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ABSTRACT

Biological nutrient removal (BNR) at wastewater treatment plants, with strict effluent discharge
limits, often require supplementary fermentation by-products to meet permit requirements
without chemical addition. However, some wastewaters entering BNR plants, especially those
located in warmer climates, have sufficient fermentation by-products, or volatile fatty acids
(VFAs) present in the influent for efficient nutrient removal without supplementary VFAs or
chemical addition. It is believed that fermentation within the collection systems is responsible
for contributing necessary VFA to such wastewaters. This theory, and efforts to simulate and
measure the effects of such fermentation in a wastewater treatment plant unit operation, forms

the basis for this research.

The main objective of this study was to investigate fixed-film fermentation of wastewater and
measure its effects on biological nutrient removal at a pilot-scale wastewater treatment plant.
Research to support this objective was conducted over a nine month period, beginning in summer
of 1997 and ending in the spring of 1998. Control and Experiment fixed-film fermenters, which
were designed and constructed by a previous researcher (Dumitrescu, 1998), were attached to the

front end of a 3-Stage Bardenpho process.

It was demonstrated in this study that fixed-film fermentation of primary effluent was a feasible

means of producing VFAs at a rate between 2 mg/L/hr and 9 mg/L/hr. Furthermore, when solids,

present in the primary effluent, were allowed to settle and accumulate in the fermenters, VFA




production was enhanced considerably as a result of fixed-film and solids fermentation.

The effects of prefermentation on twin 3-Stage Bardenpho processes running in parallel were
observed during three experimental runs. Process parameters of interest included ammonia,
nitrates, total Kjeldahl nitrogen, phosphates, total phosphorus, carbon, solids, and mixed liquor

suspended solids.

During Experimental Run #1, there was no significant difference in process performance
between the Control Process, which had a fermenter containing no media, and the Experiment
Process which had a fermenter containing Ringlace. Both processes performed exceedingly well,

reducing effluent phosphorus to less than 0.3 mg/L and effluent nitrogen to less than 5 mg/L.

During Run #2, it was decided to eliminate fermentation from the Control Process and continue
to run the Experimental side as per Run #1. Again, there was no significant difference between
Control and Experiment Process performance, even though the fixed-film fermenter was
contributing additional VFAs to the Experiment Process. It was concluded that sufficient VFA
(and fermentation by-products) were already present in the wastewater for good nutrient removal,

nullifying any improvements attributable to the fermenters.

During experimental Run #3, it was decided to add phosphorus to the anaerobic zone to reveal
any process performance improvements which might be attributable to VFAs produced in the

fixed-film fermenters. Once again, there were no significant differences between Control or

iii




Experiment Processes with both sides performing equally well.

Three possible explanations for the failure to show improved BNR performance with the addition

of a fixed-film fermenter are discussed in this report:

. The existence of sufficient fermentation by-products inherent to the raw wastewater
masked any process performance improvements that might have otherwise been
observed.

. Nitrates present in the anaerobic zone hindered phosphorus removal. Microbes,
responsible for denitrification in the anaerobic zone, utilized VFAs from the subject
fermenters which would have been available for phosphorus accumulating organisms.

. A combination of the above.
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CHAPTER 1

1.0 INTRODUCTION

The primary objective in treating wastewater is to reduce the impact of discharge on the
environment. Conventional activated sludge wastewater treatment plants are designed for
physical treatment (removal of solids) and reduction in oxygen demanding organics (biochemical
oxygen demand). Advanced wastewater treatment, involving the removal of all forms of
nitrogen and phosphorus, is now becoming necessary as our understanding of the effects of these
pollutants develops. Nitrogen, in its various forms, is responsible for a number of problems
including methaemoglobinaemia in humans, ammonia toxicity to fish, depletion of dissolved
oxygen in receiving waters and links to cancer from nitrosamines (Mirvish, 1977) among others.
Complications stemming from eutrophication, especially in land bound bodies of water, have
given rise to the need for reduction or elimination of growth stimulating nutrients. Nitrogen and
phosphorus have been identified as the nutrients which influence the progression of
eutrophication most dramatically. The ability of some algae to fixate nitrogen from the
atmosphere (nitrification) has led to the conventional wisdom that phosphorus, not nitrogen, is

the limiting nutrient in most water bodies (Horne, 1977).

The negative impact of eutrophication on wildlife diversity, lucrative fisheries, drinking water
and recreational areas was the impetus for North America’s first biological nutrient removal

(BNR) plant in Palmetto, Florida (Burdick et al. 1978). The first Canadian and second North

American BNR plant was commissioned at Kelowna, BC in 1982 (Barnard et al. 1984).




Biological nutrient removal has since proven to be an effective method for achieving nitrogen
and phosphorus removal because it is compatible with existing activated sludge treatment plants,

it requires similar equipment and operational techniques, and it is cost effective.

Biological nutrient removal refers to processes that utilize biological mechanisms instead of
chemical mechanisms to remove phosphorus and nitrogen from wastewaters (Randall, et al.
1992). Biological nutrient removal in this study refers to the removal of all forms of nitrogen
and phosphorus from the waste stream by a microbial culture that is established and carefully
maintained. These microbes require a simple carbon food source - termed short chained volatile
fatty acids (SCVFAs or VFAs) such as acetic acid or propionic acid - so they can efficiently
perform their tasks. The vital role of SCVFAs in biological nutrient removal has been well
studied and documented by several researchers (Barnard et al. 1984; Rabinowitz and Oldham,
1986; Nicholls et al. 1985; Wentzel and Ekama, 1997; Christensson et al. 1998). SCVFAs are
a simple and consumable carbon source necessary for nutrient reducing microbes to thrive and

thereby perform their intended function of nitrogen and phosphorus removal.

1.1 Background to This Research

Dr. James Barnard (Reid Crowther & Partners Ltd.) initiated the project and collected evidence
to support a successful United States Patent application for the fermentation of primary effluent
using a commercially available growth medium. Year 1 of the project began with research being
conducted at the University of British Columbia (UBC) Pilot Plant by Dumitrescu (1998), who

ascertained that SCVFAs can be produced in fixed-film fermentation reactors with an hydraulic



retention time (HRT) of less than 60 minutes. Dumitrescu investigated the performance of the
reactor units using two commercially available media fermenting raw sewage and primary
effluent in separate experiments. The two media types tested in Year 1 were Ringlace® media,
which is a PVC rope-like material with many attached fibres, and Kaldnes media which is a
plastic barrel shaped carrier with many fins for increased surface area. The Ringlace® can best
be described as a rope or strand approximately | cm in diameter, cut to a desired length; it
requires a frame or some kind of mounting apparatus. Kaldnes media are individual cylinders, 9

mm in diameter by 7 mm long, which are designed to be easily mixed or fluidized.

During Year 1, Dumitrescu (1998) found that SCVFAs were produced with both media types
while fermenting domestic raw sewage or primary effluent; however, there were advantages and
disadvantages in each case. Using raw sewage as the feed, he found VFA production with the
Ringlace fermenters to exceed 11 mg/L/hr as acetic acid (HAc); however, the Kaldnes reactors
frequently plugged and the media was therefore deemed unsuitable for use in this plug-flow
fixed-film system. When primary effluent was used as the feed source, VFA production
decreased but was still evident in both systems with 3.7 mg/L/hr and 5.6 mg/L/hr produced with
Kaldnes and Ringlace, respectively. Raw sewage produced a greater yield of SCVFA; however,
operational issues associated with plugging and solids build-up in the fermenters led to the
selection of primary effluent as the feed source and Ringlace ® media as the carrier for the fixed

film.

The focus of this research (Year 2), which was carried out at the UBC Pilot Plant, was to




confirm and elaborate on Dumitrescu’s findings, as well as evaluate the effects that such
SCVFAs have on BNR performance. The same apparatus from Year 1 was employed during
Year 2 but instead of wasting the fermentation byproducts, fermenter effluent was directed
towards a BNR pilot plant. The UBC Pilot plant was configured for operation as a 3-stage
Bardenpho process, so that results could be compared against the rich database of BNR data
acquired over 15 years of previous research at the UBC Pilot Plant. A nine month series of
experiments was planned for the purposes of measuring and recording parameters necessary to
evaluate the fixed-film fermenter (F’) and BNR process. It is hoped that knowledge gained from
this study will enhance the understanding of fixed-film fermentation and possibly lead to full
scale applications for new plant construction or retrofits where treatment plant performance

requires optimization.

1.2 Objectives
The research objectives were clearly defined at the beginning of the project in a proposal written
in July, 1997. Meeting those objectives was the driving force behind some of the decisions made

in an effort to maintain accountability to the agency funding the project.

Primary Objective

1. Investigate Pilot Plant BNR process performance when VFAs produced in the subject
fermenters are introduced to the waste stream.

Secondary Objectives

2. Confirm findings of the earlier study which found that VFAs could be produced in a high-



rate, fixed-film, anaerobic reactor in sufficient quantities to improve the BNR process

performance.

3. To establish preliminary design and operating criteria necessary to incorporate fixed-film

fermenters into the Pilot Plant waste stream.

Fulfilment of these objectives would provide useful information and knowledge regarding the
operation and performance effects of a patented, novel approach to the pretreatment of domestic
wastewater, prior to entry into a biological nutrient removal process. Given the project duration
(Iess than one year), it was important to ensure that research objectives remained in focus to

ensure information required to make a useful assessment of the systems could be delivered to the

project sponsors.




CHAPTER 2

2.0 LITERATURE REVIEW

The following literature review contains a brief introduction to wastewater treatment, specifically
biological nutrient removal (BNR) and how fermentation can augment the performance of such
processes. Enhancement of BNR was a primary objective of this research, therefore the review
begins with a general introduction to BNR. Next, a “state-of-the-art” summary of models
pertaining fo biological phosphorus removal is included, since there are many new developments

in this area and the subject matter is pertinent to the basis of this thesis.

An introduction to primary sludge prefermenters currently in use, their configurations, operating
characteristics and products will be presented to provide baseline information with which the
concept of primary effluent fermentation can be compared. It should be noted that the literature
sometimes refers to fermentation as “prefermentation” which might imply the existence of two
unit operations: namely that of a prefermenter followed by a fermenter. Since this is not actually
the case in today’s BNR fermentation applications, “prefermentation” has been used
interchangeably with “fermentation” in this document to more accurately reflect the single unit
operation in this case. The literature review is intended to be a brief introduction to the topic

headings. A more detailed review and discussion of some of the topics is included in the results

and discussion section under many of the subheadings.




21 Enhanced Biological Phosphorus Removal

Enhanced biological phosphorus removal (EBPR) refers to processes operated in such a way as
to stimulate the growth of polyphosphate accumulating organisms (PAOs) which have the ability
to store large amounts of phosphorus. From the early stages of EBPR, it was recognized that
readily biodegradable substrates were a necessary addition to the anaerobic zone of an activated
sludge treatment plant designed for biological P-removal. Barnard (1974) deduced that mixed
liquor must pass through an anaerobic stage, in which phosphorus release may occur, followed
by an aerobic stage, in which phosphates are taken up by the organisms or precipitated as a result
of the change in redox potential. There has been much discussion regarding the exact
mechanism by which phosphates are removed from municipal wastewater in biological nutrient
removal plants with one school of thought believing some form of chemical precipitation
(withbut the addition of chemicals) was responsible for the net reduction (Arvin, 1983), and
others believing that phosphate removal was the result of biological uptake (Barnard, 1976).
Most of the debate on this point has been put to rest in recent years with research findings that
conclude phosphate precipitation in EBPR processes is not a significant phosphorus removal

mechanism (Carlsson et al. 1997).

The exact mechanism or model by which EBPR occurs is the subject of continued research.
However, one can put things in perspective by considering the conventional activated sludge
system in which about 2.0% of the sludge mass is phosphorus (Randall et al. 1997, Wentzel and

Ekama, 1997). The percentage phosphorus by mass is directly related to the stoichiometric

nutrient requirement for activated sludge. Therefore, if a wastewater contained 400 mg/L COD,
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with a sludge yield of about 0.25 kg VSS/kg COD, one would expect about 2.0 mg/L removal of
phosphorus by microbial assimilation and subsequent wasting of the process sludge. EBPR
systems operate successfully by providing an environment favourable to polyphosphate
accumulating organisms capable of storing 5% (US EPA, 1987, Jones, et al. 1985), or more, of
their cell mass as inorganic phosphorus. A treatment plant operating as an EBPR system could
then be expected to remove about 4 to 5 mg/l of phosphorus from the waste stream. Key design
requirements necessary to provide a favourable environment for Bio-P removal include the
presence of readily biodegradable substrates in an initial anaerobic contact zone where minimal
amounts of nitrates are present (Rabinowitz, 1985), followed by an aerobic zone. Acinetobacter
was the first group of bacteria to be isolated and associated with EBPR; however, other
microorganisms such as Lampropedia sp. (Stante et al. 1997), Pseudomonas sp. and Aeromonas

sp. (Randall ef al. 1997).

2.2 Enhanced Biological Phosphorus Removal Models

There are several EBPR models used to explain the phenomenon associated with phosphorus

~ release and subsequent phosphorus uptake in activated sludge operated in an anaerobic-aerobic
sequence. The most representative model is still the subject of much debate and so a general
narrative describing biological-P removal, as well as a summary of Bio-P model development,

will be presented.

Comeau et al. (1986) produced the first comprehensive model for biological removal of

phosphorus by Acinetobacter. Figure 2.1 (US EPA, 1987, Barnard and Rabinowitz, 1998) is a



Anaerobic Conditions

phosphorus accumulating organism
under anaerobic conditions

volatile fatty

phosphorus

Aerobic Conditions

phosphorus accumulating organism
under aerobic conditions

acids 2
phosphorus
oxygen
(nitrate)
water
Figure 2.1  Simplified phosphorus removal mechanism (US EPA, 1987)

simplified version of the model and can be explained as follows. Polyphosphate accumulating

organisms become stressed in the anaerobic zone and begin to break down (through hydrolysis)

stored polyphosphate reserves into orthophosphate (PO,) which is expelled from the

microorganisms. This releases energy necessary for the anaerobic uptake of fermentation

products during anaerobic respiration. This biodegradable substrate, SCVFA for example, is

present in the incoming wastewaters is readily assimilated and stored by the PAOs in the

anaerobic condition. The fermentation products are stored as polyhydroxyalkanoates (PHA), of

which polyhydroxybutyrate (PHB) is the best known member. The energy required for anaerobic

uptake of SCVFA and storage as PHB is provided by the aforementioned polyphosphate

conversion to and subsequent release of orthophosphate. Because PAOs are able to assimilate

SCVFA in the anaerobic condition they have a competitive advantage over other microorganisms
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present in the activated sludge. As result, the anaerobic zone is sometimes referred to as a

population selector because the growth and development of PAOs can occur there.

During the aerobic phase, the PAO-rich activated sludge metabolizes stored PHBs, cells
reproduce and soluble phosphorus is taken up with excess amounts stored as polyphosphates (US
EPA, 1987). The phosphorus uptake by PAOs in the mixed liquor, results in a net phosphorus

uptake. Phosphorus removal is achieved by wasting phosphorus rich sludge from the process.

The first step in the EBPR process is an anaerobic uptake of SCVFAs by PAOs and its storage as
PHB (Felipe et al. 1998). This biochemical conversion requires energy which is provided by
polyphosphate; however, reducing power is also required. Three models exist to describe the
reducing power in the anaerobic phase:

1. The Comeau model (1986) assumes some of the VFA taken up by the cells goes through
the tricarbdxylic acid cycle (TCA), where nictinamide adenine dinucleotide (NADH) is
generated and used to transform the remaining VFA to PHB.

2. The Mino model (1987) assumes reducing power is supplied from stored glycogen which
is directed through the Embden-Meyerhof pathway (EMP).

3. The adapted Mino model (Wentzel ef al., 1991) is similar to the Mino model except the
Embden-Duodoroff pathway is used instead of the EMP pathway.

Research by Smolders ef al. (1994) and Arun ef al. (1989) determined that the observed data was

closely predicted by both Mino models, but deviated significantly from the Comeau model. This

led to a departure from the Comeau model and was a major step in the identification of the
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commonly accepted EBPR model.

The development of an EBPR model continued with further research being conducted by
Wentzel, Gujer, Mino, and Smolders (Felip, ef al. 1998). The Activated Sludge Model (ASM)
No. 2, introducing PAOs (Gujer, et al. 1995), was developed in 1995 by a Specialist Group from
the International Association of Water Quality (IAWQ), comprising many of the above
mentioned authors. Further to the publication by the IAWQ Specialist Group, a well recognized
metabolic model was proposed by Smolders and co-workers (Smolders ef al., 1995a, b). Other
models, which expand upon or improve upon the above, have recently been reported in the

literature by Murnleitner et al. (1997) and Felipe et al. (1998).

The IAWQ Specialist Group in their publication on ASM No. 2 (Gujer, et al. 1995) admitted that
their group “ did not have an understanding of the processes involved in biological phosphorus
removal to a similar degree or reliability as was the case ..... when ASM No. 1 was proposed for
nitrogen control” and so work by the group continued. In a recent IAWQ conference held March
16-18, 1998 in Copenhagen, a new proposal for ASM No. 3 was revealed. The new model
includes two storage processes and a compound representing PHA. ASM No. 3 includes a more
detailed description of internal cell processes and allows for better adjustment of decay processes

to real conditions. The importance of hydrolysis has been reduced, since growth is now based on

stored compounds and the kinetics of hydrolysis is now independent of the aerobic conditions.
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Organic Nitrogen
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Figure 2.2 Bmloglcal nitrogen transformations (From Metcalf and Eddy, 1991)

2.3 Nitrogen Removal

Nitrogen, the other nutrient of primary concern, is removed biologically in a multi-step process
through decomposition of organics to ammonia, oxidation of ammonia to nitrite/nitrate, followed
by denitrification to N, as an off gas (Figure 2.2). The nitrification process is progressed by two
autotrophic bacteria, Nitrosomonas and Nitrobacter which consume large amounts of oxygen and
alkalinity (HCO; and H,CO,) while converting NH; to NO,” then NO,, as depicted in Figure

2.2.
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The stoichiometry involved requires that for every 1.0 kg of ammonia-nitrogen oxidized
approximately:

. 4.3 kg of O, is consumed

. 7.1 kg of alkalinity is destroyed

. 0.15 kg of new cells are formed (source: Argaman, 1991).

There is a list of at least ten known bacteria responsible for reducing nitrate, to nitrogen gas,
involving several reactions (NO, = NO, = NO — N,O — N,) . The denitrification process adds
alkalinity back to the process and requires a readily biodegradable carbon source to proceed to
completion. For every 1.0 kg of nitrate-nitrogen removal to be denitrified approximately:

. 6.9 kg of COD is consumed

. 3.6 kg of alkalinity is formed

. 0.45 kg of new cells are formed (source: Argaman, 1991)

Table 2.1 is a summary of the principal organism groups responsible for biological nutrient

removal, their function and their zone of activity.

New research conducted in South Africa and Holland has found evidence concluding that the
biological nitrogen and phosphorus mechanisms are interconnected (Ostgaard ef al. 1997, Kuba
et al. 1997). The two cases cited in the literature clearly demonstrated that denitrifying
phosphorus removing bacteria (ie. P removal and N removal was carried out by the same

organisms) were prevalent in the University of Cape Town (UCT) type wastewater treatment
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plants. This being the case, it would follow that feed substrate typically associated with good
phosphorus removal would also benefit nitrogen removal. As early as 1985 it was reported by
Nicholls, et al. (1985) that availability of fermentation byproducts could greatly assist both

nitrogen and phosphorus removal.

Table 2.1 Principal organisms responsible for BNR (Wentzel and Ekama, 1997)

Organism Biological Process Condition
1. Ordinary heterotrophs | COD removal, organic degradation, DO consumed | Aerobic
(unable to accumulate ammonification (Organic N — NH,) | Aerobic
ortho-P) denitrification (NO, - NO, » N,) Anoxic
Fermentation (complex organics — SCVFA) Anaerobic
2. Ortho-P heterotrophs | P release (SCVFA uptake, PHA storage) Anaerobic
(accumulate PO, P release (SCVFA uptake, PHA storage Anoxic
facultative organisms) P uptake (PHA degradation; denitrification) Anoxic
P uptake (PHA degradation, DO consumed) Aerobic
3. Autotrophs (nitrifiers) | Nitrification (NH, = NO, — NO,) DO consumed | Aerobic

2.4 SCVFA Production by Fermentation

Fermentation is the anaerobic, microbial decomposition of complex organic matter to end
products of methane and carbon dioxide. It is a multi-step process as depicted in Figure 2.3
(adapted from Randall, e al. 1992). The complete fermentation process comprises several steps
including hydrolysis, acidogenisis, acetogenisis, and methanogenisis (Gujer, ef al. 1983), which

can be simplified into acidogenisis and methanogenisis.
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Traditionally, interest in fermentation as a means of generating energy through methane
production was paramount and so the acidogenisis-methanogenisis pathway was allowed to run
its full course. Once SCVFAs, principally acetic and propionic acids, were sought after for use
as readily biodegradable substrates, it was important to avoid methanogenisis by limiting HRTs
to 12 hours (Elefsiniotis and Oldham, 1994); SCVFAs can be assimilated and/or converted to

end products CH, and CO, when HRTs exceed 12 hours. Amongst other advantages, the

100% COD
15% complex waste N’A)
|

20%
Propionic /e-13% Other
Acid Intermediates

Acidogenisis

Methanogenisis

Figure 2.3  Acidogenisis - methanogenisis pathway

development of a high rate fermentation process for the production of SCVFAs would ensure

that methanogenisis would be averted, resulting in efficient production and usage of substrate.

2.4.1 SCVFA Characterization

The acidogenisis percentage breakdown (Figure 2.3) results in a split of about 70% acetic acid
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and 15% propionic acid before fermentation is complete. This ratio can vary considerably
depending on several variables including pH, temperature and retention time as well as influent
composition (Gupta, 1986). Elefsiniotis (1994) found that SCVFA produced from fermentation
of primary sludge consisted of acetic and propionic acids of 46% and 32%, respectively, with the
remainder being valeric, butyric or other acids. Chu (1995) reported a relatively even
distribution of VFA between acetate and propionate under strict anaerobic conditions while
acetate accounted for 70 to 80% of the VFA produced (propionate about 10%) under
microaerobic conditions in an autothermophilic aerobic digester (ATAD). Elsewhere, laboratory
experiments at the University of Cape Town, investigating batch and series fermentation of
primary sludge, found that of the total VFA generated, acetic acid was 43%, propionic was 41%

and 16% was butyric or valeric (Randall ef al., 1992).

Much higher proportions of acetate production have been found with fermentation of raw sewage
versus fermentation of sludge. Koch (1994) observed an acetate percentage of between 72% and
85% of total SCVFA produced over a three year period (remainder being propionate) in a study
involving fermentation of raw sewage at short SRTs (hours), while Danesh (1995) also reported a
high percentage of acetic acid (86 to 97%), while fermenting raw wastewater at solids retention

times (SRTs) between four and thirteen days.

25 Fermenters and Their Role in BNR
The importance of fermentation by-products has been recognized since Fuhs and Chen (1975)

identified acinetobacter as an organism reponsible for excess phosphorus uptake. Since
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acinetobacter is a facultative organism which feeds preferentially on acetates and ethanols, it was
deduced that these microbes thrive in the anaerobic-aerobic sequence necessary for phosphorus
removal in the activated sludge (Fuhs and Chen, 1975, Randall et al. 1992). Since the ground
breaking research by Fuhs and Chen (1975), enhanced biological phosphorus removal (EBPR)
has been attributable to other phosphorus accumulating organisms in addition to acinetobacter,
such as Lampropedia sp. (Stante et al. 1997), Pseudomonas sp. and Aeromonas sp. (Randall et

al. 1997).

Once it was established that SCVFAs are required for efficient BNR, much work was done to
optimize anaerobic zone fermentation in cases where sufficient readily biodegradable substrate
was not present in the influent raw wastewater. It was believed that larger anaerobic zones
would cause enough fermentation to ensure the process worked efficiently, but instead, a
phenomenon termed “secondary release” of phosphorus (Barnard, 1984) resulted. It was found
to be very difficult to produce sufficient VFA in the anaerobic zone of a BNR plant when
influent BOD was below 200 mg/L or temperatures were below 17°C. Enlargement of the
anaerobic zone to a residence time greater than one hour, resulted in more P release than SCVFA
induced phosphorus uptake (Barnard, 1984). It is believed the additional P release is not
associated with SCVFA uptake, but rather cell lysis, resulting in a net increase of effluent total
phosphorus (TP) instead of excess P removal. Avoiding secondary release of phosphorus was
the impetus for the development of a separate unit process, designed specifically to produce

SCVFAs through fermentation of primary sludge. The SCFAs are then added to the anaerobic

zone of the BNR process. It is generally accepted that SCVFA production in the anaerobic zone
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is not considered significant, necessitating the use of fermenter units when influent raw sewage

does not contain sufficient fermentation by-products to enable EBPR to achieve desired results.

2.6 Fermentation Processes
There are four types of primary sludge fermenters in operation, which are briefly described below

(From Rabinowitz, 1994). Comparisons between the various fermenters are made in Table 2.2.

The Activated Primary Tank (APT) is the simplest type of primary sludge fermenter and was
proposed by Barnard (1984). The APT receives the entire wastewater flow, and is essentially a
primary clarifier with a higher than normal sludge blanket. Sludge is drawn off the bottom of the
sludge layer and recycled to the inlet of the clarifier, resulting in a solids retention time (SRT)
greater than the HRT enabling fermentation to occur. The SCVFA produced in the sludge
blanket of the primary clarifier is ellutriated by incoming raw wastewater and transported to the

BNR process by the primary effluent.

The Complete-Mix Prefermenter, proposed by Rabinowitz (1987), is similar to the APT except
that it receives primary sludge in a separate completely mixed tank. Primary sludge undergoes
acid fermentation in the fermenter, then returns to the inlet of the primary clarifier where
SCVFA mixes with incoming wastewater and flows to the BNR process via the primary

effluent.

The Static Prefermenter, also called a Single Stage Prefermenter/Thickener, is a gravity thickener
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which receives primary sludge and has increased side water depth to allow for the storage of a
fermenting sludge mass. Because the unit is not mixed, VFA rich supernatant can be drawn off
the surface and added directly to the anaerobic zone for more efficient usage of fermenter

substrate.

The Two-stage Complete Mix with Thickener Prefermenter, also called the Two-stage
Prefermenter, comprises a complete mix fermenter and a static fermenter in series, to combine

the advantages of each system.

Table 2.2 Comparison of primary sludge fermenters
Type Advantage Disadvantage
Activated Primary » simple + less SVFA production
Tank * utilizes existing tankage so | ¢ odour control (unless covered)

$ effective

Complete-mix * complete mixing increases | ¢ needs separate tankage

Prefermenter SCVFA production * mixing energy required

 supernatant mixes with PC
influent before flows to BNR

plant
Static Prefermenter * supernatant flows directly to | * needs separate tankage,
BNR plant * methanogenisis can be a
* increased VFA production problem

* no mixing energy,
» thickened sludge for wasting

2 Stage Prefermenter |« Includes most advantages of | ¢ sludge does not thicken well,
complete mix and static » more costly to build and operate
prefermenters

To-date, there has been some research into fermentation of raw sewage using sequencing batch
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reactors (Danesh et al. 1995 and Cuevas-Rodriguez er al. 1998) but as of yet, there have been no

full scale applications utilizing this technology.

Fixed-film systems, such as trickling filters and biological aerated filters, have been used for
many years now and their success has been well documented. The benefits of such systems
include increased reaction rates, owing to increased surface area, and a resistance to shock
loading conditions. These same characteristics should benefit the anaerobic application of such
systems for VFA production, however, to date there has been very little research into VFA

production using fixed-film systems.
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CHAPTER 3

3.0 EXPERIMENTAL METHODS AND ANALYTICAL PROCEDURES

The experimental equipment and methods used in this research are described in detail in this
chapter. Section 3.1 deals with the equipment and operation of the UBC Pilot Plant. Section 3.2
provides further details of fermenter design, operation and the series of runs conducted over the
nine month sampling period. Sampling methods and analytical methods, as well as a detailed
description for the various trial runs, are described in Sections 3.3 and 3.4. A summary of quality
assurance and quality control (QA/QC) measures taken to assure the accuracy and precision of
the results is described in the final section. Methodology for QA/QC parameters are presented in

detail in Appendix A.

3.1 Plant Description and Operation

The UBC Pilot Plant, located in the southeast corner of the campus, is owned and operated by the
Department of Civil Engineering at the University of British Columbia. The Pilot Plant
consisted of parallel 3-stage Bardenpho BNR systems treating municipal/residential sewage
drawn from a gravity sewer line servicing the residential housing on campus. A process
schematic, including tankage is depicted in Figure 3.1. Raw sewage was lifted by a chopper-
pump into three 12,000L sewage holding tanks twice daily, (at 1100 hr and 1800 hr) and from
there sewage was pumped at a rate of 12 to 16 L/minute to the primary clarifier located inside the

pilot plant trailer. Since wastewater in the Vancouver area has low alkalinity (approximately 100

mg/L as CaCO,), buffer in the form of sodium bicarbonate (100 mg/L as CaCO,) was added daily
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to the raw sewage holding tanks. The addition of sodium bicarbonate maintained a pH balance
in the system of 7.0 (+/- 0.5) at all times; this was necessary for complete nitrification in the

process.

As shown in Figure 3.1, there were two parallel, 3-Stage Bardenpho process streams - a Control
stream and an Experimental stream - receiving effluent from the fermenter units at a rate of 2.0
L/min. The fermenters were in-line systems receiving full flow, as opposed to side stream
fermenters, which receive a fraction of the total flow. Primary effluent was split between control
reactors and experiment reactors, with fermented effluent being directed to the anaerobic zones
of each waste stream. Primary sludge was either wasted back to the gravity sewer or utilized in
other experiments. Liquid from the anaerobic zone flowed into an anoxic zone and then to an
aerobic zone before secondary clarification. Each process stream comprised 1350 L of reactor
volume, not including clarifiers, with a resulting HRT of 11.25 hrs. The solids retention time
(SRT) was governed by nitrifier growth rate in the aerobic zone and was chosen arbitrarily to
ensure a sufficient factor of safety against washout. The SRT was maintained at 15 days by
wasting mixed liquor from the aerobic zone once daily. The volume of sludge to be wasted was
determined by monitoring mixed liquor suspended solids (MLSS) and effluent total suspended
solids (TSS) concentration. The observed MLSS and TSS were used to calculate the volume of
wastage from sludge wasting charts. The sludge wastage charts were designed based on mean
cell-residence time (O¢c), defined as the mass of organisms in the reactor divided by the mass of

organisms removed from the system each day (Metcalf and Eddy, 1991).
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Oc = (Vr x MLSS)
(Vw x MLSS) + (Q x TSS)
where:

Vr = process volume (anaerobic + anoxic + aerobic)

Vw = volume of MLSS wasted daily
Return activated sludge (RAS) was recycled to the anaerobic zone at 1Q (where Q =2 L/min.);
mixed liquor recycle was pumped to the anoxic zone at 3Q. These flows were chosen based on
past operating experience (Rabinowitz, 1985, Setter, 1995) and the literature (Randall et. al.
1992, Metcalf and Eddy, 1991). Aeration and mixing in the aerobic zone of the process was
provided by coarse bubble diffusion and dissolved oxygen levels were manually maintained at
2 mg/L +/- 1 mg/L. Mixing in the anaerobic and anoxic zones was supplied by pneumatic
motors with speed controlled DC motors. After passing through the Bardenpho Process, mixed
liquor from the aeration tanks passed into secondary clarifiers each equipped with two concentric
V-notch weirs and gear driven mechanical rakes. The treated effluent was then sampled and

discharged back into the gravity sewer.

3.2  High-Rate Fixed-Film Fermenters
This study was a continuation of the work carried out by Dumitrescu (1998) in Year 1, and as

such, the fermenters used in this study are of the same design and similar configuration.
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3.2.1 Férmenter Design

Figure 3.2 depicts the configuration of the high-rate fixed-film fermenter (F®) system in which
four identical, 30 L fermenters were connected in series, following the primary clarifier and feed
pumps. Since the flow was set at 2 L/min, it was possible to sample in 15 minute intervals after
each unit and develop a VFA production rate. The system was operated under pressure for all
runs in this experiment to overcome the head pressure differentials and maintain an anaerobic
environment necessary for efficient fermentation. Two identical Moyno 500 progressive cavity
pumps were used to pump primary effluent through the process. A third pump, shown in Figure
3.2, was used for side stream experiments. Flows were accurately controlled and maintained by
means of a variable speed frequency control, which was wired to low liquid level sensors. The
purpose of the sensors was to shut the system down in the event of a stoppage in sewage flow
from the primary clarifiers. The major components comprising the fermenter system are shown

in Figure 3.2 - Detail A.

It is important to note the F system was operated in-line instead of side-stream to the process,
resulting in a process flow equal to the fermenter flow. Side stream primary sludge fermenters,
which are beginning to gain acceptance, typically receive between 5% and 25% of the process
flow (Munch, 1997c¢) and so fermentation products rerouted back to the process train are diluted
by the total flow. Control fermenters utilized during the first part of the project were identical to
experimental fermenters, except that they did not contain media. Fermentation byproducts, from

control reactors, resulted from sidewall fixed growth and could easily be quantified by

subtracting experimental fermenter results from control results.
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The fermentation units consisted of the following components:

1.0 m. high x 0.20 m. diameter PVC pipe served as reactor body (30 L)

PVC covers c/w drain valve on the bottom and bleed valve on the top

12 mm diameter PVC rigid pipe and flexible hose complete with ball valves

10 mm diameter nozzle

6 mm thick diffuser plate with 6 mm circular holes at 12 mm centres

Stainless steel cylindrical media support cages inside the reactors

Ringlace ® strands fixed at 25 mm centres for a total of 38 strands per cage

3 Ringlace ® cages per reactor

Ringlace density in the reactors was fixed at 1,100 m/m* for a maximum total surface area
of approximately 5.8 m?/reactor or 197 m*m®. During operation, bio-growth or adhesion
of solids would likely reduce the available surface area because individual loops would
stick together. The available surface area during operation could be as low as 67 m*/m’

(Dumitrescu, 1998).

Primary effluent entered the top of Fermenter #1 through a 10 mm diameter nozzle, which was

necessary to stimulate turbulence in the top 75 mm of the unit termed the inlet mixing chamber.

Liquid was sprayed tangentially around the inner wall of the pipe into the inlet mixing chamber;

a diffuser plate separated the inlet and outlet chambers from the media which supported the

attached growth. The provision of an inlet and outlet zone, complete with diffuser plates served

several purposes:

Zone for complete mixing of influent upon entry to the fermenter



28

. Provision of head space for trapped gases so as not to have deleterious effects on the
attached growth. All trapped gases were bled daily from a bleed valve on top of the inlet
zone.

. Even distribution of flow through the diffuser plates eliminating the possibility of short
circuiting through the reactor. The diffuser plates were periodically checked to ensure
that plugging did not occur.

. The diffuser plates also served as a structural barrier between the attached growth zone
and the inlet/outlet zone.

. The bottom outlet zone served as a catch basin from which accumulated solids were

removed each and every day.

The fermenter design and operation was such that fermentation attributable solely to fixed-film
growth could be determined without any confounding effects from entrapped air or solids
deposition. This was crucial in quantifying fermentation byproducts from attached growth, one

of the objectives of this research.

Based on results obtained from Year 1, Ringlace® media was chosen for this study for its high
surface area (0.179 m*lineal metre), flexible configuration, aversion to plugging and low
maintenance requirements. The Ringlace® itself has no structural stability so cylindrical cages
were designed to support the media and allow the media density to be ﬁxed at 1,100 lineal metres
per cubic metre inside the reactors. The media itself, is made of PVC consisting of a 6 mm wide

band with bundles of ten loops woven into the band. There are 20,000 loops per lineal metre of
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band,; the loops resemble hair and are 0.1 mm ¢ each. An in-depth description of Ringlace® can

be found in Dumitrescu (1998) and at http:/www.Ringlace.com.

3.2.2 Fermenter Operation

Four downflow fermenters (15 minute HRT) in series were fed primary effluent at 2 L/min to
maintain a combined maximum HRT of 60 minutes. Daily flushing was a routine part of the
operation with approximately 10 L being flushed from each reactor while the feed pumps were
still running. Flushing was carried out in an attempt to rid the reactor of solids build up, which
would mask VFA production attributable to fixed-film fermentation. The flushed liquid,
containing large amounts of solids, was wasted. As a result, air entered the reactors which were
under negative pressure from the reduced liquid volume. To eliminate entrapped air, drain
valves were closed and air was released through the top bleed valve as continuously pumped
influent displaced the entrapped air. Sampling was carried out via sample ports installed near the
base of each reactor. All flushing exercises were conducted after sampling had taken place.
Valves between fermenters were manipulated during flushing and sampling to ensure that cross

mixing was minimized.

3.3  Experimental Program
There were several runs during the project designed to evaluate fixed-film fermentation
efficiency and consequent effects on the BNR process performance. A solitary modification was

" made in each run so a direct cause could be attributed to a change in results. Table 3.1 provides a

summary of the different runs and the rationale behind the changes.
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Table 3.1 Summary of experimental runs

Run # | Days | Description Rationale

1 60 Fixed-Film & control fermenters Evaluate Ringlace F* vs control and
connected to Bardenpho process. consequent effects on nutrient

removal.

2 34 By-pass control fermenters. Evaluate Ringlace F* vs unfermented
Operate Ringlace fermenters only. | primary effluent on nutrient removal.

3A 39 Phosphorus addition to anaerobic Ensure excess phosphorus in effluent
Zones. to evaluate fermenter effect on P
Supplementary fermenter study loaded system. Determine P:VFA
independent of process. ratios, N:VFA ratios.

3B 37 Continued phosphorus addition; Continuation of Run 3a with return
return of drain liquid to process. of COD normally lost in drain liquid
Continue supplementary study.

3.3.1 Experimental Run #1

Run #1 began on July 22, 1997 after a four week break-in period in which the fermenters were

conditioned and both the control and experimental processes were stabilized. It was originally

intended to last for thirteen weeks, but a serious process upset after Week 5 caused the run to be

discontinued between September 1 and October 13.

Fermenter performance and consequent effects on nutrient removal were of prime importance

with potential differences between Control side (no fermenter media) and Experiment side

(Ringlace® media) being observed. Run #1 was the only experiment incorporating the use of

control fermenters.
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3.3.2 Experimental Run #2

Run #2 was a continuatioﬁ of Run #1 except that the Control fermenters were decommissioned
and primary effluent was added directly to the anaerobic zone on the control side. The rationale
for doing this was to amplify any differences in Control and Experiment process performance by
eliminating any contributions in readily biodegradable substrates to the control process
introduced by the control fermenters. To ensure both systems had identical biomass at the start
of the experimental run, mixed liquor between Experiment and Control processes were cross-
mixed for several days prior to the onset of sampling. Run #2 sampling started November 15

and was completed by December 17, 1997.

3.3.3 Experimental Run #3A and #3B

Measurement and comparison of process performance parameters was also of prime importance
in these runs, as with previous runs; however, there was added focus on phosphorus removal.
During Runs #1 and #2, all soluble phosphorus was removed from both waste streams by the
Control and Experimental BNR processes; this meant that the full capacity of the two process to
assimilate ortﬁo-P was not known. In Runs #3a and #3b, it was decided to double the ortho-P
entering the process by adding 3.0 mg/L soluble phosphorus as mono-sodium phosphate
(NaH,PO,.H,0) to the anaerobic zones of the Control and Experimental processes. The rationale
for doing this, was to gain insight into the full capacity of the process for phosphorus removal by

ensuring that ortho-P (PO,) was evident in the process effluent.

Run #3b differed from Run #3a in that flushed liquid from the experimental fermenters was not
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wasted but was returned to the anoxic zone of the process manually. The flushed liquid was
returned to the experimental process to equalize the COD load to both the Experiment and
Control sides. As the Control process did not have fermenters, flushing was not required and
there was no subsequent loss of COD entering the process. Initially, during Run #2 and #3a,
COD lost in the flush water was ignored but uﬁexpected findings from the Experiment process
led to the conclusion that COD lost during flushing was significant to process performance. In
hindsight, between 15 L and 50 L of flush water was drained from the Experiment side
fermenters each day which actually accounted for, as much as 1.5% of the daily COD load to the

Pilot Plant.

Sampling for Runs #3a and #3b commenced on January 19, 1998 and ended approximately three

months later on April 5.

3.3.4 Auxiliary Study

A side stream investigation, carried out independent of the process, was conducted concurrent
with Run #2 and Run #3 experiments. Control fermenters, decommissioned at the start of Run
#2, and available Ringlace were used for the auxiliary study. This study focused on VFA
production in two fermenters connected in series, in which solids were allowed to accumulate
and augment fixed-film fermentation. This system required no flushing and was also fed primary
effluent, as the primary clarifier provided excess flow which would have otherwise been wasted.

The auxiliary study was designed to be an independent study and therefore had no impact on

process performance. More details are provided in Chapter 4, Results and Discussion.
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34 Sampling Design

A sampling program was established which focused on assessment of fermenter performance and
pilot plant performance by selecting the appropriate sampling points and parameters. Sampling
was conducted five days per week, with two of the five days termed “scan days” in which all
parameters were sampled at all locations; sampling on the remaining days was limited in scope to

influent and effluent locations as depicted in Figure 3.3.

It was clear from previous work (Dumitrescu, 1998, Setter 1995, Rabinowitz, 1985) that
sampling should be conducted at the same time each day to avoid upsets caused by diurnal flow
patterns and timed pumping to the 12, 000 L sewage holding tanks. A 24-hour sampling test for
carbon analysis was carried out to determine (and confirm) acceptable “windows” during the day
for sampling to occur. Total organic carbon (TOC) and VFA grab samples were collected every
hour for 24 hours. From the 24-hour test, shown in Figure 3.4, it was evident that upsets and
instabilities were occurring when the main chopper pump started at 1100hr and 1800 hr and
during the afternoon period. The most stable time frame, in terms of influent carbon, was in the
morning prior to 1100 hr and so all sampling was done prior to 1100 hr for the duration of the

project. These results were consistent with previous experimental findings at the Pilot Plant.

3.4.1 Analyte Selection
Figure 3.3 is a schematic representation of the sampling program and schedule for Run #1. The

parameters, listed on the left of Figure 3.3: carbon, nitrogen, phosphorus, suspended solids, as

well as pH, temperature, and sludge volume index (SVI) were chosen to aid in fermenter and
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process evaluation. This selection of parameters was in agreement with those selected for
process evaluations described in the literature (Rabinowitz et al. 1995, Dawson et al. 1995,
Randall, 1992). The annotated sketch for Run #1 also denotes the sample locations using the
beaker symbol: raw sewage, primary effluent, each fermenter in series (beginning with
downstream one), the three BNR process zones and secondary effluent. The symbols (quarter
circle and full circle) indicate which analytes were sampled and when. Filter types employed are
designated by the funnel with description as follows:

. #4,20 um = Whatman No. 4 filter paper

. 1.5 um = Whatman 934-AH glass fibre (or equivalent)
. 0.45 um = Whatman 0.45 um membrane filters (or equivalent)
. The funnel with the cross through it indicates that filtering was not required.

The same sampling regime was used for both Control and Experimental waste streams for a total
of 3,780 different samples and 6,328 different analyses. Sampling for Runs #2 and #3 varied
slightly in that control fermenters were not used and total organic carbon was substituted for

chemical oxygen demand.

3.5 Analytical Methods

Sampling was carried out as per the American Public Health Association’s Standard Methods
(1995) and previous work except where necessary deviations could be justified. Early on in the
project, filtration was carefully considered as cost and practicality issues brought about questions

regarding the continued use of membrane filters (0.45 um). These filters were very costly, they

were difficult to use properly and there was some question with regards to the fractionation of




37

analytes with membrane versus glass fibre filters (1.5 um).

In previous work at the UBC Pilot Plant, membrane filters were rarely used. It was decided that a
filter test be conducted to determine the fractionation of analytes according to filter size. The
procedures and results from the filter test can be found in Appendix B. The results clearly
justified the substitution of membrane filters with Whatman Glass Fiber 934-AH filters in the
analysis of carbon samples (SCVFA and TOC) and Whatman #4 filters in the analysis of ions

(NH;, NO; and PO,). A summary of the sampling protocol is provided in Table 3.2.

3.5.1 Carbon Analysis

Carbon measurements consisted of SCVFA, soluble and total chemical oxygen demand (COD),
and total organic carbon (TOC). SM 5560 A/B (Standard Methods, 1995) was followed for
analysis of volatile fatty acids; analysis was done with a Hewlett Packard S880A Gas
Chromatograph equipped with a flame ionization detector and automatic sampler. Samples were
acidified with phosphoric acid to about pH 2 at the time of sampling and racks of SCVFA were
processed by laboratory technicians once weekly. COD measurements were done following SM
5220D “The Closed Reflux Colorimetric Method” (Standard Methods, 1995) on a Hach
DR2000 Spectrophotometer. COD measurements were found to be highly variable (+/- 15%),
and demanding of materials and labour. In Runs #2 and #3, COD measurements were

discontinued in favour of TOC analysis. Total organic carbon analysis was carried as per SM

5310B (Standard Methods, 1995) on a TOC 500, Shimadzu Total Organic Carbon Analyser with

automatic sample injector. TOC samples were preserved at the time of sampling by acidification
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as per Standard Methods. Organic carbon was found to be consistently accurate and precise with

less than 6% error, 95% of the time.

3.5.2 Nitrogen and Phosphorus Analysis

For the purposes of this study, nitrogen and phosphorus were characterized by analysis of
ammonia (NH,), nitrate/nitrite (NO;), orthophosphorus (PO,), Total Kjeldahl Nitrogen (TKN)
and Total Phosphorus (TP). All analyses were done on a Lachat QuikChem Automated Ion
Analyser following QuikChem methods 10-107-06-1-Z for NH,, 10-107-04-1-Z, for NO;, 10-
115-01-1-7 for PO,, 10-107-06-2-E for TKN and 10-115-01-1-I for T-P. (QuikChem, 1990).
QuikChem methods have been adapted from the 4500 series Standard Methods for their
respective analyses. Samples were preserved as per Standard Methods at the time of sampling

with sulfuric acid down to pH 2 or with phenyl mercuric acetate in the case of NO, & PO,.

3.5.2 Solids

Solids analysis included mixed liquor suspended solids (MLSS) and total suspended solids (TSS)
and was carried as per SM 2540 D “Total Suspended Solids Dried at 103-105°C” (Standard
Methods, 1995). To monitor settling characteristics of the activated sludge in the BNR process,
the sludge volume index (SVI) was calculated daily by collecting a 1.0 L sample of mixed liquor
from the aerobic zone and allowing it to settle in a 1.0 L graduated cylinder for 30 min. The SVI
was calculated as follows:

SVI = 30 min. settled sludge volume (m[/L) x 1000. (Standard Methods, 1995)
mixed liquor suspended solids (mg/L)
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Table 3.2 summarizes the parameters measured, as well as the filtration, preparation and storage

methods employed.

Table 3.2  Sampling Protocol

Analyte Sample Points Filtration Preparation/ Storage
Preservation
Total TCOD influent & none / prepared COD tubes 4°C in steel
Samples process Wh#4 (20 um) add 2ml sample racks
TKN & influent & none / 60 ml sample add 4°C in fridge;
T-P process Wh#4 (20 um) H,S0,to pH 2 labelled in box
Anions NOx/ PO, influent & Wh#4 (20 um) 2 X 8 mL; 2 drops 4°C in fridge;
effluent phenyl mercuric Ac plastic racks
NH, influent & Wh#4 (20 um) 2X 8mL; 2 drop 4°C in fridge;
effluent H,SO, to pH 2 plastic racks
Carbon SCVFA influent & 934-AH (1.5 1 mL in GC vial 4°C in fridge;
fermenters um) 0.1 mL HPO, VFA rack
TOC influent & 934-AH (1.5 1 X8mL; 2 drop 4°C in fridge;
fermenters um) H,SO,topH 2 labelled in box
SCOD influent & 934-AH (1.5 prepared COD tubes 4°C in steel
fermenters um) add 2ml sample racks
Solids MLSS/ process effluent 934-AH (1.5 filter 50 mL; dry at na
TSS um) 105°C
%P aerobic zone na divide T-P, T-N by na
%N MLSS

Note: na - Not Applicable

3.6  Data Quality

Quality Assurance/Quality Control (QA/QC) parameters are summarized in this section; details

and calculations are presented in Appendix A. For the purposes of this thesis, QA/QC

encompassed the protocols for ensuring representative data were reported, and the correct

sampling procedures in accordance with the established methods. There are many possible
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sources of error in reporting environmental data including sampling error, error associated with
processing a sample (i.e. filtering, preservation, storage), handling error, and analytical error.
Since differences between data sets were often small or indeterminate in this project, there was
additional emphasis placed on assuring the precision and accuracy of the reported data. The
comparative nature of this research required that data be subject to statistical analysis prior to the
formulation of any conclusions. A 95% confidence interval or o value equal to 0.05 was used,

unless otherwise noted.

3.6.1 Determination of Outliers
One or more measurements often vary substantially from other values and are subsequently
suspected of being outliers or anomalous to the data set. A simple method for detecting outliers
presented in Standard Methods (Standard Methods, 1995), involves calculating a T-statistic for
each measured parameter based on the mean and standard deviation of the data set. Each T-
statistic was compared against the critical T value for a 5% test of discordancy for a single outlier
in a normal sample. T values for each observation were calculated as follows (Barnett et al.,
1978).
T=|(x - x)|/s where: x = the observation

% = data set (run) mean

s = data set standard deviation
If the absolute value calculated for T exceeded the critical T value, an outlier was identified. A
decision was then made to either drop or include the data point based on any possible

explanations for the outlier. In theory, no result should be rejected, because it might indicate the
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presence of a true variant or a faulty technique that casts doubt on all results (Standard Methods,
1995). Therefore, the decision to include or reject an outlier was dependant on there being a
plausible explanation for the deviance. In the absence of a reasonable explanation, the outlier
was included. If, however there was some plausible explanation - failed pumps for example -

that data point was rejected from the calculations.

3.6.2 Precision and Accuracy

Precision and accuracy testing for all analytical methods was rbutinely carried out as per
Standard Methods (1995) through recovery of known additions (accuracy), measurement of
known standards (accuracy) and through analysis of duplicate samples (precision). Example

calculations are shown in Appendix A.

Once the accuracy of a method was ascertained through recovery or measurement of a known
standard, precision for each method was necessary to determine confidence intervals for the
analyte of interest. Precision was a factor of sampling error, error associated with preservation

and handling, and/or equipment error. Method confidence intervals are presented in Table 3.3

3.6.3 Method Detection Limit
The U.S. EPA defines the Method Detection Limit (MDL) as “the minimum concentration of a
substance that can be measured and reported with 99% confidence that the analyte concentration

is greater than zero.....” It is essential that all sample processing steps be included in the

determination of the method of detection limit (Berthouex, et al., 1997). The method detection
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limit is a statistical concept estimated from data at low concentrations for the analyte in question.
The MDL varies for each parameter of interest and each piece of analytical equipment utilized.
A total variance model elaborated on by Berthouex ef al. (1997) was applied to parameters
where concentrations were frequently found at or near zero concentration. The methodology used
in determining the MDL for PO, , TP, NO,, TKN and NHj; is elaborated on in Appendix A and

the values are presented in Table 3.3.

Table 3.3 Method Confidence Intervals and Detection Limits

parameter Standard Deviation | Confidence Method Detection
(mg/L) Interval +/- (mg/L) | Limit (mg/L)

PO, 0.30 0.59 0.003

TP 0.86 1.7 0.003

NO, 0.24 0.46 0.003

TKN 1.17 2.3 0.084

NH, 1.43 2.8 0.164

SCVFA 0.30 0.60 na

MLSS 96 190 na

TSS 9 17 na

Note: na - Not Applicable
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CHAPTER 4

4.0 RESULTS AND DISCUSSION

All experimental work was carried out at the UBC Pilot Plant between July of 1997 and April of
1998. The experiments were carried out according to the details provided in Chapter 3,
Experimental Methods and Analytical Procedures. Section 4.1 is a summary of influent
characteristics, both physical (temperature, pH and solids) and chemical (nitrogen, phosphorus,
and carbon). Fermenter performance for Runs #1 through #3B is presented in Section 4.2.
Process performance, and the influence of fermentation by-products, are discussed in Sections
4.3 and 4.4. In addition to the above, results from a process independent side-stream study are

presented in the last section.

4.1 Influent Wastewater Characteristics

The influent wastewater originated from a domestic/residential source on the campus at the
University of British Columbia. The wastewater could be characterized as weak to medium
strength, although there was an unusually high concentration of SCVFA in the raw wastewater.
The distance from source to treatment was quite short, which may have limited temperature
variations to between 24 °C in the summer to 12°C in winter (Figure 4.1) Also, the collection
system was relatively flat prior to reaching the pilot plant; this condition coupled with the storage
of sewage in the 12,000 L tanks prior to treatment meant that no measurable dissolved oxygen
was present in the process influent. There were no lift stations between the residences and the

pilot plant (Marty Cole, 1997).
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The combination of a flat collection system and warm temperatures could account for some of
the SCVFA present in the raw sewage (Randall, 1994); however, fermentation of raw sewage,
stored in batch at the plant (in 12,000 L tanks), probably accounted for most of the SCVFA in the
process influent. Figures 4.1 and 4.2 are temperature profiles and nutrient profiles, respectively,
for the primary effluent just prior to entry into the fermenters. A daily pilot plant log, maintained
on site, was useful in explaining anomalous data points or divergent trends. Figures 4.1 and 4.2

have been annotated to help explain such deviations.

Variations in temperature were seasonal, with low temperature spikes coinciding with heavy
rainfall or snowfall events, suggesting the existence of inflow and infiltration in the UBC
collection system. Influent pH was maintained at about 7 (+/- 0.5) as about 100 mg/L (as CaCO,)
of alkalinity in the form of sodium bicarbonate was added to the process daily. Unusually high
and variable concentrations of influent volatile fatty acids were observed during the study period;
84% of the time, observations ranged between 20 mg/L and 35 mg/L expressed as acetic acid
(HAc). Influent VFA concentrations recorded in previous studies conducted at the UBC Pilot
Plant rarely exceeded 20 mg/L. The highly variable observations comprising the remaining 16%
can be explained after a review of the plant log, for example:

1. The period of low influent SCVFAs near the beginning of August was a result of a
cleaning exercise (cleaning in Figure 4.2) in which bio-film from the storage walls and a
large amount of solids (200 kg) were physically removed from the 12,000 L storage tanks.

2. A downward spike in mid-October coincided with sampling conducted during the

evening instead of the usual sampling time between 0800 and 1030 hr.
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3. The upward spike near the end of January, labelled “Upset in Storage Tank”, coincided
with the re-activation of a failed mixer in one of the 12,000 L storage tanks. The mixer
had been out of service for an extended period of time, resulting in the formation of a
floating sludge blanket in the tank. When the mixer was turned on, a surge of SCVFA,

exceeding 35 mg/L, and lasting for 7 days was elutriated from the blanket.

There is no evidence from Figure 4.1 that the influent SCVFA concentration was influenced by
temperature of the raw wastewater. The variation of influent volatile fatty acids does not
correspond to seasonal temperature variations but does appear sensitive to storage upsets,
changes in routine, or precipitation events. Therefore, it is likely that fluctuations in influent
SCVFA concentration is a direct result of conditions at the pilot plant (sewage storage, handling)

more so than conditions in the collection system.

An examination of spikes in influent nitrogen and phosphorus (Figure 4.2) indicates there was no
discernable trend related to temperature. Deviations were, for the most part, coincident with
upsets which influenced SCVFA concentrations as described above. There were two periods of
high influent concentrations for which there was no obvious explanation; one in TKN near mid-
February, the other in T-P at the end of the study. The most probable explanation is an
operational problem associated with raw sewage lift pump failure and irregular operation which
occurred at the time. A lift pump failure often resulted in a high influx of solids after re-start,

which may have contributed to high polyphosphate and organic nitrogen concentrations in the

influent.
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Table 4.1 is a summary of the pertinent influent (primary effluent) wastewater parameters arrived

at by calculating the arithmetic means from data collected throughout the project. A few

important points worth noting: |

1. The TCOD:TP ratio was 73 which exceeded the recommended minimum ratio for good
phosphorus removal reported in the literature by a factor of approximately two. (Barnard
et al., 1998, Randall et al., 1992, US EPA 1987). The high ratio of carbon to phosphorus
would indicate that the influent was amenable to good phosphorus removal without the
need for pre-fermentation.

2. The TCOD:TKN ratio was about 12 which is just slightly higher than the ratio typical of

most wastewaters (Randall et al., 1992).

3. The high concentration of influent VFA (versus historical Pilot Plant data), already
discussed.
Table 4.1 Influent wastewater parameters
Flow | Temp | pH |SCVFA | T-P | PO, | TKN | NH, | TCOD | scop | ToCc | sTOC
L/m °C mg/L | mg/L | mg/L | mg/L | mg/L | mg/L mg/L | mg/L | mg/L
2.0 16.9 7.0 26 6.5 29 303 16.7 359 219 63 56

Note: 1. Observed primary effluent TSS =97 mg/L ; VSS/TSS Ratio = 0.85

2. The primary clarifier removed 44% of the influent TSS

The average values shown, have been corrected according to Standard Method 1010 (Standard
Methods, 1995), which provides a procedure for identifying outliers in a normally distributed

data set. Observations were identified as outliers using a 5% critical value test for discordancy.

Only outliers in which a known error or process upset had occurred were rejected from the data
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set. The procedure is explained further in Appendix A - Statistical Analysis.

4.2 Fermenter Performance

Fermenter performance in all experimental runs was gauged by measuring VFA yields and
production rates, as well as the COD and TOC concentrations in the fermenter effluent. It was
found that SCVFA production in the fermenters was closely related to unit HRT and temperature
of the influent, as previously reported in the literature (Elefsiniotis et al. 1995, Canziani et al.

1996, Christensson et al. 1998).

Fermenter daily operation and maintenance was an important factor in VFA production during
this study. It was discovered by Dumitrescu (1998), that solids accumulation in these units could
easily be controlled by increasing or decreasing the volume of liquid flushed daily from each
fermenter. It was then established, and confirmed in this study, that an increase in solids
accumulation in the fermenters led to an increased VFA production. Since the purpose of this
research was to assess the ability of a fixed-film to produce fermentation by-products, solids

were rigorously flushed until the drain liquid resembled primary effluent in clarity and colour.

4.2.1 Experimental Run #1 SCVFA Production Rates

Run #1 was a direct comparison between fixed-film fermenters (F?) with Ringlace media and
control fermenters with no media as described in Section 3.2.2. This section is a summary of
fermentation by-products from each fermenter train during the period from late July, 1997 to late

October, 1997. All raw data can be found in the Appendix C - Experimental Data.



49

The VFA production rate, illustrated in Figure 4.3 and Figure 4.4, was arrived at by subtracting
SCVFA concentration leaving the fermenters from the concentration entering and dividing by
HRT, which is 1 hour in this case.

VFAwmte = SCVFAout - SCVFAin
Time (HRT)

The observed concentrations in Figures 4.3 and 4.4 comprise acetic acid (HAc), as well as

propionic acid (HPr); both are presented as HAc. (The conversion factor for HPr to HAc is 0.81
based on the molecular weight of each compound). The bottom area in both graphs consisted of
HAc, which accounted for about 75% of the total SCVFA, while the top area was propionic. For
fermentation of raw sewage, this ratio of HAc to HPr is consistent with previous research (Koch,

1994, Danesh, 1995) and fermentation of primary sludge under micro-aerobic conditions

(Sharma, 1998, Chu, 1995).

The Run #1 VFA production rates were highly variable in both Control and Experimental units
even though temperature of the influent remained fairly constant at 20 °C, +/- 2.3 °C. Possible
causes for the variability in SCVFA production included, inconsistencies in fermenter flushing
and draining, failure to bleed entrapped air from inside the fermenter units, variations in influent
VFA entering the plant, and sampling error. In several instances, the production rate peaks and
valleys for Control and Experiment mirrored each other, indicating that fermenter influent was

responsible for the variations. This point is investigated further in following sections.
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4.2.2 Experimental Run #1 TOC and COD

Only brief mention of COD and TOC fermenter “production” results is warranted here since the
results were deemed either insignificant or inconclusive. Table 4.2 is a statistical summary of the
various forms of carbon mgasured in the Control and Experiment fermenters. All recorded
results were calculated by subtracting fermenter influent concentrations from the concentration

leaving the reactors.

Table 4.2 Run #1 Carbon Summary (C, - C,)
Experiment Fermenters (mg/L) Control Fermenters (mg/L)
Form n mean median std dev (0) | mean median std dev (o)
COD 16 17 14 72 -7 8.5 54
TOC 16 8.2 0.9 21.1 -6.9 1.0 255
SCVFA |35 9.1 83 4.9 4.4 3.9 4.5

The high degree of TOC and COD variability (as indicated by their standard deviations)
suggested these two parameters were not suitable indicators of daily fermenter performance.
SCVFA was determined to be a superior means of measuring daily fermenter performance and
the data supported this conclusion. The high degree of variability in the COD and TOC
measurements can be explained by the solids present in the filtrate. Both methods of
measurement (TOC and COD) convert all forms of carbon passing the filter, both dissolved and
solid, into an equivalent carbon concentration. Solids present in the filtrate were highly variable

and dependant on fermenter flushing, filter type, volume of filtrate and human error among other

factors. The method for detecting SCVFA is analyte specific and the statistical data
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demonstrates this method is less sensitive to filtrate solids. Furthermore, there was no
discernable trends or correlations between either TOC or COD leaving the fermenters and
SCVFA leaving the fermenters; Stevens (1994) also reported the same finding in a two year
study at the Kelowna Pollution Control Centre. Normally, TOC and COD leaving the fermenters
are correlated to SCVFA leaving, but sampling and analytical techniques frequently mask such
relationships, as was the case in this study. For these reasons, SCVFA measurements on the gas

chromatograph were chosen as the means of assessing fermenter performance.

4.2.3 Experimental Run #2 & #3 SCVFA Production Rates

Run #2 and #3 focussed primarily on how prefermentation affects the BNR process. Operation
of the Control fermenters ceased with Control side primary effluent being routed directly to the
anaerobic zone. The SCVFA production rates, shown in Figure 4.5, are presented as an area plot
comprising acetic acid on the bottom with propionic acid on top. This section covers all
corrected observations starting from run #2 in November, 1997 and ending with Run #3B ending

in April, 1998.

SCVFA Production dropped about 50% during this time period from an average of about 4.9
mg/L in Run #1, to an average of 2.3 mg/L in Runs #2 and #3. The cause for this decrease in
VFA production was colder influent wastewater temperatures, resulting in a slower rate of
hydrolysis (Llabres-Luengo ef al. 1988). During the first run, wastewater temperatures were
fairly consistent at about 20 °C. During the period from November to April the average

temperature of the influent dropped to about 15°C +/- 1.3 °C, which is a significant drop in
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temperature in an anaerobic system (Gupta, 1985, Lilley, et al. 1990).
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4.2.4 Factors Affecting Fermenter Performance

This section further discusses several factors that affected the observed SCVFA yields and

production rates from the high-rate, fixed-film fermenters used in this study.

4.2.4.1 Temperature Effects

A frequently quoted approximation known as the van’t Hoff rule states that the reaction rate
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doubles for every 10°C temperature rise (Benefield ef al. 1982). The Arrhenius equation is
another often quoted model relating temperature, activation energy and the ideal gas constant to
reaction rate. Researchers Llabres-Luengo and Mata-Alvarez (1988) found that the rate of
hydrolysis, during acidogenisis, followed the Arrhenius equation between 20 °C and 44 °C.
Jorgensen (1990) investigated COD yield of primary sludge versus temperature and found that
yields dropped 30 to 40% when temperatures went from 20°C to 15°C. At 10°C, Jorgensen
states that “the hydrolysis rate was very slow and comparable to the rate in sludge stored at 1-
2°C”. Fothergill (1996) and Gupta (1986) also recorded a marked drop in VFA production from
primary sludge when temperatures dropped below 20°C. A correlation between temperature and

SCVFA produced in this study is presented by Figure 4.6.
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There appears to be a positive linear correlation between VFA production and temperature
evident in the graph and regression coefficient of correlation. This would indicate that
fermentation of primary effluent is a first order reaction, similar to fermentation of primary
sludge, in which the reaction constant is temperature dependant (Lilley, er al. 1990). A test for
significance (& = 0.05) revealed that r-critical for the given sample size is 0.287 (Sincich, 1987).
Since the calculated regression coefficient (r = 0.85) exceeded the critical coefficient, there was
sufficient evidence to conclude that temperature and VFA production were positively correlated.
Caution should be exercised in using the linear relationship in Figure 4.6, as it was not the intent
to accurately define a relationship, but only to investigate the possibility of its existence. The
relationship appears linear in the temperature and production ranges shown for high-rate
fermentation of primary effluent. A similar relationship would not necessarily exist at higher

temperatures, longer HRTs or with different substrate.

4.2.4.2 Effect of HRT

Dumitrescu (1998) determined an optimal HRT for high-rate VFA production in a fixed-film
fermenter to be somewhere between 40 and 60 minutes. In this study, samples for SCVFA
analysis were collected after 15, 30, 45 and 60 minutes HRT throughout the duration of the
project, to confirm Dumitrescu’s findings. Figure 4.7 summarizes VFA yields corresponding to

the individual HRTs, by means of a box and whisker plot for each of the three runs.

The box and whisker plot is a useful tool for characterizing many aspects of each HRT data set.

The whiskers define the maximum and minimum value for each data set and thus represent the
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range. The box represents the inner quartile range (25th to the 75th percentile), and provides a
quick method of assessing precision. The two line graphs join the average and median values for
each data set and closely resemble each other. When the median is less than the average, a
skewed left data set would be indicated; when the median is greater than the average, a skewed
right data set would be indicated. The relative closeness of the median and average values
observed in Figures 4.7 and 4.8 would indicate that the data sets for the individual HRTS

resembled a normal distribution.

In addition to providing statistical information regarding each data set, the average and median
values shown in Figures 4.7 and 4.8 provide trends for VFA production yields which are
calculated as follows:

VFAyield = SCVFAout - SCVFAn
From the slope of the graphs, rates can be qualitatively observed after each reactor representing a
15 minute HRT. From the box and whisker plots, there is no evidence to suggest that VFA
production would not continue to increase with increased HRT past 1 hour. Fermenter HRT was
limited to 60 minutes for practical reasons and also because this experiment was intended to be a
high-rate investigation. There appears to be a decrease in the rate (as indicated by the slope) after
45 minutes of hydraulic retention time. This trend was consistent throughout the sampling

period and can only be explained by some repeated operational error, or fault in the construction

of the third fermenter unit.
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4.2.4.3 Effect of Influent VFA

When influent VFAs exceeded a certain value, VFA production from the high-rate F* units
decreased. Figure 4.9 is a scatter plot, VFA produced versus VFA entering the fermenters, from
which a discernable downward trend is evident. It appears that production is negatively affected
by high influent VFA to the fermenters. In Figure 4.9, when influent VFA is less than 20 mg/L,
production exceeds 5 mg/L in all significant observations, except one. When influent VFA is

greater than 20 mg/L, production is less than 5 mg/L in most cases as shown in Figure 4.9.

A simple test for significance, similar to that Section 4.2.4.1, reveals that the calculated
coefficient of correlation, r = 0.58 is greater than the critical value, which was r = 0.183. This
fact indicates that a negative correlation between the two parameters exists. The reason is not
clear but one possible explanation is that fermentation of readily biodegradable substrates,
normally occurring in the fixed-film fermenters, has already taken place in the sewage collection

system or pilot plant holding tanks.

To explore the possibility of a correlation between influent concentration and VFA production
further, recorded observations from Dumitrescu’s research (1998) were similarly plotted and are
shown in Figure 4.10. The plot of VFA produced versus influent VFA appears scattered with
slight negative correlation especially when influent concentration exceeds 20 mg/L of SCVFA.
Below an influent VFA concentration of 20 mg/L, there appears to be little evidence suggesting
production is related to influent concentration. The results obtained by Dumitrescu corroborate

the finding that VFA production in high rate fixed-film fermentation of primary effluent drops
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when incoming VFAs exceed a certain value. For this particular wastewater, the readily
fermentable component could be could be approximated as 20 mg/L, expressed in terms of VFA,

after acidogenisis.

These findings were significant to this research, because the implications were that high-rate
fermentation might be more applicable to wastewaters which have not undergone fermentation
during transmission between source and treatment. In wastewaters subject to anaerobic
conditions during transmission/handling, the readily fermentable component has been converted
to VFA by acid-producing microorganisms, and is therefore, not available for fermentation in the

high-rate type fermenters.

4.2.4.4 Fixed-Film Mass Estimates
At the conclusion of testing, an assay of the Ringlace from inside each of the four reactors was
conducted. Segments of 13 to 17 cm in length were removed for the purpose of estimating fixed-

film solids attached to the Ringlace media. The results are presented in Table 4.3.

It is evident from these results that the two upstream fermenters in the series ( Reactors 1 and 2)
carried a higher load than Fermenters 3 and 4, probably because the first two‘units utilized
available RBCOD and colloidal material resulting in less available RBCOD and colloidals for
the downstream units. The biological nature of the anaerobic fixed-film was not determined, so it

was unclear what percentage of the fixed-film was actually biomass and what was simply

adhered.
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Table 4.3 Fixed-Film mass estimates (average values)
length TSS/length *VSS/length
Fermenter cm g/m g/m
1 13.2 8.582 6.771
14.0 8.739 6.894
2 14.0 8.744 6.899
16.4 6.454 5.092
12.8 8.271 6.526
3 13.5 5.021 3.962
3 13.0 7.264 5.731
4 17.3 6.324 4.989
4 14.8 4.436 3.500
avg 7.093 5.596
st dev 1.543 1.217

* based on 79% volatile fraction solids.

The volatile fraction of the film was calculated to be approximately 79%. The overall average of
7.1 g/m compares well with the findings of Setter (1995) who found 9.5 g/m mass content on
Ringlace® in an aerobic environment. The higher solids mass in Setter’s work is likely owing to
the aerobic environment being able to support a greater variety of life forms than the anaerobic
environment in this study. Setter (1995) confirmed that worms, stalked protozoa and bacteria

commonly found in sewage was also found growing on the media in an aerobic environment.

4.2.5 Fermenter Performance Summary
A performance summary of the high-rate, fixed-film fermenter and a comparison against
production results from previous work is presented in this section. Data presented in Tables 4.4

and 4.5 refers to SCVFA production rates in mg/L/hr for the findings of this research (Year #2),

as well as the findings of Dumitrescu (1998). Runs #1 from Year 1 and Year 2 are comparable
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with primary effluent serving as the feed in both cases and SCVFA production of 9 mg/L/hr and

6, mg/L/hr respectively.

. Some of the Year 1 data (Run #2) cannot be compared with Year 2 data because the
primary clarifier was by-passed and raw sewage was used as influent to the fermenter
units. Primary effluent was used exclusively during Year 2 to avoid system upsets caused
by plugging in the fermenters; this was prevalent during Year 1 (Dumitrescu, 1998).
Primary effluent was desirable, not only for operational reasons, but also becéuse the
primary clarifier was assumed to have little impact on the substrate available for high-

rate, fixed-film fermentation.

Table 4.4 Fermenter production summary - Year 2
Year2-Run# | SCVFA Influent | SCVFA effluent | SCVFA Prod’n Average
mg/L mg/L mg/L/hr Temp °C
#1 July to 24.2 333 9.1 - 20.0
Oct/97 ‘
#2 Oct to 27.6 29.5 1.9 15.1
Dec/97
#3 Jan to Apr/98 28.1 31.2 3.2 151
average 26.6 313 4.7 . 16.7
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Table 4.5 Fermenter production summary - Year 1 (Dumitrescu, 1998)
Year 1 -Run# | SCVFA Influent | SCVFA effluent | SCVFA Prod’n
mg/L mg/L mg/L/hr
#1 Aug to 24 30 6
Oct/96
#2 Jan to Feb/97 17* 27* 10*
average 21 29 8*

* Influent from Run #2 in Year 1 was raw sewage (versus primary effluent).

A further examination of VFA data from Year 2 - Run #1 revealed that the primary clarifier did
have a measurable impact though. During Run #1, the average VFA concentration in the primary
effluent was 2.5 mg/L higher than that observed in the raw sewage. The readily fermentable
substrate converted to VFA in the primary clarifier (45 minute HRT) was not available for
conversion in the fixed-film fermenters. Despite this, it was decided to run primary effluent

through the fermenters to simplify and improve the consistency of fermenter operation.

4.3 Process Performance

The primary objective of this research, “to investigate pilot plant BNR process performance
when VFAs produced in the subject fermenters are introduced to the waste stream” is addressed
in this section. Comparison in process performance between two parallel liquid streams,
Control and Experiment streams (Figure 3.1), was made by measuring nutrient removal (carbon,
nitrogen and phosphorus), and recording process stability and sludge settling characteristics.

Each of these traits will be explored in the following sections where data for the entire project,
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comprising Experimental Runs #1 to #3B, is presented.

The three experimental runs that formed the basis of this research were as follows:

1. Run #1 - Fixed-film fermenters and Control fermenters on the front end of the process.

1. Run #2 - Primary effluent bypasses Control fermenters directly to the anaerobic zone.
Continue operation of F* units.

iii. Runs #3A and #3B - Addition of excess (3.0 mg/L) orthophosphate to the anaerobic zone.
Continued to bypass control fermenters. In #3B return fermenter flush water to the head

of the process.

4.3.1 Phosphorus Removal

Phosphorus (P) removal was calculated as TP, -TP,,, (mg/L) for both Control and Experiment
streams and is shown in Figure 4.11. The solid line and dashed line represent the five-day
moving average for Experimental and Control streams, respectively. In Figure 4.12, the more
conventional % phosphorus removal is plotted with effluent soluble phosphate (PO,) plotted on
the second ordinate. Relevant data, plotted in both figures, is provided in Appendix C -

Experimental Data, including statistics describing the data set.

Often removal is expressed in terms of mass per unit time (i.e. kg/day). In this study, it was
decided to present removal in units of mass per unit flow (mg/L,, - mg/L,,) to be consistent with
other research (Wentzel et al., 1997, A. Randall er al., 1997, C. Randall et al,, 1997 ), and

because both methods of expression are equivalent, as explained below.
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To determine removal as kg/d, the total daily flow (L/d) is multiplied by the influent
concentration less the effluent concentration, i.e.

kg/d = L/d x (mg/L;, - mg/L, )
1,000,000 mg/kg

To determine removal as mass per unit flow (mg/L), the mass removal per day is divided by the
total flow i.e.
mg/L = _kg/d x 1,000,000 mg/kg
L/d

Which is equivalent to influent concentration less effluent concentration (mg/L;, - mg/L_,).

The quantity of phosphorus removed (in terms of percent and mg/L) for all three runs was similar
with little or no PO, in the effluent for either Run #1 or Run #2. A sample test for the difference
between two paired data sets was conducted for each run (Sincich, 1987) using an o = 0.05.
There was no significant difference between experimental and control P removals in all runs
except Run #3A, where the control process P removal actually exceeded the experimental P-
removal. A test of hypothesis revealed a calculated t = 2.20 versus a critical t = 2.08. This
finding was deemed inconclusive given the precision for total phosphorus removal (Appendix A)
and the fact that carbon was being wasted from the Experimental process during flushing and not

from the Control process.

There was no significant difference between the Experimental and Control process P removal,
however, there were distinct differences between experimental runs. In the first two runs, total

phosphorus removal consistently exceeded 90% with effluent PO, less than 0.3 mg/L (Table 4.6).
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Table 4.6 PO, removal and effluent PO,

PO, removal (mg/L) | Effluent PO, (mg/L)

Run Experiment | Control | Experiment | Control n Oexp | Octl
#1 2.43 2.44 0.25 0.28 35 0.89 | 0.85
#2 2.71 2.70 0.05 0.06 25 10431042

#3A 2.55 3.50 3.67 2.70 25 | 1.73 | 1.36

#3B 2.67 2.83 3.85 3.67 18 | 1.17 | 1.16

Phosphorus removal during Run #3 became very unstable, with an apparent failure in the EBPR
mechanism as evidenced by unsteady performance in P-removal (Figure 4.11 & 4.12). Removal
is closely related to influent during the first two runs, with peaks and valleys correlating well; the
high percentage removals indicated that the system was phosphorus limited, during these two
runs. During Runs #3A and #3B, when 3.0 mg/L phosphorus was added, process P removal was
very inconsistent and decreased, several times, for both waste streams. The system was probably
carbon limited in Run #3 (low F/M ratio), similar to an endogenous activated sludge. Such an
environment might be very aggressive and troublesome to phosphorus accumulating organisms

which probably were unable to compete with the other microorganisms in the activated sludge.

Another possible explanation, non biological in nature, could be inconsistent P addition to the
anaerobic zone. Throughout Run #3A and #3B, it was assumed that 3 mg/L of P was added to
the process. A stock solution of high concentration was prepared at the UBC Civil

Environmental Lab and diluted to 600 mg/L phosphorus at the Pilot Plant. Phosphorus addition

was then metered to the process at 10.0 mL/min from the concentrated stock of 600.0 mg/L.
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Process flow and phosphorus addition were measured daily and the stock concentration was

verified, but there was still potential for error.

4.3.1.1 Activated Sludge Phosphorus Content

Since phosphorus is ultimately removed during sludge wasting, an elevated percent phosphorus
concentration in the sludge is important for efficient system P removal. Mixed liquor (MLSS) in
conventional activated sludge systems, not operating as EBPR systems, typically contain about
2.3% TP on a dry weight basis (Randall er al. 1997). By definition, EBPR processes have higher

MLSS phosphorus contents necessary for enhanced phosphorus removals.

Process mixed liquor was measured twice weekly along with TP, so that percent phosphorus in
the activated sludge could be calculated as follows:

%P = TP (see Figure 4.13)

MLSS

Percent phosphorus in the MLSS varied between 4.2%, when phosphorus was limiting in Runs
#1 & 2, and about 5.6% when phosphorus was in excess during Runs #3A and #3B. The overall
average Experimental and Control percent P content were found to be 5.0% and 4.7%,
respectively. These results suggest that Experimental mixed liquor contained more phosphorus

than Control mixed liquor; however, the lack of precision in the MLSS and TP tests would not

definitively support such a conclusion as explained below.
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Figure 4.13  Phosphorus content in activated sludge mass

The 95% confidence intervals for TP and MLSS were +/- 2.2 mg/L and 190 mg/L respectively
(Table 3.3). The average process MLSS concentration for the Experimental side was
approximately 2890 mg/L measured in the aerobic zone. The average Total Phosphorus
measured in the aerobic zone of the Experiment side was 146 mg/L. Percent P was calculated as
follows:

%P = _ 146 mg/L (+/-2.2) x 100 = 5.0% +/-
(2892 mg/L (+/- 190 )

The percent phosphorus in the Experiment sludge was 5.0%, however, when the method

confidence intervals were taken into account the % P ranged from 4.7% to 5.5%. Similarly, the
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Control sludge ranged between 4.3% and 5.0%. Because of the overlap between ranges, the

difference between Control and Experiment %P content is not definitive.

The literature cites several cases where %P in the mixed liquor of EBPR plants was in the range
of 5%. Randall (1998), found total phosphorus levels in the MLSS to range between 4.5% and
7% in EBPR studies with excess phosphorus being added to the process. Zhao (1998) found %P
in the MLSS to vary between 2% and 4% in studies involving the same sewage used in this
research. Zhao (1998) also reported an average MLVSS/MLSS ratio of 0.74 from all runs in a
laboratory scale 3-stage Bardenpho process. This value was used for conversion purposes in the

analysis of these results.

4.3.2 Process Nitrification

Conversion of ammonia to NO; in both the Experimental and Control processes was consistent
(Figure 4.14) with effluent NH, levels less than 0.5 mg/L in over 97% of the observations.
Nitrification in both processes was complete as effluent ammonia concentration was below the
calculated MDL 90% of the time. There were exceptions when NH; breakthrough did occur;
however, there was no evidence to suggest that one side performed better than the other. Influent
ammonia and effluent ammonia for both sides is plotted in Figure 4.14 and percent conversion of

NH,; to NO, 1s labelled for each run.
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ammonia was significantly higher than the method detection limit. Low dissolved oxygen (DO)

concentration in the control side aerobic zone probably resulted in incomplete nitrification during

these times as pH was controlled in the raw wastewater.

Influent and Effluent Ammonia Concentration
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Figure 4.14 Influent and Effluent Ammonia

Incomplete nitrification may have been an indirect result of salt water intrusion into the

collection system. Salt added to icy roads, followed by a subsequent thaw condition, could have

resulted in saline water infiltrating the sewage system. With the infiltration of street runoff -

(which was visible in the colour of the raw sewage), oxygen transfer may have been negatively
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affected (Metcalf and Eddy, 1991). There was no online monitoring of DO during this study to
confirm that insufficient dissolved oxygen was the cause of incomplete nitrification. There were
fewer cases of ammonia break through in the Experiment process, indicating that sufficient

oxygen was provided to the process most of the time.

4.3.3 Nitrogen Removal

Nitrogen removal, measured in terms of total nitrogen (TN, -TN,, in mg/L) is represented in

out

Figure 4.15. Process performance expressed as % TN removal and effluent nitrate/nitrite (NO,)

in mg/L, is shown in Figure 4.16, as is frequently the case for effluent discharge limits.

Influent TKN and TN removal, plotted in Figure 4.15, demonstrate the effectiveness of the 3-
Stage Bardenpho process with regards to nitrogen removal. Influent spikes, caused by upsets
(Section 4.1), are matched by a corresponding increase in total nitrogen removal demonstrating
the ability of the process to respond to increased loadings. The process was able to handle peak

nitrogen loads and maintain a fairly consistent percentage removal indicative of a stable process.

Inspection of Figure 4.16, and a paired two-sample test for the difference of means, revealed that
the Control process appeared to outperform the Experimental process with regards to effluent
NO; during Run #2 and Run #3A. This disparity is obvious in Figure 4.16 where TN removal
frequently drops below 80% on the experimental side but rarely so on the control side. As shown
in Figure 4.16, Experiment effluent NO; is consistently higher than Control NO, during Runs #2

and #3A. Thus, it was concluded that better Control side denitrification was one reason for
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superior nitrogen removal in the Control process. Once carbon lost during flushing of the
fermenters was returned to the head of the process in Run #3B, the experiment and control side

perform equally well in terms of NO, removal (Table 4.7).

Table 4.7 TN removal and effluent NO,
TN removal (mg/L) Effluent NO; (mg/L) | Effluent TKN (mg/L)

Run Experiment Control | Experiment Control | Experiment | Control
#1 26.89 26.91 3.83 3.70 1.4 1.4
#2 22.31 24.70 4.03 3.00 1.1 0.3
#3A 25.55 26.02 4.30 3.90 1.5 1.4
#3B 28.80 29.50 3.20 3.20 1.7 1.0

From the data in Table 4.7, denitrification in the Experiment process was negatively affected by
flushing the fermenters and the subsequent loss of readily available COD necessary for efficient
denitrification. This was especially true during Run #2, when VFA production in the fixed-film

fermenters, which might have mitigated the flushing, was at its lowest.

Effluent TKN, shown in Table 4.7, varies between Control and Experiment and also contributes
to the disparity in TN removalvbetween processes. It is unclear why TKN appears to vary
between processes. The method for TKN analysis was sensitive to effluent solids and equipment
(Lachat) preparation and therefore less precise as measurement a tool. Because of this,

experimental error and/or increased effluent solids (from the Experiment process) are likely

causes for the effluent TKN variance.
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In summary, total nitrogen removal in both the Experiment and Control Processes ranged
between 70% and 90% for the duration of the project. Percentage nitrogen removal and
phosphorus removal was similar during the first two runs, but then percentage P-removal
dropped significantly once soluble phosphorus was added during Run #3. Nitrogen removal was

not affected by the addition of phosphorus to the processes during Run #3.

4.3.3.1 Activated Sludge Nitrogen Content

Percent nitrogen content was calculated, similar to %P, by measuring TKN in the process mixed
liquor and dividing by MLSS concentration. Percent N in sludge is important when considering
overall nitrogen removal for the same reasons %P removal is important; this fraction of N
removed with the waste activated sludge supplements the N removal achieved through biological
denitrification. As depicted in Figure 4.17, the average percent nitrogen in the experiment and
control processes was consistently around 8%, once the process MLSS stabilized. This
compares well nitrogen content of 8.4% reported by Zhao (1998) in a similarly operated system.
It should be noted, that if N removal due to sludge wasting was desired, then process NO; should
be accounted for, in addition to TKN as both forms of nitrogen will be present in the waste
sludge. Because process NOx concentration is small compared to process TKN concentration for

this study (NOx = 4 mg/L vs TKN =250 mg/L) , process NOx was not considered significant to

the nitrogen content.
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Figure 4.17 Nitrogen content in activated sludge mass

4.4

Auxiliary Fermentation Studies

Beginning in Year 1 of the Fixed-Film Fermentation study, it was recognized that solids build-up

in the fermenter units could result in increased SCVFA production. On days when flushing was

missed or less rigorous, the production of SCVFA increased compared to days when solids were

completely removed. Allowing solids to accumulate in the fermenters resulted in plugging of the

reactors and piping though, so solids were eliminated from the reactors as described in Section

3.2.2. It was also reasoned that since VFA production from a fixed-film was of primary interest,

the effects of solids should be minimized as much as possible.




77

An auxiliary study was conducted to quantify SCVFA production resulting from solids present in
the primary effluent by allowing the solids to accumulate and ferment in spare reactor units. This
auxiliary study was operated independent of the Experiment and Control BNR processes but was

considered significant for future research possibilities.

4.4.1 Settled Solids Fermentation

Two fermenter reactors in series, with a total HRT of 1 hour, were fed surplus primary effluent
from the UBC Pilot Plant; fermented effluent was directed to waste. There was no draining or’
flushing of solids, and no media for attached growth other than the pipe walls themselves.
Sampling was conducted on the same days as process sampling, as per the established protocols

until the system plugged after four weeks of operation.

Acetic acid and propionic acid concentration (as HAc) are plotted in Figure 4.18. The
experiment started in November and showed similar results to the fixed-film fermenters for the
first four weeks (1.94 mg/L versus 2.79 mg/L) until the reactors plugged. After flow was
reinstated, VFA production appeared to show an improving trend, bolstered by a raw wastewater
storage upset; this resulted in a surge of readily fermentable substrate to the pilot plant (as

explained in Section 4.1) after which, the reactors plugged and flow stopped again.

During this auxiliary study, the fermenters were, once again, operated as down-flow reactors,
with no flushing of solids and no Ringlace media. All VFA production was a result of settled

solids fermentation as the only fixed-film growth occurred on the reactor walls and piping.
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Figure 4.18 SCVFA production in a primary effluent fermenter with settled solids

4.4.2 Combined Fixed-Film and Settled Solids Fermentation

The previous test, in which solids build-up from primary effluent was allowed to occur, showed
some promise with regards to VFA production; however, plugging was a problem. As a result,
the fermenters were drained and cleaned and the plumbing was changed to that of an upflow
reactor. Once again, the retention time was one hour and two reactors were operated in series.
Ringlace® media was installed in the top third of the last fermenter where the sampling port was
located. Testing of the fixed-film, settled-solids fermenter (hereafter called the Solids

Fermenter) began on February 27.
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After two weeks of continuous operation, primary effluent TSS (in mg/L) was similar to
fermenter effluent TSS indicating that the reactor solids content had reached steady state (solids
in = solids out). Sampling began during the first week of the test and continued for a period of
five weeks until April 5. The VFA production results from the solids reactors are plotted in
Figure 4.19 which also includes corresponding VFA production data from the fixed-film
fermenters, being operated “free” of settled solids as per Section 3.2.2. Sampling from the Solids
Fermenter began on March 2 and continued until April 5 concurrent with other process sampling.
In the first few weeks, acetic acid production steadily increased until reactor solids reached
steady state (TSSin = TSSout), whereas propionic acid was fairly consistent right from the start.
The disparity in total VFA produced in the Solids Fermenter compared to the F° fermenter is
obvious in Figure 4.19, with 11.7 mg/L versus 2.6 mg/L VFA, recorded during the sampling
period (35 days, 18 observations). It is evident from the bottom two plots in Figure 4.19 that
VFA yield from suspended solids and colloidal solids exceeds VFA yield from fixed-films by a
large margin. Once steady state was reached in the Solids Fermenter by mid-March, 13 mg/L/hr
of SCVFA yield was observed. Additionally, there was no plugging or operational difficulties
associated with running the fermenters in the absence of flushing due to the upflow

configuration. Maintenance to the Solids Fermenters during the test period was limited to

periodic release of any trapped air which entered the reactors during sampling.
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Figure 4.19 VFA Production in Solids Fermenter and Fixed Film Fermenter
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CHAPTER 5

5.0 OVERVIEW AND SUMMARY

The primary objective of this research, to investigate the effects of fixed-film fermentation on
BNR performance, was explored in detail through a series of experiments over a period of nine
months. The primary objective, was really two-fold with fixed-film fermentation of wastewater
being one facet of the research and the effect of such fermentation on BNR plant performance
being the other. Both of these objectives are summarized and related to full-scale applications in

the following sections.

5.1 High-Rate, Fixed-Film Fermentation of Primary Effluent and Prefermentation of
Primary Sludge.
During this research, the average SCVFA production resulting from fixed-film fermentation of
primary effluent was between 1.9 mg/L and 9.1 mg/L.. The average SCVFA production resulting
from a combined fixed-film and solids fermenter (described in section 4.4) was 13 mg/L. These

results were achieved in one hour of retention time (HRT = SRT) within the fermenters.

Supernatant from primary sludge fermenters currently operating in Western C‘anada often
contains 150 mg/L SCVFA (HAc). Because primary sludge fermenters typically have long SRTs
(4 to 12 days), long HRTs (6 to 16 hours) and often operate in a side-stream configuration,
concentration of supernatant is not an equitable method for comparison of fermenter

performance. A more suitable measurement for comparing performance is rate of VFA
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production in mg/L/hr (Munch et al. 1997) or yield expressed as mg SCVFA per mg VSS
applied (Rabinowitz; et al. 1997); where mg SCVFA is measured leaving the fermenter and mg

VSS is measured entering the fermenter.

In this experiment, fermenter HRT was equal to one hour, and so the rate of VFA production in
mg/L/hr was equal to the average effluent concentration divided by 1 hr or 4.7 mg/L/hr. The
average TSS entering the fermenter was 97 mg/L, of which 85% was volatile. This represented a
yield of 0.06 mg VFA/mg VSS since the fermenters were in-line. To calculate yield for a side-
stream fermenter (flow rate less than plant flow rate), it would be necessary to calculate the mass
of VFA leaving the fermenter and divide by the mass of VSS that entered the fermenter.

Performance data from full-scale plants operating in Western Canada is presented in Table 5.1.

Table 5.1 Fermenter performance data
WWTP Plant VFAefr VF Arate mg VFA/ VFA to plant
(mg/L) (mg/L/hr) mg VSS (mg/L)
UBC Pilot Plant 4.7 4.7 0.057 4.7
| UBC auxiliary fermenter 13 13 0.16 13
Kelowna, BC'? 173 17.3 0.083 11
Westbank, BC'? 108 8.3 0.25 26
Bonnybrook, AB!? 160 10.0 0.060 4

'Data from Rabinowitz et al, 1997; 2 Data from Munch ef al, 1998

Another important consideration when evaluating a fermenter’s performance is measuring the

impact to process influent. For an in-line system where fermenter flow equals plant flow, the
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total SCVFA entering the plant will be equal to the SCVFA leaving the fermenter. Side-stream
primary sludge fermenters typically have a sludge flow rate somewhere between 5% and 25% of
the plant flow rate and so VFA leaving the fermenter will be diluted accordingly. The data in the
last column of Table 5.1 represents the increase in VFA to the process after fermenter effluent is

introduced to the plant flow.

From the data in Table 5.1, the primary effluent fermenters under investigation performed

comparably to those reported in the literature. Advantages over sludge fermenters may be as »

follows:

. smaller tank size

. lighter equipment for pumping
. reduced operating expenses

5.2 Process Performance

There was probably sufficient VFA present in the raw wastewater, at 27 mg/L, for EBPR to
remove 2.9 mg/L phosphates (4.9 mg/L T-P) without the addition of fermentation by-products.
The SCVFA/P-removal reported in the literature was between 6 and 9 mg of SCVFA per mg
phosphorus removed (Barnard 1994; Randall ef al.1997). This ratio would indicate that 27
mg/L of VFA present in the wastewater would be sufficient for removal of 3 to 4.5 mg
phosphate, which supports the earlier conclusion that fermentation was not required for good

EBPR during this study. This became apparent after Run #2 and so phosphorus in the form of

Sodium Phosphate Mono-basic (NaH,PO,-H,0) and Sodium Phosphate (NaHPO,-7H,0) was
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added to the process during Run #3. Both the Experiment and the Control processes continued to
perform equally , although after additional phosphorus was added, the processes became less

stable.

Tables 5.2 and 5.3 summarize other parameters that were measured.
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Table 5.3 Summary of process solids (corrected average values)

aerobic zone

analyte rumn |control  exp'ment
MLSS 1 2694 2936
2 3136 2440
3a 3015 2974
3b 3658 3462

%P 1] 2 3.9 3.1
2110 4.2 5.1
3115 6.0 5.2
SVI 1 290 128
2 87 232
3 138 136

Note: 1. % P in MLSS calculated by measuring TP in
aerobic zone and dividing by MLSS.
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CHAPTER 6

6.0 CONCLUSIONS AND RECOMMENDATIONS

The primary objective of this research was to investigate the effects of fixed-film fermentation of
wastewater on BNR plant performance. To achieve this objective, pilot-scale fermenters
pretreated primary effluent before entering twin, 3-stage Bardenpho pilot plants operated over a
period of nine months. BNR at the UBC Pilot Plant was not significantly affected as discussed
below; however, the results of this research have contributed towards a better understanding of
high-rate fermentation of primary effluent. Based on the results of the experimental studies, the

following conclusions are made.

6.1 Conclusions

1. 1.9 to 9.0 mg/L of SCVFA was produced by fermenting primary effluent in a high-rate,
fixed-film, fermenter using the commercially available media, Ringlace®. Considerable
effort was made to ensure the fixed-film was responsible for net SCVFA gain by

eliminating solids build-up from the fermenters.

2. Two, 3-stage Bardenpho processes were operated in parallel for a period of nine months;
the Experimental process train had a fixed-film, high-rate fermenter attached to the
anaerobic zone, while the other served as a Control with no fermenter through most of the
testing. SCVFA produced in the high-rate fermenters did not improve phosphorus or

nitrogen removal (Runs #1 to #3) in the Experimental process as was hoped. The high
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concentration of SCVFA already present in the raw wastewater (27 mg/L average)
entering the pilot plant and the confounding effects of NO, (Rabinowitz, 1985) present in

the recycle may have masked any positive impacts from the fermenters.

The specific yield SCVFA production per unit VSS applied ranged from 0.024 to 0.11 mg
VFA/ mg VSS. The VFA production rate ranged between 1.9 and 9.1 mg/L/hr. All
production rates were temperature dependant; mean temperatures were between 15.1°C

for minimum production rates and 19.8°C for maximum production rates.

The results from Run #3A and #3B, in which excess orthophosphate was added to the
anaerobic zone, indicated that between 5.3 and 7.8 mg VFA (as acetic acid) was required
to remove 1.0 mg of total phosphorus at the UBC Pilot Plant, which was operating as a 3-
stage Bardenpho process. For a wastewater, with insufficient SCVFA concentration
entering the process, a high-rate, fixed-film fermenter fed primary effluent could be
expected to produce sufficient SCVFA to enable EBPR of an additional 0.4 to 1.7 mg/L

of total phosphorus.

The percentage phosphorus content in the process MLSS was a minimum of 4.1% during
Run #2, when phosphorus was limiting, and a maximum of 5.9% during Run #3 (excess

PO, was added), when readily available carbon was limiting.

An upflow primary effluent fermenter system utilizing a reduced quantity of Ringlace®,
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in which SCVFA from settled solids augmented fixed-film fermentation, produced a
much higher SCVFA concentration over a period of 3 months, compared to fixed-film
fermentation alone. Net SCVFA production rates averaged 13 mg/Lehr once steady state
operation was attained. The specific yield SCVFA production per unit VSS was 0.16 mg

VFA/mg VSS, at a mean temperature of 16.0°C.

In wastewaters that have not undergone considerable fermentation during transport from
source to treatment facility, the feasibility of high-rate, primary effluent fermentation for
the purpose of SCVFA production has been established. Significant SCVFA production
can be achieved with short HRT, and minimal maintenance, in such wastewater treatment

facilities.

In wastewater subject to anaerobic conditions during transmission or handling, the readily
fermentable component is likely to be converted to SCVFA, and therefore, may not be

available for high-rate fermentation.
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6.2 Recommendations
Further research in the following areas and consideration for the following points are
recommended.
1. It is recommended that further studies, involving primary effluent fermentation, be
conducted prior to implementing a high-rate, fixed-film fermenter with Ringlace. Where
the objectives of such studies include ascertaining the effects on EBPR, the plant influent

should be SCVFA deficient.

2. Further investigation of the potential for SCVFA production in an upflow, high-rate,
primary effluent fermenter system where solids passing the primary clarifier are allowed
to accumulate and ferment is needed. Parameters such as HRT/SRT and operational

considerations should be further developed.

3. While the 3-stage Bardenpho process was successful in removing phosphates and nitrates
from the influent wastewater, the confounding effects of nitrate in the recycle may have
masked attempts to evaluate phosphate removal differences between the Experimental
and Control processes. For this reason, it is recommended that future UBC Pilot Plant
studies aimed at phosphorus removal, be operated with return activated sludge to the

anoxic zone (UCT configuration) versus the anaerobic zone.

4. Future researchers investigating prefermentation for the purpose of enhancing EBPR,

must be cognizant of a high SCVFA concentration intrinsic to the raw wastewater
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entering the UBC Pilot Plant. It is recommended that phosphorus addition to the process

be considered, to ensure that VFAs present in the wastewater are limiting nutrients.
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APPENDIX A - STATISTICAL ANALYSES

Determination of outliers.

Rejection of outliers was based on calculated statistics and consideration of events or conditions

which may have caused the outlier. T values for each observation were calculated as follows

(Barnett, 1978).

T=|(x - ®)|/s

x = the observation
% = data set mean (run #2)

s = data set standard deviation

Table a.1 Sample T-statistics for effluent ammonia during a two week period.

Effluent ammeonia - Run #2: Ter = +/-2.060 @ 25 degrees freedom

Date Effluent T stat comment log entry

[Nov 13 (Th) | 0.030 | -0.429 ok first day Run#2; heavy solids in raw

[Nov 14 (F) 0.000 | -0.442 ok All OK, maintenance on RAS pumps

Nov 17 (M) | 8.090 | 3.071 outlier |[Raw sewage opaque; possibly from salty
run-off, heavy rain after cold spell

[Nov 18 (T) 7.457 | 2.796 outlier [Increased air to the process after pH was
running high in aerobic zone.

[Nov 19 (W) | 4.905 1.688 ok all OK

[Nov 20 (Th) | 3.552 1.100 ok Raw sewage Opaque again; all OK

[Nov 21 (F) 0.840 | -0.077 ok all OK; BCRI turned off air after
sampling.

[Nov 24 M) | 0.020 | -0.433 ok all OK

[Nov 25 (T) 0.045 | -0.422 ok all OK; control has lot of anoxic scum

Nov 26 (W) | 0.090 | -0.403 ok all OK; TOC : COD test today

Average 1.017
Std Dev. 2.303

Average from all of Run #
Standard Deviation “ ”
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If the absolute value calculated for T exceeded Tcr, an outlier was identified and a decision to
either drop or include the data point was made based on the existence of possible explanations
for the upset. All of the raw data collected in this experiment was subject to the same test and

evaluated in a similar manner.

Precision

Precision of the data was calculated through analysis of duplicates as per Standard Methods
(1995). Precision was expressed as a 95% confidence interval (CI) and also as standard
deviation. The raw data and calculations can be found in Tables a.3 thru a.9 at the end of this

Appendix.

Accuracy

Accuracy of the analytical equipment was checked by trained laboratory technicians each time
the equipment was used to run samples. Accuracy was ascertained by measuring the recovery of
samples with known concentrations. If unacceptable values were noted, adjustments were made

to the equipment and the samples were run over again until accurate recoveries were made.

Method Detection Limit

The method detection limit (MDL) was calculated using the Total Variance Model as described
by Berthouex, et. al. (1997). The MDL is significant to this experiment for parameters where
concentrations are often close to zero such as Total Phosporus in the effluent or VFA in the

anoxic zone.



101

The data in Table a.2 were generated from replicates of the same effluent grab sample and

should, in theory, all equal the population mean (n). Two sources of error responsible for

Table a.2 Total Phosphorus data

: . X x? o’
sample replicate observations mg/L (mg/L)® | (mg/L)y
A-Effluent 023 024 024 028 023 0.14 0.23| 0.0517} 0.0018
B-Effluent 0.67 0.64 0.60 0.65 0.62 0.61 0.63| 0.3994| 0.0005

PC-Effluent 1.12 116 1.13 1.07 1.13 1.11 1.11 1.12( 1.2532| 0.0007
A-Effluent 1.12 1.16 128 126 1.15 1.19 0.89 1.151 1.3232| 0.0140
B-Effluent 5.77 5.65 593 581 590 540 4091 5.62| 31.6233 0.1132

deviations are defined as background error ( ¢, )and analytical error ( 0, ) and together account
for the sample error variance (0.2 = 0,2 + 6,2). Background error is always present, even in
blanks, and is assumed to have a fixed standard deviation. Analytical error is assumed to be

proportional to the concentration of the analyte - a characteristic often observed with chemical

data (Berthouex et. al. 1997).

Given the above assumptions for 0, and g, it is possible to plot the variance (0,%), versus the
square of the arithmetic mean to determine both o, and o, from the intercept and slope
respectively. In Figure a.1, the Y-intercept represents the background “noise” or error

attributable to equipment and processing while in the lab.
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Total Variance Model
Tot-Phosphorus method detection limit

0.008
/-/.
0.006
$.004
(8]
|
© /
®©
.002 el
' / From regression analysis
0 -,-/ Y =0.0036x +0.0009 -
therefore
MDL =3 x .0009 =0.0027
-0.002 |{
0 0.2 0.4 0.6 0.8 1 1.2 1.4

mean’2

Figure a.1  Plot of Total Variance Model for determination of method detection
limit for Total Phosphorus.

A regression analysis finds the intercept o, to be 0.0009 mg/L, thus the MDL is estimated as
30, or 0.003 mg/L with a certainty of 95%. The implication is that an observation for T-P less
than 0.003 could be considered non-detectable. There are several important things to note

regarding the significance of the MDL to T-P results in this research: :

. The errors are assumed to be independent and normally distributed

. Observations less than the MDL are still reported and considered real values in the

document. Where statistical tests for significance are concerned, a concentration less
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than 0.003 mg/L will be assumed to have zero T-P.
. The method is assumed consistent for each analysis meaning the background errors do
not change.
. The calculated MDL is pertinent for T-P observations processed as per the protocols used

in this experiment.
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Table a.3 Phosphates (mgiL) Table a.4 Nitrate/Nitrite (mg/L)

sample |duplicate||delta] sample |duplicate||delta|

3.279| 3.207{ 0.072 0.177 0.033] 0.144
0.604( 0.805| 0.201 3.017( 3.438| 0.421
1.392( 1.003| 0.389 0.061} 0.138( 0.077
3.585| 3.877| 0.292 0.195| 0.210] 0.015
21.422} 20.762| 0.660 0.125| 0.161| 0.036
9.043| 10.024( 0.981 0.186| 0.236] 0.050
7.410| 8.875| 1.465 0.173| 0.208| 0.035
4.645| 4538 0.107 4479 4503 0.024
1.642| 1.256| 0.386 3.079 4.734| 1.655
1.527( 1.841| 0.314 4251 3.814| 0.437
1.813] 1.229| 0.584 3.674( 5.113] 1.439
1.688| 1.806| 0.118 0.113| 0.096( 0.017
4414 4172 0.242 , 5.025| 4.560| 0.465
2.076| 1.716| 0.360 4815 5.698| 0.883
5.934| 6.698| 0.764 0.160| 0.081 0.079
3.605| 3.275| 0.330 0.134| 0.131| 0.003
17.604( 16.064| 1.540 0.121( 0.120] 0.001
9.700| 9.671| 0.029 0.134| 0.139| 0.005
7.116| 7.547| 0.431 0.711( 0.762| 0.051
6.698| 6.688 0.010 4545 4272 0.273
4510 3.860| 0.650 4.030| 4.318| 0.288
5.404| 5.465| 0.061 4523 3.975| 0.548
4416 3.572| 0.844 4120 4.293| 0.173
5.624| 5.458| 0.166 0.118| 0.102( 0.016
3.890] 3.475| 0.415 4.033] 4.136] 0.103
4240 4.056| 0.184 4461 4.283| 0.178
5.311 4.705| 0.606 4.64 3.06| 1.583
4489 4.542| 0.053 0.13 0.10f 0.034
3.716 3.87| 0.151 4.80 462 0176
3.225 3.23| 0.004 470 4.55| 0.148
3.986 3.97| 0.020 0.00 0.101 0.103
4.566 455 0.013 5.68 552 0.154
4778 2.16| 2.621 5.36 524 0.114
14.910; 14.54| 0.368 0.00 0.03| 0.026
9.77 9.67| 0.099 0.15 0.14; 0.011
7.45 7.40| 0.055 0.17 0.15] 0.022
4.86 4.83] 0.025 0.89 141 0.518
4.83 481 0.018 0.52 0.46| 0.067
6.04 6.01( 0.032 4.88 4.60; 0.281
4.16 239 1.771 3.90 5.90] 1.998
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4.07 404! 0.035 4.11 3.86] 0.254
5.41 5.36| 0.053 422 403 0.183
3.28 3.23| 0.044 0.00 0.03| 0.031
16.42| 16.02| 0.401 413 3.87] 0.264
13.62| 13.36f 0.257 4.06 3.80| 0.255
6.37 6.32| 0.049 0.13 0.18| 0.051
6.82 6.79| 0.034 0.17 0.16] 0.014
4.07 4.04) 0.028 0.20 0.17f 0.032
3.28 3.25| 0.027 0.88 0.76] 0.120
2.88 2.85/ 0.034 0.28 0.25| 0.029
3.64 3.61| 0.029 4.91 463 0.284
3.60 3.55| 0.054 4.50 423 0.272
4.14 411 0.029 4.25 4.01| 0.241
4.37 432 0.046 454 4.36| 0.186
2.96 2.87] 0.091 0.05 0.10{ 0.043
sum 18.642 sum 14.910
count 55.000 count 55.000
avg delta (R) 0.339 avg delta (R) 0.271
s =R/1.128 0.301 s =R/1.128 0.240
C.l.=1.96s +/- 0.59 C.l.=1.96s +/-0.46
Table a.5 Ammonia (mg/L) Table a.6 Volatile Fatty Acids (mg/L)
sample |duplicate||delta] sample |duplicate||delta]
20.197| 25.626] 5.429 18.59| 18.04| 0.544
0.066( 0.118| 0.052 18.66| 18.76] 0.101
22.410| 23.490] 1.080 2048 20.01| 0.466
12.224| 14.281| 2.057 19.96| 20.00( 0.038
9.903| 8.650| 1.253 20.83| 20.94| 0.106
2991 4.483| 1.492 17.35| 17.90| 0.557
4820 4.353| 0.467 19.23| 19.48| 0.251
0.009] 0.167| 0.158 19.001 19.10{ 0.097
0.317| 0.058| 0.259 20.40| 20.53] 0.135
0.050{ 0.000| 0.050 22.39 22.44( 0.052
34.251| 22.194| 12.057 22.54| 22.29| 0.244
0.007| 0.000| 0.007 20.35| 20.91| 0.565
18.303| 18.522| 0.219 2166 21.68( 0.021
9.097| 10.873| 1.776 2243 22.34, 0.091
8.230 7.119] 1.111 22,78 22.98| 0.201
3.633[ 3.594| 0.039 24.56| 24.08! 0.485




3.027| 3.045| 0.018
0.000| 0.015| 0.015
18.001| 21.076{ 3.075
sum 30614
count 19.000
avg delta (R) 1.611
s = R/1.128 1.428
C.I.=1.96s +/-2.8

Table a.7 Total Kjeldahl Nitrogen and
Total Phosphorus (mg/L)

TKN*
18.70
21.80
19.30
16.50
18.10
16.28
16.70
18.80
21.60
18.70
16.20

|delta] |TP*
0.00f 15.60
3.10 13.40
0.60( 18.00
220 15.80
0.60| 14.80
242 16.10
2.00{ 15.50
0.10| 16.10
2.90| 15.50
0.00
2.50

|delta}
0.00
2.20
2.40
0.20
0.80
0.50
0.10
0.50
0.10

* Known standards of TKN=18.7 mg/L
and TP=15.6 mg/L

avg
std
95% ClI

1.49 0.76
1.17 0.86
2.3 1.7
Table a.8 MLSS (mg/L)
sample |duplicate||delta]
4440| 4590 150
4790 4660 130
4690| 4700 10
3830 3880 50
4630| 4490 140
4420| 4510 90
4020 4160 140

20.52| 20.33| 0.185
22.33| 22.05| 0.275
2248 22.26| 0.221
22.35| 21.001 1.356
20.60| 20.55| 0.047
21.81 21.84| 0.028
22.09| 24.03| 1.937
22.78| 22.49| 0.292
22.35| 22.39| 0.040
23.81 23.79] 0.023
2409 2497 0.875
25541 25.19| 0.351
28.05| 2791 0.136
2817 27.18| 0.988
22.64| 22.91 0.277
23.12| 2365 0.532
23.55| 23.53| 0.021
23.73| 23.67| 0.058
2474 24.26| 0474
2121 21.07| 0.136
23.66| 23.61| 0.048
23.15] 22.62| 0.532
sum 12.786
count 38.000
avg delta (R) 0.336
s =R/1.128 0.300
C.l.=1.96s +-0.6
Table a.9 TSS (mg/L)
sample [duplicate||delta]
102.00{ 94.00 8.00
116.00| 100.00| 16.00
102.00{ 106.00 4.00
96.00{ 108.00] 12.00
102.00f{ 108.00 6.00
80.00{ 100.00| 20.00
106.00| 108.00 2.00
124.00} 140.00{ 16.00
96.00f 98.00 2.00
76.00] 96.00] 20.00
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3650
1460
1720
1780
2120
1960
1270
1370
3320
2850
2310
2050
2130
1090
1320
1790
1490
2300
2690
2870
2960
3020
3730
3520
3760
3010
3170

3720
1510
1720
1810
2210
2040
1240
1450
3400
3070
2380
2040
1570
1130
1330
1760
2160
2360
2720
2940
3010
3110
3990
3750
3400
3060
3160

70
50

30
90
80
30
80
80
220
70
10
560
40
10
30
670
60
30
70
50
90
260
230
360
50
10

74.00| 82.00 8.00
88.00| 110.00f 22.00
92.00{ 106.00f 14.00
80.00| 70.00{ 10.00
92.00| 94.00 2.00
80.00| 88.00 8.00
126.00| 134.00 8.00
72.00( 69.00 3.00
137.00( 135.00 2.00
117.00| 136.00| 19.00
98.00| 120.00f 22.00
104.00( 98.00 6.00
142.00| 162.00( 20.00
114.00| 116.00 2.00
184.00( 176.00 8.00
152.00| 158.00 6.00
158.00{ 154.00 4.00
86.00{ 92.00 6.00
122.00] 128.00 6.00
sum 282.0
count 29.0
avg delta (R) 9.7
's=R/1.128 8.6
C.l =1.96s 17.0
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3740
3590
3640
3580
3590
3500
3610
3600
3540
3560
3560
3510
3560
3620
3740
3770
3660
3220
3330

3760
3680
3720
3690
3740
3700
3730
3580
3620
3670
3680
3530
3690
3750
3920
3910
3830
3370
3360

20
90
80
110
150
200
120
20
80
110
120
20
130
130
180
140
170
150
30

sum
count

avg delta (R)
s =R/1.128

C.1.=1.96s

7430.0

69.0

107.7

95.7

+/- 190
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APPENDIX B - FILTER TEST

Results of the fractionation testing for nutrients and COD

The purpose of this test was to gain insight into how filter pore size affects filtrate concentration
measured from grab samples taken at the UBC Pilot Plant. A 500 mL stock sample was taken
from locations in the process as indicated in the following tables. From the initial stock sample,
sub-samples of 50 mL or less were taken and filtered through each of the four filter types. It was
reasoned that if filter size had a negligible effect, the concentration of each filtrate would be the
same. Throughout this procedure, it was important to ensure the initial stock sample was
completely (and continuously) mixed. It was also important to conduct the experiment quickly to
avoid biological or chemical changes in the stock grab sample. The filters used were as follows:

. Wh# 4 = Whatman No. 4 filter paper. Pore size 20um.

934-AH = Whatman 934-AH glass fibre. Pore size 1.5um

934-AH* = Whatman 934-AH glass fibre in funnel. Pore size approximately 1.5um

0.45 pm = Whatman membrane filters. Pore size 0.45 um

Results of the fractionation testing for VFA

A similar testing scheme was conducted for VFAs; however, replicate samples were used and
sampling was limited to the raw sewage and the fermented sewage as VFA was negligible at
other locations in the process. A stock sample (500 mL) of sewage was taken from each
location from which 4 subsamples and 4 replicates were filtered through the aforementioned
filters. Each subsample and its corresponding replicate required enough liquid to fill the 2 mL

VFA vials. In total, 8 filtrates were prepared in separate vials and each filtrate was measured

twice at the lab.
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Table b.1 Soluble bvhb"sphate results using different filter sizes

from the same sample.

Filter Raw Anaerobic Anoxic Aerobic Effluent
Whi#4 2.65 1.09 0.06 0.09 0.08
934-AH* 2.46 1.16 0.06 0.05 0.11
1934-AH 2.68 1.11 0.06 0.06 0.04
10.45um 2.59 1.41 0.10 0.10 0.11
Table b.2 Nitrate/Nitrite results using different filter sizes
from the same sample.
Filter Raw Anaerobic Anoxic Aerobic Effluent
Whit4 0.03 0.21 1.58 4.27 4.17
934-AH* 0.03 0.05 1.41 4.18 4.1
934-AH 0.03 0.16 1.48 4.38 3.44
______________ 0.45um 0.03 0.07 1.51 4.85 4.18
Table b.3 Ammonia results using different filter sizes
from the same sample. i
Filter Raw Anaerobic | Anoxic Aerocbic Effluent |
Whi4 13.23 6.27 2.48 0.06 0.11
934-AH* 13.03 6.27 2.35 0.04 003 |
934-AH 12.70 6.33 2.60 0.03 0.04
0.45um 13.87 6.24 2.51 0.03 0.03
~ Table b.4 Chemical oxygen demand using different filter sizes =~
from the same sample. '
Filter Raw Anaerobic Anoxic Aerobic Effluent
[Wh#4 71 16 5 99 3
934-AH* 39 6 6 30 5
934-AH 42 8 7 16 7
[0.45um 31 7 0 0 6

Table b.5 Raw sewage VFA results using different filter

sizes from the same sample and corresponding replicates.

Raw x 2 Raw replicate x 2

H-Ac mean AC [H-Ac Mean Ac
| W4 9.74 9.84
9.98 9.86 9.57
934-AH" 10.74 8.74
9.93 10.34 8.52
934-AH 9.71 9.30

9.46 9.59 8.32 8.81
0.45um 9.65 9.50
9.59 9.62 9.25
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: corresponding replicates

Fermenter B4 x2 Fermenter B4 replicate x 2
H-Ac H-Pr H-Pr as A Mean Ac |H-Ac H-Pr H-Pr as Ad
19.96 2.74 2.22 18.33 2.54 2.05
““““ 20.11 2.81 2.27 22.28 19.01 2.60 2.10 20.75
934-AH* 19.26 2.72 2.20 19.20 2.65 2.15
,,,,,,,,,,,,,,,,,,,,,,,,, 19.41 2.74 2.22 21.55 18.46 2.64 2.14 20.97
1934-AH 18.91 2.72 2.20 18.20 2.60 2.11
) 18.57 2.65 2.15 20.91 18.30 2.64 2.14 20.37
0.45um 16.00 2.42 1.96 18.06 2.48 2.01
18.02 2.40 1.95 18.96 15.70 2.41 1.95 18.86
Table b.7 Fermented sewage VFA replicate results
with Whatman #4
Sample |[H-Ac H-Pr H-Pr as Ad Mean Ac
1 18.97 3.681 2.98 22.04f
................... o 19'48 3'722 3'01
2 19.31 3.659 2.96 22.38
_ 19.66 3.717 3.01 o
3 19.84 3.768 3.05 2278
............... 1934 3'738 303 U ROV OINY o
4 20.38 3.709 3.00 22.88
5 20.13 3.785 3.07 2312,

Tables b.1 thru b.7 consist of raw data expressed in mg/L from the filter testing. VFA results are
expressed in terms of mg/L of acetic acid (H-Ac, or Ac). At the time testing was carried out,
propionic acid (H-Pr) was evident in the fermented sewage but not in the raw sewage. Figures
b.1 thru b.5 are plots of the data, from which the effects of filter pore size can be deduced. A

discussion of the results and their impact on analytical methods was presented in Section 3.5.
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Phosphates vs. Filter Size

conc (mg/L)

3 e
0 @* = % _,%
Whit4 934-AH* 934-AH 0.45um
—a— Raw Anaerobic —+— Anoxic —8 - Aerobic ~gz- Effluent

Figure b.1  Effect of filter pore size on soluble phosphorus concentration

Nitrates vs. Filter Size

conc (mg/L)

S
B
0 * : A e
Whit4 934-AH* 934-AH 0.45um
—a— Raw i ANAGrobic —+— ANOXic —&8 - Aerobic —g- Effluent

Figure b.2  Effect of filter pore size on nitrate/nitrite concentration
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Ammonia vs. Filter Size

7
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0 Ei= - 5 o

Whi#4 934-AH* 934-AH 0.45um
—&— Raw g Anaerobic —— Anoxic —e8 - Aerobic Effluent

Figure b.3  Effect of filter pore size on ammonia concentration

Chemical Oxygen Demand vs. Filter Size
120

0o T
‘E%

conc (mg/L)

—a— Raw -~ ANnaerobic —— ANoxic —8B- Aerobic —— Effluent

Figure b.4  Effect of filter pore size on chemical oxygen demand
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Volatile Fatty Acids vs. Filter Size
24
- Cohtrol: 5 replicates with Wh#4
mean 22.61
std dev 0.38
"‘«»\m

- I e
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>
el
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R 7
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O A T T
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Wh#4 934-AH* 934-AH. 0.45um
—— Raw —m— B4 —+— Replicates
Figure b.5

Effect of filter pore size on volatile fatty acid concentration.
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