
O N A N I M P L E M E N T A T I O N O F A B S T R A C T I N T E R P R E T A T I O N 

By 

D O U G W E S T C O T T 

B . S c , The University of British Columbia, 1986 

A T H E S I S S U B M I T T E D IN P A R T I A L F U L F I L L M E N T O F 

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F 

M A S T E R O F S C I E N C E 

in 

T H E F A C U L T Y O F G R A D U A T E S T U D I E S 

(Department of Computer Science) 

W e accept this thesis as conforming 

to the required standard 

T H E U N I V E R S I T Y O F BRITISH C O L U M B I A 

July 1988 

© Doug Westcott, 1988 



In presenting this thesis in partial fulfilment of the requirements for an advanced 
degree at the University of British Columbia, I agree that the Library shall make it 
freely available for reference and study. I further agree that permission for extensive 
copying of this thesis for scholarly purposes may be granted by the head of my 
department or by his or her representatives. It is understood that copying or 
publication of this thesis for financial gain shall not be allowed without my written 
permission. 

Department 

The University of British Columbia 
Vancouver, Canada 

DE-6 (2/88) 



Abstract 
This thesis describes an implementation of abstract interpretation and its application to 

strictness analysis and termination analysis. The abstract interpretation is performed based 

on a lattice-theoretical model of abstraction, or translation, of functions expressed in a 

lambda-calculus notation and defined over a concrete domain into functions defined over 

a user-specified, application-dependent, abstract domain. The functions thus obtained are 

then analyzed in order to find their least fixed-points in the lattice which is the abstract 

domain, using a method which is a simplification of the frontiers algorithm of Chris 

Clack and Simon Peyton Jones. In order to achieve the required efficiency, this method is 

implemented using lattice annotation, along with constraints upon the annotations. The 

implementation is then applied to the problems of strictness analysis and termination 

analysis, deriving useful pre-compilation information for many functions. The concrete 

domains over which the functions are defined may or may not include lists. 
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Chapter 1 

Introduction 

In this chapter, the idea of abstract interpretation shall be introduced and explained, 

following which the objectives of this thesis shall be discussed. 

1.1. Abstract Interpretation 
In this section, two important questions with regard to abstract interpretation shall be 

answered. They are the questions "What is it?" and "Why do it?". 

1.1.1. What is abstract interpretation? 
Abstract interpretation is a process of program analysis which involves both program 

translation and interpretation. More simply put, it is a technique that enables a computer 

program to be analyzed without ever being interpreted or executed. That is not to say that 

during the process of abstract interpretation no program is interpreted, but what is 

interpreted at that time is an abstraction, or translation, of the original program. Thus the 

process is as follows: 

1. Program P is to be analyzed. 
2. P is translated into Pa. 
3. Pa is executed, or interpreted. 

4. The results of Pa's execution are analyzed, indirectly giving an analysis of P. 

This process can also be expressed in a diagram, shown in Figure 1.1, as going from P to 

inf op via 

1 
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abstraction 

abstraction 
infop • infopa 

Figure 1.1. The abstraction and analysis process 

abstraction'1 o analysis o abstraction. 

This is possible because in the theoretical framework which is used for abstract 

interpretation, abstraction is a process of simplification, which can easily be reversed (in a 

set-theoretical way). The process of abstract interpretation as explained thus far can be 

more fully illustrated by the following example. 

The usual example which is set forth to explain the concept of abstract interpretation 

is the rule of signs. This rule is well known and can be expressed as follows (where Z is 

the set of all integers): 

For all a,b e Z: 

a > 0 and b > 0 ab > 0 
a > 0 and b < 0 => ab < 0 
a < 0 and b > 0 => ab< 0 
a < 0 and b < 0 ab > 0 

Or, more simply put: 

+ x + = + 
+ x - = -
-X + =-
- x - = + 

where + and - denote any positive or negative integers, respectively. 

To apply the process of abstract interpretation to this example, consider the 

computer program "a x b", where a and b are integer variables. Although this particular 
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program is simple to analyze, in general computer programs are not so easily analyzable, 

because they require actual execution to determine their outcome. However, in order to 

demonstrate the usefulness of abstract interpretation as a technique of general computer 

program analysis, this simple program shall be analyzed in the same way as any other, 

more complex, program would be analyzed using this technique. 

What is desired from the abstract interpretation process is the information given by 

following the analysis arrow in the abstract interpretation diagram presented earlier. This 

can be found by following the arrows around the diagram in a different manner. First, the 

abstraction arrow is followed. This requires a translation of the original program into a new 

and simpler program; where this new program is defined over a simpler domain than 

before. Thus the old program "a x b" taking values from the integers becomes the new 

program "a x b" (the same in this trivial case) taking values from the set {+,-}. More 

formally expressed, the old program "az *ZxZ->z bz" becomes "as xsxS-+s W (the 

subscripts denoting variable and function types), where S = {+,-}, a set greatly reduced in 

size from Z and which is also an easily reversible simplification of Z (this latter fact will be 

useful later). 

The second arrow to be followed is the analysis arrow giving information about the 

abstracted program. This consists in tabulating the effects of the abstracted program given 

what is known about the simplified domain S. But what is known about S is precisely what 

is expressed by the rule of signs. Therefore, all possible outcomes of the abstracted 

program can be determined, merely by interpreting that program over all possible values in 

S. Thus, the abstracted program has two possible outcomes: 

+x+=+ + x - = -
- X - = + - X + = -
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The third arrow to be followed (in the reverse direction) is also an abstraction arrow. This 

will give information about the original program based upon information given through 

analysis of the abstracted program. Since the abstraction process assigns the value "+" to 

every integer in the set Pos = {positive integers} and "-" to every integer in the set Neg = 

{negative integers}, the reverse action can be taken and information about the original 

program can be derived, as shown in Figure 1.2. Notice that given the sign of a and b 

individually, it is now possible, having done this abstraction and analysis, to assign a sign 

to the result of "a x b" without ever having to actually multiply the integers a and b. This 

process shows itself to be much more powerful when performed on larger and more 

complex examples, but this simple example serves to illustrate its essential nature. 

Information about abstracted program (s, te S): 

s = +, t = +or s=-, t = -=$st = + 

s = +, t = -or s = -, t = + =>st = -

Derived information about original program (a, be Z): 

a e Pos, b e Pos or ae Neg, b e Neg => ab e Pos 

a e Pos, b e Neg or ae Neg, b e Pos => ab e Neg 

Figure 1.2. Derivation of information using abstraction information 

1 . 1 . 2 . W h y d o a b s t r a c t i n t e r p r e t a t i o n ? 

Viewed from a purely theoretical perspective, abstract interpretation is a good thing to do 

because it allows more information to be derived about a computer program than would 

otherwise be possible. This in itself is reason enough to do abstract interpretation, because 

in most areas of scientific research, one cannot tell a priori what information is necessary 
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and what is not. However, since computer science is often concerned with the practical 

application of scientific knowledge, other justifications for performing abstract 

interpretation are necessary in order for it to be established as a genuinely useful technique 

of program analysis. Fortunately, abstract interpretation has proven to have useful 

applications in areas connected with the optimization of computer programs. 

Specifically, when abstract interpretation is performed upon a program, and 

information is thus derived about that program, changes can then be made to that program 

or to the program's interpreter which will take into account the new information known 

about the program and thus speed up or otherwise optimize its execution. 

For example, suppose the operation of multiplying two signed integers was vastly 

more complicated than that of multiplying two unsigned integers. Then the program 

"a x b" described in the rule of signs example given previously could be optimized or 

transformed into a program like this: 

if (a > 0 and b > 0 ) or (a < 0 and b < 0 ) then 
abs(a) * abs(b) 

else 
- absiq) * abs(b) 

where "*" is the operator which multiplies two unsigned integers. Note that even though 

the program is now much larger than before, the complicated "x" operator is now replaced 

by a couple of tests and the simple "*", abs and boolean operators — giving a great 

savings in execution time! 

Alternatively, the interpreter for the program could be modified to take advantage of 

the new information known about the builtin "x" operator. Thus, whenever a "x" operation 

is about to be performed, the two signed integers involved can be tested for their sign 

(which is then removed), and the resulting unsigned product can then be signed 

appropriately. 
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So, even in this simple case of abstract interpretation, it is theoretically possible to 

apply the new information during a compilation process and thus obtain increases in 

program efficiency thereafter. 

Another, less trivial and more common example of the useful application of abstract 

interpretation is in the optimization of lazy evaluation of functional programs. Lazy 

evaluation is the process of taking a functional program and evaluating step by step only 

what is necessary to be evaluated at each step. Thus in the program "a x b" the expressions 

a, b, and "a x b" must all be evaluated in order to produce a result, and so lazy evaluation 

results in the same answer as any other kind of evaluation (which would normally produce 

correct answers). But in the program "a and b" it is not always necessary to evaluate the 

expression b. For example, if a = false, then the value of b is irrelevant. So in this case, 

evaluating "a and b" in a lazy fashion will save some work if the value of b is not needed. 

This lazy method of evaluation has proved to be valuable in the interpretation of functional 

languages. 

A problem arises, however, when the functional language interpreter is capable of 

parallelism. This is because the process of lazy evaluation is a serial process. That is, if 

expressions were evaluated in parallel, then unnecessary work might be done. In fact, in 

the case of the program "false and b", if b was a non-terminating expression then normal 

lazy evaluation would produce the result false, whereas attempting evaluations in parallel 

may well initiate an unnecessarily non-terminating computation. This problem can be 

solved, or reduced, with the aid of abstract interpretation. It is possible to analyze the 

program before execution and determine where parallel evaluation is definitely safe and 

where it might not be. This information can then be incorporated into the program, to 

indicate where the usual lazy mode of evaluation can be safely departed from, thus gaining 

an increase in the run-time efficiency of the program due to the increased use of parallel 
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evaluations. So in the case of "false and b", no parallel evaluation would be allowed (in 

case b was a non-terminating expression), but in the case of "a x b", all of a, b, and "x" can 

be evaluated in parallel because it is known that all of those values will be needed in order 

to produce an answer. 

1 . 2 . T h e s i s O b j e c t i v e s 

This thesis has two main objectives. The first is to describe an implementation of abstract 

interpretation which has been successful in that it is generalized and efficient, and the 

second is to describe its successful application to two distinct problems: strictness analysis 

and program termination analysis. 

1 . 2 . 1 . I m p l e m e n t a t i o n o f a b s t r a c t i n t e r p r e t a t i o n 

The primary objective of this thesis is to demonstrate an implementation of abstract 

interpretation which meets certain requirements; specifically, an implementation that 

automates and generalizes the process of abstract interpretation to a degree that has not 

previously been demonstrated. Earlier work in this area has been primarily theoretical in 

nature, and what implementation has been done has been limited in scope and 

effectiveness. The aim of this implementation of abstract interpretation is to overcome some 

of those limitations, primarily those relating to the powerfulness or generality of the 

abstraction mechanism, but also those connected with the efficiency of the abstraction 

process. These goals shall now be discussed in more detail, following a brief description of 

how the abstraction process is accomplished using the unifying mathematical concept of the 

lattice. 

1.2.1.1. How is abstract interpretation done? 

Effective abstract interpretation is made possible by one very important integrating concept 

— the lattice — in terms of which all aspects of abstract interpretation, the programs being 
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analyzed, and the domains those programs operate over and give results in, are viewed. 

That is, the program to be analyzed is viewed as a function from one lattice to another, the 

values of variables in the program and the results of the program are themselves values in a 

lattice, the abstracted program is also a function over lattices and is obtained though lattice 

operations, and the information derived from the abstraction is computed with respect to a 

lattice. This method of treating abstract interpretation serves to give the process a solid 

mathematical basis and a good theoretical framework for further research, something which 

previous ad hoc approaches have lacked. 

The main feature of a lattice is that it is a set which is partially ordered (although 

there are a few further restrictions which will be mentioned later). That is, it is a set 

consisting of a number of elements, called nodes, between any two of which may exist a 

less-than relationship. Thus, a normal set can be considered as a lattice which has very few 

(in fact, zero) relations among the nodes, and a set such as the integers can be considered 

as a lattice in which every node is ordered with respect to every other node. An example of 

a more common type of lattice is that shown in Figure 1.3, where the lattice is the set of all 

subsets of the set {1,2, 3}, and the relations between the nodes are defined by the "subset" 

relation. The diagram shows these relations as arcs connecting the nodes; node A is less-

than node B if and only if it is connected to node B by a pathway of arcs proceeding 

upwards only. Notice that direction of arc traversal is important in a lattice diagram. As 

such, lattices are like directed graphs, with the restriction that no cycles may exist in the 

graph. 

A further, more precise, definition of lattices will be given in the next chapter; the 

preceding description will suffice for now. 
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{1, 2,3} 

/ I \ 
{1,2} {1,3} {2,3} 

X X 
{1} {2} {3} 

U 
Figure 1.3. The powerset lattice of the set {1, 2, 3} 

Given the lattice upon which a computer program is defined, the abstraction lattice 

upon which the translated program will be defined, and the abstraction function which 

performs the translation, it is a simple matter to compute the abstraction function upon the 

original program to come up with the abstracted program. The restrictions upon the 

abstraction function are few, only existing to ensure that the function is well-behaved in 

certain ways. This enables the theoretical foundation for the process to hold the result of the 

abstraction accountable to certain rules, thus allowing a theoretical "stamp of approval" to 

be given to the process as a whole. Once the abstraction is performed, the resulting abstract 

program must then undergo a fixed-point finding process, which reduces any recursion in 

the program to the point where it is the most manageable (guaranteeing termination upon 

execution, if possible). This fixed-point finding process is actually a part of the abstraction 

function, but the fixed-point finding method is always the same, whereas the abstraction 

function changes from application to application, so the two processes are separated and 

treated individually. What the fixed-point finding process involves is a search through a 

function lattice for the best function to represent the abstracted program under analysis. 

With reference to a lattice diagram, this search is always upwards moving, thus if the 

function lattice is finite, it is guaranteed to terminate. Once the fixed-point is found, the 
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computation of the fixed-point (itself a function) over all possible arguments represents the 

analysis of the abstracted computer program. It then remains up the to user to apply the 

abstraction process in reverse (a simple conceptual step) and to use the information thus 

derived to optimize or otherwise affect the original program. 

Now that the abstract interpretation process has been explained in some detail, the 

goals of this thesis can be expressed more meaningfully in the following sections. 

1.2.1.2. Genera l i ty 

The primary goal of this implementation of abstract interpretation is to perform the function 

of abstract interpretation in a generalized manner. That is, where previous implementations 

have placed restrictions upon the types of functions to be abstracted, and lattices to be used, 

this implementation will allow more possibilities, with fewer restrictions, in order to give a 

more powerful tool for performing this process. In the past, the two major points of 

restriction have been upon the types of functions to be abstracted, and upon the type of 

abstraction lattice to be used. These restrictions, and their removal, shall now be explained 

in more detail. 

A major difficulty which has come up often in the history of abstract interpretation 

is the question of how to deal with higher-order functions — that is, functions which take 

functions as arguments. Oftentimes little information could be derived about such 

functions, and until recently, no theoretical basis existed for the analysis of such functions. 

Now that such a theoretical basis does exist (see, for example, [Burn, Hankin & 

Abramsky, 1986]), higher-order functions can be treated the same as any other kind of 

function during the abstract interpretation process, and cause no extra difficulty. 

Another restriction which has been placed upon both practical implementations and 

theoretical explications of the process of abstract interpretation is one which only allows 

lattices of a particular type (flat — which will be explained later). Again due to recent 
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theoretical developments, such a stringent requirement is no longer necessary, although it is 

unfortunately still mandatory for the lattice over which the abstracted program is defined to 

be (in a certain sense) finite. The relaxation of this last restriction currently makes it 

impossible to guarantee termination of the fixed-point finding process. 

1.2.1.3. Efficiency 

Another goal of this implementation is to demonstrate the efficiency, and thus practicality, 

of a certain method of performing the fixed-point finding process. Historically, this has 

been a computationally intensive procedure, but recently (see, for example, [Clack & 

Peyton Jones, 1985]) has been improved by the use of an approach called the "frontiers" 

method, the most efficient method for finding fixed-points used so far. What is 

demonstrated in this implementation is the effectiveness of a simplification and 

generalization of the frontiers method (actually, such a simplification that it no longer bears 

much resemblance to the original method). 

1.2.2. Demonstration of applicability 

The second objective of the implementation is to demonstrate its applicability to different 

kinds of abstract interpretation problems. Two types of abstract interpretation problems 

have been selected as examples of the effectiveness of this implementation; they are 

strictness analysis and program termination analysis, and will now be described briefly. 

1.2.2.1. Strictness analysis 

Strictness analysis is a common problem on which to perform abstract interpretation. 

Often, the problem of abstract interpretation is formulated only in the context of strictness 

analysis. As described previously, the process of strictness analysis is the analyzing of a 

program to see at what points departures from the normal mode of lazy evaluation may be 

safely made, in order to take advantage of the parallelism available in the computer. Much 
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success has been demonstrated in the application of abstract interpretation to the problem of 

strictness analysis, and the application of this implementation of abstract interpretation to 

strictness analysis is simply to demonstrate its generality and usefulness. 

1.2.2.2. T e r m i n a t i o n analysis 

Termination analysis is concerned with whether a given program will terminate or not. This 

is an unsolvable problem, and no pretension of having actually discovered a general 

solution will be made here. However, some useful information may be derivable about a 

program after a not-too-excessive amount of computation has been performed, so this 

problem can still be viewed as a justifiable one to perform abstract interpretation on. 

Typically, the information derived about a program will be for what input arguments it will 

definitely not terminate. Other inputs to the program may or may not allow it to terminate, 

but due to the hard nature of this problem, such cannot be determined. 

Both termination analysis and strictness analysis shall be performed upon a simple 

functional language, one which is defined without lists, and also upon a functional 

language which incorporates list structures, in order to demonstrate the general applicability 

of this method of program analysis. 



Chapter 2 

Abstract Interpretation 

Now that the concept of abstract interpretation has been introduced, the nature of its 

theoretical base — the lattice — can be expanded upon, followed by an in-depth 

explanation and example of the way in which lattices are used to do abstract interpretation. 

2 . 1 . L a t t i c e P r e l i m i n a r i e s 

Before the lattices used in abstract interpretation can be discussed in detail, it is necessary to 

present some preliminary information regarding lattice theory. 

2 . 1 . 1 . G e n e r a l i n f o r m a t i o n 

Following is some general information about lattices. First, a precise definition is given. 

This is followed by a discussion of lattice semantics. For a more in-depth look at some of 

the lattice concepts mentioned here, see [Stoy, 1977]. 

2 . 1 . 1 . 1 . Definition 

As mentioned earlier, a lattice is a partially-ordered set S in which the elements of S satisfy 

two additional requirements beyond those normally associated with partial-orderedness. 

These requirements will be discussed later. As for the partial-orderedness of S, this 

consists in the elements of S having the possibility, but not the necessity, of being ordered 

by a binary ordering relation "<". For partially-ordered sets in general, the ordering given 

13 
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to the set elements is unrestricted, except for the following three rules, which are necessary 

to allow a consistent and useful theoretical framework to be built: 

1. For all x e S, x <x. 
2. For all x, y e S, x < y and y < x => x = y. 
3. For all x, y, z e S, x < y and y < z x < z. 

Given a partially-ordered set S then, one can say it is also a lattice exactly when it satisfies 

the following additional two rules: 

4. For all x,y e S, lub [x, y} exists. 

5. For all x, y e S, gib {x, y) exists. 

where the complementary concepts of least upper bound (lub) and greatest lower bound 

(gib) are defined as follows (where, if X is a subset of S and y e S, then X < y means "x 

< y for all x e X", and y < X is defined similarly): 
• least upper bound — if S is a partially ordered set and X is a subset of S, then let 

X' = { xe S \ X <x }. Then ifX' is non-empty and contains an elements such 
that s < X', then that element s is the least upper bound of X. That is, lub X = s. 
Note that for arbitrary partially ordered sets such an element s does not have to 
exist. 

• greatest lower bound — this can be defined in a manner similar but 
complementary to the definition above. That is, to find the greatest lower bound 
of X, where X is a subset of S, let X' = { x e S I x <, X}, Then, if X' contains 
an element s such that X' < s, then gib X = s. In this case also, the greatest lower 
bound s does not have to exist. 

2 . 1 . 1 . 2 . Semantics 

Given the flexible nature of the ordering relation in a lattice structure, that relation and 

structure have been used to represent many different types of information. The most 

common meaning of the "<" relationship among elements, or nodes, of a lattice historically 

may have been that of dependency. For example, many textbooks contain in the 

preliminary pages a diagram similar to Figure 2.1, indicating, for example, that to 

understand chapter 6, one must first understand chapters 2 and 4, and therefore one must 

also understand chapters 1 and 3, of which chapter 1 is sufficient for the understanding of 
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chapter 3. But this is not the semantics normally given to node relations in lattices used in 

the context of abstract interpretation. 

7 1 
2 3 

1 

Figure 2.1. An example of textbook chapter dependencies 

The interpretation given to lattice nodes and relationships in abstract interpretation 

lattices is that of approximation. That is, as one proceeds "up" the lattice from a "bottom" 

node to a "top" node, one's information becomes more and more correct, or constrained, 

and is less and less of an approximation. An example of this is the powerset lattice given 

previously, except inverted, as shown in Figure 2.2, where X < Y means X contains Y as 

a subset. In this example, the element {1, 2, 3} is at the bottom of the lattice, and is the 

least informed or selective, whereas as one moves up the lattice the elements become more 

and more informed, until finally at the top of the lattice the element {} is found, which 

indicates information that is over-constrained, or too selective. This is the type of semantics 

which will be given to the lattices used in the abstract interpretation process from this point 

on. 

o 
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{1} {2} {3} IX XI 
{1,2} {1,3} {2,3} 

\ I / 
{1,2,3} 

Figure 2.2. Inverted powerset lattice 

2 . 1 . 2 . Specific concepts 

A s is normally the case with mathematical objects, lattices have been categorized and 

combined in various ways, resulting in a rich variety of higher-order concepts. Some of 

these categories and constructions shall be explained in the following sections. 

2 . 1 . 2 . 1 . Latt ice types 

Due to the lack of restriction placed upon lattices up to this point, there is room for a further 

categorization of lattice types in order to allow a more powerful theoretical framework to be 

built One restriction which can be placed on an abstract interpretation lattice to facilitate (in 

fact, to make feasible at all) computation is that of finiteness. That is, the abstract 

interpretation lattice must consist of either a finite set or a composition of finite sets (the 

exact type of composition will be explained later). Other categorizations commonly applied 

to lattices used in abstract interpretation include the following. 

2 . 1 . 2 . 1 . 1 . Complete lattices 

A lattice L is complete if both lub X and gib X exist for every subset X of L . It turns out 

that if L is not complete, then L can easily be made complete (by adding new elements as 

required so that the necessary lub's and gib's do exist), a fact that is important in the 

development of a supporting theoretical framework for abstract interpretation. 
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2.1.2.1.2. Flat lattices 

One type of lattice which appears very often in abstract interpretation is the flat lattice. A 

lattice L is flat if the only ordering relationships which exist among the elements of L are 

those between two distinguished elements of L — top and bottom — and the rest of L. 

That is, if x, y e L , and x < y but x and y are different elements, then one of x or y must 

be top or bottom, as appropriate (bottom < top, of course). A typical example of this type 

of lattice is the flat lattice of integers, as shown in Figure 2.3. This is a common way 

ofrepresenting elementary data types in a programming language when used in connection 

with abstract interpretation. 

top 

. . . -2 -1 0 1 2 . . . 

bottom 

Figure 2.3. The flat lattice of integers 

2.1.2.2. Lattice compositions 

A useful method for creating lattices with a regular structure is to compose two or more 

lattices together to obtain a single, composite, lattice. Al l of the following types of 

compositions can easily be extended to compositions of more than two lattices; they are 

merely defined here as binary relations in order to simplify their definitions. 

2.1.2.2.1. Product lattices 

The lattice Li x obtained as the product of the two complete lattices Lj and L2 has the 

following structure: Each element in Lj x Li is a pair (ij, I2) with Ij e L\ and I2 e L2. 
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Every possible such pair is present in Lj xL2, and these pairs are ordered so that 

(II, I2) ^ (mi, mi) exactly when /; < mi a n d I2 ̂  m2. It can be shown that since the 

lattices Lj and L2 are complete, then so is the product lattice Lj x L2. One example of such 

a product lattice is shown in Figure 2.4. 

(2, a) 

/ \ 
2 , (2,b) ( l , a ) 

1 (2,c) ( l , b ) 

\ / 
d . c ) 

Figure 2.4. An example of a product lattice 

2.1.2.2.2. Sum lattices 

The lattice L1+L2 defined as the sum of the two complete lattices L7 and L2 has the 

following structure: Each element h e Lj and I2 e L2 can be found in Li + L2, along with 

two additional, new elements, bottom and top. The ordering relationships among the 

elements of Li + L2 are defined so that lj < I2 exactly when either /;, /2 e Lj and /; < I2 or 

ll, I2 e L2 and lj < I2, except for the new elements top and bottom, which have the 

property that bottom < I and / < top for all / e Lj + L2. One example of such a sum lattice 

is that shown in Figure 2.5. 

It follows from the definitions that if L? and L2 are both complete lattices, so is L ; 

+ L-2- This sum operation is sometimes called a separated sum, in order to distinguish it 

from other kinds of sum operations. It is, however, the only kind of sum appearing in this 

thesis. 
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top 

2 
a 

2 

+ b b 

c 

bottom 

Figure 2.5. An example of a sum lattice 

2.1.2.3. Lattice functions 

No theory concerning lattice structures is complete without defining functions which 

operate within, and between, lattices, as opposed to the sum and product composition 

functions, which operate on lattices. Functions between two lattices abound in general, and 

are not difficult to work with, if they fall into one or more of the following categories: 

equal, monotonic, and continuous. 

Two functions/, g : Lj —> L2 are equal exactly when they produce equal results for 

every possible argument. That is, / = g = g x for all x e L7. Determining if two 

functions are equal is a computationally difficult task. One example of this is the pair of 

functions / , g : Z —> Z: 

fx=x+x 
gx = 2*x. 

Although / and g are equal, one may have to compute an infinite number of cases to 

determine this. 

A lattice function/: L\ —» L2 is monotonic if for any two arguments x\, xi e Lj, 

xj <X2 => fxj <*fx2- This formalizes the notion concerning lattice semantics, that if 

more (no less) information is known about one argument of a function with respect to 
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another, then it can be expected (for such well-behaved functions) that the same 

relationship will hold for the results. As is obvious from the definition, compositions of 

monotonic functions are also monotonic. 

A lattice function / : Lj —> L2 is continuous when it is monotonic and for all subsets 

X of Lj,f (lub X) = lub {f (lub X') IX' is a subset of X, and X' is finite). That i s , / i s 

extremely "well-behaved". In fact, when the lattices Lj and L2 are finite, then monotonicity 

of / guarantees continuity of / . As usual, compositions of continuous functions are 

themselves continuous. 

Functions can also be ordered and placed in a lattice framework, where the ordering 

of two functions / , g : L\ —> L2 is defined as /< g <=>/* < g x for all x e Lj, and the 

usual set of functions that/and g are drawn from is [Lj —» L 2 ] , defined as the lattice of all 

continuous functions mapping Lj —> L2. 

One example of this function lattice is the lattice [L —» L] composed of all 

continuous functions from L —» L , where L and [L —» L] are as shown in Figure 2.6.Note 

that it is possible to define one other function / : L —»L, as 

fx = Xx. ifx = 1 then 2 else 1 

but that/is not present in the function lattice [L —» L] because/is not monotonic (1 < 2 but 

/ 1 = 2 , /2=1, and therefore / 1 </2 is not true) and therefore not continuous. 

Xx.2 

2 

L = [L —> L] = Xx.x 

Xx. 1 

Figure 2.6. An example of a function lattice 
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2.2. L a t t i c e s f o r A b s t r a c t I n t e r p r e t a t i o n 

Out of the infinite number of lattices available for use in abstract interpretation, usually two 

special lattices are chosen and used throughout the process. One of these is the concrete 

lattice, and the other is the abstract lattice, and the abstract interpretation process is a 

mapping from concrete to abstract lattices. Both are function lattices, composed from 

simpler lattices, and will be defined and discussed later, following a brief explanation of 

notation used in naming their component lattices. 

2.2.1. N o t a t i o n 

Since both of the concrete and abstract function lattices are built by the composition of an 

infinite number of simpler lattices, it simplifies their description to use a formal notation to 

identify the component lattices. First, a few lattices are identified as base lattices; these are 

lattices consisting of the primitive elements contained in the concrete and abstract lattices. 

Some examples are the lattices of integers and booleans (see Figure 2.7). 

Let these base lattices be the elements of the set Bases. Thus for the above example, 

Bases = [integers, booleans), where integers and booleans are the names given to the 

lattices described above. Then, every other lattice in the composition is a function lattice, 

composed of functions of a particular type. This is expressed as follows:/is a function of 

type T, where T is a type expression, and a type expression is one of two things: 

1. A primitive type a e Bases, or 
2. A composite type a—>b, where a and b are both type expressions. 

Thus, a few example type expressions are integers, booleans, integers —> booleans, 

(integers —» integers) —> booleans, and so on. The type expression 

(integers —> integers) —> booleans 

corresponds to a function that maps integer-valued functions on integers to one of the 

values in the lattice of booleans. 
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top 

/ \ 
top 

- 2 - 1 0 1 2 true false 

bottom 
bottom 

Figure 2.7. The concrete lattices of integers and booleans 

The composition of these function lattices can now be accomplished with relative 

ease. Let L = + { Lt 11 e TE), where TE is the set of all possible type expressions, and Lt 

= [La -> Lb] ift = a-*b, and Lt = r if t e .Bases. Then L is the sum lattice obtained by the 

composition of all the base lattices and all lattices of continuous functions thereby defined. 

That is, 

L = integers + booleans + [integers —> booleans] + [integers —> integers] + ... 

Note that although L itself is necessarily an infinite lattice, each of its component lattices 

may still be finite, even though this is not the case above. 

Both of the concrete and abstract lattices can now be easily described using these 

notions. 

2.2.2. C o n c r e t e l a t t i c e 

The concrete lattice used in the abstraction process is the lattice containing the functions to 

be abstracted. It is composed as described in the previous section, where the base lattices 

contained in Bases are usually the integers, booleans, reals, characters, lists, and other 

user-defined data-types, although this list may be shortened for some implementations of 

abstract interpretation. Such a reduced set of base lattices is used to allow the abstract 

interpretation implementation to concentrate on a select few areas, without loss of 

generality. In this implementation of abstract interpretation, the set Bases consists of the 
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types integers, booleans, and sometimes lists; the other data-types being redundant and 

basically unnecessary for the purposes of the implementation. 

2 . 2 . 3 . A b s t r a c t l a t t i c e 

The abstract lattice used is dependent upon the type of information desired from the 

abstraction process. It is composed as an infinite sum in the same way as the concrete 

lattice, but has for its base components simpler lattices than the lattices integers and lists. 

For this implementation, the base lattices must all be finite, in order to ensure the 

termination of the abstract interpretation process, part of which involves searching though a 

function lattice. Other restrictions are sometimes imposed upon the base abstract lattices, 

such as that they must be complete lattices, or flat lattices. These restrictions are made to 

ensure that the theoretical underpinnings of the abstract interpretation process will guarantee 

its success. 

Currently, the only requirement that is restrictive in the selection of abstract lattices 

is that the base lattices be finite. For example, were one wanting to analyze a program for 

data-type information, one could not use a lattice of data-types as a base abstract lattice, 

because it is infinite. On the other hand, many useful abstract base lattices which are also 

finite have been employed in the abstract interpretation process, and with good results, so 

the finiteness restriction is workable, if not desirable. 

2 . 3 . M e t h o d s o f A b s t r a c t I n t e r p r e t a t i o n 

Progress in the area of abstract interpretation has sometimes gone on independently in each 

of two different aspects of the area. At first, most work was done in getting the theoretical 

framework established and verified, while the practical side of the area received little 

attention. Then, more recently, as a minimal theoretical basis was established for the 

process, and work on this side of the area slowed, the practical issues in implementing 
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abstract interpretation were emphasized. Currently, each side of the problem is making 

slow but sure progress, with both the theoretical and practical aspects of the research 

contributing to the work as a whole. 

In the next two sections, both of these aspects of the process of abstract 

interpretation shall be discussed: First, the historical development of the theoretical 

underpinnings for this process will be presented, followed secondly by a description of 

some of the practical solutions devised for the problem. 

2 . 3 . 1 . T h e o r e t i c a l b a s i s 

The history of the theoretical development of abstract interpretation can be divided into two 

parts, the first consisting solely of the Cousots' seminal work on the subject [Cousot & 

Cousot, 1977], and the second being the work which follows. This later work is cast in a 

common framework based on a functional approach which is different than the Cousots1 

original approach, which was to develop the theory entirely within the domain of 

imperative programming languages. Thus, the next section describes the Cousots' work, 

complicated as it is by its selection of the imperative style of function representation. This is 

followed by a section describing the later work done on abstract interpretation's theoretical 

basis, all of which has in common the functional style. 

2 . 3 . 1 . 1 . Cousots 

Patrick and Radhia Cousot are held to be the pioneers of the current approach taken with 

respect to the problem of abstract interpretation. Their 1977 paper [Cousot & Cousot, 

1977] provided a much-needed mathematical definition and foundation for the process in a 

lattice-theoretical form. Not only did they establish the basic foundations for the process, 

they extended it in many ways due to their use of the lattice as a framework. 
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The first thing the Cousots did was to define the syntax and semantics of a simple, 

imperative, flowchart language. Thus, a program, or function, was a finite flowchart, or 

equivalendy, a finite directed graph. This representation of the program under analysis 

would be its most concrete interpretation. The Cousots then went on to define more abstract 

interpretations. To do this, they defined the concept of a context, Cq, which was associated 

with each arc q in a program P, and which was "the set of all environments which may be 

associated to q in all the possible computation sequences of P" (an environment being the 

usual association of variable names and values). Then, a context vector, C v , associates a 

context with each of the nodes in a program. This context vector is an enumeration of all of 

the possible execution sequences of P. 

The contexts of P can then be made naturally into a complete semi-lattice of abstract 

contexts A-Cont (in fact, A-Cont is a complete lattice), where A-Cont is defined as an 

abstract interpretation of P. This abstract interpretation of P is distinguished from other 

more or lesser informed abstract interpretations of P in that for any computation sequence 

of P, Cv(q) contains lesser or more associated environments. In fact, all of the abstract 

interpretations of P themselves form a lattice, with the ordering among the elements (each 

element is an A-Cont) reflecting the distinction between more and lesser informed abstract 

interpretations. For example, one A-Cont A7 may contain the possibility of a certain 

variable representing 0 at a certain point in the program, whereas another A-Cont A2 may 

not. Then if A 7 and A 2 are in other respects the same, it is the case that A 7 is more 

informed than A2. 

The Cousots discuss in depth the consequences of this definition of abstract 

interpretation, covering topics such as its consistency, its limitations, and how to 

approximate fixpoints (solutions to systems of recursive equations, involving a search 

through a lattice) in infinite lattices. However, these aspects of their work shall not be 
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discussed further here. It is possible to present matters such as those much more clearly 

when viewed from a functional perspective, as is done in more recent work than that of the 

Cousots. 

2.3.1.2. Later work 

A recurring name in the area of abstract interpretation in the years following the Cousots1 

work is that of Alan Mycroft. His doctoral thesis [Mycroft, 1981] and other parts of his 

published work concentrate on establishing a sound lattice-theoretical basis for the process 

of abstract interpretation, especially in connection with its practical application to the 

optimization problem of strictness analysis. Another important work in this area, also 

concerned especially with strictness analysis application, is [Burn, Hankin & Abramsky, 

1986], which represents accurately the current state of research in the area of abstract 

interpretation, at least on the theoretical side. 

Mycroft's first published work on abstract interpretation [Mycroft, 1980] addressed 

the issue of transforming the call-by-need method of parameter passing in applicative 

programs into call-by-value wherever possible (call-by-need is the same as call-by-name 

except that the first use of the parameter causes not only its evaluation but also its 

replacement with the result of the evaluation, thus making subsequent references to the 

parameter computationally very inexpensive). The problem is to do this whenever possible 

throughout the program text, and yet to avoid introducing argument evaluations which may 

be unnecessary. That is, the problem is essentially that of strictness analysis, except for the 

fact that parallelism is not available as a means of efficiently utilizing the resulting call-by-

value transformations. 

Mycroft solves the problem by defining interpretations of the applicative programs 

which are different than the usual interpretation. His alternate interpretations are translations 

of the applicative program defined over one lattice into a system of recursive equations 
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defined over the two element boolean lattice {0, 1}, with 0 ^ 1 . The consistency of this 

method of program interpretation and its associated semantics is argued by recourse to the 

lattice-theoretical basis upon which they are built. Additionally, since the applicative 

programs under transformation or interpretation are themselves systems of recursive 

equations, giving recursive equations as the result of translation, it is necessary to define a 

fixed-point finding method which is guaranteed to terminate (that is, the fixpoint of the 

resulting expression is to be found using the text of the expression, not through its 

evaluation). The method used by Mycroft is the now usual method of following the 

Ascending Kleene Chain (AKC) upwards from the bottom of the function lattice which 

contains the results of the alternate abstract interpretations. 

Later, this was generalized into a comprehensive method of abstract interpretation, 

and theoretically justified for first-order functions on flat base domains in some of 

Mycroft's other work, such as [Mycroft, 1981] and [Mycroft & Nielson, 1983]. The 

lattice-theoretical construct used to prove the consistency and validity of this approach to 

abstract interpretation is called a powerdomain — a lattice consisting of all subsets of 

another lattice, ordered by inclusion. Depending on the particular type of powerdomain 

desired, different modifications to this basic definition can be made, each having a different 

effect on what can be proved about this lattice-based method of abstract interpretation. 

Thus, a different powerdomain construction than Mycroft's was used in [Burn, Hankin & 

Abramsky, 1986], resulting in the ability to prove Mycroft's method of abstract 

interpretation correct for arbitrary (including higher-order) functions defined over flat base 

domains. 

At this point in the theoretical development of abstract interpretation, attention has 

turned to the problem of justifying abstract interpretation over non-flat base domains, in 

order to legitimatize currently implemented systems which perform abstract interpretation 
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on functional programs incorporating lists, and other user-defined, non-flat data-structures. 

One attempt made in this direction has been the work of John Hughes, in [Hughes, 1985] 

and [Hughes, 1987], where he uses the concept of the context in which an expression may 

be evaluated in order to analyze programs using lists. 

At first, this concept was informally defined, but in [Hughes, 1987] he clarified it 

as an "abstraction of sets of continuations," thus giving a solid, if non-intuitive, basis for 

his method. It turns out, however, that using this method of context analysis leads one into 

difficulty in trying to solve certain recursive functional equations, and when deciding upon 

which heuristics to use to introduce the correct approximations. A n additional drawback is 

that the theoretical justification, and the method itself, apply only to first-order, untyped 

languages. 

These problems were alleviated somewhat by Wadler and Hughes [Wadler & 

Hughes, 1987], who proposed the use of projections as opposed to continuations for 

justifying context analysis when dealing with programming languages defined over non-flat 

base lattices. A lattice projection p is a function which simplifies, or approximates, lattice 

elements. It satisfies the properties 

1. p x < x, 
2. p (p x) = p x. 

B y using projections to deal with contexts, thus giving contexts a theoretical basis, all of 

the above-mentioned difficulties with continuations can be avoided. Unfortunately, 

projections currently justify abstract interpretation over non-flat base lattices only for first-

order untyped functions. However, as for flat base lattices, Wadler and Hughes are 

optimistic that the theory can be extended. 

Absence of a complete theoretical framework for abstract interpretation has tended 

to do little to stop the progress of practical work in the area, however, and such progress 
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has occurred, despite its theoretical status. Some of these practical developments shall now 

be discussed. 

2 . 3 . 2 . P r a c t i c a l d e v e l o p m e n t s 

Once abstract interpretation was viewed from a functional perspective, it didn't take long 

for practical implementations to be created (see, for example, [Mycroft, 1980]). Initially, 

these dealt with the problems of program termination and strictness analysis for programs 

which were first-order and defined over flat base lattices. Later on, applications to data-type 

analysis were implemented (see, for example, [Mishra & Keller, 1984]), and also further 

applications to strictness analysis (see, for example, [Clack & Peyton Jones, 1985]), all 

designed to work with higher-order functions. Additionally, implementations described in 

[Mishra & Keller, 1984] and [Hughes, 1985] are designed to perform abstract 

interpretation on functions defined over non-flat base lattices, although the functions are 

still untyped. 

One computationally expensive part of the abstract interpretation process is fmding 

least fixpoints for the translated system of recursive functions defined over the abstract 

lattice. This problem has usually been solved by computing the A K C and comparing the 

successive functions derived to determine equality, and thus the point at which to halt 

However, the comparison of two functions for equality, whether done by exhaustive 

computation on all possible arguments, or textually (by specifying the function in a certain 

canonical manner), is computationally expensive. Thus, to have any type of strictness 

analysis or other type of program analysis performed on a regular basis, as for example, in 

an optimizing compiler, it would be desirable to discover an inexpensive means of finding 

fixpoints. 
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Fortunately, an algorithm proposed in [Clack & Peyton Jones, 1985], known as the 

frontiers algorithm, has proved to be more faster at finding fixpoints than the 

aforementioned approach. The advantage of the frontiers algorithm is its use of the lattice 

structure existing upon the set of all arguments to a function. This enables the algorithm to 

avoid computing the function upon certain arguments. That is, the frontiers algorithm 

adheres to the definition of functional equality in that it compares function values over all 

possible function arguments, but it does so in a way which saves some unnecessary 

computation. This is done by defining frontiers within the function's result lattice which 

allow some function values to be deduced rather than computed. As an example (one which 

also appears in [Martin & Hankin, 1987]), suppose a function over a concrete domain is 

abstracted to give a function f over an abstract domain A,f:A -» A. Suppose also that the 

single base lattice of the abstract domain A is the two element lattice 2 = [0,1}, where 0 

< 1, a n d / : 2 - » 2 - » 2 ( o r / : 2 x 2 - » 2) is defined as fx y = x and y. Then, the product 

lattice of all possible argument pairs to / i s as shown in Figure 2.8, and each element of this 

lattice, when computed upon b y / , determines a value in the result lattice 2. Suppose that 

the value of / 1 0 is computed and found to be 0. Now,instead of having to compute/0 0 

explicitly, it can be deduced from the fact that (0, 0) < (1, 0) in the argument lattice and 

from the mono tonicity of / that the value o f / 0 0 must be 0. The 0 value for /a t the point 

(1,0) is part of a frontier. That is, it determines a point p in the argument lattice and a value 

v such that every point in the argument lattice below p also must have the value v. Martin 

and Hankin also explain how to expand the frontiers in the argument lattice to efficiently 

discover function values for all arguments and completely determine the function. Function 

equality can then be quickly and easily determined by comparing the two argument lattices 

with their associated values. 



Abstract Interpretation 31 

1 
(1, 1) 

2 = 2 x 2 = (1,0) (0,1) 

0 
(0,0) 

Figure 2.8. The product lattice 2 x 2 

There are a few drawbacks associated with the frontiers algorithm as presented in 

[Martin & Hankin, 1987]. These are its use of multiple-argument first-order functions and 

its close ties to the base domain 2. These problems can be overcome, and Martin and 

Hankin do present extensions to the frontiers algorithm which cope with more general 

cases, but by eliminating the dependence upon multiple-argument functions and by 

incorporating the concept of an annotated lattice, the algorithm can be greatly simplified, as 

will be shown later on. 

2 . 4 . D e t a i l e d E x a m p l e 

T o pull together the concepts mentioned thus far, and to help give a proper perspective 

upon the ideas yet to be discussed, an example of abstract interpretation follows. The 

domain of abstraction is the one based on the two-element lattice 2, described previously, 

and will be used in strictness analysis; thus the element 0 has the meaning of definite non-

termination, while the element 1 means termination or non-termination. The concrete lattice 

is as usual, based upon integers and booleans, the only necessary data-types for this 

example. The translation portion of the abstraction process follows. 
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Concrete Abstract 

ie integers 1 
b e booleans 1 
v (a variable) v 
if Xa .Xb .Xc. a and (b or c) 
+, -, *, / , etc. Xa .Xb .a and b (all are strict functions) 
Xx.e Xx.abs(e) 
f (user-defined) / 

Thus, the two functions 

/ = XxInt. X . if (= x 0) y (/•(- x 1) y) 
g = XxI"<. Xy1^ . Xz**'. if(=x0) (+yz) (+yx) 

become, in translation, 

abs(f) = abs(X xIn< .X . if (= x 0) y (f (- x 1) y)) 
= Xx2 . abs(X?nt. i / (= x 0)y <f (- x 1) y)) 
= Xx2 .Xy2 .abs(if(=x0)y (f(-x l)y)) 

= X x2 . X y2 . x and (y or abs(f) x y) 

abs(g) = abs(X xIn<. X . X z'"'. if (= x 0) (+ yz)(+y x)) 
= X xInt .Xytn'.X zInt. absiif (= x 0) (+ y z) (+ y x)) 

= X x2 .X y2 . X z2 . z and ((y and z) or (y and x)) 

The abstraction process is not complete, since the fixpoints off and g must be found. Since 

fa:2—>2—>2(fa = abs(f)), the computation of the AKC for/ 1 is performed as follows: 

f>0 =Xx2.Xy2.0 

f°l = X x2 . Xy2 . x and (y or foxy) 
= X x2 . X y2 . x and (y or 0) 
= Xx2 .Xy2 .xandy 

/*2 = Xx2 . Xy2 . x and (y or/ 0 / xy) 
= X x2 . X y2 . x and (y or (x and y)) 
= X x2 . X y2 . x and y 
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Therefore f3 = X x2 . X y2 . x and y. Also ga = abs(g), since g is not recursive. Note that 

the fixpoint off was found by textual manipulation of the function definition, and not by 

the frontiers algorithm or any simplification thereof (this will be done later on). Now that/1 

and ga are known, they can be analyzed — the second step in the process of abstract 

interpretation. 

We compute/1 and ga on their respective argument lattices to find out that 

f3 1 0 = 0 
f*0 1 = 0 

ga01 1 =0 
ga 1 0 1 = 0 
ga 1 1 0 = 1 

Note that, by the monotonicity of g, if ga 1 0 1 = 0 then ga x 0 y = 0, for any x and y. 

As the third part in the abstraction process, the information gleaned can be used 

with the original functions /and g to determine that/does not tenninate whenever either of 

its arguments is not terminating, and that g does not terminate when any of its first two 

arguments are non-terminating. Thus/is strict in both of its arguments, and g is strict in its 

first two arguments. 
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Implementation 

In this chapter, the abstract interpretation implementation is discussed. First, the objectives 

of the implementation are presented, then an explanation of the various routines used is 

given, and finally an example of the implementation in operation is presented. 

3 . 1 . O b j e c t i v e s 

The objectives of this implementation are threefold. First, the implementation must be 

generalized; it must be able to handle more instances of abstract interpretation than previous 

implementations. Second, the abstract interpretation must be performed in a clear, 

straightforward, and efficient manner. Third, it must perform abstract interpretation 

automatically, requiring minimal interaction with the user. These objectives, and the extent 

to which they have been achieved, will now be discussed. 

3 . 1 . 1 . G e n e r a l i t y 

This implementation meets the generality criterion in several ways. First is its ability to 

work with arbitrarily-structured concrete base lattices. Previous implementations have not, 

in general, incorporated this ability, because of the theoretical difficulties involved. 

However, as is usual in abstract interpretation, an informal justification is found adequate 

34 
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to enable practical progress to be made, while waiting for a formalized theoretical basis to 

catch up. 

The relaxation of restrictions upon the concrete base lattices allows, in particular, 

non-flat base lattices to be used. This means that functional languages which employ the list 

data structure and other higher-level d t̂a-structures (the majority of functional languages by 

far) are now eligible to undergo the abstract interpretation process. This increase in 

acceptance is a key ingredient if abstract interpretation is to be a tool in practical functional 

program analysis. Such a relaxation was made possible in practice because a representation 

of the concrete lattice was not required, and because of the automated and modular means 

of program translation employed. Nowhere is the concrete lattice explicitly represented, 

thus enabling all restrictions other than completeness upon the type of base lattices used to 

be removed. Also, since the method of translation from functions over the concrete lattice 

to functions over the abstract lattice is modular and automated, the non-flat structure of the 

concrete base lattices is possible, as long as the user can translate from the concrete base 

lattices to the abstract base lattices. 

Secondly, this implementation is more general in its acceptance of higher-order 

functions. Other implementations can only process first-order functions. This is a result of 

the particular lattice, or type of lattice, used in the abstraction process. However, since this 

implementation has few restrictions in that area, the restriction to first-order functions is 

unnecessary. Also, the theoretical basis for abstracting higher-order functions has not 

always existed, thus the lack of practical implementations incorporating this ability. 

However, since [Burn, Hankin & Abramsky, 1986], the basis for performing abstract 

interpretation on higher-order functions is as sound as that for first-order functions. The 

only reason against abstracting higher-order functions is the complexity of such an 

endeavor. Algorithms such as the frontiers algorithm help in alleviating this problem. 
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A third generalization in this implementation is its treatment of abstract base lattices. 

Historically, these lattices have been flat and finite. However, in this implementation the 

former restriction was not necessary. The abstract base lattices must still be finite, because 

of the need for an explicit representation in the implementation, and also to guarantee 

termination of the development of the A K C in the fixpoint finding process. 

3 . 1 . 2 . S i m p l i c i t y a n d e f f i c i e n c y 

The qualities of simplicity and efficiency in this implementation are not independent but 

interacting. This is demonstrated in the modification of the frontiers algorithm used to find 

fixpoints. The original frontiers algorithm presented in [Martin & Hankin, 1987] is defined 

for first-order functions of multiple arguments over the abstract base lattice 2. This 

algorithm is extended, first to deal with arbitrary base lattices, and second, to deal with 

higher-order functions. The result is an increasingly complicated algorithm. To rectify this, 

our approach is to view the problem of finding fixpoints by remembering from the start the 

desired applicability to arbitrary-order single argument functions defined over arbitrary 

finite base lattices. When this information is combined with the frontiers algorithm, a 

similar algorithm arises, which is simpler and easier to implement. The efficiency of the 

original algorithm has not been changed; the new algorithm eliminates unnecessary function 

evaluations in exactly the same way as before. 

Instead of a function being represented by frontiers in a lattice composed as the 

product of argument lattices, it is represented by an annotated lattice (no products are 

necessary because the function has only a single argument). This annotated lattice is a 

normal lattice except that each element is annotated, potentially by another annotated lattice. 

The annotation in this representation is the function's value at that point, or a constraint 
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upon its value. The modified frontiers algorithm and the concept and usage of annotated 

lattices shall be explained in more detail later on in this chapter. 

A second way in which the implementation is simple is in its division of the abstract 

interpretation process into modular and independent parts, as shown in Figure 3.1. After 

the user has specified certain translation and reduction rules, he gives the concrete function 

specifications to the implementation and observes the abstraction process take place in three 

parts. First, the functional specification is analyzed for purposes of internal representation. 

Second, this internal representation is simplified and translated to a function specification 

over the abstract lattice. Third, the least fixpoint of the abstract function specification is 

found. Underlying the latter two modules of the system is a fourth module, which is a 

collection of routines for the management of the various lattices being processed. This 

modularization of the implementation aids in its description and in the implementation 

process. 

3.1.3. Automaticity 

The third aim of this implementation is automaticity. That this has been achieved is 

demonstrated by the limiting of the user's interaction with the system to the steps of 

defining the abstract base lattice(s), the basic translation steps required (all other translation 

steps can be reduced to these), and the operational semantics of builtin functions upon the 

abstract lattice. On completion of these steps, the user inputs a set of function definitions, 

or specifications, and awaits the result. The output must then be interpreted by the user as 

the last step in the process (as shown in Figure 1.1). 

Were this system to be integrated into a larger system, such as an optimizing 

compiler, and a definite abstract interpretation assigned, such as strictness analysis, then 
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the initial setup and the last step could also be automated. This would result in an automated 

abstract interpretation system, tailored for strictness analysis in an optimizing compiler. 

Figure 3.1. A pictorial description of the abstract interpretation system 

3 . 2 . R o u t i n e s 

This implementation has been modularized according to the routine's function. All routines 

for dealing with the A,-calculus representation of the functions are in one module, as are 

those for the management of lattices, the abstraction or translation process, and the fixpoint 

finder. These routines will be discussed in detail, with special attention paid to their role in 

fulfilhng the implementation objectives. 
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3 . 2 . 1 . L a m b d a - c a l c u l u s r o u t i n e s 

The A,-calculus is the language chosen to represent the functions defined over the concrete 

lattice. It is simple, yet powerful enough to express any function expressible by any other 

formal language. The routines associated with the A,-calculus can be divided into two 

categories: those which internalize a X-calculus program, and those which reduce or 

interpret internalized programs. 

3.2.1.1. Internalization 

The A,-calculus functional specification given by the user must be represented internally 

before it can be used by the system. This requires parsing the X-calculus expression and 

creating an internal data-structure to represent the expression. To ensure parsing of the 

input A,-calculus expression, the user must adhere to the grammar for the language, shown 

below, 

<X-expression> —» <primitive A,-expression> <^.-expression>* 
<primitive X-expression> —> <constant> I 

<variable> I 
"X" <variable>"." I 
"letrec" <assocs> ";" I 
"(" <X-expression> ")" 

<assocs> —> <assoc> (";" <assoc>)* 
<assoc> - » <variable> "=" <X,-expression> 

where <variable> has the usual meaning, and <constant> is any integer or boolean. Notice 

in addition to the standard definition of X-calculus expressions, that the "letrec" construct is 

included as a space saving mechanism to enable user-defined functions to be declared for 

later use. Its semantics is fully described in the next section. 

To parse the incoming A,-calculus expression, the grammar has been re-expressed in 

a notation known as a Definite Clause Translation Grammar ( D C T G ) . This notation 

[Abramson, 1984], along with an appropriate D C T G compiler and interpreter, allows the 
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grammar to be executed direcdy on the input text and to return a parse of the expression, if 

one exists. 

The DCTGs used in this implementation allow the parsing to be divided into two 

parts, lexical analysis and token-based parsing, as is often the case in the design of 

language parsers. The second part of the process is easier to understand and implement if 

the lexical analysis is out of the way. 

The output of the lexical analyzer consists of a series of atomic tokens, or lexemes. 

Suppose the input program is that shown in Figure 3.2. Then the lexemes output from the 

lexical analyzer are 

[variable(mul), constant(2), variable(a)], 

where the tabs and blank spaces have been eliminated. Notice that "mul" is identified as a 

variable, even though it obviously is a builtin function call to multiply two numbers. This 

aspect of the parsing process is handled later, by the reduction routines. 

A more accurate example of what the lexical analyzer would accept as input and 

produce as output is the following, where type notations are included throughout the 

program: 

mul(int, (int, int)) 2 a(int). 

The analysis of this typed program produces the following list of lexemes: 

[v(mul, (int, (int, int))), c(2, int), v(a, int)]. 

m u l 2 a 

tab blank blank 

Figure 3.2. An example of an input program 



Implementation 41 

This typing notation is similar to the notation defined previously, using type expressions 

for naming function types and lattices. 

The second part of the parsing process is the analysis of the lexemes produced by 

the lexical analyzer. The mechanics are similar. A sequence of atomic symbols, lexemes 

this time instead of characters, is analyzed with respect to their structure and an internal 

representation is formed. The D C T G used for this purpose is like the grammar shown 

previously. As an example, the <primitive A,-expression> rules are shown in Figure 3.3. 

primjexp ::= t C O N S T A A C 
<:> 
sem(Sem)::- CAAsem(Sem). 

primjexp ::= t V A R ^ V 
<:> 
sem(Sem)::- VAAsem(Sem). 

primjexp ::= t L A M B D A , ! , t V A R ^ V , tDOT, lexp^E 
<:> 
sem(l(Var,Exp))::- V^semCVar), E^semCExp). 

primjexp ::= tLETREC, ! , list_of([assoc, tCOMMA]) A A S, tSEMICOLON 
<:> 
sem(letrec(Assocs))::- SAAlist(Assocs). 

primjexp ::= tLP, lexp A AE, tRP 
<:> 
sem(paren(Sem))::- EAAsem(Sem). 

Figure 3.3. The grammar rules for a primitive A.-expression 

Each grammar rule represents an alternative construction in the parse tree. For 

example, the node "primjexp" branches downwards into 1, 3, or 4 child nodes as directed 

by the program text under analysis. In the " A A Var" notation, the prolog variable Var is 

identified with that node in the parse tree. If primjexp were expanded downwards to the 

nodes tLP, lexp, and tRP by the last rule, the "lexp" node would be named (in that 
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instantiation only) by the variable E. The node names are used in the second half of each 

rule, where a prolog-like semantic predicate is listed. These semantic predicates are 

interpreted in the same way as normal prolog predicates, except if a node-naming variable 

Var precedes a clause name C (in the format "VarA AC"). In which case, the semantic 

predicate C associated with the rule headed by the node identified with Var in the current 

parse tree is executed. This method of associating executable predicates with grammar rules 

allows an internal representation to be constructed directly from within the parse tree. As 

can be seen from the portion of the D C T G for the A.-calculus, the internal representation is a 

prolog-functor, formatted as follows: 

Text Internal 

C (a constant) c(C, Type) (Type is deduced from C) 
V(Type) v(V, Type) 
letrec V(Type) = E , l e t r e c ( [ ( v ( V , Type), E"), ...]) 
XV(Type) .E l(v(V, Type), E') 
E F @(E', F ) 

where E' and F' are the internal representations of E and F, respectively. Thus, the 

previous example program 

mul(int, (int, int)) 2 a(int) 

is represented internally as the functor 

@(@(v(mul, (int, (int, int))), c(2, int)), v(a, int)). 

In the unparenthesized ^.-calculus program "a b c", the internally represented 

program is constructed as if the original program was actually "(a b) c". This is not a result 

of the parsing, but occurs later by a manipulation of the internal data structure. This is 

because the D C T G grammar formalism does not allow left-recursive grammar rules, which 

the desired above interpretation of "a b c" would require. Thus, the initial result of the parse 

of "a b c" is "a (b c)" and must be rearranged to get the desired result. This manipulation is 

simple and is only noted here to explain the reason for the "parenQ" construction (used to 



Implementation 43 

flag explicit parentheses) found in the semantic portion of the last rule in the D C T G 

fragment. 

3 . 2 . 1 . 2 . R e d u c t i o n 

Interpretation of the X,-calculus is known as reduction, because a X-calculus expression is 

"executed" by simplifying it, or reducing it, until it can be reduced no more. This reduction 

process is defined by a few simple rules, which serve to establish semantics for the 

language, in the same way that its syntax was established previously: 

E x p r e s s i o n / E n v i r o n m e n t Reduct ion (1 step)/New Env ironment 

Var / Env lookup(Var,Env) / Env 
X V . E / E n v ^ V . E ' / E n v 
W . E F / E n v E / E n v + assoc(V,F) 
ifE F G / E n v i / E ' F G / E n v 
if true F G /Env F / E n v 
if false I Em G / E n v 

/ E / Env builtinf/, E , Env) / Env 
E F / E n v E ' F / E n v 
E' F / Env E' F / Env 
letrec(Assocs) E / Env E / Env + Assocs 

where E , F, and G are X-calculus expressions and E', F', and G' are their reductions, 

respectively. The symbol /denotes a builtin function other than //. These rules of reduction 

are standard except for the letrec construction which is reduced by adding the function 

definitions to the environment. 

An extension to the reduction rules which has not been mentioned allows a function 

represented as an annotated lattice (as opposed to the usual internal functor representation) 

to be applied to an argument. Thus, for example, if the function not over the concrete base 

lattice of booleans in Figure 2.7 was represented as an annotated lattice, like Figure 3.4, 

then its internal representation could be applied to a value, say false, and be reduced to get 

the value true. This rule enables the fixpoint finding process to be expressed more simply 

than otherwise. 
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top (top) 

\ 
true (false) false (true) 

\ 
bottom (bottom) 

Figure 3.4. The function not represented as an annotated lattice 

As an example of how reduction proceeds, consider the step-by-step reduction of 

which defines a function zero that produces yes if its argument is 0, and no otherwise: 

(X x . if (= x (double x)) yes no) 1 {...} 
if (= 1 (double 1))yes no {...} 
if(= 1 ((Xx. * 2x) 1))yes no (...) 
if(= 1 ( * 2 1))yes no {...} 
if (= 1 2)yes no {...} 
if false yes no {...} 
no {...} 

The type information in the previous example and description of the reduction process has 

been omitted in order to simplify the discussion. 

Normal order reduction (leftmost-outermost) has been employed throughout this 

description and the implementation in order to preserve lazy evaluation. However, to make 

the reduction process more efficient, sometimes parts of the internal representation are 

flagged to indicate they can be reduced no farther. This does not change the reduction order 

but helps to avoid re-examining already-reduced sub-expressions. 

letrec double 
zero 

= X x . * 2 x, 
= X x . if (= x (double x)) yes no; 

zero 1, 

Expression Environment 

letrec zero 1 
zero 1 } (contents of above letrec) 
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3 . 2 . 2 . N o d e a n d l a t t i c e m a n i p u l a t i o n r o u t i n e s 

Necessary to the implementation are routines which perform various operations on, and 

within, the abstract interpretation lattices. These routines look up nodes inside lattices, add 

new nodes to lattices, generate new lattices from old, and do other operations required by 

the implementation. They are categorized according to whether they deal with nodes or 

lattices. 

3.2.2.1. Nodes 

The routines that deal with nodes are primarily those that create nodes, compare nodes, and 

perform operations upon nodes. 

3.2.2.1.1. Representation 

Every node in an annotated lattice has four properties. The first property is its name. This 

can be assigned by the user, as in his initial definition of the abstract base lattice(s), or by 

the implementation itself during the automatic creation of new nodes. The name of any 

node must be unique within its surrounding lattice. 

The second and third properties of every node are the nodes above and below the 

node in the containing lattice. These sets may be empty, but they must always exist and be 

associated with the node. They are necessary for the correct determination of, and for 

correct inference based on, the lattice's internal structure. 

The final property associated with each node is specific to the implementation. It is 

the "annotation" or note that is present with each node. This annotation may serve any 

purpose in general, but in the implementation it is restricted to being the value of a certain 

function evaluated on that node, where the function is determined by context. Thus, given 

/: L - » L , each node n contained in L could be annotated with the value f(n), giving an 

explicit representation off over L as an annotated lattice. 
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For example, consider g : A —» B, where g, A, and B are as shown in Figure 3.5. 

The four nodes comprising lattice A, annotated with their values in B as determined by g, 

are represented in this implementation as follows: 

node(a, {}, {b, c, d}, 3), 
node(b, {a}, {d}, 2), 
node(c, {a}, {dj, 2), 
node(d, {a. b, c), {}, 1). 

This representation is not minimal. For example, since the structure of the lattice has been 

defined and node a is above node b, and node b is above node d, it is unnecessary to record 

in the definition of node a that below it are the nodes b, c, and d. That d is below a could be 

deduced from other node definitions. Thus, the inclusion of node d in the below set for 

node a is redundant, but it has been added for reasons of efficiency. At this level of data-

structuring it is efficient to trade an increase in space for a decrease in time. 

a 3 a(3) 

/ \ I / \ 
A = b c B = 2 g = b(2) c (2) 

d i d(i) 

Figure 3.5. The function g : A —> B represented as an annotated lattice 

3.2.2.1.2. Routines 

The routines that manupulate node structures fall into three categories: predicates, node-

valued functions, and node creation. 

The predicates which are defined over nodes are the usual binary comparison 

operators: =, <, and <. The first is based on comparison of node names. The second 

predicate is implemented as a search for the first node's name in the second node's below 
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set. If the search is successful, then the comparison is true, otherwise it is false. The last 

predicate is defined as a combination of the first two. 

The node-valued functions defined are the binary functions greatest lower bound 

(gib) and least upper bound (lub).The gib function is implemented as a search for the 

maximum (highest, in a diagram) node in the intersection of the below sets of the two 

nodes given as arguments. The lub function is defined in a similar but opposite fashion. 

These functions also take sets of nodes as arguments. In that case, for example, 

gib [a, b, c} is defined as gib [a, gib [b, gib {c}}}, where gib {n} = n for any node n. 

To create a node ready for inclusion into an existing lattice structure, its name and 

intended position in the lattice are required. This can be fulfilled by producing a pair of 

complete above and below sets for the node, but this is a tedious and unnecessary chore. 

Since the node is created only once, it is simpler to give the node creation routine a pair of 

minimal above and below sets, and let it deduce the complete above and below sets 

automatically. Thus the node creation routine is an enumeration mechanism which expands 

minimal above and below sets to their redundant but complete counterparts. For example, 

if the above set for a node n is denoted above(n), then the minimal above set M would 

cause to be generated a complete above set through the computation of 

3 . 2 . 2 . 2 . Latt ices 

The routines in the implementation that deal with lattices also deal with nodes, but only as 

part of the greater lattice structure. These routines perform such functions as adding nodes 

to lattices, deleting nodes from lattices, finding the bottom of a lattice, and minimizing 

lattices. 
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3.2.2.2.1. Representation 

Since the nodes themselves contain a description of what is above and below them in the 

lattice, the lattice structure itself need be no more than a mere set of nodes. However, this 

type of lattice structure presents an efficiency problem. Since the purpose of a lattice data-

structure is to group a set of nodes for later retrieval and analysis, those nodes should be 

organized for the efficient performance of such tasks. Thus the organizational structure 

chosen for the nodes is that of the sorted binary tree. 

A sorted binary tree is a binary tree with the added restriction on every node n that 

the names of left(n), n, and right(n) be ordered alphabetically (in increasing order, in this 

case), where left(n) and righiijn) indicate the left and right children of n, respectively. Also, 

each node in the tree contains the size of the tree it heads. This information helps in keeping 

the sorted binary tree balanced. Thus a lattice is stored as a sorted binary tree, each node in 

the tree also being the root of a sorted binary tree, where a node is a five element functor. 

The first element is the key by which the tree is sorted. In the implementation, this is the 

name of the lattice node stored there. The second element of the functor is the actual lattice 

node structure, and the third element is the size of the tree rooted at that node. The fourth 

and fifth elements are the structures denoting the left and right subtrees, respectively. An 

example of this lattice structure for a three element lattice can be seen in Figure 3.6, where 

the empty sorted binary tree is denoted by []. Notice that the maximum length of time to 

access an element of a lattice is reduced from 0(n) to 0(log n) using a sorted binary tree as 

opposed to a set for storing the lattice nodes, assuming that the tree is balanced. 

3.2.2.2.2. Routines 

There are three types of lattice routines in the implementation. They deal with either a single 

node within a lattice, all nodes in a lattice, or they create new lattices from old. 
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49 

L = b(2) 

c(3) 

L = tree( b, 
node(b, {a}, {c}, 2), 
size(3), 
tree(a, node(a, {}, {b, c}, 1), size(l), [], []), 
tree(c, ncxie(c, {a, b), {}, 3), size(l), [], [])) 

Figure 3.6. A n annotated lattice L and its internal representation 

Among the routines concerned with individual lattice nodes are those which add 

nodes to, and delete nodes from, a given lattice. The addition is simple, since the lattice is a 

sorted binary tree. The tree is traversed down to the appropriate empty leaf node, which is 

then replaced with a new node that has two empty leaf nodes as subtrees. 

Deletion of nodes from a lattice is more complex. If the node is a leaf node, then it 

may be removed and replaced by an empty leaf node. If the node has only one child node, 

then the node to be deleted may be removed and the child node may take its place. But if the 

node has two non-empty subtrees as children, then these subtrees must be merged together 

to form a single sorted binary tree, and balanced. This newly balanced tree then takes the 

place of the node to be deleted. The routine which does this takes into account the size of 

the two trees to be merged. It adds the smaller tree bit by bit onto the larger tree to produce 

a new sorted, balanced, binary tree. 

Another routine concerned with single nodes looks up nodes by name. Given the 

name of a node, and its containing lattice, this routine searches the lattice for the node's 

name, and on finding it, returns the node structure containing all information about that 

node. 
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A further such routine finds the bottom of a lattice. This node is guaranteed to exist, 

so the routine is implemented as a search. To find the bottom of the lattice, the routine 

checks whether or not the below set for a node is empty. If so, then that node is the bottom 

(if another node exists which satisfies this condition, then the greatest lower bound of the 

two nodes would not exist, contradicting the definition of a lattice). 

Among the routines which deal with multiple nodes is one which takes a full lattice 

and computes from it a minimal lattice. This routine takes as input a lattice consisting of 

nodes which all have complete above and below sets (a normal lattice) and returns the 

lattice modified so that each node's above and below set is reduced to the minimal number 

of elements necessary to still be able to deduce the lattice's structure. This routine is useful 

in producing a user readable representation of a lattice, since the usual pictorial 

representation of a lattice is minimal as opposed to full. See Figure 3.7 for an example of 

the two kinds of lattice representation. 

Another routine which deals with lattices is the empty lattice routine. This returns an 

empty lattice, to which nodes can be added as desired. 

The last type of lattice routine to be discussed is that which generates new lattices 

from old. The new lattice generated by this routine is a function lattice. Given two lattices A 

and B, this routine creates [A —» B], the lattice of all continuous functions mapping A to B. 

But, in the case of finite lattices, continuous is the same as monotonic. Thus, the creation 

of [A —> B] involves the enumeration, and subsequent ordering, of all monotonic functions 

f:A-±B. This enumeration is guaranteed to terminate, since if the monotonicity condition 

is ignored, then the number of different functions possible is lAI1*1, which is finite since 

both A and B are finite. When the monotonicity condition, and thus the lattice structure, is 

considered, then the number lAI^1 is simply an upper bound on the size of [A —> B]. 
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a a 

b d e 

g 

Minimal Full 

Figure 3.7. A comparison of two lattice representations 

To generate [A —¥ B], first all monotonic functions mapping A to B are discovered. 

These are then ordered into a lattice structure (according to the usual definition of order 

among functions). The hard part in this is the discovery of all monotonic functions 

mapping A to B. This is accomplished as follows: Since a monotonic function / : A —> B 

is an annotation of A with values from B (with the condition that x < y in A =>fx <fy in 

B), then a copy of A can be made and annotated, and can be considered as one of the 

functions in [A —> B]. These functions can be generated iteratrvely, starting with a known 

function. This initial function is the bottom of [A -> B], the function which assigns to all 

elements in A the bottom of B. Given this function, another function can be generated by 

assigning to any element a e A a value b e B and ensuring that for all nodes ne A such 

that n > a, the value assigned to them, v, satisfies v > b. This can be done easily in prolog, 

using its natural backtracking mechanism. Nodes are annotated starting from the bottom of 

A, moving upwards one node at a time, and always retaining the minimum value assignable 

to each new node. Thus, due to monotonicity, whenever a new node in A is considered for 

annotation, there is available only a subset of values in B. The process is continued until 

the entire lattice is annotated, at which point the new function thus generated is recorded 
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and backtracking takes place. Once the backtracking is finished, all functions have been 

generated and there remains only the process of ordering them into a lattice structure, 

giving the resulting function lattice [A —> B]. 

3.2.3. Abstraction routines 
The abstraction routines perform the first part of the abstraction process: the translation. 

The translation is automated, leaving only the specification of a few primitive translations 

and builtin functions to the user. Once the user has made these specifications, the rest of the 

translation is based upon them. This makes the abstraction mechanism less general than 

theoretically allowable, but in practice this is not a restriction. 

The translation routines fall into two categories, depending upon the type of data 

being translated: either a X.-calculus expression, or a type expression. 

3 .2 .3 .1 . Lambda-calculus expressions 

The translation of A,-calculus expressions is performed recursively, with abstractions and 

applications carried through the translation intact, and only the more primitive elements of 

the expression being changed. This automated part of the translation can be summarized as 

follows: 

Expression Abstraction 

The translation of constants, variable names, and function names remains to be 

specified. These translations are supplied by the user. 

3.2 .3 .2 . Type expressions 

The translation of types must occur for abstraction to remain consistent, and for the fixpoint 

finding routines to operate automatically. To translate types automatically, the 

E F 
X. V . E 
letrec V = E, 

abs(E) abs(¥) 
X abs(V). abs(E) 
letrec abs(V) = abs(E),...; 
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implementation requires the user to specify only the translations of the base lattices. This is 

because the specification of concrete and abstract lattices is formalized (each being based on 

a sum), the key ingredients of which are the base lattices. For example, if the concrete base 

lattices are integers and booleans, then these may both map into the single type 2, the 

abstract base lattice. If the concrete base lattices consist of integers, booleans, and lists, 

these may be mapped as follows: 

C o n c r e t e T y p e Abstract T y p e 

integers 2 
booleans 2 
lists 4 

where 4 is an abstract base lattice designed to produce abstraction information about lists (4 

is an actual lattice used in an application and will be described later). 

Given the user-supplied specification of how translation is to proceed on base 

types, the translation of a type expression is performed according to its structure, as 

follows: 

E x p r e s s i o n A b s t r a c t i o n 

a-*b abs(a) —> abs(b) 
a abs(a) (as specified by the user) 

3.2.4. Fixpoint finding routines 

Finding the least fixpoint of a function, or set of functions, requires the iteration and 

evaluation of successive approximations to the function. This proceeds until a limit point is 

reached. For example, if / : A —> B is 

/= body_ofJ, 

and / i s recursive, then one can define F : [A —> B] —»B as 

F = -kf.body_ofJ 
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and follow the AXC to its limit by the successive computation of the following functions: 

Fo = bottoms 
Fi=FFo 
F2=FF] 
etc. 

until Fi = F/+i and thus F; = F F;_; is the least fixpoint of /. The problem occurs in the 

determination of F; = F,+i. This is solved in the implementation by using an explicit 

representation of functions as annotated lattices, thus making comparison easy but 

generation expensive. Also used is a modification and simplification of the frontiers 

algorithm. 

3.2.4.1. Front iers a lgor i thm modification 

To represent a function / : A —> B explicitly, first the lattices A and B must themselves be 

explicitly represented. For example, if/ is of type integers —» integers -» integers (as are 

the usual binary mathematical operators), then/maps integers to integers —> integers and 

the explicit representation off is the lattice integers annotated with values from [integers -» 

integers]. Thus the [integers -» integers] lattice must be constructed using the lattice 

routines described previously. Once all the lattices concerned have been constructed, 

annotation can proceed, using a modification of the frontiers algorithm, as follows. 

A node n in the argument lattice A is selected and/is evaluated on n, enabling n to 

be annotated with the value of f(n). Since / is monotonic, all points in A above n are 

annotated indicating their value v must satisfy v > n, and all points in A below n are 

annotated complementarity. This process is repeated iteratively, so that all nodes in A are 

either annotated with an actual function value or have the annotation between(a, b) to 

indicate that their future value v must satisfy a < v < b. Obviously then, whenever any node 

is constrained so far as to have the annotation betweenia, a), the annotation is replaced with 

a as the only value possible (relieving/of ever having to be evaluated at that node). 
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This is continued until the lattice is completely annotated, giving the complete 

explicit representation of / . If / is typed so that the annotations to A are functions 

themselves, as in integers —> (integers —> integers), then the annotations are made not as X-

calculus expressions, but as further annotated lattices. This property enables all functions to 

be considered as single-argument functions, and simplifies the algorithm over the original 

frontiers algorithm. Also, the simplification of multiple frontiers into a simple constraint 

allows the algorithm to be used in a natural manner on arbitrary finite lattices. 

3.2 .4 .2 . Heuristics 

One question that remains pertains to the nodes that are chosen for function evaluation. 

That these choices make a difference to efficiency can be illustrated by Figure 3.8. It 

increases efficiency to choose a heuristic which selects nodes in an optimal order, thus 

avoiding as many expensive function evaluations as possible. But, such an optimal 

heuristic has not been discovered in this implementation. However, it is possible to 

produce some heuristics which guide the node evaluation process in a more efficient 

manner than otherwise. 

One such rule requires the node selection to be ordered by the number of arcs 

associated with each node, from most to least. Another rule orders the nodes by the number 

of arcs associated with each node in the minimal lattice representation. Yet another rule is to 

order the nodes by their distance from other already evaluated nodes. Other heuristics are 

possible. The rule used in this implementation is the second rule mentioned above, namely, 

that nodes are selected according to the number of arcs connecting them to other nodes in 

the minimal lattice representation. 
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Annotated lattice 
representing a function 

h(l) 

/ \ 
f(D g(D 

Possible evaluation orders 
(x = no evaluation necessary) 

x 

3 x 

8 

/ \ 
7 6 

1/1 l/l 
d(0) e(l) 5 4 

N N 
b (0) c (0) 

a(0) 

A; 4 2 3 

1 

4 evaluations 8 evaluations 
performed (optimal) performed (worst) 

Figure 3.8. A comparison of two possible evaluation orders 

3.3. Example 

As an example of how the various implementation routines work together to perform 

abstract interpretation, consider / : C —> A, defined as 

/= X v . or vf(not v), 

a complicated way of expressing the value true. The concrete base lattice for the above 

function need only consist of booleans, and the abstract base lattice is 2. The function as 

described so far is illegal input to the system, since it uses a typed X-calculus. The actual 

input to the system is 

letrec ffbool, boo!) = 
A, vfbool). or(bool, (bool, bool)) v(bool) f(bool, bool) (not(bool, bool) v(bool)); 

This is translated by the lexical analyzer into the following list of lexemes: 

[letrec, v(f, (bool, bool)), punct(eq), X, v(v, bool), punct(dot),...] 
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This list is parsed into an internal representation of the A.-calculus expression, consisting of 

the following (types left out for clarity): 

letrec([(f, l(v, @(@(or, v), @(f, @(not, v))))]) 

This A,-calculus expression is then abstracted, assuming that the user has supplied 

appropriate definitions for primitive types, constants, and builtin functions. In this case, 

these definitions are assumed: 

E x p r e s s i o n A b s t r a c t i o n 

bool 2 (2 = { 0 , 1}, where 0 < 1) 
constant 1 
not v not v (considering 0 and 1 as truth values) 
or x y or xy (considering 0 and 1 as truth values) 

Thus, f is translated into 

letrec([(/» l(v, @ ( @ ( o r , v), @(/» @(not, v))))]) 

or, equivalently, 

letrec _/2^2 = ^v2.or2->2->2v2^->2 (̂ ,2 -> 2 v2) 

where the types are super-scripted for clarity. This expression would never terminate if 

evaluated, and thus the fixpoint finding mechanism must be applied. The first 

approximation to / i s denotedfy, and is the function found at the bottom of the function 

lattice [2 - » 2 ] 

/0 = X v 2 . 0 

Carrying through the expansion of the A K C , the rest of the approximations are 

fl = X v . o r vfy (not v) 
= X v . o r v 0 
= X v . v 

f2 = Xv . o r v / ? (notv) 
= X v . o r v (not v) 
= Xv . 1 
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/ j = X v . or v /2 (not v) 
= X v . or v 1 
= X v . 1 

giving the limit, or least fixpoint, o f / a s / 2 = X v . 1. This is done by the implementation 

using a different representation for/, as follows: 

fo = X v 2 . 0 
1(0) 

0(0) 

fl = X v . or vfo (not v) 

K D 

0(0) 

/2 = X v . or vfi (not v) 

K D 

0(1) 

/ j = X v . or v /2 (nor v) 
1(1) 

= I 
0(1) 

If/returned a function as a value (like the or function), then instead of having elements of 

2 as annotations, it would have further annotated lattices as annotations, as shown in 

Figure 3.9. 

Once the least fixpoint o f / i s found, abstract interpretation is complete, and the user 

can use the information thus derived to infer properties of/. If, for example, the application 

was strictness analysis, then from the fixpoint definition off,/evaluated on any argument 

is 1, s o / i s not strict at all. Thus, to evaluate / a n d its argument concurrently would be to 

take the chance of performing unnecessary (and possibly non-terminating) computations. 
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0 
'i(i)^ 

.0 (0)1 

Figure 3.9. The or function represented as an annotated lattice 



Chapter 4 

Applications 

Abstract interpretation was initially proposed as a unified model of program analysis for 

solving problems including global data-flow analysis, type-checking, program performance 

analysis, and program correctness analysis (see [Cousot & Cousot, 1977]). Recently, the 

trend of practical abstract interpretation has been to restrict itself to less and less general 

problems, namely those on which it can perform successfully and in an efficient manner. 

The trend of theoretical abstract interpretation has been to strengthen the foundations of a 

more generalized process than that which exists. Currendy, the theoretical basis is strong 

enough to support some practical applications, not the myriads of applications envisioned 

by the Cousots, but those such as program termination analysis [Mycroft, 1980], data-type 

analysis [Mishra & Keller, 1984], and many types of strictness analysis [Abramsky, 

1985], [Burn, 1987], [Wadler & Hughes, 1987]. Abstract interpretation is not being 

applied to some of the other problems that the Cousots described, because they are more 

effectively solved by another model of program analysis, because the theoretical 

foundations have not yet been sufficiendy developed, or because they have been eliminated 

by the functional framework within which abstract interpretation is performed. 

Two problems which are still effectively dealt with by abstract interpretation are 

strictness analysis and program termination analysis. These problems, and the application 

60 
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of the implementation to their solution, will now be discussed in depth. Actual output of the 

system when given the following examples can be found in appendix A. 

4.1. Strictness Analysis 

The most common use to which abstract interpretation has been put is strictness analysis. A 

function/ with argument of type T (where T is assumed to also be the concrete base lattice 

for that type), is strict if and only if abs(f) bottom = bottom, where bottom is the bottom of 

the lattice abs(T). Since the bottom of the type lattice indicates undefinedness, or non-

termination, /being strict means that/is non-terminating whenever its argument is non-

terminating. 

For example, suppose the following two functions are defined: 

letrec f=Xx. * 2x, 
g = Xx.Xy . if(=xO)yx; 

Then/is strict, since/is non-terminating whenever x is non-terminating. Also, g is strict, 

and so is g 0. But g 1, which is derived as shown, is not strict: 

gl = (Xx.Xy.if(=xO)yx)l 
= Xy. if (= I 0)y 1 
= X y . if false y 1 
= Xy .1 

As mentioned previously, strictness analysis is useful in dealing with parallelism in 

functional programs. Normally, since the mode of evaluation is lazy, parallel evaluations 

do not occur and the program is limited to sequential operation. But if one recalls that the 

motivation behind the lazy evaluation is to evaluate only what is necessary, then under 

certain conditions the sequential mode of evaluation can be relaxed. That is, one can 

evaluate two expressions simultaneously only if one knows that both expressions will have 

to be evaluated anyway. For example, in the expression "* a b", the expressions a and b 

can be evaluated simultaneously, rather than evaluating a first and b second, since it is 
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known that the multiplication function always evaluates, or needs, both of its arguments. 

Thus, the key concept is "need"; the function is strict if and only if it needs its argument. 

Once a function or set of functions have been analyzed for strictness, it is a simple 

matter to annotate them for later compilation. This allows an optimizing compiler to take 

advantage of all of the parallelism existing in the program, thus rendering obsolete the 

necessity of any direct user control over which parts of the program are allowed to execute 

simultaneously and which parts are not. Exactly those expressions in a program which are 

safe to evaluate in parallel are evaluated thusly, and no others. 

The lattice used for representing information in strictness analysis need only 

represent two conditions: non-termination and otherwise. Such a lattice is the two-element 

lattice 2, with elements 0 and 1, where 0 < 1. The 0-element represents definite non-

termination, and the 1-element represents anything else. This is a natural way of defining 

an abstract base lattice for strictness analysis, as can be seen from the mapping for 

constants thus derived, shown in Figure 4.1. 

Figure 4.1. The mapping of constants into the abstract base lattice 2 

This definition of the abstract base lattice is also useful because of its equivalence 

with the two-element boolean lattice (not the concrete base lattice of booleans, shown in 

Figure 4.1), as shown below: 
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1 true 

0 false 

which means that instead of using the standard lattice functions gib and lub on 2, one can 

instead use the functions and and or, respectively, where 1 is considered true and 0 

considered false. Thus the abstractions for builtin functions, shown in Figure 4.2, are 

simplified. 

a b absf)a b 

0~0 0 
0 1 0 
1 0 0 
1 1 1 

where / i s one of 
+,-,*, /, etc. 

Figure 4.2. Abstraction definitions for builtin functions 

As can be seen from the tables in Figure 4.2, the arithmetic functions such as * can 

be expressed as 

* a = X a . X b. a and b 

while the if function can be simplified to 

if = Xa.Xb.Xc.a and (b or c). 

According to these definitions (and to intuition), the mathematical functions need all of their 

arguments, while the / / function needs its first argument and one of the next two (more 

precisely, if is strict and so is one of if a and if a b). 

So far, strictness analysis which deals with higher-level data structures such as lists 

has been ignored. This is because a different abstract base lattice which represents list 

a b c abs(tf)a b c 

0 0 0 0 
0 0 1 0 
0 1 0 0 
0 1 1 0 
1 0 0 0 
1 0 1 1 
1 1 0 1 
1 1 1 1 
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information is required. In the next section, the discussion will be restricted to the simpler 

case of strictness analysis without lists. 

4.1.1. S i m p l e s t r i c t n e s s a n a l y s i s 

The process of strictness analysis can now be performed on functions not involving lists, 

using what has been defined above. For example, consider 

letrec f=Xx.*2x. 

It is already known that / is strict, but one should also be able to determine this using 

formal abstract interpretation. The abstracted definition of/is 

absif) = abs(k x. * 2 x) 
= X x. abs(*) abs(2) x 
= X x.and 1 x 
= X x . x 

and the complete definition off is 

X fx 
0 
1 

0 
1 

According to the strictness analysis condition, which can be stated for the lattice 2 as 

/ i s strict <=> abs(f) 0 = 0, 

absif) 0 = 0, and so/is strict. Were this information to be given to a compiler and used in 

the evaluation o f / * , / a n d * could be evaluated simultaneously, thus increasing the 

efficiency of the evaluation process. 

Another, more complicated, example of strictness analysis is the following factorial 

function and its analysis: 

letrec/= X n . if(= n 0) 1 (* n (f(- n 1))) 

The abstracted form of/is 
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abs(f) = abs(X n.if(=nO)l(*n(f(-n 1)))) 
= X n . absiif(= n 0) 1 (* n (f(- n 1)))) 
= X n . abs(= n 0) and (abs(Y) or abs(* n(f(-n 1)))) 
= X n . (n and 1) and (1 or (n and abs(f) (n and 1))) 
= Xn .n and (1) 
= X n . n. 

Thus, the factorial function is strict. 

Another example, which requires the finding of a least fixpoint, is the factorial 

function defined in a different manner. This is the accumulating factorial function: 

letrec/= Xx.Xy.if(=xO)y(f(-xl)(*xy)) 

The abstracted form of this function is 

abs(f) = X x . X y . x and (y or fx (x and y)) 

The least fixpoint of this function can be found as follows: 

fo = X x . X y . 0 

fl = X x . X y . x and (y orfy x (x and y)) 
= X x . X y . x and (y or 0) 
= X x . X y . x and y 

f2 = X x . X y . x and (y or fi x (x and y)) 
= Xx .Xy . x and (y or (x and (x and y))) 
= X x . X y . x and (y or (x and y)) 
= X. x . X y . x and y 

Therefore, fj =fi = abs(f) = X x . X y . x and y. The analysis of this function is as 

follows: 

x fx 

0 
1 

X y . 0 
x y-y 

where both Xy .0 andXy . y are strict functions. Thus absif) 0 = Xy . 0 = bottom^ -»2], 

and the accumulating factorial function is strict in both of its arguments. 
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4.1.2. S t r i c t n e s s a n a l y s i s w i t h l i s t s 

To incorporate lists into strictness analysis, the lattice used for list abstraction must be 

defined. But, before this can be done, the information it represents must be decided. Since 

the problem at hand is that of strictness analysis, one important feature of an abstract base 

lattice for lists is that it represent various kinds of non-termination in list structures. For 

example, it should differentiate between the two list functions sumlist and length, as 

defined below: 

letrec sumlist = X x . ifjiull xQ(+ (hd x) (sumlist (tl x))), 
length =Xx. ifjiullx0 (+ 1 (length (tlx))); 

since the first one always evaluates every element of the list argument, and the second one 

never does. This means that while the sumlist function needs both the list and the elements 

of the list, the length function needs only the list. This information would be useful, and an 

abstract base lattice which captures it could be put to use in strictness analysis. 

Another useful quality of list structures is length, since lists are composite data 

structures and many functions operate by recursively breaking them up into their primitive 

constituents. But there are an infinite number of possible list lengths, and to represent all of 

these would require an infinite sized abstract base lattice. This is not permitted by the 

current implementation, as the abstract base lattice representation is explicit and not implicit. 

One abstract base lattice which has been proposed for the analysis of lists reached 

the first goal of list abstraction mentioned above, but not the second. That is the lattice 4, 

defined in [Burn, 1987], and shown in Figure 4.3. In this definition, "undefined" is 

equivalent to non-terminating, since the only way an expression evaluation can be 

undefined is for the evaluation to give no value. This can only happen, since .̂-expression 

reduction is well-defined, when the evaluation is non-terminating. Thus, the abstract base 

lattice 4 captures information about an infinite number of lists in a finite number of 
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elements, as required by the implementation, but does not capture information about list 

length. This lattice will be the one used in the following examples of strictness analysis. 

3 = all lists 

2 = 1 + lists containing any undefined element 

= 0 + lists with undefined tails and infinite lists 

0 = undefined list 

Figure 4.3. The abstract base lattice 4 

The abstractions that go along with the primitive list operations must be defined. 

These builtin list operations are hd, tl, cons, and if null, and their abstract counterparts are 

defined as shown in Figure 4.4. The function if null is used instead of null as a primitive 

list function for reasons which follow. 

If null was a builtin list primitive, its abstract counterpart would be 

X abs(nult) x 

0 0 
1 1 
2 1 
3 1 

and since the definition of abs(if), or if3, is 

if3 = Xa .Xb .Xc . a and (b or c), 

the difference between abstractions of (1) "if3 (nulla a) b c" and (2) "if_nulla a b c" can be 

seen in the following (4 —> 2 —> 2 —> 2 case only, without loss of generality): 
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x abs(hd)x abs(tl)x 

0 0 0 
1 1 1 
2 1 3 
3 1 3 
where: 

abs(hd): 4^2 
abs(tl): 4-^4 
abs(cons): 2—>4^>4 

l absijfnuH) lab I abs(if_null) lab 

0 0 0 b 
1 1 b 
2 b 2 b 
3 abs(if) lab 3 lub {a, b) 

where: where: 

absiifnulf): 4^>2->2^>2 abs(if_null): 4-^4-^4-^4 

Figure 4.4. Definitions of list primitive abstractions 

abs(( 1)) = (nulla a) a n d Q> o r c) 

= if a = 0 r«e/i 0 else b o r c 

abs((2)) = if a = 0 r«en 0 e/se (i/a = 1 or a = 2 then c else b o r c) 

The latter definition (abs((2))) is more refined than the former. This refinement helps to 

give more information. 

As an example of how strictness analysis can give information about different kinds 

of list functions, consider the functions defined below: 
letrec / = X x . if null x 0 1, 

length =Xx . ifjiullJC0(+1 (length (tlx))), 
sum =Xx . ifjiullx0 (+ (hdx) (sum (tlx))); 

Each function has slightly different "needs" in terms of the type of list evaluation it does. 

These "needs" will now be discovered by performing strictness analysis. 

First, consider/. Its abstract form, / 1 : 4 —» 2, is 

f3 = Xx.ifx = 0 then 0 else 1, 

X y abs(cons) x y 

0 0 1 
0 I 1 
0 2 2 
0 3 2 
1 0 1 
1 1 1 
1 2 2 
1 3 3 
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or, equivalently, using a shorthand notation that will be used extensively from now on: 

f° = Xx. 0->0 
1 -> 1 
2 - * 1 
3 -> 1. 

Thus / is non-terminating when its list argument is undefined. So, / can have as an 

argument a list which contains undefined elements, and these undefined elements are never 

needed by/. 

Consider also the length function. Its abstract interpretation is 

length° = Xx . 0 ^ 0 
1 -> length0 (tla 1) = lengtha 1 
2 -»length0 (tl° 2) = length0 3 
3 -> 1 

and the least fixpoint can be found as follows: 

length°o = X x . 0 

length°i =Xx.0-*0 
1 -> length°o 1 = 0 
2 -»length°o 3=0 
3 -> 1 

/e/tgr/i^ = X x . 0 -> 0 
1 -+length°i 1 =0 
2 length0! 3 = 1 
3 -> 1 

= A,x . 0 - » 0 
1 -> length°2 1 = 0 
2 length°2 3 = 1 
3 -> 1 

The least fixpoint of length0 is 

1-^0 
2 - » 1 
3 - > 1 

Therefore, /e/igr/j is the kind of list function that needs its list argument, and also needs a 

defined or finite tail upon its argument. 
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Consider also the sum function defined above. Its abstract interpretation is as 

follows: 

sum0 = Xx. if null0x 1 ((hd°x) and (sum0 (tl°x))), 

= Xx.0^0 
1 -4 (hd° 1) and sum° (tl° 1) = 1 and sum° 1 = sum° 1 
2 -4 (hd° 2) and sum* (f/a 2) = 1 and sum0 3 = sum0 3 
3 1 

and its least fixpoint can be found as follows: 

sum°o = X x . 0 

sum°i =Xx .0 -> 0 
1 -»swmao 1=0 
2 -4 sumao 3=0 
3-41 

sum°2 =Xx .0 -> 0 
1 -4 sum°i 1=0 
2 - » sum*/3 = 1 
3 - 4 1 

SMW aJ = X X . 0 -4 0 
1 -4 sumfl2 1=0 
2 -4 suma2 3 = 1 
3 -4 1 

Therefore, the least fixpoint of suma is 

sum° = X x . 0-4 0 
1 - 40 
2 - 4 1 
3 -4 1, 

which implies that perhaps sum does not need to evaluate each element of its list argument. 

This could be more informative, since sum does evaluate its list arguments' elements. The 

reason that this information is not captured in the analysis of sum is that hd° and tl° are 

treated separately, for hd° 2=1 and tl a 2 = 3 are both true, but if hd° and tl° are both 

evaluated upon the same expression, then for abs(x) = 2, tl° abs(x) = 3 => hd° abs(x) = 0, 
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and hda abs(x) = 1 => tla abs(x) = 2. This relationship can be captured by an alternate 

definition of sum, which goes deeper into the list structure of its argument, as follows: 

letrec sum = Xx. ifjiull x 0 (ifjiull (tl x) (hd x) (+ (hd x) (+ (hd (tl x)) (sum (tl (tl x))))))\ 

which has the abstraction 

sum? = Xx. ifnulFx 1 (if_nulla(tlax) (hd?x) ((hdax)and (hd? (tlax))and (sum? (tla (tlax))))) 

= Xx. 0-»0 
1 -> (tla x =) 0 -> 0 

1 -»(hcP x) and (hd? (tla x)) and (sum? (tla (tla x))) 
2 -> (hd? x) and (hd? (tla x)) and (sum? (tla (tla x))) 
3-^(hd?x) or ((hd? x) and (hd? (tla x)) and (sum? (tla (tla x)))) 

2^>(tlax=) 0-»0 
1 -»(hd? x) and (hd? (tla x)) and (sum? (tla (tla x))) 
2 -> (hd? x) and (hd? (tla x)) and (sum? (tla (tla x))) 
3 -» (hd? x) or ((hd? x) and (hd? (tla x)) and (sum? (tla (tla x)))) 

3 -> 1 

= Xx. 0-»0 
1 — > sum? 1 
2->0 
3 -> 1. 

Therefore, the least fixpoint of sum? is 

sumao = Xx . 0 

sumai = X x . 0 —> 0 
1 - » ,SMma0 1=0 
2 - >0 
3 - > 1 

j«m a2 = X x . 0 - > 0 
1 sumai 1=0 
2 -> 0 
3 - » 1. 

So, 

suma = X x . 0 -> 0 
1 ->0 
2->0 
3 - * 1, 

giving the information that sum needs the elements of its list argument. 
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A technique by Burn [Burn, 1987] avoids this cumbersome analysis by 

incorporating into the A-calculus pattern matching in its parameter passing mechanisms. 

The sum function could have been defined as follows (using a pattern-matching case 

structure): 

letrec sum = X x . [] —> 0 
(cons xxs) —> + x (sum xs), 

or, as in [Burn, 1987]: 

sum [] =0 
sum x:xs = x + sum xs. 

4 . 2 . T e r m i n a t i o n A n a l y s i s 

Termination analysis is the process of determining whether a given program or 

function invocation terminates. More generally, this is known as the halting problem, 

which is unsolvable. However, the intractability of the problem in general does not 

preclude its solution in the case of a specific program. For example, although it is not 

possible to develop an algorithm which performs termination analysis on all programs, 

gives a correct answer, and is guaranteed to terminate itself, it is possible to develop one 

which does termination analysis upon all programs, gives a safe answer, and is guaranteed 

to terminate. The approach taken by abstract interpretation is not to answer exactly the 

question of whether or not a program terminates, but to answer it approximately, or safely. 

A safe answer in the case of termination analysis is one which underestimates the situations 

in which a program might terminate, but never overestimates. Thus, if a program P is 

declared by the implementation to terminate upon the set of values V, this does not imply 

that for an x not in V, P(x) does not terminate. 

As an example of what termination analysis produces, consider / defined as 

follows: 
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letrec/= Xx. * 2x. 

The termination analysis finds that/terminates whenever x terminates, since the abstraction 

function derived is 

f = Xx.x, 

and the multiplication of x by 2 does nothing to change the terrriination characteristics off 

from those of JC. 

Another, more complex, example of a function and its analysis, is the following 

analysis of the factorial function: 

letrec/= Xn.if(=nQ)\(*n(f(-n 1))) 

This is known to terminate for non-negative arguments. However, a termination analysis 

produces the following abstract function 

f a = Xn.ifn = Q then 0 else ? 

which means that if n doesn't terminate then neither does fn, but otherwise no information 

is known (the lattice used will be described later). This is a safe answer, if not the most 

informative answer. 

One use to which such information can be put is proving a program correct. Often 

when proving that a computer program meets its specification, it is necessary that it 

terminates. Instead of accomplishing this proof through special purpose methods, it is 

possible to submit the program to a termination analyzer, and receive an informative 

diagnosis about the conditions for the program's termination. Of course, perfect knowledge 

about in what situations a program will terminate can not be derived (otherwise the halting 

problem would be solved). 

In order to derive useful termination information using abstract interpretation, an 

appropriate abstract base lattice over which the abstract interpretation will operate must be 

defined. The desired information is whether the program terminates or not. That is, first of 
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all, does the program definitely terminate, and, second, if not, what does it do? The only 

other option is non-termination, but the system will not always be able to determine this 

exactly. Thus the necessary conditions upon the abstract base lattice is that it indicate 

definite termination and possible non-termination (or unknown). An appropriate base lattice 

3 can be derived from the concrete base lattices in a natural manner, along with a mapping 

upon constants, as in Figure 4.5. Non-termination maps to non-termination (0), 

termination with any value (integer or boolean) maps to termination (1), and unknown (top) 

maps to unknown(?). Thus the abstract base lattice selected is again a simplification of the 

concrete base lattices. 

Figure 4.5. The mapping of constants into the abstract base lattice 3 

The abstract interpretation of some primitive builtin functions, such as * and if, 

must be further specified. These are the only non-list-valued functions for which it is 

necessary to specify an abstraction, since the other such functions are similar. Thus, for 

multiplication, if either of the arguments is non-terminating, then the result is non-

terminating, if both terminate then the result terminates, and otherwise the result is 

unknown. This is summarized in Figure 4.6. The if builtin function, on the other hand, is 

more complicated, but after a thorough analysis, as shown in Figure 4.6, can be 

summarized as 
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a b abs(f)ab 

0 0 0 
0 1 0 
0 ? 0 
1 6 0 
1 i 1 
1 ? ? 
? 6 6 
? i 7 
9 9 
where / is one of 

+, - , *, /, etc. 

a b c afosGy) a ft c 

0 0 0 0 
0 0 1 0 
0 0 ? 0 
0 1 6 0 
0 1 1 0 
0 1 ? 0 
0 ? 6 0 
0 ? I 0 
0 ? ? 0 

1 0 0 0 
1 0 1 ? 
1 0 ? 9 
1 1 6 ? 
1 1 I i 
1 1 ? ? 
1 7 6 ? 
1 ? I 7 
1 7 ? ? 

? 0 0 0 
? 0 I ? 
? 0 ? ? 
? 1 6 ? 
? 1 i ? 
? 1 ? ? 
? 7 6 ? 
? 7 i ? 
9 9 9 9 

Figure 4.6. Refined abstraction definitions for builtin functions 

ijaabc= ifglb{a,lub{b,c}}=OthenO 
else if a = b = c=l then 1 
else? 

Normally, the language in which the functions are specified is capable of dealing 

with higher-level data-structures than the primitive integers and booleans, such as lists. For 

these languages, an additional abstract base lattice is needed: one which abstracts essential 

termination and non-termination information about functions that take lists as arguments 

and/or return lists as values. This addition will be discussed following a more detailed 

discussion of the simpler model. 
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4 . 2 . 1 . S i m p l e t e r m i n a t i o n a n a l y s i s 

What has already been defined is sufficient to perform termination analysis without lists. A 

few examples will now be given. 

Consider the function given as an example above: 

letrec/= Xx. * 2x. 

This is abstractly interpreted as: 

j° = abs(Xx.*2x) 
= X x. absi*) abs(2) absix) 
= X x . abs(*) 1 x 
= Xx.(Xa.Xb.if(= (gib ab)0)0 (lubab))lx 
= Xx. if(= (gib 1 xj 0) 0 (lub 1 J C ) 

= Xx. if (=x0)0 (lub Ix) 
= Xx.if(=xO)xx 
= X x . x 

where the last three steps are simplifications based on the nature of the functions gib and 

lub (this is performed by the implementation in a more explicit manner, rather than on the 

definition of /as shown here for clarity). Under abstract interpretation the function/, which 

doubles the value of its argument, is simply the identity function with respect to the 

termination or non-termination of its argument. This is valuable information to know about 

a function, if not for reasons of efficient implementation, then for more theoretical reasons; 

it is now known that for similar mathematical functions invoked with one of the arguments 

a constant, that the function can be ignored in termination analysis. 

Unfortunately, another common type of function cannot be so easily analyzed. 

Consider the factorial function: 

letrec/= Xn.if(=nO)l(*n(f(-n 1))). 

The abstract interpretation for this function is 
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f = abs(X n . if(= n 0) 1 (* n (/.(- n 1)))) 
= Xn. abs(if) abs(= n 0) abs(l) abs(* n (f(- n 1)))) 
= X n. abs(if) n 1 \abs(*) n (j° n)) 

where abs(if) and abs(*) are as previously derived. Using the abstract interpretation system 

to finish the process, the abstraction of/can be represented as 

j* = X n. ifn = 0 then 0 else ? 

indicating that even if n terminates, then/is still not known to terminate. This is not the 

most informative answer one could desire about/. The problem stems from the fact that/ 

recurses except when its argument has the value 0. This detail is obvious to the user of the 

function, but not to the implementation, because upon translation from the concrete to the 

abstract lattices all distinctions between specific integers are lost and zero is treated the same 

as any other integer. This could be solved in this case by representing the concrete base 

lattice differently, or introducing a more complicated abstract base lattice, as Figure 4.7 

suggests. The problem with representing the abstract base lattice as such a detailed lattice is 

not theoretical, but practical. The relationship between the size of a lattice and its function 

lattice is exponential, and thus in this case the function lattice is too large for the 

implementation to handle. (Such a lattice L, containing only 5 elements, would cause the 

creation of a function lattice [L —> L], containing 126 elements, and the current 

implementation which represents functions explicitly as annotated lattices cannot deal with 

such a large function lattice.) 

Other types of functions can be analyzed with termination analysis: these use lists 

and are explained in the next section. 
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+ 

o 

0 

Figure 4.7. A refined mapping of constants 

4.2.2. Termination analysis with lists 
Incorporating lists into termination analysis requires an additional pair of concrete and 

abstract base lattices and also the abstract counterparts of a number of builtin list functions. 

The concrete base lattice for lists is not required in practice to be specified, since there is an 

abstract base lattice and translation scheme which ehminate this need. Thus any reasonable 

definition of a concrete base lattice may be used (this is useful in the development of the 

theory behind abstract interpretation with lists, since the concrete base lattice for lists can be 

chosen specifically to ease the theoretical development). The abstract base lattice definition 

which is responsible for the lack of restriction on the concrete counterpart is due to Bum 

[Burn, 1987], and is shown in Figure 4.3. A list is categorized according to where any 

undefined element might occur. For example, if x represents an expression whose 

evaluation is non-terminating, then the following categorizations can be made: 
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L i s t Abstrac t ion 

[] 3 
[1,2] 3 
[1, x, 3] 2 
[1, 2, x] 1 
[1, 2, 3, ...] 1 
x 0 

Also to be defined are the abstractions of the list functions hd, tl, cons, and if_null 

(instead of null, as before). These definitions are as shown in Figure 4.8. A n example can 

now be given of termination analysis applied to functions involving lists. 

Consider the previously mentioned function length: 

letrec length = Xx. if null x 0 (+ 1 (length (tl x))). 

The abstraction of length is 

length? = abs(X x . ifjiull x 0 (+ 1 (length (tl x)))) 
= Xx. if_null°xabs(Q) abs(+ 1 (length (tlx)))) 
= X x. if_nulla x 1 (length0 (tl° x)) 

= Xx.0^0 
1 -»length0 (tl° 1) = length0 1 
2 - » length0 (tl° 2) = length0 3 
3 - 4 if 1 1 (fengr/** 3)) = (/» 1 1 (feiujdr3 3) 

and its least fixpoint can be found as follows: 

length°o = X x . 0 

length0] = ^ x. 0 -> 0 
1 length°o 1 = 0 
2 -4 length°o 3 = 0 
3 -»CP 1 1 (length°0 3) = (/» 1 1 0 = ? 

length1^ = X x . 0 -> 0 
1 length0! 1 = 0 
2 -»length0! 3 = ? 
3 -> 1 1 (length0! 3) = 1 1 ? = ? 

fengr/i^ = X ; c . 0 - » 0 
1 -4 length°2 1 = 0 
2 - 4 lengths 3 = ? 
3 - » 1 1 (length°2 3) = if 111 = 1 
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X abs(hd)x abs(tt)x 
0 0 0 
1 1 1 
2 1 2 
3 1 3 

where: 

absQid): 4->3 
absift): 4 4 
absicons): 3 -» 4 -» 4 

y dbs(cons)xy 
0 0 1 
0 l 1 
0 2 2 
0 3 2 
1 0 1 
1 1 1 
1 2 2 
1 3 3 
7 0 1 
? 1 1 
? 2 2 
? .3 3 

/ absQf null)lab / abs(if_null) lab 
0 0 0 ft 
1 ft 1 ft 
2 ft 2 ft 
3 afts(i/) 1 a ft 3 /uft {a, ft} 

where: where: 

abs(jf_null): 4 3 -»3 3 abs(ifjiull): 4->4^>4-*4 

Figure 4.8. The abstraction definitions of primitive list functions 

Therefore, the least fixpoint of length0 is 

length" = Xx.0-*0 
1 ->0 
2 - » ? 
3 -> ?. 

Or, equivalently, 

/engr/r3 = X x. i / /« f t {1, x} = 1 f/ze/i 0 else 7. 

This abstraction suffers from the same problem as that discovered with the factorial 

function. That is, in the abstract base lattice definition no distinction is made between the 

empty list and any other kind of finite list, thus the analysis is less informative than it 

otherwise might be. It is difficult to solve this problem without introducing a non-finite 

abstract base lattice for the list concrete base lattice (such a simple solution as introducing a 
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2.5 element into the existing abstract base lattice, representing an empty list, causes non-

monotonicity in some functions, such as the function 

letrec/= X x. ifjiull x 1 0 

with the following values: 

x fx 

0 0 
1 0 
2 0 
2.5 1 
3 0 

It is non-monotonic). 

Another example of termination analysis applied to functions using list data-

structures, the analysis of the sumlist function, can be found in appendix A. 



Chapter 5 

Conclusion 

The process of, and framework underlying, abstract interpretation has changed in recent 

years, overcoming old limitations and encountering new ones. This development, including 

the implementation discussed in the previous chapters, shall be summarized in the next 

section. Also, the implementation's performance with respect to its stated goals will be 

evaluated. Following will be discussed some of the work to be done in the future and the 

problems left to be overcome. 

5 . 1 . Summary and Evaluation 

Abstract interpretation, the process of abstracting useful information from a computer 

program in a systematic manner based on lattice-theoretical methods, was established as a 

program analysis technique in [Cousot & Cousot, 1977]. Later, it was viewed differently, 

from the perspective of functional programming, and validated in a practical sense in 

[Mycroft, 1980], [Mycroft, 1981], and [Mycroft & Nielson, 1983]. A t this point it was 

useable as a program analysis technique only for first-order functions over flat base lattices. 

Later work [Burn, Hankin & Abramsky, 1986] enabled the technique to be extended to 

arbitrary higher-order functions over flat base lattices. Current work is aimed at extending 

the technique's theoretical basis to apply to non-flat base lattices [Hughes, 1985], [Hughes, 

1987], and [Wadler & Hughes, 1987], but has yet to see success in this endeavor. 

82 
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In a practical sense, abstract interpretation has made progress in both of these areas. 

Some of the work done on abstractly interpreting higher-order functions is described in 

[Mishra & Keller, 1984] and [Clack & Peyton Jones, 1985], and descriptions of some 

work done using non-flat base lattices can be found in [Hughes, 1985] and [Clack & 

Peyton Jones, 1985], although a formal proof of theoretical validity is still lacking for the 

latter developments. One problem which is encountered in attempting to analyze arbitrary-

order functions over finite base lattices is that of efficiency. This has been addressed in 

[Clack & Peyton Jones, 1985], and [Martin & Hankin, 1987] by introducing and refining a 

method of function representation and an efficient algorithm for computing such 

representations. The representation is done with frontiers in lattices, and the algorithm is 

known as the frontiers algorithm. 

In this implementation, the frontiers algorithm and method of function 

representation have been modified and simplified. Also, the abstract interpretation process 

has been automated so that the user need only specify the abstraction rules for the base 

lattices, and for the builtin functions present in the functional language (a X-calculus). 

Thus, as has been shown in the previous chapters, the implementation is automated, 

apphcation-independent, and has its heart — the representation of abstracted functions and 

the computation of such — implemented in a simple and straightforward manner, using 

annotated lattices. 

One drawback to the implementation is that it will not allow the definition of 

arbitrary base lattices — all base lattices must be finite to allow the functions defined over 

them to be represented explicitly. T o remove this restriction would require choosing a 

different method of function representation and thus function comparison, such as a 

canonical textual representation. However, such a method of function representation and 

comparison is currently inefficient, and allows for the possibility of failure in situations 
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where the explicit representation would succeed. As an example of the difficulties involved 

in textual comparisons, consider the following two functions, and without evaluating them, 

justify the fact that they are equal: 

letrec f=Xx.+xx, 

g = Xx.*2x; 

This problem cannot be solved in general, but it may be solvable in the case of certain 

classes of functions commonly found in programs (such as arithmetic functions, data-

structure composition and decomposition functions, list traversal functions, etc.). 

5 .2. F u t u r e W o r k 

The areas in which abstract interpretation can conceivably be extended in the future are two: 

applications and generality. 

Along with the application of abstract interpretation to strictness analysis and 

termination analysis, other types of analysis have been tried. These include such things as 

data-typing [Mishra & Keller, 1984] and structure-sharing [Hudak & Bloss, 1985]. 

Automatic data-typing of programs is not now done through abstract interpretation, since it 

seems to require an infinitely large abstract base lattice (to account for the infinite number of 

potential user-defined data-types in a typed language). The structure-sharing analysis 

(analyzing the uses of a data-structure to see if it can be destructively updated instead of 

copied, thus saving time and storage space) may still produce results in the future. 

Even more detailed strictness analyses have been and are continuing to be 

developed. In [Wadler & Hughes, 1987] etc., such concepts as contexts and projections 

are introduced in an effort to analyze programs for context-sensitive strictness. These 

efforts have met with limited success, but this area is still in the process of being 

formalized. 
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Other types of analysis have been suggested but not tried. For example, in [Cousot 

& Cousot, 1977], such problems as data-flow analysis, program testing, program 

performance, program correctness, and program transformation are also potential 

candidates for abstract interpretation. Obviously, some of these applications require an 

infinite size abstract base lattice. If this was ever made possible in a practical manner then 

abstract interpretation would prove to be a powerful program analysis technique in these 

areas as well. 

Another area in which the process of abstract interpretation can and should be 

expanded is its generality. Again, infinite size abstract base lattices should be useable. 

Perhaps this could be done by defining certain types of lattices which would allow an easily 

computable canonical representation of functions, and at the same time ensure that the A K C 

does terminate. (It is possible to have infinite size lattices where all AKC's must terminate, 

as is the case with the concrete base lattice of integers.) 

A second way in which abstract interpretation could be expanded is in the type of 

language it analyzes. For example, instead of the usual A-calculus, abstract interpretation 

could instead analyze an extended X-calculus, such as the language Miranda™ [Turner, 

1985], which allows concise function definitions, pattern-matching ^.-abstractions, and 

user-defined polymorphic types. Alternatively, abstract interpretation could be extended to 

handle not only functional languages, but relational languages as well. It would be 

instructive to see how abstract interpretation handles the organization of concurrency in a 

concurrent prolog as opposed to conventional methods. 
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Appendix A 

Sample Runs 

This appendix contains some sample runs of the system. Most of the functions which are 

analyzed in the following pages have already been analyzed in a more compact manner in 

Chapter 4. They have been reproduced here in order to demonstrate the manner in which 

the system actually performs. Both kinds of analysis discussed in the previous pages are 

shown here: first strictness analysis, then termination analysis, both being performed on 

functions which may contain lists. 

As a preliminary note of explanation, the way in which lattices are represented in 

the following pages is in a tabular form, as follows: 

nodename annotation abovenodes belownodes, 

where nodejiame is the name of the node, annotation is its value according to the function 

under analysis, and above jiodes and belowjxodes are the nodes above and below it in the 

lattice, respectively. If annotation is itself a lattice, then that lattice is reproduced at that 

point, separated from previous and following text by asterisks. Also, note that node names 

are not significant, but are merely labels created at the moment of printing for purposes of 

cross-reference. 

As for the notations used in the functional representations, some of them have been 

mentioned previously, but not all. Thus, their meanings are as follows: 
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N o t a t i o n M e a n i n g 

* X 
$n variable name (generated internally) 
v(N,T) variable of name N and type T 
1(V,E) X V . E 
c(V,T) constant of value V and type T 

A . l . E x a m p l e s o f S t r i c t n e s s A n a l y s i s 

A.1.1 . Double f u n c t i o n 

Script started on Thu Jul 7 15:47:41 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 142368 bytes 7.28333 sec. 

yes 

I ?- ft4(8). 

Reordered Semantics 

letrec([(v(f,(mUiit))J(v($l,̂  

Reprinted Text 
letrec 

f = A $l . mul$l 2 

Abstract Expression 

letrec([(v(f,(2̂ ))4(v($l,2))@(@(v(glb_a,(2̂ ,2))>v($l>2)),c(U))))]) 

Reduced Abstract Expression 

letrec([(v(f,(2̂ ))J(v($U).v($l,2)))]) 

Pretty Reduced Abstract Expression 

letrec 
f = A$1 .$1 

Previous Definitions 
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letrec 
f = A$2.0 

Latest Definitions 

letrec 
f = A $l .$1 

Only 2 out of 2 possible evaluations actually performed! 

First Function Lattice 

xl c(0,2) • [x2] 
x2 c(0,2) [xl] G 
Only 2 out of 2 possible evaluations actually performed! 

Second Function Lattice 

x3 c(l,2) • [x4] 
x4 c(0,2) [x3] [] 

Fixed-Point Expression 

letrec([(v(f,(22))4(v($l,2),v($l,2)))]) 

Pretty Fixed-Point Expression 

letrec 
f = A$1 .$1 

yes 
I ?- halt. 
[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:48:06 1988 



Sample Runs 92 

A . 1.2. Factorial function 
Script started on Thu Jul 7 15:48:12 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 142368 bytes 7.2 sec. 

yes 
I ?- ft4(9). 
Reordered Semantics 

letiec([(v(f,(mtM)y(v($l,mt),@^ 
Unt)),@(@(v(mul,(int,mUnt)),v($l,̂  

Reprinted Text 

letrec 
f = A $1. if (eq $1 0) 1 (mul $1 (f (sub SI 1))) 

Abstract Expression 

letrectf[(v(f,(2£))^ 
glb_a,(2̂ ,2)),v($U)),@(v(f,(2,2)))@(@(v(glb_a)(2(2>2)))v($l)2)),c(l,2)))))))]) 
Reduced Abstract Expression 

letrec([(v(f,(2̂ ))4(v($U),v($l,2)))]) 

Pretty Reduced Abstract Expression 

letrec 
f=A$l .$1 

Previous Definitions 

letrec 
f = A $5 . 0 

Latest Definitions 

letrec 
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f = A$1 .$1 

Only 2 out of 2 possible evaluations actually performed! 
First Function Lattice 
xl c(0,2) [] [x2] 
x2 c(0,2) [xl] [] 
Only 2 out of 2 possible evaluations actually performed! 
Second Function Lattice 
x3 c(l,2) Q [x4] 
x4 c(0,2) [x3] [] 
Fixed-Point Expression 
letrec([(v(f,(2̂ ))4(v($U),v($l,2)))]) 
Pretty Fixed-Point Expression 

letrec 
f = A$1 .$1 

yes 
I ?- halt. 
[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:48:45 1988 
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A.1.3. Accumulating factorial function 
Script started on Thu Jul 7 15:49:58 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 142368 bytes 7.26667 sec. 

yes 
l?-ft4(112). 
Reordered Semantics 

leteec([(v(fXmtM4nt))J(v($Û  
int)),c(0,int))),v($2,int)),@(@ (v(f ,(int,int,int)),@ (@ (v(sub,(int,int,int)),v($ 1 ,int)),c( 1 ,int))),@ (@(v(mul,(int 
int,int)),v($l,int)).v($24nt)))))))]) 
Reprinted Text 

letrec 
f = A $1. A $2 . if (eq $1 0) $2 (f (sub $1 1) (mul $1 $2)) 

Abstract Expression 

letrec([(v(f,(22;2))J(v($l,2)J(̂  
£)),@(@(v(f,(2,2,2)),@(@(v(glb_^ 

Reduced Abstract Expression 

letrec([(v(f)(2^ )̂)J(v($l>2),Kv(S2,2),@(@(v(glb_aX2,2,2)),v(Sl,2)),@(@(v(lub_aX2)2,2)),v($2,2)),@(@ 
(f.(2^ )̂),v($U)),@(@(v(glb_a,(22,2)),v($l,2)),v($2,2))))))))]) 

Pretty Reduced Abstract Expression 

letrec 
f = A $1 . A $2 . glb_a $1 (luba $2 (f $1 (glb_a $1 $2))) 

Previous Definitions 

letrec 
f=A$6.A$7.0 

Latest Definitions 
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letrec 
f=A$l .A$2.glb_a$l 52 

Only 2 out of 2 possible evaluations actually performed! 

Only 4 out of 4 possible evaluations actually performed! 

First Function Lattice 

xl: 
***** 
x3 c(0,2) • [x4] 
x4 c(0,2) [x3] [] 
***** 

[] [x2] 
x2: 
***** 
x5 c(0,2) [] [x6] 
x6 c(0,2) [x5] [] 
***** 

[xl] [] 

Only 2 out of 2 possible evaluations actually performed! 

Only 2 out of 2 possible evaluations actually performed! 

Only 3 out of 3 possible evaluations actually performed! 

Second Function Lattice 

x7: ***** 
x9 c(l,2) • [xlO] 
xlO c(0,2) [x9] n 
***** 

[] [x8] 
x8: 
***** 
xll c(0,2) [] [xl2] 
xl2 c(0,2) [xll] [] 
***** 

[x7] [] 

Previous Definitions 

f= A $l . AS2.glb_a$l $2 
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Latest Definitions 

letrec 
f = A $1. A $2 . glb_a $1 (lub_a $2 (glb_a $1 (glb_a $1 $2))) 

First Function Lattice 

xl3: ***** 
xl5 c(l,2) Q [xl6] 
xl6 c(0,2) [xl5] Q 
***** 

D [xl4] 
xl4: ***** 
xl7 c(0,2) Q [xl8] 
xl8 c(0,2) [xl7] • ***** 

[xl3] • 

Only 2 out of 2 possible evaluations actually performed! 

Only 4 out of 4 possible evaluations actually performed! 

Second Function Lattice 

xl9: ***** 
x21 c(l,2) [] [x22] 
x22 c(0,2) [x21] [] ***** 

• [x20] 
x20: ***** 
x23 c(0,2) • [x24] 
x24 c(0,2) [x23] [] ***** 

[xl9] • 

They are equal 

Fixed-Point Expression 

letrec([(v(f,(2^^)),l(v($l)2))l(v(S2,2)>@(@(v(glb_a)(2)2>2)))v($l,2)),v($2,2)))))]) 

Pretty Fixed-Point Expression 

f = A $ l . A$2.glb_a$l $2 
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yes 
I ?- halt. 

[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:50:35 1988 
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A . 1 . 4 . Length function 
Script started on Thu Jul 7 15:51:04 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 142368 bytes 7.21666 sec. 

yes 
I ?- ft4(14). 
Reordered Semantics 

letrec([(v(length,(list,int)),l(v($ 1 ,list),@ (@ (@(v(if_null,(list4nt,int4nt)),v($ 14ist)),c(0,int)),@(@(v(add,(int 
,mt4nt)),c(14nt)),@(v(length)(list,int)))@(v(tl,(list,list)),v($l,list)))))))]) 

Reprinted Text 

letrec 
length = A $1. ifjiull $1 0 (add 1 (length (tl $1))) 

Abstract Expression 

letrec([(vaengthX4̂ ))J(v($l,4),@(@(@(v(if_null_a,(4)2,2̂ )),v($l,4)),c(l,2)),@(@(v 
))@(v(length,(4,2)),@(v(ti_a,(4,4)),v($l,4)))))))]) 

Reduced Abstract Expression 

letrec([(v0ength,(4,2))J(v($l,4),@^ 
4,4)),v($l,4))))))]) 

Pretty Reduced Abstract Expression 

letrec 
length = A $1. if_null_a $1 1 (length (tl_a $1)) 

Previous Definitions 

letrec 
length = A $2 . 0 

Latest Definitions 



Sample Runs 

letrec 
length = A $1 . if_null_a $1 1 0 

Only 2 out of 4 possible evaluations actually performed! 
First Function Lattice 
xl c(0,2) • [x2] 
x2 c(G\2) [xl] [x3] 
x3 c(0,2) [x2] [x4] 
x4 c(0,2) [x3] 0 
Only 3 out of 4 possible evaluations actually performed! 
Second Function Lattice 
x5 c(l,2) G [x6] 
x6 c(0,2) [x5] [x7] 
x7 c(0,2) [x6] [x8] 
x8 c(0,2) [x7] • 
Previous Definitions 

letrec 
length = A $1 . if_null_a $110 

Latest Definitions 

letrec 
length = A $1 . if_null_a $1 1 (if_null_a (tl_a SI) 1 0) 

First Function Lattice 
x9 c(l,2) 0 [xlO] 
xlO c(0,2) [x9] [xll] 
xll c(0,2) [xlO] [xl2] 
xl2 c(0,2) [xll] [] 
Only 4 out of 4 possible evaluations actually performed! 
Second Function Lattice 
xl3 c(l,2) Q [xl4] 
xl4 c ( U ) [xl3] [xl5] 
xl5 c(0,2) [xl4] [xl6] 
xl6 c(0,2) [xl5] [] 
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Previous Definitions 

letrec 
length = A $1 . if_null_a $1 1 (if_null_a (tl_a $1) 1 0) 

Latest Definitions 

letrec 
length = A $1. if_null_a $1 1 (if_null_a (tl_a $1) 1 (if_null_a (U_a (tl_a $1)) 1 0)) 

First Function Lattice 
xl7 c(l,2) [] [xl8] 
xl8 c(l,2) [xl7] [xl9] 
xl9 c(0,2) [xl8] [x20] 
x20 c(0,2) [xl9] D 
Only 4 out of 4 possible evaluations actually performed! 
Second Function Lattice 
x21 c(l,2) 0 [x22] 
x22 c(l,2) [x21] [x23] 
x23 c(0,2) [x22] [x24] 
x24 c(0,2) [x23] [] 
They are equal 
Fixed-Point Expression 
letrec([(v(lengmX4,2)) J(v($ 1,4),@(<̂  
)),@(v(U_a,(4)4)),v($l,4))),c(U)),c(0̂ )))))]) 
Pretty Fixed-Point Expression 

letrec 
length = A $1 . if_null_a $1 1 (if_null_a (U_a $1) 1 0) 

yes 
I ?- halt. 
[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 



Sample Runs 

script done on Thu Jul 7 15:51:43 1988 
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A . 1.5. Sum function 
Script started on Thu Jul 7 15:51:51 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 142368 bytes 7.35 sec. 

yes 
I ?- ft4(15). 
Reordered Semantics 

letrec([(v(sumlist,(list,int)),l(v($l ,list),@(@ (@ (v(if_null,(list,int,int,int)),v($l ,list)),c(0,int)),@ (@(v(add,(i 
nt4nt4nt)),@(v(hd,(ust,mt)),v($ljis0 

Reprinted Text 

letrec 
sumlist = A $1 . ifjiull $1 0 (add (hd $1) (sumlist (d $1))) 

Abstract Expression 

letrec([(v(sumhst(4,2))J(v($l,4),<^ 
hd_a,(4̂ )),v($l,4))),@(v(sumlist,(4,2)),@(v(U_a,(4,4)),v($l,4)))))))]) 

Reduced Abstract Expression 

lettec([(v(sumust,(4,2))J(v($l,4),@(@^ 
hd_a,(4̂ )),v($l ,4))),@(v(sumUst,(4)2))>@(v(U_a,(4,4))>v($ 1.4)))))))]) 
Pretty Reduced Abstract Expression 

letrec 
sumlist = A $1 . if_null_a $1 1 (glb_a (hd_a $1) (sumlist (tl_a $1))) 

Previous Definitions 

letrec 
sumlist = A $2 . 0 

Latest Definitions 



Sample Runs 

letrec 
sumlist = A $1 . if_null_a $110 

Only 2 out of 4 possible evaluations actually performed! 
First Function Lattice 
xl c(0,2) • [x2] 
x2 c(0,2) [xl] [x3] 
x3 c(0,2) [x2] [x4] 
x4 c(0,2) [x3] Q 
Only 3 out of 4 possible evaluations actually performed! 
Second Function Lattice 
x5 c(l,2) Q [x6] 
x6 c(0,2) [x5] [x7] 
x7 c(0,2) [x6] [x8] 
x8 c(0,2) [x7] [] 
Previous Definitions 

letrec 
sumlist = A $1 . if_null_a $110 

Latest Definitions 

letrec 
sumlist = A $1 . if_null_a $1 1 (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0)) 

First Function Lattice 
x9 c(l,2) 0 [xlO] 
xlO c(0,2) [x9] [xll] 
xll c(0,2) [xlO] [xl2] 
xl2 c(0,2) [xll] Q 
Only 4 out of 4 possible evaluations actually performed! 
Second Function Lattice 
xl3 c(l,2) D [xl4] 
xl4 c(l,2) [xl3] [xl5] 
xl5 c(0,2) [xl4] [xl6] 
xl6 c(0,2) [xl5] [] 
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Previous Definitions 

letrec 
sumlist = A $1. if_null_a $1 1 (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0)) 

Latest Definitions 

sumlist = A $1. if_null_a $1 1 (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 (glb_a (hd_a (tl_a $1)) 
(if_null_a (d_a (U_a $1)) 1 0)))) 

First Function Lattice 

xl7 c(l,2) [] [xl8] 
xl8 c(U) [xl7] [xl9] 
xl9 c(0,2) [xl8] [x20] 
x20 c(0,2) [xl9] [] 

Only 4 out of 4 possible evaluations actually performed! 

Second Function Lattice 

x21 c(l,2) • [x22] 
x22 c(U) [x21] [x23] 
x23 c(0,2) [x22] [x24] 
x24 c(0,2) [x23] [] 

They are equal 

Fixed-Point Expression 

lettec([(v(sumUst,(4,2))J(v($l,4),@^̂  
hd_a,(4,2)),v($l,4))),@(@(@(v(if_null_a>(4,2̂ )2)),@(v(U_a,(4(4)),v($l(4))))c(l)2)),c(0̂ ))))))]) 
Pretty Fixed-Point Expression 

letrec 
sumlist = A $1 . if_null_a $1 1 (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0)) 

yes 
I ?- halt. 
[ Prolog execution halted ] 
grads(2)% exit 
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grads(3)% 
script done on Thu Jul 7 15:52:40 1988 
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A . 2. E x a m p l e s o f T e r m i n a t i o n A n a l y s i s 

A.2 . 1 . Double f u n c t i o n 

Script started on Thu Jul 7 15:31:14 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 141132 bytes 7.68333 sec. 

yes 
I ?- ft34(8). 
Reordered Semantics 

letrec([(v(f,(int,int)),l(v($ 1 ,int),@(@ (v(mul,(int,int,int)),v($ 1 ,int)),c(24nt))))]) 

Reprinted Text 

letrec 
f= *$1 . mulSl 2 

Abstract Expression 

letrec([(v(f,(3.3))J(v($ l,3),@(@(v(f_a,(3,3.3)),v($l ,3)),c(l ,3))))]) 

Reduced Abstract Expression 

lettec([(v(f,(33))4(v($1.3),@(@(@^ 
(imc(im@(@(v0ub_aX3.3,3))M$U)),^ 

Pretty Reduced Abstract Expression 

letrec 
f = * $1 . if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1) 

Previous Definitions 

letrec 
f = A$4.0 

Latest Definitions 
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f = A $1. if (eq (glb_a $1 1) 1) (luba $1 1) (glb_a $1 1) 

Only 2 out of 3 possible evaluations actually performed! 

First Function Lattice 

xl c(0,3) D [x2] 
x2 c(0,3) [xl] [x3] 
x3 c(0,3) [x2] [] 

Only 3 out of 3 possible evaluations actually performed! 

Second Function Lattice 

x4 c(?,3) • [x5] 
x5 c(l,3) [x4] [x6] 
x6 c(0,3) [x5] [] 

Fixed-Point Expression 

le r rec( [ (v («33) )4 (v ($U) ,@(@(^ 
(U))),c(im@(@(v0ub_aX3,33))M$U^^ 

Pretty Fixed-Point Expression 

letrec 
f = A $1. if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1) 

yes 
I ?- halt. 

[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:32:06 1988 
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A.2.2. Factorial function 
Script started on Thu Jul 7 15:04:29 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 141132 bytes 7.21666 sec. 

yes 
I ?- ft34(9). 
Reordered Semantics 

letrec([(v(f,(mt jrit)) J(v($ 14nt),@(@ (@ (v(if,(booUnt,mt,mt)) 
Unt)),@(@(v(muUint,mt4nt)),v($l^ 

Reprinted Text 

letrec 
f = A $1. if (eq $1 0) 1 (mul $1 (f (sub $1 1))) 

Abstract Expression 

letrec([(v(f,(33))J(v($l,3),@(<^^ 
,(3,3,3)),v($l,3)),@(v(f,(3,3)),@(@(v(f_a.(3,3)3)),v($1.3)),c(l,3)))))))]) 

Reduced Abstract Expression 

letrec([(v(fX33))J(v($U),@(@^^ 
v(if,(bool,333)),@(@(v(eqX33^ 
)),v($1.3)),c(l,3))),@(@(v(glb_a,(3,33)^ 
33,3)),@(@(v(eqX3,3.b<x)l)),@(@(v(gto^ 
(eq,(33,bool)),@(@(v(glb_aX333)X 
v(glb_aX333)),v($l,3)),c(U)))))),ca3^ 
33)),@(@(v(eq,(33,rx>ol)),@(@(^^ 
(13))),@(@(v(glb_aX333))M$13)),c(13^ 
ool333)),@(@(v(eqX33,bool)),@(@(v(glb_aX333)),v($13)),c(13))),c(13))),@(@(v(lub_a,(333)).v($l 
3)),c(13))),@(@(v(glb_aX333)),v($13)),^ 
nd,(rxx)l,bool,bool)),@(@(v(eq,(33,bool)),@(@(@(v(if,(booL 
333)),v($13)),c(13))),c(13)))xa(@W^ 
)))),C(13))),@(@(v(eqX33,bool)),@(@(@(v(if,(bool333)),@(@(v(eqX33,bool)),@(@(v 
$13)),@(v(fX33)),@(@(@(v(tf,(bc»1333)).@(@(v(eq,(33.rxx)l)),@(@K^ 
c(13))),@(@(v(lub_a,(333))M$13)),^ 
_aX333)),v($13)),@(v(f.(33)),@(@(@(v(if)(bool333)),@(@(v(eq,(33,bool)),@(^ 
13)),c(13))),c(13))),@(@(v(lub_aX333)),v($13)),c(13))),@(@(v0jlb_aX333)),v($13)),c(13)))))),@ 
(v(glb_aX333)),v($13)),@(v(f,(33)),@(@(@(v(if,(bool333)),@(@(v(eqX33,rxx)l)),@(@(vte 
)),v($13)),c(13))),c(13))),@(@(v(lub_aX333)),v($13)),c(13))),@(@(v(glb_a,(333)),v($13)),c(13))))))) 
,c(13)))),c(13)),c(?3)))))]) 
Pretty Reduced Abstract Expression 
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letrec 
f = A $1. if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) (lub_a 1 (if (eq (glb_a $1 (f (if 

(eq (glb_a $1 1) 1) (lub_a $11) (glb_a $1 1)))) 1) (lub_a $1 (f (if (eq (glb_a $1 1) 1) (lub_a $11) (glb_a $1 
1)))) (glb_a $1 (f (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1))))))) 0) 0 (if (and (eq (if (eq (glb_a $1 1) 1) 
(lub_a $11) (glb_a $11)) 1) (eq (if (eq (glb_a $1 (f (if (eq (glb_a $11) 1) (lub_a $11) (glb_a $11)))) 1) 
(lub_a $1 (f (if (eq (glb_a $11)1) (lub_a $1 1) (glb_a $1 1)))) (glb_a $1 (f (if (eq (glb_a $11)1) (lub_a $1 
l)(glb_a$l 1))))) 1))1?) 

Previous Definitions 

letrec 
f=A$25 .0 

Latest Definitions 

letrec 
f = A $1 . if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) 0) 0 ? 

Only 2 out of 3 possible evaluations actually performed! 

First Function Lattice 

xl c(0,3) • [x2] 
x2 c(0,3) [xl] [x3] 
x3 c(0,3) [x2] [] 

Only 3 out of 3 possible evaluations actually performed! 

Second Function Lattice 

x4 c(?,3) • [x5] 
x5 c(?,3) [x4] [x6] 
x6 c(0,3) [x5] [] 

Previous Definitions 

letrec 
f = A $1 . if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) 0) 0 ? 

Latest Definitions 
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letrec 
f = A $ l .if (eq(glb_a(if (eq(glb_a$l 1) l)(lub_a$l 1) (glb_a$l 1)) (lub_a 1 (if (eq (glb_a$l (if 

(eq (glb_a (if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) 1) (lub_a (if (eq (glb_a $1 1) 1) 
Gub_a $1 1) (glb_a $1 1)) 1) (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1)) 1) 0) 0 ?)) 1) 
(lub_a $1 (if (eq (glb_a (if (eq (glb_a (if (eq (glb_a $11)1) (lub_a $1 1) (glb_a $1 1)) 1) 1) (lub_a (if (eq 
(glba $1 1) 1) (lub_a $11) (glb_a $11)) 1) (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $11)) 1)) 1) 
0) 0 ?)) (glb_a $1 (if (eq (glb_a (if (eq (glb_a (if (eq (glb_a $11) 1) (lub_a $11) (glb_a $1 1)) 1) 1) (lub_a 
(if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 
1) ) 1) 0) 0 ?))))) 0) 0 (if (and (eq (if (eq (glb_a $1 1) 1) (luba $1 1) (glb_a $1 1)) 1) (eq (if (eq (glb_a $1 (if 
(eq (glb_a (if (eq (glb_a (if (eq (glb_a $11)1) (lub_a $1 1) (glb_a $1 1)) 1) 1) (lub_a (if (eq (glb_a $1 1) 1) 
(lub_a $1 1) (glb_a $1 1)) 1) (glb_a (if (eq (glba $1 1) 1) (lub_a $1 1) (glb_a $11)) 1)) 1) 0) 0 ?)) 1) 
(lub_a $1 (if (eq (glb_a (if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) 1) (lub_a (if (eq 
(glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) (glb_a (if (eq (glb_a $11)1) (lub_a $1 1) (glb_a $1 1)) 1)) 1) 
0) 0 ?)) (glb_a $1 (if (eq (glb_a (if (eq (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) 1) (lub_a 
(if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $1 1)) 1) (glb_a (if (eq (glb_a $1 1) 1) (lub_a $1 1) (glb_a $11)) 
1) ) 1)0)0?))) 1))1?) 

First Function Lattice 

x7 c(?,3) 0 [x8] 
x8 c(?,3) [x7] [x9] 
x9 c(03) [x8] Q 
Only 3 out of 3 possible evaluations actually performed! 

Second Function Lattice 

xlO c(?,3) • [xll] 
x l l c(?,3) [xlO] [xl2] 
xl2 c(0,3) [xll] [] 

They are equal 

Fixed-Point Expression 

lefrec([(v(fX33))J(v($U),@(@(^ 
v(if,(bc»13,3,3)),@(@(v(^ 
)),v($l,3)),c(l,3))),@(@(v(glb_a,(3,3,3)),v($l,3)),c(l,3)))),c(l,3))),c(0,3))),c(0>3)),c(?,3))))]) 

Pretty Fixed-Point Expression 

letrec 
f = A $1 . if (eq (glb_a (if (eq (glb_a $11)1) (luba $1 1) (glb_a $1 1)) 1) 0) 0 ? 

yes 
I ?- halt, 

[ Prolog execution halted ] 



Sample Runs 

grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:07:49 1988 
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A.2.3. Length function 
Script started on Thu Jul 7 15:08:13 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 141132 bytes 7.21666 sec. 

yes 
I ?- ft34(14). 
Reordered Semantics 

letrec([(v(lengmXlist,mt))J(v^ 
,mMnt)),c(Unt)),@(v(length,0ist4nt)),@(v(d,(list4ist)),v($l,Ust)))))))]) 

Reprinted Text 

letrec 
length = A $1. ifjiull $1 0 (add 1 (length (tl $1))) 

Abstract Expression 

leteec([(vaengthX43))J(v($l,4),@(@(^ 
@(vaength,(4,3)),@(v(U_a,(4,4)),v($l,4)))))))]) 

Reduced Abstract Expression 

letrec([(vaengm,(43))4(v($l,4^ 

@(@(v(eqX33,rjc<>l))xa(@M^̂  
@(vaub_aX333)),c(l,3)),@(v0engm,(43))^ 
ength,(4,3)),@(v(U_a,(4,4)),v($l,4))))))))]) 

Pretty Reduced Abstract Expression 

letrec 
length = A $1 . if_null_a $1 1 (if (eq (glb_a 1 (length (tl_a $1))) 1) (lub_a 1 (length (d_a Si))) (glb_a 

1 (length (U_a$l)))) 

Previous Definitions 

letrec 
length = A $4 . 0 
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Latest Definitions 

letrec 
length = A $1 . if_null_a $1 1 0 

Only 2 out of 4 possible evaluations actually performed! 

First Function Lattice 

xl c(0,3) D [x2] 
x2 c(0,3) [xl] [x3] 
x3 c(0,3) [x2] [x4] 
x4 c(0,3) [x3] 0 

Only 3 out of 4 possible evaluations actually performed! 

Second Function Lattice 

x5 c(?,3) D [x6] 
x6 c(03) [x5] [x7] 
x7 c(0,3) [x6] [x8] 
x8 c(03) [x7] Q 
Previous Definitions 

letrec 
length = A $1 . if_null_a $110 

Latest Definitions 

letrec 
length = A $1. if_null_a $1 1 (if (eq (glb_a 1 (if_null_a (d_a $1) 1 0)) 1) (lub_a 1 (if_null_a (tl_a $1) 

1 0)) (glb_a 1 (if_null_a (tl_a $1) 1 0))) 

First Function Lattice 

x9 c(?3) 0 [xlO] 
xlO c(03) [x9] [xll] 
xll c(03) [xlO] [xl2] 
xl2 c(03) [xll] [] 

Only 4 out of 4 possible evaluations actually performed! 

Second Function Lattice 
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xl3 c(?,3) • [xl4] 
xl4 c(?,3) [xl3] [xl5] 
xl5 c(03) [xl4] [xl6] 
xl6 c(0,3) [xl5] fj 

Previous Definitions 

letrec 
length = A $1. if_null_a $1 1 (if (eq (glb_a 1 (if_nuU_a (U_a $1) 1 0)) 1) (lub_a 1 (if_nuU_a (tl_a $1) 

1 0)) (glb_a 1 (if_null_a (tl_a $1) 1 0))) 

Latest Definitions 

letrec 
length = A $1. if_null_a $1 1 (if (eq (glb_a 1 (if_null_a (U_a $1) 1 (if (eq (glb_a 1 (if_null_a (U_a 

(tl_a $1)) 1 0)) 1) (luba 1 (if_null_a (d_a (tl_a $1)) 1 0)) (glb_a 1 (if_null_a (U_a (tl_a $1)) 1 0))))) 1) 
(lub_a 1 (if_null_a (tl_a $1) 1 (if (eq (glb_a 1 (if_null_a (U_a (U_a $1)) 1 0)) 1) (lub_a 1 (if_nuU_a (tl_a 
(tl_a $1)) 1 0)) (glb_a 1 (if_null_a (d_a (tl_a $1)) 1 0))))) (glb_a 1 (if_null_a (d_a $1) 1 (if (eq (glb_a 1 
(if_null_a (U_a (tl_a $1)) 1 0)) 1) (lub_a 1 (if_null_a (U_a (U_a $1)) 1 0)) (glb_a 1 (if_null_a (U_a (U_a 
$D) 1 0)))))) 

First Function Lattice 

xl7 c(?,3) • [xl8] 
xl8 c(?,3) [xl7] [xl9] 
xl9 c(0,3) [xl8] [x20] 
x20 c(0,3) [xl9] Q 

Only 4 out of 4 possible evaluations actually performed! 

Second Function Lattice 

x21 c ( ? 3 ) Q [x22] 
x22 c(?,3) [x21] [x23] 
x23 c(0,3) [x22] [x24] 
x24 c(0\3) [x23] Q 

They are equal 

Fixed-Point Expression 

Ietrec([(v(length,(43M 
@(@(v(eq,(33,rx)ol)),@(@(v(glb_aX333)),c(13)),@(@(@(v(if_null_aX4333)) 
,c(13)),c(03)))),c(13))),@(@(v(lub_aX333)),c(13)),@(@(@(v(if_null_a,(4333)),@(v(d_a,(4(4))>v(̂  
))),c(13)),c(03)))),@(@(v(glb_a,(333)),c(13)),@(@(@(v(if_null_a,(4333)),@(v(U_a,(4,4)),v($l,4))),c(l 
3)),c(03)))))))]) 

Pretty Fixed-Point Expression 
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letrec 
length = A $1. if_null_a $1 1 (if (eq (glb_a 1 (if_nuU_a (tl_a $1) 1 0)) 1) (lub_a 1 (if_null_a (d_a $1) 

1 0)) (glb_a 1 (if_null_a (tl_a $1) 1 0))) 

yes 
I ?- halt. 
[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:26:10 1988 
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A.2.4. Sum function 
Script started on Thu Jul 7 15:26:21 1988 
grads(l)% pp 
C-Prolog version 1.5 
I ?- [main]. 

main consulted 141132 bytes 7.76667 sec. 

yes 
I ?- ft34(15). 
Reordered Semantics 

letrec([(v(sumusUlist,mt))J(v^ 
nt4nt4nt)),@ (v(hd,(tist,mt)),v($ 

Reprinted Text 

letrec 
sumlist = A $1. ifjiull $1 0 (add (hd $1) (sumlist (U $1))) 

Abstract Expression 

letrec([(v(simusU43))4(v($l,4),@^ 
_a,(4,3)),v($l,4))),@(v(sumlist,(4,3)),@(v(d_a,(4,4)),v($l,4)))))))]) 

Reduced Abstract Expression 

letrec([(v(sumlist/43))J(v($l,4),@(@(@^ 
@(@(v(eqX3,3,bool)),@(@(v(g^ 
$l,4))))),c(U))),@(@(v(lub_a/3,33^ 
)))),@(@(vfelb_a,(3,33)),@(v^ 

Pretty Reduced Abstract Expression 

letrec 
sumlist = A $1 . if_nuU_a $1 1 (if (eq (glb_a (hd_a $1) (sumlist (tl_a $1))) 1) (lub_a (hd_a $1) 

(sumlist (tl_a $1))) (glb_a (hd_a $1) (sumlist (tl_a $1)))) 

Previous Definitions 

letrec 
sumlist = A $4 . 0 
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Latest Definitions 

letrec 
sumlist = A $1 . if null_a $110 

Only 2 out of 4 possible evaluations actually performed! 

First Function Lattice 
xl c(0,3) • [x2] 
x2 c(0,3) [xl] [x3] 
x3 c(0,3) [x2] [x4] 
x4 c(0,3) [x3] • 
Only 3 out of 4 possible evaluations actually performed! 
Second Function Latuce 
x5 c(?,3) D [x6] 
x6 c(0,3) [x5] [x7] 
x7 c(0,3) [x6] [x8] 
x8 c(0,3) [x7] • 
Previous Definitions 

letrec 
sumlist = A $1 . if_null_a $110 

Latest Definitions 

letrec 
sumlist = A $1. if_null_a $1 1 (if (eq (glb_a (hd_a $1) (if_null_a (d_a $1) 1 0)) 1) (lub_a (hd_a $1) 

(if_null_a (ti_a $1) 1 0)) (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0))) 

First Function Lattice 
x9 c(?,3) Q [xlO] 
xlO c(0,3) [x9] [xll] 
xll c(0,3) [xlO] [xl2] 
xl2 c(0,3) [xll] [] 
Only 4 out of 4 possible evaluations actually performed! 
Second Function Lattice 
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xl3 c(?,3) • [xl4] 
xl4 c(?3) [xl3] [xl5] 
xl5 c(0,3) [xl4] [xl6] 
xl6 c(0,3) [xl5] 0 
Previous Definitions 

letrec 
sumlist = A $1. if_nuU_a $1 1 (if (eq (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0)) 1) (lub_a (hd_a $1) 

(if_null_a (U_a $1) 1 0)) (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0))) 

Latest Definitions 

letrec 
sumlist = A $1. ifnull_a $1 1 (if (eq (glb_a (hd_a $1) (if_null_a (U_a $1) 1 (if (eq (glb_a (hd_a (ti_a 

$1)) (if_null_a (U_a (d_a $1)) 10)) 1) (lub_a (hd_a (d_a $1)) (if_null_a (d_a (d_a $1)) 10)) (glb_a (hd_a 
(d_a $1)) (if_null_a (d_a (d_a $1)) 1 0))))) 1) (lub_a (hd_a $1) (if_null_a (d_a $1) 1 (if (eq (glb_a (hd_a 
(d_a $1)) (ifjiuUa (d_a (d_a $1)) 1 0)) 1) (luba (hd_a (U_a $1)) (if_null_a (U_a (d_a $1)) 1 0)) (glb_a 
(hd_a (d_a $1)) (ifjiullja (d_a (d_a $1)) 1 0))))) (glb_a (hd_a $1) (if_null_a (d_a $1) 1 (if (eq (glb_a (hd_a 
(d_a $1)) (if_null_a (d_a (d_a $1)) 1 0)) 1) (lub_a (hd_a (d_a $1)) (if_nuU_a (d_a (d_a $1)) 1 0)) (glb_a 
(hd_a (U_a $1)) (if_null_a (U_a (d_a $1)) 1 0)))))) 

First Function Lattice 
xl7 c(?,3) • [xl8] 
xl8 c(?,3) [xl7] [xl9] 
xl9 c(0,3) [xl8] [x20] 
x20 c(0,3) [xl9] [] 
Only 4 out of 4 possible evaluations actually performed! 
Second Function Lattice 
x21 c(?,3) 0 [x22] 
x22 c(?,3) [x21] [x23] 
x23 c(03) [x22] [x24] 
x24 c(0,3) [x23] [] 
They are equal 
Fixed-Point Expression 
letrec([(v(sumlistX43))J(v^ 
@(@(v(eqX33,ba>l)),@(<̂ ^̂  
La,(4,4))M$M))),c(U)).c^^^ 
uU_a,(4333)),@(v(U_aX4,4)),v($l,4))),c(13)),c(03)))),@(@(v(glb_aX333)),@(v(hd_a,(4(3)),v($l,4))),@ 
(@(@(v(if_nuU_a,(4,3,3,3)),@(v(U_a,(4,4)),v($l,4))),c(l,3)),c(0,3)))))))]) 
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Pretty Fixed-Point Expression 
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letrec 
sumlist = A $1. if_nuU_a $1 1 (if (eq (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0)) 1) (lub_a (hd_a $1) 

(if_null_a (d_a $1) 1 0)) (glb_a (hd_a $1) (if_null_a (tl_a $1) 1 0))) 

yes 
I ?- halt 
[ Prolog execution halted ] 
grads(2)% exit 
grads(3)% 
script done on Thu Jul 7 15:31:01 1988 


