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Abstract 

This thesis investigates the viability of applying a shape-from-shading technique to 

SAR imagery. A shape-from-shading algorithm is derived and tested on a single site for 

which both a Seasat SAR image and Digitial Elevation Model (DEM) were available. 

The shape-from-shading technique used in this thesis follows an approach proposed 

by Frankot and Chellappa for processing slant range SAR imagery. The algorithm incor­

porates a one-step technique for projecting non-integrable surface orientation estimates 

onto an integrable set in the frequency domain along with the iterative convergent shape-

from-shading algorithm of Brooks and Horn. The significant issues and choices made in 

implementing the shape-from-shading algorithm and in preparing the SAR data and 

DEM are discussed. 

The shape-from-shading algorithm was applied to both the test site SAR image and 

images synthesized from the DEM. Reflectance models were derived from the SAR image 

and DEM. By quantitatively comparing the shape-from-shading results with the initial 

conditions used for the experiments, it was found that the algorithm produced substan­

tially better results when applied to the synthesized images; however, when applied to 

the SAR image, there was no significant improvement over the initial conditions. 
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Chapter 1 

Introduction 

Shape-from-shading is the problem of recovering the shape of a smooth surface from 

shading information in a single image. Shape-from-shading techniques use the visible 

points of a surface in an image to compute variations in surface depth from variations in 

image brightness. 

Frankot and Chellappa [FRAN87] have proposed applying shape-from-shading to Syn­

thetic Aperture Radar (SAR) imagery. They have performed tests on synthesized SAR 

images and Seasat SAR images with apparent success. However, their published results 

have only been evaluated in terms of visual appearance; no quantitative comparison has 

been made with topographical data of the study sites. 

The purpose of this thesis is to investigate the viability of applying shape-from-shading 

to SAR imagery. This is done by quantitatively comparing the results of experiments on 

a Seasat SAR image with a Digital Elevation Model (DEM). A single test site containing 

mountainous terrain is used for the experiments. 
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CHAPTER 1. INTRODUCTION 2 

The algorithm used for the experiments is an implementation of the one outlined by 

Frankot and Chellappa in their two papers [FRAN87, FRAN88]. Their method incor­

porates a one-step technique for projecting non-integrable surface orientation estimates 

onto an integrable set in the frequency domain with the iterative convergent algorithm 

of Brooks and Horn [BR0085]. The significant issues and choices that were faced in 

implementing the shape-from-shading algorithm for this application, and in preparing 

the test data for the experiments are presented in this thesis, along with the results of 

the experiments. 



Chapter 2 

Review of Literature 

Horn [HORN75] was the first to formulate a general form for the shape-from-shading 

problem, equating image irradiance to scene radiance, to give the non-linear part ial 

differential equation, which is now commonly called the image irradiance equation: 

I(x,y) = R(zx,zy) (2.1) 

The image irradiance equation makes explicit the difficult nature of the shape-from-

shading problem: how to find the two components of surface orientation zx and zy given 

only a single image brightness value I(x, y). 

Horn [HORN77] also introduced the reflectance map, an important shape-from-shading 

tool, used to represent the surface radiance function R(zx,zy). The reflectance map de­

scribes surface radiance values for a l l possible combinations of surface orientation given a 

particular imaging geometry and type of surface material. The reflectance map is graph­

ically depicted using contour lines to represent points of surface orientation with equal 

3 
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radiance values. 

2.1 Energy Minimization 

Ikeuchi and Horn [IKEU81] originated the idea of using a energy minimization framework 

for solving the shape-from-shading problem. Instead of strictly enforcing the equality 

between the two sides of the image irradiance equation (Equation 2.1), they posed the 

problem in terms of minimizing the square of the difference of the two sides of the equation 

across the whole image with the added constraint that the solution must be acceptably 

smooth: 

minimize / / (I(x, y) - R(zx, zy))2 + \S(zx, zy) (2.2) 
J x Jy 

Here S(zx, zy) represents a measure of surface smoothness as a function of surface orien­

tation, and A is a regularization parameter, which is used to trade off surface smoothness 

against the accuracy of the estimated surface orientations as applied to the image irra­

diance model. The smoothness constraint is believed to select (it has not been formally 

proved) a unique set of surface orientations out of all possible sets of surface orientations 

which satisfy the image irradiance equation to a certain degree of accuracy. Altering 

the value of the regularization parameter selects a new set of surface orientations which 

optimally meet the contraints across the image. Ikeuchi and Horn used the sum of the 

squares of the partial derivatives of the surface orientation estimates for their smoothing 
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function: 

S(zx,zy) = f2

x+f2 + gl + gl (2.3) 

To derive their shape-from-shading algorithm, Ikeuchi and Horn applied the method of 

calculus of variations to find a function which minimizes Equation 2.2. The function being 

sought represents an extrema of the integral equation over the set of possible functions, 

and so must satisfy a set of associated Euler equations. From the Euler equations an 

iterative algorithm is obtained. The algorithm converges upon a solution given initial 

boundary conditions from which surface orientation values may propagate. 

Ikeuchi and Horn derived their algorithm using stereographic coordinates (/, g) to 

represent surface orientation because they make it possible to include the surface orien­

tations of occluding boundaries, which can be deduced from the edges in the image. 

The algorithm can be adapted to the quality of the image using the regularization 

parameter. Increasing the weight of the smoothness component in the energy minimiza­

tion equation offsets large errors or noise in an image. A high quality image, on the other 

hand, can be accurately processed with very little smoothing by minimizing the value of 

the regularization parameter. However, the regularization parameter introduces a new 

problem in that there is no clear means of deriving an appropriate value for it. Further­

more, the presence of the smoothness constraint may actually prevent the algorithm from 

converging to the correct solution and can even cause the algorithm to walk away from 
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the correct solution [HORN89]. Therefore, the Ikeuchi and Horn algorithm computes a 

smoothed approximation to the shape-from-shading problem as opposed to maintaining 

complete fidelity with the data. 

A methodology for deriving an iterative algorithm from a energy minimization func­

tion using the calculus of variations was presented by Horn and Brooks in [HORN86b]. 

2.2 Integrability 

For a surface with height z(x, y), integrability is defined as 

*xy(x,y) = Zyx(x,y)- (2.4) 

To obtain consistency between the surface orientation estimates zx and zy in shape-from-

shading results, it is desirable to include an integrability constraint. The constraint also 

implies that the result of reconstructing surface height from surface orientation estimates 

will be independent of the integration path chosen. Without this constraint in the shape-

from-shading problem, it is most likely that the surface orientation estimates will be 

non-integrable. 

Ikeuchi and Horn proposed, as reported in [HORN86b], that an integrable surface 

could be derived by finding the best fit of an integrable surface to the possibly non-

integrable results of their iterative shape-from-shading algorithm. In a manner similar 

to that in which they derived their shape-from-shading algorithm, they pose the surface 
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reconstruction problem as one of minimizing the square of the difference between the 

results of the shape-from-shading algorithm and the surface orientations of an integrable 

surface. Once again, the calculus of variations is used, Euler equations are found, and 

an iterative convergent algorithm is obtained. Boundary conditions for the algorithm are 

obtained by enforcing the integrable surface orientations along the same boundary curve 

used for initial constraints in the shape-from-shading algorithm. 

Horn and Brooks [HORN86b] attempted to improve upon previous work on this 

problem by directly including integrability as a constraint in the original shape-from-

shading problem. They derived a procedure for developing iterative shape-from-shading 

algorithms using the calculus of variations and applied their methodology to a energy 

minimization function which included the integrability constraint. Unfortunately, their 

effort yielded non-linear Euler equations for which they were unable to find a convergent 

iterative algorithm. 

As an alternative, Horn and Brooks proposed to use the integrability constraint in 

place of the surface smoothness constraint used by Ikeuchi and Horn in the energy min­

imization equation (Equation 2.1). In this role, the integrability constraint serves as a 

penalty function to push the shape-from-shading solution towards integrability. With 

this approach, there is no guarantee of an integrable solution when the convergence stops 

since integrability is not strictly enforced. Only an approximately integrable solution is 

obtained. 
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Frankot and Chellappa [FRAN88] have proposed a technique that strictly enforces 

integrability. Possibly non-integrable surface orientation estimates in gradient-space are 

transformed into the frequency domain and projected onto a set of integrable orthonor-

mal basis functions using a least-squares fit. The projection recovers surface height, 

as represented in the frequency domain, which may then be transformed back into the 

spatial domain to produce the surface, or used to derive new gradient estimates. 

Frankot and Chellappa's method is similar to Ikeuchi and Horn's technique in that a 

projection is used to map non-integrable surface orientations to an integrable surface. The 

former approach restricts the set of integrable surfaces to those that can be constructed 

from the set of basis functions whereas the latter does not. On the other hand, Frankot 

and Chellappa's projection can be performed in a single operation, unlike Ikeuchi and 

Horn's technique which must iteratively converge to an acceptable solution. 

Frankot and Chellappa have implemented their projection technique as an additional 

step in the iterative algorithm of Ikeuchi and Horn. In a further paper, [FRAN87], they 

adapted the algorithm for processing SAR data. It is this particular algorithm which is 

the focus of investigation of this thesis. 

2.3 Synthetic Aperture Radar 

Synthetic Aperture Radar (SAR) imaging differs from conventional imaging in that it 

employs an active sensing mechanism and uses the distance measuring property of radar. 
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It is a valuable alternative to optical imaging since the radar used for SAR imaging can 

reveal surface features not visible at optical wavelengths and can also penetrate cloud 

cover. Being an active imaging system, the image quality does not depend upon external 

illumination conditions that may vary with time of day, or season, like the position of 

the sun. 

As an application area for shape-from-shading, SAR imagery is believed to be well 

suited since SAR data exhibits a high dependence of image pixel intensity on the surface 

topography as opposed to variations in the ground cover [WILD86, GUIN89]. The quality 

of the correlation between pixel intensity and surface orientation is a function of the 

incident angle [LILL87] with small angles (0 to 30 degrees) having a strong correlation, 

moderate angles (30 to 70 degrees) being more affected by surface roughness, and large 

angles (over 70 degrees) mostly falling into shadow. 

SAR images have a lower signal-to-noise ratio than conventional images. The most 

dominant form of noise is speckle or clutter, which is caused by interference between 

the return signals from several sources on a surface [SWOR86]. Clutter noise has a high 

standard deviation and is most evident as bright speckles in the SAR image. 



Chapter 3 

Theory of Shape-from-Shading 
Algorithm 

This chapter describes the derivation of the shape-from-shading algorithm implemented 

in this thesis. The theory behind the algorithm is presented in three stages. First, 

the basic algorithm based upon Horn and Brook's variational approach [HORN86b] is 

introduced. Second, the integrability technique of Frankot and Chellappa [FRAN88] is 

included. Last of all, the algorithm is adapted to the particular requirements of processing 

SAR imagery. To derive the algorithm it is first necessary to clearly establish the domain 

of the shape-from-shading problem. 

3.1 Problem Framework 

The shape-from-shading problem is formulated as the inverse of the image formation 

process, see Figure 3.1. Mathematically, this process is represented by the image irradi­

ance equation, which equates surface radiance, emitted in the viewing direction, to the 

10 
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Illumination 
Source 

Optical 

Axis 

Surface Image Plane 

is the illumination vector 

is the surface normal 

is the emittance vector 

Figure 3.1: Imaging Geometry 
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brightness values registered in the image: 

I(x,y) = R(i,n,e,p) (3.1) 

The function I(x,y) represents the brightness value at each point, (x,y), in the image. 

The radiance function, R, is dependent upon four sets of parameters. Vectors i and e 

represent the direction from which the surface is illuminated and the direction in which 

energy is emitted from the surface to the image, respectively. The surface normal n 

specifies surface orientation and is aligned perpendicular to a plane tangent to a point on 

the surface. The albedo, p, represents the reflectance properties of the surface material as 

determined by its composition, micro-structure, and the wavelength of the illuminating 

energy. 

The first step to be taken in analyzing the shape-from-shading problem is to simplify 

the image irradiance equation as much as possible. The following subsections outline the 

simplifying assumptions that will be used. 

3.1.1 Imaging Geometry 

It is convenient to formulate the shape-from-shading problem using a camera-centred 

coordinate system for both the object and the image, as shown in Figure 3.1. The 

optical axis extends perpendicularly from the image plane, I(x,y), and passes through 

the object. The optical axis is labelled as the z-axis in the (x, y, z) coordinate system. 

The origin of the coordinate system is placed on the opposite side of the surface from the 
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image plane, with the positive z-axis extending towards the image plane. The position 

of the origin with respect to the surface along the z-axis is otherwise set arbitrarily. The 

2-axis serves to measure surface height, so that surface points closer to the image plane 

will be considered higher than those closer to the origin of the z-axis. 

The first assumption to be made in the imaging model is that the projection of 

surface points onto the image is orthographic. For convenience, the size of the object is 

considered to be scaled to the image so that a distance in xy coordinates on the image 

is the same distance in xy coordinates over the object. This means that for each point 

(x,y,z) on the surface, it will appear in the image at location (x,y). Essentially, this is 

the same as specifying that the object to image distance is very large in comparison to 

the variations in surface height of the object, so that there are no perspective distortions 

in the image due to changes in surface relief. The orthographic projection provides the 

simplest mapping of surface locations to image locations. Equally important though, it 

implies that every ray of energy emitted from the surface that reaches the image travels 

in the same direction, parallel to the z-axis. In terms of the image irradiance equation, 

this means that the value of e is constant across the whole surface. 

A similar assumption is also made for the illuminating energy, that, for all points 

on the imaged surface, the lighting conditions, as represented by i, are constant. Two 

interpretations of this condition are possible, either: 
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a) point source illumination is being used, where the light sources are so distant 

from the surface that the incoming rays of light are collimated and uniform 

across the surface, 

or, 

b) a hemispherical lighting condition exists, so that all points on the surface 

are receiving the same amount of incoming energy from any one particular direction. 

Another assumption which is implied by specifying a constant illumination lis that there 

are no multiple reflections of light off of the surface reaching the image, or that such 

occurrences have a negligible effect in the image. If this were not so, some surface points 

would have to be considered as having more than one illumination direction, considerably 

complicating the imaging model. 

3.1.2 Surface Orientation 

The shape-from-shading algorithm derived in this thesis follows the choice of Frankot 

and Chellappa [FRAN88] in using surface gradients to represent surface orientation. The 

reason they chose to use gradient space in their shape-from-shading algorithm is that it 

is the representation used as input and output to their integrability projection. 

For a surface z{x,y), the gradients are p and q, where, 

Sz 
and (3.2) P = zx = — 

ox 
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The gradient is simple to compute but is l imited in representing surface slope. A n y 

surface point that faces 90 degrees or more away from the viewer cannot be represented, 

which means that occluding boundaries cannot be represented. Occluding boundaries 

provide valuable constraints in solving shape-from-shading, as mentioned in Section 2.1, 

and cannot be precisely incorporated in a solution if the algorithm uses gradient-space. 

This problem can be overcome in part by using very large gradient values to approximate 

boundary values. 

3.1.3 Reflectance Function 

W i t h the assumptions that have been made thus far, and the additional assumption that 

the surface material of the object is homogeneous, so that the albedo factor p can be 

considered a constant, it is possible to rewrite the surface radiance function in terms of 

just the two parameters of surface orientation: 

R(t, n, e, p) = » R(p, q) (3.3) 

This simplified expression, R(p,q), is called the reflectance function, or reflectance map. 

It gives an image irradiance (or image brightness) value for each possible surface orien­

tation for a particular configuration of imaging geometry and type of surface material. 

The reflectance function may be derived empirically using a sample of the material and 

a controlled lighting environment to measure reflectance values at different surface ori­

entations. 
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An alternate approach is to use a mathematical model for the reflectance function. 

Surfaces can generally be characterized as containing two different components of re­

flectance: specular and diffuse [WOOD84]. An ideal specular surface is a mirror, which 

reflects all incoming light in one direction as determined by the incident angle z, so that 

the emergent angle e is equal to it and lies in the same plane. A diffuse surface radi­

ates incoming light in all directions so that the surface appears to have a flat finish as 

opposed to a glossy one. An ideal diffuse surface is called a Lambertian surface. Such 

a surface appears equally bright when viewed from any direction, as long as the illumi­

nation conditions are constant. For a distant point source of illumination, the reflection 

from a Lambertian surface can be modelled as the cosine of the incident angle i alone, 

since the emergent angle e determines the viewing direction. The incident angle i can be 

derived from the gradients of a surface patch by expressing the gradients in vector form 

and computing their normalized dot product to get the cosine of the angle of incidence. 

Therefore, in this case, the Lambertian function is just the normalized dot product of 

two vectors. Given a point source of illumination in direction i = (ps,qa,l)T and that 

the orientation of a surface patch is represented by the surface normal n — (pn, qn, 1)T, 

then the model for a Lambertian surface is 

R(p, q) = cos(i) = ( IMH/ \v / l+^ + 9nv / l + P2 + 9.2 

i- fi \ _ I l + PsPn + qsqn (3.4) 
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3.2 Relaxation Algorithm 

With the assumptions made in the previous section, the general image irradiance equation 

(Equation 3.1) can be rewritten as 

I(x,y) = R(piq). (3.5) 

The problem of recovering surface orientation from I(x,y) given a reflectance function 

R(p,q) is ill-posed since there is generally no unique mapping of an image irradiance 

value to p and q. Instead, there are an infinite number of possible solutions for surface 

orientation. Further constraints must be employed to select a single surface orientation, 

preferably the correct one, from the set of possible solutions for a brightness value at a 

particular location in an image. 

The steps in deriving the relaxation algorithm were formulated by Horn and Brooks 

[HORN86b] and are used here in presenting the basic shape-from-shading algorithm used 

in this thesis. 

3.2.1 Continuous Form 

The relaxation algorithm is derived by posing the shape-from-shading problem in a form 

that allows the "goodness" of a solution to be measured. The solution being sought 

is one in which the estimated surface best fits the given data according to a measure 

of smoothness imposed upon it. The equation which expresses this idea provides a 
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non-negative measure of the departure of the estimated surface from the ideal solution. 

By solving the equation for its minimum, the best solution is obtained. Frankot and 

Chellappa [FRAN88] use the following energy minimization equation: 

minimize J j\l(x,y) - R(p,q))2 + A(p* + p2

y + q\ + q2

y)dxdy. (3.6) 

The first term of the integral provides the constraint of the image irradiance equation in 

the form of a mean-squared intensity error to account for noise in the image and errors 

in modelling the reflectance function of the surface. The second term is a quadratic 

measure of variation in surface slope. The factor A is a Lagrangian multiplier that is 

used to adjust the relative influence of the two constraint terms. A large value of A 

means that the smoothing constraint will play a more dominant role in the final solution 

than conformity to the image irradiance constraint. 

When a minimization problem is posed in the form, 

J J F{p,q,px,py,qx,qy), (3.7) 

the calculus of variations can be used. The calculus of variations is a technique for 

searching for the extrema of an expression in which the variable is a function (in which 

case it is called a functional). The functional in this problem is the field of gradients 

over the space of the surface. The conditions necessary to find an extrema of such an 

expression can be found with Euler equations. Since the integral is a combination of two 

unknown functions p and q, there will be two Euler equations, one for each function. For 
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Equation 3.7, which is a second-order partial differential equation, the form of the Euler 

equations are, 

F > - ^ - 5 F * = 0' ( 3 , 8 ) 

F ——F - - F =0 
q Sx q x 8y qy 

When applied to Equation 3.6 they produce, 

(I(x, y) - R(p, q))R(p, q)p + AV2p = 0, (3.9) 

(I(x, y) - R(p, q))R(p, q)q + A V 2

9 = 0. 

The V 2 operator is the Laplacian operator where, 

( 3 - 1 0 ) 

Since there is no upperbound on the energy minimization equation, the Euler equations 

will only find an extrema which is also a minimum. 

3.2.2 Discrete Form 

The energy minimization equation, Equation 3.6, can be expressed in discrete form by 

considering how an element of image I is used. The first part of the equation 

relating image irradiance to scene radiance is, 

rH = [Iii ~ R(Pij><lij)]2 • (3-n) 
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The second part of the equation is a quadratic measure of the smoothness of the surface 

slopes. A measure of the partial derivatives of surface slope can be obtained using a finite 

difference approximation: 

sij — 
Pi+ij ~ Pi-ij \ 2

 + (Ptj+i - P y - A 2

 + / g»+ij ~ Qj-ij \ 2

 + (g«i+i ~ g»i-iN 2 

(3.12) 

Combined together, they form the discrete energy minimization equation: 

e = E E (ry+ (3.13) 
« i 

To find the ideal minimal solution to the equation it is differentiated with respect to the 

two unknowns pij and 

8 8 
e = 2\n{pij - p^) - 2[Iij - R(Pij, qtj)]-—R(pij, (3.14) 

6Pij ^ " 3 J l " KrtJ,^jn8Pij 

8 8 
-—e = 2\K(qij - qij) - 2[/y - R(pij,qij)h—R(Pij,Qij)-
oqij 8 q{j 

The differentiated form of the smoothing term s,j results in the terms ic(pij — p^) and 

K(q~ij — qij) which are discrete approximations of the Laplacian operator V 2 . Here, pij and 

qij are the local averages surrounding the points p^ and q^ respectively. From the four 

term finite difference measure of surface slope smoothness a five-point approximation is 

obtained where, 

Pij = ^ [Pi+ij + Pij+i + Pi-U + Pii-i]» (3-15) 

1 
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Including adjacent corner elements in the discrete approximation of the Laplacian pro­

duces a nine-point approximation, whose lowest-order error term is of a higher order than 

that of the five-point approximation [HORN89]: 

PH - \ [PH-lj + Pij+l + Pi-lj + Pij-l] + [Pi+li+l + Pi-lj-1 + Pi+lj-1 + P t - l j+ l ] ,(3.16) 

Qij = ^ [m+ij + qij+i + Qi-ij + Qij-i] + 2Q fo'+ij+i + Vi-ii-i + Qi+ij-i + Pi-ij+i] • 

A drawback of the nine-point approximation is that more computation is required. For 

the five-point Laplacian, K equals 4, whereas for the nine-point Laplacian K equals 4p. 

To find the minima of the discrete energy minimization equation, its partial deriva­

tives, as found in Equation 3.14, are set to zero. Rearranging this equation gives, 

nXpij = nXpij + [Iij - R{pij, qij)]j—R(Pij, (3-17) 

KXq{j = nXqij + [7tj - R{pij, qij)]j—R(p>j, qij) • 

From this set of equations an iterative algorithm is obtained: 

/CA 

Here, the superscripts n and n + 1 refer to the iteration number of the surface gradient 

estimates. 

The algorithm may be unstable in this form since two values of the gradient estimate, 

pij and pij or <?tj and are used in each equation. If the two values he on opposite sides 



CHAPTER 3. THEORY OF SHAPE-FROM-SHADING ALGORITHM 22 

of the actual gradient value to which they are converging, the algorithm will force the 

new gradient estimate away from it. As a result the shape-from-shading algorithm will 

oscillate around the solution or possibly diverge from it. To fix this problem, the average 

surface gradient can be used in all parts of the right-hand side of the equation. The final 

form of the basic shape-from-shading algorithm is, 

pt1=PH+-ri^i) - R(PI, mMPh 9&), (3.i9) 
K A 

The iterative algorithm requires an initial set of boundary conditions where p,j and qij 

are known in order to work. The algorithm can be run by repeating it for a fixed number 

of iterations or by running it until the energy minimization function (Equation 3.13) 

becomes smaller than a chosen value of e. The value of A chosen will also determine the 

success of the algorithm. If A is too small, the algorithm will be unstable and unable to 

converge to a solution. If A is very large, the errors in the estimated gradient values from 

the correct surface gradients may be very large. 

3.3 I n t e g r a b i l i t y 

Integrability in surface slopes can be expressed as the constraint that, 
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The surface slope estimates produced by the relaxation shape-from-shading algorithm 

generally do not meet this constraint, and so are non-integrable. 

3.3.1 Projection Technique 

Frankot and Chellappa [FRAN88] have proposed a technique to project possibly non-

integrable surface slope estimates (zx, zy) onto a set of integrable surface slope estimates 

(zx, zy). Their approach minimizes across the whole surface the distance between the 

integrable and non-integrable set of surface slopes according to the measure, 

d{(zx, (zx, zy)} = J J \zx-zx\2 + \zy - zy\2dxdy. (3.21) 

The least-squares distance measure ensures that the projection of non-integrable surface 

slopes onto an integrable set of surface slopes is an orthogonal projection for all slopes. 

To solve for this projection, a linear combination of a finite set of integrable basis 

functions <f>(x,y,u>) are used to represent the surface z(x,y) so that, 

z(x,y)=J2C(u;)(j>(x,y,u). (3.22) 

The set of expansion coefficients C(u>) spans a finite space in two dimensions (u>i,u>2). 

The components of surface slope are represented by the partial derivatives of Equa­

tion 3.22, 

*x{x,y) = E C{u)(f)x(x,y,w), (3.23) 

zv(x,y) = E C{w)<l>y(x,y,u). 
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However, if the basis functions (f>x(x,y,u>) and (f>y(x,y,u>) are assumed to be mutually 

orthogonal, then each set of surface slopes zx and zy can be represented by an independent 

set of expansion coefficients, 

Zx{*,y) = J2 C-L{w)4>x{x,y,u), (3.24) 

wen 
The projection problem can now be expressed in terms of finding the set of expansion 

coefficients C(UJ) of the integrable surface given the expansion coefficients for the non-

integrable surface slopes C\(u) and C2(u). The final projection equation is derived by 

substituting in the expressions for the basis function representations of the surface into 

the distance minimization expression in Equation 3.21, 

d{(zx,zy),(zx,zy)} = J J 

This can be simplified to 

^2 c<i>x — X ] C i f a + ]C G<j>y - ^2 C24>y dxdy. (3.25) 

d{(zxizy),(~zx,~zy)}= J J'J2\C-Ci\2\<i>x\2 +£ |C ' -C 2 \ 2 \<f> y \ 2 dxdy . (3.26) 

Interchanging the order of integration and summation produces 

d{(zx,zy),(zxrzy)} = £ \G{u) - tfiHI^M + \C(u) - C2(u)\2Py(u), (3.27) 

where Pg(u) = f f \<f>x(x,y,u)\2dxdy and Py(u) = f J \<j>y(x,y,u)\2dxdy. 
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To find the set of expansion coefficients C(u) that minimizes the distance equation, 

the above expression is differentiated with respect to C(u>). The terms in the summation 

expression can be minimized individually, giving, 

-J—d{(zx,zy),(zx,zy)} = Pm(cj)2[G(U) - &(«)] + Pv{cj)2[d(u) - &(«)]. (3.28) 
OC(OJ) 

By equating the right side of Equation 3.28 with zero in order to find the minimum, and 

by rearranging the equation to solve for C(u>), the final form of the projection equation 

is obtained, 

~ C1(u)Px(u) + &{u)PM 

C{U> - Px(u) + Py{u) • ( 3 - 2 9 ) 

3.3.2 Fourier Expansion 

Frankot and Chellappa [FRAN88] chose to use the Fourier series as the set of basis 

functions for the integrability projection so that <f>(x,y,u) = exp^WlX+U2V\ The Fourier 

representation of a measurable property over a finite two dimensional space uses two finite 

sets of sinusoidal basis functions, (ui,u>2) € fi? with wavefronts in orthogonal directions, 

to capture the full information content in the source space. Using Equation 3.22, an 

integrable surface can be represented in the frequency domain as, 

= £ e x p ^ - ^ , (3.30) 

where C(oS) represents the coefficients of the Fourier series expansion that indicate the 

magnitude and phase of the sinusoidal spatial frequencies which make up the surface. 
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A convenient property of the frequency domain is that the derivatives of the surface 

they represent can be computed by a multiplication: 

<t>x = jux<f>, (3.31) 

4>y - JUy<j), 

where ux and uiy are the frequency domain representations of the derivative operator for 

the ui and u>2 dimensions respectively. 

Using this property, the integrability projection as expressed in Equation 3.29 can 

be rewritten in terms of a set of Fourier basis functions. First, let the terms Cx and Cy 

represent the non-integrable surface orientation estimates zx and zy, then the mutually 

orthogonal sets of expansion coefficients can be computed as, 

Ci{u) = (3.32) 
]ux 

JUy 

The terms Px and Py are equivalent to the terms u>l and u2 for an expansion term in 

the Fourier series. Substituting terms, the integrability projection as expressed with the 

Fourier series is, 

G = ju, A M , (3.33) 

The new integrable surface slopes zx and zy can be computed in terms of their frequency 

coefficients Cx{u>) and Cx(u)) by taking the derivative of the surface z(x,y) expansion 
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coefficients C(u>), 

Cx{u) = juxC(u) (3.34) 

Cy(u>) = juyC(u) 

The only point at which the above equations are invalid is at w = (0,0). This point 

corresponds to the information describing the average value of the surface represented, 

or the DC component in the frequency domain. For the coefficients of the integrable 

surface slopes Cx and Cy, the value of the coefficient for the expansion term (0,0) can 

be acquired from the coefficients of the non-integrable surface slopes Cx and Cy. 

3.4 Adaptation for S A R 

A SAR sensor scans the terrain along a line perpendicular to its direction of flight (see 

Figure 3.2). The direction of flight is known as the azimuth direction of the sensor and 

it corresponds to the ?/-axis direction in the figure. Perpendicular to the azimuth along 

the ground is the range direction of the sensor which corresponds to the x-axis. A radar 

pulse signal is emitted from the sensor out towards the ground in the range direction. 

The returned signal is partitioned by time into cells that correspond to pixels along a 

single strip in the range direction. By repeating this process as the sensor travels in the 

azimuth direction, the adjacent strips can be used to construct a 2-dimensional image. 

The slant range resolution of a pixel can be computed from the duration of the radar 
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is the depression angle 

is the look angle 

is the slant range resolution 

is the ground range resolution 

Figure 3.2: SAR Imaging Geometry 
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pulse signal, the actual method used depends upon the type of SAR processing involved. 

For an introduction to SAR image formation and SAR processing see [LILL87], for a 

detailed description see [WONG84]. 

The imaging geometry for SAR is simplified considerably by the fact that the il­

lumination source and viewing apparatus are in the same location. As a result, the 

incident angle i of the radar pulse to the surface equals the emittance angle e of the 

reflected pulse back to the sensor and the phase angle g between the two angles is zero. 

Therefore, only half as much information is required to establish the geometry for SAR 

shape-from-shading as for optical applications. 

Geometric distortion in SAR imagery due to variations in terrain can be a significant 

problem in rugged areas [WONG84, LILL87]. Relief displacement occurs in the range 

direction and is caused by points of higher ground returning the radar pulse earlier than 

would occur if they were lower, since increased ground elevation reduces the slant range 

distance to the sensor. As a result, slopes facing the sensor in the range direction are 

foreshortened at a rate depending upon the angle of the slope. If the slope exceeds a 

critical limit then pixel layover occurs. This shows up in a SAR image when a target 

further away from the sensor along the ground appears to be closer to the radar in the 

image than other targets which are closer on the ground. Radar shadow occurs on slopes 

facing away from the sensor in the range direction. The extent of relief displacement 

and shadowing depends upon the severity of the terrain and the look angle of the sensor. 
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With a large look angle, relief displacement is minimized and radar shadows are large. 

A small look angle will give greater relief displacement and minimal radar shadow. 

3.4.1 Coordinate System 

Frankot and Chellappa [FRAN87] devised their shape-from-shading algorithm to work on 

SAR strip maps which measure the range distance along the slant travelled by the radar 

signal as opposed to along the ground. The relaxation form of the shape-from-shading 

algorithm works on the principle that the projection of surface points to image points 

is orthographic (see Section 3.1.1). In order to maintain this property, it is therefore 

necessary to introduce a new coordinate system (r,y,u) to process the SAR imagery. 

The axes r, y, and u are mutually orthogonal with the r-axis running parallel to the 

direction of the incident and reflected radar signal and the j/-axis extending in the azimuth 

direction. The (r, y, u) coordinate system is rotated from the ground coordinate system 

(x,y,z) about the y-axis. 

In introducing a new coordinate system two assumptions are made. First, that the 

slant range direction is constant across the range of the surface imaged. Second, that the 

relation between the ground range and slant range coordinate systems can be modelled 

by a rotation. In reality, the slant range direction of the SAR signal does change along the 

range of the image in a non-linear fashion. However, given a large distance between the 

sensor and the ground imaged this effect is reduced, and over a small range distance in 
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an image is probably minimal. The correction of slant range to ground range actually is 

more appropriately modelled by a hyperbolic function in order to make spacing of image 

points proportional to horizontal ground features [LILL87]. For large range distances the 

earth's curvature is another factor which must be considered [WONG84]. 

3.4.2 Reflectance Function 

The interaction between the radar signal and a surface is modelled by the radar cross 

section cr. The radar cross section is a function which measures the energy directed from a 

target back to the sensor [SWOR86]. It depends on target size, shape, material, direction 

of view and illumination, radar frequency and polarisation. The reflectance function of a 

radar signal a0 is obtained by normalizing the radar cross section a by the average area 

illuminated by the radar A . 

= (3.35) 

Both a and A are functions of the incident angle a. 

Frankot and Chellappa [FRAN87] chose to use a semi-empirical model for the radar 

cross section called a generalized Lambert model. Keydel [KEYD82] describes this model 

as a good estimator for the average a0 of rough surfaces, 

f 7^22^, for 0° < a < ag 

i sm otg ' — — 9 

cr0(a) — < (3.36) 

• 7Sf , for <x9<*< 90° 
where p, u, 7, and ag (normally, ag < 10°) are abitrary constants that are chosen to fit 
the data based on measurements obtained for the surface type. Frankot and Chellappa 
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chose a simplified form of this function, with ft = 2, j/ = 1, 7 = 1, and ag not used but 

replaced with a small constant 8 ~ 10 -4 in the denominator which is used as a bias to 

prevent a0 from becoming infinite when a —• 0. 

Surprisingly, Barrick [BARR70] in his discussion of scattering models for rough sur­

faces claims that this particular form of the generalized Lambert model correlates poorly 

with measured results for most terrain and natural surfaces. The basic assumption un­

derlying this model is that the terrain is a diffuse scatterer, not specular. It works best 

when the incident beam is somewhat away from the surface normal, so that the incident 

angle a is not too close to zero. 

3.5 Summary 

Based on the material presented thus far in this chapter, the shape-from-shading algo­

rithm used in this thesis is summarized here. The algorithm uses the (r, y,u) coordinate 

system for processing SAR imagery where r represents the range direction, y represents 

the azimuth direction, and u represents the surface height relative to the (r,y) plane. 

The relaxation algorithm originally proposed by Ikeuchi and Horn [IKEU81], modified 

to use surface gradients, is combined with the integrability projection of Frankot and 

Chellappa [FRAN88] to create the algorithm used by Frankot and Chellappa [FRAN87] 

for processing SAR imagery. The steps are as follows: 

1. Set the boundary conditions in the surface slope estimates ur and uy. 
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2. Use the relaxation technique to propagate the initial boundary conditions and con­

verge towards a solution, 

< + 1 = < + -L[/(r, y) - R(un

r, fi?)]JW, <), (3-37) 
KA 

3. Apply the Fourier transform to the surface slope estimates and to get 

the frequency domain expansion coefficients Cr(uj) and Cy(u>) of the non-integrable 

surface slopes. 

4. Apply the integrability projection to get the frequency coefficients of the estimated 

surface, 

HI, A -J"rCr(u) -jUyCyju) 
= ufT^i • ( 3 , 3 8 ) 

5. Compute the derivative of the surface in the frequency domain to get a set of 

integrable surface slopes Cr(u>) and Cy(uj), 

CT{OJ) =jurG(u) (3.39) 

Cy(u) - juyC(u) 

6. Apply the inverse Fourier transform to the frequency coefficients CT(u>) and Cy(to) 

to get the integrable surface slope estimates u " + 1 and Uy+1-

7. Repeat the previous six steps, using and u " + 1 as input to the next iteration. 
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The algorithm is either run for a fixed number of iterations or until an acceptable degree 

of convergence is indicated by the energy minimization equation, 

J J (I(r, y) - R(ur, uy)f + \{u2

TT + u2

ry + u2

yr + u2

yy)drdy. (3.40) 

The final form of the surface u(r,y) can be constructed by applying the inverse Fourier 

transform to the frequency coefficients of the surface C(u>). 



C h a p t e r 4 

S o f t w a r e I m p l e m e n t a t i o n 

The important choices and significant details of implementing the shape-from-shading 

algorithm, as derived in Chapter 3, are presented in this chapter. The software was 

developed in three stages: 

1. The relaxation algorithm of Ikeuchi and Horn [IKEU81] was implemented, using 

surface gradients instead of stereographic coordinates. 

2. The integrability projection of Frankot and Chellappa [FRAN88] was added. 

3. The software tools required to evaluate the shape-from-shading results were devel­

oped. 

At the end of each development stage the software was tested on simulated data to verify 

its correctness. The software is written in Common LISP. 

Four basic data types are handled by the shape-from-shading software: surface heights, 

surface derivatives, frequency coefficients, and image pixels. The 2-dimensional arrays for 

35 
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storing intermediary values and results for these data types use fixed point representa­

tions. All operations on the data use floating point arithmetic to maximize the precision 

of the calculations. Both types of surface data as well as the frequency coefficients are 

stored as signed 32-bit values. Image pixels are 8-bit unsigned values. 

4.1 Relaxation Algorithm 

As explained in Section 3.1.2, gradient space was chosen to represent surface orientation 

in the relaxation algorithm. Gradient values are computed from the surface model either 

for providing initial boundary constraints, or for generating a simulated image of the 

surface. Numerical differentiation is done using finite-difference calculations. The central 

difference expression, 

_ z(x + l,y)-z(x-l,y) = z(x,y + 1) - z(x, y - 1) 
P 2b a n 9 2c ' 

is used except for along array boundaries where either the forward-difference or backward-

difference expression is required. The parameters b and c represent the units used for 

pixels along the x and y dimension, respectively. 

This implementation of the relaxation algorithm uses three sets of 2-dimensional array 

structures, with coordinates (x,y) for simulated scenes and (r,y) for SAR imagery, to 

hold surface orientation values p and q through the processing stages, see Figure 4.1. 

The first set of array structures contains the initial surface orientation estimates which, 
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Figure 4.1: Relaxation Algorithm Surface Orientation Estimates Data Flow 



CHAPTER 4. SOFTWARE IMPLEMENTATION 38 

except for the first iteration, are produced by the previous iteration of the algorithm. On 

the first iteration, the surface orientation estimates are arbitrarily set to values which 

represent a horizontal surface as an initial guess for the surface shape. For ground range 

processing in (x,y,z) coordinates, this value is zero for both p and q. For slant range 

processing in (r,y,u) coordinates, q is still zero but p becomes set to the tangent of the 

sensor depression angle. 

For initial constraints specific to the problem domain, points of known surface ori­

entation, obtained from surface boundaries, singular points or a priori knowledge of the 

surface shape, are then included, overiding existing estimates. An interpolation of the 

surface from these special points could be done prior to starting the shape-from-shading 

algorithm in order to start off with a more reasonable guess of the shape. This was not 

done in this implementation. Frankot and Chellappa's approach for initially setting the 

field of surface orientations is not known. 

The initial domain specific constraints can be treated either as initial guesses about 

the shape of the surface, or taken as factual knowledge about the surface. In this imple­

mentation, the latter situation is assumed, so that the points of known surface orientation 

are enforced at the beginning of each iteration of the shape-from-shading algorithm. If 

the initial constraints are just conjectures of the surface shape, then it is probably more 

appropriate to phase out their influence on the computed estimates as further iterations 

of the algorithm are run. In this situation, the initial constraints serve to push the 
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shape-from-shading algorithm towards a solution; however, they should be removed as 

the solution converges so that there is not a bias towards weakly supported knowledge. 

Frankot and Chellappa did use initial surface gradient constraints in some of their exper­

iments [FRAN88]; however, it is not clear whether they enforced them on every iteration 

or not. 

The second set of array structures contains the results of smoothing the initial surface 

orientation estimates. A nine-point smoothing filter is convolved with the initial estimates 

using the 3 by 3 kernel, 
/ 1 4 1 \ 

k • (4.2) 4 0 4 
\ 1 4 1/ 

where k equals 1/20, except for when processing along array boundaries where k equals 

1/9 for array corners and 1/14 array edges. This is the same smoothing filter used by 

Frankot and Chellappa. 

The final processing step uses the smoothed surface orientation estimates to compute 

the next iteration of estimates (see Equation 3.19 or Equation 3.37). The value of the 

reflectance function in this calculation is based upon the incident angle of illuminating 

energy. As mentioned in Section 3.1.3, the incident angle can be derived from the inverse 

cosine of the normalized dot product of the vectors for the surface normal n and the 

direction of illumination i. For processing SAR data in the (r,y,u) coordinate system, 

the fact that the sensor's illuminating energy travels parallel to the r-axis means that 
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the illumination direction can be expressed as i — (—1,0,0)T. The surface normal is 

computed from the cross product of the gradient vectors to give n = (—ur, —uy, 1). The 

equation used to calculate the incident angle a is, 

This is the technique used by Frankot and Chellappa [FRAN87]. 

Derivatives of the reflectance function R(p, q) are calculated using the central finite-

difference expression, 

where A is set to a very small value. Frankot and Chellappa used numerical derivatives 

for the reflectance function, but the form they used is not known. 

Frankot and Chellappa [FRAN88] made a provision in their relaxation algorithm 

for handling shaded regions. By identifying the shaded areas in their imagery prior to 

processing, they were able to skip over processing these areas so that the only possible 

propagation of surface orientation estimates across these regions was by the smoothing 

filter. The idea behind their approach is to prevent image areas which lack information 

about the surface from influencing the shape-from-shading result. This particular feature 

was not included in the relaxation algorithm used here in order to see what the effects 

of radar shadows would be in the final result. 

(4.3) 

R{p + A,q)-R(p-A,q) 
2A and Rg{p,q) = 

R(p,q-rA)-R(p,q-&) 
2A 

(4.4) 
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4.2 Integrability Projection 

The integrability projection is performed in the frequency domain. The non-integrable 

surface slope estimates p and q produced by the relaxation algorithm are transformed 

using the discrete Fourier transform, 

F(ui,u2) = EEf(x,y)exp2^^y\ (4.5) 

x=ly=l 

for an N x iV array of data, to get the frequency coefficients Cx and Cy. After projecting 

the estimates and finding the derivatives Cx and Cy of the integrable surface, the inverse 

discrete Fourier transform is applied, 

f(x,y) = - L £ £ F ^ u ^ e x p 2 ^ - ^ ) , (4.6) 
^ a>i=lu>2=l 

to get the integrable surface slope estimates p and q. The fast Fourier transform (FFT) 

algorithm is used to compute the transformation. An implicit assumption in using the 

FFT is that the surface slopes are periodic along both x and y axes. No measures were 

taken in the software to achieve this condition, so abrupt discontinuities in slope values 

may occur along array boundaries. Frankot and Chellappa also used the periodic form 

of the FFT in their work. 

Derivative operators ax(ux) and ay(u>2) are needed in computing the integrability 

projection (see Equation 3.33) and the integrable slope estimates Cx and Cy (see Equa­

tion 3.34) in the frequency domain. The Fourier transform of the central difference 
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operator (Equation 4.1) is taken to obtain the frequency coefficients of the operator so 

that, 

= £Jr expJWl ~ exp"^1 = sin(wi), (4.7) 

ayM = YC

 e x P J W 2 ~Yc e x P~ , W 2 = ^ sin(w2). 

The indices o»i and u>2 are integer multiples of where n € (0,1,(N/2) — 1) for an 

N x N sized image. Essentially this means that there are two oscillations of the sine wave 

along either the u>i or u>2 dimension. As with the surface gradients, the parameters b and c 

are set to the pixel units for the derivative operator in the frequency domain. Frankot and 

Chellappa appear to have used a slightly different formulation of the derivative operator 

[FRAN87], with only a single sinusoidal oscillation along either the u)\ or u;2 dimension 

and no apparent units or scaling factor. Substituting the values for ax(u)\) and ay(u>2) 

into Equation 3.33 gives the implemented form of the integrability projection, 

C { U ) = M ^ J I ' + K N P ' ( 4 - 8 ) 

and from Equation 3.34 the form of the derivative operation, 

Cx(CJ) = axMd(u), (4.9) 

&v(u>) - ay(oj2)C(u). 

When either UJI or C J 2 is an integer multiple of ir then the value of the corresponding 

derivative operator ux or uy is zero. If both coefficients are zero simultaneously then the 
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integrability projection cannot be evaluated. When this occurs, C(u}i,u>2) is s e t to zero 

since the divisor term of the integrability projection serves just to normalize the result 

of the projection. 

The integrability projection is not valid at the point ui = (0,0). As a result, the DC 

component of the slope information is lost in the projection. For primarily horizontal 

surfaces this is not a problem since the DC component of the surface slope in the x or 

y direction is zero. However, when processing SAR imagery, a horizontal surface in the 

(x,y,z) coordinate system becomes a slanted surface along the range axis of the (r,y,u) 

coordinate system. Therefore, the DC component of the range slope estimates is non-zero 

and will be lost in the projection. In order to recover a correct set of integrable surface 

slopes the DC component must be retained. In this implementation, the DC components 

of the slope estimates are preserved independently of the projection technique so that, 

Cx(0,0)is assigned toC^O, 0) and Cy(0,0)is assigned toC^O, 0). (4.10) 

Initial constraints can be introduced in the frequency domain as well as the spatial 

domain. Low frequency coefficients of the integrable surface C(u>) can be replaced with 

low frequency coefficients from the Fourier transform of an existing low resolution model 

of the surface. When working in the ground range (x,y,z) coordinate system, it is 

sufficient to take the FFT of the surface heights z(x,y) and copy the low frequency 

coefficients into the integrable surface Ciu). In the slant range this will not work. An 
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abrupt shift in surface height u(r,y) between the two ends of the r-axis is typical for 

a surface rotated into the slant range coordinate system. The FFT of the slant range 

surface u(r,y) will include information describing the abrupt shift in surface heights. 

This information is not required when working with surface orientations only, and in fact 

will be misleading if used as a constraint. To overcome this problem, surface gradients 

of u(r,y) are computed, transformed to the frequency domain, and with the integrability 

projection, used to establish the frequency coefficients for the surface. Frankot and 

Chellappa do use low frequency constraints in some of their experiments; however, they 

did not indicate that any special considerations were necessary for slant range processing. 

The projection constraint can be used either as a part of the iterative shape-from-

shading algorithm or as the final processing step after running the relaxation algorithm. 

In this implemention the projection constraint was included in the interative algorithm 

in order to see its effects on convergence to a solution, as was done by Frankot and 

Chellappa. 

4.3 Analysis Tools 

Several analysis tools were developed to assist in evaluating the performance of the shape-

from-shading algorithm. The energy minimization equation is useful for measuring the 
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convergence of the algorithm. Its discrete form is, 

N N 

where the partial derivatives px, py, qx, and qy are computed using the central, forward 

or backward finite-difference equations. 

A second tool was developed to obtain a more accurate picture of the change in surface 

orientation estimates between iterations. The error in the slope estimates pest and qest 

was computed by comparing them with the gradients of the original surface preai and 

qreai, The angle of error was measured by taking the inverse cosine of the normalized 

vector dot product of the surface slope estimates nest — (pest,aest, —1)T a n d the actual 

slope values n r e o; = (preo/, qreah -1)T, 

Using this measure, the mean and standard deviation in surface orientation error 0e is 

computed across the whole surface. Frankot and Chellappa [FRAN88] use this type of 

measure themselves, but have not indicated how they compute it. 

A surface model of the shape-from-shading surface orientation estimates can be con-

make the average surface heights equal, the DC component of the original surface must 

be copied to the normalized integrable surface. For recovering a surface in the slant 

range coordinate system, information describing the shift between the two ends of the 

(4.12) 

structed by applying the inverse Fourier transform to the projected surface C(u>). To 
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r-axis must be included. This information can be obtained by taking the FFT of a low 

resolution surface height model u(r,y) and copying across the frequency coefficients with 

no azimuth component, that is for u>2 = 0. If this is not done an approximately flat 

surface will be recovered as opposed to a surface slanted along the r-axis. Frankot and 

Chellappa make no mention of this problem in their work. 



C h a p t e r 5 

D a t a P r e p a r a t i o n 

This chapter describes how the test site data was prepared for the shape-from-shading 

experiments. To execute and evaluate the experimental results a SAR image and surface 

model are required in slant range coordinates. The SAR imagery is originally in this 

coordinate space, the surface model is not. The task of transforming the surface model 

into a form that is aligned with the SAR image and is in slant range coordinates is the 

subject of the following sections. 

5.1 Data Sources 

The test site is an 11.1 km2 area on Vancouver Island, British Columbia, west of Shawni-

gan Lake centred at geographic coordinates W 123:50:00, N 48:35:30. The area is moun­

tainous terrain, ranging from 140 to 880 metres in elevation. The landscape is primarily 

forest; however, a sizeable porition has been harvested so there are areas of old growth 

forest, second growth forest and recent logging, as indicated in previous studies of the 

47 
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area [WOOD85]. 

The SAR image of the site is from the Seasat-1 satellite that was launched June 

27, 1978 and operated only 99 days before failing. The satellite orbited the earth at an 

altitude of 800 km and used an L-band radar (23.5 cm wavelength) with HH polarization, 

imaging swaths 100 km across track. The actual image used for this thesis is from orbit 

193. The spacecraft was travelling approximately North-North-West relative to the site, 

and scanning North-East-East in the range direction. The imagery was processed to 

a slant range resolution of 12.5 metres in both the range and azimuth direction for a 

sensor look-angle of 20.5 degrees and is shown in Figure 5.1. In the figure, the sensor 

is to the left of the image with the range direction extending to the right of the page 

and the azimuth direction towards the top of the page, both axes parallel to the image 

boundaries. The bright lines in the image correspond to slopes facing the sensor. 

A Digital Elevation Model (DEM) generated for another study involving this area 

[WOOD85] was used for elevation data. The DEM was manually digitized from a 1:50 000 

Class Al map sheet 92B/12 (Shawnigan Lake) from the Canadian National Topographic 

Series (NTS). The DEM is on a regular grid with 60 metre spacing and is aligned to the 

Universal Transverse Mercator (UTM) projection of the source map. 



Figure 5.1: Slant Range SAR Image 



CHAPTER 5. DATA PREPARATION 50 

5.2 D E M Registration 

The SAR image is not in a UTM map projection. It must be kept in the slant range 

projection in order to preserve the orthogonality of the range and azimuth axes as well as 

the alignment of the image grid to these axes. These conditions are required to maintain 

a constant direction of illumination from the sensor across the image and to simplify the 

calculation of the incident angle for the reflectance function. Therefore, to compare the 

shape-from-shading results from the SAR image with the DEM, the most convenient way 

is to match the DEM spatially to the SAR image. 

A spatial transformation from the UTM map projection to the slant range projection 

of a SAR image is difficult to model due to the terrain dependent effects of relief distortion 

in SAR imagery (see Section 3.4). The non-linearity between ground range coordinates 

and slant range coordinates is another distortion to be considered as well. Instead of 

using complex models to derive a transformation, it was decided to create a simple 

transformation based on the registration of a few DEM points to their corresponding 

locations in the slant range SAR image. Accurately identifying corresponding points 

between the DEM and SAR image is difficult. A version of the SAR image that had been 

rectified to the DEM in the UTM map projection, taking into account relief displacement 

effects, was obtained from [WONG84] and used to facilitate this process. By scaling the 

DEM to the rectified SAR image, the transformation used to register the rectified SAR 
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image to the slant range SAR image was used to register the DEM as well. 

The procedure used to register the DEM to the slant range SAR image is as follows: 

1. The DEM was scaled from a 60 metre grid spacing to the 12.5 metre grid spacing 

of the rectified SAR image. 

2. Both the DEM and the rectified SAR image were rotated 26 degrees clockwise from 

their North up alignment. This was done to give both the rectified SAR image and 

the slant range SAR image the same orientation so that registration points could 

be marked accurately. 

3. An affine transformation from the rotated rectified SAR image to the slant range 

SAR image was defined and applied to the DEM. The affine transformation from 

an (x,y) grid to a (u,v) grid has six coefficients, 

u = do + Ch\X + 0,2V (5-1) 

v = b0 + bxx + b2y, 

which can be completely defined using three registration points. Sharp curves along 

lake shorelines were used to accurately identify and match the registration points. 

The points were chosen to be on lakes as close to each other in elevation as possible 

to minimize distortion due to relief displacement and at the same time to be as far 

apart as possible horizontally to prevent large errors from accumulating outside the 
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triangle of the three points at the outer edges of the DEM. 

The result of applying the transformation to the DEM and the rectified SAR image 

is shown in Figure 5.2 and Figure 5.3 respectively. Comparing Figure 5.1 and Figure 5.3 

it is apparent that the bright lines of the slant range SAR image are much thicker in the 

rectified image. This "smearing" occurs only in the range direction and is an artifact of 

the correction process used to compensate for the slope foreshortening effect in the slant 

range image. Essentially, wherever there was a mapping of one pixel to many locations, 

no radiometric correction was performed to distribute the energy of the pixel amongst 

the rectified pixels. Instead the intensity of the slant range pixel was copied to all the 

rectified pixels it mapped to. 

The accuracy of the transformation was verified by comparing the range position of 

several reference points between the registered rectified SAR image and the slant range 

SAR image. The transformation was considered to be sufficiently accurate only if, for 

each reference point, the deviation in range between the two images was less than the 

change in distance along the ground that could be attributed to relief displacement. Relief 

displacement is a function of the sensor's look-angle as well as range distance across the 

swath (see [WONG84]). It provides a measure of the displacement distance of a target 

along the ground in an image given the height of the target above the base ground level 

at which there are no displacement effects. For ground range displacement, this relation 
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Figure 5.2: DEM Registered to Slant Range SAR Image 
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can be approximated by a constant of proportionality equal to the tangent of the sensor 

depression angle 6. Therefore, given the change in elevation Az between two reference 

points, the relief displacement Ad along the ground in the range direction is, 

Ad=Aztan0. (5.2) 

For example, a reference point on Wild Deer Lake, elevation 395 metres, has a range 

displacement of 562.5 metres between the two SAR images. Comparing this point against 

the registration point on Lois Lake, elevation 680 metres, the possible error due to relief 

displacement is, 

Ad = Aztanfl = (680 - 395) tan 69.5° = 762.3 metres. 

This shows that the correction for relief displacement in the rectified SAR image accounts 

for the error in the reference point in the range direction. 

Error in the azimuth direction was found to be minimal, as expected, since relief 

displacement has no effect in this direction. 

5.3 D E M Coordinate Transformation 

As mentioned in Section 3.4.1, the shape-from-shading algorithm must use the slant range 

coordinate system (r,y, u) to process the SAR imagery. In addition to using the DEM to 

evaluate the shape-from-shading results, it is also needed to provide initial constraints, 

in either the spatial domain or frequency domain (see Section 4.1 and Section 4.2), in 
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order to run the algorithm. Therefore, the DEM must be transformed from the ground 

range coordinate system (x,y,z) to the slant range coordinate system (r, y,u). This 

transformation is modelled as a rotation about the y-axis, maintaining orthogonality 

between the axes. Mathematically, it is expressed as, 

/ r \ / r, \ 
y 

s 

ys 

cos 9 0 -sin0 \ ( X \ t \ 
0 1 0 y + y0 

sin 9 0 cos 9 ) V z I \ u0 1 
(5.3) 

where 9 is the sensor's depression angle (69.5 degrees for Seasat); rs, ys, and us are scaling 

factors; and rQ, y0, and u0 are bias factors. 

The equation requires six coefficients to be derived. Since the rotation is about the 

?/-axis, there is no change to the azimuth component of the DEM so the ?/-axis coefficients 

can be set as yQ = 0 and ys = 1. The base "elevation" of the w-axis can be set arbitrarily 

to u0 = 0 since the shape-from-shading algorithm solves for surface gradients, not surface 

depth. Both the x and z axes use equal scaling (metres) and this proportionality must 

be maintained between the r and u axes, so us = rs. What remains to be solved for now 

is r0 and ra, which are used in the equation, 

r = rs(x cos 9 — z sin 9) + r0 (5.4) 

Values for x, z and r are known at the points used for computing and verifying the 

transformation from the rectified SAR image to the slant range SAR image. By examining 

a few of these sets of points, an educated guess can be made for r0. From these sets of 

points, the values for x and z can be substituted into the expression (x cos 69.5—z sin 69.5) 
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to form the matrix A and the values for r can be combined with r0 to form the vector 

b = f — R0. This gives an overdetermined system of linear equations, 

b = Ara, (5.5) 

which can be rearranged to find a least-squares solution for r3, 

ATb 
rs = (5.6) 

To verify the accuracy of the rotation, the result of applying Equation 5.4 to the 

data points is compared with the errors attributed to relief displacement. For the slant 

range, the relief displacement is proportional to the sine of the sensor depression angle 

6. Residuals are computed for each data point Ar = b — Ars and used to compare data 

points i and j against one another to see if, 

Ad = |Afi - Afj | < \zi - ZJ | sin 6. (5.7) 

For example, the reference point at Lois Lake has an elevation of 680 metres and a 

residual of 69 metres and the reference point at Wild Deer Lake has an elevation of 395 

metres and a residual of -81 metres. Comparing the two points shows that, 

Ad = (69 + 81) = 150 metres < (680 - 395) sin 69.5 = 267 metres. 

Using this method, coefficients r0 and rs were found that gave residuals f that were 

within the tolerance allowed by error due to relief displacement. 
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The same set of coefficients can be used to compute the rotation back from (r,y,u) 

coordinates to (x,y,z) coordinates using the equation, 

( x \ ( cos 9 0 sin 9 
y = 0 1 0 

\ z ) \ — sin 9 0 cos 9 

1/r. 
l/Vs 
l/u3 

f r — rQ ^ 
y-y0 

\ u - u 0 ) 
(5.8) 

The units used for processing slant range data, as required in Equation 4.1 and Equa­

tion 4.7, must be carefully considered in the slant range. The transformation from (x, y, z) 

coordinates to (r,y,u) coordinate introduces scale changes to the r and u components 

but not to the y component. To maintain proportionality between all three axes, the y 

units should be set to r3 cos 9. 

The software implementation of the rotation involves two steps. The first is to 

compute values for r and u on the (x,y) grid so that two structures represented by 

r = g(x,y,z) and u = h(x,y,z) are obtained. The next step is to determine the appro­

priate value for u on a regular (r, y) grid by using g(x, y, z) to interpolate from h(x, y, z). 

Interpolation is necessary along the r-axis but not the y-axis. Usually, an integer value 

of r will fall between two (x,y) grid points, so that g(xi,y,z) < r < g(x2,y,z) where 

xx < x2. In which case the value of u(r,y) can be linearly interpolated using, 

r-g(xi,y,z) 
u{r,y) = [h(x2,y,z) - h(xuy,z)]. (5.9) 

_g(x2,y,z) -g(xuy,z) 

Figure 5.4 shows the relation between the ground range x and z axes and the slant 

range r and u axes. From the figure it can be seen that a horizontal surface in the 

(x,y,z) coordinate system (shown as a dotted line) has a constant slope in the (r,y,u) 
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z axis 

x axis 

where 

d is the depression angle 

1 is the look angle 

Figure 5.4: DEM Rotation Geometry 
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coordinate system equal to the sensor depression angle d. It is also apparent that any 

slope facing the sensor in the range direction which is greater than the look angle / in 

the (x,y,z) coordinate space cannot be represented in the (r, y,u) coordinate space. For 

Seasat SAR, this means that any slope in the DEM greater than 20.5 degrees facing 

the sensor will be lost. Furthermore, slopes exceeding this limit will cause decreasing 

values of r to be generated for increasing values of x in the g(x, y, z) structure. The 

interpolation algorithm handles this situation by skipping over regions of decreasing r in 

g(x,y,z) until a value larger than then next integer value of r is obtained. The upper 

and lower boundaries of the (r, y, u) grid may not have corresponding g(x, y, z) values 

for r depending upon the surface elevation z at the x boundary. The u values for r must 

then be extrapolated from g(x, y, z) and h(x, y, z) in order to provide a reasonable surface 

height estimate. 



C h a p t e r 6 

R e s u l t s 

In this chapter, the experiments to evaluate the viability of applying shape-from-shading 

to SAR data are described and their results given. The experimental work is presented in 

three stages. First a brief look is taken at tests performed on a simulated scene; second, 

reflectance functions are derived for the test site from the DEM and SAR image; and 

finally, the results of running the shape-from-shading algorithm on data from the test 

site is presented. 

6.1 Simulated Data 

The correctness of the software developed was verified on a simulated scene. A surface 

model was constructed in the form of a partial sphere protruding from a horizontal plane. 

The surface is smooth with the exception of a discontinuity in the smoothness at the joint 

between the two objects. This is the same type of surface as Frankot and Chellappa used 

for some of their tests in [FRAN88]. An image was generated from the surface using 
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a Lambertian reflectance model with point source illumination at 45 degrees above the 

horizon, directly over the x-axis. Figure 6.1 shows the surface and the image of it that 

was produced. 

A second form of this surface was derived by rotating it into a slant range coordinate 

system 45 degrees from the original. An image was then generated, maintaining the 

same Lambertian reflectance function and the same position of the illumination source, 

so that the illumination vector was now parallel to the r-axis. Figure 6.2 shows the 

rotated surface and its associated image. The image appears different in the slant range 

than in the ground range because the viewing direction has rotated 45 degrees away from 

the illumination source, from the 2-axis to the u-axis, so that illuminated side of the 

sphere covers less area in the image. 

Similar experiments were run on both the ground range and slant range represen­

tations of the surface model. Experiments were run for only 25 iterations, as this was 

found to be a sufficient number to verify the correctness of the algorithm on this simple 

surface. The experiments tested the shape-from-shading algorithm under various values 

for A and varying amounts of initial constraints in both the spatial and frequency do­

mains. Overall, it was found that the fit to data (I — R)2 was eight to ten times worse 

in the slant range than in the ground range. Also, the mean orientation error was about 

three degrees worse in the slant range than the ground range. The ratio between the 

smoothness measure in the ground range and slant range had a much greater variation in 
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Figure 6.2: Simulated Surface Rotated 45 Degrees and Associated Image 
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values; however, all were considerably less than the ratio of the smoothness of the slant 

range surface model to the ground range surface model: 22 to 1. 

From these experiments the question arises as to why there is a difference between 

the accuracy of the results for a surface processed in ground coordinates as opposed to 

slant range coordinates. There are some differences between the two sets of experiments 

which must be considered. First, in this case in changing the coordinate system to slant 

range the viewing point was changed as well so that the darker region of the sphere 

occupies more of the image. This means that when the shape-from-shading algorithm is 

run, different regions of the reflectance map will be used to compute image irradiance 

values. 

A second reason as to why the results are different can be gained by examining profiles 

of the surfaces generated in the two different coordinate systems. A comparison of surface 

height between the surface model and the test results, made by taking a slice through 

the surfaces, is shown in Figures 6.3 and 6.4 for the ground and slant coordinate systems 

respectively. Here it is evident that in the slant range, the shape-from-shading algorithm 

considerably smooths over the transition from plane to sphere in the lower range of the 

r-axis. 

Third, the vast difference in the measures of surface smoothness between the surface 

model in the slant range and ground range coordinate systems is due to the non-linearity 

of gradient space. When the points on a unit sphere are mapped to gradient space, 
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Figure 6.3: Profile of Surface Model (dotted line) and SFS Result (solid line) in Ground 
Coordinates 

Figure 6.4: Profile of Surface Model (dotted line) and SFS Result (solid line) in Slant 
Coordinates 
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Coordinates Gradient Max Min Mean Std. Dev. 
Ground P 1.124 -1.124 0.000 0.349 
Ground q 1.124 -1.124 0.000 0.349 
Slant 45 deg P 0.077 -9.219 -1.000 0.939 
Slant 45 deg q 5.695 -5.695 0.000 0.808 

Table 6.1: Gradients of Simulated Surfaces in Ground and Slant Coordinates 

distances between points are not correctly preserved. This means that when the surface 

model is converted from ground range to slant range, the relative size of gradient values 

for the surface model is not preserved. Table 6.1 shows that the gradient values of the 

surface model in the ground coordinates are centred around the origin of gradient space, 

whereas in the slant range coordinates the values are no longer centred along the p-

axis and the range in gradient values is much greater. Therefore, surface smoothness, 

as calculated in the energy minimization function, is a coordinate system dependent 

measure. 
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6.2 Reflectance Functions for the Test Site 

The DEM and SAR image of the test site were reduced to 162.5 metre square pixels to 

fit a 64 by 64 array for testing. The DEM was rotated 69.5 degrees, the depression angle 

of the Seasat SAR sensor, to place it into the slant range coordinate system. Figure 6.5 

shows a plot of the DEM from the southeast in the ground, (x, y, z), coordinate system. 

The incident angle at each point in the array was computed and a histogram of 

these values was generated to examine the distribution, see Figure 6.6. The peak of the 

histogram occurs at an angle of 22 degrees, which corresponds to flat ground in the slant 

range coordinate system. However, the distribution is clearly asymmetric, the majority 

of the angles being greater than 22 degrees. The distribution mean is actually 32 degrees. 

Three different reflectance functions were created. The first one was derived by com­

puting the mean pixel value in the SAR image for each degree of incident angle obtained 

by applying the viewing geometry to the DEM. The results are shown in Figure 6.7 and 

will be referred to as the SAR Mean reflectance function. 

A second reflectance curve was obtained from the SAR Mean reflectance function by 

performing a non-weighted linear regression on the data. The data was split into two 

sets at the angle corresponding to the peak of the distribution of angles, 22 degrees, to 

produce two lines of differing slope. The resulting curve is shown in Figure 6.8 overlaying 

the SAR Mean reflectance function. 



Figure 6.5: DEM of Test Site in Ground Coordinates 

Figure 6.6: Histogram of Incident Angles Across Test Site 
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Figure 6.7: SAR Mean Reflectance Function: Mean SAR Pixel Value Per Degree of 
Incident Angle 

Figure 6.8: Linear Regression Reflectance Function and Keydel Reflectance Function 
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For the third reflectance curve, the model proposed by Keydel [KEYD82] and used 

by Frankot and Chellappa [FRAN87] was chosen. A bias term /? was added to the model 

to provide a better fit of to the empirical data. The final formula used is, 

cos2 a 
P + l- • (6.1) 

sin a 

Since the majority of the incident angles fall in the range of 15 to 50 degrees (as evident 

from Figure 6.6), values for /? and 7 were derived that would provide a good fit along 

this stretch of the curve. To establish values for and 7, two pairs of (a,R(a)) were 

required. Values for R(a) were estimated by taking the mean of several points along the 

curve of the empirical reflectance function. The resulting reflectance curve is shown in 

Figure 6.8, overlaying the SAR Mean reflectance curve. 

Images of the test site were generated using these three reflectance functions. The 

synthesized images were found to have a standard deviation in pixel value of only 4 to 5 

whereas the SAR image had a standard deviation of 15. The correlation coefficient r was 

computed for each synthesized image with respect to the SAR image. The proportion of 

variance that each synthesized image and SAR image have in common can be estimated 

from the value of r 2. For all the synthesized images, this was found to be about 91 

percent. The histograms of the images are shown in Figure 6.9. 
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Figure 6.9: Histograms of SAR Image and Synthesized Images 
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6.3 Experiments on the Test Site 

The initial conditions for the experiments run on the test site were provided in the 

frequency domain using coefficients copied from the Fourier transform of the surface 

model. The highest frequency of coefficients used were equivalent to | cycle over 64 

pixels, or 1 cycle per 20.8 km, in both the r and y axes. A plot of the surface represented 

by the initial conditions is shown in Figure 6.10. 

Comparing the surface represented by the initial conditions with the surface model 

revealed that the mean surface orientation error of the initial conditions was 19.6 degrees 

and that the correlation between the surface heights was 0.9984. The smoothness of the 

two surfaces was calculated using the smoothness equation of the energy minimization 

function. The initial conditions produced a measure of 0.0045A indicating a very smooth 

surface and the surface model produced a measure of 3.472A, indicating a much rougher 

surface. 

The first set of experiments performed used images generated from the surface model 

for each of the three reflectance functions. Each experiment was run for 100 iterations 

to ensure that changes could propagate throughout the 64 by 64 arrays of surface slope 

estimates. A scheme for reducing the effects of the smoothness constraint was setup 

whereby A was decremented by a constant amount after each iteration of the shape-

from-shading algorithm. Several experiments were run to find a fairly optimal choice 



Figure 6.10: Surface Represented by Initial Conditions 



74 

for A and the decrement value so that the smoothness constraint did not inhibit the 

convergence of the algorithm and yet was not too small to cause instability. Table 6.2 

shows the results of the experiments from the final choices for A. 

The first column of the table indicates what reflectance function was used to generate 

the image for the experiment and to compute surface radiance for the shape-from-shading 

algorithm. The next two columns give the values for the two parts of the energy mini­

mization function. The total value of the energy minimization function is not shown since 

it is dependent upon the value for A. The values for the fit to data measure, (I — R)2, are 

shown on a per pixel basis as opposed to across the whole image. For these experiments, 

a lower fit to data value is most likely (but not necessarily) an indication of a better 

result. The orientation error, measured in degrees, is the difference in surface orienta­

tion between the shape-from-shading results and the surface orientation derived from the 

surface model, averaged across the whole test site. The height correlation is simply the 

correlation value computed from the surface model and the reconstructed heights of the 

shape-from-shading results. 

The table shows that both the Keydel and Linear images behave similarly. Their 

mean orientation error is lower than that of the initial conditions, their surface height 

correlation is higher than that of the initial conditions, and they are not as smooth as 

the initial conditions. In other words, a better estimate of the surface slopes has been 

computed. The plot in Figure 6.11 of the of the surface computed from the Keydel 
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image, confirms this. The table also shows that when the shape-from-shading algorithm 

was applied to the SAR Mean reflectance image only marginally better results were 

generated than what was given in the initial conditions. Figure 6.12 shows the surface. 

These same experiments were then run on the SAR image, maintaining the same set 

of initial conditions, initial value for A, and decrement as used for the corresponding 

experiments with the synthesized images. It was found that there was not enough of the 

smoothness constraint, the surfaces were overly rough, the mean orientation was much 

larger than that for the initial conditions, and the correlation value was less. 

Further experiments were run with larger values of A. Table 6.3 shows the best set 

of results obtained after 100 iterations from tests over varying ranges of A. Although 

these results may not be the best possible results attainable for 100 iterations of the 

algorithm, several trials over the space of possible values for A seem to indicate that they 

are close. As can be seen, the tests with the Keydel and Linear reflectance functions 

saw only marginal improvement in the algorithm results over the initial conditions, as 

measured in terms of the mean orientation error and correlation value. None of the tests 

with the SAR Mean reflectance function could improve upon the initial conditions. The 

surface reconstructed from the results using the Keydel reflectance function are shown 

in Figure 6.13. 

The large values for the fit to data measure reflect the fact that none of the images 

derived from the surface model using the reflectance functions closely matched the SAR 



Image/ 
Ref Fnc 

Min. Function Orientation 
Error 

Height 
Correlation 

Image/ 
Ref Fnc Fit to Data Smoothness 

Orientation 
Error 

Height 
Correlation 

Keydel 8.47 0.26A 15.4 0.9989 
Linear 7.74 0.17A 16.5 0.9988 
SAR Mean 21.45 0.21A 19.5 0.9986 

Table 6.2: Results from Synthesized Images After 100 Iterations 

Figure 6.11: SFS Results on Keydel image, 100 iterations 



Figure 6.12: SFS Results on SAR Mean reflectance image, 100 iterations 

Reflectance 
Function 

Min. Function Orientation 
Error 

Height 
Correlation 

Reflectance 
Function Fit to Data Smoothness 

Orientation 
Error 

Height 
Correlation 

Keydel 192.96 0.02A 18.8 0.9985 
Linear 213.77 0.01A 18.6 0.9985 
SAR Mean 219.82 0.03A 20.0 0.9983 

Table 6.3: Results from SAR Image After 100 Iterations 



Figure 6.13: SFS Results on SAR image using Keydel Reflectance Function 
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image. The fit to data measurement was applied to the synthesized images with respect 

to the SAR image. For the images derived using the Keydel, Linear and SAR Mean 

reflectance functions it was found that the fit to data values were 223.1, 224.0, and 231.0 

respectively. 

To gain a better understanding of the nature of the results, two types of images 

were generated from them, see Figure 6.14. The height difference image measures the 

difference between the estimated surface and the DEM. Dark areas represent where the 

DEM is much lower than the estimated surface, light areas represent where the DEM is 

much higher than the estimated surface, areas of medium brightness represent equality. 

The surface orientation error image indicates the difference between the estimated surface 

orientation values and the surface orientation values derived from the DEM. Dark areas 

indicate low error, bright areas indicate high error. 

Figures 6.14, 6.15, and 6.16 show the result of computing these images with the 

initial conditions provided in the frequency domain, the shape-from-shading results from 

using the synthesized Keydel image, and the shape-from-shading results from using the 

SAR image with the Keydel reflectance function respectively. With the SAR shape-from-

shading results there is very little noticeable change from the initial conditions. However, 

with the results from the synthesized Keydel image there is a noticeable blurring in the 

height difference image and a darkening in the surface orientation error image, both of 

which indicate an improvement in the results. These images confirm what the statistical 



Figure 6.15: Synthesized Keydel results: height difference and surface orientation error 
with respect to DEM 
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Reflectance 
Function 

Min. Function Orientation 
Error 

Height 
Correlation 

Reflectance 
Function Fit to Data Smoothness 

Orientation 
Error 

Height 
Correlation 

Keydel 254.31 0.01A 21.1 0.99806 
Linear 270.01 0.01A 20.9 0.99805 
SAR Mean 293.51 0.14A 23.5 0.99879 

Table 6.4: Results from Fine Resolution SAR Image After 100 Iterations 

measures have already indicated about the shape-from-shading results. 

The set of experiments were repeated with a finer resolution grid of the test site, 128 

by 128 pixels, to determine if the algorithm would produce the same quality of results 

with less information in the initial constraints. The highest frequency of coefficients in 

the constraints were equivalent to \ cycle over 128 pixels, in both the r and y axes. The 

mean surface orientation error of the initial conditions from the surface model was 21.9 

degrees. The correlation between the surface model and the surface reconstructed from 

the initial constraints was 0.99802. The smoothness of the surface produced by the initial 

conditions was 0.0006A, whereas the surface model was 5.291A. The experiments were 

run for 100 iterations with the same set of reflectance functions and the same choices 

for A and its decrement on each iteration. The results listed in Table 6.4 show that the 

relative convergence from the initial conditions was no greater in the case of the 128 by 

128 grid than for the 64 by 64 grid. 



Figure 6.16: SAR results: height difference and surface orientation error with respect to 
DEM 



C h a p t e r 7 

O b s e r v a t i o n s 

The reason for the poor performance of the shape-from-shading algorithm on the SAR 

data does not appear to have anything to do with the actual algorithm. Instead, the 

experimental results show that the algorithm can work well if the reflectance function 

accurately models image irradiance and the reflectance function is a simple curve; as was 

the case when the algorithm was run on images synthesized from the Keydel and Linear 

reflectance functions. 

The primary reason for the lack of success in the experiments on the test site is 

apparently due to the poor modelling of the reflectance properties of the terrain. The 

much larger standard deviation in the SAR image than in the synthesized images seems 

to indicate that there are phenomena that have not been accounted for by the reflectance 

functions. These phenomena may be linked to variations in ground cover within the test 

site, noise in the image, sensor distortions, or other causes. 

The question arises as to whether 100 iterations of processing is sufficient to reach 
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any conclusions about the SAR experiments. From the experiments performed using the 

images synthesized from the DEM, it is apparent that 100 iterations were quite sufficient 

to obtain a measurably significant improvement in the surface orientation estimates for 

the set of initial conditions that were given. 

It was observed that the mean surface orientation error was always three to four times 

worse for gradients in the azimuth direction as opposed to the range direction for the SAR 

experiments. This was true for both the experiments performed on images synthesized 

from the DEM and for the SAR image. This is probably because the portion of the 

reflectance map used for these experiments has much greater variation in image irradiance 

values for a small change in the range surface orientation values than for an equal change 

in value in the azimuth direction. This means that the shape-from-shading technique 

will then generally perform better at distinguishing variation in surface orientation along 

a range scan as opposed to across the azimuth. 

In addition to the need for an improved model of the reflectance characteristics of 

the terrain, a method to calibrate the model to the image is required. The calibration 

technique would be best to take advantage of the data used for the initial conditions of 

the shape-from-shading algorithm. 

The setup of the shape-from-shading algorithm to work in the slant range coordinate 

space presents problems. If a surface slope facing the sensor exceeds an angle greater 

than the look angle from horizontal in the ground coordinate space, than it cannot be 
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represented in the slant range space. For the Seasat SAR image of the test site this angle 

was fairly small, for other sensors it may not be as great a problem. 

It was also noted that a gradient space measure of surface smoothness is dependent 

upon the coordinate system. This makes it difficult to compare quantitatively the quality 

of results between processing in the slant range and ground range. 

One other drawback with the shape-from-shading algorithm is the problem of choosing 

A and a method to reduce A as the algorithm converges and requires less of the stability 

provided by the smoothing constraint. It was observed that this parameter is sensitive 

to both the content of the image and the choice of reflectance function. 



C h a p t e r 8 

C o n c l u s i o n s 

The shape-from-shading algorithm of Frankot and Chellappa was found to produce sub­

stantially better results for images synthesized from a DEM; however, when applied to a 

SAR image, the algorithm could not produce a surface any more accurate with respect 

to the DEM than that supplied by the initial conditions of the experiment. 

The results suggest that a better reflectance model is needed for the SAR image. 

A possible area for future investigation is to determine whether modelling variations in 

ground cover', image noise, or other phenomena over the space of the image can be used 

to improve the reflectance model and the shape-from-shading result. 

It was also observed that the shape-from-shading results from both the synthesized 

images and the SAR image were considerably more accurate along range than azimuth. 

Therefore, another possible area of investigation is to see if the overall quality of the 

shape-from-shading results can be enhanced with a better technique for deriving surface 

orientation values in the azimuth direction. 
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An alternate approach to the reconstruction of surface shape would be to see whether 

applying a shape-from-shading technique to a very noisy estimate of a surface can provide 

a more accurate surface model than simply using a smoothing filter on the surface model. 
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