue;

Construct internal node u with \ \ and V2 as children and define

w(u)=w(vi)+w(v2);

append u to Q.

Both algorithms presented above are highly sequential. We start by presenting an

alternative way of constructing a tree isomorphic to the Huffman tree. Like Huffman's

algorithm our algorithm produces the tree in a bottom-up fashion. At each stage of the

algorithm we are dealing with sequences of roots of disjoint subtrees of the constructed

tree. Each subtree has associated weight equal to the sum of weights of the elements in its

leaves. If an element v belongs to a sequence X then pred(X,v) (resp., succ(X,v)) denotes

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 88
optimal weighted path length

the element which precedes v (resp., follows v) in the sequence X and dist(X,v) denotes

the number of elements (including v) which precede v in the sequence X. We use first(X)

(resp. last(X)) to denote the first (resp. the last) element of the sequence X.

Assume that the input sequence is sorted. Observe that Huffman's algorithm can be

divided into the following phases: At each phase we pair two currently smallest elements,

insert the resulting element, say v, into the sequence, and then pair in sequence all (but

possibly one) elements whose weight are smaller than the weight of v. Finally we merge

the sequence resulting from this pairing step with the rest of the sequence. It is not difficult

to implement this algorithm in 0(kloglog n) time with n processors where k is the number

of phases needed to finish the algorithm. A further modification of this approach allows for

a more efficient implementation and makes it possible to obtain a family of approximation

algorithms.

For every ve V we define rank(v) = [~log(l/w(v))l. If rank(v) = i then we also say

that element v belongs to level i. By convention, we think of a tree as having its root at the

top and leaves at the bottom so a higher level is a level of elements of smaller rank. We

divide the input sequence into subsequences Vi,V2,.. . according to ranks. Let I=max{i I

IVjl>0 }. Elements of each of V, are paired in a different step. The i t n step now consists of

pairing the elements resulting from the previous step (the sequence U2i) and merging the

resulting sequence with the sequence V j . i . Inductively we maintain the invariant that the

elements in the sequence U2i have rank at least i (i.e. they are not too big) and that the sum

of the two first elements has rank at most i (i.e. it is not too small). Furthermore we design

our algorithm in such a way that the cardinalities of all sequences constructed by the

algorithm depends only on the cardinalities of the initial partition into sets Vj (see Lemma

4.3) This appears to be a very useful property both for the designing of approximate

algorithms based on this approach and for their analysis.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 89
optimal weighted path length

Let sort be an increasing sorting procedure, and merge be a procedure which given

two sorted sequences produces a sorted sequence containing all elements from both

sequences. Let pair_elements be a procedure which given a sequence U= ui , . . . ,U2/

produces a sequence C = c i ,...,c/ defined as follows. For i=l,...,/, create a common father

Cj for the pair of elements U2i_i, u2i defining w(ci)=w(u2i-i)+w(u2i). We use # to denote

the concatenation operation on sequences, and - to denote a deletion of a subsequence from

a sequence. As we prove later, the following algorithm constructs a tree isomorphic to the

Huffman tree:

1. Divide elements of V into sets Vi,V2,....such that ve Vj iff rank(v)=i;
2. For every i do sort(Vj);
3. Let Vi 1 , . . . ,Vi L (i r<i r +i, i^=l) be the list of nonempty sets; i:=iL; L ^ I ^ V T ; k:=L-l;

— i is the index of currently processed level, i^ is the index of
— the closest nonempty level to be processed

4. while k>0 or IU2i I >1 do
5.1. if IU2il = 1 then U2ik:=U2i#Vik; i:=ik; k:=k-1;

— put the only element of U2i into the closest nonempty level

5.2. else c:=pair_elements(/i>5 ,r(U2i),5'MCc{/'/r5r(U2i));

5.3. U2i.i:=merge(c,U2i-{//^r(U2i),^cc(/i'm(TJ2i)});

— the parent, c, of two first elements may have rank equal to i or i-1
— so it is initially inserted into the sequence of elements of rank i;

5.4. if IU2i-1' is e v e n th&n c:=pred(last(U2i-\))#last([J2i-i) else c:=last(U2i-i);
5.5. Cj_i:=merge(pair_eIements(U2i-i-c),V}_i);

— pair elements of U2UI except for the last element (or last two
— elements); the last element may have rank equal i-1 (compare
— step 5.3) so should not be paired at this point;
— merge the resulting sequence with the elements ofV^j

5.6 l ^ ^ m e r g e C q . ^ c) ;
— merge the remaining (one or two) elements form sequence U2i-l
— into sequence C^;

5.7. i:=i-l; if IVjl > 0 then k:=k-l.

Lemma 4.1. The above algorithm produces a tree isomorphic to the Huffman tree.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 90
optimal weighted path length

Proof: Assume that in the above algorithm we replace the procedure pair_elements with

a sequential procedure which pairs elements of an even length from beginning to end. It

suffices to prove that during such a pairing step we always pair two smallest elements (i.e.

the roots of the two subtrees of smallest weight are given a common parent). Note that all

sequences occurring in the algorithm are sorted and that, for any i<k, elements in Vj are

greater than elements in V^. Note also that the following statement is an invariant of

the"while" loop: elements in Vj_i are greater than elements in U 2 i - This is certainly true

before the first iteration. So in step 5.2 we pair two smallest elements. After step 5.3, all

elements of U2i_i except, possibly, the last one are smaller than any element of Vj.i. Also

for any i the last element of U 2i.i is smaller than any element of Vj_2- Since the last element

does not take part in the pairing step in line 5.5, in this step the smallest possible pair of

elements is also always paired. After step 5.5 elements of Q . i are smaller than elements of

Vj_2. So elements of the sequence U2i_2 created in step 5.6 are also smaller than elements of

Vj_2. From this the invariant of the "while" loop follows and consequently the fact that we

always pair the smallest possible pair of elements. •

Consider the above algorithm from a more general point of view. Replace the sorting

procedure by a procedure ORDER which defines some (not necessarily sorted) order and

the procedure merge by a procedure M E R G E which given two sequences V, C produces a

sequence of elements in V u C with the property that it is sorted according to rank (but not

necessarily within each rank). This produces an algorithmic scheme called the Basic

Construction Scheme (B) . Our initial algorithm is an interpretation of We call

this interpretation the Huffman tree algorithm and denote it by H . Note that although

pair_elements has a fixed meaning, its implementation depends on the representation of

the sequences so, for consistency, we replace pair_elements by a procedure

PAIR_ELEMENTS depending on the interpretation. When we refer to a sequence (Vj, Q

or Uj) obtained by performing V>ViA in interpretation A, we use A as a superscript in the

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 91
optimal weighted path length

name of the sequence (VjA, Q A or U j A respectively). Note that in fact we can use different

interpretations of procedure MERGE and PAIR_ELEMENTS in different steps of an

interpretation of tBC-o. If that is the case, then we indicate this by adding a subscript equal

to the number of the substep of step 5 to the name of the corresponding interpretation. For

example, MERGE3 denotes an interpretation of the MERGE procedure used in step 5.3.

So:

BTS/6 = <J9, INITIALIZE, ORDER, MERGE, PAIR_ELEMENTS)

where
n

JS>= {(x,,...,xn) eR+ x R+ x....x R+ I J^q =1};
i=l

ORDER, MERGE, and PAIRJELEMENTS satisfy conditions described above;

(we omit a formal axiomatization of the properties of this procedures)

P: Input: array [xi,...,xn] and array [vi,...,vn] such that W(VJ) = XJ ;

Output: a binary tree with leaves, V, labelled by elements from {x1,...,xn}

Scheme:
1. Divide elements of V into sets V1,V_2,....such that ve Vj iff rank(v)=i;
2. For every i do ORDER(Vj);
3. Let Vi 1 , . . . ,Vi L (ir<ir+i, ii=l) be the list of nonempty sets;

i:=iL; U2i:=VT;k:=L-l;

4. while k>0 or IU2i I >1 do
5.1. if IU2il = 1 then U2ik:=U2i#V ik; i:=ik; k:=k-l;

5.2. else c:=PAIR_ELEMENTS(//>^r(U2i),^MCc(/i>^r(U2i));

5.3. U 2 i . i :=MERGE3(c,U2 i- [first(V2\)^ucc(first(\]1i)});
5.4. if IU2i_il is even then c:=pred(last(XJ2i-i))#last(\J2i-i)

else c:=/asr(U2i-i);

5.5. C i. 1:=MERGE 5(PAIR_ELEMENTS(U 2 i. rc),V i. 1);

5.6 U 2 i. 2:=MERGE 6(C i. 1,c);

5.7. i:=i-l; if IVJ > 0 then k:=k-l.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 92
optimal weighted path length

W e define the level o f a sequence U j to be equal to T̂ rl. Elements o f U j whose rank is

equal to the leve l o f U j f o r m the main subsequence o f the sequence U j . E lements o f U j

whose rank is less than the level o f U j form the head o f the sequence U j . Elements o f U j

whose rank is greater than the level o f U j form the tail o f the sequence U j .

L e m m a 4.2: F o r any i the fo l lowing ho ld :

(i) I ta//(U2i) I = 0 ,

(ii) I headtSSn.i) 1 = 0,

(iii) I ta//(U2i.i) I < 1,

(iv) I head(U20 1^2,

(v) the element in the tail o f a sequence has rank one smaller than the level o f the sequence,

(vi) i f IU 2 j l > 1 then the element whose weight is equal to the s u m o f the weights o f two

first elements in the sequence has rank equal to or one smaller than the level o f the

sequence.

Proof: T h e p r o o f fo l lows by induct ion on the leve l o f a sequence. C o n s i d e r first a

sequence U j o f level I such that j = 21. T h e sequence U j has an empty tail and head, and all

elements in U j have rank equal to the level o f U j so (i) - (vi) are obvious ly true. Cons ider

now sequence U 2 T_I . If such a sequence is constructed then it is obtained from the sequence

U 2 T by pairing the two first elements and merging the resulting element with the rest o f the

elements in the sequence. It is obvious that U21-1 has empty head and has a one-element

tail. T h e rank o f the element in the tail is equal to 1-1. S o (i) - (vi) ho ld also for j=2I-l.

A s s u m e that (i) - (vi) ho ld for all sequences U j o f level less than i . T o show point (i)

note that i f sequence U2i+i has not been constructed then sequence U 2 j contains elements

f r o m V j and the only element o f the last nonempty sequence U 2 k (k>i). If U2i+i has been

constructed then U j contains elements f rom V j , Q and at most two elements f r o m U 2 i + i -

S ince elements in V j and Q have rank equal to i and by inductive hypothesis point v)

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 93
optimal weighted path length

elements in U2i have rank at most i, point (i) follows. To show points (iv) and (vi) note

that the elements in the head may come either from the sequence U2i+i or, if U2i+i has not

been constructed, from the last nonempty (one element) sequence U2k (k>i). In the first

case (iii) follows from the fact that U2i+i has no head and in the second case it follows

from the fact that in this case there is only one element in the head.

Point (ii) follows from the facts (iv) and (vi) which have been proven above. Point

(iii) follows from point (i) by the construction of tft ISA. Point (v) follows from point (vi)

by the construction of I B C ^ J

Lemma 4.3 (the oblivious property) : The cardinalities of all sequences occurring in

the description of "fifr £5 A and the number of iterations performed by an interpretation of

IB f3 A does not depend on the interpretation.

Proof: Note that in any interpretation of we start with the sequences V i , . . . , V j such

that for each i=l,...,I the cardinality of V , does not depend on the interpretation. The

cardinality of any sequence constructed by an interpretation of tRUA depends only on the

cardinalities of the sequences used for the construction and therefore, by induction, is

independent of the interpretation. Similarly the number of iterations depends only on the

cardinalities of the sequences and therefore is independent of the interpretation. •

An important consequence of the above lemmas is that if T is a tree constructed by an

interpretation of tft "G A then AT can be expressed in the following way:

Lemma 4.4: Let T be a tree obtained by some interpretation, A, of B1ZA and let

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 94
optimal weighted path length

if U2i has not been constructed or IU2il=l

w(first(\J2iA))+w(succ(first(\J2iA)))^ if IU2il>l

0 if U2i_i has not been constructed or IU2i_il=l

A2i_i =< w(last(XJ2i-iu))-w(last(U2i-\A)) if IU2i.1l * s °dd a"d i is greater than 1

[w(tor(U 2i.i%+w(pr^(^
otherwise.

21
ThenAT = XAj.

j=i

Proof : At any stage of the algorithm we are dealing with the forest consisting of the

subtrees constructed so far. The roots of the subtrees belong either to the most recently

constructed sequence Uj or to sequences Vj (i<T̂ -~|). Let c(TjH) (resp., c(TjA)) be the cost

of the forest such that the roots of the trees in this forest belong to the sequence U r

H (resp.,

U r

A) where U r

H (resp., U r

A) is the last constructed sequence such that r>j. By the

definition of Aj we have for j<21: c(TjA)-c(TjH) = c(T j + 1

A)-c(T j + 1

H)+A j + 1 . Thus AT =
21
l A j . •

j=i

We use the above lemmas to prove:

Theorem 4.5: If T is a tree obtained by an interpretation of IB C £ then AT <1.

Proof: Let dj=A2i+A2i_i. We prove first that

d j < - i r + - ^ r . (*)

Let UA2i =uAi,uA2,...uA

k 2 i be the sequence constructed by an interpretation, say A, and

UH2i =uHi,uH2>—uHk2i b e m e sequence produced by the interpretation H (the Huffman

http://IU2i.1l

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 95
optimal weighted path length

tree algorithm). Note that if U2i is not constructed then U2i_i is also not constructed and

then dj=0. Alternatively consider the following four (exhaustive) cases:

1) Neither of the interpretations creates a tail. Then by Lemma 4.2 point (vi) we have 4- <

w(uA!)+w(uA

2) and ^ < w(uH!)+w(uH2) < ~ . Then A 2 i < j{ and A 2 i _i< 4

S o d ^ ^ r + i -1 21"1 21

2) Both interpretations create a tail. We can interpret this case as a case when in both

interpretations all but at most one (the last) of the elements are paired. Since unpaired

elements have rank equal to i it follows that dj< --j .

3) Interpretation H creates a tail and interpretation A does not create a tail. Then <

w(u A i)+w(uAo) < - T - r and -4-r < w (u H i) + w (u H

2) ^ - T - T . Assume that

1 1 1 1
w(u H i)+w(u H 2)= ^ n " + z - T h e n

 A2i^-z and A 2 i . i £ + +z, so d^^y-

4) Interpretation A creates a tail and interpretation H does not create a tail. Then -jr <
21

w(u H

1)+w(u H2) <-̂Y and - r y < w(u A i) + w (u A

2) ^ " j j Assume that
2̂ 2̂ 2̂

w(uAi)+w(uA

2)= 4---+Z. Then A 2 i <|r+z and A 2 i . !< | r - z , so di<4-

Note that the most expensive case is case 1. However, if in this case IU A

2 j l is even,

then A 2j_i < ^ r . If I U A

2 i l is odd (and greater than 2), then this step is followed by step of

type 1 such that A 2 i . i = -A2j_2 • So in general we can assume that dj< + z i + 1 - Zj

where ZJ=A2J i if U2i i has even number of elements and 1) holds and Zj=0 otherwise.

I 1
 i

Thus we have AT =]Tdj < \ - y y . It remains to show that d i = - Z 2 - It is obvious that
i=i J^JZ 1

i=l

A ^ O . If n=2 then obviously AT = 0. Thus assume that n>2. Then has at most one

element. If V j has one element then U3 has at most 2 elements with neither of them in a tail

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 96
optimal weighted path length

(otherwise the sum of the weights would be greater than one). Thus in this case di =-Z2- If

Vl has zero elements then U3 either has four equal elements (and the result is obvious) or at

most 3 elements. If it has 3 or fewer elements then U2 has two elements and therefore

A2=0. If U3 has 2 elements then one of them must be a tail so Z2=0. If it has 0,1 or 3

elements then 1) does not hold and Z2=0 as well. •

From the inequality (*) above, it follows that vertices of higher level may potentially

contribute more to the total error. Thus it is natural to ask how far we can reduce the error if

we run an approximate algorithm until we reach some level, say t, and then use the

Huffman tree algorithm, i.e. when we reach level t we sort all sequences on levels t and

higher, and for the remaining iterations interpret M E R G E as an exact merging procedure.

To see how much we can reduce the error using this approach consider first the

following problem:

Let W=wi,W2,....,wk where k = n-r, r > 0, and wi+W2+....+wk<l. Let L = 1-

(w1+W2+....+wk). A sequence wi,W2,....,wk,wk + 1,....,wn such that w k +i>....>w n and

w k + l + — + w n = L is called an extension of W. Elements W k + i , , w „ are called flexible

elements. A sequence P=wi,W2,....,wk,wk+1,....,wn is called a feasible extension of the

sequence W if, for every i,j such that Wj,Wj<max{w k + 1 , ,w n } , WJ<2WJ . Denote by

IF (W) the set of all feasible extensions of W. Assume that JF (W) is nonempty. Let

Pe IF (W). We denote the cost of an optimal tree for the sequence P by C(P) . Let AW
= max C(P)-C(Q). We are going to estimate the value AW.

Lemma 4.6. Let/: N x N->R be the function defined as/(x»y) =2^+y • T h e n m e r e e x i s t s

a pair of integers r i ,r 2 such that ri+r2=n-k and the sequence

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 97
optimal weighted path length

W*= w 1 , w 2 , , w k v 2 / (r 1 , r 2) , . . . , 2 / (r 1 , r 2) / (r 1 , r 2) , . . . / (r 1 , r 2)

belongs to ^(W) and satisfies C(W*)=p min^C(P). Furthermore there exists an optimal

tree T* for the sequence W* in which all flexible leaves of weight f(j\,^2) occur on one

level, say h, and all flexible leaves of weight 2 / (r 1 , r 2) occur at level h-1.

Proof: Let Q = wi,w2,....,wk,wk +i,....,wn be a feasible extension of W=wi,w2,....,wk

which satisfies C(Q) = min C(P). Let T be an optimal tree for Q. Let u be the maximal

flexible element of Q. First we show that there is an optimal tree in which all elements less

than or equal to u occur on two consecutive levels. Assume that there are two elements

WJ,WJ< u such that wj belongs to level h and Wj belongs to level h-s (s>l). Then the parent

of Wj, say x, has weight at least twice as big as the weight of the smaller of its children.

Since Q is a feasible extension of W it follows that x > Wj. Therefore we can switch WJ

with x without increasing the cost of the tree. Thus there is an optimal tree for the sequence

Q, say T', in which all flexible elements occur at two consecutive levels.

Let the number of flexible elements on level h-1 of tree T' be equal to r ^ and the

number of flexible elements on level h be equal to r 2 . We do not increase the weight of the

tree if we assign the weight 2/(r i , r 2) to flexible nodes on level h-1, and the weight/(ri,r2)

to flexible nodes on level h. In this way we obtain tree T* which satisfies the conditions

stated in the lemma. •

In Lemma 4.6 we constructed a sequence W* such that C(W*) = min C(P). Now
PeSXW)

we are going to construct a (non-necessarily feasible) extension W of W such that
C(W')> max C(P). Let P,Q be a pair of extensions of W such that P is obtained from Q

PeD̂ W) V

by reducing the value of a flexible element of Q, say Wj, by some value x and increasing

the value of another flexible element of Q, say Wj, where Wj>Wj, by the same value x.

Then we say that P is obtained from Q by an elementary shift of weight.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 98
optimal weighted path length

Lemma 4.7: If P is obtained from Q by an elementary shift of weight then C(P)<C(Q).

Proof: Assume that P is obtained from Q by reducing the value of a flexible element of w,

say Wj, by some value x and increasing the value of another flexible element of w, say Wj,

where WJ>WJ, by the same value x. Let T be a tree which is optimal for the sequence Q. Let

T' be a tree obtained from T by changing the weights of leaves corresponding to Wj and Wj

by subtracting and adding x respectively. Since 1T(WJ)<1t(WJ) it follows that c(T)>c(T").

Furthermore the cost of T is greater than or equal to the cost of an optimal tree for P. •

Lemma 4.8. The sequence W'=W],w 2 , ,w k , %̂ ^ — ^ - satisfies C(W')

> max C(P).
P e J r (W)

Proof: We show that for any feasible extension P=wi,W2,....,wk,wk+i,....,wn, there

exists a sequence of elementary shifts of weight leading from W' to P. We define this

sequence inductively. Let Wj = w 1,W2,....,w k,w k + 1

i,....,w n

i be the sequence obtained

after the i t h elementary shift of weight (W 0 = w' = w i , w 2 w k , ~ , y) =

w 1 , W 2 , , w k , w k + 1 ° , , w n °) . If Wj * P then perform the following shift of weight:

Let Wji be the first flexible element such that WJ J <WJ and w t

J be the last flexible

element such that wt' >wt. Then define W ; + 1 as follows:

for s*j,t w s

i + 1 =w s i ;

Wji+l=Wji+min(Wj-Wji,wt

i-wt) ;

Wji+lrzw^-minCwj-Wji.w^-Wj) ;

(shift min(w k +i-w t

i ,w t

i-w n) weight from wt* to WjJ). It is obvious that a finite number of

such steps convert W into P. Thus, by Lemma 4.7, C(W')>C(P). •

Now we are ready to prove the following theorem:

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 99
optimal weighted path length

Theorem 4.9: If W=w1 ,W2,—,wk where k<n and l-(wi+W2+....+wk) = L>0 then AW

<L(3-2%T2).

Proof: Let T* be the optimal tree from Lemma 4.6 and let T" be a tree obtained from T*

by replacing all flexible vertices with vertices of equal weight (=~^- Of course c(T") >

c(T) where T' is an optimal tree for the sequence where all flexible vertices are equal. So

AW < c(T")-c(T*) = r 2 (- - y^—) = ̂ • "~k~l2 . K ' v ' z\x 2vi+V2/ n-k 2(n-k)-r2

Consider A W as a function of r 2 . This function achieves its maximum, equal to L(3-2V2)

< 0.1716L, for r2=r(2-V2). Thus AW < L(3-2V2).B

Corollary 4.10: If B T J ^ O is interpreted in such a way that an approximate construction

is carried out to level t-1, and the exact construction is then performed for all levels greater

than or equal to t, then A T < 10.1716.

Proof: Let W=wi,...,wk be the sequence of weights of elements of rank smaller than t.

Then for any interpretation of T3 A the sequence obtained by sorting of the sequence

U2t-i is a feasible extension of W. By (*) and Theorem 4.9 it follows immediately that AT

< + 0.1716.U

Note that from the above corollary it follows that if we start the exact construction

from level 11 then AT < 0.172.

4.2. Approx ima te sort ing and merging of approx imate ly sorted

sequences

A sequence ui,U2,...uic is e-sorted if and only if max(max(w(uj)-w(uj)))<£.
i i<i J

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 100
optimal weighted path length

A sequence ui,U2,...u k is an e-approximation of the sequence vi ,v 2 , . . .v k if for every

i, w(Uj)-r-£>w(vj)>w(uj)-£. Note that if ui,U2,...u k is an e-sorted permutation of a sorted

sequence \\,V2,...vk, then it is also an e-approximation of the sequence vi ,V2,...vk.

A procedure performs e-merging if, given two e-sorted sequences, it produces an

e-sorted sequence.

Example 4.11. Consider the standard merging procedure applied to two e-sorted

sequences C = Ci ,C2, . . .c k and V = vi,V2,. . .v r (i.e. the procedure which inductively

compares the first elements of the input sequences, removes the smaller of them, makes it

the next element of the output sequence, and so on). Let U=ui,U2,...u k + r be the resulting

sequence. To see that this procedure performs e-merging note that for any two elements

Uje V, Uje C (resp., Uj€ C, Uj€ V) if i<j then there exists an element ut€ C (resp., u te V)

such that i <t < j and w(ut) > w(uj). Since C (resp., V) is e-sorted it follows that w(ut) <

W(UJ) - e. So w(uj) < W(UJ) - e.

Example 4.12: Consider a merging procedure which first divides input sequences V and

C into m subsequences V 1 ,V2, . . .V m and C i , C 2 v C m respectively (some of them possibly

empty) such that the i t n subsequence contains elements whose weights are in the interval

^m *~m^ (r e c a ^ t n a t a ^ elements are from the interval (0,1]). The merged sequence is equal

to Vi ,Ci ,V2 ,C2 , . . . ,V m C m . It is easy to see that this procedure first constructs - sorted

sequences and then performs ^-merging of those sequences.

An important property of an e-merging procedure is given in the following lemma:

Lemma 4.13: Let C A = c A i , c A

2 , . . . c A

k and V A = v A i , v A 2 , . . . v A

r b e two e-sorted

sequences. Assume also that V A is an e-approximation of a sorted sequence V H and that

C A is an e-approximation of a sorted sequence C H . Let U A be a sequence obtained by

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 101
optimal weighted path length

merging V A and C A by an e-merging procedure, and let U H be a sequence obtained by the

exact merging of V H and C H . Then U A is a 2e-approximation of U H .

Proof: Let u A and u H be two elements with the same index in U A and U H respectively.

Assume without loss of generality that the number of elements from C A in the sequence U A

which precede element u A is less than or equal to the number of elements from C H which

precede element u H in U H . Then there exists j such that the j t n element of list V A (VJA)

occurs in U A before u A or is equal to u A , and the j t n element of list V H (VJH) occurs in

U H after u H or is equal to u H . But V A is an e-approximation of V H so W(VJ A) > w(vjH)-e.

However W(VJ h) > w(uH) and (since U A is e-sorted) w(uA) >w(vjA)-e. So w(uH)-w(uA) <

2e. Two prove that w(uA)-w(uH) < 2e we use a symmetric argument (with the role of C

and V exchanged). •

4.3. General Construction Scheme (9tS/6)

Note that if set V contains elements of very small weights then computing ranks may

become a bottleneck for any interpretation of B £> A .To obtain efficient implementations

we divide all elements into two groups : heavy elements and light elements. More precisely

let K(n) be an integer function of n. An element whose rank is less than or equal to K(n) is

called a heavy element and an element whose rank is greater than K(«) is called a light

element. We assume that K(n) is chosen in such a way that it is easy to decide whether a

given element is light or heavy and that it is easy to compute ranks of heavy elements.

Denote the set of heavy (resp., light) elements of V by Vj, (resp., V/) and let V'= V^U {u}

where u is an arbitrary element of V / .

The General Construction Scheme (9£>/©) is a modification of the basic construction

scheme. Roughly speaking, we use tfr £5/6 for the set of heavy elements and then add to

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 102
optimal weighted path length

the resulting tree a subtree of light elements. (A similar approach was also taken in

[AtaKosLarMilTen89] for the algorithm to construct an almost optimal binary search tree.)

GENERAL CONSTRUCTION SCHEME (QVA)
1. Divide set V into sets Vjj and V/.
2. Divide elements of into sets V 1,V2,. . . .VK(«) according to ranks
3. For every i compute ORDER(Vj).
4. Choose an arbitrary light element u and add it at the beginning of the sequence VK(n) (let

V'K(n) be the resulting sequence)
5. Perform steps 3-5 of the tflCo for set V'= V h U {u};

6. Replace u by an almost full binary tree composed of all light elements.

Note that the error of a tree constructed by an interpretation of 9 ^ ^ is composed of

two factors: the error resulting from an interpretation of V> t> A and the error from the light

elements. We call the first component construction error and the second component

truncation error. The total error can be approximated with the help of the following lemma:

Lemma 4.14: Let T' be an approximation of an optimal tree for V and let T be the tree

obtained from T' by replacing u by any binary tree of all light elements. Then
2

AT<AT'-f "
2KO0 "

Proof: Since every leaf has depth at most n in T we have:
ra2 ^ x » r ™ n 2

c(T) < c(T') + n 5>(v) < c(T') + < c(T*v0+ AT+

soc(T)<c(T*v)+AT+ •

4.4. Parallel interpretations of 9 ^ A

As we have mentioned before, the 9 /6 presented in the previous section can be

divided into two parts: computing a tree for heavy elements and modification of the

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 103
optimal weighted path length

resulting tree with a subtree of light elements. The second part can be implemented in

0(log n) time with n/log n EREW PRAM processors independently of the choice of K(ri).

The first part involves 0(K(n)) iterations of step 5 of A3 tZ A so in order to obtain an

efficient parallel algorithm it is natural to chose K(n)=kflog n l where k is some integer
constant. With this definition of K(n), truncation error is bounded by —j-r. So we

concentrate on an interpretation of the first part (i.e. on an interpretation of the H3tj/6 for

heavy elements).

4.4.1. 0(log n) time n~y^rn~ E R E W processors parallel interpretation of

9 C A with error bounded by 0.172

By Theorem 4.5, any interpretation of gives a construction error bounded by

1. By Corollary 4.9 any interpretation of A3 tj,£ in which starting from level t we apply the
Huffman tree algorithm leads to a construction error bounded by -—r + 0.1716. So, in

particular, we can start with arbitrarily ordered sequences and for sequences on levels

lower than t interpret MERGE as concatenation of two sequences. Then at level t, we sort

all sequences and finish the construction interpreting MERGE as an exact merging

procedure. We can compute ranks for heavy elements in 0(loglog n) time with 0(«) EREW
processors by a binary search or (simulating i ^ ^ g n processors by one processor) in

0(log n) time with n°,^^ n EREW processors. Then, using the parallel bucket sort

lOg YI

algorithm of Cole and Vishkin [ColVis86a] which sorts integer elements in the range

[O...log n] in 0(log n) time with n /log n processors, we distribute the elements to the

corresponding subsets. All concatenation and pairing steps can be implemented in total of

0(log n) time with n EREW processors. However, by applying Brent's scheduling

principle (since we can maintain information about the position of every element within a

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 104
optimal weighted path length

list, the processor allocation is not a problem) we can reduce the number of processors to

n . Since there are at most 2 l elements on levels t and higher, the "exact" part of the

algorithm can be implemented in 0(t log2t) time using Cole's parallel merge sort and an

EREW impelemention Valiant's parallel merging procedure. Let t < log n - loglog n. Then

the entire algorithm can be implemented in 0(log n+t log2t) time with n n EREW

processors. In particular, if we choose t=k=l 1 we obtain:

Corollary 4.15: A tree whose cost differs by at most 0.172 from the cost of an optimal

tree can be constructed in 0(log n) time with « " ~] ^ r f " ^ EREW processors.

4.4.2 A 0(kIog n log*n) time n processor parallel interpretation of 9 ^ ^

with error bounded b y ' l / n k

We represent sequences in the form of lists such that for every element its position

within the list is known. To achieve zero construction error we can implement ORDER

with Cole's parallel sorting algorithm [C0I86] which runs in 0(log n) time using n CREW

processors and M E R G E with Valiant's merging algorithm ([Val75],[BorHop85]) which

merges two sorted arrays of sizes rt;,«2 (ni^n2) m 0 (l ° g l o g «?) time with rt;+«2 CREW

processors. This permits a straightforward implementation of step 5 of A3 A in

0(loglog n) time with n processors. By the definition of heavy elements, we have

0(klog n) iterations. Thus this implementation runs in 0(klog n loglog n) time using n

processors.

To reduce the running time to 0(log n log*n) we use the cascading sampling

technique described in Section 2.5. Note that we can view our solution as a sequence of

parallel merging steps which, by the nature of the problem, have to be performed one after

another. Thus we cannot improve the time complexity by pipelining the sequence of

mergings. However, the cascading sampling techniques makes it possible to break each

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 105
optimal weighted path length

merging problem into smaller merging problems which can be solved in parallel. We define

sample(y)=y/2 and perform the preprocessing step as discussed in Section 2.6. Recall from

Section 2.6 that this results in introducing new elements, called sampling elements, to each

level. For each sampling element, x, there is a unique element (the source element for the

element x) in the next higher level whose weight has been divided by half to obtain x. For

any sampling element, x, source(x) is defined to be equal to the source element of x.

Recall also that if u\, u 2 , is a pair of sampling elements from the same level such that there

are no other sampling elements between them, then the subsequence of elements which lie

between u i and u 2 is called a basic sequence, and the sequence of elements from the higher

level which lie between the source of uj and the source of u 2 is called a gap. We also say

that the gap defined by û and u 2 corresponds to the basic sequence defined by u ^ and u 2 .

From Lemma 2.10 it follows that the gap size is bounded by 2 l o S* / 1 + 2 .

To efficiently implement one iteration , say the i t n , of Q^A, we have to efficiently

pair real elements from level |~log n~\ - i + 1 and merge the resulting elements into level

flog n~\ -i. Similarly to the cascading functions problem, the existence of sampling elements

allows us to subdivide each merging problem into subproblems such that at least one of the

sequences in each merging subproblem is bounded by 2 l o 8* n + 2 . The existence of sampling

elements makes the implementation of the PAIR_ELEMENTS procedure more involved.

We only have to pair the real elements of a sequence. On the other hand the sampling

elements (with doubled weight) must stay in the sequence after the pairing step. These

elements are needed for the next merging step. Thus in our implementation of the

PAIR_ELEMENTS procedure we first rearrange the sequence (not changing the relative

order of real or sampling elements) in such a way that real elements which are going to be

paired occur as consecutive elements. Furthermore positions of sampling elements are

chosen in such a way that the list obtained by pairing real elements and doubling of weights

of sampling elements is sorted. For this purpose for every element in a sequence we keep

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 106
optimal weighted path length

the value nrjr equal to the number of real elements which precede the given element in the

sequence (including the element itself), and leftjr which is the pointer to the closest real

element to the left.

To efficiently merge two sequences we have to determine, for each element in a

sequence, the merging subproblem to which it belongs. For this purpose we keep, for each

element, sequence pointers left_sa and left_so which define respectively the closest

element to the left which is a sampling element and the closest element closest to the left

which is a source element. In this way, each sampling element defines a basic sequence and

its source defines the corresponding gap. We also keep, for every element in the sequence,

the value nrso equal to the number of sampling elements which precede the given element

in the sequence (including the element itself). This information is needed to efficiently

compute the functions defined above for the sequence resulting from a merging step.

This can be described in more detail as follows:

REPRESENTATION OF SEQUENCES: Each sequence is represented by a list formed by

the pointers succ. Also, for every element of a sequence, the following information is

given:

nr_sa - the number of sampling elements in the sequence, which precede the given

element (including the element itself),

nr_r - the number of real elements in the sequence which precede the given element,

left_sa - the pointer to the closest sampling element to the left,

left_r - the pointer to the closest real element to the left,

°left_so - the pointer to the closest element to the left which is a source element,

nrso - the number of sampling elements in the sequence which precede the given

element.

and for every sampling element we have:

source - the pointer to the source of the given element.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 107
optimal weighted path length

To simplify the description we will also assume the following pointers (these pointers can

be computed in parallel using the information provided by the pointers defined above):

right_r - the pointer to the closest real element to the right,
pred - the reverse of the succ pointer,
source'1 - the reverse of the source pointer,
dist - the sum nr_so+nr_r.

INITIALIZATION: The source pointers are built in the sampling process. All the other
information can be computed by applying the parallel prefix technique.

PATR_ELEMENTS:

STEP 1: Rearrange the sequence in such a way that real elements which are going to be
paired occur as consecutive elements.

For every sampling element x compute yl(x):=left_r(x); y2(x):=right_r(x);
A sampling element x such that w_r(yl(x)) is odd is called a skipped element.
For every skipped element the following two tests are performed:

AFTER(x) 4=> 2w(x) < w(yl(x))+ w(y2(x))
INSERT(x) O AFTER and (w(yl(x))+ w(y2(x)) < 2w(succ(x))

or succ(x) =right_r(x))

The first test checks whether the two real elements yl(x), y2(x) should be inserted
somewhere after x and the second test checks whether the two real elements should be
inserted immediately after x. However it may happen that the pair of real elements should
be inserted before all sampling elements which occur between them. To detect this case
every real element y performs the following test:

FIRST(y) 4=» nr_r(y) is odd and w(y)+ w(right_r(y)) < 2w(succ(y))

STEP 2. For every skipped sampling element x update left_r and nrjr :

if AFTER(x) then left_r(x):=left_r(left_r(x))\ nr_r(x):=nr_r(x)-l
otherwise /e/r_r(x):=y2(x); nr_r(x):=nr_r(x)+\

STEP 3. Rearrange the elements on the list:

For every skipped element x for which INSERT(x) is true do:

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 108
optimal weighted path length

succ(pred(yl(x))):=succ(yl(x)); succ(pred(y2(x))):=succ(y2(x));
succ(yl(x)):=y2; succ(y2(x)):=succ(x); succ(x):=yl(x);

For every real element y for which FIRST(y) is true do:
succ(pred(right(y))):=succ(right(y)y, succ(right_r{y)):=succ(y); succ{y):=right_r{y)

STEP 4. For every real element which changed its place compute leftsa, nrsa:

For every skipped element x for which INSERT(x) is true do:
left_sa(succ(x)), left_sa(succ(succ(x))):=x;
nr_sa(succ(x)), nr_sa(succ(succ(x))) :=nr_sa(x);

(we don't need pointer left_so for the list which is currently at the lowest level)

For every real element y for which FIRST(y) is true do
left_sa(succ(y)):=left_sa(y); nr_sa{succ{y)):=nr_sa{y)

STEP 5. Form a new sorted list by pairing real elements and doubling weights of sampling
elements.

Elements obtained from pairing real elements are considered as real. All the functions (nr_r,
nr_sa, left_r, left_sa, succ, pred) can be easily computed from the corresponding functions
of the old list.

MERGEj(C,V) for i=3,6 is implemented as one or two insertion steps (we use the
concurrent read facility to find the proper place for the inserted element).

MERGE5(C,V) is implemented as follows:

Step 1. Identify gaps and corresponding basic sequences:
- For every element of V decide (based on left_so) to which gap it belongs.
- For every real element of C decide (based on left_sa) to which basic subsequence it

belongs.
- If x is a sampling element then the basic sequence defined by this element corresponds to

the basic sequence defined by sourceix).

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 109
optimal weighted path length

STEP 2. Merge every basic subsequence with the corresponding gap

We use Valiant's merging algorithm. Let x be an element from a merged list and let d(x) be

the number of elements in a merged list which precede x and which are from a sequence

other than the sequence to which x belonged before merging. This value can be computed

as the difference between the current position in the (merged) subsequence and the previous

position in the gap or basic subsequence.

STEP 3. Compute the representation of the merged sequence:

- Since we know the position of every element in V we may assume that we have

immediate access to every element of V. Denote the i 1" element of sequence V by V(i).

For every xe V:

nr_sa(x), leftjsa -remains unchanged,

nr_r(x):=d(x)+nrj-(x)+nr_r(source'1(left_so(x)));

For every xe C:

y:=V(dist(source(left_sa(x)))+d(x));

find the closest element from V preceding x in the merged sequence

nr_sa(x) :=nr_sa(y); left_sa(x):=left_sa(y);nrj-(x):=nr_r(x)+nr_r(y));

- For every x: dist(x):=nr_sa(x)+nr_r(x)

- Computing left_r: Let R be an auxiliary array. For every real element x do R(«r_r(x)):=x

(assume R(0)=null). If x is a real element then left_r(x):=R(nr_r(x)-l) otherwise

left_r(x):=R(nr_r(x)).

The remaining functions can be easily computed in 0(1) steps.

This finishes the description of the algorithm. We can summarize the main result of

this section in the following theorem:

Theorem 4.18: A tree whose cost differs by at most - i - from the cost of an optimal tree
nk

can be constructed in 0(k log n log*rt) time using n CREW processors.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 110
optimal weighted path length

4.4.3.0(k2log n) time n 2 processor parallel interpretation of 9 C /6 with
error bounded by - T -

In our first interpretation of the 9 we left the elements in each of the sequences in

their initial order. In our second interpretation we maintain the sorted order in all

sequences. The interpretation which we present in this section lies between these two

approaches. Here we approximately sort initial sequences and use an approximate merging

algorithm which combines two sequences in constant time. The idea of the merging

algorithm is taken from Example 4.12. First, we describe an algorithm which works in

0(klog n) time with « 6 k processors and then we show a hierarchical data structure which

allows an 0(k2log n)-time «2-processors implementation.

The idea is to partition the main subsequences (i.e. sequences with tails or heads

excluded) into n 6 k subsequences such that element x belongs to the subsequence j if and
only if w(x)-i€ ['^•^-, ~^~r) where i is the level of the subsequence (we treat heads

and tails separately). If an element, say x, belongs to the sublist we say that its subrank

is equal to j (denote subrank(x)=j). In order to pair the elements in a sequence we need to

know for each element the distance (or at least the parity of the distance) of a given element

from the beginning of the sequence. If we pair two elements we have to compute the rank

and the subrank of the resulting element. This is relatively easy if both elements have the

same rank. Then the subrank of new element is approximately equal to the average of the

subranks of the two initial elements. This becomes technically more involved when the

paired elements have different ranks (this may happen when we pair the first two elements

of a sequence). We show how this can be done in time proportional to the difference of

ranks of these elements. In order to merge two sequences of the same level we concatenate

corresponding subsequences (cf. Example 4.12). For each element in the new sequence we

want to compute its distance from the beginning of the sequence. To do this it suffices, for

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 111
optimal weighted path length

each element, to find an element from the other sequence which precedes the given element

in the merged sequence. For this purpose, for each subsequence, we maintain the pointer to

the closest nonempty subsequence following it and to the first and the last element of the

given subsequence. This motivates the following representation of the sequences:

REPRESENTATION OF SEQUENCES:

For every element, x, we have:

dist(X,x) - the position of element x in the sequence X,
succ(X,x) - the successor of element x in the sequence X,

If XJ is a subsequence of the basic subsequence of the sequence X then

SUCC(XJ) - the closest nonempty subsequence following X J .
FIRST(XJ) - the first element of the subsequence XJ.
LAST(XJ) - the last element of the subsequence Xi .

(If a subsequence j is empty then FIRST(XJ)=LAST(XJ)=0.

INITIALIZATION: It is not difficult to construct the above data structure in 0(klog «)time

with n 6 k processors.

PAIR_ELEMENTS: First we show how to compute the subrank of the parent, say u, of

two elements û , u 2 in time lrank(u2)-rank(ui)l. We assume that for every element u we

know the boundary values 2rank(u) a n (* 2rank(u)-l • ^ ul> u2 n a v e ^ G s a m e r a n k m e n

, subrank(ui)+subrank(uo), , , / s , subrank(ui)+subrank(u2), .
|_ — —J ^ subrank(u) < _ ^ J + l •

We can compute in 0(1) time the boundary values of the two possible subranks of element

u and in this way determine one of two possible values. Assume that rank(ui)-rank(u2) =

Ar > 0. In this case we normalize the subrank of the smaller element by dividing it by 2^.

Note that u has rank equal to rank(u2) or rank(u2)-l. In the first case we have

, subrank(ui) , , . N N , ̂ , . . . , subrank(ui)
|_ subrank(u2))J < subrank(u) < |_ +subrank(u2))J+l

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 112
optimal weighted path length

and in the second case we have:

subrank(ui) subrank(u2)
2Ar+l 2

-J < subrank(u) < |_
subrank(ui) subrank(u2)

2Ar+l 2

so again we have to determine one of two possible values. To be able to do this we shall

compute the boundary values of the two subranks possible for u. We can compute them

from the boundary values of subranks of elements uj, u 2 using a method similar to the one

described above.

Procedure PAIR_ELEMENTS2 has only two elements to pair. We simply create a common
parent for both of them and compute the subrank of the new element. Procedure
PAIR_ELEMENTS5 can be implemented as follows:

STEP 1. Create a common father u for every element u^ whose value distCU.ui) is odd and
the element u\=succ(\JLet C be the resulting list.

STEP 2. For each element v. dist(C.v):= \distCUMt(v))ll\.

STEP 3. Construct the representation for the list C.

For every element v from the resulting list C compute its subrank (i.e. divide C into
sublists).

STEP 4.Compute the functions FIRST and LAST

To compute these functions we decide for every element of list C if it is the first and/or the
last element of this subrank by comparing the subrank of the given element with the
subranks of its neighbors.

STEP 5. Compute the functions PREP and SUCC:
IfFIRST(O>0

then PRED(Ci):=IN(pare«r(prec(U,/e/r(FIRST(C)))))
else PRED(d):=IN(parenf(LAST(PRED(UJ))))

where IN(x) is a function which returns the pointer to the subsequence containing
element x.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 113
optimal weighted path length

Function SUCC can be computed similarly.

So the time to implement the above procedure with n 6 k processors is 0(Arj+l) where

Ar, is equal to the difference of ranks of the first two elements on list U 2 i . But

i
XArj=0(K(«)) so the total time spent on the pairing step is 0(K(«)).
j=i

MERGEi(C,V): For i=3,6 this procedure is implemented as one or two insertion steps. If the
inserted element has rank greater or smaller than the level of the sequence then it forms the
tail or head of the sequence and is treated separately. For k=5 procedure MERGEk(C,V) can
be implemented as follows.

STEP 1. Obtain the resulting list U
Put, for every j , elements of subrank j from list C before elements of subrank j from list V.

STEP 2. For each element v of subrank j in the list U compute distCUj.v):

if v is an element from list C then:
dist(U,v) = dist(C,\) + dist(\, LAST(PREC(VJ))

else ifFIRST(Ci)*0
then dist(\J,v) = dist(V,v) + dwr(C,LAST(CJ))
else dist(U,\)= dwr(V,v)+dw/(C,LAST(PREC(CJ))).

STEP 3. Compute the functions FIRST. LAST. PREP. SUCC for the list U:
if FIRST(CJ)*0 then FIRST(UJ):=FIRST(C1)

else FIRST(UJ):=FIRST(V,j);
PRED((UJ):=max(PRED(CJ),PRED((VJ));
if LAST(Ci)=0 then LAST(UJ):=LAST(d)

else LAST(UJ):=LAST(VJ);
SUCC((UJ):=min(SUCC((CJ),SUCC((VJ)).

It is easy to see that procedure MERGE can be implemented in 0(1) time with rt

processors. This leads to the following lemma:

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 114
optimal weighted path length

Lemma 4.19: A tree whose cost differs by at most -^-r from the cost of an optimal tree

can be constructed in 0(klog n) rime using « 6 k CREW processors.

Proof: The processor and time bounds follow directly from the description of the

algorithm. The truncation error is —\-r. We will show that the construction error is bounded
nk-z

8 4
by -rr. Let dj=A2j+A2j_i. We prove that dj < —— which, by Theorem 4.5, implies the

n k 2lnk

2 25d-i)
result. More precisely we show, by induction, that A 21 <---—r 25klog« a n c * ^2i-i -

2 25(1-0+2 .
2 i T 25klog«' ^ o r e v e r y J t n e s e c l u e n c e U A j constructed by the algorithm is an

approximation of the corresponding sequence U H j constructed by the Huffman tree

A 1 25(*-0
algorithm. It suffices to show that U A 2i is a —r-r - approximation of the sequence

U H 2i and UA2i_i is ^ ^ ^ ^ S k l o g n '
 a P P r o x i m a t i ° n O I " t n e sequence U H

2 i _ i . For U H 2 i this

fact is obvious. For other values of i note that, by Lemma 4.13, each application of

M E R G E at most doubles the approximation error. Also each application of

PAIR_ELEMENTS at most doubles the approximation error. Since in between

creation of a sequence U2j and U 2 i_ i we have two calls of M E R G E and

PAIR_ELEMENTS, and between the creation of a sequence U 2j_i and U2i_2 we have three

calls of M E R G E and PAIR ELEMENTS the result follows. •

Note that in the above algorithm the high number of processors follows from the fact

that we use one processor for each subsequence. But in any sequence there are at most n

nonempty subsequences. To avoid this inefficient utilization of both space and processors,

we divide a sequence into subsequences in the following recursive way. A sequence is

divided into n subsequences, then every nonempty subsequence is divided into n

subsubsequences, and so on (6k times). The partition of sequences is reflected by a

hierarchical data structure. The number of subsequences at every level of the hierarchy is

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 115
optimal weighted path length

bounded by « 2 . To merge two sequences we concatenate corresponding subsequences.

(Note that heads and tails of sequences have to be treated separately). The merging step is a

natural simulation of the merging step described for the previous algorithm on such

modified data structure. On each level of the hierarchy, we keep the pointers PRED,

SUCC, FIRST, and L A S T , whose meaning is similar to the n6k-processor algorithm. To

be able to move up and down within the hierarchical data structure we maintain, for each

subsequence represented in the hierarchy, pointers UP and D O W N . For a given

subsequence X the pointer UP points to the subsequence which contains X and is

immediately higher in the hierarchy, and pointer D O W N points to a block of sequences

defined by the next step of the recursive partition of X (see Figure 4.1).

I I I " * ~

M i l I«I I—l—l—I—L^_l mr •—r

III 1*1 I STVX f / c /
'I I. I III M i l l * I I' I M l l l l l l » l I I l*.| I I [

ST LAST

R E D P R E D
P R E D

P R E D

• •

Figure 4.1. The hierarchical data structure used by the «2-processor algorithm

(not all pointers are shown)

The pairing step is more involved. To represent the sequence resulting from pairing

elements of an even length sequence of elements of equal ranks, we modify the data

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 116
optimal weighted path length

structure of the input sequence. During the pairing step we may obtain elements of

subranks which have not been represented in the initial sequence. Thus we may be forced

to extend our hierarchical structure. Some sequences may become empty and we should

remove their representation from the hierarchy. However all these modifications can be

carried out in time proportional to the depth of the hierarchy.

More formally:

Let X be a main subsequence of level i and let t=6k. Then

1. X is divided into n subsequences X 1 , . . . ,X" (some of which may be empty) according to

the weights, such that xe XJ iff w(x)-i<= R-^-i-, -̂i-).

2. Each nonempty sequence X 1 1 1 2 " l r , where, r<t is divided into n subsequences

x iii 2....i ri x . i 1 i 2 i rn s u c h that xeXi iii2--irJ iff W(x) - i<l+ — + ̂ + ... +
i ' i i v ' 2i n n2

H .) g [j ± i J _ i)
n t J L„r+1 2 i ' «r+l 2i y

We say that X a is a r tn order subsequence iff a is a sequence of k indices. If xe X a and

a is a sequence of r indices such that a=pj then we say that subrankT(y.)=]. We maintain the

subsequences of each order in lexicographical order of their upper index. The sequences

are represented by the following data structure:

REPRESENTATION OF SEQUENCES:

For each element, v , from the sequence X we have:

dist(X,v) - position of v in the sequence X

Let X be the main subsequence of the sequence X. For every subsequence X a we have:

FIRST(X a) - the pointer to the first element of the subsequence.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 117
optimal weighted path length

L A S T (X a) - the pointer to the last element of the subsequence.

(If subsequence X « is empty then FIRST(X<X)=LAST(X a)=0).

For a each subsequence X a of order t we have:

S U C C (X a) - the pointer to the closest nonempty subsequence of order t

following X a .

P R E D (X a) - the pointer to the closest nonempty subsequence of order t

preceding X a .

The subsequences which differ only by last index are kept in an array (called a block)

ordered according to the last index. For each subsequence of order smaller than t we have:

D O W N (X a) - the pointer to the block of subsequences into which X a is

divided.

For each subsequence X a of order greater than zero (where zero is the order of whole

sequence) we have:

U P (X a) - the pointer to the subsequence of one order lower than the order of

X a which contains the given subsequence.

For every element we know its t subranks.

INITIALIZATION: Assign n processors to every element. We sort the input sequence

using Cole's parallel merge sort. For every element compute all its subranks. This can be

done in 0(klog n) time using n processors, by k applications of binary search (performed

for every element in parallel). Use the first subrank to divide sequences into first order

subsequences. To compute functions FIRST and L A S T it suffices to compare the subrank

of every element with the subranks of its neighbors. Compute (using the prefix sum

computation) the number of nonempty subsequences preceding a given subsequence.

Divide every nonempty first order subsequence into second order subsequences according

to the value subrank2 and construct the pointer DOWN. Thus we obtain, for every

nonempty subsequence, n second order subsequences (some of them possibly empty).

Assign one processor for every n elements of the second order subsequence (say one of n

processors associated with the first element of the subsequence of first order). For every

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 118
optimal weighted path length

second level sequence construct the pointer UP (we can do it in O(l) time time with n2

processors). Since the number of first order subsequences preceding a given subsequence

is known and every first order subsequence is divided into exactly n second order

subsequences, we can treat second order subsequences as consecutive elements of some

array. (We can compute the position of every second level subsequence in such an array

in 0(1) time.) Thus we can use a prefix sum computation to compute, for every second

order subsequence, the number of nonempty subsequences preceding it. Similarly we

compute the subsequences of next orders, the corresponding functions FIRST, L A S T , UP,

DOWN, and the number of nonempty subsequences of the given order preceding given

subsequence. From the last information we can compute PRED and S U C C for

subsequences of order t in the following way: Use an array, say A, and assign to A(i)the i m

nonempty subsequence. For a subsequence X with index j in A do PRED(X):=A(j-l);

SUCC(X):=A(j+l).

The initialization step can be implemented in 0(klog n) time with « 2 C R E W

processors.

PAIR_ELEMENTS: To show the implementation of this procedure we first show how to

compute in 0(t Irank(ui)-rank(u2)l)for any two neighboring elements u i , U2, the subranks of

their parent, say u. But it is easy to compute in 0(t) time the value subrank(u) from the

sequence subranki(u), subrank2(u),....,subrankt(u) and the opposite. Thus we can use the

method presented for the « 6 k -processor algorithm.

PAIR_ELEMENTS2(U): In this case we have only two elements to pair. We simply create

a common parent for both of them and compute all subranks of the new element.

PAIR_ELEMENTS 5(U):

STEP 1,2 : AS in the n6k-processor implementation

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 119
optimal weighted path length

STEP 3. Construct the representation for the sequence C.

Let ui and u 2 be a pair of elements which are given a common father, say u. To construct

the data structure of the new sequence C modify the data structure of sequence U by

removing elements ui and u 2 and inserting element u.

3.1. Compute all subranks of every newly created element u.

3.2. Find, using pointers UP, the subsequence of the highest order, say s, to which both

of uj, u 2 belong. If u belongs to a subsequence of order k+1 which was previously

empty then build subsequences of orders s+2, ...,t (together with the pointers UP,

DOWN). Since the sequence is a one-element sequence we can do it, for every new

element, in O(s) time with n processors (using the information about subranks).

STEP 4. Compute the function FIRST and L A S T for every level and every subsequence.

Use the same method as in the initialization step.Then for every subsequence check (based

on the values FIRST and LAST) whether it is an empty subsequence. If yes and if the

higher level subsequence containing the given subsequence is also empty then remove this

subsequence from the data structure.

STEP 5. Compute the functions PREP and SUCC.

Let INr(u) be the reference to the subsequence order r containing u. For any order r

subsequence C 0 " of the sequence C do

If FIRST(C a i)^0 then PREP(Cod):=INt(parenr(prec('U,left(nRST(Cod)))

else if the subsequence U 0 " was represented in the data structure

then PRED(C c d):= IN r (pare«r(LAST(PRED(U a i)))

else there is exactly one element, x, in the subsequence C a . Let xe C a l

if i>j then PRED(Ca i)=INr(x) else PRED(Cai)=INr(pred(C,x)).

Function SUCC can be computed similarly.

MERGEj(C,V) (for i=3,6): This procedure is implemented as one or two insertion steps. If

the inserted element has rank equal to the level of sequence into which it is inserted then it

is added to the hierarchical data structure. Since the ranks of the element are known it can

be done in O(k) time. If the rank of the inserted element is smaller or greater than the level

of the sequence then the inserted element is added to the head or tail of the sequence. (Note

that we never have more than two elements in a head nor more than one element in a tail).

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 120
optimal weighted path length

MERGE5(C,V): Note that at this step neither of the merged sequences have a nonempty tail

or head. Let U be the resulting sequence. We merge the sequences C and V in a top-down

fashion:

STEP 1. Perform merging on the lowest level of the hierarchy
Using n processors, combine (for each j) VJ with O. If one of the subsequences is empty
then UJ is represented by the nonempty one. If both VJ and Ci are nonempty then we call
UJ an active subsequence of level order 1. Note that we may have at most n active
subsequences.

STEP 2. Propagate the result of Step 1 to higher levels of the hierarchy
2.1 .current_order:=l;

2.2.While current_order<t do
For each active subsequence of the current order recursively combine (using n
processors) the subsequences of the next order (use the pointer DOWN to find the
proper block of subsequences). Let V a and C a be the merged subsequences. If
current_order+\ = t then put the elements of V a before C a . If current order+1 <t
and if one of the subsequences is empty then U a is equal to the nonempty
sequence. Otherwise U a is an active subsequence of order current_order+l.

current_order.=current_order+1;

STEP 3. Compute the functions FIRST. LAST. PRED. SUCC for the lowest level.

Use the same method as in step 4 of PAIR_ELEMENTS5.

Theorem 4.20: A tree whose cost differs by at most from the cost of an optimal tree

can be constructed in 0(k2log n) time using n2 CREW processors.

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 121
optimal weighted path length

Proof: The algorithm is a modification of the n6k-processor algorithm in which we use n 2

processors and the time of each call of MERGE or PAIR_ELEMENT is multiplied by the

depth of the hierarchical data structure. Thus the time complexity is 0(k2log n). The bound

for the construction error follows from Lemma 4.19. •

4.5. Sequential interpretat ions of the 9 E A

In the previous sections we presented parallel algorithms to construct an

approximately optimal tree which are based on the idea of approximate sorting and

merging. Here we show that the ideas developed in the previous sections can be also used

to obtain linear time algorithms to construct an almost optimal tree.

A natural sequential interpretation of the general construction scheme is to obtain an e-

sorted sequence using an integer sorting algorithm and implement MERGE as standard

merging procedure (recall Example 4.11). Since the cost of merging using the standard

merging procedure is proportional to the sum of the lengths of the merged sequences, the

total time which is spent on merging is O(n). To obtain a linear time implementation of the

general construction scheme we must be able to compute ranks in linear time. Since a

computation of the rank of a single element requires more than constant time this certainly

cannot be done by computing the ranks of the elements of the sequence one after another.

Assume that the ranks are bounded by cf(n) and that in linear time we can sort integers in

the range [0,2cf(")]. Then we associate the value fw(vj)2c f(r t)l with element V j and sort the

elements of the sequence according to this value. Now we are going to merge into this

sequence, a sequence of so called boundary elements. Boundary elements are defined in

such a way that elements between two consecutive boundary elements have the same rank.

However we have to keep the number of boundary elements linear in the size of the input

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost
optimal weighted path length

page 122

sequence. On the other hand we would like to choose the boundary elements in such way

that the difference between them is as small as is needed to distinguish two elements with

different values rw(vj)2cf(w)~l. To satisfy both these condition we use a hierarchical

approach similar to the one used in the previous section for the « 2 -p r 0 cessor algorithm. We

first merge the sequence with a "sparse" subset of boundary elements and interatively add

more boundary elements by merging more additional boundary elements into nonempty

subsequences bounded by two boundary elements. Following this idea we can compute

ranks in Ofrclog ^) time by the following algorithm:

1. Sort the sequence according to rw(v;)2cf(/l)l ,

2. Merge the resulting sequence with the following sequence of boundary elements 1,

2 n , 2 n ,...,2 " . Let Xi be the resulting sequence.

3. i:=l;

4. while i < logCf^-l c):

4.1. Let X ' j + 1 be the sequence obtained from Xj by removing those boundary elements

which have boundary elements immediately before and immediately after them;
4.2. Each boundary element belonging to X'j + 1 which has a real element immediately before

it, defines a new boundary element equal to the geometric average of its value and the
value of the closest boundary element which occurs in X ' i + 1 before the given boundary
element. Denote by Bj + 1 the sorted sequence of these new boundary elements;

4.3. Obtain X i + 1 by merging X ' i + 1 and B i + 1 ;

4.4. i:=i+l;
5. Now every non-boundary element is between two boundary elements which are

consecutive powers of two. Elements which are between 2X and 2 i + 1 have rank cf(n) - i.

If we assume f(«)=log n and c=ll-2k we can use the integer sorting algorithm of

Kirkpatrick and Reisch [KirRe84] which sorts integers in the range [0,« c] in 0(n(l+log c))

time. As a result we obtain a "̂ T-sorted sequence. If we apply Q'CA with K(«)=2 klog n

nP

then we can compute the ranks of heavy elements in 0(k«) time with the help of the

algorithm described above. This interpretation leads to the following theorem:

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 123
optimal weighted path length

Theorem 4.21: A tree T such that AT ^ — 7 can be constructed in 0(k«) time.
n2

Proof: It is obvious that the algorithm presented above runs in O(kn) time. The truncation
error is at most —\—. It suffices to show that the construction error in this algorithm is at

g
most —k . Using the same technique as in the proof of Lemma 4.19 we can show that A 2j

n2

2 25(I-0 2 25(1-0+2 < ——: andAo; 1 <——: • which implies the result. •
2i w 2k 210-2klogn 1 1 1 2'rt2k 2l0-2klog/i r

If we assume a RAM with unbounded register capacity as our computation model

then we can sort n integers in the range [0,2CW) in 0(n(l+log c)) time ([KirRe84]). If we

assume c=7-2k, f(«)=n, and K(«)=2k«, then we can use the algorithm described at the
beginning of this section to obtain a ^"-sorted sequence of heavy elements and to

compute ranks of the heavy elements in O(krc) time. This construction leads to the

following theorem:

Theorem 4.22: A tree T such that AT < —^—r can be constructed in O(kzz) time on a
2«2 k

RAM with unbounded register capacity.

Proof: This uses exactly same techniques as in the proof of Theorem 4.21. •

Like the parallel algorithms presented in previous sections, our sequential algorithms

have been stated as explicit interpretations of the scheme. In the parallel setting we

made an essential use of the fact that elements are divided into subsets according to their

ranks. This allowed us to determine which elements can be processed in parallel. In the

sequential setting the explicit computation of ranks is not necessary. In this setting the fact

that the computation is naturally divided into phases corresponding to consecutive iteration

of the "while" loop was helpful in the analysis of error but was not essential for the

computation itself. In fact, if we restrict our attention to heavy elements only, the tree

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 124
optimal weighted path length

produced by our algorithm that computes ranks explicitly is identical with the tree produces

by linear time algorithm described in Section 4.1 applied to the approximately sorted

sequence.

4.6. Summary

Traditionally a level-by-level tree construction algorithm consists of d steps (where d

is the height of the constructed tree) such that at step i the internal nodes on depth d-i are

constructed. This approach, in particular, requires that we know the depths of all leaves of

the constructed tree. However, if these depths are known, we can construct the

corresponding tree in 0(log n) time with n/log n processors using the accelerated valley

filling technique presented in Chapter 5.

In this chapter, we presented a different approach to a level-by-level tree construction.

In our approach, we assume that for each leaf v of the constructed tree we can compute

value rank(v) which bounds from above the depth of the leaf in the constructed tree.

During the i t n iteration of such a level-by-level construction each vertex which is on level

d-i+1 either obtains a parent, which goes to level h-i, or is itself promoted to level d-i. The

basic limitation of this method is that it can be used to obtain efficient parallel algorithms

only for constructing trees of polylogarithmic height. However, even if the tree which we

want to construct is potentially unbalanced, there exists a tree of polylogarithmic height

which closely approximates the properties of the tree we are interested in.

We have concentrated on parallel algorithms for constructing binary trees with almost

optimal weighted path length. Since for many applications the weights of leaves are

computed with finite precision or are assigned as the outcome of some experiment, and

therefore already admit some error, this approach is justified. We approximate an optimal

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 125
optimal weighted path length

solution with the help of a tree of logarithmic depth. The problem of finding a binary tree

with optimal weighted path length admits a simple and elegant sequential 0(n log «)-time

solution due to Huffman [Huf52]. The best currently known parallel algorithm for the

problem is due to Atallah et. al ([AtaKosLarMilTen89]). It uses 0 (l o g 2 «) time and « 2/k>g n

processors. With the parallel level-by-level technique described above we have been able to

develop a family of efficient parallel algorithms for the relaxed version of the problem, in

which only an approximately optimal solution is sought.

time t(n) processors p(n) error

1. 0(log2n) n2 0 +

2. 0(log«) n 1 +

3. O(logn) n » L 0.172

J_
4. 0(klog*rt log n) n

5. 0 (k 2 l og«) n2

6 0 (k log 2 «) n2/log2n 4 - +

7. 0(k«) 1

8. 0 (k «) ! 1

n2

1_
k

1

2 n 2 k

Figure 4.2. The summary of results of Chapter 4

We summarize the results of this chapter and the related work in Figure 4.2 (* stands

for results presented in this chapter, + stands for results obtained in or following from

[AtaKosLarMilTen89]). In particular, the algorithm corresponding to the fourth entry in the

table produces an exact solution if the weights of all leaves are bounded from below by

1 On aRAM with unbounded register capacities

Chapter 4 : Parallel level-by-level tree synthesis - construction of binary trees with almost page 126
optimal weighted path length

Al l of the algorithms presented in this chapter are interpretations of one algorithmic

scheme. This makes it possible to estimate the error made by each of them using one

universal lemma. The same analysis is applicable to the sequential algorithms presented at

the end of the chapter. Obviously, one can propose different approximation algorithms

based on the idea of approximate sorting and merging which are not interpretations of our

algorithmic scheme. However, in general the accurate estimation of the error associated

with an approximation algorithm is significantly more challenging than the formulation of

such algorithms. For this reasons we see the formulation of the approximation scheme

introduced in this chapter as being at least as significant as any of its instantiations tabulated

above.

Chapter 5: Valley filling technique and construction of minimax trees page 127

C H A P T E R 5 : V A L L E Y F I L L I N G T E C H N I Q U E

A N D C O N S T R U C T I O N O F

M I N I M A X T R E E S

The parallel level-by-level tree synthesis method presented in Chapter 4 can be used

to obtain efficient parallel algorithms for the construction of trees of polylogarithmic height.

In this chapter we present a different tree synthesis technique which is applicable to

weighted trees of arbitrary height. The technique, which we call accelerated valley filling,

can be viewed as the parallel analogue of the method used in the T-C algorithm (the Hu-

Tucker algorithm) ([HuTuc71], [Hu75]) for constructing alphabetic trees with optimal

weighted path length. A simpler version of this parallel technique has been used in

[AtaKosLarMilTen89] and we refer to the method used there as the basic valley filling

technique. The technique basically consists of dividing the sequence of leaf weights into

so-called valley sequences, and computing the parts of the tree corresponding to each

valley sequence independently by performing 0(log n) iterations of what we call a valley

filling step. During a valley filling step we construct a sequence of subtrees such that the

sequence of weights of their roots has its number of valleys reduced by at least half. The

basic idea behind the accelerated valley filling technique is to speed up the basic algorithm

by replacing the iterative application of the valley filling step by one pipelined parallel step.

We apply our technique to obtain an optimal algorithm for the problem of

constructing minimax trees. Let V={v1,...,vM} be the set of leaves of a binary tree and

w:V->N be a weight function. The (non-alphabetic) minimax tree problem takes a set of

Chapter 5: Valley filling technique and construction of minimax trees page 128

leaves and a weight function w and constructs a binary tree which minimizes the cost
function c(T) = max(w(v)+/-r(v)) where /-r(v) denotes the depth of the leaf v in the tree T.

veV

Similarly, the alphabetic minimax tree problem takes an ordered sequence of leaves and a

weight function w and finds an alphabetic (ordered) binary tree which minimizes the value

c(T). If W is a sequence of weights then we use C(W) to denote the cost of an alphabetic

minimax tree whose leaves are weighted with the elements of W in the left-to-right order.

Note that the weight function can be naturally extended to internal nodes by associating

with an internal node the weight equal to the maximum of the weights of its children plus

one. In this way, a minimax tree can be seen to minimize (over all trees with appropriate

weighted leaf set) the weight of the root. We present optimal algorithms for both alphabetic

and non-alphabetic minimax tree problem.

There are several ways of generalizing the binary alphabetic minimax tree problem to

t-ary trees. Kirkpatrick and Klawe [KirKla85] and Coppersmith, Klawe, and Pippenger

[CopKlaPip86] presented linear algorithms for various versions of the t-ary alphabetic

minimax tree problem. Our alphabetic minimax tree algorithm can be generalized to an

0(log «)-time n /log ^-processor algorithm for the t-ary alphabetic minimax tree defined as

in [CopKlaPip86].

Minimax trees have several interesting applications [Gol76], [HooKlaPip84]. The

complexity of the minimax tree problem has been studied in [Gol76], [KirKla85],

[CopKlaPip86]. One can observe that in the sequential setting the techniques which can be

used to construct trees with optimal weighted path length can be also used to construct

minimax trees. In particular, Golumbic [Gol76] presented an 0 (« l o g «)-time sequential

algorithm for the non-alphabetic minimax tree problem which is an adaptation of

Huffman's algorithm [Huf85] for constructing of trees with optimal weighted path length.

Considering alphabetic versions of the two problems we observe that both binary

alphabetic minimax trees and binary alphabetic trees with optimal (leaf) weighted paths

Chapter 5: Valley filling technique and construction of minimax trees page 129

length can be constructed with the help of the T - C algorithm ([HuTuc71], [Hu73])

originally designed for the second of the problems. (The T-C algorithm requires 0(n log n)

time so it does not lead to an optimal algorithm for constructing minimax trees). The two

problems seem to have a different nature when a parallel setting is considered. In this

chapter we present an 0(log n)-time rc-processors algorithm for constructing non-alphabetic

minimax trees. Interestingly, as we have mentioned in Chapter 4, there does not currently

exist a parallel algorithm to solve the problem of constructing trees with optimal weighted

path length whose total work is 0(n 2 _ e). The algorithm of Atallah, Kosaraju, Larmore,

Miller and Teng runs 0(log2n) in time using n2/log n processors on a CREW PRAM. In

Chapter 4 an 0 (log*« log «)-time n-processor CREW P R A M algorithm was presented

which gives an approximate solution to this problem.

We also present an 0(log rc)-time «/log rc-processor algorithm for constructing

alphabetic minimax trees. In contrast the best currently known algorithm for constructing

alphabetic trees with optimal weighted path length applies the parallel dynamic

programming technique of Miller, Ramachandran, and Kaltofen [MilRamKar88] and

requires 0 (l o g 2 «) time with roughly tfi processors. This algorithm solves in fact a more

general problem, in which the internal nodes may also have weights. Atallah, Kosaraju,

Larmore, Miller, and Teng [AtaKosLarMilTen89] presented an 0 (log 2 «) - t ime n 2/log 2n

processor algorithm which gives an approximate solution to this problem. Interestingly,

our optimal parallel algorithm for constructing alphabetic minimax trees was motivated in

part by the T - C algorithm for constructing alphabetic trees with optimal weighted path

length.

The alphabetic minimax tree problem can be also viewed as a generalization of the

following problem of constructing the tree from a sequence of leaf depths: Given a

sequence of integers l\,...,ln representing the depths of leaves of a binary tree construct the

corresponding tree. One can prove that if in a minimax tree T the value w(vj)+/j(vi) (where

Chapter 5: Valley filling technique and construction of minimax trees page 130

/j(vj) denotes the depth of the leaf Vj in T) is constant then the tree is unique.

Consequently, the above problem can be reduced to that of constructing the minimax tree

for the weight sequence ...,-ln. An 0 (log 2 «) - t ime rc/log ^-processor CREW P R A M

algorithm for the problem of constructing the tree from a sequence of leaf depths was

presented by Atallah, Kosaraju, Larmore, Miller, and Teng [AtaKosLarMilTen89]. So, as

a special case, our algorithm improves the last result.

In addition to the accelerated valley filling technique mentioned above we make use of

several existing parallel algorithms and design techniques to achieve our results. We start

our presentation by outlining the basic ideas behind the valley filling technique. Then we

present, what we call a level tree, a data structure which allows us to speed up the basic

valley filling technique. We present an optimal algorithm which constructs such a tree.

Finally we give an optimal algorithm which given a level tree constructs an alphabetic

minimax tree. In the last section of this chapter we show how our results for alphabetic

minimax trees can be applied to non-alphabetic minimax tree problem and the minimax tree

problem for a real weight function. We also discuss t-ary minimax trees.

5.1. Valley Fil l ing Technique

Consider the bottom-up construction of a weighted tree. At each stage of such a

construction we are dealing with a sequence of weights of roots of subtrees of the

constructed tree called a construction sequence 1 . Our initial construction sequence is

w(v0),w(v1),...,w(vn),w(vn + 1) where w(v0)=w(vn + 1)=co .2

The term "construction sequence" as well as "valley sequence" is taken from [Hu75].

We thing of oo as an integer which is at least equal to the weight of the root of a minimax tree for the

sequence w(vj),...,w(v n).

Chapter 5: Valley filling technique and construction of minimax trees page 131

A subsequence u k ,u k + i , . . . ,u m of a construction sequence is called a valley sequence

if it is a bitonic sequence, where a bitonic sequence is defined to be a sequence which is

first nonincreasing and then nondecreasing. An element Uj is called a maximal element of a

valley sequence u k , u k + 1 , . . . , u m iff u k = u k + 1 =....= Uj or u; = U j + 1 =...= u m . The weight

of the maximal elements of a valley is called the level of the valley. The observation that

every construction sequence can be divided into valley sequences provides the basic idea

behind the basic valley filling technique:

BASIC VALLEY FILLING ALGORITHM

while the construction sequence contains more than one element of weight less than

infinity do:

(i) divide the current construction sequence into valley sequences;

(ii) for every valley build in parallel a forest of trees such that the leaves of each forest are

the elements of the subsequence of the construction sequence forming the valley and the

roots have weights equal to the level of the valley.

The process of replacing a valley sequence by a sequence of roots of trees whose

weight is equal to the level of the valley is called filling the valley and each repetition of the

while loop is called a valley filling step (compare Figure 5.1) Since at each valley filling

step the number of valleys is reduced by at least half, the algorithm performs 0(log m)

valley filling steps in total, where m is the number of valleys in the initial construction

sequence. One can implement each valley filling step in 0(log n) time using «/log n

processors (such an algorithm for the special case when the input sequence represents a leaf

depth pattern was presented in [AtaKosLarMilTen89]). This leads to an 0(log m log «)-

time rt/log n -processor algorithm.

Chapter 5: Valley filling technique and construction of minimax trees page 132

Figure 5.1. A valley filling step

The basic idea behind the accelerated valley filling technique is to speed up the basic

algorithm by avoiding 0(log m) distinct iterations. To this end we precede the construction

of a minimax tree by a preprocessing step in which we construct what we refer to as the

level tree. This tree contains, in particular, information about the number of internal nodes

of the constructed tree which occur on certain distinguished levels. This information allows

us to replace the iterative application of step (ii) by one pipelined parallel step.

5.2. Level tree and its construct ion

We start our description of the level tree with the following geometric construction

(see Figure 5.2) : Represent the sequence of weights corresponding to the left-to-right

order of the leaves of a constructed alphabetic minimax tree by a polygonal line : for every

element Vjdraw on the plane the point (i,w(vj)), and for every i=l,..., n-l connect the

points (i,w(vj)) and (i+l,w(vj+1)). For every Vj such Vj > V j + 1 (resp., VJ > Vj.i) draw a

horizontal line going from (i,w(vj)) to its right (resp., left) until it hits the polygonal line.

The intervals defined in such a way are called level intervals. We also consider the interval

(oo ,oo) and the degenerate intervals ((i,w(vj),(i,w(vj)) as level intervals. Let e be a level

interval. Note that at least one of e's endpoints is equal to (i,w(v;)) for some index i. If

Chapter 5: Valley filling technique and construction of minimax trees page 133

only one endpoint coincides with such a point then we call the leaf Vj the defining leaf for

e. If both endpoints of e coincides with such points, then we choose the leaf corresponding

to the left end of e as the defining leaf for e. Thus for every level interval e there exists a

unique defining leaf which we denote by def(€). We define the level of a level interval to

be equal to the weight of its defining leaf.

Figure 5.2. Level intervals

Note that a minimax tree can be embedded in the plane in such a way that the root of

the tree belongs to the level interval (o o , cc) and that internal vertices whose weights are

equal to the weight of one of the leaves lie on the horizontal line going through this leaf.

Furthermore, if there is a tree edge cutting a level interval, then adding a vertex subdividing

this edge to the minimax tree does not increase the weight of the root. By this observation

we can consider minimax trees which can be embedded on the plane such that no edge

intersects a level interval other than at an endpoint (see Figure 5.3).

Chapter 5: Valley filling technique and construction of minimax trees page 134

Figure 5.3. Embedded minimax tree

A level tree (see Figure 5.4) for a given sequence of weights is an ordered tree whose

nodes are in one-to-one correspondence with the level intervals defined as above. For a

node v define its parent to be the internal node which corresponds to the closest level

interval which lies above the level interval corresponding to v. The left-to-right order of

children of an internal node corresponds to the left-to-right order of the corresponding level

intervals in the plane.

Figure 5.4. A level tree

Chapter 5: Valley filling technique and construction of minimax trees page 135

We use the level tree to compute, for every level interval, of the number of nodes of

the constructed minimax tree which belong to this level interval (assuming the embedding

as described above). To this end, for every node u of a level tree we define load(u) to be

equal to the number of nodes of the constructed minimax tree which belong to the level

interval corresponding to u. We show how to compute this function using the tree

contraction method.

5.2.1. Construction of level tree

To construct the level tree we have to establish the "parent" relation and the ordering

of every internal node's children. It is easy to observe that to find the parent of a node

corresponding to a level interval e, it suffices to find the strictly dominating successor and

predecessor of def(e). Recall that the strictly dominating successor (resp., strictly

dominating predecessor) of an element VJ in the sequence w(vo),w(vj),...,w(vn+1) is the

element Vj satisfying w(vj)<w(vp that is closest to the right (resp. to the left) of V j . Observe

that the parent of the node associated with a level interval e which is different than

(co ,oo), is the node associated with a level interval defined by the dominating predecessor

or successor of def(e) (whichever has smaller weight). Thus the "parent" relation can be

established using the solution to the ASDN problem presented in section 2.6.

To construct lists of children of internal nodes, every node has to decide whether it is

the first or the last node on a list of children and (if it is not the last node on a list) find its

successor on the corresponding list. To solve this problem we use the solution to the A D N

problem presented in the previous chapter. Observe that to construct lists of children it

suffices to compare, for every node u, the weight of def(u) with the weight of the

dominating successor of def(u) (see step 3 of the algorithm).

Chapter 5: Valley filling technique and construction of minimax trees page 136

Let us present now a more detailed description of the algorithm to construct the level

tree for a given input sequence of weights. Assume first that we have n processors and that

the sequence of the weights of the leaves (in left-to-right order) is given in an ^-element

array W. We assign one processor to each element of the array W (and therefore to each

leaf). We also assign the processor assigned to def(t) to the level interval e. So each

processor is assigned to at most three nodes of the constructed level tree.

S T E P 1: Solve the A D N and ASDN problems for the sequence W.

We use the optimal algorithms for the A D N and ASDN problems described in the previous

chapter. Let ds(v[), rfp(vj), sds(v0, and sdp(v{) be the dominating successor, dominating

predecessor, strictly dominating successor, and strictly dominating predecessor of the i t n

element, respectively.

STEP 2: Establish the parent relation

For every level interval ej let yj = sdp(def(e-J) if sdp(def(ej) <sds(def(e[)) and
yi = sds(def(&\)) otherwise.

- Define the parent of the level tree node which corresponds to the level interval ej to be

the node which corresponds to the (nondegenerate) level interval defined by yj which

lies above ej.

S T E P 3: Define the ordering of the children

For every level interval check whether the tree node associated with it is the first (or the

last) child of its parent (in the left-to-right order).

Observe that Uj is the first child of some internal node if one of the following holds:

a) Uj corresponds to a leaf Vj (a degenerated level interval) such that w(vj_i) > W(VJ) (see

Figure 5.5 a),

b) Uj corresponds to a nondegenerate level interval e such that w(dp(def(e))) > w(def(e))

(see Figure 5.5 b).

The last element of the sequence can be determined in a similar way.

Chapter 5: Valley filling technique and construction of minimax trees page 137

For any element Uj which is not the last element of a list of children, the next element on the

list is defined in the following way:

- if Uj is a leaf and it is not the last element of a list of children then Uj is the left end of a
level interval and the internal node corresponding to this level interval follows Uj on the
list;

- if Uj is an internal node and it is not the last element of a list of children then the right
endpoint of the level interval to which Uj corresponds coincides with a leaf node. This
leaf node follows u; on the list of children.

a) b)

Figure 5.5. Introducing the ordering of children

By Theorem 2.14, step 2 of the algorithm can be implemented in 0(log n) time with

ra/log n processors. The remaining steps can be performed in constant time with n

processors. Thus they can be computed in 0(log n) time with «/log n processors by a

straightforward simulation of log n processors by one processor.

5.2.2. Computing the load function

Now, for every internal node u we want to compute the value load(u) equal to the

number of nodes of the minimax tree which belong to the level interval corresponding to u.

Chapter 5: Valley filling technique and construction of minimax trees page 138

Lemma 5.2 : The function load(\x) can be computed for every internal node u in 0(log n)

time with n/log n processors.

Proof : If u is a leaf then load(xx) = 1. Assume that u is an internal node. Let u^. . . ,^ be

the children of u. Let Au denote the minimum of the value ["log nl and the difference

between the level of the level interval corresponding to node u and the level of the intervals

corresponding to its children. It is easy to confirm that

/ (̂u)=r/̂ (tti)+"-+/ofld(uk)i
2Au

We compute the function load(u) for every internal node with the help of an algorithm

which is an interpretation of a 1B-Cl tTt3 scheme. In order to apply the scheme we have to

replace the level tree by a binary tree. Let T' be a tree obtained from the level tree by

replacing each internal node, u, by a sequence of nodes u',u,i,...,u'j f.i as on Figure 5.6

(ui,...,Uk are children of u). We assign Au'j=0. Then it is easy to see that

load(u)=load(u').

u'

Figure 5.6. Binarization of a level tree

We associate the function foAu(x>y)
with every internal node u of the binary tree.

To do this we build a table of size flog nl which keeps the value 2) for every j = 1,

Hog n~\. Such a table can be build in 0(log n) time sequentially. Then, for every internal

node, the index of the function associated with it can be computed in constant time. In this

Chapter 5: Valley filling technique and construction of minimax trees page 139

way we have obtained the bottom-up tree computation problem considered in Example 2.7.

As was shown in section 2.5.2 this can be solved by an interpretation of the tB-Ct cT£>

scheme in 0(log n) time with n/log n processors •

5.3. A n opt imal a lgor i thm for alphabetic min imax tree prob lem

Consider a node u of a level tree. With each such a node we have load(u) associated

nodes of the minimax tree which we want to construct. Let us call those load(u) nodes the

group of nodes associated with u. If u is an internal node of the level tree then the sequence

of groups of nodes associated with children of u (in left-to-right order) is called the block

of nodes associated with u. Let g(u) be the number of the elements in the block associated

with u.

A balanced forest with n nodes and m roots is a forest of m trees and total number of

leaves equal to n which has the minimal depth (where by the depth of a forest we mean the

maximum of the depths of the trees in the forest).

1 load(u)
U group of nodes assicated with u

u 1 u u k 2

a) b)
1 load(i^)

j^l block of nodes associated with u

Figure 5.7. Construction of a balanced forest

a) node u in a level tree

b) corresponding part of the constructed minimax tree

Chapter 5: Valley filling technique and construction of minimax trees page 140

In order to construct the minimax tree for every internal node u we have to construct

the group of load(u) nodes, determine the block of g(n) nodes associated with u, and build

a balanced forest with g(u) leaves and load(u) roots (compare Figure 5.7). To minimize the

number of internal nodes of the constructed minimax tree we remove internal nodes of

degree one. This can be summarized in the following algorithm:

STEP 1: Construct a table NODES such that each element of the table corresponds to one

node of the constructed tree. Furthermore nodes from the same block have associated

consecutive positions in the table.

For any node v from the level tree let group_index(v) denote the index in the table NODES

of the first element of the group associated with v. Similarly define the block_index(v) as

the index of the first element of the block associated with v.

1.1. Recall that every internal node of the level tree keeps the lists of its children.

Concatenate these lists in any order (say using the Euler Tour Technique [TarVis84]).

Let L be the resulting list. The order of the elements in the list defines the order of

storing blocks in the table NODES.

1.2. For every node v in L compute its group_index(v) by summing (using a prefix sum

computation) the values load(u) for all nodes u preceding v on the list L . The sum over

all elements u in L of values load(u) gives the size of the table NODES.

1.3. For every node v compute its block jndex (v) that is the group_index of the first child

of v.

STEP 2: For every element of the table NODES compute the index of its parent and for

every node corresponding to a leaf of the minimax tree construct the pointer to the element

of the input sequence labelling the given node.

2.1. Divide the table NODES into n/log n segments of length log n each, and associate one

processor to each segment. Note that each segment can contain a number of blocks.

Within every segment use a sequential linear algorithm to build a balanced forest for

Chapter 5: Valley filling technique and construction of minimax trees page 141

each block of size at most log n which is entirely contained in the given segment or
intersects the right boundary of the segment.

2.2. All remaining blocks have length mj>log n and as a consequence of step 2.1. each
block has assigned Lmj/log n] processors. We can decide which processor is assigned
to which block as follows: Every processor decides by a sequential search whether it is
assigned to an interval containing the beginning of a block. If so it writes one in its
local memory. Then a prefix sum computation gives, for every , the number of the
block it is assigned to. With this processor assignment we can finish the computation
in 0(log n) time using standard techniques (i.e. for each block use a sequential linear
time algorithm to construct at most m subtrees of |~log n \ leaves and a parallel
algorithm to construct the remaining nodes of the tree).

STEP 3: Remove the internal nodes with only one child using an interpretation of B—
Cl cTG scheme.

Identify maximal chains of internal nodes with only one child. We consider the lowest level
vertex in a chain as the beginning of the chain. Given n processors it is easy to determine
in constant time for every internal u whether u belongs to such a chain and if so who is its
predecessor and successor (if any). Since one can simulate log n processors by one in
using 0(log n) time this can be implemented in 0(log n) time with n/log n processors. To
remove internal nodes of degree one we have to compute for the first element on every
chain the corresponding last element. This can be done using the following interpretation of
the (full) Ift-Cl cTG scheme. We assume that the only child of an internal node of degree
one is the left child.We add a right child to each such node. Let 9={idl id(x)=x}u{labels I
labelj(x)=i}, 0F'={id'l id'(x,y)=x}u{zero I zero(x,y)=0}. It is easy to confirm that 9 and
y satisfy axioms (i)-(ii) of B - C l <TG scheme with P=l and T=0(1). We associate with
every edge (v,parent(v)) such that v has degree two in the original tree or is a leaf the
function labelv and the function id with all other edges. With every internal node of degree
2 in the original tree we associate the function zero and with internal nodes whose degree in
the original tree is one we associate the function id'. The result of this bottom-up Algebraic
Tree Computation is that for every node which has degree two in the original tree, the
values associated with the edges leading to its children define the addresses of its new
children.

Chapter 5: Valley filling technique and construction of minimax trees page 142

Since all steps of the algorithm can be implemented in 0(log n) time with n/log n

processors, this yields the following theorem:

Theorem 5.3 : The binary alphabetic minimax tree problem can be solved in 0(log n)

time with n/log n processors.

5.4. Other versions of the min imax tree problem

5.4.1. t-ary alphabetic minimax trees

There are several ways of generalizing the binary alphabetic minimax tree problem to

t-ary trees. Kirkpatrick and Klawe [KirKla85] considered regular t-ary alphabetic minimax

trees (assuming that the number of leaves is equal to 1 mod (t-1). Coppersmith, Klawe,

and Pippenger [CopKlaPip86] considered alphabetic minimax trees of degree (at most) t.

As is shown in these papers, both types of trees admit linear time sequential construction

algorithms. It is easy to confirm (see Figure 5.8) that the best regular t-ary alphabetic

minimax tree may have a higher cost than some at most t-ary alphabetic minimax tree for

the same input.

Figure 5.8. A regular t-ary alphabetic minimax tree and a t-ary alphabetic minimax
tree

Coppersmith, Klawe, and Pippenger [CopKlaPip86] also addressed the question of

minimizing the number of internal nodes in an alphabetic t-ary tree. The number of internal

4

2 2 11 3 1 12 2

5

2 2 1 1 3 1 1 2 2

Chapter 5: Valley filling technique and construction of minimax trees page 143

nodes of a t-ary tree is bounded from below by [~(rc-l)(t-l)l. Coppersmith, Klawe, and

Pippenger [CopKlaPip86] gave a linear time algorithm which converts an alphabetic t-ary

minimax tree into an alphabetic t-ary minimax tree with the number of internal nodes

bounded by L(n-l)(t-l)+(t-2)(n+l)/3(t-l)J. However the tree obtained by this compaction

process is still not guaranteed to minimize the number of internal nodes.

It is easy to convert our alphabetic binary minimax tree algorithm to an algorithm

which constructs an alphabetic t-ary tree. It suffices to replace the value 2 A u in the proof of

Lemma 5.2 (the recurrence for the load function) by t A u and the construction of a binary

balanced forest in step 1 of the tree construction algorithm by a balanced t-ary forest. Here

we sketch a parallel minimax tree compaction algorithm which converts a minimax tree into

tree of the same cost with a possibly smaller number of internal nodes. The resulting tree

satisfies the same properties as the tree which results from the compaction algorithm of

Coppersmith, Klawe, and Pippenger [CopKlaPip86]. As in [CopKlaPip86] we define a

leaflet to be an internal node that has only leaves as children and has degree less than t. The

tree produced by the compaction algorithm satisfies the following conditions:

(1) Each internal node either has degree t or is a leaflet

(2) No two adjacent leaves are the children of different leaflets.

(3) Each leaflet has degree at least two.

The upper bound on the number internal nodes of a t-ary tree satisfying conditions

(l)-(3) is given in the following lemma:

Lemma 5.6 [CopKlaPip86]: If T is a tree with n leaves satisfying conditions (1), (2),

and (3), then t has at most L(«-l)(t-l)+(t-2)(n+l)/3(t-l)J internal vertices.

Chapter 5: Valley filling technique and construction of minimax trees page 144

Similar to the sequential algorithm of Coppersmith et.al., our parallel algorithm

compacts the tree in two steps. We first present a high level description of these two steps

and then present them in more detail.

During the first step we compact internal nodes which are not leaflets. The sequential

algorithm of Coppersmith et. al. compacts such nodes by traversing them one after another

in preorder. To allow for parallel computation, we cover the tree by disjoint paths and

compact the nodes on each path independently. Let p = u i ,...u r be a path of internal nodes in

the tree T (u^ is the highest level vertex on the path). To compact p means to replace it by a

path p' such that the following conditions are satisfied:

(pl) the children of nodes of elements on a path p becomes children of nodes on path p';

(p2) all but the last element of p' have t-1 children which are not on p' and the last element

of p' has at most t and at least 2 children;

(p3) the cost of the tree T' obtained from the tree T by replacing by the path p' the path p is

at most equal to the cost of T;

(p4) T and T' have the same order of leaves.

In our algorithm we compact a path by moving the children of vertices on the path

from the end of path towards the beginning. To ensure condition (p4) we use the following

algorithm (compare Figure 5.9).

For each vertex v on the path p we define its sequential number, as its distance from

the end of the sequence. With each child of v which does not belong to the path p, we

associate its path index defined as follows: if a child is a left sibling of a node on the path p

its path index is equal to the negative of the sequential number of its parent otherwise it is

equal to the sequential number of its parent.

Chapter 5: Valley filling technique and construction of minimax trees page 145

-4 / -4\

oN o

-i

-4 -4 4 -3

A A A A
- 2 - 1 1 1

A A A A
0 0

A A

-4 -4 -3 4

A A A A
- 2 - 1 1 1

A A A A
0 0

Figure 5.9. Path compaction (t = 5)

Chapter 5: Valley filling technique and construction of minimax trees page 146

THE P A T H COMPACTION ALGORITHM

STEP 1: Compute sequential numbers.

For each node v on the input path p and for each child of v which does not belong to p

compute (using a prefix sum computation) its path index.

STEP 2: Concatenate.

Concatenate sequences of children of nodes from the path p, excluding nodes which belong

to p. We divide the resulting sequence into blocks of size t-1 except for the last block which

may be of size at most t.

STEP 3: Sort.

Within each block we sort elements according to their path index.

STEP 4: Construct the resulting path p'.

Cnstruct path the p' by creating one internal node per block.The children of a node from p'

are defined as follows: If a node v corresponds to the last block then its children are the

nodes in this block. Otherwise, in addition to the nodes in the corresponding block, v is

given the internal node corresponding to the next block as its child. The order of children

agrees with their order in the corresponding block, and the internal node corresponding to

the next block is inserted between the children of negative and positive path index.

Assume that a tree T has been partitioned into vertex disjoint paths. Then the tree

resulting from T by the compression of all paths satisfies conditions (1) and (3) at all

internal nodes except at the nodes resulting from compacting a path to a single node. To

ensure conditions (1) and (3) for all internal nodes we iterate the compaction step for

different partitions of the tree into paths.

During the second step of the algorithm we compact leaflets. We construct monotone

lists of leaflets and within each such list we move (if possible) all but one children from

leaflets of smaller weights to leaflets of greater or equal weight. If a leaflet is left with one

child this child replaces the given leaflet in the sequence of children of the parent of the

leaflet. To do this we iterate a compaction step two times. During the first iteration we

consider maximal nondecreasing sequences of neighboring leaflets, and compact the

Chapter 5: Valley filling technique and construction of minimax trees page 147

leaflets on these sequences (see Figure 5.10). During the second iteration we consider

maximal nonincreasing sequences of neighboring leaflets and compact the leaflets on these

sequences.

Thus the tree compaction algorithm can be described as follows:

T H E TREE COMPACTION ALGORITHM:

STEP 1 : compaction of internal nodes

Repeat the following compacting step t times:

1. Partition the tree into independent paths by choosing, for any node v which has a

nonleaf child, its first nonleaf child as its path successor.

2. Compact in parallel all the paths computed in the previous step.

STEP 2 : compaction of leaf nodes

1. Construct lists of leaflets as follows: For each leaflet v, check whether it is adjacent to a

leaflet with greater or equal weight. If so, this leaflet follows v on the list. Let Z1; be the

number of leaflets on the i m list and Z2} be the sum of their children.

2. Let ki=[~(/2i - ll[) / (t-l)l. For each list divide the last / 2j - lli + kj elements of the

sequence of children of the leaflets of the list into blocks of size t (except possibly for the

first block). These blocks of leaves became the new children of the last kj leaflets. The

remaining elements replace the remaining leaflets (we have one element per leaflet).

3. Repeat steps 1 and 2 replacing nondecreasing lists by nonincreasing lists and switching

the meanings of adjectives "last" and "first".

b a

Figure 5.10: Leaflets compaction (t = 4)

Chapter 5: Valley filling technique and construction of minimax trees page 148

Lemma 5.5 : The algorithm described above compacts the input alphabetic minimax tree

to a minimax tree satisfying conditions (l)-(3).

Proof: It is obvious that after Step 1, the condition (3) is satisfied. An easy inductive

argument shows that after the i-th iteration of the path compaction step each node which has

less than t children and is not a leaflet has at least i children, and the first i of them (in the

left-to-right order) are leaves. To see that (1) and (3) are satisfied after step 2 of the

algorithm first note that step 2 never changes the number of children of a node which is not

a leaflet. Step 2 consists of two compacting steps each of which consists of shifting

children of leaflets of smaller weight to leaflets of greater weight. There is at most one

leaflet left on each list of adjacent leaflets. Thus condition (2) is also satisfied. •

5.4.2. Non-alphabetic t-ary minimax trees

The main result of this section is based on the following lemma:

Lemma 5.6: The cost of a non-alphabetic minimax t-ary tree is equal to the cost of the

alphabetic minimax tree whose leaves form a sorted sequence.

Proof: We use the following result proven by Golumbic [Gol76] : If T is a minimax tree

then

c(T)= riogtStw(v)l. (5.7)
veV

It follows immediately that replacing t elements of weight w by one element of weight w+1

does not change the cost of the minimax tree. Also, if the number of minimal elements is

smaller than t, then replacing them by an element of the weight greater by one does not

change the cost of the minimax tree. The second fact follows from the observation that if a

subset of the set of elements of minimal weight share a common parent with an element of

Chapter 5: Valley filling technique and construction of minimax trees page 149

greater weight, then we can insert an internal node which becomes a new parent of the

minimal nodes and a child of their old parent. This justifies the following algorithm for the

construction of a (non-alphabetic) minimax tree:

1. Sort the leaves in nonincreasing order of their weights. Let W be the resulting

construction sequence.

2. While there are more than t elements in the construction sequence do:

Let w be the weight of the last element of the sequence. If t or more elements have

weight w replace the first t elements of weight w by a common parent. Otherwise

replace all elements of weight w by a common parent.

3. If more than one element remains, construct a common parent for all remaining elements

It is easy to observe that the current construction sequence remains sorted as an invariant of

the above algorithm. Thus the algorithm constructs an alphabetic tree (for the sorted

sequence of leaf weights) whose cost is equal to the cost of a non-alphabetic minimax tree.

•

By this result and the results of the previous section we can construct a non-

alphabetic (integer) minimax tree in 0(log n) time with n CREW processors using the

parallel sorting algorithm of Cole [C 0 I 8 6] . It is also worth noting that in the case of an

alphabetic minimax tree with leaf weights in sorted (say nonincreasing) order, one can give

a parallel algorithm which minimizes the number of internal nodes. We precede the sketch

of such an algorithm with a number of definitions and observations.

A maximal subsequence of elements Uj,uj+i , . . . ,Uj + k of equal weights such that

W(UJ.I) > W(UJ) is called a tread. A tread is called a short tread iff the number of elements

in the tread is less than t. Otherwise it is called a long tread. A monotone sequence, all of

whose treads have length at most t, is called a slope. A monotone sequence without long

treads is called a cliff.

Chapter 5: Valley filling technique and construction of minimax trees page 150

A maximal sequence u i + 1 , . . . , u i + t , u i + t + 1 , . . . , u i + ^

such that
w(ui+l)=-=w(ui+t-l)>
w(u i + (t. 1) + 1)=w(u i + (t. 1) + 2)=...=w(u i + 2(t.i))=w(u i)-l,

w (Mr- l) (t - l)+ l) = w (u i+ (r - l^

and w(uj) < W(UJ.I) is called a stair.

• " *
t-1 :

t

Figure 5.11. A stair

Lemma 5.8 (tread cutting lemma): Let U be a construction sequence containing a

long tread Uj,Uj+i,...,Ui+k such that W(UJ_I) >w(uj), and let k+1 = st+q (0<q<t). Let U' be

a construction sequence obtained from U by replacing each of the subsequences

ui+pt'ui+pt+l>"->Ui+pt+t-l>P-0>".,s-l by a common father u p ' of weight W(UJ)+1. Then

C(U) =C(U').

t t . . . t

Figure 5.12. Treads cutting

Proof: Immediately from equality (5.7) •

Lemma 5.8 (stair climbing lemma): Let U be a sequence containing the stair

w(u i + 1), . . . ,w(u i + t),w(u i + t + 1), . . . ,w(u i + r t), ,w(u i + (r . 1) t + 1). . . ,w(u i + r t),w(u i + r (t . 1) + i) and

Chapter 5: Valley filling technique and construction of minimax trees page 151

let U* be a sequence obtained from U by replacing the stairs by the tree T presented in

Figure 5.13. Then C(U)=C(U').

t

Figure 5.13. Stair climbing

Proof: This follows from r applications of the tread cutting lemma. •

Lemma 5.9. (tread climbing lemma) Let k be the length of the longest long tread in

the construction sequence. Then after flog tkl applications of the tread cutting lemma the

input sequence is reduced to a slope.

Proof: Let mj be the length of a maximal tread after i applications of the tread cutting

lemma. After the i+l s t application of the tread cutting lemma we have mj < L -y-rJ + t-1.

This follows from the fact that at most t-1 elements from a tread do not obtain a parent, and

there are at most new nodes coming from the tread below to the tread above it. Thus

after flog tkl applications of the tread cutting lemma mr] o g k"| <t. •

Lemma 5.10 (slope climbing lemma). Let U be a sequence forming a slope. Then

the application of the stair climbing lemma to all stairs of the slope reduces the slope to a

cliff.

Proof : By the maximality condition in the definition of stairs, the root of a tree which

replaces a stair cannot be a part of a long tread. Since all long treads are removed as the

Chapter 5: Valley filling technique and construction of minimax trees page 152

result of stair climbing, and no new long treads are created, the resulting sequence forms a

cliff. •

Lemma 5.11. (cliff climbing lemma): Let U = w(ui). . . ,w(u r (t _i) + j), where 1 < j <

t, be a cliff. Then C(U) is equal to the cost of the tree created as in Figure 5.14.

Figure 5.14. Cliff climbing

Proof: This follows from the immediate observation that the cost of this tree is equal to

w(ui)+l , and that this is a minimax tree for the sequence U. •

The following algorithm for constructing a non-alphabetic minimax t-ary tree which

minimizes the number of internal nodes is an immediate consequence of the above lemmas

and Lemma 5.6:

1. Sort the input sequence of weights applying Cole's sorting algorithm;

2. Apply the treads climbing lemma to reduce the input sequence to a slope;

3. Apply the slope climbing lemma to reduce the slope obtained in step 2 to a cliff;

4. Apply the cliff climbing lemma to the cliff obtained in step 3.

It is straightforward to implement steps 2-4 of the algorithm in 0(log n) time with

n /log n processors (use Brent's pronciple to reduce the number of processors of an

obvious implementation of step 2). Since all but (possibly) one internal nodes of the tree

have t children the tree constructed by the above algorithm minimizes the number of internal

nodes.

Chapter 5: Valley filling technique and construction of minimax trees page 153

5.4.3. Minimax trees with real weights

Kirkpatrick and Klawe [KirKla85] showed that the alphabetic minimax tree problem

for real leaf weights can be reduced to 0(log n) instances of the integer version. Let

W=w 1,...,w n and a p w ^ w j . Define W(aj) to be the following (integer) sequence of

weights r w r ajl, Tw2- a ^ l , T w n - ajl. Let bi, b n be the number aj rearranged into

ascending order and let brj= b n. The reduction is based on the following lemma [KirKla85]:

Lemma 5.12 [KirKla85]: Let j be such that C(W(bj))+bj = min{ C(W(bi))+bil 1 < i < n}.

Then:

(a) C(W) = C(W(bj))+bj, and a minimax tree for C(W(bj)) yields an minimax tree for

C(W);

(b) if i < j then C(W(bi)) > C(W(bj));

(c) C(W(b0)) - C(W(bn)) =1.

The proof technique used in [KirKla85] also applies to all the types of minimax trees

considered in this chapter. This immediately leads to 0(log2n)-time, n/log n-processor (or

an 0(log n)-time n 2/log ^-processor) parallel algorithms for the alphabetic and non-

alphabetic minimax tree problems.

5.5. Summary

In this chapter, we identified a parallel tree synthesis technique called the valley filling

technique. The technique is applicable to the construction of weighted trees where weights

are derived from a well ordered domain. The technique basically consists of the iterative

application of a valley filling step in which the sequence of weights is divided into so-

Chapter 5: Valley filling technique and construction of minimax trees page 154

called valley sequences, and then the parts of the tree corresponding to each valley

sequence are computed independently. As the output of a valley filling step we obtain a

sequence of rooted trees. The corresponding sequence of weights of the roots of these trees

forms the input for the next iteration of the valley filling step. The idea of performing

independent computation within a valley sequence probably originates with the T-C

algorithm (the Hu and Tucker algorithm) for construction of alphabetic trees with optimal

weighted path length ([HuTuc71], [Hu75]) Later Atallah et. al. [AtaKosLarMilTen89] used

an independent computation within valley sequences (referred to there as "fingers") for

their 0(log2n)-time rt/log n -processor algorithm to construct the tree from a given

sequence of depths of leaves.

The basic idea behind the accelerated valley filling technique is to speed up the basic

algorithm by replacing the iterative application of the valley filling step by one pipelined

parallel step. Towards this end, our algorithm contains a preprocessing step in which it

precomputes the sequence of weights of the roots of the subtrees which will be used to fill

any particular valley. This is done based on the result of a bottom-up Algebraic Tree

Computation before corresponding subtrees are constructed. Then it remains to construct

these subtrees and glue them together into the resulting tree.

The accelerated valley filling technique is applied to obtain an 0(log n)-time /i/log n -

processor algorithm to construct the (integer) alphabetic minimax tree. Since the problem

of constructing the tree from a given a sequence of leaf depths can be formulated as a

minimax tree problem, this improves, in particular, the result of Attalah et. al. mentioned

above. We show that our optimal algorithm to construct alphabetic minimax tree can be

used to obtain an 0(log «)-time ^-processor algorithm for non-alphabetic minimax trees. In

fact, if the input sequence is sorted then only 0(log n) time and n/log n processors is

required. (Observe that the problem is as least as difficult as integer sorting.) We present a

0(log n) time ^-processor algorithm to construct a t-ary non-alphabetic minimax tree

Chapter 5: Valley filling technique and construction of minimax trees page 155

minimizing the number of internal nodes. Finally, we show an 0(log n) time n /log n

processor algorithm which reduces the number of internal nodes of an alphabetic t-ary

minimax tree. This algorithm parallelizes the incremental sequential algorithm of

Coppersmith, Klawe, and Pippenger [CopKalPip86] using a path compaction technique.

Chapter 6: Concluding remarks page 156

C H A P T E R 6 : C O N C L U D I N G R E M A R K S

In this thesis, a number of parallel techniques are presented for efficient construction

of certain families of trees (cf. chapters 3-5). Along with these tree construction techniques,

a number of parallel techniques are developed which have broader applications (cf. chapter

2). These techniques are illustrated with new parallel algorithms to construct various types

of trees, with concrete results summarized at the end of each chapter. One objective of this

final chapter is to reconsider the problems discussed in the thesis from a different

perspective.

For a large part of the thesis, we have been dealing with the problem of the parallel

construction of trees which are optimal with respect to some cost function. Many such

optimization problems can be solved using the parallel dynamic programming technique

developed by Miller, Ramachandran, and Kaltofen [MilRamKal86]. The basic hmitation of

this technique is its high processor cost. The technique (when applied to construction of

optimal weighted trees) generally involves iterative multiplication of rc2 x « 2 matrices and

thus requires M(n 2) (by current knowledge roughly rc6) processors. However parallel

dynamic programming technique remains a basic tool for constructing optimal trees, even

for problems which can be solved optimally by sequential algorithms which do not use

dynamic programming. Sometimes one can exploit the special structure of matrices

associated with a given problem and in this way reduce the processor cost

([AtaKosLarMilTen89]). In our approach we have been looking for solutions which

completely avoid dynamic programming.

Chapter 6: Concluding remarks page 157

A technique which can accomplish this is to relax an optimization problem and search

for almost optimal solutions. This allows us to confine our attention to a restricted family of

trees (in our case to trees of polylogarithmic depth) and design algorithms which relay on

the structure of the trees in the family. This approach has been taken in Chapter 4 where we

consider almost optimal solutions to the problem of constructing trees with minimal

weighted path length. We present a whole family of parallel algorithms naturally related to

the Huffman algorithm.

In Chapter 5, we present optimal parallel algorithms to construct minimax trees which

also avoids dynamic programing, yet constructs an exact solution. As we previously

mentioned, our approach has been motivated in part by the T-C algorithm - a sequential

0(n log n) time algorithm to construct alphabetic trees with optimal weighted path length.

We identify the valley filling technique and developed its accelerated version - the

accelerated valley filling technique. Using this accelerated valley filling technique we obtain

an optimal parallel algorithm for constructing minimax trees.

We next consider techniques for accelerating parallel algorithms whose natural

implementation involves the iteration of some basic step which depends on the result of the

previous iteration. This is one of the fundamental problems in parallel computation. We can

think of the consecutive iterations as of consecutive levels of computation. We identify a

few approaches:

1. Cascading sampling.

This technique is introduced in Chapter 2 (section 2.6) and considered further in Chapter

6. The basic idea is to precede the iteration by a preprocessing step. During this

preprocessing step, for each level of computation, a computation is performed on a

sample subset of the data available at the given level and the results are distributed to the

other levels of computation. The additional information which arrives at a given level

during this preprocessing step is used to speed up the iterated step.

Chapter 6: Concluding remarks page 158

2. Pipelining

This technique makes it possible to start computation on a higher level before the

computation on a lower level is finished. This approach can be applied when it is

possible to start computation on a higher level based on a partial results obtained from a

lower level of computation. This approach has been taken in Cole's optimal parallel

merging sort algorithm. A pipelining technique is usually combined with a sampling

algorithm, that is with an algorithm which chooses the portion of information to be

submitted to the next higher level prior to the completion of the computation at a given

level ([Col85],[Kos89]).

3. Collapsing an iterative computation into one step

This is a specific mixture of the two previous approaches. Sometimes it may be possible

to obtain in a preprocessing step all information required for all levels. Then the

computation on all levels can be completed by performing one parallel step. Such

approach is taken in Chapter 5 to speed up the general valley filling technique to produce

the accelerated valley filling technique.

We now consider the tree contraction technique. Following the work of Miller and

Reif [MilRei85], applications and simplifications of this technique have been studied in a

broad range of papers including some of the results reported in this thesis. One of the first

steps was to abstract the technique from its applications. Another step was to systematize

classes of problems which can be solved using this technique. One step in this direction are

Bottom-up and Top-down Algebraic Tree Computation Schemas defined in Chapter 2.5.

This formalism however does not capture all possible applications of the technique. The

idea of tree contraction occurs in implicit or explicit ways in parallel solutions to many

problems which do not seem to have a natural definition as Algebraic Tree Computations.

The cotree construction algorithm presented in Chapter 3 is an example of such a problem.

The process of cotree construction can be viewed as the reverse of a cotree contraction

Chapter 6: Concluding remarks page 159

process. As well, the general valley filling technique (Chapter 5) has a hidden application

of the tree contraction technique. Namely, if we consider the level tree corresponding to a

given input sequence then we can observe that consecutive iterations of the valley filling

step can be visualized as iterative contraction steps performed on the level tree. This

observation provides more intuition as to why the explicit application of the tree contraction

technique makes it possible to obtain the accelerated version of the general valley filling

technique.

Both tree contraction and list ranking techniques were originally developed to support

parallel dynamic evaluation of an expression provided in the form of a tree or a list. In the

first case, we usually deal with a parse tree of an expression. In the second case, we have

one associative operation which is applied to all elements of the list. We assume that all

arguments are available at the beginning of the computation. Both the tree contraction and

the list ranking, can be viewed as techniques for efficient scheduling operation. It is natural

to ask which scheduling technique should be applied if the arguments in the leaves of a

computation tree or a list arrive with certain (known) delays. A partial answer to this

question is summarized in Figure 6.1. In this table, basic two questions are left open

providing an interesting opportunities for future research.

We have presented a number of parallel tree construction algorithms. Some of these

algorithms are optimal and some are open for improvement. A challenging open question

which is whether there exists an efficient parallel algorithm to construct an optimal binary

tree such that the processor time product is 0(n log n) (or even 0(n2'e) as stated in

[AtaKosLarMilTen89]).

Chapter 6: Concluding remarks page 160

Description of an expression no delays delays

One associative and commutative
operation on a sequence of data
presented in the form of a list

list ranking non-alphabetic
minimax tree

One associative operation
on a sequence of data
presented in the form of a list

list ranking alphabetic
minimax tree

One associative and
decomposable operation on a
sequecne of data presented in
a list

list ranking ?
•

A decomposable
algebraic tree expression tree contraction ?

•

Figure 6.1. Generalizations of the parallel dynamic expression evaluation problem

As mentioned before, the parallel valley filling technique discussed in Chapter 5 is

related to the sequential algorithm of Hu and Tucker (the T - C algorithm) for the

construction of an alphabetic tree with almost optimal weighted path length. It would be

interesting to see whether this technique (in its basic or accelerated version) can be used to

obtain a parallel algorithm for this problem (in its exact or approximate version) and other

families of trees which can be built sequentially using the T-C algorithm [HuKleTan79]. As

we have mentioned before, the best currently known algorithm for constructing alphabetic

trees with optimal weighted path length uses the parallel dynamic programming technique

and requires 0(log 2 «) time with roughly n 6 processors. The best approximation algorithm

for the problem is due to Atallah et. al [AtaKosLarMilTen89] and requires 0 (log 2 «) time

using n2/log2nprocessors.

REFERENCES page 161

References
[AbrDadKirPrz87] K.ABRAHAMSON, N.DADOUN, D.G.KIRKPATRICK, T.PRZYTYCKA,

A simple parallel tree contraction algorithm, Proc. 25th Allerton
Conference on Communication, Control and Computing (1987),

[AbrDadKirPrz87b] K.ABRAHAMSON, N.DADOUN, D.G.KIRKPATRICK, T.PRZYTYCKA,
A simple optimal randomized parallel list ranking algorithm, Computer
Science Department Technical Report 87-14, University of British
Columbia Vancouver, to appear in Information Processing Letters.

[AbrDadKirPrz89] K.ABRAHAMSON, N.DADOUN, D.G.KIRKPATRICK, T.PRZYTYCKA,
A simple parallel tree contraction algorithm, Journal of Algorithms 10,
1989, 287-302.

[AdkPen89] G.ADHAR, S. PENG, Parallel algorithms for cograph recognition and
applications, Proc. of 1989 Workshop on Algorithms and Data
Structures, August 1989, Ottawa, 335-351.

[AhoHopUlI86] A.V.AHO, J.E.HOPCROFT, J.D.ULLMAN, The Design and Analysis of
Computer Algorithms, Addison-Wesley, Reading, M A , 1974.

[A1182] B.ALLEN, On the cost of optimal and near-optimal Binary Search Trees,
Acta Inform. 18, 1982, 255-263.

[AltHagMehPre97] H.ALT, T.HAGERUP, K.MEHLHORN, F.P.PREPARATA, Simulation of
idealized parallel computers on more realistic ones, SIAM Journal of
Computing, 16 (5), 1987, 808-835.

[AndMil88] R.J.ANDERSON, G.L.MILLER, Deterministic parallel list ranking, VLSI
Algorithms and Architecture, 3rd Egean Workshop on Computing
(1988) 81-90.

[AtaColGoo89] M.J .ATALLAH, R.COLE, M.T.GOODRICH, Cascading divide-and-
conquer: A technique for designing parallel algorithms", SIAM, J.
Comput. Vol 18, No 3, 499-533, 1989.

[AtaKosLarMilTen89] M.J.ATALLAH, S.R.KOSARAJU, L.L.LARMORE, G.L.MILLER, S-
H . TENG, Constructing trees in parallel, Proc 1st A C M Symposium on
Parallel Algorithms and Architectures, 1989, 421-431.

I. BAR-ON and U. VISHKIN, "Optimal parallel generation of a
computation tree form". ACM Transactions on Programming
Languages and Systems 7,2, 1985, pp. 348-357.

P.J.BAYER, Improved bounds on the cost of optimal and balanced
Binary Search Trees, Project M A C Technical Memorandum 69, MIT,
Cambridge, 1975.

[BarVis85]

[Bay75]

[BeBrGalSchVis89] O.BERKMAN, D.BRSLAUER,Z.GALIL, B.SCHIEBER, U.VlSHKIN,
Highly parallelizable problems, Proc. of 21th Annual A C M Symposium
on Theory of Computing, 1989, 309-320.

REFERENCES page 162

[BerLawWon85] M . W . B E R N , E . L . L A W E R , A . L . W O N G , Why certain subgraph
computation require only linear time, 26th Annual Symposium of
Foundations of Computer Science, (1985) 117-125.

[Bop89]

[Bor77]

[BorHop85]

[BurUhr84]

[BrSchVis88]

[Bre74]

[Call857]

[Call859]

[ChaKozSto81]

[C0I86]

[ColVis86]

[ColVis86a]

[ColVis88]

R . B O P P A M A , Optimal separations between Concurrent-Write Parallel
Machines, Proc. of 21th Annual A C M Symposium on Theory of
Computing, 1989, 320-327.

A . B O R O D I N , On relating time and space to size and depth, SIAM J.
Comput., vol 6, 1977, 733-744.

A . B O R O D I N , J . E . H O P P C R O F T , Routing, merging and sorting on
parallel models of computation, / . Comp. Sys. Sci., Vol. 30, 1985,
130-145.

M . B U R L E T , J . P . U H R Y , Parity graphs, Annals of Discrete Mathematics
21 (1984) 253-277.

D . B R S L A U E R , B . S C H I B E R , U . V I S H K I N , Some double logarithmic
parallel algorithms based on finding all nearest smaller values,
UNIMACS-TR-88-79, University of Maryland Inst, for Advanced
Comp. Studies (1988)

R . P . B R E N T , The parallel evaluation of general arithmetic expressions,
JACM 21 (1974) 201-208.

A . C A Y L E Y , On the theory of the analytical forms called trees,
Philosophical Magazine, vol. XIII, 1857, 172-176.

A . C A Y L E Y , On the analytical forms called trees. Second part.,
Philosophical Magazine, vol. XVIII, 1859, 374-378.

A . K . C H A N D R A , D . C . K O Z E N , L J . S T O C K M E Y E R , Alternation, JACM,
vol 28, 1981, 114-133.

R . C O L E , Parallel merge sort, Proc 27th Annual IEEE Symp. on
Foundation of Computer Science, 1986, 511-516.

R. C O L E and U. V I S H K I N , Approximate and exact parallel scheduling
with applications to list, tree and graph problems, Proc. 27th Annual
IEEE Symposium on Foundations of Computer Science (1986) 478-
491.

R. C O L E and U. V I S H K I N . Deterministic coin tossing and accelerating
cascades: micro and macro techniques for designing parallel algorithms,
Proc 18th Annual Symposium on Theory of Computing, 1986, pp.
206-219.

R. C O L E , U. V I S H K I N , The accelerated centroid decomposition
technique for optimal parallel tree evaluation in logarithmic time,
Algorithmica 3, 3 (1988) 329-346.

REFERENCES page 163

[CooDwoRes86] S.A.COOK, C.DWORK, R.A.REISCHUK, Upper and lower bounds for
parallel random access machines without simultaneous writes, SIAM J.
Computation, vol 15, 1986, 87-97.

[CopWin87] D.COPPERSMITH, S.WINOGRAD, Matrix multiplication via arithmetic
progressions, Proc. 28th Annual IEEE Symp. on Foundations of
Comp. Sci., 1987, 260-270.

[CopKlaPip86] D.COPPERSMITH, M . M . K L A W E , N.J.PlPPENGER, Alphabetic
minimax trees of degree at most t, SIAM J. Comput. V o l 15, No 1,
1986 189-192.

[CorLerS81] D.G.CORNEIL, H.LERCHS and L.STEWART, Complement reducible
graphs, Discrete Applied Mathematics 3 (1981) 163-175.

[CorPerSte85] D.G.CORNEIL.Y.PERL.L.K.STEWART, A linear recognition algorithm
for cographs, SIAM J.Comput. 14, 4 (1985) 926-934.

[DadKir87] N . DADOUN, D. KIRKPATRICK, "Parallel processing for efficient
subdivision search". In 3rd A C M Symposium on Computational
Geometry, Waterloo, Ontario, 1987, pp. 205-214.

[DahKa86] E.DAHLHAUS, M.KARPINSKI, The matching problem for strongly
connected graphs is in NC, Research Report No 855-CS, University of
Bonn, 1986.

PahKa87] E.DAHLHAUS, M.KARPINSKI, Fast parallel computation of Perfect and
Strongly Perfect elimination schemes, Research Report No 8513-CS,
University of Bonn, 1987.

[DahKa89] E.DAHLHAUS, M.KARPINSKI, A n efficient parallel algorithm for the
Minimal Elimination Ordering (MEO) of an arbitrary graph, Proc 30th
Annual IEEE Symp. on Foundation of Computer Science, (1989), 454-
459.

[Dij59] E.W.DIJKSTRA, A note on two problems in connection with graphs,
Numer Math., 1, 1959, 269-271.

[Ede87] A.EDENBRANDT, Chordal graphs recognition is in N C , Information
Processing Letters 24, 1987, 239-241.

[FicRagWid88] F.E.FICH, P.RAGDE, A.WIDGERSON, Relations Between Concurrent-
Write Models of Parallel Computation, SIAM, J.Comp. V o l 17, No 3
(1988), 606-677.

[ForWyl87] S.FORTUNE, J.WYLLIE, Parallelism in Random Access Machines,
Proc. 10th Annual A C M Symp. on Theoretical Computer Science,1987,
114-118.

[Fre75] M .L .FREDMAN, Two applications of a probabilistic search technique:
sorting X+Y and building balanced search trees, Proc 7th Annual A C M
Symposium on Theory of Computation, 1975, 240-244.

REFERENCES page 164

[GarJon79] M.R.GAREY, D.S.JOliNSON,Computers and Intractibility: A Guide to
the Theory of NP-completness, W.H.Freeman, San Francisco.

[GibRyt86] A. GIBBONS, W. RYTTER, An optimal parallel algorithm for dynamic
tree expression evaluation and its applications, Proc.Symp. on
Foundations of Software Technology and Theoretical Comp. Sci.
(1986) 453-469.

[GibRyt88] A. GIBBONS, W. RYTTER, Efficient Parallel Algorithms, Cambridge
University Press (1988).

[Go78] L.M.GOLDSCHLAGER, A unified approach to models of synchronous
parallel machines, Proc. 10th Annual A C M Symp. on Theoretical
Computer Science,1978, 89-94.

[Gol76] M.C.GOLUMBIC, Combinatorial merging, IEEE Trans. Comp. 25,11
(Nov. 1976), 1164-1167.

[Gol80] M.C.GOLUMBIC, Algorithic Graph Theory and Perfect Graphs,
Academic Press (1980).

[Goo87a] M.T.GOODRICH, Efficient Parallel Techniques for Computational
Geometry, Ph.D. thesis, Purdue University, August 1987.

[Goo87b] M.T.GOODRICH, Finding the convex hull of a sorted point set in
parallel, Information Processing Letters 26,1887,173-179.

[Goo89] M.T.GOODRICH, Triangulation of a polygon in parallel, Journal of
Algorithms 10 (1989) .

[He86a] X. HE, Efficient parallel algorithms for solving some tree problems,
Proc. 24th Allerton Conference on Communication, Control and
Computing (1986) 777-786.

[He86b] X . H E , Parallel recognition and decomposition of two terminal series
parallel graphs, Computer & Information Science Research Center
Technical Report, The Ohio State University Columbus (1986).

[HerBil88] K.T.HERLEY, G.BlLARDI, Deterministic Simulations of PRAM's on
bounded degree networks, Prec. of the 26th Annual Allerton
Conference on Communication, Control, and Computation, Illinois,
1988.

[Her89] K.T.HERLEY, Efficient Simulations of Small Shared Memories on
Bounded Degree Networks, Proc. 30th IEEE Symp. on Foundations of
Computer Science, 1989, 390-395.

[HirChaSar79] D.S.HIRSCHBERG, A.K.CHANDRA, D.V.SARWATE, Computing
connected components on parallel computers, Com. of ACM, 22, 8
(1979) 461-464.

[HooKlaPip84] H.J.HOOVER, M . M . K L A W E , N.J.PlPPENGER, Bounding Fan-out
Logical Networks, Journal of the ACM, Vol 31, No 1 (1984) 13-18.

REFERENCES page 165

[HorPre89]

[Hu73]

[HuKleTan79]

[Huf52]

[Jar30]

[Jun78]

[KaUpf88]

[KarRam88] .

[Kil847]

[KirKla85]

[KirPrz88]

[KirPrz89]

[KirRe84]

[Kle88]

S.W.HORNICK, F.P.PREPARATA, Deterministic P R A M simulation
with constant redundancy, Proc of the 2nd A C M Symposium on
Parallel Algorithms, Santa Fe, New Mexico, 1989,

T.C.HU, "A new proof of the T-C algorithm", SIAM JAppl. Math.,
Vol. 25, No 1, July 1973, 83-94.

T.C.HU, D.J. KLEITMAN, J.K.TAMAKI, Binary trees optimum under
various criteria, SIAM J. Appl. Math., 37, 1979, 246-256.

D.A.HUFFMAN, A method for the construction of minimum redundancy
codes, Proc. IRE, 40, 1952, 1098-1101.

V.JARNIK, O jistem problemu minimalnim, Praca, Moravske
Prirodovedecke Splecnosti, 1930, 57-63 (in Czech).

H.A.JUNG, On a class of posets and corresponding comparability
graphs, J.Combinatorical Theory (B) 24 (1978) 125-133.

A.KARLIN, E.UPFAL, Parallel hashing-an efficient implementaiton of
shared memory, SIAM Journal of Computing, 15 (4), 1988, 876-892.

R.M.KARP, V.RAMACHANDRAN, A survey of parallel algorithms for
shared-memory machines, Report No.UCB/CSD 88/408, Computer
Science Division University of California, Berkeley (1988).

G.KIRCHHOFF, Uber die Aufloosung der Gleichungen, auf welche man
beider Undersuchund der liniearen Vertheilung gallvanischer
Stromegefurd wird, Ann Phis, Chem. 72 (1847) 497-508.

D.G.KIRKPATRICK, M.M.KLAWE, Alphabetic Minimax Trees, SIAM
J. Comput, Vol 14, No. 3 (1985) 514-526.

D.G.KIRKPATRICK, T.PRZYTYCKA, Parallel recognition of cographs
and cotree construction, Computer Science Department Technical Report
88-1,University of British Columbia, Vancouver, January 1988; to
appear in Journal of Discrete Math.

D.G.KIRKPATRICK, T.PRZYTYCKA, Parallel constructions of binary
trees with almost optimal weighted path length, TR 89-25,to appear in
Proc. 2nd A C M Symposium on Parallel Algorithms and Architectures.

D.G.KIRKPATRICK, S.REISCH, Upper bound for sorting integers on
random access machines, Theoretical Computer Science 28 (1984) 236-
276.

P.KLEIN, Efficient parallel algorithms for chordal graphs, Proc. 29th
Symp. of Foundation of Comp. Sci., (1988), 150-161.

[Kriu68] D. KNUTH, The Art of Computer Programming Volume 1: Fundamental
Algorithms, Addison-Wesley, 1968.

REFERENCES

[Kos89]

[KosDel88]

[KruRudSni85]

[LadFis80]

[Lar87]

[Ler71]

[Ler72]

[McC60]

[Meg83]

[Meh75]

[Meh84]

[Mer86]

[Mey84]

[MilRamKal86]

[MilRei85]

page 166

S.RAO KOSARAJU, Pipelining Computation in a tree of processors,
Proc 30th Annual IEEE Symp. on Foundation of Computer Science,
(1989), 184-189.

S.RAO KOSARAJU, A.L.DELCHER, Optimal parallel evaluation of tree
structured computation by raking, Proc. 3rd Aegean Workshop on
Computing (1988).

C.P.KRUSKAL, L.RUDOLF, and M.SNIR, Efficient parallel algorithms
for graph problems, International conference on parallel processing,
1985, 180-185.

R.E.LADNER, M.J.FISCHER, Parallel Prefix Sum Computation, Journal
of the ACM, 1980, 830-838.

L . L . L A R M O R E , A subquadratic algorithm for constructing
Approximately Optimal Binary Search Trees, Journal of Algorithms 8,
1987, 579-591.

H. LERCHS, On cliques and kernels, Dept. of Comp. Science Technical
Report, University of Toronto (1971).

H.LERCHS, On the clique-kernel structure of graphs, Dept. of Comp.
Science Technical Report, University of Toronto (1972).

J.MCCARTHY, Recursive functions of symbolic expressions and their
computation by machine, Part I, Com. ACM, 3, 1960, 184-195.

N. MEGIDDO, Applying parallel computation algorithms in the design of
serial algorithms, Journal of the ACM, 30, 4, Oct. 1983, pp. 852-865.

K. MEHLHORN, Nearly optimal binary search trees, Acta Informatica 5
(1975) 287-295.

K. MEHLHORN, Data Structures and Algorithms 1: Sorting and
Searching, Springer-Verlag (1985).

E.MERKS, An optimal parallel algorithm for triangulating a set of points
in the plane, International Journal of Parallel Programming, Vol 15, No
5 (1986) 339-411.

H.MEYNIEL, The graphs whose odd cycles have at least two crossing
chords, Annals of Discrete Mathematics 21(1984) 115-119.

G.L.MILLER, V.RAMACHANDRAN, E.KALTOFEN, Efficient parallel
evaluation of straight line code and arithmetic circuits, Proc. 2nd Aegean
Workshop on Computing (1986)

G. L. MILLER and J. REIF, Parallel tree contraction and its application,
Proc. 26th IEEE Symp. on Foundations of Computer Science (1985)
478-489.

REFERENCES page 167

[MilTen87]

[MilTen87]

[NaoNaoSc87]

[Nov89]

[Nov90a]

[Nov90b]

[Q£m63]

[PatHew70]

[Pip79]

[PraSto89]

[Pri55]

[PrzCor88]

[Ran87]

[Rei85]

[Ruz80]

[Ruz81]

G.L .MILLER, S-H.TENG, Systematic method for tree based parallel
algorithm development, Second International Conference on
Supercomputing, 1987.

G . L . M I L L E R , S-H .TENG, Dynamic computing of computational
circuits, Technical Report, CRI 87-17 Dept. of Comp. Sciences,
University of Southern California, Los Angeles.

J .NAOR, M .NAOR, A . A . S C H A F F E R , Fast parallel algorithms for
chordal graphs, Proc. 19th Annual ACM Symp. on Theory of
Computing (1987) 355-364.

M.B.NOVICK, Fast parallel algorithms for the modular decomposition,
Notes, Cornell University, Ithaca.

M.B .NOVICK, Parallel algorithms for the split decomposition, Notes,
Cornell University, Ithaca.

M.B.NOVICK, Private communication.

Y U . O F M A N , On the algorithmic complexity of discrete functions,
Soviet Phisics - Doklady, Vol 7 no 7, 1933, 589-591.

M.S .PATERSON, C.E.HEWITT, Comparative Schematology, Project
MAC Conference on Concurrent Systems and Parallel Computation,
Woods Hole, MA, 1970, 119-127.

N.PIPPENGER, On simulating resource bounds, Proc. 20th Annual
IEEE Symposium on Foundation of Computer Science, 1979, 307-311.

V.R .PRATT, L . J .STOCKMEYER, A characterization of the power if
vector machines, J,Comput. System Sci, vol 12, 1979, 198-221.

R.C.PRIM, Shortest connection networks and some generalizations,
Bell System Tech., J., 36, 1955, 1389-1401.

T .PRZYTYCKA, D.G.CORNEIL, Parallel algorithms for parity graphs, to
appear in Journal of Algorithms.

A . G . R A N A D E , How to emulate shared memory, Proc. 28th IEEE
Symp. on Foundations of Computer Science, 1987, 185-192.

J.H.REIF, Depth-First Search is inherently sequential, Information
Processing Letters 20,1985, 119-234.

W.L .RUZZO, Tree-size bounded alternation, J.Comp. Syst. Sci., vol
21, 1980, 218-235.

W.L .RUZZO, On uniform circuit complexity, J.Comp. Syst. Sci., vol
22, 1981, 365-383.

[Ryt85] W . R Y T T E R , The complexity of two way pushdown automata and
recursive programs, Combinatorical Algorithms on Words, eds

REFERENCES page 168

Apostolica and Z.Galil, NATO ASI series, F:12, Springert Verlag
(1985).

[RytSzy89] W.RYTTER, T.SZYMACHA, Parallel algorithms for a class of graphs
generated recursively, Information Processing Letters 30, 1989, 225-
231.

[Sac70] H.SACHS, On the Berge conjecture concerning perfect graphs, in
Combinatorial Structures and their Applications, Gordon and Breach,
pp 377-384, New York, 1970.

[ShiVisi81] Y.SHILOACH, U.VISHKIN, Finding the maximum, merging, and sorting
in a parallel computation model, Journal of Algorithms 2, (1981), 88-
102.

[Shy88] C.H.SHYU, A fast algorithm for cographs, presented at the French
Israeli Conference on Combinatorics and Algorithm, November 1988.

[Sli82] A . S L I S E N K O , Context-free grammars as a tool for describing
polynomial time subclasses of hard problems, Inform. Process. Lett.
14 (2) (1982) 52-57.

[Ste78] L. STEWART, Cographs, A Class of Tree Representable Graphs, M.
Sc. Thesis, Dept. of Computer Science, Univ. of Toronto (1978).

[Sum74] D.P.SUMNER, Dacey graphs, J.Australian Math. Soc. 18, 4 (1974)
492-502.

[Sys84] M.M.SYSLO, NP-complete problems on some tree structured graphs: a
review, Proc. of the Workshop on Graph Theoretical Concepts in
Computer Science, Universitat Osnabruck, June 1983, 342-353.

[Tar83] R. E . TARJAN, Data Structures and Network Algorithms, SIAM 1983.

[TarVis84] R. E . T A R J A N , U. VISHKIN, Finding biconnected components and
computing tree functions in logarithmic parallel time, In 25th Annual
Symp. on Foundations of Comp. Science, 1984, pp. 12-22.

[Ten87] S-H.TENG, The construction of Huffman equivalent prefix code is in
NC, ACM SIGACT, 18(4) 1987, 54-61.

[UpfWid87] E . U P F A L . A. WlDGERSON, How to share memory in a distrubuted
system, Journal of the ACM, 3 4 (1) , 1987, 185-192.

[Vai75] L .VALIANT, Parallelism in comparison problems, SIAM J.Comput.,
vol. 4, 1975, 348-355.

[Vis83a] U. VISHKIN, Synchronous parallel computation — a survey, TR-71,
Dept. of Computer Science, Courant Institute, NYU, 1983.

[Vis83b] U. VISHKIN, Implementation of simultaneous memory access in model
that forbid it, Journal of Algorithms, vol 4, 1983, 45-56.

REFERENCES page 169

[Vis84] U . V I S H K I N , Randomized speed-ups in parallel computation, Proc. 16th
Annual A C M Symp. on Theory of Computing (1984) 230-239.

[Wyl81] J . W Y L L I E , The complexity of parallel computation, Ph.D. dissertation,
Computer Science Department Cornell Univ., Ithaca, N Y , 1981

Index page 170

a-compact 22

accelerated valley filling 7,127,132,154
accelerated valley filling technique 157

algorithmic scheme 8, 14, 15, 26, 31,

53, 85, 91,125
All Dominating Neighbors (ADN) 40,

49, 51, 53, 135
All Strictly Dominating Neighbors

(ASDN) 49, 135

alphabetic trees with optimal weighted

path length 129

ancestor 9

approximate merging 110,121
approximate sorting 99, 110, 121

approximately optimal trees 82, 85,157
approximation of a sequnce 114

aproximate merging 99, 110

balanced forest 139

Basic Construction Scheme (Pxe) 85,

86, 99
basic subsequence 35,109
basic valley filling technique 127

BFS layering structure of a grpah 79, 80,

81
bottom-up Algebraic Tree Computation

p-cax 26, 138
bottom-up tree construction 82, 83

Brent's scheduling principle 12, 13, 25,

104
Bypass 21, 23

cascading divide-and-conquer 32

cascading sampling 7, 32, 53, 104, 157

chordal graphs 6, 55

cliff 149, 151, 152

cographs 6, 55, 57, 80

bunch set 62, 69, 73, 74

line set 66, 69,75
representative of a bunch set 62,69
representative of a line set 66, 69

COMPRESS operation 18,23

construction error 102

construction sequence 130

cost function 11

cotree 59, 80,159

decomposable algebraic tree computation

27
defining leaf 133

distribution by sampling 39

divide-and-conquer 40,54
e-approximation of the sequence 100

e-merging 100

e-sorted sequence 99,100

elementary shift of weight 97

error of a tree 85

Euler tour technique 17,25, 46

feasible extension of a sequence 96

flexible element of a sequence 96,97
full botom-up algebraic tree computation

27
gap 35, 109
General Construction Scheme (YJto) 101

graphs grammars 6, 56

Index page 171

Halin graphs 6

head of a sequnce 92, 113, 114

heavy element 101,103

hidden sequence 44, 47, 51, 52

horizontal neighbors 50

horizontal visibility 42

Huffman algorithm 84, 86, 87, 128, 157

Huffman tree 7, 84, 86, 87, 89

k-trees 56

level interval 132

level of a level interval 133

level tree 130, 132, 135

level-by-level tree construction 7, 82, 83,

124

light element 101, 103

list ranking 15, 25

load function 135, 137, 138

main subsequence 92

merging 42

minimax tree 127

alphabetic minimax tree 128

non-alphabetic t-ary tree 148

t-ary alphabetic rrnnirnax tree 128

compaction 144

minimax trees with real weights 153

t-ary alphabetic minimax trees 142

NC class 4

optimal binary search trees 82

optimal speedup 4

order of a subsequence 116

origin of a sequene 34

outerplanar graphs 6

parallel dynamic expression evaluation

18, 159

parallel dynamic programming 6, 84,

129, 156

parity graphs 57,78

parity graphs 6

partial k-trees 6

path compaction 146,155

pipelining 154, 158

pointer jumping technique 16

polygonal line 42

polylogarithmic running time 4

P R A M 2, 3, 4

CRCW 2, 16, 41

ARBITRARY 3

COMMON 2

PRIORITY 3

CREW 2, 4, 16, 41

EREW 2, 3, 16, 17

prefix sum computation 14, 14, 73, 74

processor allocation problem 13, 38

Prune 21, 23

R A K E operation 18, 23

real element 105,106,107

sampling element 32, 34, 38, 105, 106,

107

sampling step 34, 37, 38, 105

series-parallel graph 56

skipped element 107

slope 151

source element 34,107

stair 150, 151

subtree 10

T-C algorithm 127, 154, 157, 160

tail of a sequence 92,95,113,115

top-down Algebraic Tree Computations

31

total work 4

tread 149,150

long tread 149,150

Index page 172

short tread 149
tree 9

almost balanced binary tree 10
alphabetic 10
child 9
depth of a node in a tree 9
descendant 9
height 9
internal node 9
leaf 9
level 9
optimal with respect to a cost function
11
ordered tree 10
parent 9
rooted 9
siblings 9, 61

strong siblings 61
weak siblings 61

t-ary tree 9
full t-ary tree 9

weighted 10,153
tree contraction 18, 19, 20, 323, 53, 55,
138
tree expansion 5, 55, 80
tree synthesis 5, 6, 7, 82, 83, 127
tree with optimal weighted path length 83
truncation error 102
valley filling 7, 157
valley filling step 127, 131, 154
valley sequence 127,131

level of the valley 131
maximal element 131

visibility sequnce 43,44, 47, 50
visibility tree 42 50
weight function 10,84,127

