
I S S U E S O N D E S I G N A N D I M P L E M E N T A T I O N O F P R O T O C O L T E S T

S Y S T E M S

By

Bernard P. Lee

B. Sc. (Computer Science) University of Washington

A THESIS S U B M I T T E D IN PARTIAL F U L F I L L M E N T O F

T H E R E Q U I R E M E N T S F O R T H E D E G R E E O F

M A S T E R O F S C I E N C E

in

T H E F A C U L T Y O F G R A D U A T E STUDIES

C O M P U T E R S C I E N C E

We accept this thesis as conforming

to the required standard

T H E UNIVERSITY O F BRITISH C O L U M B I A

September 1989

© Bernard P. Lee, 1989

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

Department

The University of British Columbia
Vancouver, Canada

DE-6 (2/88)

Abstract

The advant of Open Systems Interconnection (OSI) accentuates the importance of confor­

mance testing of protocol implementations. Before a protocol implementation is delivered

for conformance testing, it often has to go through several iterations of diagnostic testing.

This thesis discusses various issues that arise in the design and implementation of

protocol test systems for conformance and diagnostic testing.

Issues discussed in this thesis include test system implementation decisions, test man­

agement, test development environment and tools, test languages, encoding and decoding,

PDU specification and storage, and portability problems.

The experience of testing different protocol implementations on three different envi­

ronments are also discussed.

n

Abbreviations

AFC Active Ferry Clip

ASN.l Abstract Syntax Notation One

ASP Abstract Service Primitive

ATS Abstract Test Suite

COS Corporation for Open Systems

CPU Central Processing Unit

E/D Encoder / Decoder

ETS Executable Test Suite

FCP Ferry Control Protocol

FCTS Ferry Clip based Test System

FSM Finite State Machine

FTMP Ferry Transfer Medium Protocol

INET Internet

IPC Interprocess Communication

ISO International Standards Organization

ITL IDACOM Test Language

IUT Implementation Under Test

LMAP Lower Mapping Module

LT Lower Tester

MPT Multi-port Protocol Tester

OSI Open Systems Interconnection

PDU Protocol Data Unit

PFC Passive Ferry Clip

PT Protocol Tester

PTE Protocol Testing Environment

SAP Service Access Point

iii

S U T System Under Test

T M Test Manager

TP/0 Transport Layer class zero

T T C N Tree and Tabular Combined Notation

TJT Upper Tester

iv

Table of Contents

Abstract ii

Abbreviations iii

Contents v

List Of Figures viii

Acknowledgement x

1 Introduction 1

1.1 Communication and Protocols 1

1.1.1 The OSI Reference Model 1

1.1.2 Protocol Services and Access . 2

1.2 Conformance and Diagnostic Testing 3

1.3 Protocol Test Systems 4

1.4 Goals of the Thesis 4

1.5 Layout of the Thesis 5

1.6 Relations to the Ferry Clip Project 5

2 Environments 7

2.1 The Unix Environment 7

2.1.1 Unix as a Test System Environment 7

2.1.2 Prototypes built under Unix 8

v

2.2 The IDACOM MPT Environment 8

2.2.1 Processors and Interfaces 8

2.2.2 Operating System and Programming Environment 10

2.2.3 Prototypes built under MPT 10

2.3 The OSI-PT Environment 11

2.3.1 Protocol Entities 11

2.3.2 Dispatching in the OSI-PTE 13

2.4 The Ferry Clip 13

2.4.1 Structure of a FCTS 14

2.4.2 Realization of Abstract Test methods 14

2.4.3 Advantages of using a FCTS 16

2.4.4 Implementations 16

3 Test Suites and Test Management 17

3.1 The Test Manager 17

3.2 Test Management, Test Suites and Test Languages 17

3.2.1 Tree and Tabular Combined Notation 18

3.2.2 General Purpose Languages 21

3.2.3 Specialized Executable Test Languages 22

3.3 A Comparison of Test Development Environments 22

3.3.1 The TM in the IDACOM MPT 23

3.3.2 The XCTS Project 25

3.3.3 The ITEX environment 26

3.4 A Test Development Tool using TTCN 28

3.4.1 Description 28

3.4.2 Design decisions 28

vi

3.4.3 Application 30

3.4.4 Implementation 32

4 PDU Encoding and Storage 33

4.1 The Need for Modularity 33

4.2 A Modular Scheme for Structuring the E/D 33

4.2.1 Primitive Specification 34

4.2.2 Encoding and Decoding 34

4.3 Hard Coding PDUs 35

4.4 PDU Specification Languages 35

4.5 An E/D Equivalent - The PDU Library 36

4.5.1 The PDU Parser Module 38

4.5.2 PDU Storage Module 38

4.5.3 Interaction between the Modules 39

4.5.4 Implementation 40

5 Switching SUTs and IUTs 42

5.1 Connecting the MPT to a SUN Workstation 42

5.1.1 The Synchronous Serial Driver 43

5.1.2 The Kernel to User Interface 45

5.1.3 Port Configuration 45

5.2 Adding a TP/0 E/D 46

5.2.1 Functions implemented in the TP/0 E/D 46

5.2.2 Difference from the Packet Layer E/D 46

5.3 Interfacing with the OSI-PTE 48

5.3.1 The Dispatcher 48

5.4 Diagnostic Testing a TP/0 Implementation in OSI-PTE 48

vii

5.4.1 Using Interactive Mode testing in the T M 48
5.4.2 Tracing States in the SUT 50

5.5 Conformance Testing the TP/0 Implementation 51

5.5.1 Test Suite Selection 51

5.5.2 Translating into ITL 51

5.5.3 Conformance Test Results 51

6 Conclusions 53

A Sample ITL Test Script 54

B Sample Input to T T C N Parser 56

C Primitive Specification for TP/O 57

D Sample Input to PDU Parser 58

E Sample Code to access the Synchronous Serial Interface 59

Bibliography 60

viii

List of Figures

1.1 OSI Reference Model 2

2.2 M P T Structural Block Diagram 9

2.3 A n OSI-PTE Entity 12

2.4 Structure of a F C T S 15

3.5 Procedure of Testing a Protocol Implementation 18

3.6 Sample T T C N - G R source file 20

3.7 Structure of the T M in the M P T 24

3.8 X C T S ATS to ETS Translation 25

3.9 The I T E X Test Suite Development Environment 27

3.10 Structure of an Executable Test Tree 29

3.11 Test System utilizing the T T C N Parser 31

4.12 P D U Parser and P D U Storage Modules 37

5.13 P T E A S P to Ferry Buffer Translation 47

5.14 Algorithm of the P T E Dispatcher 49

ix

Acknowledgement

First, I would like to extend a very special thanks to my supervisor Dr. Samuel

T. Chanson. Throughout my research, he has always been there for discussion and

advice. At times of difficulties, his encouragement and support contribute greatly to the

completion of my thesis.

A special thanks to my partner and close friend Neville J. Parakh for his support and

determination to see our project through to completion.

Thanks to Dr. H. X. Zeng for his advice and finding the time for being the second

reader of my thesis.

Thanks to Dr. D. Rayner for his advice and encouragement. Thanks to B. Smith,

I. Chan, H. See, S. Chan, V. Lee and C. Anderson for always finding the time to help

me. Thanks to the technical staff in the Department of Computer Science, especially P.

Phillips and M. Lau for all the help they gave us in setting up our system.

Thanks to the Department of Computer Science at the University of British Columbia,

the Natural Sciences and Engineering Research Council (NSERC) and IDACOM Elec­

tronics for providing me with facilities and financial support during my research.

Last but not the least, a very special thanks to my parents. Even though far away

from Vancouver, they have consistently provided me with the most thorough support

and encouragement without which none of this would have been possible.

x

Chapter 1

Introduction

This chapter describes the motivation of our research. A brief description of the current

work on protocol test systems at the University of British Columbia is given, followed by

a layout of the rest of the thesis.

1.1 Communication and Protocols

Computers nowadays are often connected into a network to access shared hardware re­

sources such as tape drives, printers and disks, as well as software resources such as files

and databases. As well, data have to be moved from computers to computers to meet

the needs of an information hungry society. Thus, modern computers must be able to

communicate with other computers reliably and efficiently. In order to achieve this goal,

communication protocols were developed and put into work.

1.1.1 The OSI Reference Model

A communication protocol is a set of rules or conventions by which two separate entities

communicate with one another. In order to be able to handle all possible errors as well

as different communication media, communication protocols have become too complex

to be implemented in a single module. The International Standards Organization (ISO)

has developed a model for structuring communication systems into seven distinct layers

(Figure 1.1), called the The Open Systems Interconnection (OSI) Reference Model [7].

Each of the seven protocol layers performs a well-defined subset of the seven-layer protocol

1

Chapter 1. Introduction 2

APPLICATION LAYER

PRESENTATION LAYER

SESSION LAYER

TRANSPORT LAYER

NETWORK LAYER

DATALINK LAYER

PHYSICAL LAYER

Figure 1.1: OSI Reference Model

stack. Each layer uses the services from its service provider, which is the layer immediately

beneath it, and in turn provides service to its service user, which is the layer immediately

above.

By clearly defining the services provided by each layer, the OSI reference model thus

allows different protocol implementations to interwork together.

1.1.2 Protocol Services and Access

The OSI reference model states that 'Only the external behavior of Open Systems is

retained as the standard of behavior of real Open Systems'. Therefore, each protocol

entity is only accessible through service access points (SAPs), namely the upper SAPs

which interface with the layer immediately above, and the lower SAPs which interface

Chapter 1. Introduction 3

with the layer immediately below.

Services are defined by a set of abstract service primitives (ASPs). Each ASP is

associated with a fist of parameters, which constitute a complete description of a service

provided.

Protocol layers use the data transfer services of the provider to transfer protocol

data units (PDUs). PDUs carry all the information necessary for one protocol layer to

communicate with its remote peer entity.

1.2 Conformance and Diagnostic Testing

In order for OSI to work, protocol implementations must be thoroughly tested to see if

they conform to the specifications as defined by the standards to which they purport to

adhere. The purpose of conformance testing is to increase the probability that different

protocol implementations can interwork together. Conformance testing is usually done

in test centers for certification purposes.

Before a protocol implementation is delivered for conformance testing, it often has to

go through several iterations of diagnostic testing. Diagnostic testing is usually performed

by the vendor at different development stages and often involves the use of protocol test­

ing tools. Since diagnostic testing is performed by the vendor, all the available SAPs may

be used, including those the vendor does not wish to expose to the outside world. Hence,

diagnostic testing allows a higher degree of control and observation of the implementation

under test (IUT)
 1

 as opposed to conformance testing.

J The Implementation Under Test is 'an implementation of one or more OSI protocols in an adjacent
user/provider relationship being that part of a real open system which is to be studied by testing'.

Chapter 1. Introduction 4

1.3 Protocol Test Systems

Protocol test systems are specialized hardware and software tools designed to perform

conformance and diagnostic testing of protocol implementations.

OSI has defined methods for protocol testing [6], namely the remote test method, the

distributed test method, the coordinated test method, and the local test method.

The local test method, though the most powerful, has not been used much because

it is impractical to implement. In order to do local testing, all test system software has

to reside in the system under test (SUT)
 2

. This means that the test system has to be

developed on the same system that runs the IUT and must be completely rewritten for

each different SUT.

Recently, the Ferry Clip [1] [2] [4] method was introduced to realize all the ISO test

methods, including the local test method (see section 2.4 for a brief description). By

using the Ferry Clip, the test system no longer has to reside in the SUT in order to do

local testing. Thus, the local test method is more appropriately termed the direct test

method, since the testing software is no longer "local" to the IUT.

As the direct test method is the most powerful test method available, and it is made

feasible by the Ferry Clip, our research has been on design and implementation issues of

test systems for direct testing. Such test systems can easily be adapted to do remote,

distributed and coordinated testing.

1.4 Goals of the Thesis

The purpose of this research is to study the design and implementation issues of protocol

test systems, especially how different requirements and constraints affect the design of

these systems. Issues arising from doing actual conformance and diagnostic testing on

2The system under test is 'the real open system in which the IUT resides'.

Chapter 1. Introduction 5

different protocol implementations under different environments will also be discussed.

One of our main goals is to study the portability issues involved in building a test

system on various hardware and software architectures. The test system should be struc­

tured such that when a new IUT is tested, the code that needs to be rewritten is mini­

mized. By using the same test system for different IUTs, we also studied how we could

minimize the porting efforts when testing IUTs implemented on different software envi­

ronments.

As of this date, we have tested implementations on three different environments -

Unix, MPT [12] and OSI-PTE [15]. Unix is a popular operating system which runs on

many different mainframes and workstations; MPT is a general-purpose protocol tester

manufactured by IDACOM Electronics; and the OSI-PTE is a sophisticated test system

currently being developed at the University of British Columbia.

1.5 Layout of the Thesis

Following the introduction, Chapter 2 describes the different software and hardware

architectures being considered, and the constraints and requirements involved when im­

plementing the test software on these different architectures. Chapter 3 discusses test

management and test language issues when building a test system. Chapter 4 investigates

schemes for PDU encoding, decoding, storage and representation. Chapter 5 describes

portability issues encountered while tailoring a Ferry Clip based Test System (FCTS) to

test different IUTs in different SUTs, and chapter 6 concludes the thesis.

1.6 Relations to the Ferry Clip Project

Although much of the testing was done with the Ferry Clip based Test System (FCTS)

developed at the University of British Columbia, most of the materials in this thesis are

Chapter 1. Introduction 6

not restricted to Ferry Clip applications alone.

Chapter 5, however, is dedicated to the study of portability issues encountered when

using the FCTS on different protocol implementations under different SUTs.

The FCTS used in this thesis is developed jointly with Neville J. Parakh of the

University of British Columbia. Details on the conceptual design and implementation of

the FCTS can be found in his M.Sc. thesis [17].

Chapter 2

Environments

During the course of the research, several test software prototypes were built. Three

programming environments, namely Unix, MPT and OSI-PTE are used for our test

system prototype implementations. A discussion of these environments, together with a

brief description of the Ferry Clip approach, is given in this chapter.

2.1 The Unix Environment

Unix is probably the most widely networked operating system to date. Originally devel­

oped at AT&T as an operating system for interactive programming, it soon became one

of the most used operating systems for minicomputers, workstations, and now PCs. We

shall assume that the reader of this thesis is relatively familiar with the Unix operating

system, and will not go into details.

2.1.1 Unix as a Test System Environment

The biggest advantage of implementing a test system in Unix is the availability of pro­

gramming, debugging and text processing tools. We were able to produce code relatively

quickly, and symbolic debuggers have cut our development time significantly.

Text processing tools in Unix played a particularly important role as an aid to refor­

mat existing test suites. We found the macro facility and the ability to perform global

search and replace operations using complex regular expressions in the vi and ex editors

indispensable.

7

Chapter 2. Environments 8

Lex and yacc are also extensively used to develop some of our prototypes, especially

those which requires a formalized input syntax.

2.1.2 Prototypes built under Unix

A prototype test suite development tool has been built under Unix and is discussed in

Chapter 3. A PDU Library module has also been prototyped in Unix. The motivation

and design issues of the PDU Library is described in Chapter 4.

The OSI-PTE, which will be discussed later in this chapter, was also developed in

Unix.

2.2 The IDACOM MP T Environment

The MPT368.2 [12] is a portable protocol tester (PT) manufactured by IDACOM Elec­

tronics. It runs a proprietary operating system with a built-in Forth interpreter. It

has three Motorola 68000 CPUs, expandable to six. Memory is partitioned between the

CPUs, but one CPU can access another CPU's memory partition. The CPUs communi­

cate through shared memory and inter-CPU messages (See Figure 2.2).

2.2.1 Processors and Interfaces

One of the three CPUs is the main CPU, and has no dedicated test ports. The other

CPUs are used as test CPUs, and each of them has its own set of interface adapters at

the back.

Interface types supported include V.24 (RS-232C), V . l l , V.35 and V.36, and interface

configuration parameters can be tailored to suite most existing protocols.

In addition , an auxiliary serial port is available for file transfer and remote tester

access. A printer port comes handy for test logging.

Chapter 2. Environments
9

Figure 2.2: MPT Structural Block Diagram

Chapter 2. Environments 10

2.2.2 Operating System and Programming Environment

The PT's operating system is event driven. Events are triggered by an incoming frame,

a keyboard entry, a timer expiration or an inter-CPU message. Normally, the system

handles all the events, but the user could write handlers to takeover selected events.

A l l CPUs are single threaded, but handlers can be triggered even if a program is

running on a C P U . Thus, simultaneous tasks could be easily handled. This is a useful

feature for multi-party testing, since more event handlers can be added to the tester as

the number of connections required increases.

Currently, all programming on the M P T are done on an extension of FIG-Forth 1 . A l l

system and user commands are also defined as Forth words. Eventually, this operating

system will be replaced by a C and window based operating system, and the M P T will

run a version of the OSI-PTE described later in this chapter.

2.2.3 Prototypes built under M P T

A full blown F C T S was developed under the M P T environment. The M P T environment

was selected for our primary F C T S implementation.

The F C T S / M P T was used for studying the portability issues encountered when

performing conformance and diagnostic testing on different environments. This will be

discussed in Chapter 5.

The M P T is used commercially to perform conformance and diagnostic testing on

protocol implementations. By building our primary test system on the M P T , we believe

the issues that arise will be similar to that encountered in real life protocol testing.
1 FIG-Forth is a version of Forth whose standard is defined by the Forth Interest Group.

Chapter 2. Environments 11

2.3 The OSI-PT Environment

The OSI-PTE [15] [16] is a new environment for the implementation and testing of

computer communications protocols. Currently it runs on the Unix operating system.

Eventually it will be ported to the MPT.

The OSI-PTE is an event driven system. Each protocol is structured as a single or a

group of Protocol entities (see Figure 2.3). Communication between protocol entities is

performed through an event-posting scheme whereby one protocol entity posts an event

to another protocol entity.

The important events are ASP Up events to the service user, ASP Down events

to services provider, and timer expiry events from the system. Other events include

PDU Up and PDU Down events which are used internally by each protocol entity state

machine, and State Out and Error Out events which are 'probes' used for conformance

and diagnostic testing purposes.

2.3.1 Protocol Entities

Each protocol entity in the OSI-PTE is uniquely identified by an Entity Identifier (NID).

Entities must know the NIDs for both its service user and service provider in order to

post events to them.

Request of service from the service provider is done by posting an ASP Down event

on the service provider NID. Service data units are passed to the service user by posting

an ASP Up event on the service user NID.

Each ASP for a protocol entity is identified by an Event Identifier (EID). Associated

with each EID is an Event Parameter Area (EPA), a structure that contains all the

parameters to the ASP.

Multiplexing and demultiplexing of services in each protocol entity are done through

Chapter 2. Environments

(N) ASP Down (N) ASP Up

1 t

(N) PDU Down /
(N) PDU Up

Timer In

State Out

Error Out

(N- 1) ASP Down (N- 1) ASP Up

Figure 2.3: An OSI-PTE Entity

Chapter 2. Environments 13

Connection Control Blocks (CCB). Each time a new connection is made to the protocol

entity, a Connection Identifier (CID) is assigned and returned. Service users can then

specify which connection to use by specifying the CID when posting.

Thus event posting is done in the form PostEvent(NID, CID, EID, EPA), which

specifies the entity, connection, event and parameters respectively. Overall, the system

resembles the OSI Reference Model much more closely than the other two environments

discussed.

2.3.2 Dispatching in the OSI-PTE

Since all entities are event driven, some mechanism is needed to arbitrate all incoming

and outgoing data and turn them to events. We call this mechanism the dispatcher.

The heart of a PTE implementation is the dispatcher. All incoming and outgoing

frames, as wells as timer expiries are handled by the dispatcher. The dispatcher normally

has complete control of the environment. When an incoming frame or a timer expiry

occurs, the dispatcher posts an event to the appropriate entity, thus passing control to

it.

By posting an event, an entity gives control to another entity. After the event is

processed by each of the related entities through the chain of event posting, control is

returned to the dispatcher, which could then clear the outgoing data and wait for another

event. More details of the PTE environment can be found in [15] and [16].

2.4 The Ferry Clip

A brief description of the Ferry Clip is given here as background information to the

materials discussed in Chapter 5.

The Ferry Clip concept is a generalization of the Ferry concept as defined by Zeng

Chapter 2. Environments 14

[1]. The main idea of the Ferry Clip is to transport test data transparently from the

system under test (SUT) to the test system, such that the test system can access either

or both of the SAPs of the remote IUT as if they were local. The part of the test system

software which originally resides in the SUT can thus be moved back to the test system,

minimizing the amount of software which needs to be rewritten for each IUT. For other

advantages of the Ferry approach see [4] and also section 2.4.3.

2.4.1 Structure of a FCTS

A Ferry Clip based Test System (FCTS) consists of two major components, an Active

Ferry Clip (AFC) which resides in the test system, and a Passive Ferry Clip (PFC) which

resides in the SUT (see Figure 2.4).

The two ferries runs the Ferry Control Protocol (FCP) in order to transfer test data

between the Test Manager (TM) in the test system and an external IUT residing in the

SUT. The FCP utilizes the data transfer service of some existing reliable protocol such

as X.25 or TCP/IP. The protocol which provides the data transfer service to the FCP is

known as the ferry transfer medium protocol (FTMP).

2.4.2 Realization of Abstract Test methods

The Ferry Clip approach can be used to realize the abstract test methods defined by

ISO. The direct test method is realized by attaching the passive ferry clip to both SAPs

of the IUT, allowing the test system to directly observe and control data in and out of

the SUT. The remote test method can be realized by attaching just the lower arm of

the passive ferry clip. The distributed and coordinated test methods can be realized by

using the upper arm of the passive ferry clip while the (N-1) protocol stacks are used to

transfer data from the test system to the IUT.

Chapter 2. Environments 15

Ferry Cl ip based Test System (FCTS)

Test Manager
(TM)

Encode r /
Decoder (E/D)

I
Act i ve Ferry

Cl ip (AFC)

System Under Test (SUT)

I
Pass i ve Ferry

Cl ip (PFC)

I

1
Imp lemen ta t i on
Under Test (IUT)

J

Ferry Transfer Medium Protocol (FTMP)

Figure 2.4: Structure of a FCTS

Chapter 2. Environments 16

2.4.3 Advantages of using a FCTS

For all the cases described above, both the Upper Tester (UT)
 2

 and the Lower Tester

(LT)
 3

 reside in the test system. This solves the synchronization, timing and ordering

problems between the UT and the LT found in conventional test methods [17].

Once the FCP is standardized, the FCTS can be used to test different IUTs with

little change required to the test system. This is in contrast to an ad hoc scheme where

the entire test system or at least a major portion of it has to be rewritten to test different

IUTs:

2.4.4 Implementations

The actual implementation of the FCTS prototypes will not be discussed in thesis, the

interested reader is referred to [17]. However, components which are of special interest

are outlined in Chapter 5 which is dedicated to the study of portability issues of using

the FCTS to test protocol implementations on both the MPT and the OSI-PTE. Most

of these components also apply to non-ferry applications.

2 The Upper Tester is the piece of software which sends and receives data to and from the test system
through the Upper SAP of the IUT.

3 The Lower Tester is the piece of software which sends and receives data to and from the test system
through the Lower SAP of the IUT.

Chapter 3

Test Suites and Test Management

This chapter discusses the role and operations of the Test Manager (TM). Different test

languages and test development environments are compared, followed by a description of

the design and implementation of a test development tool based on the Tree and Tabular

Combined Notation (TTCN) [14].

3.1 The Test Manager

The TM is that component of the test system that oversees the operations of the system.

It reads and executes the test script, performs PDU comparison and retrieval functions

through the Encoder/Decoder, and logs all incoming and outgoing data exchanges for

future analysis. Furthermore, it is the responsibility of the TM to continue or abort the

execution of a test script if an abnormal condition is detected.

3.2 Test Management, Test Suites and Test Languages

Carrying out conformance and diagnostic testing involves three main steps. First, abstract

test suite (ATS) for the protocol has to be derived or obtained. Second, the ATS has to

be converted into executable test suite (ETS). The final step involves loading the ETS

into the TM and running it against the IUT (Figure 3.5).

The structure of the TM on a test system is often dependent on the type of the test

language
 1

 it will support. There are three main types of test languages, namely, TTCN,
1

Test language is used to specify test cases.

17

Chapter 3. Test Suites and Test Management 18

A b s t r a c t

T e s t S u i t e

(A T S)

M a n u a l o r

A u t o m a t i c

T r a n s l a t i o n

E x e c u t a b l e

T e s t S u i t e

(E T S)

T e s t M a n a g e r I U T T e s t M a n a g e r I U T T e s t M a n a g e r I U T

Figure 3.5: Procedure of Testing a Protocol Implementation

general purpose languages, and specialized languages.

3.2.1 Tree and Tabular Combined Notation

Tree and Tabular Combined Notation (TTCN) [14] is currently being developed by ISO

as a test specification language. TTCN exists in two forms, namely the Graphical Form

(TTCN-GR) and the Machine Processable Form (TTCN-MP). The former is used fre­

quently to specify dynamic behaviors in ATS, while the latter is mainly used as an

intermediate representation during the ATS to ETS translation process by TTCN test

development tools. Since TTCN is a relatively new notation, its specification and usage

is still undergoing revisions.

Chapter 3. Test Suites and Test Management 19

A Description of T T C N

The main purpose of TTCN is to provide a notation for specifying generic or abstract

test cases which is independent of test methods, layers and protocols. The ISO document

describes TTCN as 'an informal notation with clearly defined, but not formally defined,

semantics'. In this way, ATS written in TTCN is intended to give precise instructions

on how to carry out testing of protocol implementations in a human readable form.

The graphical form of TTCN (TTCN-GR) uses indentation to convey a tree structure

of a test case, which makes it easy for human to understand (Figure 3.6).

The dynamic part of a test case is presented in the leftmost column of the table.

Execution is carried out from top to bottom, and from left to right. Whenever execution

of a TTCN event line succeeds, execution continues to the right. Whenever execution

of a TTCN event line fails, execution continues down to the closest event line with the

same indentation.

A TTCN event line has five main forms: send, receive, timer events, attachment trees

and jumps. Sends, receives and timers are specified in more or less the same format:

<SAP>[!|?]<event> [<label>] [<constraints-ref>] [<verdict>]

The ! or ? stands for a send event or a receive event respectively. The SAP field is a

text label identifing the SAP of the IUT at which the event is to occur. The event field

specifies either an ASP, a PDU or a timer event such as TIMEOUT.

The label field is used mainly by repeats and gotos. The constraints reference field is

a text cross-reference of the ASP, PDU or event whose details are specified in a separate

constraints list. The verdict represents a termination of the test case, where the execution

er 3. Test Suites and Test Management

Test Case Dynamic Behavior

Reference: TTCN_Examples/LC_Example
Identifier: LC_1
Purpose: An Example of TTCN-GR Behavior Description

Behavior
Description Label

Constraints
Reference Verdict Comments

EG.001 [L]
+INITIALIZE
L! CALL
L7ACCEPT

! DATA
L?RR
LIDISCONJIEQ
L?DISCON.CNF
L70THERWISE

L?OTHERWISE
L70THERWISE

CALL.l
ACC.l
DAT.l
RR.1
DISCREQ.1
DISCNF.l pass

f a i l
f a i l
f a i l

attach tree

1)
2)
3)

Extended Comments:

1) This OTHERWISE will match i f
2) This OTHERWISE will match if
3) This OTHERWISE will match if

event does not match DISCON.CNF.
event does not match DISCON_REq.
event does not match ACCEPT.

Figure 3.6: Sample TTCN-GR source file

Chapter 3. Test Suites and Test Management 21

of an event line with a non-empty verdict field will cause the test case to be assigned the

verdict specified and terminated.

The first line in the behavior description in Figure 3.6 is not a event. It is a test case

identification line which specifies the name of the test case and the SAPs used.

Using T T C N as a Test Language

Although TTCN is originally designed for the specification of ATS, it can also be used

directly as a test language if appropriate editing and parsing tools are available. The

advantage of using TTCN as a test language is that ATS written in TTCN can be directly

used by the test system with little or no change. However, test systems that use TTCN

as a test language require complex interpreting or compiling tools which are both difficult

to implement and demanding on computing hardware.

3.2.2 General Purpose Languages

For testing of protocol implementations on a smaller scale, regular programming lan­

guages like C and Pascal are commonly used to implement test suites. Usually, functions

are implemented to send and receive ASPs and PDUs, and each test case is written as

one program, either by hand or by the use of some test development tools.

The TM which uses a general purpose language is responsible for the archival and

coordination of the test programs and the supporting libraries, which is mostly the loading

and execution of compiled test cases. The TM might be simple enough to be merged

into test cases so that each test case is self contained and can be directly executed.

Test suites written using general purpose languages can easily be incorporated into

the test system. They can be changed easily, and can be used to express very complicated

operations.

Chapter 3. Test Suites and Test Management 22

However, translation from ATS can be time consuming, and the resulting ETS is not

likely to be portable.

3.2.3 Specialized Executable Test Languages

There are two main reasons for developing specialized test languages for conformance

testing. First, a specialized executable test language powerful enough to handle most

test suites is a good intermediate step between specification languages and program code.

Second, a specialized language designed especially for testing would be less complex than

a general-purpose language and easier to use.

Owing to the fact that most protocols are specified as finite state machines, special­

ized test languages are mostly state based and event driven. IDACOM Electronics has

developed their own specialized test language called the IDACOM Test Language (ITL)

[13]. The Corporation for Open Systems (COS) uses both ITL and another specialized

language they developed called Executable TTCN (ETTCN) [20].

Specialized test languages are compact and precise in describing dynamic behaviors,

but there is no existing standards, and specification for them are often informal. More­

over, since most specialized test languages are developed commercially, specifications

may not be available for the general public.

3.3 A Comparison of Test Development Environments

A capable test system often has a sophisticated test development environment which

features tools that complement the operation of the TM. A set of well designed test

development tools not only enhances the ease of use of the test system, it can actually

perform a large part of the work for a test suite programmer quickly and with less

possibility of errors.

Chapter 3. Test Suites and Test Management 23

Several test development environments currently being developed in North America

and Europe are described in this section. Their functionality and usefulness are compared

and discussed to gain insight of the desirable features in test development tools.

3.3.1 T h e T M in the I D A C O M M P T

The IDACOM MPT represents a very simple yet effective approach to test suite devel­

opment. By using special features of the Forth language, the MPT is able to built all

the test language features right into the native language itself. The ETS is compiled into

memory on demand, and the compilation process automatically links in the necessary

routines to encode and decode ASPs and PDUs.

The IDACOM MPT test development environment consists of just an editor for in­

put of ITL [13], IDACOM's proprietary test language. ETS can also be edited on a

workstation and then downloaded into the tester.

The structure of the TM in the MPT is shown in Figure 3.7.

The advantage of MPT's approach to test development is that it can be done on the

test site on a portable tester relatively quickly. During diagnostic testing, the test oper­

ator often wants to create test cases which are used once and then discarded. Using the

MPT, he does not have to go to a workstation, does all the compilation and downloading

and then come back to do a one time test case.

The disadvantage, of course, is that the large number of test suites written in TTCN

that already exist will have to be manually transformed into ITL in order to do full

conformance testing. Especially in higher layer protocols where each conformance test

suite has at least a few hundred dynamic behavior specifications and a thousand or more

constraints, manual translation would be extremely time consuming.

Chapter 3. Test Suites and Test Management 24

ETS Loader e ETS

ETS
Memory Test Logger

t

•F̂ Log

State Machine

I
ENCODER/DECODER

Figure 3.7: Structure of the TM in the MPT

Chapter 3. Test Suites and Test Management 25

Abstract Test Suite

Manual Translation

C O S test language

XCTS Compiler

*
ITL

Figure 3.8: XCTS ATS to ETS Translation

3.3.2 The XCTS Project

The XCTS Project, a joint development effort by COS and IDACOM, tries to remedy

the need to spend extensive effort in manually translating existing abstract test cases to

ITL, mainly by moving the development environment to a SUN workstation and creating

an intermediate source language between TTCN and ITL.

The structural diagram for ATS to ETS translation under XCTS environment is

shown in Figure 3.8.

The intermediate test language is very similar to ITL, with additional features such

as preprocessor statements and automatic parameter substitution for date and version.

The main advantage, however, is the ability to archive large amount of test suites and

selectively download as well as the availability of text processing tools on the workstation.

Chapter 3. Test Suites and Test Management 26

Since Abstract test cases in TTCN are still manually translated into the intermediate

test language, which is state based and quite different from TTCN, development of test

suites still takes time. However, with the use of the XCTS development environment,

the ability to perform full conformance testing is much enhanced.

3.3.3 The I T E X environment

The ITEX environment, developed by Swedish Telecom, takes a big step forward in

utilizing existing forms of ATS. A complete set of tools are available to edit and archive

TTCN as defined in ISO DP9646-3. Specialized editors are used for different types of

table inputs such as TTCN behaviors, test step libraries, and PDU / ASP constraints

using TTCN tables or ASN.l Modular Method [21].

The structure of the ITEX test suite development environment is shown in Figure

3.9.

Using this set of tools, ATS can be imported with just editing work. With the use

of translation scripts which specify the mapping between internal representation and the

object test languages, the test suites can be translated into different test languages with

relative ease.

The only drawback of this system is its size and speed. The prototype development

environment requires at least 8MB of main memory, and a minimum disk space of 200MB.

The prototype is very slow, and much more effort has to be spent to produce a relatively

bug free system of this size. In most applications other than specialized test centers,

application of the tool might just be impractical.

Chapter 3. Test Suites and Test Management

Funct iona l Interface
Graph ica l User Interface Graph ica l User Interface

System Archiver Manager Browser
Text

Editor

Table

Editor

ASN.1 TTCN.MP

Parser Parser

Internal Representa t ion

Fi le Store

Figure 3.9: The ITEX Test Suite Development Environment

Chapter 3. Test Suites and Test Management 28

3.4 A Test Development Tool using T T C N

Based on a comparison of the environments described above, an attempt was made to

build a TTCN test development tool that fits the best of both worlds. Our requirements

are as follows:

• The input format of the tool must be close enough to the existing ATS that only

editorial changes have to be made.

• It must provide output which a TM can execute directly.

• The size of the development tool must fit in an average workstation or a well

equipped PC or portable tester, without placing heavy requirement on the hard­

ware.

3.4.1 Description

We decided to build a parser which recognizes a plain text form of TTCN-GR (see

Appendix B) and builds a test tree with the same structure. The tree is then stored as a

binary image in a file, which will be loaded back into the test engine dynamically during

testing.

3.4.2 Design decisions

Several design decisions were made. First of all, no special editors are to be used for input.

The TTCN parser should be text based, and the tree structure is to be determined by

the relative indentation of the behavior description. The reasons for these decisions are:

• Purely text based parsers are more portable.

Chapter 3. Test Suites and Test Management 29

U A
U?B Fai l

U?C

L?D Pass

7TIME0UT Inconc.

T e s t S c r i p t

?T imeout(T1)
Inconclusive

Corresponding T e s t Tree

Figure 3.10: Structure of an Executable Test Tree

• Abstract test suites supplied in text format can be directly edited without having

to go through complex format translation.

• The size of the development system will be reduced if no specialized editors are

used.

Another decision made is that the output of the parser is to be in the form of linked

trees instead of a source language. Linked trees generated by the TTCN Parser are stored

in files. When the files are loaded back in, the pointers in the tree will be reconstructed.

The tree can then be directly executed by the test engine.

An example of a TTCN behavior and the corresponding tree structure generated by

the parser are shown in Figure 3.10.

Chapter 3. Test Suites and Test Management 30

The TM has to be specially written in order to execute the test tree. However, such

a TM will be very simple since it only needs to keep track of a pointer to the tree.

Each node would have the information containing what the TM should do (i.e. send an

event, expect an event, and set or check a timer.), and pointers to other tree nodes. The

information also includes what to do next if an action succeeds or what alternatives there

are if it does not.

There are several more advantages of using linked trees:

• Linked trees fit into the architecture of an event driven system since control need

not be transferred permanently to the ETS until execution terminates. Transitions

from one node to another provide excellent break points for returning control to

the TM.

• Re-entrance into the ETS is clean and easy since we only have to keep a pointer to

a tree node.

• Linked trees are very flexible since pointers to constraints, timers, conditions and

executable code can be added to a tree node easily.

• Since TTCN is itself expressed in a tree notation, implementation of TTCN features

such as test step attachment in linked trees are straightforward.

• Since constraints are referenced by pointers, test suite parameters can be dynami­

cally linked to the behavior tree at both configuration time and run time without

the need for modifying and recompiling the test cases.

3.4.3 Application

With proper interface with the TM, the TTCN parser can be used to produce executable

test trees from ATS quickly. Once the executable test trees are produced, the parser is

Chapter 3. Test Suites and Test Management 31

TTCN

Source

Constraint

Representation

TTCN

Parser
->

Tree

Representation

Test Log

Figure 3.11: Test System utilizing the TTCN Parser

no longer needed for the execution of the test cases.

Pre-defined PDUs and ASPs are referenced by name. A separate module is built

to archive the predefined PDUs and ASPs, and will be discussed in the next chapter.

Awkward test cases can be hand-coded into programs whose entry points can be stored

in the tree nodes. Test suite parameters can be linked into the test cases at any time

because of the dynamic nature of the executable test trees.

The structure of a test system utilizing the TTCN parser is shown in Figure 3.11.

Chapter 3. Test Suites and Test Management 32

3.4.4 Implementation

A preliminary prototype of the parser was built on a SUN workstation running SUN OS

4.0. It parses basic TTCN-GR into linked trees, but certain features such as tree attach­

ment, labels and loops have not yet been implemented. The prototype implementation

has about 840 lines of C code, and is now being augmented into a full blown application

at the joint UBC-IDACOM project at the University of British Columbia.

Chapter 4

PDU Encoding and Storage

A modular scheme for encoding and decoding PDUs is given in this chapter. Issues

concerning encoding and decoding PDUs are discussed. The design and implementation

of a PDU Library module, which is the functional equivalent of the Encoder/Decoder is

also described.

4.1 The Need for Modularity

The task of an Encoder/Decoder (E/D) is to translate ASPs to PDUs and vice versa.

Because translation varies from IUT to IUT, the E/D has to be rewritten for each IUT.

To facilitate its replacement, the interface it provides to the TM should be clean and

concise and the E/D itself should be well structured.

4.2 A Modular Scheme for Structuring the E/D

In the MPT test system implementation, The E/D module was subdivided into two parts:

the primitive specification and the encoding/decoding parts. Different implementations

of the same protocol might require the same primitives to be encoded differently. Hence,

it should be possible for the encoding/decoding part to be replaced independently of the

primitive specification part.

33

Chapter 4. PDU Encoding and Storage 34

4.2.1 Primitive Specification

The primitive specification part defines the primitives available and their parameters. It

describes what the TM is allowed to send and receive. Essentially, it provides a way for

the TM to specify and access all the primitives and parameters available in the protocol

definition.

The primitive specification part should be defined as completely as possible. It should

include all possible primitives and all the parameters for the primitives, as specified in

the protocol definition.

An example primitive specification for TP/0 is shown in Appendix C. Note that

different primitives have different combination of parameters.

Regardless of which IUT being tested, a T_CONN_REQ would always be the com­

mand to request a Transport connection in the test script, and N_CONN_REQ would

always be specified in the test script to match an incoming network connect request.

4.2.2 Encoding and Decoding

The encoding/decoding part is called by the primitive specification part. It does the

actual transformation from primitives to PDUs or whatever representation the IUT re­

quires.

The encoding/decoding part could choose to ignore those parameters in the primitive

specification part which are not supported by a particular IUT. In this way, when a dif­

ferent implementation of the same protocol has to be tested, only the encoding/decoding

part needs to be changed, and the test scripts
 1

 as well as the specification part can

remain the same.
1the test script remains identical only if the both implementations support the same subset of

functions.

Chapter 4. PDU Encoding and Storage 35

4.3 Hard Coding PDUs

In the MPT E/D implementation, A Forth procedure is defined in the E/D for each prim­

itive specified. Invoking this procedure either from the keyboard or from the test script

would cause the corresponding primitive to be sent via the ferry. Decoded primitives

received from the IUT via the ferry become events on the TM's event queue.

When the TM calls the E/D to send test data to the IUT, the E/D module does not

return to the TM until the Active Ferry accepts the packet. The E/D module invokes

the FTMP to clear the output packets if the buffers of the Active Ferry become full.

Multiple E/D modules can be provided in the test system. Different E/D modules

for different layers can mix and match in order to do multi-layer protocol testing.

4.4 PDU Specification Languages

To minimize the effort required in replacing the encoding/decoding part, encoding for­

mats of PDUs can be specified in a language.

For simple PDUs such as those in the datalink and Packet layers, one possible solution

is to build an interpreter that accepts PDU specifications in some tabular form similar to

that defined for the PDU definition part of TTCN-GR [14]. The primitives, parameter

names for each primitive, parameter length and the allowable range for each parameter

can be listed in the PDU definition part. PDUs can be built by reading in the columns

in the table and reserving the correct number of bytes in the PDU buffer for each field,

and then putting in the values of the parameters whose names correspond to the names

assigned to the fields.

However, in higher layers such as the Session and Application layers, PDU parameters

can be complex and of variable length, and a more powerful PDU specification language

has to be used. For example, Abstract Syntax Notation One (ASN.l) [21] value definition

Chapter 4. PDU Encoding and Storage 36

syntax is used to specify MHS test PDUs.

4.5 A n E / D Equivalent - T h e P D U Library

Whenever PDU specification languages are used, it might be useful to pre-encode and

store PDUs and receive constraints
 2

 , retrieving them only at run time. There are reasons

why pre-encoding is sometimes preferred over direct encoding / decoding at runtime:

• PDUs in higher layers have very complex structures and a large number of param­

eters such that calls to the E/D to compose a PDU would be very complex and

slow. In this case it is easier to pre-enode the PDU and just retrieve it by name or

enumeration.

• Sometimes illegal PDUs have to be specified, and a preset encoding routine might

not be able to handle illegal encodings. Examples include invalid field lengths and

swapped fields.

A set of tools were prototyped under Unix for parsing ASN.l value definitions of test

PDUs and their storage and retrieval. The end goal of this set of tools is to create a

library of all the test PDUs and constraints given their definitions. Since it has the power

to retrieve an encoded PDU and compare a received PDU, it is functionally equivalent

to an E/D module. Moreover, it is more flexible and powerful since the send PDUs and

receive PDU constraints are syntactically specified instead of hard coded and compiled.

The PDU Library is divided into two parts: the PDU Parser Module and the PDU

Storage Module (Figure 4.12).

2receive PDU constraints are a list of conditions which a received PDU must match to satisfy.

Chapter 4. PDU Encoding and Storage

PDU and
Constra ints
Def in i t ion zn
PDU Parser

I
Internal
Representation

PDU Storage
Module

PDU Storage
Module

Figure 4.12: PDU Parser and PDU Storage Modules

Chapter 4. PDU Encoding and Storage 38

4.5.1 The PDU Parser Module

The PDU Parser Module interprets static PDU specifications in ASN.l Modular method

[21] and generates encoded PDUs.

There are two main constructs that the PDU Parser has to deal with, namely send

PDUs and receive PDU constraints.

Send PDU specification can be divided into the following:

• Base PDUs

• Pre-defined components

• Redefinition of base PDU structures

• Replacement of base PDU components

Several commonly used PDUs are defined as a whole in the base PDU library. Com­

monly used components are also predefined and named. Test PDUs are built from re­

defining and replacing base PDUs with new or predefined components.

Receive PDU constraints are specified as a list of "Components of interest". Each of

the components has to be matched in order for the constraint to be satisfied.

A sample input is shown in Appendix D.

4.5.2 PDU Storage Module

The main function of the PDU Storage Module is to provide a directory service for the

TM to look up a PDU. It also provides a means for the TM to compare a received PDU

against the constraints. There are only two services seen by the TM:

• Retrieve (pduName) returns a pointer to a specific encoded PDU, given its name

in plain text. The retrieved PDU can then be passed into a parameter to a send

function.

Chapter 4. PDU Encoding and Storage 39

• Compare (PDU, constraintName) compares the given PDU and see if it satisfies

the constraints defined and stored under the text label constraintName. It returns

TRUE if the constraints are satisfied and FALSE otherwise.

There are two reasons to separate the PDU Storage Module from the PDU Parser

Module:

1. Different protocol layers may have different input syntax for PDU and constraint

specifications. When switching protocol layers, the PDU Parser Module can be

modified and replaced independently of the PDU Storage Module.

2. Between the PDU and constraint definitions and the retrieval and compare func­

tions, the format of the internal representations might be dependent on the environ­

ment. For example, we might want to choose between using files or memory space

to store the internal representation. By carefully designing the interface between

the modules, change of internal representation is simplified.

4 . 5 . 3 Interaction between the Modules

The exact functionality of the PDU Parser depends on the power of the PDU Library

module. The more powerful the PDU Library, the less the parser has to do. Two

approaches are possible:

1. The PDU Parser translates Send PDUs into encoded PDU files, and the PDU

Library only provides a directory service. Each receive PDU constraint is to be

parsed into one compare function and stored in the PDU Library. When the TM

gives a received PDU and the name of the constraint to be satisfied, the PDU

Library simply calls the archived compare function corresponding to the constraint.

Chapter 4. PDU Encoding and Storage 40

2. The PDU Parser simply parses Send PDUs into a tree structure, using labels to

reference predefined components. The PDU Library provides a set of functions to

build an encoded PDU from the tree structure. Receive PDUs are parsed into lists

of field names and their correct values or ranges. When the TM gives a received

PDU and the name of the constraint to be satisfied, the PDU Library will go to

the list corresponding to the constraint, interpret it and compare the fields one at

a time.

The exact division between these two approaches depends on how much information

is known at compile time. Obviously, if most of the parameters are known at compile

time, PDUs can be stored as pre-encoded files. However, if many of the parameters

cannot be determined until the PICS and PIXIT are supplied for configuration, and

if the parameters are of undetermined length, patching into pre-encoded PDUs will be

difficult. The structures of the PDU would then have to be stored and the PDU Library

will have to provide parameter encoding functions.

4.5.4 Implementation

Prototypes of the PDU Parser and the PDU Storage Module are running under SUN

OS 4.0. Linked tree structures call E-nodes, which were originally used in the EAN

mail system at the University of British Columbia, were chosen as the intermediate

representation between the Parser and the Storage Module.

LEX
 3

 and YACC
 4

 are used to generate the source code for the Parser. The Parser

was written in two parts : a Template Parser that generates a PDU template from the

ASN.l PDU specifications, and a Component Parser which takes ASN.l Modular Method

(ASN.l MM) value declarations and turns them into E-nodes. While E-node trees are

3 UNIX lexical analyzer generator tool.
4 UNIX tool, Yet Another Compiler Compiler.

Chapter 4. PDU Encoding and Storage 41

built, field names and tags are resolved by referencing the PDU template generated by

the Template Parser. Support routines that translate the E-node structures into ASN.l

bit streams are also running.

The breakdown of the code size is as follows: 750 lines of C code for the E-node

manipulation routines (including E-node to bit stream conversion routines), 490 lines of

LEX and YACC source for the template parser, and 620 lines of LEX and YACC source

for the component parser. Note that the figures are for the prototype implementations,

and they reflect more or less the very basic system.

Chapter 5

Switching S U T s and I U T s

This chapter discusses the various issues that arise when performing conformance and

diagnostic testing on different implementations under different environments, using the

FCTS built on the IDACOM MPT. The backgrounds for the different environments can

be found in Chapter 2.

The FCTS on the MPT was originally tested against a packet layer IUT that resided

on another MPT. Later on we also used the FCTS to debug and test a TP/0 IUT under

OSI-PTE.

The following have to be resolved before the MPT can communicate with the SUN

workstation:

• A physical interface has to be set up.

• An FT MP has to be running through the interface at the SUT side.

• The E/D has to be modified in order to work with the OSI-PTE primitive exchange

formats.

These will be discussed in detail in this chapter.

5.1 Connecting the MPT to a SUN Workstation

There are two obvious ways to connect the MPT to the SUN workstation - through the

network or through a serial port. Since the MPT does not have ethernet support, we

connected our machines through the serial port at the back of the SUN workstation.

42

Chapter 5. Switching SUTs and IUTs 43

There are two ways to communicate through the serial port. We can use the existing

tty driver together with I/O redirection, or we can open the serial driver and do read

and write directly. We chose the second option for the following reasons:

• We do not have to worry about byte streams being processed and changed by the

TTY driver.

• Direct access to the drivers is faster and more efficient.

• We already have X.25 running in our FCTS, and we wanted to run X.25 on the

SUT as the FTMP.

Unfortunately, only an asynchronous serial driver was available at the time while

X.25 requires a synchronous serial interface. Thus, we had to set up a synchronous serial

driver.

5.1.1 The Synchronous Serial Driver

We managed to get hold of a kernel X.25 implementation with a synchronous serial driver

which ran on one of the older SUNs in The University of British Columbia. We were

unable to use the synchronous driver directly because of the reasons below:

• The X.25 implementation resides completely in the kernel, whereas the OSI-PTE

resides in user space. A user program can only access the packet layer services, but

not the serial driver itself.

• The synchronous driver was written under SUN OS 3.2, while all our accessible

workstations run SUN OS 4.0.

There are two ways to deal with the first problem. We can rewrite the upper interface

of the synchronous driver so that it communicates with user applications, or we can use

Chapter 5. Switching SUTs and IUTs 44

the same interface which accesses the packet layer services of the X.25 implementation,

take out both the packet layer and the datalink layer, and connect the interface directly to

the synchronous driver instead. It was necessary to take a closer look into the synchronous

driver as well as the X.25 packet layer service interface before deciding which approach

to take.

The synchronous driver can be divided into two layers. The lower layer consists of a

set of low level interrupt handlers for sending and receiving raw data. The higher level

consists of some kernel interface routines which passes data through mbufs
 1

. Passing of

mbufs between the datalink layer the higher level routines in the synchronous driver are

done through software interrupts. Since system interrupts can not be carried over to user

space, a set of device access routines would have to be written if direct interfacing of the

driver to user space is desired. That means totally rewriting the higher level interface so

that it could be opened as a /dev entry.

The X.25 implementation, however, has a socket interface that is accessible to the

user programs. It creates an entry in the protocol switch table of the kernel, such that

whenever a program opens an inet
 2

 socket with domain AF-CCITT and interface name

zssn, the socket will connect to the X.25 implementation which communicates through

the synchronous driver on serial port n. Since the kernel end of the socket interface also

uses mbufs to pass data in and out of the sockets, we can easily bypass X.25 by rewriting

the send and receive interrupt handlers such that mbufs are passed directly between the

synchronous driver and the socket interface. This then was the approach we adopted.

1 mbufs are standard Unix system memory buffers.
2Unix internet domain.

Chapter 5. Switching SUTs and IUTs 45

5.1.2 The Kernel to User Interface

The modified driver is accessed the same way the X.25 implementation is accessed. A

socket of family AF_CCITT and ifname "zssO" opens a synchronous driver on serial port

A, and the same socket with ifname "zssl" opens a synchronous driver on serial port B.

After the correct socket is opened, the driver can be accessed through ioctl() calls on the

socket.

There are 4 different primitives for an ioctl() call to the driver. SIOCGIFFLAGS

and SIOCSIFFLAGS are used to read and write the status flags for the specified port,

and SIOCGIFADDR and SIOCSIFADDR are used to read and write the configuration

information.

A sample piece of code that access the driver is shown in Appendix C.

5.1.3 Port Configuration

The serial ports on the back of the SUN workstations were designed to talk to devices such

as modems, and are configured as DTE ports. However, the test system is responsible

for setting up a ferry connection, and is therefore classified as a DTE also. In order to

connect the test system to the SUN workstation, we have to either use a null modem

cable or modify the test system so that it talks to a DTE. Fortunately, the IDACOM

MPT allows the role of the protocol (i.e., as a DTE or DCE) to be chosen independent

of the interface, thus we were allowed to keep the testing software to operate as DTE

while using a DCE type interface.

Chapter 5. Switching SUTs and IUTs 46

5.2 Adding a TP /0 E/D

5.2.1 Functions implemented in the TP /0 E/D

Like the packet layer E/D, there is no reference implementation in the TP/0 E/D. The

only functions provided in the TP/0 E/D are sending and receiving of Transport services

through the upper SAP, and the sending and receiving of TPDUs through the lower SAP.

5.2.2 Difference from the Packet Layer E/D

In the Packet Layer E/D, all primitives are encoded into a single linear buffer packed in

one Ferry packet. The linear buffer is accepted directly by the IUT as input. The main

difference of the TP/0 E/D is that it must turn the Transport Services into a form the IUT

recognizes, which is non-linear. The TP/0 IUT takes parameters in a structure form, and

the structure can have pointers to buffer structures. Obviously, one cannot pass linked

structures between the Active and Passive Ferries. Thus, a Transport Service Primitive

is broken down into three ferry packets before it is sent. The first packet consists of the

event identifier which identifies the parameters to follow. The second packet contains a

linear structure which has all the parameters to the primitive associated with the event

ID, while the third packet has the service data packed into a linear buffer (see Figure

5.13). Note that in some primitives where service data is not present, the buffer structure

does not exist. In the case where the primitive has no parameters, there may not even

be an EPA. Thus in the first two bytes of the second ferry fragment, two boolean values

denote the presence or absence of the EPA part of the second and third ferry packets

respectively.

In the Packet Layer IUT, no useful information is carried inside the (N-1) SDU.

However, TPDUs are carried in the Network Service Data. Thus another difference from

the Packet Layer E/D is that the TP/0 E/D has to do encoding and decoding of data

Chapter 5. Switching SUTs and IUTs

Event ID

Event
Parameter
Area

Buffer Ptr.

i
i

EPA Present

Buffer Present

EPA

Buffer

Figure 5.13: PTE ASP to Ferry Buffer Translation

Chapter 5. Switching SUTs and IUTs 48

packed inside the (N-1) service. When data comes from the lower SAP, the encoder has

to determine the type of network service primitive, as well as what TPDU it contains in

case the network primitive is a data indication.

5.3 Interfacing with the OSI-PTE

5.3.1 The Dispatcher

The dispatcher is written specifically to handle communication between the OSI-PTE

stack and the serial interface. It is integrated with the physical layer. Its function is to

turn incoming frames and timeouts into events and post them to the appropriate layers.

As Unix sockets do not generate interrupts on receipt of data from the serial interface,

incoming data is detected by periodic polling. The system timer generates interrupts

which update the global PTE timer queue on timeouts, and expired timer events are

extracted from the queue and processed between incoming frames. A simplified diagram

of the dispatching algorithm is shown in Figure 5.14.

5.4 Diagnostic Testing a TP/0 Implementation in OSI-PTE

When we tested the TP/0 implementation (IUT) in the OSI-PTE, the implementation

is not even complete. With the help of our test system, we were able to get the IUT

running in considerably less time than if the test system were unavailable.

5.4.1 Using Interactive Mode testing in the T M

The main advantage of using Forth in the MPT test system is that Forth is an interpreted

language. This means that interactive commands can be constructed and executed on

the fly during actual testing. This speeds up diagnostic testing by eliminating the need

to edit and recompile test programs.

Chapter 5. Switching SUTs and IUTs 49

Figure 5.14: Algorithm of the PTE Dispatcher

Chapter 5. Switching SUTs and IUTs 50

Using the interactive mode of the TM, we were able to issue a send or start timer

event to the IUT, watch for an event from the IUT on the monitor, decide what action

to take, and then type in that action on the keyboard. We were also able to construct

loops that send an arbitrary number of data primitives to the IUT in one sentence on

the keyboard. As well, it was easy to peek in and change any parameter of any primitive

to be sent by just modifying the corresponding Forth variable interactively. Since the

built in Forth interpretor is used also as the command interpreter for the TM, no special

command interpretor for those commands has to be written.

5.4.2 Tracing States in the SUT

The state out event in the OSI-PTE entity came in very handy when we tried to debug

the TP/0 implementation. We wrote a separate entity that intercepts and prints all

state out events posted by specified entities. Cross referencing the state diagram on the

protocol specification, we were able to locate quickly the implementation errors.

The typical sequence of debugging using both the interactive mode of the TM and

the state tracing entity is as follows:

1. Go to a chosen state.

2. Issue a selected event interactively on the test system.

3. If the IUT goes to the correct state, mark an OK in that entry of the protocol

specification state table.

4. If the IUT fails to respond to that event, mark that entry of the protocol specifi­

cation state table as a fail verdict.

5. For each failure edge, examine the IUT source code, find the case statement for

that particular state and the case for that particular event and correct the code.

Chapter 5. Switching SUTs and IUTs 51

6. repeat until all edges are marked OK.

At this point of disgnostic testing, PDUs sent are mostly default PDUs. By the end of

the diagnostic test sequence, the IUT should be working in all normal cases. Conformance

testing can then be performed.

5.5 Conformance Testing the TP/0 Implementation

After the implementation was sufficiently debugged, we ran a set of test cases against

it. The test cases were generated by traversing the External Behavior Expression (EBE)

[18] graph of TP/0.

5.5.1 Test Suite Selection

Applying the algorithms in [18], a set of I/O subpaths were generated. Because of

limitations in the protocol implementation, only control flow was considered. Thus a test

case was derived from each I/O subpath.

5.5.2 Translating into ITL

The 29 I/O subpaths were manually translated into 14 ITL test scripts. The smallest of

them consisted of two states, and the largest of them had nine states.

5.5.3 Conformance Test Results

A number of errors in the state machine were detected as a result of running the test

scripts on the TP/0 implementation. These have been corrected.

In some of the events, connection information was not passed correctly between the

transport service and the TPDUs, and that has been corrected also.

Chapter 5. Switching SUTs and IUTs 52

Some of the features that the IUT was supposed to support was found to be missing

in the implementation, and that section of the code was added.

Overall, the 14 test scripts ran uncovered a surprisingly large amount of errors and

irregularities in the implementation. These would be much more difficult to catch and

to correct if testing was not carried out in the first place.

After the testing was performed, we also felt much more confident that the imple­

mentation will interwork with other implementations that conform to the specifications.

Chapter 6

Conclusions

During the period of our research, prototype test systems were implemented in the Unix,

MPT and OSI-PTE environments. Several protocol implementations in the above en­

vironments were conformance and diagnostic tested. An attempt was made to address

various issues of test system design and reported in this thesis, including the followings:

• Test system implementation issues in different protocol testing environments were

discussed and compared.

o Existing test development tools and environments were studied, and new tools built

for test development and test management were discussed.

o A scheme for structuring the E/D in a modular fashion was given. PDU specifi­

cation methods were compared, and a mechanism for storing and retrieving test

PDUs was given.

• Issues and difficulties in actual conformance and diagnostic testing were described,

and their solutions summarized.

In summary, this thesis has covered a wide range of protocol testing issues in order

to gain insight into what protocol testing in reality is all about.

By using the Ferry Clip based Test System extensively for all our testing and debug­

ging, feasibility and usefulness of the Ferry Clip concept is confirmed.

53

Appendix A

Sample I T L Test Script

(SAMPLE FERRY CLIP ITL TEST SCRIPT)

()

(ENTER FUNCTION KEY CF1 TO START THE TEST)

TCLR

0 STATE{ FK.CFl ACTI0N{

PRINT.TIME WCR

" TEST STARTING" BTYPE WCR 20 C0UNTER1 !

F.CONN 1 NEW.STATE

>ACTION

>STATE

1 STATE-C F.CONN.CONF 1 ?RX ACTION-C

TPT:T_CONN_REQ

2 NEW.STATE

}ACTI0N

0THER_EVENT ACTION*

" VERDICT : " RTYPE " INCONCLUSIVE" YTYPE WCR

TM.STOP

}ACTI0N

}STATE

2 STATE{ T_C0NN_CFH 1 ?RX ACTION*

TPT:T_DISC_REQ

3 NEW.STATE
}ACTION

OTHER.EVENT ACTION*

" VERDICT : " RTYPE " FAILED" RTYPE WCR

F.DISC TM.STOP

}ACTION

>STATE

3 STATE* N.DISC.REQ 1 ?RX ACTION*

54

Appendix A. Sample ITL Test Script

OTHER.EVENT

}• STATE

F_DISC

" VERDICT : " RTYPE " PASSED" BTYPE WCR

" TEST FINISHED" BTYPE WCR TM.STOP

}ACTION

ACTION-C

" VERDICT : " RTYPE " FAILED" RTYPE WCR

F.DISC TM.STOP

}ACTION

Appendix B

Sample Input to T T C N Parser

DEFAULT IDENTIFIER: LIB.otherwise

COMMENTS: can be used wherever unexpected and ill e g a l events

are to be trapped

DEFAULTS:

BEGIN

LIB_otherwise[X]

X70THERWISE f a i l

END

TEST IDENTIFIER: 306.2.1.3

SUMMARY: Test whether the Auto-forward-indication service element

the IUT autoforwards an IM-UAPDU to the tester and generates

NonReceiptNotification with reason "autoforwarded"

BACKWARDS REFERENCE: 306.2.1.3

DEFAULTS: LIB_otherwise[I]

BEGIN

TISUBreq SUBreq_17

I!Start AFNR-Tmr

TTDELind

T?DELind

I?Timeout

TTDELind

TTDELind

ITTimeout

ITTimeout

DELind_94

DELind_95

AFNR-Tmr

DELind_95

DELind_94

AFNR-Tmr

AFNR-Tmr

f a i l

f a i l

f a i l

END

56

Appendix C

Primitive Specification for T P / 0

SEND PRIMITIVES RECEIVE PRIMITIVES PARAMETERS

N_C0NN_IND N-CONN-REq LI
N_C0NN_CFM N-CONN-RSP CRDT
N.DATA N-DATA-REQ SRC
N_DACK_IND N-DACK-REQ DEST

N.EXPD.IND N-EXPD-REQ CLASS
N.RSET.IND N-RSET-REQ OPT
N_RSET_CFM N-RSET-RSP DREASON
N_DISC_IND N-DISC-REq RCAUSE
T.CONN.REQ T-CONN-IND EOT
T.CONN.RSP T-CONN-CFM NR

T.DISC-IND ID
T_DATA_REQ T-DATA-IND
T.EXPD.REQ T-EXPD-IN
CR TPDU.CR
CC TPDU.CC
DR TPDU.DR
DC TPDU.DC
DT TPDU_DT
ED TPDU.ED
AK TPDU.AK
EA TPDU.EA
RJ TPDU.RJ
ER TPDU.ER

57

Appendix D

Sample Input to PDU Parser

IM-UAPDU_1_1

REDEFINE P3.DeliverEnvelope::=

SET{[0] IMPLICIT Pi.ContentType,

original [i] IMPLICIT Pl.EncodedlnformationTypes,

[2] IMPLICIT P3.DeliveryFlags,

thisRecipient [4] IMPLICIT Pl.ORName,

submission [7] IMPLICIT PI.Time

}
PDU BASE.IM-UAPDU.l

REPLACE

BASE_IM-UAPDU_l_Body

BY

SEQUENCE OF-C

SEqUENCE{SET{

SET-C

ContentType INTEGER [2] /*p2*/

original SET{BITSTRING ['20'H]} /*{iA5Text}*/

DeliveryFlags

BITSTRING ['40'H] /*conversion*/

/•Prohibited*/

thisRecipient Pl.ORName [TSP_ORName_I_l]

submission Time> [TSP_UTCTime_l]

}

IM-UAPDU [L_IM-UAPDU_1]

>
}

IM-UAPDU_0_1 PARTIAL DEFINITION {

IM-UAPDU.Heading.originator

ORName [TSP_ORName_I_l]

IM-UAPDU.Heading.authorizingUsers

1 ORDescriptor [L_0RDescriptor_4]

>

58

Appendix E

Sample Code to access the Synchronous Serial Interface

m a i n (a r g c , a r g v)

r e g i s t e r c h a r * * a r g v ;

i n t a r g c ;

{

r e g i s t e r i n t s;

/ * Open s o c k e t c o n n e c t i o n t o s e r i a l i n t e r f a c e * /

i f ((s = s o c k e t (A F . C C T T T , SOCK.STREAM, 0)) < 0)

s y s e r r (" s o c k e t ") ;

/ * G e t i n t e r f a c e name f r o m command l i n e * /

argv++;

i f n a m e = * a r g v ;

/ * G e t i n t e r f a c e f l a g s * /

s t r c p y (i f r . i f r _ n a m e , i f n a m e) ;

i f (i o c t l (s , S I O C G I F F L A G S , (c h a r *) & i f r) < 0)

s y s e r r (" i o c t l (S I O C G I F F L A G S) ") ;

i f f l a g s = i f r . i f r . f l a g s ;

/ * S e t d e f a u l t o p t i o n s * /

s t r c p y (i f r . i f r _ n a m e , i f n a m e) ;

i f (i o c t l (s , SIOCGIFADDR, (c h a r *) & i f r) == 0)

b c o p y ((c h a r *) & i f r . i f r _ a d d r , (c h a r *) & x 2 5 c o n f , s i z e o f (x 2 5 c o n f)) ;

/ * D i s p l a y s t a t u s * /

i f (a r g c == 2) {

s t a t u s () ;

e x i t (0) ;

}

}

59

Bibliography

[1] H. X. Zeng and D. Rayner, The impact of the ferry concept on protocol testing,

in Diaz, M. (ed.), Protocol Specification, Testing, and Verification V, p.533-544,

North-Holland, 1986.

[2] H. X. Zeng, X. F. Du and C. S. He, Promoting the "Local" Test Method with the

New Concept "Ferry Clip", Proceedings of the 8th IFIP Symposium on Protocol

Specification, Testing and Verification, Atlantic City, June 1988.

[3] H. X. Zeng. Q. Li, X. F. Du and C. S. He, New Advances in Ferry Testing Approaches,

Journal of Computer Networks and ISDN Systems, 15,1 (1988).

[4] H. X. Zeng, S. T. Chanson and B. R. Smith, On Ferry Clip Application in Protocol

Testing, Journal of Computer Networks and ISDN Systems, Vol. 17, July 1989.

[5] S. Sechrest, An Introductory 4-3BSD Interprocess Communication Tutorial, MT

XINU Manual, 4.3BSD with NFS, Programmer's Supplementary Documents, Vol­

ume 1, PSI, 1986.

[6] ISO/TC 97/SC 21 N, 2nd DP 9646, Conformance Testing Methodology and Frame­

work, 1987.

[7] CCITT Draft Recommendation X.200, Reference Model of Open System Intercon­

nection for CCITT Applications, 1988.

[8] CCITT Draft Recommendation X.25, Interface Between DTE and DCE Terminals

Operating in Packet Mode, 1988.

60

Bibliography 61

[9] CCITT Draft Recommendation X.213, Network Service Definition for OSI for

CCITT Applications, 1988.

[10] CCITT Draft Recommendation X.223, Use of X.25 to Provide OSI Connection-Mode

Network Service, 1988.

[11] G. V. Bochmann and C. S. He, Ferry Approaches to Protocol Testing and Service

Interfaces, Proceedings of the 2nd International Symposium on Interoperable Infor­

mation Systems, Tokyo, Japan, November 1988.

[12] IDACOM Electronics Ltd., MPT368.2 User Manuals - Forth Programming, Novem­

ber 1987.

[13] B. R. Smith ITL - IDACOM Test Language - Language Specification , Version 1.0,

UBC-IDACOM Project Documentation, 7 October 1988.

[14] ISO Working Document DP 9646-3, The Tree and tabular Combined Notation, 12

July 1988.

[15] R. I. Chan, OSI PT Environment, Version 1.32, UBC-IDACOM Project Documen­

tation, 21 September 1988.

[16] R. I. Chan et el., A Software Environment for OSI Protocol Testing Systems, Pro­

ceedings of the 9th IFIP Symposium on Protocol Specification, Testing and Verifi­

cation, Enschede, The Netherlands, June 1989.

[17] N. J. Parakh, The Implementation of a Ferry Clip Test System, M.Sc. thesis, De­

partment of Computer Science, University of British Columbia, 1989.

[18] J. Wu and S. T. Chanson, Test Sequence Derivation Based on External Behavior

Expression, Proceedings of the Second International Workshop on Protocol Test

Bibliography 62

Systems, W. Berlin, Germany, October 1989.

[19] CCITT Recommendation X.409, Message Handling Systems: Presentation Transfer

Syntax and Notation" 1984.

[20] A. Boshier, A. McKie, D. Dwyer, ETTCN - an executable test language", position

statement, Proceedings of the First International Workshop on Protocol Test Sys­

tems, 1988.

[21] ISO 8824:1987, Information processing systems - Open Systems Interconnection -

Specification of Abstract Syntax Notation One (ASN.l), 1987.

