
IMPLEMENTING A PROTOTYPE COMPUTER
INTEGRATED CONSTRUCTION ENVIRONMENT

by

ANDREW L. GORLICK

BScEng, The University of New Brunswick, 1997

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

M A S T E R OF APPLIED SCIENCE

in

THE F A C U L T Y OF G R A D U A T E STUDIES

(Department of Civil Engineering - Project & Construction Management Programme)

We accept this thesis as conforming
to the required standard

IVEI THE UNIVERSITY OF BRITISH COLUMBIA

October 1999

© Andrew L. Gorlick, 1999

In presenting this thesis in partial fulfilment of the requirements for an advanced

degree at the University of British Columbia, I agree that the Library shall make it

freely available for reference and study. I further agree that permission for extensive

copying of this thesis for scholarly purposes may be granted by the head of my

department or by his or her representatives. It is understood that copying or

publication of this thesis for financial gain shall not be allowed without my written

permission.

The University of British Columbia
Vancouver, Canada

Department

DE-6 (2/88)

Abstract

Construction projects rely on a large body of information produced by many sources at many

levels of abstraction and detail. This is a major contributing factor to the fragmentation of

construction data. One possible solution to this fragmentation is Computer Integrated

Construction (CIC).

CIC provides methods for handling the information generated throughout the lifecycle of a

project. The Construction Management Group at the University of British Columbia has

developed a model for computer integration called Total Project Systems (TOPS). TOPS is a

conceptual model with the potential to provide the basis for the development of a new class of

CIC environments that are comprehensive, integrated, and flexible. Therefore, the main goal of

this research was to develop a prototype CIC system based on the TOPS model and then to test

the system to determine if the TOPS model provides a suitable basis for the development of the

next generation of CIC systems.

The main approach was to develop a TOPS Implementation Prototype (TIP). This prototype was

a multi-tiered architecture with repository technology at the core providing the persistence

management functions. The TIP adopted an open, modular, and non-proprietary architecture so

that any application could 'plug-in' to the system via standard TIP interfaces. The TIP also

supported an architecture capable of being distributed via the Internet.

Repository technology was used to create a robust, integrated data source for the TIP. Repository

technology is an innovative database technology developed by the software industry. It further

enhanced the TIP architecture by making it extensible and by supporting data evolution and the

ii

dynamic development of project schemas (i.e. schema evolution) without destroying information

already stored in the database.

The TIP was successfully implemented and both a generic data browser application and a

specific project management tool (a short cycle scheduling application) were constructed to test

the potential of the prototype. The system performed well (given its prototype nature) and

provided useful results on the TOPS approach for developing future integrated construction

environments.

iii

Table of Contents

Abstract ii

Table of Contents iv

List of Figures vi

Acknowledgements viii

1. Introduction 1

1.1 Background on Computer Integrated Construction Environments 1
1.2 Background to Total Project Systems 2
1.3 Challenge and Objectives 4

1.3.1 TIP Data Browser ~ 5
1.3.2 SCSapp 6

1.4 Scope 7

1.5 Reader's Guide 8

2. Point of Departure 9

2.1 Current State-of-Practice CIC Systems .' 9

2.1.1 ICIM 9
2.1.2 PerDiS 10
2.1.3 CORCE 10
2.1.4 Condor 11

2.2 Author's Contribution 11

2.2.1 Project Information Consolidation 11
2.2.2 Middleware 12
2.2.3 Repository Technology and Schema Extensibility 13

3. Prototype Development 16

3.1 TOPS Implementation Prototype Architecture 18

3.1.1 The LDAI 20

3.1.2 Microsoft Repository 23

3.2 TIP Data Browser 29

3.2.1 Using the TIP Data Browser 31

iv

3.2.1.1 Defining an Information Model 31

3.2.1.2 Populating a Data Model 35

3.2.2 Caveats on the TIP Data Browser 37

4. SCSapp 39

4.1 Implementing SCSapp 39
4.2 How SCSapp Works 42

4.2.1 Scheduling Methodology in SCSapp 42
4.2.2 Using SCSapp 45
4.2.3 Implementation Issues in SCSapp 49

5. Discussion and Implications 51

5.1 Discussion 51
5.2 Implications 58

5.2.1 Demonstrating the TOPS Model 58

5.2.2 Application of Repository Technology to CIC Systems 59

6. Results, Recommendations & Conclusions 61

6.1 Results 61
6.2 Recommendations .64

6.3 Conclusions 66

References 6&

Appendix A "^i

v

List of Figures

Figure 1.1 Visualizing TOPS 3

Figure 2.1 Repository as a hub for information 14

Figure 3.1 Repository as a hub for information 16

Figure 3.2 Components of TOPS 17

Figure 3.3 TIP Architecture 19

Figure 3.4 LDAI object model 22

Figure 3.5 A Repository information model 26

Figure 3.6 Repository Type Model 27

Figure 3.7 Sample Repository Object 28

Figure 3.8 TIP data browser screen 29

Figure 3.9 Building an information model in TIP 32

Figure 3.10 Building relationships in an information model 34

Figure 3.11 An instantiated information model 36

Figure 4.1 SCSapp in the TIP context 40

Figure 4.2 SCSapp object model 41

Figure 4.3 Lean Construction Institute methodology for lookahead schedules 43

Figure 4.4 Data flow diagram of SCSapp 46

Figure 4.5 Loading a project and configuring the delays 47

Figure 4.6 SCSapp scheduling interface 48

Figure 5.1 Use case scenario 51

Figure 5.2 Sample construction data in MS Project 52

Figure 5.3 Importing a schedule 53

Figure 5.4 Selecting the tasks for the lookahead schedule 53

vi

Figure 5.5 A conflict in the prescheduled information raises a flag 54

Figure 5.6 Delaying Activity F 55

Figure 5.7 Browsing the project data 56

Figure 5.8 Pasting a new relationship 56

Figure 5.9 New Activity F 57

vii

Acknowledgements

The research represents the culmination of the past three years of my life. I am very proud of it

but it would never have come to be were it not for certain people whose assistance, support, and

encouragement were invaluable and must be acknowledged. My appreciation goes to: Dr.

Thomas Froese - a most excellent supervisor; my parents Ruth and Lawrence - for their support

and love; Dirk deRoos - the best friend I could ever ask for; Francesca Barth - the most

wonderful woman to ever enter my life; and, my Lord and my God for FTis everlasting

faithfulness. My sincerest thanks to each of you.

viii

1. Introduction

1.1 Background on Computer Integrated Construction Environments

The essence of planning is to combine all aspects into one feasible process, which means that

information has to be transmitted, transformed and combined. An increasing complexity of

buildings and of the organisation of the construction process has made the transmission and

sharing of information more difficult as there is a growing amount of information to be

consolidated, distributed, and exchanged (Jagbeck 1998). The result is a reliance on a large body

of information produced by many sources at many levels of abstraction and detail, which

contributes to the fragmentation of the industry. This fragmentation, in turn, contributes to the

poor record of overall productivity improvement in the industry. (Froese et. al. 1997)

One possible solution to this fragmentation is Computer Integrated Construction (CIC). CIC

provides methods for handling the information generated throughout the life cycle of a project,

promoting a more efficient and effective management process (Froese et. al. 1997). Computer

integration, it is argued, will lead to improved communication among computer systems which

will, in turn, lead to better information sharing among the project participants. Not only will it

reduce errors and inefficiencies resulting from inaccurate, untimely, or missing information, but

it will help foster better coordination and cooperation of the highly fragmented construction

participants. (Russell and Froese 1997) Unfortunately, most of the software tools used to

generate construction project information have not yet reached a state-of-practice where they

interoperate effectively enough to support a data environment as complex and dynamic as a

construction project. Organisations such as the International Alliance for Interoperability (IAI)

are attempting to address this issue through their effort to standardise data, attempting to make

1

project information more explicit and self-contained (i.e. less context-dependent) (Jagbeck

1998).

However, one issue that still stands in the way of a successful implementation of CIC

environments is the need for an underlying seamless, integrated data environment that supports

this self-contained information. The Construction Management group at the University of British

Columbia has been addressing the issues surrounding the development of a seamless integrated

data environment to underlie the application environment as part of their Total Project Systems

(TOPS) effort.

1.2 Background to Total Project Systems

TOPS is a conceptual model that provides a basis for the development of CIC environments. It

defines a class of construction management computer systems that is defined by the following

characteristics (taken from Froese et. al. 1997):

• Comprehensiveness, it includes a suite of applications that support a broad range of

construction management functions.

• Integration, all applications contribute to and draw from a shared pool of project

information.

• Flexibility: it operates in a highly modular, open, flexible, and distributed framework.

While each of these characteristics in itself is not revolutionary, when taken as a whole they

describe a type of system that does not currently exist. TOPS is an attempt to push construction

management (CM) computer tools past the point of 'critical mass,' where broadly-applicable

computational models become the primary vehicle for practicing C M . This has the potential to

significantly improve the manner in which construction projects are managed. (Froese et. al.

1997)

2

The ultimate goal of TOPS is to explore and demonstrate how integrated computer-based tools

can increase the overall efficiency of construction management operations. It accomplishes this

by supporting a broad range of functionality in support of traditional C M tools, such as

scheduling, as well as emerging management tools, such as those that support construction

methods selection or quality management activities. The key to efficiently supporting a broad

and comprehensive range of functionality is to have a common source and structure of project

information. Access and use of this integrated information must be available in an open-

computing environment that is application independent. (Rankin et. al. 1999)

TOPS then, can best be thought of as a toolbox of construction management (CM) applications

both contributing to and drawing from a common pool of seamlessly shared project information

that is stored in a database(s) established on the structure of a core information model. (See

Figure 1.1) Each tool requires specific information from the pool of project information in a

variety of views and levels of abstraction. The system also handles the commitment of new

contributions to the project information from each application. (Froese et. al. 1997)

Project Management Tools
(scheduling, estimating,

methods, control, costing, etc.

Project Information
(mulitple views, levels of detail)

others

process

organization

Total-Project Systems
(standard model-based, modular, open,

flexible and distributed framework)

Figure 1.1 Visualising TOPS (after Froese et. al. 1997)

3

The TOPS model is founded on three principal research thrusts: application development, shared

project representations, and system architectures and interfaces (Russell and Froese 1997). Much

work has been done on application development (see Rankin et. al. 1998; Froese et. al. 1997; and

Rankin et. al. 1997 for examples) and shared project representations (see Froese and Rankin

1998; Russell and Froese 1997; Yu et. al.1997; Froese 1996; and Fischer and Froese 1996 for

examples). The focus of this thesis is the third research thrust, system architectures and

interfaces.

1.3 Challenge and Objectives

Froese et. al. (1997) describe the architecture of TOPS as: open, in that it is not dependent on

specific computing technologies (e.g., it is based on international data standards, it is platform

independent, etc.); modular, such that a variety of specific applications developed by different

sources can be brought to bear as appropriate to create the overall system; and distributed, by

recognising the requirements of a variety of users and data sources. The challenge then, of this

research is to develop and prototype a CIC environment/architecture that underlies and supports

applications developed in this context. Named the TOPS implementation Prototype (TIP), this

system will consist of a three-tier structure (separating the user interfaces layers, middleware

(logic) layers, and data access layers from each other). Data will be structured on the

International Alliance for Interoperability (IAI) data standards - Industry Foundation Classes

(IFC) - and will be stored in a shared project information repository. The TIP will employ an

open, modular, and non-proprietary architecture so that anyone that adopts a TIP standard

interface can 'plug-in' to the system. The architecture will be extensible to support data

evolution and the dynamic development of project schemas (i.e. schema evolution) without

losing information in the database. Finally, the architecture will be distributed via the Internet.

The goal of the TIP is to explore how the architecture of CIC systems should evolve in the future

4

to add project management functionality to the construction industry. The objectives of this

research are:

1) to explore the implementation issues relating to TIP;

2) to describe the project environment that the TIP model will create in terms of process

and data analysis and by using software diagramming techniques;

3) to conceptualise and implement a seamless, integrated data architecture based on a

common product data model that consolidates project information;

4) to demonstrate the usefulness of such a data environment using two prototypes:

a) the TIP data browser (see section 1.3.1); and,

b) the Short Cycle Scheduling Application, SCSapp (see section 1.3.2).

5) to draw conclusions and recommendations.

1.3.1 TIP Data Browser

The TIP data browser is intended to play the role of an integrated project management system

application that functions as a generic data control tool. It has been implemented in Visual Basic

and Microsoft Repository. Similar in style to the Windows Explorer, it is designed to support the

vast amounts of data generated on a construction project in an object-oriented, distributed,

modular environment. It also demonstrates how a variety of project information can be retrieved

and committed in a variety of views and levels of abstraction. Users are able to structure project

models hierarchically by providing the system with information models (schemas) to underlie

and structure project data. Microsoft Repository, an object-oriented metadata management

facility, provides the capability to evolve data and to dynamically develop and modify project

schemas without destroying information in the database. The system is modular in nature so that

it can be supplemented with plug-in tools to accomplish a variety of project management tasks.

The TIP data browser has the following additional sub-objectives specific to itself:

5

1) to use emerging repository technology to store project data;

2) to provide experience in implementing components in repository architecture and in

implementing generic user interfaces;

3) to provide a consolidated view of all project information and to build new views and

abstractions of project data;

4) to view and edit the schemas and models underlying the project information; and,

5) to add editing and long-term maintenance functionality to the project information

base.

1.3.2 SCSapp

The primary purpose of SCSapp - the sample short cycle scheduling application - is to

demonstrate how an integrated data environment functions inside the TIP architecture, how data

is managed, and how such a system could be integrated into the construction industry's existing

information technology infrastructure. A usage scenario will demonstrate the benefits to the

construction process of such a data environment. SCSapp has been prototyped in Visual Basic

and will be plugged into the TIP architecture to retrieve and commit project information to and

from the shared pool of project data. It uses short cycle scheduling concepts developed by the

Lean Construction Institute. SCSapp has the following additional sub-objectives:

1) to provide experience into designing and implementing specific project management

applications and interfaces;

2) to provide experience in building multi-tier system architectures; and,

3) to assist project managers in developing short cycle schedules.

6

1.4 Scope

The TOPS idea presented in section 1.2 is a long-term research project by the U B C Construction

Management Group to investigate an innovative approach to CIC. The TIP implements only a

small portion of the TOPS approach - integrated architectures. Testing of the remainder of the

TOPS approach, and the overall premises behind TOPS, is beyond the scope of this thesis.

Similarly, any organisational or operational changes to the construction industry implied by the

TOPS model also fall outside of the scope of this thesis.

The TIP is not intended to be production software. It is a proof of the conceptual integration

models presented in TOPS. While the TUP does not have the full-fledged functionality of a

production software system, it does provide the needed functionality to assist and further TOPS

research and development efforts by the Construction Management group at the University of

British Columbia. Adding new functionality to existing project management applications is also

beyond the scope of the TIP.

That said, the development of the TIP is divided into several major components. The first

component is the design and development of the TIP architecture. The architecture has been

developed and constructed using conventional software modelling tools such as data flow

diagrams and the Unified Modelling Language (UML).

The second component is the development of the data environment. The data environment

consists of a data storage tool and a data browser. Microsoft's Repository technology has been

used as the project data repository. While other commercial repositories are available and an

entirely new repository could be developed, these other options have not been considered. The

data browser has been coded in Visual Basic and structured in an object-oriented manner. The

7

International Alliance for Interoperability's Industry Foundation Classes were selected as the

model upon which data stored in the repository is structured. Other data structures are available,

however, the International Alliance for Interoperability appears to be the industry favourite at the

present time and is the standard adopted in this research.

The third component is the development of the sample application to demonstrate how

applications will interact with the TIP data environment. A short cycle scheduling application

was selected because there is a need for a variety of information including: work task

information, resource information, and scheduling information. It is felt by the author that a short

cycle scheduling application makes sufficient use of the IAI data schemas when compared to

more traditional and monolithic applications such as an estimating or scheduling package. The

sample application has been coded in Visual Basic and structured in an object-oriented manner

for the same reasons as the second component. The short cycle scheduling functionality was

based on the concepts put forward by the Lean Construction Institute.

1.5 Reader's Guide

Chapter 1 of this Thesis covers the introduction to the subject matter and the research objectives.

Chapter 2 is an explanation of the point of departure of this research arid the contributions made

to the state of knowledge. Chapter 3 describes the conceptualisation and development of the TIP

prototype. Chapter 4 describes the implementation of a sample short cycle scheduling application

that is used to test the TIP prototype. Chapter 5 presents a usage scenario and discusses the

implications of the TIP. Chapter 6 presents the results and recommendations borne out of this

research. Appendix A is a brief example of some programming code taken from the TIP

prototype.

8

2. Point of Departure

2.1 Current State-of-Practice C I C Systems

This chapter presents some of the noteworthy research efforts that are representative of the

current state-of-research into CIC systems.

2.1.1 ICEVI

ICHvI, the Integrated Construction Information Model, is an effort of the US Army Corp of

Engineers Research Laboratories (USACERL) to develop an object-oriented information model

that integrates product and process information to support communication and collaboration over

the life cycle of a project (Stumpf et. al. 1996). ICEVI is an object model used to model

construction management processes. It is a static model that does not support extensibility. The

ICEVI object model forms the basis of the Agent Collaborative Environment (ACE). A C E

functions as a middleware layer for the rest of the system, allowing components in the system to

communicate with each other so long as they share the ICTM object model. The research efforts

have focussed on two main technical areas: agent-based design tools and collaboration among

agents in heterogeneous systems. Two agents have been developed: the Construction Planning

Agent (CPA) and the Construction Project Control Agent (CPCA). The objective of the C P A is

to support generation of a preliminary cost estimate and schedule for facility designs to assist the

facility designers in evaluating alternative designs. The CPA integrates information from

Microsoft Project, Excel, and AutoCAD. The CPCA was developed to manage progress

information, update activities in the schedule, and maintain a record of construction. It is

implemented in C++ and ObjectStore and persists (or provides long term storage of) the

information generated by the CPA.

9

2.1.2 PerDiS

PerDiS (persistent, distributed, and shared memory) is an attempt by Sandakly et. al (1998) to

build virtual enterprises to support concurrent engineering in Europe. Memory is shared between

all applications, even between those located at different sites or running at different times. This

shared memory is the shared store of the virtual enterprise. Essentially, data is continually cached

and, whenever that data is modified, notifications are sent to pre-specified users explaining that a

given set of data has been changed. PerDiS has a two-tier architecture containing two types of

process: application processes and the PerDiS daemon. Applications use interfaces to connect to

the PerDiS daemon which may then retrieve or commit information from other applications.

2.1.3 C O R C E

CORCE (Consolidated Object Repository for Civil Engineering) is an object-oriented database

developed by deMonsabert and Lemmer (1997) that is used to store and maintain civil

engineering object/class hierarchies that comprise civil engineering software applications. The

purpose of CORSE is to improve the efficiency in civil engineering applications development

from the reuse of objects and classes. The database stores object design information for civil

engineering applications. The CORCE database contains a list of class attributes and methods as

well as inheritance, polymorphism, and encapsulation feature. It also contains general

information regarding existing software to encourage the reuse of class definitions and objects

among applications. The CORSE database also incorporates application information for both

object-oriented and structured systems. This permits inquiries from developers regarding the

object-oriented nature of systems. Similarly, information from structured applications can be

used by an object-designer when constructing class methods.

10

2.1.4 Condor

Condor is an European effort to electronically manage the documents on a construction project

through a model-based approach to information representation and structuring. The purpose of

Condor is to address the following questions: is it possible to have, at any time, knowledge of the

existence of a potentially useful piece of information used in a given project? Is there any easy

mechanism to access transparently this information, update it (if it is inconsistent, and cross-

reference it to another piece of information), while keeping the entire (fragmented and

distributed) project information base consistent? The architecture developed to address these

questions consists of integration services (implemented as class libraries), application interfaces

which define the interfaces to the integration services, and adaptors which provide the mapping

between the application interfaces and each of the documents to be integrated. (Rezgui et. al.

1999)

2.2 Author's Contribution

The author's principal contribution is the design and implementation of the TOPS

Implementation Prototype (TIP). The TIP architecture differs from the current state-of-practice

CIC architectures in the following ways: project information consolidation, middleware,

repository technology, and schema extensibility. Each of these will be discussed in turn.

2.2.1 Project Information Consolidation

The TIP has a consolidated information base that has self-contained meaning (i.e. the

information does not need to be exposed through an application to have meaning). By

consolidating the project information, the TIP architecture creates a root data source that

embodies the sum total of the project knowledge (and may capture information beyond what is

exposed by standard applications). In the TIP environment, the root source can be interacted with

11

directly through the TIP Data Browser to build new views and abstractions of project data to

create much more robust and powerful representations of project information. The author

proposes that an architecture which supports a root source, and operations on its contents, has far

greater potential to support a CIC environment than the potential offered by individual

applications operating on discrete sets of data.

2.2.2 Middleware

The TIP architecture differs from state-of-practice CIC environments in that it is modular and

distributed. The modular nature of the TIP allows virtually any C M application to be attached to

the system. Given that applications will interact with the TIP through standard interfaces, the

applications can be updated at any time without affecting the integrity of the remainder of the

system. Part of the standard TIP application interface is the ability to convert data to the

Extensible Markup Language (XML) before transmitting data between other applications or

layers in the TIP architecture. X M L is an application of the Standard General Markup Language

(SGML) (as is the markup language HTML). It is a standard Internet protocol that is rapidly

gaining support around the world as a standard of distributed document communication (Mace

et. al. 1998). Converting the TIP data to X M L strings allows the data to be served over the

Internet in a distributed system.

This modular and distributed nature is due to the author's introduction of the Lightweight Data

Access Interface (LDAI). The LDAI is the data access, or "middleware", component that defines

the functional interface between an application and other applications or between an application

and one or more collections of data. Middleware provides an isolation layer of software that

shields application developers from the 'plumbing' by presenting its own enabling layer of

application interfaces. This layer hides the differences incurred by a heterogeneous environment.

12

In effect, such a layer decouples otherwise coupled applications from any dependencies on

platform specific application interfaces. (International Systems Group 1997)

2.2.3 Repository Technology and Schema Extensibility

Repositories are a relatively new class of software based on object-oriented database technology.

They are access and life cycle management systems for metadata. Developed by the software

industry to manage and support the software development process, repositories act as integrated

management platforms for metadata, providing storage, consolidation, and versioning services as

well as acting as the hub for data and component definitions, development and deployment

models, reusable software components, and data warehouse descriptions. Metadata is descriptive

information about the structure and meaning of data and about the applications manipulating

data. (Microsoft 1999a) Integrated metadata management provides an enterprise with the ability

to define a global and consolidated view of the structure and meaning of its applications and data

- information that is usually scattered throughout the enterprise and buried in individual files,

catalogues, or databases. (See Figure 2.1) This would facilitate the sharing and reuse of

descriptive information between applications, and support version management and tool

interoperability. (Microsoft 1999b)

Repository technology enables the extensibility of the TIP architecture. Extensibility is the

ability to modify the models and schemas underlying project information stored in the repository

without destroying that information. Clearly, information models will change over time and,

therefore, it is important to allow the underlying conceptual model used by the project actors to

be altered and to evolve over time - without affecting the overall consistency of the project

information base. (Rezgui et. al. 1998) Repositories accomplish this by storing information

13

End User

\
Applications

Scheduling, Estimating,
Document Managment, .

Administrator

Developer

Repository Object
Management System

Secure Access, Versioning,
Dependency Tracking, ...

"jTJnformation Model .

UML Model „ , , , ,
Process Model

Product Model
Component Spec.

Business Rule
Dependency

Figure 2.1 Repository as a hub for information (after Microsoft 1999b)

models together with the information they describe making the data self-descriptive. A tool is

therefore able to query the contents of an information model and use the results to adapt its

processing. This makes it possible to evolve data in response to information model changes,

since tools depend only on the information model, not on the stored representation of data. This

allows the dynamic development of the project model without destroying the information in the

database. (Microsoft 1999a)

The author has adopted Microsoft's repository technology as the persistence manager for the TIP

data environment. In this decision to adopt Repository, an important consideration was made

regarding the type of database needed to support the TIP architecture. Essentially, there are three

main alternatives for providing persistence management services: file-based data storage,

14

relational database management systems, or object-oriented database systems. File-based

systems are quite simple but inefficient when dealing with large data sets. Relational databases

have the advantage of being the most commonly used and available database system (e.g.,

Microsoft Access). Object-oriented database systems fit well with the type of object modelling

being attempted in TIP but they are still relatively uncommon when compared to relational

systems. The TIP architecture required a persistence manager that was object-oriented yet

common enough to be easily integrated into existing software architectures. Microsoft

Repository was an excellent response to these requirements. It adds a true object-oriented

database layer on top of a relational. Furthermore, because it is a Microsoft tool, it nicely with

the other Microsoft tools development tools used for this project.

15

3. Prototype Development

The basic idea behind Computer Integrated Construction (CIC) is that users working with one

application can exchange data with users of another application through an interface to a custom

data exchange mechanism. (Froese 1999) Figure 3.1 illustrates this.

App.

App.
Data

interface
Custom

Data
Exchange

Interface

App.

App.
Data
App.
Data

Figure 3.1 Basic application integration (after Froese 1999)

However, such a simple model of CIC leaves many issues unaddressed. In a multi-application

environment that adopts this model of CIC, any single source application requires that an

interface be developed for every target application with which it interacts. Different target

applications will have different functions and may require a unique data set from the source

application. As a result, there is no guarantee that components for one interface can be reused by

another interface as the target application may require the interface to adopt an architecture

unique to its own data needs.

This type of solution is increasing in popularity with the advent of office suites of applications

such as Microsoft Office or WordPerfect Suite. Unfortunately, it is an inadequate solution for the

16

construction industry, in large part, because the industry makes use of more than just office

suites. Applications such as AutoCAD, Primavera, Prolog Manager, etc. all have their own

proprietary data formats with their own unique object models underlying the data. A large CIC

system may need to consist of many of these applications. Building the interfaces (as well as

maintaining and upgrading those interfaces) between each of these products would be time

consuming and expensive.

In comparison, the basic idea behind TOPS is to develop application interfaces that map the data

from each application to a common data model. This interface can accommodate data exchange

with a central repository and can communicate with any other application that has an interface

that also maps data to the common data model. This architecture is illustrated in Figure 3.2.

More complex than the architecture in Figure 3.1, the TOPS architecture includes a common data

model, databases, applications, user interfaces, and an object browser. The object browser is not

part of any particular application but is required in order to view and manipulate all project

information (Froese et. al. 1997).

TOTAL PROJECT SYSTEMS
rnmn Y ^

Application User Interfaces ||

Applications
A, yv^_ TDH

Application Database
Interfaces

DBMSs

Common Data , • FP • .
Databases

Models

Figure 3.2 Components of TOPS (after Froese et. al. 1997)

17

Al l applications both contribute to and draw from a shared pool of project information that is

stored in a database(s) established on the structure of a core information model. Application

modules are connected to the system using standard interfaces. Thus, they can be updated

without the need for changes to other parts of the system. Not only is project data shared, the

application modules are also shared by different participants at different locations. As the

applications and project data are transparent, users must simply send requests to the system

through the user interface, invoke appropriate modules, and input the appropriate data. (Froese

et. al. 1997)

TOPS only requires a single standardised interface to be written for each application. This

interface references application data to a common product data model before persisting the data

in a shared repository where any other application, regardless of function, may access that set of

data. The accessing application's interface then converts the data back into a proprietary format

(if necessary) useable by the application. Because applications are separated from data by a layer

of logic, they may be upgraded or otherwise changed without affecting data access or the

integrity of the data. Further, the interface may contain logic that supports emerging Internet

protocols (such as X M L) making the overall architectural framework highly distributed. Clearly,

the TOPS model has the power to form the core of future CIC development efforts if it can be

effectively implemented.

3.1 TOPS Implementation Prototype Architecture

The TOPS Implementation Prototype (TIP) architecture is presented in Figure 3.3. Except for the

introduction of the LDAI (Lightweight Data Access Interface) and Microsoft Repository, the

architecture is consistent with the architecture proposed by TOPS (see Figure 3.2). Microsoft's

18

TIP Application Modules TIP Data Browser

L D A I L D A I Object Model

TD? Data
Browser

L D A I Application Interfaces L D A I Repository

MS Express C A D
Project

Express
IAI Common
Data Models

M S Repository

Figure 3.3 TIP Architecture

repository technology is used to persist the project information. It is exposed to the rest of the

system through the LDAI Repository layer. This layer contains the repository engine and object

model. Any part of the system that attempts to communicate with the repository must do so

through this layer. Schemas are stored in the repository as IAI models with possible extensions

for application-specific functionality. An OLE DB server is used to serve the repository, making

it accessible to the Internet. The LDAI is the middleware component that defines the functional

interfaces between an application and one or more collections of data. Although only three

backends are shown in Figure 3.3 (MS Project, Express, and CAD), the TIP system can

implement the LDAI with any number of backends to support the interoperability needs of any

enterprise.

At the application level, two classifications of applications exist. The TIP data browser is a

general-purpose user interface to project data and is an integral component of the TIP. This data

browser can serve as a separate tool or application, similar to that of the Windows Explorer tool

in Microsoft Windows. Its purpose is to allow users to enter, view, and manipulate project data

19

as well as view and modify the underlying models and schemas. The data browser interface can

also be incorporated into other, more specialised applications (as shown by the combined TIP

Application/Data Browser element in Figure 3.3). The TIP data browser can operate on the

repository directly or through the LDAI. Finally, the TIP Application represents any standalone

module that plugs into the LDAI. Any number of construction management applications may be

developed - estimating, scheduling, quality control, or document management systems for

example - so long as the required underlying schemas have been installed to support the

application module.

A l l communications occurring between modules or between layers are standardised as an X M L

string. X M L is a standard Internet protocol that is rapidly gaining support around the world as a

standard of distributed document communication (Mace et. al. 1998). Standardising internal

communications and data flow as X M L strings supports a distributed architectural framework

with the Internet as the controlling medium. Implementing the data flow in the TIP architecture

as X M L strings realises an additional, secondary benefit: data becomes readily accessible to

users outside of the TIP. Since web browsers such as Microsoft's Internet Explorer and

Netscape's Navigator are XML-capable, they are able to read and display X M L data to users as a

formatted X M L document. Therefore, even users who do not have access to the TIP will be able

to view any, and all, data stored in the project repository.

3.1.1 The L D A I

Applications interact with the integrated system through data access interfaces that are structured

according to underlying schemas or data models (in this case, the LDAI object model) that are in

turn structured on underlying assumptions about the structure of primitive concepts such as

objects, classes, etc. (i.e., the metamodel). The LDAI (lightweight data access interface) defines

20

a functional interface between an application and one or more collections of data. The LDAI is a

middleware component similar to other middleware standards such as the ISO STEP Standard

Data Access Interface, SDAI (see ISO (1995) for an explanation of the SDAI). The LDAI was

developed rather than directly adopting the SDAI because the TIP's requirements for a

middleware layer are quite different since the TIP is not production software whereas the SDAI

is more intended to support production software. The TIP is designed to support rapid prototype

development in an area where "standards" are frequently changing. The LDAI has the following

defining characteristics:

• It is very simple to work with. It is implemented in Visual Basic and it provides only

the most essential and generic data access functionality (it can be thought of as a

stripped-down version of the SDAI).

• It can be used as a "front end" interface for a wide variety of data access "back ends",

such as EXPRESS, STEP Part 21, or X M L files, or SDAI or Microsoft ADO data

access interfaces (and it can act as a translator between these different formats).

• Only the smallest possible set of core metamodel data structures are statically

encoded in the LDAI ; other aspects of the metamodel and all project data models are

dynamically loaded at run-time (i.e. late binding) and these models can be altered at

any time.

The LDAI object model is presented in U M L notation in Figure 3.4. Each object in the figure is a

class. Classes may contain attributes and methods. Attributes are specified above the methods in

an individual class diagram. Associations represent relationships between instances of classes.

An association that has an open arrow on one end indicates inheritance.

21

zz

z a
a to

5 o
O ZJ

Q- CD CO

CO

TO
C
"I
»

4^

5
o

o

3 o
0>

+ +

o z
+ .

& &

"2 o

O ffl

> si
o

+ + +
D J O

2. ° ff

HI O CO
•ET 3

o
—tl
S o a o

+ +
> CO

+ + + + + +

3 " O S B s
• i l l
III s Si

I i<2

1 8 ?

S O -

S * a
a- a. ^

, 0 2 2 2

o co ffl ffl rt = *> Z

ff. co
s? a

<Q

T 1 1 — I — X "

O S? i? > >
». 3 So

$ >

CD !

V
ffl

0))d w

+ +

ffi O
• ff

CO 70
gas, o

I

3J O >

An important function of this model is its ability to evolve its schema. The main reason for this is

that the LDAI is being developed based on standard project data models concurrent with the

ongoing development of the standard data models themselves, so the applications' underlying

data structures are frequently changing and this ability allows the LDAI to keep pace with the

changes. The LDAI object model implements schematic evolution by early binding only the

smallest possible metamodel structure. Al l other metamodel constructs are built up dynamically

as necessary at runtime, and changes can be made to the schema even after it has instance data

associated with it. Although the LDAI will be able to maintain data consistency for most types of

simple changes to existing schemas, it leaves the ultimate responsibility for maintaining data

integrity during schematic evolution to the application developer and users.

It is important to note that LDAI is not intended to provide a new standard for functional

interfaces between data and applications, nor is it a replacement for the SDAI. The LDAI is a

development interface rather than a production interface. It is advanced as a simple and flexible

tool to facilitate the quick development of prototype systems. In a full implementation of the

TIP, the LDAI would be replaced with an SDAI or other data access interface.

3.1.2 Microsoft Repository

Microsoft Repository is a software component that adds an object-oriented data management

layer on top of relational databases. The Microsoft Repository tool has arisen from the software

development industry where it has been used for storing both software components and

information about the components (metadata) in collaborative design systems. Microsoft

describes its Repository as an object-oriented metadata management facility used for storing and

sharing information about software systems and how they interrelate. In this role, it provides a

common format for storing information about databases, reusable software components, and

23

assorted data warehousing tools, enabling disparate tools to share metadata and work together.

(Microsoft 1999f) However, the Repository is well suited to any application area where complex

object data must be stored along with object management features such as dynamic schema

definition, object versioning, etc.

Repository's engine is a type-driven interpreter, that is, a user specifies an information model

that consists of a set of type definitions and the repository engine automatically structures the

database as required to store instances of that information model. An information model is a

description of the types of data objects that are supported by an application (or a suite of

applications), and the relationships that exist between those data types. Microsoft Repository

stores information models as Repository type libraries (Microsoft 1999f). Models can be

installed at any time and used immediately thereafter, so an application can install a model

whenever needed. After an information model is installed, the repository offers operations for

creating objects that are instances of the model's types, and for storing and retrieving these

objects' properties and relationships to and from the repository database. (Microsoft 1999c)

The Repository engine interprets the type definitions contained in information models. Type

definitions are nothing more than ordinary repository objects that have certain type-specific

properties and relationships (Bernstein et. al 1999). Microsoft Repository supports the following

kinds of type definitions (taken from Microsoft 1998):

1) Class - The class is the template from which an object instance is created. The class

specifies which interfaces the object implements.

2) Interface - A defined set of properties, methods, and collections that form a logical

grouping of behaviours and data. Classes implement interfaces and an interface may

be implemented by many different classes.

24

3) Property - A scalar attribute that is defined as a member of an interface. A property

has an assigned data type; for example, string, or 32 bit integer. A property is a part of

the definition of an interface. A property value is an instance of a property.

4) Relationship - A logical connection between one object, the origin object, and a

second object, the destination object. It defines which collections (on which

interfaces) are connected by instances of the relationship class.

5) Collection - A set of repository relationships of the same relationship type that are all

connected to a common source object.

6) Method - An invocable function that is a part of the definition of an interface.

Figure 3.5 is a contrived information model that illustrates the structure of information models in

Repository. It is a simple model that supports only two classes: Project and Activity. The Project

class contains two interfaces: IProject and IProjectActivity. Interface IProject describes the

project, specifically the location and owner of the project, while interface IProjectActivity

describes project activities that can be used by the project. Projects and activities are related to

one another through the relationship Has which is accessible via the ProjectActivities collection

on IProject and the Projects collection on IProjectActivity. In other words, a project has a

collection of project activities and a project activity has a collection of projects. (The collection

type definition object is used to define the cardinality of relationships so that a project may have

multiple activities whereas an activity may have only one project.)

25

C 1Ias) Relationship
Definitions

^ ProjectActivities^

I Location /

^ Projects ^

/Owner/ / Start /

Collection
Definitions

/F in i sh / Definitions

IProject
get_Project Activity ()
get_Location(), put_Location()
get_Owner(), putOwnerQ

IProjectActivity
get_Project()
get Start(), put_Start()
get Finish(), put_Finish()

Interface
Definitions

Project
IProject
IProjectActivity

Activity
IProjectActivity
IActivity

Class
Definitions

Figure 3.5 A Repository information model (after Bernstein et. al. 1999)

Note that properties and relationships specific to activities are captured by IActivity (not shown).

The activity start and finish information are able to be exposed by the IProjectActivity interface

because it contains a reference to IActivity through the Activity class.

A l l type definitions in an information model are instances of the classes found in the Repository

type model shown in Figure 3.6. The Repository type model classes are described as instances of

themselves. That is, each of the type definition objects in Figure 3.5 is an instance of the type

definition classes described in Figure 3.6. For example, in Figure 3.5, there are two relationships:

Projects has ProjectActivities and ProjectActivities has Project. There is an instance of the

RelationshipDef class for both of these relationships. The interfaces IProject and IProjectActivity

are instances of the InterfaceDef class, and so on. In this sense, the repository is self-describing.

This characteristic is useful for model-driven tools, such as generic browsers (of which the TIP

26

data browser is an example),that need to discover the information model at run-time and that

should be able to view the repository's type model in the same way as models customised for

applications. It also positions the repository to apply its own features to its own type definitions.

For example, the Repository type model classes in Figure 3.6 are extensible by customers.

Another example is that, when the repository engine supports versioning of type definitions, the

operations to manipulate those versions will be identical to operations for manipulating versions

of other kinds of objects.

Since repository instances are self-descriptive, the data they represent must also be self-

descriptive. As a result, a tool is therefore able to query the contents of an information model and

may use the results to adapt its processing. The interfaces of the repository completely

encapsulate the stored information separating the data from the repository object. (This is

illustrated in Figure 3.7. MyProject is an instance of the Project class in Figure 3.5). This makes

it possible to evolve data in response to information model changes, since tools depend only on

the information model, not the stored representation of data. (Microsoft 1999d)

. Repository Object

Interface

MyProject

IProject
ProjectActivities
Location <
Owner

IProjectActivity
Projects
Start
Finish

Collection

Property) Members

• Property

Figure 3.7 Sample Repository Object (after Bernstein et. al. 1999)

28

3.2 TIP Data Browser

The TIP data browser is a general-purpose user interface to the project information repository

and is an integral component of TIP. Implemented in Visual Basic, this data browser can serve as

a separate tool or application, similar to that of the Windows Explorer tool in Microsoft

Windows. Its purpose is to allow users to enter, view, and manipulate project data. Figure 3.8

shows a typical screen of the TIP data browser. The left-hand window is the object tree. It

displays all the objects that are stored in the repository in an object hierarchy. The right-hand

window is the information window. When an object in the object tree is clicked, the information

for that object is displayed in the information window. In this case, the information window is

displaying the contents of object Activity DEF in the information window on the right hand side

of the browser. The information window can display three types of data constructs:

CollectionDef, Property, and PropertyDef objects.

TIP v. 1.2.6 B H E I

LateFintsh

p i Repository Objects

£ie Ed* View look Help
Cancel Sept 2611999

.+ Resource
E # Repository Type Information Model

- 4 % GenericProjects
B-̂ P Project ABC

-; Activities
| E - # Activity DEF

44 A Project
Fl-flfJ Resources

153 ̂ Resource X T Z
-• Resources
\ H # ResourceXfZ

& • * Roots
Workspaces

Type: Activity Contains: 2 CoBection(s) + 7 Objectfs}

|Contents of' Activity DEF'

J Name i Type

1 Exposing Interfa... j Value
| • * Project CollectionDef IActivity

Resources CollectionDef IActivity

tl ObjectID

Property IRepositoryObject {{FF006975-53D6-11

tl IntemallD

Property IRepositoryObject {3-000-3-0-0-0}
t lType Property IRepositoryObject {{FF00G9&4-53DG-11
f l EarlyStart PropertyDef IActivity Sept 1,1999

tl EarfyFinish

PropertyDef IActivity Sept 15.1999

tl LateStart

PropertyDef IActivity Sept. 4,1999

tl LateFinish

PropertyDef IActivity Sept 22,1999

<l 1

Figure 3.8 TIP data browser screen

CollectionDef s are the collections of other objects to which Activity DEF is related. Properties

are system-assigned variables that uniquely identify Activity DEF. PropertyDef s are user-

assigned variables that describe the state of Activity DEF. The object in question is an activity,

29

so the state of that activity is being described by scheduling information (early start, late start,

etc.). However, any type of information can be persisted as a PropertyDef.

The TIP data browser has ability to view all available project information from various views

and levels of abstraction. Project data is structured hierarchically with a detailed view displaying

composite information. Views are an important concept in repository technology and are highly

relevant to the subject of integration architecture. A 'view' is data presented in a way suitable for

a specific task or user. In general, views are derived from subsets of data held in the repository.

Base data is manipulated in some fashion to create a view, typically to create a higher level

abstraction, a common requirement for construction systems. (O'Brien 1996) The most

important feature of the browser is its ability to view and modify the models and schemas

underlying data stored in the project repository without destroying the information in the

repository. Clearly, this adds schema evolution capabilities to the TIP. Schema evolution is the

ability to change a model over time. Rezgui, et. al. (1998) establish schema evolution as an

important feature of an integrated data environment because building lifespans can extend over

several decades or more. This allows the underlying conceptual model used by the project actors

to be altered and to evolve over time, without affecting the overall consistency of the project

information base. Finally, the browser can serve as a standalone application or it can be

incorporated into other, more specialised applications giving users the ability to access all

available project data at any given time to manipulate the data or underlying schemas as

necessary.

30

3.2.1 Using the TIP Data Browser

The process of using the TIP data browser may be divided into three types of tasks:

1) defining an information model in Repository;

2) populating the information model; and,

3) browsing and using the data in the information model.

The following is a brief scenario presenting screen captures of how the TIP data browser is used

to accomplish the first two tasks. The third type of task, browsing and using the information in

the data model, is illustrated through a usage scenario in Chapter 5.1 and, therefore, will not be

discussed here.

3.2.1.1 Defining an Information Model

The first step in defining an information model is to create a type information model (TIM) in

the repository. The TIM articulates and defines the types of data to be stored in the repository. In

this case, a model called the 'Generic Project Model' has been created. (See Figure 3.9) Once a

T IM has been created, it can be populated with classes. Figure 3.9 shows three classes that have

been added to the model: Project, Activity, and Resource (in mid-process of being added). Since

the repository exposes a class' properties and methods through interfaces, interface objects are

automatically generated for each class that is added. The default notation for an interface is the

name of its class with an T prefix.

31

X J
1 LJ

ii
18 # Si •a

£
o

L5

1
o

5

- IS . c
... g :., .,.; J **
EC

i
... o

2E

tt 5

^1

5

i l l
« (D n

8 8 f
r CQ m ~ rr CJ < 111J

IB- IS -IB f i E £ | ^
•B-a-ffl : m

41,

32

Once classes and interfaces have been added, the user can define the properties and methods for

a call on the interface. The user may specify whether the property is of type string, integer, date,

currency, binary, or time.

New models, classes, properties, and methods are all added in the same manner - by pushing the

appropriate button on the TIM Menu (at the far right of Figure 3.9) and then adding the name of

the model, class, or property being added. Models are defined on the Repository Root object,

classes are added to the Repository Type Library and properties are defined on the interface for a

given class.

Once the constituent parts of a model have been added to the repository, it is necessary to build

relationships between objects to indicate associations. Since it is interfaces that expose

relationships, relationships are defined on the interfaces for the associated classes. Figure 3.10

shows two existing relationships in the repository: one between Activity and Resources (called

IActivityResourcesIResource - in other words, activities use resources) and one between

Project and Activity (IProject Activities IActivity - projects have activities). A third relationship

is being defined: 'project has resources.' This is done by selecting the Project and Resource

interfaces from a child window and then specifying the name of the relationship (as well as the

name of its inverse relationship). In Repository, all relationship names must be unique. The

notation appearing in Figure 3.10 (and used above) to specify relationship names is an arbitrary

notation developed by the author to satisfy this condition.

33

X

•
I

"SI

C3

o
£.
•o

.0--C
$2

c
g

a
cu

rr

JB

u

0)
X I
5

3E
CO

.13 1 ro 35 c

3.2.1.2 Populating a Data Model

Populating a Repository model may be accomplished in two ways: applications may populate

models directly or the TIP data browser may be used to populate the model. Populating a model

using the TIP data browser is a process of adding new objects to the model by right clicking on

the object tree where the new object is to be inserted. The properties and methods of newly

created objects are empty and must also be populated with data by the user. Figure 3.11 shows

the instantiated model populated with some data. On the left of the figure, a user is adding a new

activity object to the 'Activities' collection of the 'Project A B C object. (Note that new objects

may only be inserted into collections.) Since the relationships between objects were defined in

the TIM, the model is aware of its own object hierarchy (i.e. projects have work tasks and

resources, work tasks use resources). Therefore, when a user right clicks a collection to add a

child object, only the appropriate child objects can be added to the object hierarchy. An

information model need only be defined once and then only update as needed

In addition to adding new objects, the TIP data browser also supports functions: delete objects,

rename objects, copy objects, paste relationships between objects, and edit the property values of

objects. The right hand screen in Figure 3.11 shows the 'LateFinish' property of object Activity

DEF being changed from Sept. 22, 1999 to Sept. 26, 1999.

35

10 O l O m c n m c n
in o st ffl 2 ffl m

g 11 ^ 52 a
o 9 O , j ,j ^ Li- O U_ Q. Q. Q. Q.
1 1 « u . d) CD a> aj

^ c o c n c n u i

o

.a _
JD JD

o o o
=s ^
o o 5

.=? j i > vt

£ i- a CL Q. Q. O II D
DC Lt Lt

<D (D Q. Q. Q.
" 5 " 5 2 2 2
CJ CJ Q_ Q_ D_

3 3
> > J :j < < < <

Q o Q Q 2:'
& £

CL CL CL CL
• o o o

L L CL L L

O Q
CL CL" O

— £ 1 0 £
^ LL cn ir
ID 10 1u "n5

^ • • • f j r j r j r j ^ ^ r j

%
X I

vt
o
o

M
t o

CN .a
>i
.a
>i

> X J
U l l -
05

1 LM

c
o

W ° CL 1)

X & = S <

L B ^ C D

ro

LU ft 5 ID
» u o = _ _ T 2

M

T3
O

c o

1
£
t -

.s
CJ

• M

c

fa
3
WD

Fl

s
> i !

* ,
UJ) I
JB
Li-1 j

a
J 3
O

2>1

3.

cc
'— to (_J
^ O CQ
5 ^ <

CD 1

CD -

36

3.2.2 Caveats on the TIP Data Browser

Before continuing, some important caveats need to be mentioned about the TIP data browser.

First, it is envisioned that the tasks of defining and populating data models would typically be

done by system developers (such as the Construction Management Group at the University of

British Columbia). While end users (i.e. project managers) are free to examine and edit the

models in Repository should the need arise, it is more likely that they will only use the browser

to view and update project information.

Second, the operations involved in populating Repository models using the TIP data browser are

repetitious and time consuming (particularly if the models being installed are large). More

typically, applications would populate the models directly through their interfaces with the

Repository. This saves time and effort as it can automate the Repository operations.

Third, the TIP data browser was intended to operate on the project repository either directly or

through the LDAI layer. For the sake of this project, however, the browser was implemented

without incorporating any of the LDAI components into its architecture. As such, it is only

capable of operating on repositories directly. Adding the LDAI components to the TIP data

browser would allow it to operate on remote project repositories, or on data sets stored in other

formats, as well.

Fourth, it is important to note that, although the TIP data browser interface appears almost

identical to the data browser interface that Microsoft provides with Microsoft Repository, the

programmatic nature of the two data browsers is substantially different. The only feature

common to the two browsers is the ability to view the contents of a repository. The data and

schematic editing and manipulation functions illustrated in the preceding pages are unique to the

37

TIP data browser and are not possible with Microsoft's browser. An example of some typical

code that was used to program in the repository environment is presented in Appendix A.

38

4. SCSapp

SCSapp is a sample Short Cycling Scheduling Application. Its primary purpose is to demonstrate

how an integrated data environment functions inside the TIP architecture, how data is managed,

and how such a system could be integrated into the construction industry's existing information

technology infrastructure. The sub-objective of SCSapp is to assist construction managers in

creating lookahead schedules and to assist decision-making about work-in-place activities and

materials delivery. The author has adopted the Lean Construction Institute's methodology of

lookahead scheduling as proposed in Ballard (1997).

SCSapp is coded in Visual Basic and can be plugged into the TIP architecture to commit and

retrieve project information to and from the project repository. The rational for developing a

scheduling application as opposed to another project management tool is due to the fact that

scheduling draws upon a broad range of project information (i.e., product, process, and resource

information). For example, activities, sequencing, cost, the assignments of resources to

processes, etc. As a result, it is expected that such a scheduling application would provide a good

test of emerging IAI models of construction process-related information (although this is not the

primary purpose of this thesis).

4.1 Implementing SCSapp

Figure 4.1 illustrates the architecture of SCSapp in the TIP context. SCSapp has two backends

(i.e. persistence managers) implemented as part of its architecture: a repository backend and a

Microsoft Project backend. The system is free to retrieve or contribute data to either backend.

Project information is retrieved by the Data Access Engines via the LDAI

39

TIP Application

SCSapp TIP Data Browser

t X M L String
— — — — •* — — — — — — — — — — — — — — — — i

PjJOJectObject^J ^S^^^^e^Jj Rssotirce^bjectJ i

LDAI Business Objects

LDAI Data Objects

MS Project Object Model

^ X M L String

~)| MS Repository Object Model"!

Binary Data

i Data Access Engines

M S ^ ^ e c ^ ^ e c t ^^^^^J M^^o^i toryObjectEn^nfi j

Persistance
I MS Project Objcc(_ OLEDB

SCSapp
Data Model

S ,-52-, MS Repository

Figure 4.1 SCSapp in the TIP context

Data Objects. The Data Access Engines are the proprietary engines used by MS Project and

Microsoft Repository to expose data to outside access. Generally, any attempts to retrieve and

store information from either of these persistence managers must understand and use these

engines. The LDAI Data Objects, MS Project Object Model and MS Repository Object Model,

wrap their respective Data Access Engines to provide Project and Repository information access

to the rest of the TIP (wrapping the engines makes them transparent to the rest of the system).

The author implemented the MS Project and MS Repository object models as LDAI Data

Objects to allow the Data Objects to communicate with the Data Engines. Once the project

40

information is read into the system, it is converted to an X M L string and communicated to the

LDAI Business Objects where the data is reconstituted into project objects, work task objects,

and resource objects. Once the data has been reconstituted into objects, it is again converted to an

X M L string and communicated to the application level where it is interpreted. At this point,

SCSapp may perform scheduling operations on the data.

The project, work task, and resource objects encapsulated in Figure 4.1 by the LDAI Business

Objects are highlighted in Figure 4.2 in U M L notation. These are the core objects in the SCSapp

information model. They are a simplification of the IAI IPC Release 1.5.1 Object Model (see IAI

1998 for more information). Any information imported from MS Project into SCSapp is first

converted to this object model and SCSapp information stored in the repository is structured

according to this schema.

Project Object

+Name: string
+Start: date
+Finish: date
-Worktasks: object reference
-Resources: object reference

ownedbyProject

1..1 usesWorktasks

partofProject 0..n

Worktask Object

+Name: string
+Start: date
+Delayed Start: date
+Start No Later Than : date
-•-Reason for Delay: string
-Resources: object reference

1..1
consumedbyWorktasks

O.n

0..n

ownsResources

1..n

consumesResources

Resource Object

+Name: string
+Available From: date
•Available To: date

Figure 4.2 SCSapp object model

41

The SCSapp information model is quite simple as it represents only the most generic information

necessary for a short cycle scheduling application. Project may contain many work tasks and

many resources. Work tasks may use many resources and resources may be used by more than

one work task. The project object maintains a reference to all the work task objects and all the

resource objects in the schedule. Any given work task object maintains a reference to only those

resource objects that it requires to complete its activity.

4.2 How SCSapp Works

4.2.1 Scheduling Methodology in SCSapp

Since SCSapp draws upon the scheduling methodology of the Lean Construction Institute (Lean)

for its own scheduling methodology, a brief introduction to the Lean methodology will be

presented. This explanation of the Lean methods draws from Ballard (1997) as its primary source

unless otherwise referenced.

Most construction projects issue a master schedule at or near the beginning of the construction

phase, extending from the beginning to the end of the project. Generally, the master schedule is

used as the basis for developing a lookahead schedule. Lookahead schedules are a more detailed

plan that bridges the gap from the overall project schedule to the organisation of the tasks

performed at the crew level (Hinze 1998). These schedules are often called "lookahead" or

"short cycle" schedules because they look ahead several weeks into the future of the project.

Lookahead schedules are commonly used to focus management attention on what is supposed to

happen at some time in the future, and to encourage actions in the present that cause the desired

future. However, lookahead planning may also be used to:

1) shape work flow in the best achievable sequence and rate for achieving project

objectives that are within the power of the organisation at each point in time;

42

2) match labour and related resources to work flow;

3) produce and maintain a backlog of assignments for each frontline supervisor and

crew, screened for design, materials, and completion of prerequisite work at the C P M

level;

4) group together work that is highly interdependent, so the work method can be planned

for the whole operation; or,

5) identify operations to be planned jointly by multiple trades.

The Lean Construction Institute has been refining lookahead planning in an attempt to improve

the success rate of completing tasks assigned in weekly and daily plans. Their proposed

methodology is illustrated in Figure 4.3.

Step 1 Step 2 Step 3
Update and
adjust master
schedule

Allow only sound
assignments into
weeks one and two

Apply quality criteria
to assignments before
advancing by week

Update and
adjust master
schedule

Allow only sound
assignments into
weeks one and two

Apply quality criteria
to assignments before
advancing by week

Step 7 Step 6 Step 5
List actions needed to
make assignments
ready when scheduled

Match workload
and capacity

Translate schedule
activities into
assignments

List actions needed to
make assignments
ready when scheduled

Match workload
and capacity

Translate schedule
activities into
assignments

Step 4

1 /

Screen CPM scheduled
activities before entry
into lookahead weeks

Figure 4.3 Lean Construction Institute methodology for lookahead schedules

Step 1: Enter the latest status and forecast information into the project master schedule.

Adjust starts, completions, sequences, and durations accordingly.

Step2: Do not allow any assignments into week one that are not ready, except by the project

management's decision. Ask the foreman if each assignment can be completed in

week one, recognising that he/she may have to determine completion of prerequisite

work at the item level, arrange for prework such as scaffolding, and coordinate the

use of shared resources such as equipment or special tools. Allow that amount of

work into week one that can be completed in the week.
43

Step 3: Examine the remaining weeks in the lookahead, except for the last, moving from

present to future. Screen out any assignments that cannot be made ready when

scheduled. Try to maintain for each crew an amount of assignments twice that which

can be completed in a week.

Step 4: Identify those activities scheduled to start or complete in the lookahead week and

screen out any activities that you do know can be made ready to assign when

scheduled. Take into consideration the status of design, including pending charges or

open issues, the availability of materials and components needed for each activity,

and the probability that prerequisite work will be complete when needed.

Step 5: Translate lookahead week activities into the language of assignments, grouping

highly interdependent operations that should be planned as a whole and identifying

operations to be planned jointly by multiple trades.

Step 6: Calculate the earnable man-hours or otherwise quantify the labour content of the

work in the lookahead week. If that amount of work falls below the amount needed to

maintain schedule and if you will have the labour capacity to do that amount of work,

advance work from the master schedule to the extent practical. If the resultant amount

of work falls below the current workforce, reduce the workforce, or decide how to use

the excess labour time. If that amount of work exceeds the current or projected

workforce, decide whether or not to increase labour to accelerate progress.

Step 7: Produce a list of actions needed to make assignments ready when scheduled.

As previously stated, the purpose of SCSapp is to test and demonstrate the TIP. As such, it is

necessary to make note of the fact that it is not the purpose of this research to develop SCSapp

into a complete short cycle scheduling package. Therefore, SCSapp will only prototype steps

three and four of the Lean Construction Institute lookahead scheduling methodology. The

assumption shall be made that SCSapp only forms a small part of a larger scheduling process that

44

is responsible for the other steps in the Lean Construction Institute lookahead scheduling

methodology.

4.2.2 Using SCSapp

SCSapp is an easy-to-use application that allows a user to look at all the work tasks that start

between a set of given dates and to reschedule those tasks as necessary. Figure 4.4 is a data flow

diagram detailing the overall control flow and scheduling methodology employed by SCSapp.

This diagram is complemented with several screen captured images of SCSapp to help simplify

the control flow and scheduling process. In the data flow diagram (Figure 4.4, item 1), the

project manager (PM) first selects a project from either an MS Project source or a repository

source. Opening a data source is done through an 'Open File' dialog box - an identical process to

any standard Windows application (see Figure 5.3 in section 5.1 for an example). Once a project

has been selected and opened, the scheduling information for that project is loaded into the

system where the information is automatically reconstituted into a project object, work task

objects, and resource objects (as discussed in 4.1 Implementing SCSapp).

At this point (item 2), the P M may preconfigure the types of delays the system is to use should

an activity need to be rescheduled due to a delay. Figure 4.5 illustrates this. The window on the

right is the window that users see initially upon running SCSapp. From this window, users may

open projects (in this case the project 'SCSchedule.mpp' has been opened) and may configure

the delays. The window on the left indicates that four delay conditions exist. The user has set the

associated delay time for each condition.

45

Specify Task Delays (in days)

Predecessor(s) not complete | 2 days j

S u b / D e w not mobifeed]] days i

Unresolved design issues j 3 days ;

Materials unavailable

Note

1 days

Additional delays may be specified as work
tasks are scheduled.

OK Cancel

Current Project

Namejsc_Schedule.mpp

Schedule Work Tasks
i Tasks Starting In Date Range

Ffom 1 mm

Figure 4.5 Loading a project and configuring the delays

Once the delays have been configured, the P M may retrieve all the tasks that start between two

given dates (within the project's date range) (item 3). In this case, the P M is interested in the

tasks that start between '7/4/99' and '7/16/99' - a two week lookahead. Retrieving tasks opens

the scheduling window pictured in Figure 4.6. This corresponds to entering the data flow

diagram (Figure 4.4) at 'Retrieve Work Tasks Starting between Date Range.' The scheduling

window allows the user to determine if any conflicts exist in the prescheduled project

information. For instance, if a resource is unavailable when a work task starts, the window raises

a flag next to the offending resource in the appropriate work task. These appear as the triangular

flag in Figure 4.6.

47

Schedule Tasks

Select a Task

A conflict exists.

Activity F - Change fields and press 'Update' to commit

V" Work Tasks
. / Activity D
J Activity E
& Activity F
Y Activity Q
y Activity H
• / Activity I

Early Start Date 17/5/99 5:00:00 PM

Start Delayed Until j "

Start No Later Than j~

Update j

• Task Delays (days) - Set delays from main window­

ed Predecessors) not complete \~~2

C~ Sub/Crew not mobilized I l

l~~ Unresolved design issues] 3

C Materials unavailable j i

Resource Information - Double d c k a resource to edit

Resource I Available From | Available To

(~ Other -Enter comment and specify I g~
delay time (in days)

Crew 1 7/5/99 8 00:00 AM 7/7/99 5 00 00 PM

Press "Update" to commit

Refresh I Commit

Update

ciosc-

Figure 4.6 SCSapp scheduling interface

It is the responsibility of the P M to check the work tasks (item 4), entering information which is

not present in the prescheduled information that may yet delay an activity. The delays that were

configured in Figure 4.5 appear at the far right of the scheduling window. Should an activity be

delayed, the P M can simply check the appropriate cause of delay. If the delay is not present in

the check list, the manager may enter an additional delay specifying both the time the activity is

to be delayed and the reason for the delay. This corresponds to the 'Delay Work Task' node in

the data flow diagram. Once the delay is entered, the work task object is updated and is

committed to the repository.

Delaying an activity (item 5) may necessitate the delay of the resources used by that activity.

This can be done by double clicking the appropriate resource in the scheduling window and

rescheduling its 'Available From' and 'Available To' dates. As shown in the data flow diagram,

this updates the Resource object which is then committed to the repository. The repository is

automatically updated as the P M makes changes to the scheduling information. MS Project files

are only updated when the P M exports the data to MS Project.

48

4.2.3 Implementation Issues in SCSapp

There are a number of implementation issues in TIP not addressed in SCSapp that bear

mentioning. First, SCSapp does not yet have the ability to export project information to MS

Project. Since an MS Project exporter would essentially be the reverse of the MS Project

importer already coded by the author, an exporter is not a necessity to prove the open,

distributed, and modular nature of TIP. It would, however, serve to make SCSapp a more

complete application. Should the MS Project backend be completed (i.e. through the addition of

the exporter) a mechanism would be needed that ensures that all project information, regardless

of its source, is synchronised with the repository. In other words, the project information in MS

Project and the project information in the system repository must be equivalent in order to ensure

that all users are working from the same version. SCSapp does not currently have such a

mechanism implemented. As a result, it falls upon the user to be vigilant in maintaining the

integrity of the data by ensuring that all applications are working off of equivalent versions.

Repository has the ability to version information (and maintain copies of the old versions) but

this feature has not been exploited in SCSapp.

Second, the LDAI middleware component of SCSapp did not take shape as originally intended.

The SCSapp object model (see Figure 4.2) is part of the LDAI business object layer but it is a

static model. It was intended to be evolution-capable but this was not possible as the LDAI is not

yet fully developed and implemented.

Third, project information is not communicated between the tiers as X M L strings (as shown in

Figure 4.1), information is communicated as binary data. This obviously impacts upon the

distributed nature of SCSapp. However, adding code to SCSapp to convert the binary data to

X M L strings is not considered a major barrier. It was decided to forego this while SCSapp is still

49

an early prototype since the object models SCSapp is using are continually changing. This would

have necessitated the recoding of the X M L converters (late bound objects which must contain

these object models in order to function) several times during the prototyping stage. Once the

object models have been finalised, then the X M L converters may be easily added.

50

5. Discussion and Implications

5.1 Discussion

This section is designed to provide the reader with a practical illustration of how the TIP Data

Browser and SCSapp would function if they were implemented and deployed in a construction

environment and how they could potentially aide a project manager. A use case scenario (Figure

5.1) has been developed using the Jacobson Objectory Method. (See Fowler (1997) for more

information on using the Jacobson Objectory Model.)

Schedule

Figure 5.1 Use case scenario

The scenario is quite simple: a project manager (PM) needs to produce a lookahead schedule.

The P M imports the schedule (from MS Project) and builds the lookahead schedule (using

SCSapp). However, the P M discovers that an activity will be delayed due to a resource that is

unavailable. The P M decides to view all the available project data (through the TIP data browser)

to determine if there is another resource that could be used as an alternative.

The construction data used in this usage scenario is a fictitious set of data that was generated in

MS Project. It is a very simple schedule containing just enough activities so that float exists on

51

some of the activities. Figure 5.2 is a screen capture of the construction data in MS Project

displayed in a Gantt chart.

An assumption is made that this construction data is part of a larger project. Therefore, the data

presented in Figure 5.2 does not represent the schedule for the entire project as a whole. This

schedule may represent a trade or subcontractor working on the project.

./• Microsoft Project - SC_Schedufe.mpp

#1 FJe Edit View Insert Format Tools Project Window Help

tt «K 11

• + + Anal • 8 • B / Q S « 9 All Tasks

] Activity G

•lun?7, l99 Jul4. l99
S | M | T tWiT |F | s [s |M|T |W|T |F | S

Jul 11 •99 J U ' 1 8 , W Jul2S,'89 Aug 1 /99
S | M | T |W|T |F |S | S |M |T |W|T |F | S | S |M j T |W|T |F | S | S | i i l | T |W|

Activity G
AcBviyH

Activity I

Activiy J
ActivlyK

Finish

J

|_,Crew 1,Re s o u r c e 1

i 2 , R e s o u r c e 2

I C rew . l J t e t o u T c e 3

u r c e 4>Re s o u r c e 2;

4 , R e s o u r c e 5 j

| C r e w 3, tesource 2

^ R e s o u r c e 6
p e w R e s o u r c e 7

game; JAcbnty G gyration: [2d ^ |~ Effort driven Previous | | Mê C

Start: |Mon 7/12/99 R r t 5 f c |Tue 7/13/99 •) Tasfetype: | FixedUnits jjjj %Con»)tete; fo% 3
ID | Resource Name Units Work I* ID 1 Predecessor Name iType Lag A.

3 !Oew3
8 jResource 4
6 | Resource 2

100%
100%
100%

1 6 h | j
16h j

3 Activity E FS Od

Ready NUM

Figure 5.2 Sample construction data in MS Project

The P M begins by importing the schedule from MS Project by selecting the desired project

through an 'Open File' dialog box (Figure 5.3). A more advanced version of SCSapp that

supported X M L strings would have the additional option of allowing the P M to open the

schedule by specifying an Internet address that contained the schedule.

52

Look jn: j O Scs
.2i*JJ

"3 M Ml j£l If̂ Ml (A backup
SCS Revisions

S C_S chedute. mpp

Filename: |SC_Schedule m p p

Fitesof&ipe: (Microsoft Project Files (* mpp)

T~ Open as read-only

flpen

Cancel

Current Piqect

Namef

Schedule Work T.
I Tasks Starting In Date Range

From

Figure 5.3 Importing a schedule

Once the project has been imported the P M may preconfigure the types of delays (and the length

of those delays) the system is to use should an activity need to be rescheduled due to a delay.

Figure 4.5 (in section 4.2.1 Scheduling Methodology in SCSapp) illustrated this process so it will

not be repeated here. Once the delays are preconfigured, the P M selects the weeks for which

(s)he wishes to build the lookahead schedule. In this case, the P M is interested in all activities

starting in the two-week period between '7/4/99' and '7/16/99' (Figure 5.4).

SCSapp (Short Cycle Scheduling) v. 1.2.5
File Delays

Current Project

Name |SC_Schedule.mpp Start Date 16/28/99 8:00:00 AM

Finish Date|8/6/99 5:00:00 PM

Schedule Work Tasks
All Tasks Starting In Date Range

, „ _ Schedule Work Tasks
All Tasks Starting In Date Range

From j 7/4/99 To j 7/1G/99

Get Tasks

Exit

Figure 5.4 Selecting the tasks for the lookahead schedule

Once the lookahead period has been specified, the scheduling window is displayed for the PM. It

consists of the list of all work tasks starting between the dates '7/4/99' and '7/16/99' (far left of

53

Figure 5.5). In this case, a flag tells the P M that there is a scheduling conflict in Activity F.

Clicking on Activity F exposes its early start date as well as the resources it uses. The flag has

been raised by Resource 3, which will not be available to Activity F until the day after its

scheduled start.

Schedule Tasks

r
Select a Task

A conflict exists.
Activity F - Change fields and press 'Update' to commit

- Task Delays {days} - Set delays from main window-

C Predecessurfs) not complete 1 2
y Work Tasks
I V Activity D
: V Activity E
I £ Activity F
! V Activity G
!•-•/ Activity H
: y Activity I

Earty Start Date 17/5/99 5:00:00 PM
Start Delayed Until |

Start No Later Than f

Update

Sub/Crew not mobiSaed

C Unresolved design issues

C Materials unavaiabte

rr
Resource Information - Double click a r e s o u r c e t o edit

Resource j Avafabte From 1 Available To

P Other • Enter comment and specify I Q~
delay fete {in days)

Press "Update" to commit Update j

Refresh J £ommit Dose

Figure 5.5 A conflict in the prescheduled information raises a flag

At this point there are two options open to the project manager. The first is to simply delay

Activity F by a couple of days until the resource becomes available. The P M can easily do this

by clicking on a Task Delay (far right of Figure 5.5) to delay the activity. Were the P M to do

this, the outcome may look like something similar to Figure 5.6.

54

Schedule Tasks

Select a Task

A conflict exists.

Activity F - Change fields and press 'Update' to commit
Work Tasks
y Activity D
• / Activity E
• Activity F
V" Activity G
V Activity H
y Activity I

Early Start Date 17/5/99 5:00:00 PM

Start Delayed Until 7/7/99

Start No Later Than |

Update

• Task Delays (days) - Set delays from main window-

<~ Ptedecessorfs) not complete | 2

<~ Sub/Crew not mobilized (-j

f* Unresolved design issues | 3

C Materials unavaiabte

Resource Information - Double cfck a resource to edit

Resource j Available From \ Available To
Crewl 7/5/99 8:00:00 AM 7/7/99 5:00:00 PM
Resource 3 7/0/998:00:00AM 7/7/99 5:00:00 PM

J±J

p Ott«r-Enteict»rirneritaridspeciy
delay time [in days]

Press "Update" to commit Update J

Refresh j Commit £bse

Figure 5.6 Delaying Activity F

In this instance, the P M has delayed the activity by selecting the 'Other' Task Delay and

specifying that the activity is to be delayed for two days as the resource is on another job site.

This automatically updates the activity start date, delaying it until '7/7/99' (upper centre of

Figure 5.6). The P M has taken a further step and also specified that the activity is to start no later

than '7/8/99.'

A second option is available to the P M however. Rather than delay Activity F, the PM can enter

the project repository and search through the project information for other means to start the

Activity F on schedule. The P M enters the project repository with the TIP data browser. Figure

5.7 shows the browser with Activity F and its associated resources (Crew 1 and Resource 3).

55

m. TIP v 1 3 0 MM
Ftte Edit View l o o k Help

(Contents of' Resource 7 '

{{9CBL^81-5FAC-11D3--9CCrc02OEFE2Lmut)0O01}

Type Exposing Interface j Value

B - f l i * WorkTasks
Activity A
Activity B
Activity C
Activity D
Activity E
Activity F

Ei"<A Project
H R e s o u r c e s

H ^ Crew 1
® lP Resource 3

|p Activity G

fietete Object Ctrl+D
flename Object Drt+R
Edit Value DrWE

CollectionDef
CollectionDef
Property
Property
Property
PropertyDef
PropertyDef

(Resource
I Resource
IRepositoryObject
IRepositoryObject
IRepositoryObject
I Resource
I Resource

{{9CBCAA81 -5F#
{14-0-0-0-1-0-0-0
{{EEE88941-3BE
7/4/99
7/9/99

Type: Resource Contains: 2 Collection(s) + 5 Objects)

>1

Figure 5.7 Browsing the project data

After browsing the work tasks and resources in use on the project, the P M realises that there is an

additional resource, Resource 7, which is available from '7/4/99' to '7/9/99' and which is not in

use. By right clicking on the resource, the P M may copy it and paste it into the 'Resources'

collection of Activity F (see Figure 5.8).

jalxj %. TIP v 1 3 0

Etle £drt View Tools Help r
|Atl Repository Objects jContents of Resources'

ip Activity E
Activity F
r f h n Project

- »«SjBBB
Crew!

I # Resouj
± ^ Activity Q
+ (P Activity H
+ 0 Activity I
+ 0 Activity J
I # Activity K
+ ^ Activity L
+ Activity M
± Finish

Name Type Exposing interface Value
I Crew 1
I Resource 3

Object
Object

{{13D201C-5FA:
{{13D201C-5FAJJ

Add Object Irl+A

Type: CollectionDef Contains: 2Objects)
J

Figure 5.8 Pasting a new relationship

56

Recalling the SCSapp object model from Figure 4.2 in 4.1 Implementing SCSapp, any

relationship between a work task and a resource is of type 'Work Task Uses Resource' or

'Resource Is Used By Work Task' (the inverse relationship). The result is an Activity F that now

has the additional resource 'Resource 7' (Figure 5.9).

* TIP v 1.3.0

0e £o» View look Help

(Activity F

F T F 7

[All Reposiory Objects (Contents of1 Activity F'

I f Activity B
j *§P Activity C
:+; # Activity D
+ .Activity E

j 15 A Project
fi-jft Resources

+ # Crew 1
E£I"4P Resouice 3
l+i ^ Resouice 7

.+. # Activity G
±: Activity H
+ Iff Activity I

+ ||P Activity J

Name E iiposinfj Interface Value
Project CollecSonDef IWorkTask
Resources CollectJonDef IWorkTask

t l ObjectID Property IRepositoiyObject {{13D201C-5FA2-11D3--9CCFC02C
t l InternallD Property IRepositoryObject {12-0-0-0-1F-O-M}
t l T y p e Property IReposJoryObject {{EEE88941-3B6C-11D3--9CCFC0S

t WorkTaskStarl

PropertyDef IWorkTask 7/5/99 5:00:00 PM
t l Constraint ate PropertyDef IWorkTask 7/8/99
t l Comments PropertyDef IWorkTask Resource in use on other job site

t Delay .

PropertyDef IWorkTask 2

t DelayedStart *

4 PropertyDef IWorkTask 7/7/99

Type: WorkTask Contains: 2 Coltectfenfs) + 8 Objectfs)

Figure 5.9 New Activity F

The P M could then edit Activity F, deleting the delayed start information from the activity. Once

this is done, the activity will start on time using Resource 7 instead of Resource 3. The P M also

has the choice of scheduling Resource 7 just long enough until Resource 3 becomes available, or

using Resource 7 for the duration of Activity F and rescheduling Resource 3 to be used

elsewhere on the project.

In addition to the review of resource availability, the P M can review each activity for a variety of

other possible causes of delay such as: completion of predecessor activities, mobilisation of work

forces, finalisation of all design issues, etc. Although SCSapp does not perform any specific

analysis to support these reviews, it does provide a checklist of a number of them (along with an

"others" option). If any of these issues arise, SCSapp can add an appropriate delay to the planned

activity start time and can record the information about the delay in the project model.

57

5.2 Implications

This section discusses how the TIP environment has addressed the TOPS characteristics of

comprehensiveness, integration, and flexibility with a window into how the TOPS model may

contribute to the development and use of next generation CIC systems and environments.

5.2.1 Demonstrating the TOPS Model

Although TIP is an early prototype of elements of the TOPS approach, it nonetheless

demonstrates that a semantically rich CIC environment capable of supporting project views and

data versioning in a modular, distributed, open architectural framework is well within the grasp

of current software technology. TIP also illustrates that any number of unique or custom

interfaces can be developed for any enterprise and these interfaces can share common data with

other applications and need not rely on the use of their own proprietary data formats or

structures. Additionally, interfaces need not be complex, expensive, or time-consuming to

develop either as this project was developed entirely in Visual Basic, a very easy to learn and

accessible programming environment.

That MS Project was able to plug-in to TIP demonstrates another important potential of the TIP

architecture: that integration of an enterprise's information assets may proceed with little

disruption to current practices and the benefits can be immediately recognised at each step of the

integration process. The only potential barrier to interoperability with existing software

applications is the need to know the underlying object models that drive an application. If the

object model is unknown, it will be more difficult (but not impossible) to build interfaces that

allow applications to plug-in to the TIP architecture. However, given the current industry efforts

to develop standard data models (take IAI for instance) many companies (AutoCAD being one)

58

have been willing to publish the object models underlying their systems while other companies

such as Microsoft distribute the object models underlying their products as a matter of course.

Finally, the importance of supporting multiple construction views or perspectives cannot be

underestimated. By supporting views, TIP provides an environment that supports the data needs

of any and all project participants from a single data source. (While the views constructed in the

SCSapp and TIP data browser in this thesis were simple by nature, they still point to the ability

to construct more complicated views). Participants will be able to work from up-to-date versions

of project information. The repository maintains previous versions of project information.

Versions allow a project to track its history from conception to decommissioning. Any piece of

data from any point in time may be recreated to suit the needs of the users.

5.2.2 Application of Repository Technology to C I C Systems

Repository technology was developed by the software industry to support the ongoing

development and modelling of software. Although the software domain is substantially different

from the construction domain, the issues being addressed by CIC are similar to the issues the

software industry are trying to address through the use of repository technology, namely:

consolidating and managing information assets, interoperability between software tools, reusing

components, developing information models, and managing multiple versions of the same data.

A l l these factors make repository technology an excellent candidate for persistence management

in CIC environments.

Having said that, the application of repository technology in the development of CIC

environments remains an innovative approach to the integration and consolidation of

construction project information. A literature search revealed that most researchers are using

59

more traditional types of object-oriented or relational databases for persistence management (see

the CIC systems cited in chapter 2.1 for examples). And, whereas many of the CIC efforts

undertaken of late (such as those outlined in 2.I Current State-of-Practice CIC Systems) have

focused primarily on achieving integration through document management or project

collaboration (i.e. project communications), repository technology represents an excellent

opportunity to pursue the complete integration and consolidation of project information.

Additionally, this author discovered that repository technology also provides an excellent

foundation for the development of CIC environments in terms of supporting many of the key

technologies envisioned as necessary components of CIC systems (shared data, project views,

versioning services, etc.).

As an added benefit, repository technology is being heavily invested in by software corporations

(as evidenced by MS and others (see Microsoft 1999e)) as the future of software modelling and

development. As a result, the construction industry may contribute the bulk of its research and

development effort towards the application of repository technology in the construction

environment and towards the development of standards to be used to model construction

products and processes. The software industry will drive the development of repository

technology.

60

6. Results, Recommendations & Conclusions

6.1 Results

The challenge of this research was to develop and prototype a CIC environment/architecture that

would underlie and support applications developed in the TOPS context. At the beginning of this

thesis, a group of objectives were set out to achieve this challenge. These objectives have been

addressed in different ways:

1) To explore the implementation issues relating to the TIP

At issue in the implementation of TIP was the development of an open, modular, and

flexible system architecture that allows project information to be consolidated yet shared

in a distributed framework. Project models needed to be extensible and the architecture

had to be generic enough to allow any number of applications of different type to plug-in

to the architecture. The solution developed to address these issues was the development

of the multi-tiered LDAI architecture based around Microsoft Repository as the

persistence manager. The LDAI provided the generic interfaces needed for applications

to plug-in to the system while the development of the TIP data browser provided the

extensibility functions necessary to maintain and extend the project models and

information in the repository. The development of the SCSapp short cycle scheduling

application demonstrated that the challenges presented by the TOPS model were not

insurmountable.

2) To describe the project environment that the TIP model will create in terms of process

and data analysis and by using software diagramming techniques

A system design for TIP was developed as described in section 3.1. This design was

tested through a usage scenario as described in section 5.1.

61

3) To conceptualise and implement a seamless, integrated data architecture based on a

common product data model that consolidates project information

An integrated data architecture was constructed using Microsoft Repository. Interaction

with the data environment was through the TIP data browser, which constituted the bulk

of the work in developing the data architecture. It was initially envisioned that the data

environment would be populated with IAI information schemas. This did not turn out to

be the case since it was very time consuming to enter the IAI schemas through the TIP

data browser interface. Nonetheless, the TIP prototype is capable of accepting IAI

information schemas. An EXPRESS backend that could interpret the IAI schemas and

build them in Repository automatically would greatly simplify this process.

4) To demonstrate the usefulness of such a data environment using two additional

implementation prototypes: the TIP data browser; and SCSapp

The TIP data browser and SCSapp development were documented in sections 3 and 4.

The applications were tested in a use case scenario in section 5.1.

The sub-objectives of the TIP data browser were addressed as follows:

1) To use emerging repository technology to store project data

Microsoft's repository technology was investigated and then implemented as the

persistence manager for TIP. This is described in section 3.1.2.

2) To provide experience in implementing components in repository architecture and in

implementing generic user interfaces

The author, previously inexperienced in repository environments, gained much

experience and insight into the design and development in the repository environment

through the programming of the TIP data browser. The author gained much experience

62

into multi-tier architectures and object-oriented systems through the programming of both

the TIP data browser and the SCSapp.

3) To provide a consolidated view of all project information and to build new views and

abstractions of project data

The TIP data browser allows users to navigate all project information in a repository

regardless of the origin or application of that information. Sections 3.2.1 and 5.1 provide

simple examples of building new abstractions and views of data. Section 3.2.1 illustrates

how the TIP data browser is used to build up an information model (i.e. a view) from

scratch while the usage scenario in section 5.1 shows how the consolidated view of the

project assisted the project manager in rescheduling an activity.

5) To add editing and long-term maintenance functionality to the project information base

The TIP data browser has been implemented with a variety of functions that allow project

data to be edited. These functions include: adding objects, deleting objects, renaming

objects, copying objects, pasting relationships between objects, and editing the property

values of objects. This is described in section 3.2.

6) To view and edit the schemas and models underlying the project information

The TIP data browser has the ability to restructure the metamodels underlying the data

stored in the repository. Any change in the structure of the metamodels is dynamically

and immediately reflected in the structure of the project information itself. This is

described in section 3.2.1 and 5.1

The SCSapp also had the following sub-objectives:

1) To provide experience into designing and implementing generic project management

applications and interfaces

63

Much experience in developing applications and interfaces was gained through the

development of SCSapp. In particular, the author gained a tremendous appreciation for

the difficulties associated with designing and implementing intuitive interfaces.

2) To provide experience in building multi-tier system architectures

The multi-tiered structure of SCSapp presented several conceptual difficulties for the

author during the design phase. However, as development progressed, the author gained

an appreciation for the need to separate systems into tiers. Separating systems into tiers

allows each tier to address a different aspect of the system. Data objects handle all the

data access needs. Business objects handle all the logic in the system that is common to

all applications in the environment. User interfaces are responsible for the functionality

specific to individual applications only. Programming the multi-tier system in SCSapp

gave the author much experience into how object-oriented systems take shape and how

behaviours and data is segregated.

3) To assist project managers in developing short cycle schedules

The SCSapp provides project managers with a short cycle scheduling tool that may assist

them in developing lookahead schedules. However, since it was not the principle

objective of this research to develop a complete short cycle scheduling package, the

SCSapp is a rudimentary tool.

6.2 Recommendations

While the TIP prototype is largely functional (particularly the TIP data browser), it is still a proof

of concept prototype of the TOPS model. If it is to be a fully compliant TOPS environment, the

following improvements must be made to future versions:

64

1) Greater distributedfunctionality

The TIP prototype framework is currently limited to operating only locally or on local

area networks. It does not yet possess the fully distributed nature (i.e. Internet or World

Wide Web functionality) envisioned in TOPS. In order to accomplish this, it remains

necessary to include X M L components in the LDAI. Additional components to serve the

system via the Internet or World Wide Web must also be added to the system. This

technology is well established and well supported and stands to greatly increase the

flexibility and potential of the TIP by providing communications abilities to users

regardless of physical location.

2) Dynamic LDAI layer

The LDAI did not take shape as it was originally intended to in this thesis. The LDAI was

initially expected to form a dynamic middleware layer. However, the LDAI models

implemented were static. The rational behind a dynamic middleware layer was to allow it

to keep pace with changes made to the schemas underlying the data layer. A static LDAI

layer must be reprogrammed manually each time changes to the repository data schemas

are initiated. This requires much time and effort and also requires tight, well commented

code to avoid mistakes and confusion. Given that the TIP is envisioned to be populated

with IAI schemas, and the fact that these schemas are still being developed, it would save

much effort i f the equivalent of the TIP data browser were developed for the LDAI layer

to maintain and manage its components.

3) Data ver stoning

The TIP failed to exploit some of the capability of Microsoft Repository. Among the

functionality remaining unexploited is the ability to maintain multiple successive versions

of any piece of data stored in the repository. Given the number of revisions construction

documents may go through on any given project, this function becomes a necessity. Not

65

only will it ensure that users are working from the same generation information, but it

will also allow the history of a project to be reconstructed and its evolution documented.

4) Repository technology must be pursued

Finally, repository technology must be pursued as a potentially viable option for the

persistence management functionality of GIC systems. Given the overlap in the

objectives between the software industry in developing repository technology and the

construction industry's needs in a persistence manager, repository technology may

provide the foundation for the potential to push CIC environments into the next

generation of development.

5) Further validation of TOPS must be pursued

The TOPS models of integration architecture proved to be effective guidelines for the

development of a prototype integrated architecture. However, it is important to note that

TOPS represents only a single approach to integrated systems and that TIP makes up only

a small portion of the TOPS model. As such, more research is needed to prove the

validity of the overall TOPS approach.

6.3 Conclusions

The purpose of this thesis was to investigate and explore how the architecture of CIC systems

should evolve in the future to add project management functionality to the construction industry.

The main goal of this research was to implement and test the viability of a prototype CIC

architecture based on the Total Project Systems models of integration architecture developed by

Froese et. al. (1997). The approach was to develop a TOPS Implementation Prototype. This

prototype was a multi-tiered architecture with Microsoft Repository at the core providing the

persistence management functions. It was successfully implemented and a generic application (a

short cycle scheduling application) was constructed to test the potential of the prototype. The

66

system performed well given its prototype nature. And, while the TOPS Implementation

Prototype does not necessarily prove that the overall TOPS model is the best approach to CIC

systems, the author's experimentation nonetheless concludes that the TOPS model of integrated

architectures is an effective construct to use as the basis for the development of future integrated

architectures.

67

References

Ballard, G. (1997) Lookahead Planning: The Missing Link in Production Control. Presented to
the 5 t h Annual Conference of the International Group for Lean Construction, Griffith University,
Gold Coast, Australia, July, 1997.

Bernstein, P., Bergstraesser, T., Carlson, J., Pal, S., Sanders, P., and Shutt, D. (1999). Microsoft
Repository Version 2 and the Open Information Model, [online]
http://msdn.microsoft.com/repository/technical/whitepapers.asp, [accessed 13 August 1999]

ISO (1995) Industrial Automation Systems and Integration - Product Data Representation and
Exchange Part 22: Standard Data Access Interface. ISO 10303-22.

Hinze, J. (1998) Construction Planning and Scheduling. Published by Prentice-Hall Inc.,
Toronto, Canada, pp. 270 - 282.

Fowler, M. (1997) U M L Distilled: Applying the Standard Object Modelling Language.
Published by Addison-Wesley Longman Inc., Don Mills, Canada, pp. 43 - 52.

Jagbeck, A. (1998) IT Support for Construction Planning. Ph.D. Thesis, Royal Institute of
Technology, Stockholm, Sweden.

Fischer, M. and Froese, T. (1996) Examples and Characteristics of Shared Project Models.
ASCE Journal of Computing in Civil Engineering, Special section on Data, Product, and Process
Modelling, Vol. 10, No. 3, pp. 174 - 182.

Fischer, M. and Kunz, J. (1995) The Circle: Architecture for Integrating Software. ASCE Journal
of Computing in Civil Engineering, Vol. 9, No. 2, pp. 122 - 133.

Froese, T. (1999) Integrated. Model-Based Project Management Systems Implementation
Workshop Presentation. Presented to the Construction Management Group at the University of
British Columbia, Vancouver, Canada, June, 1999.

Froese, T., Rankin, J., and Yu, K. (1997) Project Management Application Models and
Computer-Assisted Construction Planning in Total Project Systems. The International Journal of
Construction Information Technology, Vol. 5, No. 1, pp. 39 - 62.

IAI (1998) IFC Object Model Industry Foundation Classes - Release 1.5.1 Model Reference
Documentation. International Alliance for Interoperability [online] http://iaiweb.lbl.gov
[accessed 30 August 1999]

International Systems Group (1997) Middleware - The Essential Component for Enterprise
Client/Server Applications. Middleware White Paper [online] http://www.isg-inc.com [accessed
December 1998]

Mace, S., Flohr, U., Dobson, R., and Graham, T. (1998) Weaving a Better Web. Byte Magazine,
March 1998, pp. 58 - 68.

68

http://msdn.microsoft.com/repository/technical/whitepapers.asp
http://iaiweb.lbl.gov
http://www.isg-inc.com

Microsoft (1998) Microsoft Repository SDK 2.1. [online] http://www.microsoft.com/repository
[accessed 15 September 1999]

Microsoft (1999a) Integrated Metadata Management, [online]
http://msdn.microsoft.com/repository/whatis/metadata.asp, [accessed 16 August 1999]

Microsoft (1999b) Microsoft's Goal in Developing a Repository, [online]
http://msdn.microsoft.com/repository/whatis/goals.asp, [accessed 16 August 1999]

Microsoft (1999c) Microsoft Repository Engine, [online]
http://msdn.microsoft.com/repository/whatis/engine.asp, [accessed 16 August 1999]

Microsoft (1999d) Model Exchange via Repository Engine, [online]
http://msdn.microsoft.com/repository/scenarios/modelex.asp, [accessed 16 August 1999]

Microsoft (1999e) History of Microsoft Repository, [online]

http://msdn.microsoft.com/repository/whatis/history.asp, [accessed 03 September 1999]

Microsoft (1999f) General O & A. [online]
http://msdn.microsoft.com/repository/prodinfo/faq.asp, [accessed 10 June 1999]
deMonsabert, S. and Lemmer, H. (1997) Consolidated object Repository for Civil Engineering
(CORCE). ASCE Journal of Computing in Civil Engineering, Vol. 11, No. 1, pp. 70-73.

O'Brien, M.J. (1996) A Strategy for Achieving Data Integration in Construction. The
International Journal of Construction Information Technology, Vol. 4, No. 1, page 21 - 34.

Rankin, J., Froese, T., and Waugh, L. (1999) Exploring the Application of Case-Based
Reasoning to Computer-Assisted Construction Planning. Proceedings of the Durability of
Building Materials and Components 8: Service Life and Asset Management, Vol. 4 Information
Technology in Construction: CIB W78 Workshop, pp. 2526 - 2536.

Rankin, J., Froese, T., and Waugh, L. (1998) The Functionality of Computer-Assisted
Construction Planning. Proceedings of the 1998 Conference of the Canadian Society for Civil
Engineers, Halifax, NS, June 10-13, 1998. Vol. 1, pp.119 - 128.

Rankin, J., Froese, T., and Waugh, L. (1997) Computer Assisted Construction Planning (C ACP)
in the Context of Total Project Systems (TOPS). Proceedings of the 1997 Conference of the
Canadian Society for Civil Engineers, Sherbrooke, Quebec, May 27-30, 1997. Vol. 2, pp. 2-41 to
2-50.

Rao, G , Grobler, F., Ganeshan, R. (1997) Interconnected Component Applications for A E C
Software Development. ASCE Journal of Computing in Civil Engineering, Vol. 11, No. 3, pp.
154- 164.

Rezgui, Y. , Cooper, G , and Brandon, P. (1998) Information Management in a Collaborative
Multiactor Environment: The COMMIT Approach. ASCE Journal of Computing in Civil
Engineering, Vol. 12, No. 3, pp. 136 - 144.

61

http://www.microsoft.com/repository
http://msdn.microsoft.com/repository/whatis/metadata.asp
http://msdn.microsoft.com/repository/whatis/goals.asp
http://msdn.microsoft.com/repository/whatis/engine.asp
http://msdn.microsoft.com/repository/scenarios/modelex.asp
http://msdn.microsoft.com/repository/whatis/history.asp
http://msdn.microsoft.com/repository/prodinfo/faq.asp

Rezgui, Y. , Cooper, G., and Vakola, M. (1999) An Innovative Infrastructure for Inter-Working
Between Dissimilar E D M Solutions. Proceedings of the Durability of Building Materials and
Components 8: Service Life and Asset Management, Vol. 4 Information Technology in
Construction: CIB W78 Workshop, pp. 2537 - 2546.

Russell, A. and Froese, T. (1997) Challenges and a vision for computer-integrated management
systems for medium-sized contractors. Canadian Journal of Civi l Engineering, Vol. 24, No. 2,
pp.180- 190.

Sandakly, F., Kloosterman, S., Ferreira, P., and Poyet, P. (1998) PerDiS: Persistent Distributed
Store for Virtual Enterprise Concurrent Engineering. Proceedings of the CIB Working
Commission W78, pp. 457- 468.

Stumpf, A., Ganeshan, R., Chin, S., and Liu, L. (1996) Object- Oriented Model for Integrating
Construction Product and Process Information. ASCE Journal of Computing in Civil
Engineering, Vol. 10, No. 3, pp. 204-213.

Teicholz, P. and Fischer, M. (1994) Strategy for Computer Integrated Construction Technology.
ASCE Journal of Construction Engineering and Management, Vol. 120, No. l,pp. 117-131.

Underwood, J., Alshawi, M., Auuad, G , Child, T., and Faraj, I. (1999) The Dynamic
Development of Design Element Specifications via a Product Supplier Database Web-site.
Proceedings of the Durability of Building Materials and Components 8: Service Life and Asset
Management, Vol. 4 Information Technology in Construction: CIB W78 Workshop, pp. 2629 -
2639.

Yu, K., Froese, T., and Vinet, B. (1997) Facilities Management Core Models. Proceedings of the
1997 Conference of the Canadian Society for Civil Engineers, Sherbrooke, Quebec, May 27-30,
1997. Vol. 2, pp. 2-195 to 2-204.

7 0

Appendix A

This is a piece of sample code taken from the SCSapp application. It is presented to give the

reader an understanding of how to program (late bound) in repository. Please note that this code

was selected for its simplicity and accessibility to the layperson. This code was selected because

it is not as complex as the code that was used to program the TIP data browser (which was

programmed early bound). However, it may help the reader to review the Microsoft Repository

Software Development Kit (Microsoft 1998) documentation to grasp a better understanding of

the concepts involved in Repository programming. The code examples are transcribed in Courier

font and are indented. Explanations of the code are transcribed in New Times Roman font and

precede the code they explain.

This is a subroutine that takes Project, Resource, and Work Task Objects (in the form of a

collection) from SCSapp and persists them in Repository. It requires that the collections of

Project, Resources, and Work Tasks be passed to the subroutine to work.

Private Sub PopulateRep(ProjCol As C o l l e c t i o n , ResCols As C o l l e c t i o n ,
WTCols As Collection)

In order to write information into Repository, interactions with the Repository must be bracketed

within the scope of a transaction. (Microsoft 1998) The following statement opens a transaction.

Repos.Transaction.Begin 1 Begin a Repository transaction.

The necessary variables are dimensioned. Since we are creating repository objects to represent

the objects in SCSapp, a repository object variable must be dimensioned (in this case, the

'Project' repository object) to be placed into the repository. A l l repository objects in repository

must have unique Object ID's, including the Project object being created. The Object ID for the

Project object will be stored in the variant 'OBJTDProject.'

Dim ProjectName As String 'Project name.
Dim ProjectStart As String 'Project s t a r t date.

Dim Pr o j e c t F i n i s h As String 'Project f i n i s h date.
Dim Project As RepositoryObject 'Project repository object.
Dim OBJID_Project As Variant 'Object i d e n t i f i e r for the Project class

' d e f i n i t i o n object.
Dim TypeLib As ReposTypeLib 'GUID i d e n t i f i e r for the SCS type

' l i b r a r y .

The project information is stripped from the project object and assigned to the variables defined

above. In this case, the project object contains information about the name of the project and its

scheduled start and finished date.

ProjectName = ProjCol("Name") 'Retrieve the project information from
ProjectStart = ProjCol("Start") 'the project c o l l e c t i o n .
P r o j e c t F i n i s h = ProjCol("Finish")

In this particular case, information from the SCSapp is being written into Repository. In order to

write information into Repository, Repository must first know how the information is to be

structured. The 'Set TypeLib' statement identifies to the Repository the 'SCSTypeLib,' a

predefined information model, that Repository is to use to structure the information as it writes it

'Access the Repository type l i b r a r y that represents the SCS type
'information model.
Set TypeLib = Root("IManageReposTypeLib").ReposTypelibs("SCSTypeLib")

Before creating the project object in Repository, a unique identifier must first be set aside that

will be assigned to the project object when it is created. The following statement generates a

globally unique object identifier to be assigned to the project object on its creation.

'Set the object i d e n t i f i e r for the Project class d e f i n i t i o n object.
OBJID_Project = TypeLib.ReposTypelnfos("Project").ObjectID

The statement creates the actual project object.

'Create an instance of the Project c l a s s .
Set Project = Repos.CreateObject(OBJID_Project)

Once the project object has been created it remains to be referenced by the repository. Like most

object-oriented systems, an object can only exist if there is a reference to it somewhere in the

T l

system. This statement names the project object after the project's name and adds the project

object to the 'SCS' collection. The SCS collection is a user-defined collection which exists on

the Repository Root object.

'Name the instance a f t e r the project name and populate i t s s t a r t and
' f i n i s h properties.
C a l l Root("IReposRoot").SCS.Add(Project, ProjectName)

Once the project object has been added to the Repository, it can be populated with information.

In this case, we expose the TProject' interface of the project object and assign the scheduled start

and finish dates to the project object.

P r o j e c t (" I P r o j e c t ") . P r o j e c t S t a r t = ProjectStart
P r o j e c t (" I P r o j e c t ") . P r o j e c t F i n i s h = Pr o j e c t F i n i s h

Once the project object has been created in the Repository, the Resource and Work Task Objects

can be created. The following are the variable declaration statements required for the creation of

a resource object in Repository.

Dim ResCol As C o l l e c t i o n 'Resource information c o l l e c t i o n .
Dim ResourceName As Stri n g 'Resource Name.
Dim ResAvailableFrom As Stri n g 'Resource a v a i l a b i l i t y (from) date.
Dim ResAvailableTo As Stri n g 'Resource a v a i l a b i l i t y (to) date.
Dim Resource As RepositoryObject 'Resource Repository object.
Dim OBJID_Resource As Variant 'Object i d e n t i f i e r for the Resource class

' d e f i n i t i o n object.
Dim i As Long ' Counter.

The first task is to strip the resource object of its information and assign that information to the

variables defined above.

'For each Resource, r e t r i e v e i t s information c o l l e c t i o n .
For i = 1 To ResCols.Count
Set ResCol = New C o l l e c t i o n
Set ResCol = ResCols(i)
ResourceName = ResCol("Name")
ResAvailableFrom = ResCol("AvailableFrom")
ResAvailableTo = ResCol("AvailableTo")

A unique object identifier is created. The Repository resource object is created and the object

identifier is assigned to it.

'Set the object i d e n t i f i e r for the Resource class d e f i n i t i o n object.
OBJID_Resource = TypeLib.ReposTypelnfos("Resource").ObjectID
'Create a new resource class instance.
Set Resource = Repos.CreateObject(OBJID_Resource)

Once the resource object is created it must also be referenced by the system. The information

model to be used has already been identified (the 'Set TypeLib' statement seen above) so the

resource object will understand its own structure and its relationship to other objects. In that

information model a relationship exists between projects and resources - projects own resources.

Therefore, the resource is attached to the 'Project owns Resources' collection on the Project

interface (this appears as the first 'Resource' instance in the statement below).

'Name the new instance and add i t to the Project Repository Object's
'"Resources" c o l l e c t i o n .
C a l l Project("IProject").Resources.Add(Resource, ResourceName)

Once the resource object is created, it can be populated with its availability information. The

'Next' statement closes the loop and the whole process repeats until all resource objects have

been added.

'Populate the Resource Object's properties.
Resource("IResource").AvailableFrom = ResAvailableFrom
Resource("IResource").AvailableTo = ResAvailableTo

Next

The process for adding Work Task objects to Repository is almost identical to the process for

adding Resource objects that was just described and will not be described again. One difference

exists though that is worthy of note: work tasks use resources and as such contain a collection of

resources. In other words, resources may exist in two places - in a resources collection attached

to the project object AND in a resources collection attached to the work task object.

When creating a work task object, it is necessary to determine which resource objects belong to

that work task object and add it to the work task object's resource collection. Each work task

maintains a list of resources it uses. This list is compared to the complete list of resources

contained in the project object's resource collection.

- ? 4

'Find the e x i s t i n g Resource Repository Object i n the Repository.
Set Resource = Project("IProject").Resources.Item(ResName)

Once the resource object has been identified, it is added to the work task object's resource

collection so that it will exist in both places. This process is repeated until every resource that the

work task uses has been identified and attached to the work task object's resource collection.

'Add i t to the WorkTask Repository Object's "Resources" c o l l e c t i o n .
C a l l WorkTask("IWorkTask").Resources.Add(Resource, ResName)

Adding information to Repository does not actually write the information to the Repository

database. To actually persist the information, the code must conclude with a Repository

Transaction Committal statement. This statement will commit all changes and additions to the

Repository database. The 'End Sub' statement ends the subroutine.

Repos.Transaction.Commit 'Commit the transaction.

End Sub

"75

