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Abstract 

The advant of Open Systems Interconnection (OSI) accentuates the importance of confor­

mance testing of protocol implementations. Before a protocol implementation is delivered 

for conformance testing, it often has to go through several iterations of diagnostic testing. 

This thesis discusses various issues that arise in the design and implementation of 

protocol test systems for conformance and diagnostic testing. 

Issues discussed in this thesis include test system implementation decisions, test man­

agement, test development environment and tools, test languages, encoding and decoding, 

PDU specification and storage, and portability problems. 

The experience of testing different protocol implementations on three different envi­

ronments are also discussed. 
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Chapter 1 

Introduction 

This chapter describes the motivation of our research. A brief description of the current 

work on protocol test systems at the University of British Columbia is given, followed by 

a layout of the rest of the thesis. 

1.1 Communication and Protocols 

Computers nowadays are often connected into a network to access shared hardware re­

sources such as tape drives, printers and disks, as well as software resources such as files 

and databases. As well, data have to be moved from computers to computers to meet 

the needs of an information hungry society. Thus, modern computers must be able to 

communicate with other computers reliably and efficiently. In order to achieve this goal, 

communication protocols were developed and put into work. 

1.1.1 The OSI Reference Model 

A communication protocol is a set of rules or conventions by which two separate entities 

communicate with one another. In order to be able to handle all possible errors as well 

as different communication media, communication protocols have become too complex 

to be implemented in a single module. The International Standards Organization (ISO) 

has developed a model for structuring communication systems into seven distinct layers 

(Figure 1.1), called the The Open Systems Interconnection (OSI) Reference Model [7]. 

Each of the seven protocol layers performs a well-defined subset of the seven-layer protocol 

1 



Chapter 1. Introduction 2 

APPLICATION LAYER 

PRESENTATION LAYER 

SESSION LAYER 

TRANSPORT LAYER 

NETWORK LAYER 

DATALINK LAYER 

PHYSICAL LAYER 

Figure 1.1: OSI Reference Model 

stack. Each layer uses the services from its service provider, which is the layer immediately 

beneath it, and in turn provides service to its service user, which is the layer immediately 

above. 

By clearly defining the services provided by each layer, the OSI reference model thus 

allows different protocol implementations to interwork together. 

1.1.2 Protocol Services and Access 

The OSI reference model states that 'Only the external behavior of Open Systems is 

retained as the standard of behavior of real Open Systems'. Therefore, each protocol 

entity is only accessible through service access points (SAPs), namely the upper SAPs 

which interface with the layer immediately above, and the lower SAPs which interface 
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with the layer immediately below. 

Services are defined by a set of abstract service primitives (ASPs). Each ASP is 

associated with a fist of parameters, which constitute a complete description of a service 

provided. 

Protocol layers use the data transfer services of the provider to transfer protocol 

data units (PDUs). PDUs carry all the information necessary for one protocol layer to 

communicate with its remote peer entity. 

1.2 Conformance and Diagnostic Testing 

In order for OSI to work, protocol implementations must be thoroughly tested to see if 

they conform to the specifications as defined by the standards to which they purport to 

adhere. The purpose of conformance testing is to increase the probability that different 

protocol implementations can interwork together. Conformance testing is usually done 

in test centers for certification purposes. 

Before a protocol implementation is delivered for conformance testing, it often has to 

go through several iterations of diagnostic testing. Diagnostic testing is usually performed 

by the vendor at different development stages and often involves the use of protocol test­

ing tools. Since diagnostic testing is performed by the vendor, all the available SAPs may 

be used, including those the vendor does not wish to expose to the outside world. Hence, 

diagnostic testing allows a higher degree of control and observation of the implementation 

under test (IUT)
 1

 as opposed to conformance testing. 

J The Implementation Under Test is 'an implementation of one or more OSI protocols in an adjacent 
user/provider relationship being that part of a real open system which is to be studied by testing'. 
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1.3 Protocol Test Systems 

Protocol test systems are specialized hardware and software tools designed to perform 

conformance and diagnostic testing of protocol implementations. 

OSI has defined methods for protocol testing [6], namely the remote test method, the 

distributed test method, the coordinated test method, and the local test method. 

The local test method, though the most powerful, has not been used much because 

it is impractical to implement. In order to do local testing, all test system software has 

to reside in the system under test (SUT)
 2

. This means that the test system has to be 

developed on the same system that runs the IUT and must be completely rewritten for 

each different SUT. 

Recently, the Ferry Clip [1] [2] [4] method was introduced to realize all the ISO test 

methods, including the local test method (see section 2.4 for a brief description). By 

using the Ferry Clip, the test system no longer has to reside in the SUT in order to do 

local testing. Thus, the local test method is more appropriately termed the direct test 

method, since the testing software is no longer "local" to the IUT. 

As the direct test method is the most powerful test method available, and it is made 

feasible by the Ferry Clip, our research has been on design and implementation issues of 

test systems for direct testing. Such test systems can easily be adapted to do remote, 

distributed and coordinated testing. 

1.4 Goals of the Thesis 

The purpose of this research is to study the design and implementation issues of protocol 

test systems, especially how different requirements and constraints affect the design of 

these systems. Issues arising from doing actual conformance and diagnostic testing on 

2The system under test is 'the real open system in which the IUT resides'. 
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different protocol implementations under different environments will also be discussed. 

One of our main goals is to study the portability issues involved in building a test 

system on various hardware and software architectures. The test system should be struc­

tured such that when a new IUT is tested, the code that needs to be rewritten is mini­

mized. By using the same test system for different IUTs, we also studied how we could 

minimize the porting efforts when testing IUTs implemented on different software envi­

ronments. 

As of this date, we have tested implementations on three different environments -

Unix, MPT [12] and OSI-PTE [15]. Unix is a popular operating system which runs on 

many different mainframes and workstations; MPT is a general-purpose protocol tester 

manufactured by IDACOM Electronics; and the OSI-PTE is a sophisticated test system 

currently being developed at the University of British Columbia. 

1.5 Layout of the Thesis 

Following the introduction, Chapter 2 describes the different software and hardware 

architectures being considered, and the constraints and requirements involved when im­

plementing the test software on these different architectures. Chapter 3 discusses test 

management and test language issues when building a test system. Chapter 4 investigates 

schemes for PDU encoding, decoding, storage and representation. Chapter 5 describes 

portability issues encountered while tailoring a Ferry Clip based Test System (FCTS) to 

test different IUTs in different SUTs, and chapter 6 concludes the thesis. 

1.6 Relations to the Ferry Clip Project 

Although much of the testing was done with the Ferry Clip based Test System (FCTS) 

developed at the University of British Columbia, most of the materials in this thesis are 
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not restricted to Ferry Clip applications alone. 

Chapter 5, however, is dedicated to the study of portability issues encountered when 

using the FCTS on different protocol implementations under different SUTs. 

The FCTS used in this thesis is developed jointly with Neville J. Parakh of the 

University of British Columbia. Details on the conceptual design and implementation of 

the FCTS can be found in his M.Sc. thesis [17]. 



Chapter 2 

Environments 

During the course of the research, several test software prototypes were built. Three 

programming environments, namely Unix, MPT and OSI-PTE are used for our test 

system prototype implementations. A discussion of these environments, together with a 

brief description of the Ferry Clip approach, is given in this chapter. 

2.1 The Unix Environment 

Unix is probably the most widely networked operating system to date. Originally devel­

oped at AT&T as an operating system for interactive programming, it soon became one 

of the most used operating systems for minicomputers, workstations, and now PCs. We 

shall assume that the reader of this thesis is relatively familiar with the Unix operating 

system, and will not go into details. 

2.1.1 Unix as a Test System Environment 

The biggest advantage of implementing a test system in Unix is the availability of pro­

gramming, debugging and text processing tools. We were able to produce code relatively 

quickly, and symbolic debuggers have cut our development time significantly. 

Text processing tools in Unix played a particularly important role as an aid to refor­

mat existing test suites. We found the macro facility and the ability to perform global 

search and replace operations using complex regular expressions in the vi and ex editors 

indispensable. 

7 
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Lex and yacc are also extensively used to develop some of our prototypes, especially 

those which requires a formalized input syntax. 

2.1.2 Prototypes built under Unix 

A prototype test suite development tool has been built under Unix and is discussed in 

Chapter 3. A PDU Library module has also been prototyped in Unix. The motivation 

and design issues of the PDU Library is described in Chapter 4. 

The OSI-PTE, which will be discussed later in this chapter, was also developed in 

Unix. 

2.2 The IDACOM MP T Environment 

The MPT368.2 [12] is a portable protocol tester (PT) manufactured by IDACOM Elec­

tronics. It runs a proprietary operating system with a built-in Forth interpreter. It 

has three Motorola 68000 CPUs, expandable to six. Memory is partitioned between the 

CPUs, but one CPU can access another CPU's memory partition. The CPUs communi­

cate through shared memory and inter-CPU messages (See Figure 2.2). 

2.2.1 Processors and Interfaces 

One of the three CPUs is the main CPU, and has no dedicated test ports. The other 

CPUs are used as test CPUs, and each of them has its own set of interface adapters at 

the back. 

Interface types supported include V.24 (RS-232C), V . l l , V.35 and V.36, and interface 

configuration parameters can be tailored to suite most existing protocols. 

In addition , an auxiliary serial port is available for file transfer and remote tester 

access. A printer port comes handy for test logging. 
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Figure 2.2: MPT Structural Block Diagram 
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2.2.2 Operating System and Programming Environment 

The PT's operating system is event driven. Events are triggered by an incoming frame, 

a keyboard entry, a timer expiration or an inter-CPU message. Normally, the system 

handles all the events, but the user could write handlers to takeover selected events. 

A l l CPUs are single threaded, but handlers can be triggered even if a program is 

running on a C P U . Thus, simultaneous tasks could be easily handled. This is a useful 

feature for multi-party testing, since more event handlers can be added to the tester as 

the number of connections required increases. 

Currently, all programming on the M P T are done on an extension of FIG-Forth 1 . A l l 

system and user commands are also defined as Forth words. Eventually, this operating 

system will be replaced by a C and window based operating system, and the M P T will 

run a version of the OSI-PTE described later in this chapter. 

2.2.3 Prototypes built under M P T 

A full blown F C T S was developed under the M P T environment. The M P T environment 

was selected for our primary F C T S implementation. 

The F C T S / M P T was used for studying the portability issues encountered when 

performing conformance and diagnostic testing on different environments. This will be 

discussed in Chapter 5. 

The M P T is used commercially to perform conformance and diagnostic testing on 

protocol implementations. By building our primary test system on the M P T , we believe 

the issues that arise will be similar to that encountered in real life protocol testing. 
1 FIG-Forth is a version of Forth whose standard is defined by the Forth Interest Group. 
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2.3 The OSI-PT Environment 

The OSI-PTE [15] [16] is a new environment for the implementation and testing of 

computer communications protocols. Currently it runs on the Unix operating system. 

Eventually it will be ported to the MPT. 

The OSI-PTE is an event driven system. Each protocol is structured as a single or a 

group of Protocol entities (see Figure 2.3). Communication between protocol entities is 

performed through an event-posting scheme whereby one protocol entity posts an event 

to another protocol entity. 

The important events are ASP Up events to the service user, ASP Down events 

to services provider, and timer expiry events from the system. Other events include 

PDU Up and PDU Down events which are used internally by each protocol entity state 

machine, and State Out and Error Out events which are 'probes' used for conformance 

and diagnostic testing purposes. 

2.3.1 Protocol Entities 

Each protocol entity in the OSI-PTE is uniquely identified by an Entity Identifier (NID). 

Entities must know the NIDs for both its service user and service provider in order to 

post events to them. 

Request of service from the service provider is done by posting an ASP Down event 

on the service provider NID. Service data units are passed to the service user by posting 

an ASP Up event on the service user NID. 

Each ASP for a protocol entity is identified by an Event Identifier (EID). Associated 

with each EID is an Event Parameter Area (EPA), a structure that contains all the 

parameters to the ASP. 

Multiplexing and demultiplexing of services in each protocol entity are done through 
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(N) ASP Down (N) ASP Up 

1 t 

(N) PDU Down / 
(N) PDU Up 

Timer In 

State Out 

Error Out 

(N- 1) ASP Down (N- 1) ASP Up 

Figure 2.3: An OSI-PTE Entity 
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Connection Control Blocks (CCB). Each time a new connection is made to the protocol 

entity, a Connection Identifier (CID) is assigned and returned. Service users can then 

specify which connection to use by specifying the CID when posting. 

Thus event posting is done in the form PostEvent(NID, CID, EID, EPA), which 

specifies the entity, connection, event and parameters respectively. Overall, the system 

resembles the OSI Reference Model much more closely than the other two environments 

discussed. 

2.3.2 Dispatching in the OSI-PTE 

Since all entities are event driven, some mechanism is needed to arbitrate all incoming 

and outgoing data and turn them to events. We call this mechanism the dispatcher. 

The heart of a PTE implementation is the dispatcher. All incoming and outgoing 

frames, as wells as timer expiries are handled by the dispatcher. The dispatcher normally 

has complete control of the environment. When an incoming frame or a timer expiry 

occurs, the dispatcher posts an event to the appropriate entity, thus passing control to 

it. 

By posting an event, an entity gives control to another entity. After the event is 

processed by each of the related entities through the chain of event posting, control is 

returned to the dispatcher, which could then clear the outgoing data and wait for another 

event. More details of the PTE environment can be found in [15] and [16]. 

2.4 The Ferry Clip 

A brief description of the Ferry Clip is given here as background information to the 

materials discussed in Chapter 5. 

The Ferry Clip concept is a generalization of the Ferry concept as defined by Zeng 
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[1]. The main idea of the Ferry Clip is to transport test data transparently from the 

system under test (SUT) to the test system, such that the test system can access either 

or both of the SAPs of the remote IUT as if they were local. The part of the test system 

software which originally resides in the SUT can thus be moved back to the test system, 

minimizing the amount of software which needs to be rewritten for each IUT. For other 

advantages of the Ferry approach see [4] and also section 2.4.3. 

2.4.1 Structure of a FCTS 

A Ferry Clip based Test System (FCTS) consists of two major components, an Active 

Ferry Clip (AFC) which resides in the test system, and a Passive Ferry Clip (PFC) which 

resides in the SUT (see Figure 2.4). 

The two ferries runs the Ferry Control Protocol (FCP) in order to transfer test data 

between the Test Manager (TM) in the test system and an external IUT residing in the 

SUT. The FCP utilizes the data transfer service of some existing reliable protocol such 

as X.25 or TCP/IP. The protocol which provides the data transfer service to the FCP is 

known as the ferry transfer medium protocol (FTMP). 

2.4.2 Realization of Abstract Test methods 

The Ferry Clip approach can be used to realize the abstract test methods defined by 

ISO. The direct test method is realized by attaching the passive ferry clip to both SAPs 

of the IUT, allowing the test system to directly observe and control data in and out of 

the SUT. The remote test method can be realized by attaching just the lower arm of 

the passive ferry clip. The distributed and coordinated test methods can be realized by 

using the upper arm of the passive ferry clip while the (N-1) protocol stacks are used to 

transfer data from the test system to the IUT. 
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Ferry Cl ip based Test System (FCTS) 

Test Manager 
(TM) 

Encode r / 
Decoder (E/D) 

I 
Act i ve Ferry 

Cl ip (AFC) 

System Under Test (SUT) 

I 
Pass i ve Ferry 

Cl ip (PFC) 

I 

1 
Imp lemen ta t i on 
Under Test (IUT) 

J 

Ferry Transfer Medium Protocol (FTMP) 

Figure 2.4: Structure of a FCTS 
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2.4.3 Advantages of using a FCTS 

For all the cases described above, both the Upper Tester (UT)
 2

 and the Lower Tester 

(LT)
 3

 reside in the test system. This solves the synchronization, timing and ordering 

problems between the UT and the LT found in conventional test methods [17]. 

Once the FCP is standardized, the FCTS can be used to test different IUTs with 

little change required to the test system. This is in contrast to an ad hoc scheme where 

the entire test system or at least a major portion of it has to be rewritten to test different 

IUTs: 

2.4.4 Implementations 

The actual implementation of the FCTS prototypes will not be discussed in thesis, the 

interested reader is referred to [17]. However, components which are of special interest 

are outlined in Chapter 5 which is dedicated to the study of portability issues of using 

the FCTS to test protocol implementations on both the MPT and the OSI-PTE. Most 

of these components also apply to non-ferry applications. 

2 The Upper Tester is the piece of software which sends and receives data to and from the test system 
through the Upper SAP of the IUT. 

3 The Lower Tester is the piece of software which sends and receives data to and from the test system 
through the Lower SAP of the IUT. 



Chapter 3 

Test Suites and Test Management 

This chapter discusses the role and operations of the Test Manager (TM). Different test 

languages and test development environments are compared, followed by a description of 

the design and implementation of a test development tool based on the Tree and Tabular 

Combined Notation (TTCN) [14]. 

3.1 The Test Manager 

The TM is that component of the test system that oversees the operations of the system. 

It reads and executes the test script, performs PDU comparison and retrieval functions 

through the Encoder/Decoder, and logs all incoming and outgoing data exchanges for 

future analysis. Furthermore, it is the responsibility of the TM to continue or abort the 

execution of a test script if an abnormal condition is detected. 

3.2 Test Management, Test Suites and Test Languages 

Carrying out conformance and diagnostic testing involves three main steps. First, abstract 

test suite (ATS) for the protocol has to be derived or obtained. Second, the ATS has to 

be converted into executable test suite (ETS). The final step involves loading the ETS 

into the TM and running it against the IUT (Figure 3.5). 

The structure of the TM on a test system is often dependent on the type of the test 

language
 1

 it will support. There are three main types of test languages, namely, TTCN, 
1

Test language is used to specify test cases. 

17 
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A b s t r a c t 

T e s t S u i t e 

( A T S ) 

M a n u a l o r 

A u t o m a t i c 

T r a n s l a t i o n 

E x e c u t a b l e 

T e s t S u i t e 

( E T S ) 

T e s t M a n a g e r I U T T e s t M a n a g e r I U T T e s t M a n a g e r I U T 

Figure 3.5: Procedure of Testing a Protocol Implementation 

general purpose languages, and specialized languages. 

3.2.1 Tree and Tabular Combined Notation 

Tree and Tabular Combined Notation (TTCN) [14] is currently being developed by ISO 

as a test specification language. TTCN exists in two forms, namely the Graphical Form 

(TTCN-GR) and the Machine Processable Form (TTCN-MP). The former is used fre­

quently to specify dynamic behaviors in ATS, while the latter is mainly used as an 

intermediate representation during the ATS to ETS translation process by TTCN test 

development tools. Since TTCN is a relatively new notation, its specification and usage 

is still undergoing revisions. 
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A Description of T T C N 

The main purpose of TTCN is to provide a notation for specifying generic or abstract 

test cases which is independent of test methods, layers and protocols. The ISO document 

describes TTCN as 'an informal notation with clearly defined, but not formally defined, 

semantics'. In this way, ATS written in TTCN is intended to give precise instructions 

on how to carry out testing of protocol implementations in a human readable form. 

The graphical form of TTCN (TTCN-GR) uses indentation to convey a tree structure 

of a test case, which makes it easy for human to understand (Figure 3.6). 

The dynamic part of a test case is presented in the leftmost column of the table. 

Execution is carried out from top to bottom, and from left to right. Whenever execution 

of a TTCN event line succeeds, execution continues to the right. Whenever execution 

of a TTCN event line fails, execution continues down to the closest event line with the 

same indentation. 

A TTCN event line has five main forms: send, receive, timer events, attachment trees 

and jumps. Sends, receives and timers are specified in more or less the same format: 

<SAP>[!|?]<event> [<label>] [<constraints-ref>] [<verdict>] 

The ! or ? stands for a send event or a receive event respectively. The SAP field is a 

text label identifing the SAP of the IUT at which the event is to occur. The event field 

specifies either an ASP, a PDU or a timer event such as TIMEOUT. 

The label field is used mainly by repeats and gotos. The constraints reference field is 

a text cross-reference of the ASP, PDU or event whose details are specified in a separate 

constraints list. The verdict represents a termination of the test case, where the execution 
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Test Case Dynamic Behavior 

Reference: TTCN_Examples/LC_Example 
Identifier: LC_1 
Purpose: An Example of TTCN-GR Behavior Description 

Behavior 
Description Label 

Constraints 
Reference Verdict Comments 

EG.001 [L] 
+INITIALIZE 
L! CALL 
L7ACCEPT 

! DATA 
L?RR 
LIDISCONJIEQ 
L?DISCON.CNF 
L70THERWISE 

L?OTHERWISE 
L70THERWISE 

CALL.l 
ACC.l 
DAT.l 
RR.1 
DISCREQ.1 
DISCNF.l pass 

f a i l 
f a i l 
f a i l 

attach tree 

1) 
2) 
3) 

Extended Comments: 

1) This OTHERWISE will match i f 
2) This OTHERWISE will match if 
3) This OTHERWISE will match if 

event does not match DISCON.CNF. 
event does not match DISCON_REq. 
event does not match ACCEPT. 

Figure 3.6: Sample TTCN-GR source file 



Chapter 3. Test Suites and Test Management 21 

of an event line with a non-empty verdict field will cause the test case to be assigned the 

verdict specified and terminated. 

The first line in the behavior description in Figure 3.6 is not a event. It is a test case 

identification line which specifies the name of the test case and the SAPs used. 

Using T T C N as a Test Language 

Although TTCN is originally designed for the specification of ATS, it can also be used 

directly as a test language if appropriate editing and parsing tools are available. The 

advantage of using TTCN as a test language is that ATS written in TTCN can be directly 

used by the test system with little or no change. However, test systems that use TTCN 

as a test language require complex interpreting or compiling tools which are both difficult 

to implement and demanding on computing hardware. 

3.2.2 General Purpose Languages 

For testing of protocol implementations on a smaller scale, regular programming lan­

guages like C and Pascal are commonly used to implement test suites. Usually, functions 

are implemented to send and receive ASPs and PDUs, and each test case is written as 

one program, either by hand or by the use of some test development tools. 

The TM which uses a general purpose language is responsible for the archival and 

coordination of the test programs and the supporting libraries, which is mostly the loading 

and execution of compiled test cases. The TM might be simple enough to be merged 

into test cases so that each test case is self contained and can be directly executed. 

Test suites written using general purpose languages can easily be incorporated into 

the test system. They can be changed easily, and can be used to express very complicated 

operations. 
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However, translation from ATS can be time consuming, and the resulting ETS is not 

likely to be portable. 

3.2.3 Specialized Executable Test Languages 

There are two main reasons for developing specialized test languages for conformance 

testing. First, a specialized executable test language powerful enough to handle most 

test suites is a good intermediate step between specification languages and program code. 

Second, a specialized language designed especially for testing would be less complex than 

a general-purpose language and easier to use. 

Owing to the fact that most protocols are specified as finite state machines, special­

ized test languages are mostly state based and event driven. IDACOM Electronics has 

developed their own specialized test language called the IDACOM Test Language (ITL) 

[13]. The Corporation for Open Systems (COS) uses both ITL and another specialized 

language they developed called Executable TTCN (ETTCN) [20]. 

Specialized test languages are compact and precise in describing dynamic behaviors, 

but there is no existing standards, and specification for them are often informal. More­

over, since most specialized test languages are developed commercially, specifications 

may not be available for the general public. 

3.3 A Comparison of Test Development Environments 

A capable test system often has a sophisticated test development environment which 

features tools that complement the operation of the TM. A set of well designed test 

development tools not only enhances the ease of use of the test system, it can actually 

perform a large part of the work for a test suite programmer quickly and with less 

possibility of errors. 
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Several test development environments currently being developed in North America 

and Europe are described in this section. Their functionality and usefulness are compared 

and discussed to gain insight of the desirable features in test development tools. 

3.3.1 T h e T M in the I D A C O M M P T 

The IDACOM MPT represents a very simple yet effective approach to test suite devel­

opment. By using special features of the Forth language, the MPT is able to built all 

the test language features right into the native language itself. The ETS is compiled into 

memory on demand, and the compilation process automatically links in the necessary 

routines to encode and decode ASPs and PDUs. 

The IDACOM MPT test development environment consists of just an editor for in­

put of ITL [13], IDACOM's proprietary test language. ETS can also be edited on a 

workstation and then downloaded into the tester. 

The structure of the TM in the MPT is shown in Figure 3.7. 

The advantage of MPT's approach to test development is that it can be done on the 

test site on a portable tester relatively quickly. During diagnostic testing, the test oper­

ator often wants to create test cases which are used once and then discarded. Using the 

MPT, he does not have to go to a workstation, does all the compilation and downloading 

and then come back to do a one time test case. 

The disadvantage, of course, is that the large number of test suites written in TTCN 

that already exist will have to be manually transformed into ITL in order to do full 

conformance testing. Especially in higher layer protocols where each conformance test 

suite has at least a few hundred dynamic behavior specifications and a thousand or more 

constraints, manual translation would be extremely time consuming. 
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Figure 3.7: Structure of the TM in the MPT 
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Abstract Test Suite 

Manual Translation 

C O S test language 

XCTS Compiler 

* 
ITL 

Figure 3.8: XCTS ATS to ETS Translation 

3.3.2 The XCTS Project 

The XCTS Project, a joint development effort by COS and IDACOM, tries to remedy 

the need to spend extensive effort in manually translating existing abstract test cases to 

ITL, mainly by moving the development environment to a SUN workstation and creating 

an intermediate source language between TTCN and ITL. 

The structural diagram for ATS to ETS translation under XCTS environment is 

shown in Figure 3.8. 

The intermediate test language is very similar to ITL, with additional features such 

as preprocessor statements and automatic parameter substitution for date and version. 

The main advantage, however, is the ability to archive large amount of test suites and 

selectively download as well as the availability of text processing tools on the workstation. 
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Since Abstract test cases in TTCN are still manually translated into the intermediate 

test language, which is state based and quite different from TTCN, development of test 

suites still takes time. However, with the use of the XCTS development environment, 

the ability to perform full conformance testing is much enhanced. 

3.3.3 The I T E X environment 

The ITEX environment, developed by Swedish Telecom, takes a big step forward in 

utilizing existing forms of ATS. A complete set of tools are available to edit and archive 

TTCN as defined in ISO DP9646-3. Specialized editors are used for different types of 

table inputs such as TTCN behaviors, test step libraries, and PDU / ASP constraints 

using TTCN tables or ASN.l Modular Method [21]. 

The structure of the ITEX test suite development environment is shown in Figure 

3.9. 

Using this set of tools, ATS can be imported with just editing work. With the use 

of translation scripts which specify the mapping between internal representation and the 

object test languages, the test suites can be translated into different test languages with 

relative ease. 

The only drawback of this system is its size and speed. The prototype development 

environment requires at least 8MB of main memory, and a minimum disk space of 200MB. 

The prototype is very slow, and much more effort has to be spent to produce a relatively 

bug free system of this size. In most applications other than specialized test centers, 

application of the tool might just be impractical. 
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Figure 3.9: The ITEX Test Suite Development Environment 
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3.4 A Test Development Tool using T T C N 

Based on a comparison of the environments described above, an attempt was made to 

build a TTCN test development tool that fits the best of both worlds. Our requirements 

are as follows: 

• The input format of the tool must be close enough to the existing ATS that only 

editorial changes have to be made. 

• It must provide output which a TM can execute directly. 

• The size of the development tool must fit in an average workstation or a well 

equipped PC or portable tester, without placing heavy requirement on the hard­

ware. 

3.4.1 Description 

We decided to build a parser which recognizes a plain text form of TTCN-GR (see 

Appendix B) and builds a test tree with the same structure. The tree is then stored as a 

binary image in a file, which will be loaded back into the test engine dynamically during 

testing. 

3.4.2 Design decisions 

Several design decisions were made. First of all, no special editors are to be used for input. 

The TTCN parser should be text based, and the tree structure is to be determined by 

the relative indentation of the behavior description. The reasons for these decisions are: 

• Purely text based parsers are more portable. 
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U A 
U?B Fai l 

U?C 

L?D Pass 

7TIME0UT Inconc. 

T e s t S c r i p t 

?T imeout(T1) 
Inconclusive 

Corresponding T e s t Tree 

Figure 3.10: Structure of an Executable Test Tree 

• Abstract test suites supplied in text format can be directly edited without having 

to go through complex format translation. 

• The size of the development system will be reduced if no specialized editors are 

used. 

Another decision made is that the output of the parser is to be in the form of linked 

trees instead of a source language. Linked trees generated by the TTCN Parser are stored 

in files. When the files are loaded back in, the pointers in the tree will be reconstructed. 

The tree can then be directly executed by the test engine. 

An example of a TTCN behavior and the corresponding tree structure generated by 

the parser are shown in Figure 3.10. 
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The TM has to be specially written in order to execute the test tree. However, such 

a TM will be very simple since it only needs to keep track of a pointer to the tree. 

Each node would have the information containing what the TM should do (i.e. send an 

event, expect an event, and set or check a timer.), and pointers to other tree nodes. The 

information also includes what to do next if an action succeeds or what alternatives there 

are if it does not. 

There are several more advantages of using linked trees: 

• Linked trees fit into the architecture of an event driven system since control need 

not be transferred permanently to the ETS until execution terminates. Transitions 

from one node to another provide excellent break points for returning control to 

the TM. 

• Re-entrance into the ETS is clean and easy since we only have to keep a pointer to 

a tree node. 

• Linked trees are very flexible since pointers to constraints, timers, conditions and 

executable code can be added to a tree node easily. 

• Since TTCN is itself expressed in a tree notation, implementation of TTCN features 

such as test step attachment in linked trees are straightforward. 

• Since constraints are referenced by pointers, test suite parameters can be dynami­

cally linked to the behavior tree at both configuration time and run time without 

the need for modifying and recompiling the test cases. 

3.4.3 Application 

With proper interface with the TM, the TTCN parser can be used to produce executable 

test trees from ATS quickly. Once the executable test trees are produced, the parser is 
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Figure 3.11: Test System utilizing the TTCN Parser 

no longer needed for the execution of the test cases. 

Pre-defined PDUs and ASPs are referenced by name. A separate module is built 

to archive the predefined PDUs and ASPs, and will be discussed in the next chapter. 

Awkward test cases can be hand-coded into programs whose entry points can be stored 

in the tree nodes. Test suite parameters can be linked into the test cases at any time 

because of the dynamic nature of the executable test trees. 

The structure of a test system utilizing the TTCN parser is shown in Figure 3.11. 
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3.4.4 Implementation 

A preliminary prototype of the parser was built on a SUN workstation running SUN OS 

4.0. It parses basic TTCN-GR into linked trees, but certain features such as tree attach­

ment, labels and loops have not yet been implemented. The prototype implementation 

has about 840 lines of C code, and is now being augmented into a full blown application 

at the joint UBC-IDACOM project at the University of British Columbia. 



Chapter 4 

PDU Encoding and Storage 

A modular scheme for encoding and decoding PDUs is given in this chapter. Issues 

concerning encoding and decoding PDUs are discussed. The design and implementation 

of a PDU Library module, which is the functional equivalent of the Encoder/Decoder is 

also described. 

4.1 The Need for Modularity 

The task of an Encoder/Decoder (E/D) is to translate ASPs to PDUs and vice versa. 

Because translation varies from IUT to IUT, the E/D has to be rewritten for each IUT. 

To facilitate its replacement, the interface it provides to the TM should be clean and 

concise and the E/D itself should be well structured. 

4.2 A Modular Scheme for Structuring the E/D 

In the MPT test system implementation, The E/D module was subdivided into two parts: 

the primitive specification and the encoding/decoding parts. Different implementations 

of the same protocol might require the same primitives to be encoded differently. Hence, 

it should be possible for the encoding/decoding part to be replaced independently of the 

primitive specification part. 

33 
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4.2.1 Primitive Specification 

The primitive specification part defines the primitives available and their parameters. It 

describes what the TM is allowed to send and receive. Essentially, it provides a way for 

the TM to specify and access all the primitives and parameters available in the protocol 

definition. 

The primitive specification part should be defined as completely as possible. It should 

include all possible primitives and all the parameters for the primitives, as specified in 

the protocol definition. 

An example primitive specification for TP/0 is shown in Appendix C. Note that 

different primitives have different combination of parameters. 

Regardless of which IUT being tested, a T_CONN_REQ would always be the com­

mand to request a Transport connection in the test script, and N_CONN_REQ would 

always be specified in the test script to match an incoming network connect request. 

4.2.2 Encoding and Decoding 

The encoding/decoding part is called by the primitive specification part. It does the 

actual transformation from primitives to PDUs or whatever representation the IUT re­

quires. 

The encoding/decoding part could choose to ignore those parameters in the primitive 

specification part which are not supported by a particular IUT. In this way, when a dif­

ferent implementation of the same protocol has to be tested, only the encoding/decoding 

part needs to be changed, and the test scripts
 1

 as well as the specification part can 

remain the same. 
1the test script remains identical only if the both implementations support the same subset of 

functions. 
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4.3 Hard Coding PDUs 

In the MPT E/D implementation, A Forth procedure is defined in the E/D for each prim­

itive specified. Invoking this procedure either from the keyboard or from the test script 

would cause the corresponding primitive to be sent via the ferry. Decoded primitives 

received from the IUT via the ferry become events on the TM's event queue. 

When the TM calls the E/D to send test data to the IUT, the E/D module does not 

return to the TM until the Active Ferry accepts the packet. The E/D module invokes 

the FTMP to clear the output packets if the buffers of the Active Ferry become full. 

Multiple E/D modules can be provided in the test system. Different E/D modules 

for different layers can mix and match in order to do multi-layer protocol testing. 

4.4 PDU Specification Languages 

To minimize the effort required in replacing the encoding/decoding part, encoding for­

mats of PDUs can be specified in a language. 

For simple PDUs such as those in the datalink and Packet layers, one possible solution 

is to build an interpreter that accepts PDU specifications in some tabular form similar to 

that defined for the PDU definition part of TTCN-GR [14]. The primitives, parameter 

names for each primitive, parameter length and the allowable range for each parameter 

can be listed in the PDU definition part. PDUs can be built by reading in the columns 

in the table and reserving the correct number of bytes in the PDU buffer for each field, 

and then putting in the values of the parameters whose names correspond to the names 

assigned to the fields. 

However, in higher layers such as the Session and Application layers, PDU parameters 

can be complex and of variable length, and a more powerful PDU specification language 

has to be used. For example, Abstract Syntax Notation One (ASN.l) [21] value definition 
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syntax is used to specify MHS test PDUs. 

4.5 A n E / D Equivalent - T h e P D U Library 

Whenever PDU specification languages are used, it might be useful to pre-encode and 

store PDUs and receive constraints
 2

 , retrieving them only at run time. There are reasons 

why pre-encoding is sometimes preferred over direct encoding / decoding at runtime: 

• PDUs in higher layers have very complex structures and a large number of param­

eters such that calls to the E/D to compose a PDU would be very complex and 

slow. In this case it is easier to pre-enode the PDU and just retrieve it by name or 

enumeration. 

• Sometimes illegal PDUs have to be specified, and a preset encoding routine might 

not be able to handle illegal encodings. Examples include invalid field lengths and 

swapped fields. 

A set of tools were prototyped under Unix for parsing ASN.l value definitions of test 

PDUs and their storage and retrieval. The end goal of this set of tools is to create a 

library of all the test PDUs and constraints given their definitions. Since it has the power 

to retrieve an encoded PDU and compare a received PDU, it is functionally equivalent 

to an E/D module. Moreover, it is more flexible and powerful since the send PDUs and 

receive PDU constraints are syntactically specified instead of hard coded and compiled. 

The PDU Library is divided into two parts: the PDU Parser Module and the PDU 

Storage Module (Figure 4.12). 

2receive PDU constraints are a list of conditions which a received PDU must match to satisfy. 
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Figure 4.12: PDU Parser and PDU Storage Modules 
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4.5.1 The PDU Parser Module 

The PDU Parser Module interprets static PDU specifications in ASN.l Modular method 

[21] and generates encoded PDUs. 

There are two main constructs that the PDU Parser has to deal with, namely send 

PDUs and receive PDU constraints. 

Send PDU specification can be divided into the following: 

• Base PDUs 

• Pre-defined components 

• Redefinition of base PDU structures 

• Replacement of base PDU components 

Several commonly used PDUs are defined as a whole in the base PDU library. Com­

monly used components are also predefined and named. Test PDUs are built from re­

defining and replacing base PDUs with new or predefined components. 

Receive PDU constraints are specified as a list of "Components of interest". Each of 

the components has to be matched in order for the constraint to be satisfied. 

A sample input is shown in Appendix D. 

4.5.2 PDU Storage Module 

The main function of the PDU Storage Module is to provide a directory service for the 

TM to look up a PDU. It also provides a means for the TM to compare a received PDU 

against the constraints. There are only two services seen by the TM: 

• Retrieve (pduName) returns a pointer to a specific encoded PDU, given its name 

in plain text. The retrieved PDU can then be passed into a parameter to a send 

function. 
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• Compare (PDU, constraintName) compares the given PDU and see if it satisfies 

the constraints defined and stored under the text label constraintName. It returns 

TRUE if the constraints are satisfied and FALSE otherwise. 

There are two reasons to separate the PDU Storage Module from the PDU Parser 

Module: 

1. Different protocol layers may have different input syntax for PDU and constraint 

specifications. When switching protocol layers, the PDU Parser Module can be 

modified and replaced independently of the PDU Storage Module. 

2. Between the PDU and constraint definitions and the retrieval and compare func­

tions, the format of the internal representations might be dependent on the environ­

ment. For example, we might want to choose between using files or memory space 

to store the internal representation. By carefully designing the interface between 

the modules, change of internal representation is simplified. 

4 . 5 . 3 Interaction between the Modules 

The exact functionality of the PDU Parser depends on the power of the PDU Library 

module. The more powerful the PDU Library, the less the parser has to do. Two 

approaches are possible: 

1. The PDU Parser translates Send PDUs into encoded PDU files, and the PDU 

Library only provides a directory service. Each receive PDU constraint is to be 

parsed into one compare function and stored in the PDU Library. When the TM 

gives a received PDU and the name of the constraint to be satisfied, the PDU 

Library simply calls the archived compare function corresponding to the constraint. 
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2. The PDU Parser simply parses Send PDUs into a tree structure, using labels to 

reference predefined components. The PDU Library provides a set of functions to 

build an encoded PDU from the tree structure. Receive PDUs are parsed into lists 

of field names and their correct values or ranges. When the TM gives a received 

PDU and the name of the constraint to be satisfied, the PDU Library will go to 

the list corresponding to the constraint, interpret it and compare the fields one at 

a time. 

The exact division between these two approaches depends on how much information 

is known at compile time. Obviously, if most of the parameters are known at compile 

time, PDUs can be stored as pre-encoded files. However, if many of the parameters 

cannot be determined until the PICS and PIXIT are supplied for configuration, and 

if the parameters are of undetermined length, patching into pre-encoded PDUs will be 

difficult. The structures of the PDU would then have to be stored and the PDU Library 

will have to provide parameter encoding functions. 

4.5.4 Implementation 

Prototypes of the PDU Parser and the PDU Storage Module are running under SUN 

OS 4.0. Linked tree structures call E-nodes, which were originally used in the EAN 

mail system at the University of British Columbia, were chosen as the intermediate 

representation between the Parser and the Storage Module. 

LEX
 3

 and YACC
 4

 are used to generate the source code for the Parser. The Parser 

was written in two parts : a Template Parser that generates a PDU template from the 

ASN.l PDU specifications, and a Component Parser which takes ASN.l Modular Method 

(ASN.l MM) value declarations and turns them into E-nodes. While E-node trees are 

3 UNIX lexical analyzer generator tool. 
4 UNIX tool, Yet Another Compiler Compiler. 
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built, field names and tags are resolved by referencing the PDU template generated by 

the Template Parser. Support routines that translate the E-node structures into ASN.l 

bit streams are also running. 

The breakdown of the code size is as follows: 750 lines of C code for the E-node 

manipulation routines (including E-node to bit stream conversion routines), 490 lines of 

LEX and YACC source for the template parser, and 620 lines of LEX and YACC source 

for the component parser. Note that the figures are for the prototype implementations, 

and they reflect more or less the very basic system. 
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Switching S U T s and I U T s 

This chapter discusses the various issues that arise when performing conformance and 

diagnostic testing on different implementations under different environments, using the 

FCTS built on the IDACOM MPT. The backgrounds for the different environments can 

be found in Chapter 2. 

The FCTS on the MPT was originally tested against a packet layer IUT that resided 

on another MPT. Later on we also used the FCTS to debug and test a TP/0 IUT under 

OSI-PTE. 

The following have to be resolved before the MPT can communicate with the SUN 

workstation: 

• A physical interface has to be set up. 

• An FT MP has to be running through the interface at the SUT side. 

• The E/D has to be modified in order to work with the OSI-PTE primitive exchange 

formats. 

These will be discussed in detail in this chapter. 

5.1 Connecting the MPT to a SUN Workstation 

There are two obvious ways to connect the MPT to the SUN workstation - through the 

network or through a serial port. Since the MPT does not have ethernet support, we 

connected our machines through the serial port at the back of the SUN workstation. 

42 
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There are two ways to communicate through the serial port. We can use the existing 

tty driver together with I/O redirection, or we can open the serial driver and do read 

and write directly. We chose the second option for the following reasons: 

• We do not have to worry about byte streams being processed and changed by the 

TTY driver. 

• Direct access to the drivers is faster and more efficient. 

• We already have X.25 running in our FCTS, and we wanted to run X.25 on the 

SUT as the FTMP. 

Unfortunately, only an asynchronous serial driver was available at the time while 

X.25 requires a synchronous serial interface. Thus, we had to set up a synchronous serial 

driver. 

5.1.1 The Synchronous Serial Driver 

We managed to get hold of a kernel X.25 implementation with a synchronous serial driver 

which ran on one of the older SUNs in The University of British Columbia. We were 

unable to use the synchronous driver directly because of the reasons below: 

• The X.25 implementation resides completely in the kernel, whereas the OSI-PTE 

resides in user space. A user program can only access the packet layer services, but 

not the serial driver itself. 

• The synchronous driver was written under SUN OS 3.2, while all our accessible 

workstations run SUN OS 4.0. 

There are two ways to deal with the first problem. We can rewrite the upper interface 

of the synchronous driver so that it communicates with user applications, or we can use 
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the same interface which accesses the packet layer services of the X.25 implementation, 

take out both the packet layer and the datalink layer, and connect the interface directly to 

the synchronous driver instead. It was necessary to take a closer look into the synchronous 

driver as well as the X.25 packet layer service interface before deciding which approach 

to take. 

The synchronous driver can be divided into two layers. The lower layer consists of a 

set of low level interrupt handlers for sending and receiving raw data. The higher level 

consists of some kernel interface routines which passes data through mbufs
 1

. Passing of 

mbufs between the datalink layer the higher level routines in the synchronous driver are 

done through software interrupts. Since system interrupts can not be carried over to user 

space, a set of device access routines would have to be written if direct interfacing of the 

driver to user space is desired. That means totally rewriting the higher level interface so 

that it could be opened as a /dev entry. 

The X.25 implementation, however, has a socket interface that is accessible to the 

user programs. It creates an entry in the protocol switch table of the kernel, such that 

whenever a program opens an inet
 2

 socket with domain AF-CCITT and interface name 

zssn, the socket will connect to the X.25 implementation which communicates through 

the synchronous driver on serial port n. Since the kernel end of the socket interface also 

uses mbufs to pass data in and out of the sockets, we can easily bypass X.25 by rewriting 

the send and receive interrupt handlers such that mbufs are passed directly between the 

synchronous driver and the socket interface. This then was the approach we adopted. 

1 mbufs are standard Unix system memory buffers. 
2Unix internet domain. 
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5.1.2 The Kernel to User Interface 

The modified driver is accessed the same way the X.25 implementation is accessed. A 

socket of family AF_CCITT and ifname "zssO" opens a synchronous driver on serial port 

A, and the same socket with ifname "zssl" opens a synchronous driver on serial port B. 

After the correct socket is opened, the driver can be accessed through ioctl() calls on the 

socket. 

There are 4 different primitives for an ioctl() call to the driver. SIOCGIFFLAGS 

and SIOCSIFFLAGS are used to read and write the status flags for the specified port, 

and SIOCGIFADDR and SIOCSIFADDR are used to read and write the configuration 

information. 

A sample piece of code that access the driver is shown in Appendix C. 

5.1.3 Port Configuration 

The serial ports on the back of the SUN workstations were designed to talk to devices such 

as modems, and are configured as DTE ports. However, the test system is responsible 

for setting up a ferry connection, and is therefore classified as a DTE also. In order to 

connect the test system to the SUN workstation, we have to either use a null modem 

cable or modify the test system so that it talks to a DTE. Fortunately, the IDACOM 

MPT allows the role of the protocol (i.e., as a DTE or DCE) to be chosen independent 

of the interface, thus we were allowed to keep the testing software to operate as DTE 

while using a DCE type interface. 
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5.2 Adding a TP /0 E/D 

5.2.1 Functions implemented in the TP /0 E/D 

Like the packet layer E/D, there is no reference implementation in the TP/0 E/D. The 

only functions provided in the TP/0 E/D are sending and receiving of Transport services 

through the upper SAP, and the sending and receiving of TPDUs through the lower SAP. 

5.2.2 Difference from the Packet Layer E/D 

In the Packet Layer E/D, all primitives are encoded into a single linear buffer packed in 

one Ferry packet. The linear buffer is accepted directly by the IUT as input. The main 

difference of the TP/0 E/D is that it must turn the Transport Services into a form the IUT 

recognizes, which is non-linear. The TP/0 IUT takes parameters in a structure form, and 

the structure can have pointers to buffer structures. Obviously, one cannot pass linked 

structures between the Active and Passive Ferries. Thus, a Transport Service Primitive 

is broken down into three ferry packets before it is sent. The first packet consists of the 

event identifier which identifies the parameters to follow. The second packet contains a 

linear structure which has all the parameters to the primitive associated with the event 

ID, while the third packet has the service data packed into a linear buffer (see Figure 

5.13). Note that in some primitives where service data is not present, the buffer structure 

does not exist. In the case where the primitive has no parameters, there may not even 

be an EPA. Thus in the first two bytes of the second ferry fragment, two boolean values 

denote the presence or absence of the EPA part of the second and third ferry packets 

respectively. 

In the Packet Layer IUT, no useful information is carried inside the (N-1) SDU. 

However, TPDUs are carried in the Network Service Data. Thus another difference from 

the Packet Layer E/D is that the TP/0 E/D has to do encoding and decoding of data 
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Figure 5.13: PTE ASP to Ferry Buffer Translation 
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packed inside the (N-1) service. When data comes from the lower SAP, the encoder has 

to determine the type of network service primitive, as well as what TPDU it contains in 

case the network primitive is a data indication. 

5.3 Interfacing with the OSI-PTE 

5.3.1 The Dispatcher 

The dispatcher is written specifically to handle communication between the OSI-PTE 

stack and the serial interface. It is integrated with the physical layer. Its function is to 

turn incoming frames and timeouts into events and post them to the appropriate layers. 

As Unix sockets do not generate interrupts on receipt of data from the serial interface, 

incoming data is detected by periodic polling. The system timer generates interrupts 

which update the global PTE timer queue on timeouts, and expired timer events are 

extracted from the queue and processed between incoming frames. A simplified diagram 

of the dispatching algorithm is shown in Figure 5.14. 

5.4 Diagnostic Testing a TP/0 Implementation in OSI-PTE 

When we tested the TP/0 implementation (IUT) in the OSI-PTE, the implementation 

is not even complete. With the help of our test system, we were able to get the IUT 

running in considerably less time than if the test system were unavailable. 

5.4.1 Using Interactive Mode testing in the T M 

The main advantage of using Forth in the MPT test system is that Forth is an interpreted 

language. This means that interactive commands can be constructed and executed on 

the fly during actual testing. This speeds up diagnostic testing by eliminating the need 

to edit and recompile test programs. 
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Figure 5.14: Algorithm of the PTE Dispatcher 
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Using the interactive mode of the TM, we were able to issue a send or start timer 

event to the IUT, watch for an event from the IUT on the monitor, decide what action 

to take, and then type in that action on the keyboard. We were also able to construct 

loops that send an arbitrary number of data primitives to the IUT in one sentence on 

the keyboard. As well, it was easy to peek in and change any parameter of any primitive 

to be sent by just modifying the corresponding Forth variable interactively. Since the 

built in Forth interpretor is used also as the command interpreter for the TM, no special 

command interpretor for those commands has to be written. 

5.4.2 Tracing States in the SUT 

The state out event in the OSI-PTE entity came in very handy when we tried to debug 

the TP/0 implementation. We wrote a separate entity that intercepts and prints all 

state out events posted by specified entities. Cross referencing the state diagram on the 

protocol specification, we were able to locate quickly the implementation errors. 

The typical sequence of debugging using both the interactive mode of the TM and 

the state tracing entity is as follows: 

1. Go to a chosen state. 

2. Issue a selected event interactively on the test system. 

3. If the IUT goes to the correct state, mark an OK in that entry of the protocol 

specification state table. 

4. If the IUT fails to respond to that event, mark that entry of the protocol specifi­

cation state table as a fail verdict. 

5. For each failure edge, examine the IUT source code, find the case statement for 

that particular state and the case for that particular event and correct the code. 
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6. repeat until all edges are marked OK. 

At this point of disgnostic testing, PDUs sent are mostly default PDUs. By the end of 

the diagnostic test sequence, the IUT should be working in all normal cases. Conformance 

testing can then be performed. 

5.5 Conformance Testing the TP/0 Implementation 

After the implementation was sufficiently debugged, we ran a set of test cases against 

it. The test cases were generated by traversing the External Behavior Expression (EBE) 

[18] graph of TP/0. 

5.5.1 Test Suite Selection 

Applying the algorithms in [18], a set of I/O subpaths were generated. Because of 

limitations in the protocol implementation, only control flow was considered. Thus a test 

case was derived from each I/O subpath. 

5.5.2 Translating into ITL 

The 29 I/O subpaths were manually translated into 14 ITL test scripts. The smallest of 

them consisted of two states, and the largest of them had nine states. 

5.5.3 Conformance Test Results 

A number of errors in the state machine were detected as a result of running the test 

scripts on the TP/0 implementation. These have been corrected. 

In some of the events, connection information was not passed correctly between the 

transport service and the TPDUs, and that has been corrected also. 
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Some of the features that the IUT was supposed to support was found to be missing 

in the implementation, and that section of the code was added. 

Overall, the 14 test scripts ran uncovered a surprisingly large amount of errors and 

irregularities in the implementation. These would be much more difficult to catch and 

to correct if testing was not carried out in the first place. 

After the testing was performed, we also felt much more confident that the imple­

mentation will interwork with other implementations that conform to the specifications. 
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Conclusions 

During the period of our research, prototype test systems were implemented in the Unix, 

MPT and OSI-PTE environments. Several protocol implementations in the above en­

vironments were conformance and diagnostic tested. An attempt was made to address 

various issues of test system design and reported in this thesis, including the followings: 

• Test system implementation issues in different protocol testing environments were 

discussed and compared. 

o Existing test development tools and environments were studied, and new tools built 

for test development and test management were discussed. 

o A scheme for structuring the E/D in a modular fashion was given. PDU specifi­

cation methods were compared, and a mechanism for storing and retrieving test 

PDUs was given. 

• Issues and difficulties in actual conformance and diagnostic testing were described, 

and their solutions summarized. 

In summary, this thesis has covered a wide range of protocol testing issues in order 

to gain insight into what protocol testing in reality is all about. 

By using the Ferry Clip based Test System extensively for all our testing and debug­

ging, feasibility and usefulness of the Ferry Clip concept is confirmed. 
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Appendix A 

Sample I T L Test Script 

( SAMPLE FERRY CLIP ITL TEST SCRIPT ) 

( ) 

( ENTER FUNCTION KEY CF1 TO START THE TEST ) 

TCLR 

0 STATE{ FK.CFl ACTI0N{ 

PRINT.TIME WCR 

" TEST STARTING" BTYPE WCR 20 C0UNTER1 ! 

F.CONN 1 NEW.STATE 

>ACTION 

>STATE 

1 STATE-C F.CONN.CONF 1 ?RX ACTION-C 

TPT:T_CONN_REQ 

2 NEW.STATE 

}ACTI0N 

0THER_EVENT ACTION* 

" VERDICT : " RTYPE " INCONCLUSIVE" YTYPE WCR 

TM.STOP 

}ACTI0N 

}STATE 

2 STATE{ T_C0NN_CFH 1 ?RX ACTION* 

TPT:T_DISC_REQ 

3 NEW.STATE 
}ACTION 

OTHER.EVENT ACTION* 

" VERDICT : " RTYPE " FAILED" RTYPE WCR 

F.DISC TM.STOP 

}ACTION 

>STATE 

3 STATE* N.DISC.REQ 1 ?RX ACTION* 
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Appendix A. Sample ITL Test Script 

OTHER.EVENT 

}• STATE 

F_DISC 

" VERDICT : " RTYPE " PASSED" BTYPE WCR 

" TEST FINISHED" BTYPE WCR TM.STOP 

}ACTION 

ACTION-C 

" VERDICT : " RTYPE " FAILED" RTYPE WCR 

F.DISC TM.STOP 

}ACTION 



Appendix B 

Sample Input to T T C N Parser 

DEFAULT IDENTIFIER: LIB.otherwise 

COMMENTS: can be used wherever unexpected and ill e g a l events 

are to be trapped 

DEFAULTS: 

BEGIN 

LIB_otherwise[X] 

X70THERWISE f a i l 

END 

TEST IDENTIFIER: 306.2.1.3 

SUMMARY: Test whether the Auto-forward-indication service element 

the IUT autoforwards an IM-UAPDU to the tester and generates 

NonReceiptNotification with reason "autoforwarded" 

BACKWARDS REFERENCE: 306.2.1.3 

DEFAULTS: LIB_otherwise[I] 

BEGIN 

TISUBreq SUBreq_17 

I!Start AFNR-Tmr 

TTDELind 

T?DELind 

I?Timeout 

TTDELind 

TTDELind 

ITTimeout 

ITTimeout 

DELind_94 

DELind_95 

AFNR-Tmr 

DELind_95 

DELind_94 

AFNR-Tmr 

AFNR-Tmr 

f a i l 

f a i l 

f a i l 

END 
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Appendix C 

Primitive Specification for T P / 0 

SEND PRIMITIVES RECEIVE PRIMITIVES PARAMETERS 

N_C0NN_IND N-CONN-REq LI 
N_C0NN_CFM N-CONN-RSP CRDT 
N.DATA N-DATA-REQ SRC 
N_DACK_IND N-DACK-REQ DEST 

N.EXPD.IND N-EXPD-REQ CLASS 
N.RSET.IND N-RSET-REQ OPT 
N_RSET_CFM N-RSET-RSP DREASON 
N_DISC_IND N-DISC-REq RCAUSE 
T.CONN.REQ T-CONN-IND EOT 
T.CONN.RSP T-CONN-CFM NR 

T.DISC-IND ID 
T_DATA_REQ T-DATA-IND 
T.EXPD.REQ T-EXPD-IN 
CR TPDU.CR 
CC TPDU.CC 
DR TPDU.DR 
DC TPDU.DC 
DT TPDU_DT 
ED TPDU.ED 
AK TPDU.AK 
EA TPDU.EA 
RJ TPDU.RJ 
ER TPDU.ER 
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Appendix D 

Sample Input to PDU Parser 

IM-UAPDU_1_1 

REDEFINE P3.DeliverEnvelope::= 

SET{[0] IMPLICIT Pi.ContentType, 

original [i] IMPLICIT Pl.EncodedlnformationTypes, 

[2] IMPLICIT P3.DeliveryFlags, 

thisRecipient [4] IMPLICIT Pl.ORName, 

submission [7] IMPLICIT PI.Time 

} 
PDU BASE.IM-UAPDU.l 

REPLACE 

BASE_IM-UAPDU_l_Body 

BY 

SEQUENCE OF-C 

SEqUENCE{SET{ 

SET-C 

ContentType INTEGER [2] /*p2*/ 

original SET{BITSTRING ['20'H]} /*{iA5Text}*/ 

DeliveryFlags 

BITSTRING ['40'H] /*conversion*/ 

/•Prohibited*/ 

thisRecipient Pl.ORName [TSP_ORName_I_l] 

submission Time> [TSP_UTCTime_l] 

} 

IM-UAPDU [L_IM-UAPDU_1] 

> 
} 

IM-UAPDU_0_1 PARTIAL DEFINITION { 

IM-UAPDU.Heading.originator 

ORName [TSP_ORName_I_l] 

IM-UAPDU.Heading.authorizingUsers 

1 ORDescriptor [L_0RDescriptor_4] 

> 
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Appendix E 

Sample Code to access the Synchronous Serial Interface 

m a i n ( a r g c , a r g v ) 

r e g i s t e r c h a r * * a r g v ; 

i n t a r g c ; 

{ 

r e g i s t e r i n t s; 

/ * Open s o c k e t c o n n e c t i o n t o s e r i a l i n t e r f a c e * / 

i f ( ( s = s o c k e t ( A F . C C T T T , SOCK.STREAM, 0 ) ) < 0) 

s y s e r r ( " s o c k e t " ) ; 

/ * G e t i n t e r f a c e name f r o m command l i n e * / 

argv++; 

i f n a m e = * a r g v ; 

/ * G e t i n t e r f a c e f l a g s * / 

s t r c p y ( i f r . i f r _ n a m e , i f n a m e ) ; 

i f ( i o c t l ( s , S I O C G I F F L A G S , ( c h a r * ) & i f r ) < 0) 

s y s e r r ( " i o c t l ( S I O C G I F F L A G S ) " ) ; 

i f f l a g s = i f r . i f r . f l a g s ; 

/ * S e t d e f a u l t o p t i o n s * / 

s t r c p y ( i f r . i f r _ n a m e , i f n a m e ) ; 

i f ( i o c t l ( s , SIOCGIFADDR, ( c h a r * ) & i f r ) == 0) 

b c o p y ( ( c h a r * ) & i f r . i f r _ a d d r , ( c h a r * ) & x 2 5 c o n f , s i z e o f ( x 2 5 c o n f ) ) ; 

/ * D i s p l a y s t a t u s * / 

i f ( a r g c == 2) { 

s t a t u s ( ) ; 

e x i t ( 0 ) ; 

} 

} 
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