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Abstract 

The results of a theoretical and experimental study of a resonant interaction between a surface 

wave and two internal waves are presented. It is shown that the motion of a surface wave in a 

horizontally infinite two-layer fluid can lead to generation of two oblique internal waves. 

The internal waves are short compared to the surface wave and have nearly opposite 

propagation directions. The frequencies of the internal waves are approximately half of the 

frequency of the surface wave. 

Two analytical models are developed. The first model is based on a three-dimensional 

formulation of weakly non-linear interaction of the waves in a two-layer medium. The 

problem is initially formulated assuming that both layers are inviscid, but after obtaining the 

evolution equations of the internal waves, the damping due to a viscous lower layer is 

incorporated in the analysis. A standard technique is employed to obtain the evolution 

equations of the internal waves. The second model has a two-dimensional viscous 

formulation and serves to explore the effects of the viscosity of the lower layer on both 

forcing and damping in the interaction. The model places no limitation on the viscosity of 

the lower layer. 

Using the three-dimensional model, the effects of different parameters of the system on 

the interaction are investigated by changing each parameter separately and observing the 

effects on the evolution of the internal waves. Of particular importance is the effect of the 

direction angle of the internal wave pair on the interaction. It is shown that the more oblique 

the internal waves are to the surface wave, the higher their growth rates are. In a medium 

without side constraints the internal waves are nearly perpendicular to the surface wave at the 

maximum growth rate. 
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Besides producing further damping, higher viscosity may also enhance the generation of 

the internal waves by increasing the surface-wave induced shear at the interface. The two-

dimensional viscous model is used to investigate this effect of viscosity along with the 

corresponding dissipation effect on the interaction. The results indicate that although the 

forcing increases with viscosity, the damping effect of viscosity is more significant. At large 

viscosity, the internal waves are heavily damped and hence can not grow. As the viscosity 

approaches zero, the results of the viscous model become asymptotic to those of the three-

dimensional model for two-dimensional interactions. 

A series of experiments were carried out in a wave flume to test the theoretical results. 

Salt water was used as the lower layer and fresh water as the upper layer. The experiments 

led to generation of a three-dimensional internal wave pattern at the interface. It is shown 

that the pattern is created by the reflection of the oblique internal waves from the flume 

sidewalls. Wavelengths, frequencies, and amplitudes of the internal waves were measured 

for comparison with the theoretical values. The experiments confirm the theoretical results in 

general. 

In contrast with the past theoretical studies, it is shown that viscosity is not essential to the 

excitation and growth of the internal waves. Also, it is shown that contrary to Hill's (1997) 

theoretical results, there are no specific bounds for growth of the internal waves on the 

density ratio of the two layers, the frequency of the surface wave, and the direction angle of 

the internal waves. In particular, it is demonstrated that the instability of the internal waves is 

not a selective process, and it may occur over wide ranges of the parameters. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

The layers of fluid mud found at the bottom of many lakes, estuaries, and coastal waters, and 

the unconsolidated sludge at the bottom of mine-tailings ponds can often be treated as 

viscous fluids. Re-suspension of material from these layers can be of significant practical 

importance. In coastal waters it can lead to the need for substantial dredging or sediment 

replenishment (U.S. Army Coastal Engineering Research Center, 1984; Mehta et al., 1994). 

In mine-tailings ponds it can cause blockages in processing plants when the pond water is 

recycled, and adverse environmental impacts if the pond water flows into natural water 

courses (Lawrence et al., 1991; Luettich et al., 1990). Re-suspension can be the result of 

surface wave action triggering instabilities at the interface between the fluid mud (or mine-

tailings) and the overlying water. 

To investigate the interfacial instabilities, the model of surface wave motion in a two-layer 

fluid can be adopted. This simplified problem was first studied by Wen (1995) in the context 
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of surface wave motion over a highly viscous sub-layer. Wen's (1995) study was motivated 

by her qualitative observations of interfacial wave generation by a surface wave over a fine-

sediment bed in a laboratory flume. She found that a resonant interaction between the surface 

wave and two opposite-travelling internal waves leads to the instability of the interface. 

Energy transfer from the surface wave causes the internal waves to grow leading to mixing 

between the two layers. Before discussing this particular instability mechanism in greater 

detail, it is instructive to review studies of resonant wave interaction in general. 

1.2 WAVE INTERACTION 

Nonlinear wave interactions are considered to be an important aspect of the dynamics of the 

oceans (Philips, 1977; Komen et al., 1994) and the atmosphere (Yi and Xiao, 1996). O f 

particular interest are resonant interactions, which are important in the redistribution of 

energy among wave modes with different spatial and temporal scales. To study the 

characteristics of this energy transfer, the theory of resonant wave interaction has been used 

extensively (Philips, 1981; McComas and Muller, 1981; Hammack and Henderson, 1993; 

Komen et al., 1994). In principle, the theory addresses the problem of wave generation by 

weakly non-linear interaction of a group of waves. Each wave in the group can be treated as 

linear, but when the waves satisfy certain resonance conditions, energy is interchanged 

preferentially between them (Turner, 1973). 

Resonant wave interaction can be described as a non-linear process in which energy is 

transferred between different natural modes of an oscillatory system by resonance. Consider 

a non-linear system that is oscillating by one or more of its natural modes. As the system is 

non-linear, the motion is not simply a summation of the linear modes, but consists of the 

linear harmonics plus their non-linear coupling. Under resonance conditions the non-linear 
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coupling between the modes may lead to excitation of another natural mode or modes. The 

behavior of this excited mode(s) depends on the properties of the original modes and the 

system. An interesting situation occurs when the created mode(s) grows rapidly in time, 

being of primary importance in studies of hydrodynamic stability. 

It is well known that the development of water waves is non-linear in character, and 

resonant interactions are of particular importance in this regard (Komen et al., 1994). Two 

examples of such interactions are the generation of an internal wave by two surface waves 

(Ball, 1964) and the interaction of an internal wave with two higher-mode internal waves on 

a thin density interface (Davis and Acrivos, 1967). In the study of oceanic internal gravity 

waves a considerable amount of work has been based on the concept of resonant wave 

interaction (Hasselmann, 1966; McComas and Bretherton, 1977; McComas and Muller, 

1981, Muller et al., 1986). Resonant interactions are a source of internal wave energy and a 

mechanism for surface wave modification. Furthermore, they contribute to the redistribution 

of energy among different modes in the spectrum of internal waves in a continuously 

stratified fluid (Philips 1981). For similar applications of the theory to atmospheric gravity 

waves, reference can be made to the works of Yeh and Liu (1981), Fritts et al. (1993), and Yi 

and Xiao (1996). 

The phenomenon of resonant wave interaction was first studied by Philips (1960) and 

subsequently by Longuett-Higgins (1962). Textbooks by Drazin and Reid (1981), Craik 

(1985), and Komen et al. (1994) as well as articles by Philips (1981) and Hammack and 

Henderson (1993) give excellent reviews of the subject. Philips (1960) showed that energy 

can be exchanged among three deep-water surface waves 1, 2, and 3 provided' their 

frequencies and wave numbers meet the following kinematic conditions. 

' 2 3 (i.i) 
2(0, - w2 - co3 
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where fc, and ft), are the vector wave number and frequency of the i-th wave respectively. 

Equation 1.1 is called the kinematic conditions of resonance. In wave interaction problems, 

the resonance conditions are expressed in terms of certain relations between the wave 

numbers and the frequencies of the waves involved. Note that the form of equation 1.1 is 

specific to deep-water waves, and the resonance conditions may differ from one class of 

waves to another. 

Philips (1960) showed that under the resonance conditions (1.1), the amplitude of the third 

wave, if initially infinitesimal, grows in time due to the transfer of energy from finite-

amplitude waves 1 and 2. It should be noted that resonant wave interaction, in general, does 

not necessarily lead to instability (Hasselmann 1967). 

Although the analysis by Philips (1960) showed the possibility of energy transfer between 

deep-water surface waves, it did not address their long-term behavior. Benny (1962) 

extended Philips's (1960) analysis by adopting the technique used by Bogoliubov and 

Mitropolski (1959) in non-linear oscillations. This technique is described later in chapters 2 

and 4. Benny (1962) was able to derive a complete set of equations for the time evolution of 

the wave amplitudes. 

After Philips's (1960) work on deep-water waves, the idea of resonant wave interaction 

was soon extended to other classes of water waves: McGoldrick (1965, 1970, and 1972) 

studied interaction between capillary-gravity waves in a series of papers. McGoldrick studied 

the problem when the following conditions of resonance hold between three capillary-gravity 

waves 1, 2, and 3. 

Jc i — Jc i ~\~ Jc j 

' 2 3 (1.2) 
ft); = ft)2 + (o3 
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where CO = (gk + ycapillar}.ki)1'2, and ycapiUar>. is the capillary constant for the interface of air 

and water. McGoldrick derived the following evolution equations for the wave amplitudes. 

dax 

—— = iaco.a^a^ 
dt ' * 

da2 _ 
—— = iaco2a.a^ (1-3) 
dt 

da3 _ 
—— = iaco.a.a^ 
dt ' 2 

where a is a constant, and a, is the amplitude of the i-th wave. The over-bar denotes the 

complex conjugate. 

Simmons (1969) used a variational method and obtained equations 1.3 more quickly. His 

work was inspired by Whitham's (1965, 1967) averaged Lagrangian method. Simmons 

(1969) formulated his method quite generally and showed how to find the evolution 

equations as well as conservation relations for a general wave interaction problem. A 

variational formulation systematizes and shortens the detailed calculations. This lessens the 

likelihood of making elementary errors in the long calculations of the interaction coefficients 

of the evolution equations. Variational formulation also leads more readily to conservation 

laws such as energy and momentum relations. 

Ball (1964) was the first to investigate the resonant interaction in stratified fluids. He 

studied the resonant interaction between two surface waves and one internal wave in a two-

layer fluid and showed that the two surface waves can excite the internal wave to a large 

amplitude. Denoting the two surface waves as waves 1 and 2 and the internal wave as wave 

3, the resonance conditions are the same as given by equation 1.2. As a result, the internal 

wave has much larger period and wavelength than the surface ones. Ball's (1964) analysis 

was limited to shallow-water waves. Brekhovskikh et al. (1972) removed this limitation and 

considered the problem for the whole range of shallow-water to deep-water waves. 
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Experimental works on the interaction of two surface waves and one internal wave were 

conducted by Lewis et al. (1974) and Koop and Redekopp (1981). In the former, a layer of 

fresh water overlay a denser freon-kerosene mixture. Since the density difference between 

the two layers was small, the surface waves in the triad had close frequencies and 

wavelength, and the internal wave was a long wave. Hence, according to the resonance 

conditions the internal wave phase velocity is expected to be close to the group velocity of 

the surface waves. In the experiments, one surface wave and one internal wave train were 

generated mechanically as primary waves with the same direction of propagation. The 

observations confirmed that the strongest modulations of the primary surface wave occurred 

when the group velocity of the surface waves was close to the phase velocity of the internal 

wave, in agreement with the theory. The study of Koop and Redekopp (1981) concerned 

similar interaction of long and short waves on the two interfaces of a three-layer 

configuration. 

Using a different approach from the conventional wave interaction theory, Gargett and 

Hughes (1972) studied the same interaction theoretically. They modeled the process as one 

in which the short surface waves interact with a slowly-varying, propagating current 

supposed and produced by the long internal wave. It then became possible to remove the 

restriction on the internal wave amplitude and to use the conservation laws for wave trains in 

slowly-varying media. They found that the variations in the direction and magnitude of the 

current induced by the internal wave cause local concentrations and reductions in the surface 

wave amplitudes. Their theoretical analysis was complemented by the field observations of 

the phenomenon made in the Strait of Georgia, British Columbia. 

Resonant wave interaction among internal waves was first studied by Davis and Acrivos 

(1967). They showed that the lowest-mode internal wave in an infinite two-layer fluid with a 
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diffuse interface is unstable. The wave forms a resonant triad with two second-mode internal 

waves that modulate the original wave by extracting energy from it. 

In summary, since the original work by Philips (1960), resonant wave interaction has been 

studied in different classes of wave motion in fluids. In the present study, the focus is on the 

interaction mechanism responsible for instability of the interface in a two-layer fluid subject 

to surface wave action. 

1.3 INTERNAL WAVE GENERATION BY A SURFACE WAVE 

1.3.1 Two-dimensional Interaction 

The resonant interaction of two internal waves with a surface wave in a two-layer fluid has 

been studied in two dimensions by Wen (1995), Hill and Foda (1996), and Jamali (1997a and 

b). Consistent with the experimental observations of Wen (1995) and Hill and Foda (1996), 

all the theoretical analyses indicated that the internal waves combine to form a short standing 

internal wave whose frequency is approximately half of that of the surface wave. The results 

of the studies mainly differ as to the role of viscosity of the lower layer in the interaction. In 

all studies the upper layer was assumed to be inviscid, except in Hill and Foda (1996) where 

the layer was assumed to be weakly viscous although that did not affect the dynamics. The 

following summarizes these studies. 

The configuration of the problem is shown in figure 1.1. Wen (1995) analyzed the 

problem for both an inviscid and a viscous lower layer. She found that viscosity has a 

destabilizing effect on the interface and is essential to the growth of the internal waves in real 

fluids. This issue will be addressed in more detail in chapter 4 of the present study. Wen 
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(1995) also found that in the inviscid limit the interaction does not result in growth of the 

internal waves, except for strong stratification of the fluid system (p / p' > 1.67). 

Wen's (1995) theoretical work was prompted by her observations of the interaction in a 

laboratory wave flume where a surface wave was allowed to travel over a fluidized silt bed. 

In the experiments, fine silt with mean grain size d50 = 50 flm constituted the sediment bed. 

Wen (1995) reported two opposite-traveling internal waves formed at the interface of the 

clear water and the fluidized silt bed. The internal waves had nearly the same frequencies 

and wavelengths, and hence formed almost a standing internal wave. The internal waves 

were also short compared to the surface wave and had a frequency close to the half of the 

surface wave frequency. Although the recent experiments by Hill (1997) and those of the 

present study indicate that the interaction has a three-dimensional nature, Wen (1995) did not 

mention any three-dimensionality. Later in the present study it will be shown that the two-

dimensional interaction is possible when there is a considerable density difference between 

the layers such as that in Wen's (1995) experiments where the density difference between the 

fresh water and the fluidized sediment was appreciable. 

Wen's (1995) work was followed by Hill and Foda (1996), who by taking a similar 

approach arrived at nearly the same theoretical result regarding the significance of viscosity 

in the interaction. The basic formulation of the problem in Hill and Foda's (1996) work was 

very similar to Wen's (1995). Hill and Foda (1996) treated the problem in two dimensions 

for both an inviscid and a viscous lower layer. Their analysis indicated that there is no 

growth of the internal waves in the inviscid limit, but when the fluid is viscous, the internal 

waves may grow in time. In Hill and Foda's (1996) viscous analysis both layers were 

assumed to be weakly viscous. However, viscosity of the upper layer was considered much 

smaller than that in the lower layer. As a result, the upper layer was effectively inviscid in 

their perturbation analysis. 
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The major difference between Wen's (1995) analysis and Hill and Foda's (1996) is in the 

approximations used to solve the problem. In Hill and Foda's (1996) perturbation analysis 

both wave amplitudes and non-dimensionalized weak viscosity of the lower layer were 

defined as small parameters. However, in Wen's (1995) analysis only wave amplitudes were 

considered as small parameters, and there was no limitation on the viscosity of the lower 

layer. 

As part of their study, Hill and Foda (1996) also made some qualitative observations on 

the generation of the internal waves at the interface of fresh water and fluidized sediment as a 

result of surface wave motion over a bed of fine silt with the same grain size as in Wen's 

experiment. In the analyses of Wen (1995) and Hill and Foda (1996) the predicted kinematic 

properties of the waves were in qualitative agreement with experimental observations. Note 

that determination of the kinematic properties of the interacting waves does not require a 

perturbation analysis. They can be obtained from the simultaneous solution of the resonance 

conditions and the dispersion relations of the waves (Wen 1995). 

According to the theoretical results of Wen (1995) and Hill and Foda (1996), viscosity has 

a destabilizing effect on the interface, and one would expect that in a two-layer medium with 

a highly viscous lower layer, the internal waves would be excited by a surface wave. 

However, a series of preliminary experiments conducted by the present author in a wave 

flume with fresh water as the upper layer and corn syrup as the lower layer did not result in 

appearance of the internal waves even though the experiment was repeated with various 

surface wave frequencies, depth ratios, and wave heights. These observations led to the 

hypothesis that excitation of the internal waves is not dependent on the viscosity of the lower 

layer; in other words, viscosity does not facilitate generation of the internal waves. 

The hypothesis was examined through an inviscid analysis of the interaction in two 

dimensions by Jamali (1997a and b). Contrary to the previous results, the analysis indicated 
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that the internal waves may grow easily in an inviscid two-layer fluid. To verify his 

theoretical result, the present author performed some experiments with fresh and salt water as 

the upper and lower layer respectively. Note that compared to the corn syrup, salt water can 

be considered as an inviscid fluid. Consistent with the theoretical speculations, the 

experiments resulted in the appearance of the sub-harmonic internal waves, but with a three-

dimensional pattern. These observations motivated the author to develop a three-dimensional 

model of the phenomenon in a weakly viscous medium such as that in the salt-water 

experimentation. The study led to new findings, which will be presented in chapters 2 and 3. 

1.3.2 Three-dimensional Interaction 

Independent of the present study, Hill (1997) investigated the three-dimensional 

interaction theoretically and experimentally. Hill (1997) carried out a series of experiments 

in a small wave flume containing a light mineral oil overlying fresh water. The density of the 

mineral oil was 0.85 g/cm3. A similar 3D standing wave pattern formed at the interface as in 

the present author's experiments mentioned earlier. The wavelength across the flume was 

twice the flume width, and the internal wave frequency was almost half of the surface wave 

frequency. The time-series of the interface displacement was recorded in each experiment to 

obtain the frequencies as well as the evolution properties of the interfacial waves. 

Hill (1997) also developed a three-dimensional analytical model of the interaction of a 

surface wave with two oblique internal waves in an inviscid two-layer medium. The 

frequencies and the growth rates of the internal waves were calculated theoretically and were 

compared with the measured ones. The comparison indicated a good agreement between the 

computed frequencies and the measured ones, but the agreement was not as good for the 

growth rates. It is worth mentioning that although mineral oil has an appreciable viscosity, 
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Hill (1997) used the results of his inviscid analysis to compare with the measured growth 

rates. 

Hill (1997) addressed the effects of viscosity on the interaction theoretically. The results 

indicated that viscosity has a dissipative effect on the internal waves, and the internal waves 

grow when the amplitude of the surface wave is greater than a critical value. This is the same 

result obtained by Jamali (1997a) in the analysis of the two-dimensional interaction in a 

viscous medium. 

Some results of Hill (1997) are relevant to the present study and need particular attention. 

According to his analysis of the three-dimensional interaction, Hill (1997) found that there 

are narrow bands of frequency, density ratio, and direction angle of the internal waves only 

within which growth of the internal waves is possible. These results led him to conclude: 

"The net effect of these various bounds was that instability of the internal waves, i.e., 
internal wave growth, was found to be a very selective process, occurring under very 
specific conditions." 

Hill's (1997) results will be addressed later in light of the experimental and theoretical 

findings of the present study. Hill's (1997) analysis also suggested that there is no growth of 

the internal waves in the two-dimensional case, in contrast with the theoretical results of 

Jamali (1997 a and b). 

Table 1.1 provides a summary of the studies on the resonant interaction between a surface 

wave and two internal waves in a two-layer fluid. 

1.4 PRESENT STUDY 

The present study investigates the resonant interaction between a surface wave and two 

internal waves both theoretically and experimentally. This includes studying the effects of 
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the important parameters of the system on the interaction. Of particular interest is the 

influence of viscosity on the interaction as in the experiments viscosity was found to have a 

significant damping effect on the interaction process. Also, some issues raised by Wen 

(1995), Hill and Foda (1996), and Hill (1997) are addressed in detail. With respect to Hill's 

(1997) study, the present work is different in terms of the methods and the results of the 

analysis, and the breadth of the experimental investigation. 

In chapter 2 a three-dimensional analysis of the generation of oblique internal waves by a 

surface wave in a weakly viscous two-layer fluid is presented. The analysis follows the 

conventional procedure in three-wave interaction analysis (e.g., see Drazin and Reid, 1981; 

Craik, 1985). Initially, the problem is formulated assuming that both layers are inviscid, but 

later this assumption is relaxed to include the damping effect of the weak viscosity of the 

lower layer on the internal wave growth. The effects of the important parameters on the 

interaction are explored in detail. 

In chapter 3, the results of the laboratory experiments designed to investigate the three-

dimensional interaction are presented. An attempt is made to explain the experimental 

observations using the theoretical results of chapter 2. The experimental results are also used 

to address some theoretical issues raised by Hill (1997) on the limitations of the interaction 

phenomenon. 

In chapter 4 the interaction is studied using a viscous model of the interaction where no 

restrictions are placed on the viscosity. As the viscous formulation adds considerable 

complexity to the problem, the analysis is limited to two dimensions. Although this may be a 

deviation from the reality, the analysis still provides useful information about the interaction 

in a highly viscous medium. 

Finally, a summary of the earlier chapters along with the conclusions and 

recommendations for future studies is presented in chapter 5. 
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Study 
Theory 

Experiments Study Analysis* Main Results Experiments 

Wen (1995) 2D Viscosity is essential to 
excitation 

• Fresh water over 
fluidized silt 

• Observation of sub-
harmonic internal 
waves 

Hill and Foda 
(1996) 2D 

Viscosity is essential to 
excitation 

• Fresh water over 
fluidized silt 

• Observation of sub-
harmonic internal 
waves 

Jamali 
(1997a and b) 2D 

• Inviscid excitation is 
possible 

• Viscosity inhibits 
excitation 

Hill (1997) 3D 
• Inviscid excitation is 

possible only in 3D 
• Interaction is a very 

selective process 

• Mineral oil over 
fresh water 

• 3D internal waves 
observed 

• Frequencies well 
predicted by theory 

• Growth rates not 
well predicted 

• In all analytical models the upper layer was assumed inviscid, except in Hill and Foda 
(1996) where it was weakly viscous. 

Table 1.1 A summary of the studies of the resonant interaction of a surface wave with two 
internal waves in a two-layer system. 



Figure 1.1 Configuration of the problem 
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CHAPTER 2 

THREE-DIMENSIONAL INTERACTION 

ANALYSIS 

2.1 INTRODUCTION 

In this chapter, a three-dimensional analysis of the generation of oblique internal waves by a 

progressive surface wave is presented. The fluid system consists of an inviscid upper layer 

and a weakly viscous lower layer. A standard weakly nonlinear wave interaction analysis is 

performed. The evolution equations of the internal waves are derived, and their properties 

are discussed. 

The numerical results for a test case are presented. It is shown that under certain 

conditions a surface wave can trigger two opposite-traveling internal waves in a two-layer 

system. The effects of the important parameters of the system on the interaction are studied 

by changing each parameter in turn and observing the effects on the kinematics and dynamics 
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of the internal waves. Also, the previous theoretical results are addressed in light of the 

present study. 

2.1.1 Resonant Triad 

The present study considers a triad consisting of a surface wave (denoted as wave 0) and two 

internal waves (denoted as waves 1 and 2) shown in figure 2.1. The three waves satisfy the 

resonance conditions 

0 1 2 ( 2 J ) 

co0 = co]+ 0)2 

where for each wave i the wave number kt and the frequency ft), are related by a dispersion 

relation. For a two-layer inviscid fluid the dispersion relation is given by 

—(co4-g2k2)tanh(kh) 
P ' , , , , , , i +gk-oo2 coth( kd) = 0 (2.2) (gk tanh( kh)-co ) 

(e.g., see Lamb, 1932) where the parameters are defined in figure 2.1. The resonance 

conditions (2.1) and the individual dispersion relations of the waves form a system of 

algebraic equations from which the wave numbers and frequencies of the interacting waves 

can be determined. The existence of the solution to this system of equations is demonstrated 

graphically in figure 2.2. The triad shown is just one of the possible solutions. In general, 

there exists infinite number of the internal wave pairs that can be in resonance with a given 

surface wave. Given that the two internal waves in a pair have nearly opposite directions, a 

pair is distinguished from the others by its angle from the surface wave (e.g., see Hill, 1997). 

In nature, the pair having the maximum growth rate is most likely to be observed. For a 

given surface wave, the locus of the wave numbers of the internal waves is shown 
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schematically in figure 2.3. Because the roles of the two internal waves can be interchanged 

in equation 2.1, the two internal waves have the same locus. 

2.2 FORMULATION 

In this section, a standard three-wave interaction analysis (e.g., refer to Davis and Acrivos, 

1967 and Craik, 1984) is performed. Consider the two-layer fluid system shown in figure 

2.1. The system is assumed to be infinite horizontally and three-dimensional. The coordinate 

system xyz is located on the interface. The depth of the upper layer is denoted by h, the 

depth of the lower layer by d , and the total depth by H. The densities of the upper and 

lower layers are p' and p respectively. The lower layer is assumed to have a small 

kinematic viscosity v while the upper layer is regarded as inviscid. The surface wave is 

denoted as wave 0 and the two opposite-traveling internal waves as waves 1 and 2. Without 

loss of generality, wave 0 is assumed to travel in the positive x direction and the two internal 

waves in the x — y plane. The internal wave 1 has an arbitrary directional angle 0, with 

respect to the surface wave. Note that from the resonance conditions the direction angle of 

the internal wave 2 is obtained as a function of 0,. 

Like Davis and Acrivos (1967), the viscosity of the lower layer is neglected initially, and 

its inclusion in the formulation is deferred until after obtaining the evolution equations of the 

internal waves. In chapter 4 the interaction will be formulated taking into account the 

viscosity from the beginning, and it will be shown that the two formulations yield the same 

results when v —» 0. 

With the assumption of incompressible fluid layers and irrotational flows in the layers, the 

fluid motion can be described by velocity potentials <j>'(x,y,z) and <p( x,y,z) in the upper and 
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lower layer respectively. The potentials satisfy Laplace's equation in the upper and lower 

fluid domains. 

V 2 0 ' = O, 0<z<h (2.3) 

V2</> = 0, -d<z<0 (2.4) 

The above equations are subject to the boundary conditions at the free surface, the interface 

of the layers, and the solid bed. On the free surface, the boundary conditions are: 

4 + + </>;£. =</>', z = h + %x, y, t) (2.5) 

p'[<t>! + ̂ (<!>:2 +<P? +<P'Z

2) +gz] = C'(t), Z = h + Z(x,y,t) (2.6) 

where %(x,y,t)= the displacement of the free surface. The first equation represents a 

kinematic boundary condition while the second equation corresponds to a dynamic one. On 

the two-layer interface, the kinematic boundary conditions are: 

77, =</>/, z = Jl(x,y,t) (2.1) 

V, + Qxi)x + <t>yVy =<PZ, z = rj(x,y,t) (2.8) 

where T]( x,y,t )= the displacement of the interface, and the dynamic boundary condition is: 

p'[<t>;+\(<t>:2+$?+<t>?)+gz-c(t)i=p[<t>t+±(<pi+<pi+ti)+gz-c(t)], 

z = r](x,y,t) (2.9) 

On the bed, the problem is subject to a kinematic boundary condition requiring the normal 

velocity be zero, i.e., 

<PZ=0, z = -d (2.10) 
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For the purpose of the interaction analysis, it is assumed that the amplitudes of the waves 

are sufficiently small that a weakly nonlinear interaction analysis can be performed. This 

implies that terms of order e3 and higher, where e is non-dimensional wave amplitude, may 

be neglected. Accordingly, the following expansions are considered for 77, $ ' and <p. 

%(x,y,t) = a0 Exp[i(k0.x -0)0t)] + a, Exp[i{kvx -Ct),t)] + a2 Exp[i(k2.x - oo2t)] 
2 2 

+ ^ ^ ^(x, y, t) + complex conjugate 
i=0 j=i 

r\(x,y,t) = b0 Exp[i(k0.x-co0t)] + bt Exp[i(fc,.x-coj)] + b2 Exp[i(k2.x-co2t)] 
2 2 

+ ^ ^ rfy ( x, y, t) + complex conjugate 
i=0 j=i 

(j)'( x,y,z,t ) = (/>o( x,y,z,t) + $( x,y,z,t ) + &( x,y,z,t) + 
2 2 

X x> y> z>t)+ c o m p l e x conjugate 
1=0 j=i 

(p(x, y,z,t) = (po (x, y,z,t) + (f>l (x, y,z,t) + <t>2 O, y, z, t) + 
2 2 

2J ^ ' z , t ^ + complex conjugate 
1=0 j=i 

(2.11) 

where x = (x,y); ai and b-x are half of the amplitudes of wave i at the free surface and the 

interface respectively; and kt and ft) are the vector wave number and frequency of wave i 

respectively. The amplitudes are assumed to be complex numbers in general. The three 

interacting waves constitute the wave field at first order. The single-indexed terms such as 

0, are of 0(e) while the double-indexed terms such as 0(> are of 0(e2). Expansions (2.11) 

follow the standard procedure for three-wave interaction (e.g., see Craik, 1985). The 

expansions used by Wen (1995), Hill and Foda (1996), and Hill (1997) are essentially the 

same as the above. 
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As the three waves are in resonance, certain kinematic conditions hold between their 

frequencies and wavelengths. The kinematic conditions of resonance are (e.g., see Wen 

(1995) for the two-dimensional case) given by (2.1). These equations ensure a continuous 

and effective energy transfer between the waves. 

In a weakly non-linear interaction, as far as the short-time behavior of the waves is 

concerned, the component waves can be regarded as independent and be treated by the linear 

theory. However, energy is exchanged between the waves as a result of resonance, and the 

amplitudes of the interacting waves undergo changes with time, but the rate of energy 

exchange is small, and so are the time variations of the amplitudes. The amplitudes have, in 

fact, a time scale much greater than the individual wave periods. The time variations of the 

amplitudes are functions of the amplitudes of the waves; the higher the amplitudes, the faster 

the amplitude variations. To solve the above perturbation problem, a commonly used 

technique proposed by Benny (1962) for solution of weakly non-linear interaction problems 

is employed. The technique makes use of the behavior of the waves in long time and is quite 

efficient in predicting their dynamics. Benny (1962) assumed that the wave amplitudes are 

slow functions of time, and the time-derivative of each wave amplitude is a function of the 

product of the amplitudes of the other waves and hence a second-order quantity. These imply 

that in the present problem the amplitudes a0, b{ and b2 can be taken as slow functions of 

time as follows. 

dan db, - dbi -
~^- = 0(blb2), - ^ = O(a0b2), -^- = O(a0bt) (2.12) 

where symbol overbar denotes complex conjugate. The above assumption makes the time 

derivatives of a0, b{, and b2 appear in the equations at second order. For a lucid discussion 

of this technique, the interested reader is referred to Drazin and Reid (1981) and Craik 
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(1985). Appendix B outlines the calculations at second order along with a discussion of the 

need for existence of the over-bars in (2.12). 

Substituting (2.11) in the governing equations and collecting first order terms results in the 

linear wave theory for waves 0, 1 and 2. The solution to the linear problem is given in 

Appendix A. 

At second order, the nonlinear interaction terms appear in the forcing functions of the 

resulting inhomogeneous systems of partial differential equations. The forcing terms also 

include the time derivatives of the wave amplitudes. Due to the resonance conditions, the 

forcing functions are of the form that produces secular solutions at 0(aoZ>,), O(a0b2), 

0(b\b2), and their complex-conjugate counterparts. A secular solution grows wildly in time 

and becomes unbounded as time becomes arbitrarily large. From a physical point of view 

secular solutions are not acceptable here since the energy is bounded. Mathematically, 

secular solutions destroy uniformity of the underlying asymptotic expansions. To avoid 

secularity, it becomes then necessary to impose a certain solvability condition on the forcing 

functions. The desired solvability condition is the requirement that the forcing functions and 

the homogeneous solution of the adjoint system be orthogonal (Drazin and Reid, 1981, p 

385). Applying the solvability condition to the forcing functions result in three equations 

from which da0 / dt, dbx / dt, and db2 / dt can be explicitly found in the following forms. 

da0 dbx — db2 -
— = a0blb2, — = aAa0b2, — = a2a0fc1 (2.13) 

where cc0, a, and a2 are constant. The direct derivation of the interaction coefficients a, 

and a2 is presented in Appendix B. It will be shown later that (2.13) can be approximated 

by neglecting the first equation, and hence the need for computing a0 is eliminated. The 
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analysis indicates that a, and a2 are purely imaginary. Although Mathematica® was 

extensively used to simplify these coefficients, they are still long, see Appendix B. 

Mathematica® is a mathematical software that is capable of performing numerical and 

symbolic calculations. It possesses its own programming language, and a mathematical 

procedure can be defined as a series of commands. In this study, the problem at each order 

was broken into a number of smaller pieces, and the software was guided through the 

mathematical procedure to perform the symbolic calculations and to simplify the results. 

At this point it is useful to point out a difference between the current analysis and those of 

Wen (1995), Hill and Foda (1996), and Hill (1997). These authors all took the required 

solvability condition to be the orthogonality of the forcing functions and the homogeneous 

solution of the system of equations. This is valid only when the original systems are self-

adjoint. However, here the systems of equations at second order are not self-adjoint, see 

Appendix B, and the correct solvability condition is the orthogonality of the forcing functions 

and the homogeneous solution of the adjoint system (Drazin and Reid, 1981, p 385). 

It is worth mentioning that the evolution coefficients a0, a, and a2 in (2.13) are not 

independent. In general, in a medium sustaining a three-wave interaction, if the normalized 

waves amplitudes AQ , A,, and A2 are defined such that the energy density of each wave is 

given by 

E, =CAiAi , i = 0, 1,2 (2.14) 

where C is a constant, the interaction equations take the specific forms 

dA* . A A dA, — dA7 . A — / n ^ 
—— = i(70i0AlA2, — - i(7COlA0A2, —- = ioco2A<>Al (2.15) 
dt dt dt 

where the real constant o~ is the same in all the three equations (Simmons, 1969). 

It is instructive to examine the evolution equations (2.13) in light of the above symmetry 

properties. In the two-layer medium the wave energy density is given by 
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E = 2p'g\a\2 +2(p-p')g\b\2 (2.16) 

where as defined before a and b are half of the amplitudes of the wave motion at the free 

surface and the interface respectively. To simplify the analysis, the density difference 

Ap = p - p' is assumed to be small. Therefore, the energy densities of the two internal 

waves, Ey and E2, are given by 

Et = 2Apg\bi\\ i=l,2 (2.17) 

and the energy density of the surface wave by 

|2 
E0=2pg\a0[ (2.18) 

correct to the leading order in Ap . The normalized internal wave amplitudes can then be 

defined as 

Ai=4Ebi, i=l,2 (2.19) 

where 8 = Ap / p is a small parameter. The normalized surface wave amplitude can be taken 

the same as a0. Note that the ratio of the energy contents of the waves is given by the ratio 

of the squares of their normalized amplitudes. Having defined the normalized amplitudes, 

the evolution equations are given by (2.15). If these equations are recast in terms of the 

actual amplitudes a0, bx, and b2, the interaction coefficients a0, cct, and a2 in equation 

2.13 are obtained in terms of the constant a , Ap , and the frequencies. It follows that the 

following relations hold among a0, ax, and a2. 

, (2.20) 
a{ co2 cu08 

The above is correct at least to the leading order in 8 . It is interesting to note that according 

to (2.20) a0 is much smaller than ax and a2, and hence the growth rate of the surface wave 
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is negligible compared to the internal waves. This fact is used to simplify equations 2.13 as 

follows shortly. 

Next, the stability theory of Hasselmann (1967) on three-wave resonant interactions is 

applied to the present problem. The theory states that in a resonant triad when the two 

normalized amplitudes A , and A 2 are much smaller than AQ , and the resonance conditions 

are given by (2.1), the waves 1 and 2 grow exponentially at the expense of the third wave. 

This implies that in the present problem the surface wave acts as a 'pump wave' (Craik, 1985) 

and is unstable to the two internal waves, which grow exponentially at its expense. Note that 

even when the internal wave amplitudes are physically large, the normalized amplitudes A , 

and A 2 are still small compared to A 0 = a0 . Hence, Hasselmann's theory is applicable even 

when the internal waves have acquired appreciable amplitudes. 

The solutions to the set of the non-linear evolution equations 2.13 are known in terms of 

Jacobi elliptic functions, for example, see Craik (1985). However, to have a better 

understanding of the problem and avoid complexity, it is useful to approximate equations 

2.13. Given that the surface wave has much more energy than the internal waves (compare 

equations 2.17 and 2.18), the change in the surface wave amplitude due to growth or decay of 

the internal waves is negligible as predicted by (2.20). Therefore, the first equation in (2.13) 

can be neglected, and a0 is assumed to be constant in the other two equations. The result is a 

system of two linear equations in two unknowns bx and b2, which can be easily reduced to a 

second-order linear differential equation in terms of b{ or b2. Note this approximation is 

valid even when the internal waves have grown considerably and are quite large in amplitude. 

Before including viscous effects and solving the resulting equations, it is illuminating to 

address the conservation laws in the present problem. 
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2.2.1 Conservation Laws 

In a resonant interaction momentum and energy are continuously exchanged between the 

modes, but the total energy and total momentum are conserved. The wave 

energies in terms of the normalized amplitudes were given in (2.14). Consequently, the total 

energy will be 

X ^ C t A o A o + A A + A . A , ) 
i=0 

Taking the time derivative of ^ E yields 

(2.21) 

H ( 2 ^ 

V '"=<> J dt 
„,d\ — dA, A dA. — dA, A dA7 - dA, 

= Ci-^-A, + ——- A,, + —j- A, +—J-A, +—LA1 +—LA2) (2.22) 
dt dt dt dt dt dt 

Substituting for the time derivatives of the amplitudes from (2.15) gives 

d f 2 \ _ 

XE, = ia C[(co0 - co, — ft)2)AQA,A2 -(co0 -co,-co,)A0A,A2) 

I '=0 ) 
dt (2.23) 

From the resonance conditions (2.1), ft)0 - ft), -co2 = 0. Therefore, the right hand side of 

(2.23) vanishes indicating that the total energy is conserved. 

The conservation of momentum can be shown in a similar fashion. The mean momentum 

of the j-th wave component is given by 

Mi = £,.*./©. =CA,A,V<y, (2.24) 

(for example, see Philips, 1977). Taking the time-derivative of the total momentum ]^M,. 

yields 

d_ 
dt 

f 2 \ 

i=0 

f 7 

= c\ d\ - j - i ^Ap 
dt Ao+irAi +-

CO, 

d \ T ,
 dA A 

1 A \ 1 

dt 
A,+. 

dt 
+ • 

ft). 

JA2 - dA, A ^ 
—-A2 +—-A, 

(2.25) 
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(2.26) 

Substituting for the time derivatives of the amplitudes from (2.15) yields 

4- X M i = i<7 Ckh ~K-k2)AQAlA2 -(k~0 - fc, - fc2)A0A,A2) 
" ? ^ /=o J 

According to the resonance conditions (2.1), k 0 - k i -k2 =0, and hence the right hand side 

of (2.26) is identically zero. This proves the conservation of the total mean momentum. 

Before leaving this section, it is interesting to explore the evolution properties of the 

waves derivable from the action partition equations. Action density of a wave is defined as 

E / co . Using (2.14) the time derivative of the action density of the surface wave is given by 

d_ 
dt 

(E0/co0)=C 
1 d A « A n + J _ f ^ L ^ 

co0 dt co0 dt 

Using (2.15) and after some reordering, the right hand side can be written as 

(2.27) 

C_ 

co, 

dA, — dA, 
dt dt 

(2.28) 

so that 

En E, 
1 const. 

co0 co, 
(2.29) 

Similarly, ^1 ^ 2 

ft), co2 

= const. 

A third equation can be obtained from the combination of (2.29) and (2.30): 

(2.30) 

EQ E2 

1 const. 
co0 co2 

(2.31) 

Equation 2.30 indicates that the growths of the two internal waves as well as their decays are 

simultaneous, and equations 2.29 and 2.31 imply that the energy for growth of the internal 

waves is maintained by the surface wave. 
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2.2.2 Viscous Modification 

Now the effect of the lower layer viscosity is incorporated into the analysis. In general, 

adding viscosity affects the interaction mechanism in two ways. First, compared to an 

inviscid lower layer, the horizontal velocity field due to the surface wave in a viscous lower 

layer has a sharper gradient at the interface. Secondly, viscosity acts as a dissipater of the 

wave energies. In the first instance, a higher viscosity adds to the interfacial shear, which is 

well known to be a cause of instability of many stratified-fluid flows, for example, Kelvin-

Helmholtz instability in a two-layer flow (Turner 1973, chapter 4). Therefore, in this respect 

viscosity has a forcing role in the excitation of the internal waves, while in the second 

instance it acts as a damper of the internal waves. Combination of these two opposite roles 

determines the net effect of viscosity on the interaction. 

Here it is assumed that the viscosity is weak and serves only as a damper of the internal 

waves. Justification of this assumption will be made in chapter 4, where a complete viscous 

interaction analysis is made. To include the viscous damping of the internal waves in the 

analysis, the evolution equations of the internal waves in (2.13) are modified to (e.g., refer to 

Davis and Acrivos, 1967) 

db. - n db7 -
— = a,a0b2 - p>,, -± = a2a0b, - p>2 (2.32) 

where j3, is the damping coefficient of the i-th internal wave. The constant /3, is the inverse 

of the decay time constant of the internal wave i and is a positive real number. The values 

of/3,'s, i = l, 2, can be obtained from the following dispersion relation through a linear 

viscous analysis of the wave motion in the system shown in figure 2.1 (MacPherson, 1980). 
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p'(co «-gzkz)Sh 

Ch(gk^-co2) 
+ pg k + p(2k2v -ico)2 '(2k2-ico/v )[XCkCx -kSkSJ-2k2X 

(2k2-ico/v )[XSkCx-kCkSx] 

where 

j , i 2 , , (2k2-ico/v )-2k[kCkCx-XSkSx ] -4pk3v2X 

k = Ak2-
ico 

2k[XSkCx -kCkSx] 

and i = 

= 0 

(2.33) 

(2.34) 

and Sh = Sinh(kh), Sk = Sinh(kd), Sx - Sinh(M), 

C, = Cosh(kh), Ck = Cosh(kd), C A = Cosh(M) (2.35) 

By substituting the wave number of each internal wave into the dispersion equation, the 

frequency corresponding to the motion of the wave in the viscous system is obtained. The 

computed frequency is a complex number whose real part is almost equal to the computed 

frequency from the inviscid dispersion relation and its imaginary part is the desired - (5 . 

When an internal wave is deep in both layers, it can be shown that the damping coefficient 

from (2.33) reduces to 

P=vk2 (2.36) 

Given that the two interacting internal waves are nearly identical in wavelength, the above 

equation implies that the internal waves have approximately the same damping rate. 

It is useful to obtain approximate solutions for bx(t) and b2(t) in (2.32). Combining the 

two equations in (2.32) gives a second-order, constant coefficient differential equation in 

bx(t) or b2(t) with the solution 
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bl(t) = Cle 2 + C2e 2 ' {231-a) 

b2(t) = C3e 2 +C4e 2 (2.37-b) 

where 

A, =(/?1 + /3 2) 2-4(A /? 2-aia 2 |a 0 | 2) (2.38-a) 

A 2 = (A + /32)2 - 4(j8,j32 -a 2cda 0| 2) (2.38-b) 

In (2.37), C,'s, i=l,...,4, are constants. The analysis indicates that a, and a2 as well as p1, 

and j5 2 are approximately equal as the two internal waves are nearly identical in wavelength 

and frequency. Considering this and the fact that the second terms in bx (t) and b2 (t) decay 

fast with time, the solution can be approximated by 

bl(t) = C1e7', (2.39-a) 

b2(t) = C3er' (2.39-b) 

where 

y = 4*0|-)3, (2.40) 

where 

a = ^ja,a2 and p ^ f f l + A ) . (2.41) 

Both a and /5 are positive real numbers. The quantities ce|a0|, P, and y have dimension of 

time"1 and are the forcing, the damping, and the growth parameters respectively. The 

experimental results, which will be presented in chapter 3, confirm the exponential evolution 

of the internal waves in time. 
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For a given surface wave, the frequencies and wave numbers of the interacting waves can 

be obtained from the simultaneous solution of (2.1) and the dispersion relations of the waves 

given by (2.2). The solution to the frequencies and the wave numbers indicates that there are 

an infinite number of internal wave pairs that can form a resonant triad with a given surface 

wave. An example pair is shown in figure 2.4. The angles 0, and 02 are the direction 

angles of the internal waves 1 and 2 with respect to the surface wave respectively. In the next 

section it will be shown that the internal waves are short compared to the surface wave. They 

have almost equal wavelengths but opposite propagation directions. Their frequencies are 

also close and approximately equal to the half of the frequency of the surface wave. 

Experimental verification of these properties of the internal waves will be given in chapter 3. 

The analysis also indicates that the wavelength of an internal wave remains almost constant 

as 6j changes, and hence the main difference between the pairs lies in the propagation 

direction. These along with the other features of the interaction are explored next through a 

numerical example. 

2.3 NUMERICAL RESULTS AND DISCUSSION 

In this section, a test case is considered and the interaction is studied when the depth ratio, 

the density ratio, the viscosity, the surface wave frequency, the orientation of the internal 

waves vary. First the system parameters are non-dimensionalized, and then the results are 

presented. 

The important independent parameters in the problem are H, d , p', p, v, g, \a0\, k0, 

and 6j. The direction angle of internal wave 2, denoted by 62, is a dependent variable in the 

analysis. Note that either of k0 and co0 can be taken as an independent variable given that 
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they are related through the dispersion relation (2.2). The independent parameters can be 

reduced to the following six non-dimensional variables. 

The above set has been selected in such a way that a change of any of p, |a 0 |, d , v, k0, and 

6 j results in change in just one non-dimensional variable. Note that as k0 is an increasing 

function of co0 according to the dispersion relation, the non-dimensional parameter k0H can 

be regarded as a measure of the surface wave frequency as well. In the following sections the 

variation in the surface wave frequency is represented by the corresponding variation in k0H . 

The important dependent parameter describing the evolution of the internal waves during 

the interaction is the non-dimensional parameter y / co0, which is a measure of the growth of 

the internal waves during a surface wave period. In fact, elniy/COo} - 1 gives the growth rate 

(or decay rate when it is negative) of the amplitudes of the internal waves during a surface 

wave period. Using equation 2.40, the expression for j / co0 can be written as 

where (3 / co0, aH/ co0, and \a0\ / H are all positive non-dimensional numbers. The quantity 

j3 / co0 is a measure of viscous dissipation of the internal waves during a surface wave period 

and like aH / co0 is a dependent parameter. It is recalled that [3 / co0 is calculated from the 

viscous dispersion relation 2.33, which has been obtained from a linear viscous analysis of 

wave motion in a two-layer fluid. The term (aH / co0 \a0\/ H is the forcing term and can be 

separated into two parts: |a0| / H and aH / co0. The quantity \a0\ / H is the non-dimensional 

surface wave amplitude. The quantity aH / co0 is a measure of the efficiency of the energy 

transfer during the resonant interaction. It is recalled that a is obtained from an inviscid 

interaction analysis. 

(2.42) 

(2.43) 
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In the following, a model problem is used to explore the effects of the different parameters 

on the interaction. This is achieved by changing each non-dimensional variable in turn and 

studying the effects on the surface wave forcing as well as the viscous dissipation and the 

growth rate of the internal waves. For each case the graphs of aH / co0, ft / coQ, and 7 / co0 

outline the effects. Mathematica® was used to obtain the numerical values of a , (5 , and 7 

as well as the kinematic properties of the waves in the model problem. 

Consider a test case where d = 4.0 cm, H = 16.0 cm, p' = 1.00gr/cm3, p = 1.04 gr/cm3, 

co0 = 2x/0.8 rad/sec, V = 3xl0~6m2/sec and 0 ,=75° . The corresponding non-

dimensional numbers are 

{K{ =1.04, K2 =a0(cm)/16, 7zr3=0.25, 7T4 =15xl0"6, TT 5 = 1.21, 7T6 =75°} 

By numerical solving of the set of algebraic equations consisting of the dispersion relations of 

the waves and the resonance conditions, the kinematic properties of the waves are obtained as 

follows. 

k. = 7.54 rad/m ( k0 )x - 7.54 rad/m, (k0) v = 0, 

(fc,) v = 21.00 rad/m, (fc, )v = 78.35 rad/m , = 81.11 rad/m , ft), =3.95 rad/s , 

(k2 )x = -13.45 rad/m, (k2 )x = -78.35 rad/m , k2 = 79.5 rad/m, co2 - 3.91 rad/s 

The above numerical values indicate that the internal waves are nearly identical in 

frequency and wavelength and propagate almost in opposite directions. Also, the frequencies 

of the internal waves are close to co012, as stated before. These suggest that the internal 

waves form nearly a sub-harmonic standing wave at the interface. The wave patterns at the 

free surface and the interface are shown in figure 2.5. It can be seen that the internal waves 

are short and oblique to the surface wave. In chapter 3, these typical kinematic properties of 

the internal waves will be shown to be in agreement with the experimental observations. 
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The numerical values of a's and /3 's as calculated by Mathematica® for this case are 

ce, = -17.32/ (m.s)-', j8, = 0.0195 rad/s 

a2 = -17. Ui (m.s)'1, p\ = 0.0188 rad/s 

As seen, a's as well as /3's are nearly equal. Also, it is interesting to note that 

a, /ft), = a2 lco2 in accordance with (2.20). 

2.3.1 Changing Density Ratio 

It is instructive to explore first the effects of a small density difference on the kinematics 

of the internal waves. Figure 2.6(a) shows variations of the non-dimensional internal wave 

numbers kx/k0 and k2/k0 with the small parameter 8 = A p / p , where k{ = ki . As seen, 

when the density difference approaches zero, the internal wave numbers become infinitely 

large. Knowing that k0 remains finite at small density differences, this implies that for small 

density differences the internal waves are essentially deep waves in the two layers, and hence 

their dispersion relation is given by (Turner, 1973) 

» ' - f £ g k (2.44, 

Equation 2.44 can be obtained assuming k —> ° o in (2.2). Variations of the non-dimensional 

internal wave frequencies ft),/ft)0 and ft)2/ft)0 are shown in figure 2.6(b). As seen, when 

<5 —> 0, ft), —> ft)2 —> ft)0 / 2 . Taking ft)0 to be 0(1), this implies that ft), and co2 as well are 

0(1) in 8 . Knowing these, one can determine the orders of the wave numbers. In absence 

of a density difference, the dispersion relation for the surface wave is ft)2 = gk tanh(kH). 

Since ft)0 ~ 0(1), this implies that £ 0 ~ 0(1). The dispersion relations for the internal waves 

when 8 —> 0 is given by (2.44). Given that ft), and ft)2 are 0(1), fc, and k2 are found to be 



34 

0(1/S), consistent with figure 2.6(a). These are important ordering properties and will be 

referred to later on. 

Next, the effects of the density difference on the dynamics of the interaction are 

investigated. The non-dimensional variable aH / co0 is plotted as a function of p / p' in 

figure 2.7(a). As seen, aH / co0 is nearly constant from p / p' = 1.00 to 1.04. This suggests 

that for the given surface wave the forcing does not change considerably over the range of 

density ratio from 1.00 to 1.20, which corresponds to the range of density ratio in most real 

situations. The graph of aH /co0 decreases mildly for p / p ' > 1.04. 

Variation of the non-dimensional damping coefficient of the internal waves, (5 / (o0, with 

p / p ' is illustrated in figure 2.7(b). As p / p ' approaches 1.00 from higher values, damping 

increases rapidly. The explicit expression for (5 / co0 around p / p' = 1.00 can be obtained as 

follows. For a deep internal wave in a two-layer fluid, the dispersion relation is given by 

(2.44), and p /co0 can be obtained from (2.36) as follows. 

p vk2 

C00 0J0 

(2.45) 

By substituting k from (2.44) in (2.45) and noting that cot and co2 are approximately equal 

to co0 /2, see figure 2.16, for instance, one can obtain the following expression for P /a>0. 

£ , W ( 1 + P 7 P { ( 2 . 4 6 ) 

According to the above expression, P /co0 increases rapidly as the density ratio approaches 

1.00, consistent with the graph of P / co0 in figure 2.7. From a physical point of view, this 

rapid growth of the dissipation rate can be explained by noting that the frequencies of the 

internal waves are almost constant (around co0 / 2). Hence, the wavelengths of the internal 
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waves decrease as the density difference approaches zero. This results in a higher dissipation 

of the internal waves, as predicted by equation 2.46 for the deep-wave case. 

From the foregoing discussion, it is expected that for values of p / p ' close to unity, the 

internal waves may not be excited at all even at high amplitudes of the surface wave. This is 

consistent with the plot of the growth rate in figure 2.7(c), where the non-dimensional 

parameter y / co0 for a0 =(a0 )max is plotted against the density ratio. The quantity (a0 )mtlx is 

the half-amplitude of the surface wave at breaking and can be obtained from Miche's (1944) 

equation: 

k(A0 )max _ K Q 47) 
Tanh[k(h + d)] 14 

It can be seen from figure 2.7(c) that the internal waves do not have any chance to grow for 

p / p ' around 1.00 even when the surface wave is at breaking. 

2.3.2 Changing Surface Wave Amplitude 

Surface wave height has a direct effect on the growth of the internal waves. This is obvious 

from equation 2.40, where y/tt)0 is an increasing function of the surface wave amplitude. 

According to (2.40) for the internal waves to grow, \a0\ must be larger than (5 / a, which can 

be regarded as a critical surface wave amplitude below which the internal waves are 

suppressed due to viscosity. In the dimensionless form, the growth condition can be written 

as 

H > cxH/co 

Experimental verification of the above will be presented in Chapter 3. 

„ >-T7^— (2.48) 
H aH/cQ0 
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2.3.3 Changing Depth Ratio 

For a given configuration when the total depth H is fixed, changing the depth ratio of the 

two layers, d/h, can influence the interaction process substantially. Figure 2.8(a) shows 

variation of the dimensionless variable aH / co0 with d / H . As seen, aH / co0 increases 

rapidly from d / H = 0 to 0.10 but takes a mild slope thereafter. An explanation for the 

behavior of aH / co0 at low d / H can be made by considering that as d / H increases from 

zero, the interface falls into the high velocity region of the surface wave field, and hence the 

shear around the interface intensifies. With the hypothesis that the shear is the main cause of 

instability, increasing the ratio d / H leads to a higher forcing. It should be noted that a is 

obtained from an inviscid analysis, and hence the effect of viscosity-induced forcing at low 

d / H ratio is not reflected in figure 2.8(a). 

Variations of pV&>0 and kjd with d / H are plotted in figure 2.8(b). It is observed that 

damping is nearly constant for k,d > n (deep-water range of the internal wave) while it 

increases rapidly when d / H approaches zero. This behavior can be explained by looking at 

the boundary layer formation at the bed and the interface as a result of the internal wave 

motion. It is recalled that in computation of f3 the lower layer is assumed to be viscous. 

Hence, theoretically there exist two boundary layers in the lower layer, one at the bed and the 

other at the interface. For constant H, as d becomes large, the internal waves become deep 

in the lower layer, and their effects on the bed diminish. Therefore, dissipation becomes 

independent of the depth of the lower layer at large d / H, as indicated by figure 2.8(b). In 

this situation, boundary layer formation is confined to the interface. On the other hand, when 

d / H approaches zero, the internal wave field reaches the bed, and therefore another 

boundary layer is formed at the bed. The smaller d , the higher the horizontal excursion of 

the particles near the bed as a result of the internal wave motion, and hence the more energy 

dissipation, as indicated by figure 2.8(b). 
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Rapid dissipation of the internal waves when d / H is small inhibits their growth. Figure 

2.8(c) shows variation of y/co0 with d/H for a0 = (a0)nua. For d/H<02, which 

corresponds to ktd < n (intermediate-depth range of the internal waves), y / co0 decreases as 

d/H decreases until the growth rate becomes negative, and the waves are suppressed. The 

experimental demonstration of this trend of the growth rate will be presented in chapter 3. 

2.3.4 Changing Lower Layer Viscosity 

Now, attention is turned to the effect of v, the lower layer viscosity, on the interaction. As 

a is obtained from an inviscid analysis, ccH/co0 is expected to be independent of the 

viscosity. This is indicated by figure 2.9(a), where aH /co0 is plotted as a function of 

v / -JgH3 and is seen to be constant everywhere. 

Variation of (5 /co0 with v /^jgH3 is shown in figure 2.9(b). It is observed that j5/co0 

is a linear function of viscosity. Note that in the present problem kxd =3.25 and k2d =3.15, 

which imply that the internal waves are essentially deep-water waves. Hence (5 / co0 is given 

by equation 2.46, where damping is a linear function of viscosity. This explains the linearity 

of p/co0 in figure 2.9(b). 

Physically, one expects that high viscosity inhibits growth of the internal waves. This is 

consistent with the results of the analysis in figure 2.9(c), where at high enough viscosity 

7 /'co0 for a0 = (a0)max is seen to be negative, implying the internal waves decay. In chapter 

3 this theoretical result will be verified experimentally. 

2.3.5 Changing Surface Wave Frequency 

The analysis indicates that the destabilizing effect of the surface wave alters with frequency. 

Figure 2.10(a) illustrates variation of aH /co0 with k0H. It is seen that when the surface 

wave is a shallow wave, aH /co0 increases with frequency. This trend reverses after the 
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forcing reaches a maximum somewhere in the intermediate-depth range; the forcing drops 

rapidly and approaches zero at infinite depths, where the surface wave effect on the interface 

diminishes. 

Variation of p/co0 with k0H is plotted in figure 2.10(b). It is seen that at high 

frequencies (high values of k0H) p/(O0 increases with k0H. This can be explained as 

follows. As the frequencies of the internal waves are proportional to the surface wave 

frequency, the two internal waves become essentially deep waves in the two layers when the 

surface wave frequency becomes high enough. In this situation, the dissipation rate of the 

internal waves is given by equation 2.46, which indicates ft / co0 is an increasing function of 

co0 and hence k0H. 

Decreasing the surface wave frequency does not always result in a lower dissipation rate 

for the internal waves. In fact, figure 2.10(b) indicates that at low k0H, the dissipation 

increases as the surface wave frequency decreases. Again, this behavior can be explained by 

noting that as the frequencies of the internal waves are proportional to co0, for enough low 

surface wave frequencies the motion fields of the internal waves reach the bed. This leads to 

the formation of the boundary layer at the bed, which contributes to faster dissipation of the 

internal waves as the frequency decreases. 

To see how the state of the internal waves affects the trend of their dissipation, variation of 

P /co0 with kxd is plotted in figure 2.11. The parameter kxd is a measure of deepness of 

the internal wave 1 in the lower layer and is an increasing function of the surface wave 

frequency. As the surface wave frequency varies, kxd and hence the deepness of the internal 

wave 1 in the lower layers changes. It can be seen when kxd is around the deep-water limit 

(kxd = 3.0), the trend of P/co0 reverses as pointed out above. 

From the above behaviors of ccH /co0 and P/co0, it is expected that there will be no 

excitation of the internal waves at high frequencies of the surface wave. This agrees with the 
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results of the analysis in figure 2.10(c), where 7 / co0 for a0 = (a0)nwx is seen to become 

negative at high k0H. From figure 2.10(c), one also can see that at low surface wave 

frequencies the growth rate decreases as the frequency drops. As the breaking condition of 

the surface wave changes with frequency, (aQ )max is a function of k0H in the plot of 7 / co0 

in figure 2.10(c). To isolate the effect of the surface wave frequency from the surface wave 

amplitude, 7 /ft)0 for a0 = 1.00 cm is also plotted in figure 2.10(c). The graph is similar in 

trend to that for a0 = (a 0)m a x, and hence the foregoing arguments are also valid for the 

constant a0. 

2.3.6 Changing Direction of Internal Wave 1 

In section 2.2, it was mentioned that there are infinite pairs of the internal waves that can 

form a resonant triad with a given surface wave. Now, the question arises as to which pair 

will occur in a real situation. To find the answer, one should look at the growth rates of the 

different pairs. The pair having the highest growth rate has the best chance to appear in a real 

situation. Experimental verification of this point will be given in chapter 3. In the following, 

growth properties of the pairs are compared and the pair with maximum growth rate is 

identified. 

Each pair is identified by the direction angle of the internal wave 1, 9,. To study all the 

internal waves pairs, one needs to vary 6, between 0 and 360°. However, the symmetries 

present in the problem reduce the required range to between 0 and 90°. The symmetries 

come from the fact that if the pair consisting of the internal wave 1 with wave number 

(kXx,kXy) and frequency ft),, and the internal wave 2 with wave number (k2x,k2x) and 

frequency co2 form a resonance triad with a given surface wave, then the two pairs 

{ ( i , , , -* , , , , )^ , )^^, . , , -^ , . ) ,©,} and {(k2x,k2x),co2} ,{(kXx, kly),cox} as well can be in 

resonance with the surface wave. In other words, the images of the internal waves with 



40 

respect to the surface wave and also the pair resulting from interchanging the two internal 

waves are the other possible solutions to the resonant triad. Furthermore, according to figure 

2.17, which gives variation of d2 - 180° with 6,, when 0, varies between 0 and 90°, 62 

sweeps the range 180° to 270°. This in conjunction with the aforementioned symmetries 

justifies limiting the study to the range of 0, from 0 to 90°. 

The direction of the internal wave pair has a direct effect on the forcing. Figure 2.12(a) 

shows variation of aH / co0 with 6;. As seen, aH / co0 is an increasing function of 6, with 

a maximum around 6X - 90°. 

Variation of /3/ft)0 with 6, is illustrated in figure 2.12(b). The damping is seen to be 

nearly independent of the direction of the internal wave pair. This can be explained by 

considering that for a given configuration /? is a function of the kinematic properties of the 

internal waves, e.g., their frequencies. According to figure 2.16, which gives variations of 

the kinematic properties of the internal waves with 0 n cox and co2 are nearly equal to co0 / 2 

regardless of 0,. Therefore, the dissipation is also expected to be almost constant with 6 r 

From the preceding discussion, it is expected that the growth rate would be an increasing 

function of the direction angle. This is in accord with the model results in figure 2.12(c), 

where growth rate is plotted against 6,. It is seen that in general the growth rate increases as 

the internal waves become more oblique to the surface wave except for angles close to the 

normal. According to figure 2.12(c), the growth rate has a maximum value around 9X - 90°. 

To find exactly where the maximum growth rate occurs, variation of y /co0 with 

|(k2 )x / (kx )x\ for a0 = (a0)max, where subscript x refers to x-component of wave number, is 

plotted in figure 2.13. It can be seen that the maximum growth rate takes place when 

\(k2)x/(kx)x\ = l, that is, when kr and k2 are symmetric with respect to k0. At this 

symmetric configuration, the frequencies of the internal waves are exactly equal to co0 / 2. 
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This symmetric arrangement of the internal waves about the surface wave is illustrated in 

figure 2.14. 

From the above discussion, it is expected that in a horizontally infinite medium the 

internal waves appear almost perpendicular to the surface wave. A computer simulation of 

the wave patterns at the free surface and the interface in this situation is shown in figure 2.15. 

Earlier it was stated that the internal waves are short compared to the surface wave and 

their frequencies are nearly half of the frequency of the surface wave. The non-

dimensionalized wave numbers fc0//c, and k 0 / k 2 , where ki = kt , along with the non-

dimensionalized frequencies o>,/co0, and co2/co0 are plotted as functions of 0, in figure 2.16. 

The plots indicate that the ratios fc0/&, and k 0 / k 2 stay around 0.1, and the ratios wx/(O0 and 

co2/u)0 around 0.5, as pointed out before. Also, it is seen that the wavelengths and 

frequencies of the internal waves remain nearly constant as 0 7 varies. 

It is interesting to look at the variation of the relative angle of propagation of the internal 

waves, 62 -0,, as 0, changes. This is shown in figure 2.17. It can be seen 02 -0, = 180°, 

and therefore at any angle 6X, the two waves propagate nearly in opposite directions. 

2.4 SUMMARY 

In this chapter, a three-dimensional analysis of the interaction in a two-layer fluid was 

presented. The fluid system was assumed to consist of an inviscid upper layer and a weakly 

viscous lower layer. Following Davis and Acrivos (1967) the model was initially formulated 

with the assumption of inviscid layers. The viscous damping of the internal waves was 

included in the analysis after obtaining the evolution equations. This technique is validated 

in chapter 4, where a fully viscous analysis of the interaction is presented, and the results of 

the two analyses are compared. 
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The performed analysis indicated that under certain circumstances a surface wave 

traveling in a two-layer fluid can excite two internal waves. It was found that the internal 

waves are nearly identical in frequency and wavelength, and propagate in opposite directions. 

The frequencies of the internal waves were found to be close to co012, and their wavelengths 

an order of magnitude smaller than the surface wavelength. These are typical properties of 

the internal waves and are in agreement with the theoretical and experimental findings of 

Wen (1995), Hill and Foda (1996), and Hill (1997). 

The interaction analysis indicated that variation of the amplitudes of the internal waves 

has the exponential form er' at large time. The constant y is the growth parameter and is 

the sum of two terms: oc\aQ\, which is a measure of the surface wave forcing in excitation of 

the internal waves, and - /?, which is the viscous damping term. The excitation takes place 

when the forcing is high enough to overcome the viscous damping, that is, when y is 

positive. 

The independent parameters of the system are H, d, p', p, v, g, |a 0 |, co0 (or 

equivalently k0), and 9,. To evaluate the effects of each parameter on the interaction, a 

typical example was considered, and a sensitivity analysis was performed by changing each 

independent parameter separately and observing the effects on the properties of the internal 

waves, in particular, their evolution. The results were presented in non-dimensional forms. 

The main findings are summarized below. 

The surface wave forcing is most affected by the depth ratio d I H, the surface wave 

frequency, the direction of the internal wave pair, and the surface wave height. The density 

ratio does not seem to have an appreciable influence on the forcing. The forcing increases 

with d/H as well as the surface wave amplitude. The forcing also increases when the 

internal waves become more oblique to the surface wave. However, the forcing decreases 
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with the frequency when the surface wave is a deep wave. For a shallow-water surface wave, 

the trend is reversed and the forcing increases with the frequency. 

With respect to the dissipation of the internal waves, the density ratio, the depth ratio, the 

viscosity and the surface wave frequency were found to have the biggest effect. The viscous 

damping of the internal wave pair is nearly independent of the propagation direction of the 

internal wave pair. Although the forcing is nearly independent of the density difference of 

the two layers, the damping grows rapidly as the density difference approaches zero. The 

damping has the same trend when d / H decreases. For shallow-water surface waves, the 

damping is a decreasing function of the surface wave frequency. For deep-water surface 

waves, it increases with the frequency. This is in conflict with Hill's (1997) result that for 

high frequencies the viscous effects are negligible for the case of a viscous layer underlying 

an inviscid fluid. Hill's result is also in contradiction with equation 2.46, which becomes 

exact as co0 —» <» . 

The parameters that significantly influence the growth of the internal waves are the depth 

ratio, the density difference, the viscosity, the surface wave frequency, the direction of the 

internal wave pair, and the surface wave amplitude. It was found that when the depth ratio 

d / H or the density difference is sufficiently small, the internal waves are unable to grow. 

The same is true when the viscosity or the surface wave frequency is high enough. These 

were shown to be the results of the internal wave damping. 

One important result of the three-dimensional analysis was that the internal waves have a 

higher growth rate when they become more oblique to the surface wave. It was shown that 

the growth rate is maximal when the internal waves form a symmetric configuration with 

respect to the surface wave. In this situation the internal waves propagate nearly 

perpendicular to the surface wave. Also, it was found that the growth rate is an increasing 
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function of the surface wave amplitude. These results are found to be in agreement with 

Hill's (1997) theoretical study. 

The analysis also indicated that for the interaction process to lead to growth of the internal 

waves, the amplitude of the surface wave should be bigger than a critical value. The critical 

amplitude is a function of the damping. As the internal waves are more damped, the 

magnitude of the critical amplitude increases. 

Hill (1997) in his inviscid analysis of the 3D interaction found that there are narrow bands 

of surface wave frequency and density ratio within which only the growth of the internal 

waves is possible. Also, his analysis indicated that there upper and lower bounds on the 

direction angle of the internal wave pair for growth. These were found to be in conflict with 

the results of the present study. These discrepancies will be addressed in detail in chapter 3 

in light of the experimental results. Another discrepancy between the two analyses is their 

different predictions of the interaction in two dimensions. Hill (1997) found that there is no 

growth of the internal waves in an inviscid medium when the internal waves are in the same 

plane as the surface wave. A similar result was obtained by Wen (1995), and Hill and Foda 

(1996) in the study of the interaction in two dimensions. However, the present analysis and 

those of Jamali (1997a and b) suggest that even in a two-dimensional inviscid medium the 

internal waves may grow. 

The differences between the results of the present analysis and those of the above authors 

stem from the different treatments of the second-order equations. To preclude the possibility 

of a secular solution at second order, Wen (1995), Hill and Foda (1996), and Hill (1997) all 

took the solvability condition to be the orthogonality of the forcing functions and the 

homogenous solution. This is correct only when the systems of equations are self-adjoint. 

However, the systems of equations at second order are not self-adjoint, and the correct 

solvability condition is obtained by requiring that the forcing functions be orthogonal to the 
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homogeneous solution of the adjoint system (Drazin and Reid, 1981, p 385), as sought in the 

present analysis. 
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Figure 2.1 Configuration of the problem in the three-dimensional interaction analysis. 
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Figure 2.2 Demonstration of existence of the resonant triad in the interaction of a surface 
wave (denoted with subscript 0) with two internal waves (denoted with subscripts 1 
and 2). 
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Figure 2.3 Locus of the wave numbers of the internal waves 1 and 2 in the interaction. 
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Figure 2.4 The set of two internal waves and one surface wave forming the interaction triad. 
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Figure 2.5 Wave patterns at the free surface and the interface at 0, = 75°. 



Figure 2.6 Variation of a) the non-dimensional internal wave numbers and b) non-
dimensional internal wave frequencies with Ap / p . 
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Figure 2.7 Variation of a) aH / co0, b) f} / co0, and c) y / co0 for a0=(a0 )mix with p/p'. 



53 



54 

0.40 

Ha/CD 0.20 

0.00 T -

0.00E+0 

1 1 1 

2.00E-4 4.00E-4 6.00E-4 

0.08 -, 

P/co 0.04 -

0.00 

0.20 

y/co 

-0.20 

(a) 

v/(gwy 
0.00E+0 2.00E-4 4.00E-4 6.00E-4 

(b) 

00E + 0 2.00E-4 

• 1 

4.00E-4 6.00E-4 

(c) 

Figure 2.9 Variation of a) aH / co0, b) /3 / u)0, and c) y / co0 for a0=(a0 )max 
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Figure 2.10 Variation of a) aH / co0, b) /3 / co0, and c) 7 / co0 with k0H. 



Figure 2.11 Variation of pVft)0 with kld . 



57 

(b) 

y/co 

0.20 

0.00 6 (Degrees) 

0 20 40 60 80 100 120 

-0.20 J 

(c) 
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Figure 2.14 Directional configuration of the waves at the maximum growth rate, where 
0, = d2. 



Figure 2.15 Wave patterns at the free surface and the interface at the maximum growth 
rate. 
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CHAPTER 3 

EXPERIMENTATION 

3.1 INTRODUCTION 

In chapter 2, the interaction of a surface wave with two oblique, opposite-traveling internal 

waves was studied theoretically. It was found that the internal waves have nearly the same 

wave length and frequency. Their wavelengths are short compared to the surface wave, and 

their frequencies are nearly half of the surface wave frequency. The internal waves were 

found to have an exponential growth when the surface wave amplitude is bigger than a 

critical value. The theoretical analysis also indicated that the direction angle of the internal 

wave pair is an important factor in the evolution. It was shown that the more oblique the 

internal waves to the surface wave, the higher their growth rate. Also, it was found that the 

viscosity has an important role in energy dissipation of the internal waves and hence in their 

suppression. 

In this chapter, the results of the experimental investigation of the interaction are 

presented. As one of the main objectives of this study has been to show the possibility of 
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occurrence of the interaction in a nearly inviscid medium, salt water was used as the heavier 

fluid in the majority of the experiments. The experiments were carried out in a laboratory 

wave flume at the Department of Civil Engineering, the University of British Columbia. 

In the following sections, first the experimental setting is described and then the results are 

presented and discussed in detail. The experimental measurements are compared with the 

theory, and some issues raised by Hill (1997) regarding the 3D interaction are addressed. 

3.2 EXPERIMENTAL SET-UP AND PROCEDURE 

The experiments were carried out in a wave flume 3 meters long, 21 cm wide, and 35 cm 

deep. The set-up of the experiments is shown in figure 3.1. An aluminum false bottom, 5 cm 

deep, was used to contain the lower fluid. The false bottom had sufficiently gentle slopes at 

the transitions to ensure smooth surface wave motion in the flume. At one end of the flume, 

a perforated mat lying on a sand beach served to absorb the surface wave energy. At the 

other end of the flume, a wave paddle connected to a driving motor constituted the wave 

maker unit. The frequency and stroke of the wave maker were adjustable. 

The flume was initially filled with fresh water to the desired level. Then, salt water with 

known density was discharged from a tank into the false bottom. The flow rate was 

sufficiently low to avoid mixing of the two fluids. Rodamine, a red dye, was used to 

visualize the saline water. The variation of the density across the interface was measured 

using a micro-scale conductivity probe that was profiled vertically through the two-layer fluid 

by a small electric motor. A video camera was used to record the experiments and to obtain 

the measurements of heights, frequencies and wavelengths of the surface and internal waves. 

The videotape of a few experiments is provided in Appendix E. The tape displays a few 

experiments with salt water as well as an experiment with a sediment bed. 
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Six series of experiments each of which was composed of several separate experiments 

were performed. Salt water was used as the heavier fluid in all the experiments except in 

series 4 where corn syrup was used instead. The density of the heavier fluid was the same 

within each series and ranged from about 1040 kg/m3 to 1160 kg/m3 between the series. 

Series 1, 2, and 3 served to measure mainly the kinematic properties of the internal waves. 

The quantities measured were wavelengths, frequencies, and direction angles of the internal 

waves. Also, the growth rate of the internal waves was measured in a few experiments to 

examine the growth properties of the internal waves as obtained by the theory in chapter 2. 

These series are summarized in Table 3.1. Series 4 and 5 served to investigate the effects of 

viscosity and surface wave amplitude on the excitation of the internal waves. These two 

series are summarized in Tables 3.4 and 3.5. In series 6 the effect of depth ratio on the 

interaction was studied. Table 3.6 outlines this series. 

3.3 RESULTS AND DISCUSSION 

In this section, the experimental results are presented and discussed. First, an explanation 

for the appearance of a three-dimensional pattern at the interface is sought. Then, the 

properties of the observed internal waves such as their frequencies, wavelengths and growth 

rate are discussed with reference to the theoretical results. Also, the effects of changing the 

viscosity, the depth ratio, and the surface wave amplitude on the evolution of the internal 

waves are explored, and the results are compared with the theory. Finally, two more 

phenomena observed in the wave flume are pointed out. 

A simplified configuration of the fluid system is shown in figure 3.2. The total water 

depth is denoted by H, the upper layer depth by h, the lower layer depth by d , the surface 

wave height by Hs, the density of the fresh water by p', and the density of the heavier fluid 
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by p. The coordinate x is measured in the surface wave direction, y across the wave flume, 

and z vertically. The density variation across the depth is assumed to be of the form 

illustrated in figure 3.2, where hp is half of the interface thickness. 

3.3.1 3D Pattern of the Interface 

In a typical experiment in the wave flume, a three-dimensional internal wave pattern was 

observed at the interface a few minutes after the surface wave was generated in the flume. 

Initially there was no interfacial wave, but as the experiment proceeded, the internal waves 

appeared with growing amplitude. The time of the first appearance (visibility level), the 

geometric properties of the pattern, and the growth rate of the internal waves were found to 

depend on the experimental parameters. In this section, the focus will be on the kinematic 

properties of the observed patterns. The growth properties of the internal waves will be 

discussed later. 

Two successive pictures from an experiment in the wave flume are shown in figure 3.3. 

From the pictures as well as the companion videotape it can be seen that the observed internal 

wave pattern has two length-scales along the flume: a long wavelength of twice the surface 

wavelength, and a short wavelength. In the figure, the node and the crest of the long 

wavelength of the pattern are where the amplitude of the short internal waves becomes zero 

and maximum respectively (along the flume), and the distance between them is equal to one 

fourth of the wavelength.. At any point along the long wavelength, the short internal waves 

have the same amplitude across the flume. The pictures also indicate that the internal waves 

are standing across flume. 

The next feature of the observed pattern is its frequency. Five successive pictures of the 

internal waves taken from a close view at an interval of T012, where T0 is the period of the 

surface wave, are presented in figure 3.4. It is interesting to note that at the short length-scale 
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the internal wave pattern is standing both across and along the flume with a period of 2T0, 

equivalent to a frequency of co0/2. These can also be seen from the companion videotape. 

In the formation of the three-dimensional pattern, the flume side-walls play a crucial role. 

It is recalled from chapter 2 that the internal waves have a higher growth rate when they are 

oblique to the surface wave. As a result, the internal waves are expected to appear as oblique 

waves in the flume. However, the flume has finite width, and the internal waves are reflected 

from the side-walls. This leads to the generation of the image internal waves 1' and 2' 

besides the original internal waves 1 and 2 as illustrated in figure 3.5. Since the internal 

waves have the same wave numbers normal to the surface wave, see the resonance conditions 

(2.1), the four internal waves have the same wavelength / v across the flume. The 

combination of each internal wave and its image forms a wave pattern that is standing across 

the flume. This requires that the flume width be an integral number of the half-wavelength 

of the internal wave across the flume. In other words, 

where B = width of the flume, equal to 21.1 cm in the experiments, and n =the total number 

of the peaks and the troughs of the three-dimensional pattern across the flume. 

Considering the above, the developed theory in chapter 2 can now be used to explain the 

observed phenomenon. It is shown that the combination of the original internal waves 1 and 

2 and their reflections, waves Y and 2' , leads to the creation of the observed three-

dimensional pattern with the mentioned properties. It is important to note that from the 

symmetric properties of the interaction discussed in section 2.3.6, when the surface wave is in 

resonance with the internal waves 1 and 2, it is in resonance with their reflections, waves 1' 

and 2 ' , as well. Hence, the mechanism of generation of the three-dimensional pattern can be 



68 

summarized as in figure 3.6. The internal waves 1 and 2 are assumed to have frequencies 

ft), and u)2, and wave numbers 

kl = ( f c l , . v A v ) a I l d k2 = (k2.x>k2.y) (3.2) 

respectively. With reference to figure 3.5, since the surface wave does not have any 

component in the y-direction 

:-k1 v - Inll. (3.3) 

where ly is given by (3.1). The reflected internal waves Y and 2' have frequencies ft), and 

ft),, and wave numbers 

k ' \ = (Kx ~Ky) a n d K = (k2,x ~k2,y) (3.4) 

respectively. The resonance conditions for the triad involving the image internal waves are 

C00-COX+ C02 

(3.5) 

Assuming that the four internal waves have the same amplitude b , the interface 

displacement r/ in t (x, y,t) associated with their superposition is 

T7int (x, y,t)-b \$in(kx .x -G)xt) + Sin(k2 .x - w2t) + Sin(k'x.x -coxt) + Sin(k2.x - w2t) j 

(3.6) 

where x = (x, y). For convenience, the waves have been assumed to be in phase. Using the 

trigonometric relations, equation 3.6 can be written as 

7].m (x,y,t) = 2bSin 

+ 2bSin\ 

k.+k2 _ ft), +ft), . 
-.x ! U fcos 

(7 k,-k2 _ ft), - ft), 
— -.x • =-t 

k, +k7 _ ft), + f t ) 7 — L.x 1 -t \Cos 
1'k[-k'2 _ ft), - ft). 

) 
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After using the resonance conditions (2.1) and (3.5), the above is simplified to 

7 7 i n t (x,y,t) = 2b Sin 
fr f / 

{Cos 
2 2 

V J I V 

k,-k2 _ co, -co2 + Cos 
1'k[-k'2 _ ft), -ft)2 ^ 

V 

Using the sum rule for the cosines, the right hand side can be written as a product of the 

terms: 

fr 
R.H.S. = 4bSinl 

Defining 

kjc-fZit \Cos\ 
2 2 

( 7 

-.x 
( 7 . 7, 

Cos\ k, + k[ — (k2 + k2) _ ft), -ft)2 

.x — 

k,. = 
2K 

T~ 

and noting that k, + k,' = (2k, x ,0), k, - k[ = (0,2k), 

k2 - k2 = (0,-2kx), the expression for r/jnt reduces to 

(3.7) 

k2+k2=(2k2x,0), and 

T 7 i n t (x, y,t) = 4b Cos(kxy)sin 
k i k 

Cos 
2 2 

V ) V 

CO, - co, 
•x • (3.8) 

By inspecting (3.8), the experimental observations can now be explained. First, attention is 

paid to the variation of 7 7 i n t in the y-direction. In (3.8), the term describing the variation 

along y-axis, i.e., Cos(kxy), has appeared as a factor on the right hand side. Knowing that 

ly = 2Klkx satisfies (3.1), this implies that the internal wave pattern is standing across the 

flume, consistent with the experimental observations. 

The variations in time and x are described by the last two terms on the right hand side of 

(3.8). These terms are of different length and time scales. It can be shown from the ordering 

analysis of section 2.3.1 that k0/2~ 0(1), and (k,x -k21)/2 ~ 0(\l 8), where 8 = Ap/ p is 

small. Hence, there exist a long and a short scale for the variation along the x-axis. The 

experimental pictures in figure 3.3 clearly show these two length-scales. From the equation 
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the wave number of the large length-scale is k0/2. This is in agreement with the 

measurements in figure 3.3, where the long wavelength of the internal wave pattern is seen to 

be twice the surface wavelength. According to equation 3.8, at the short scale the internal 

waves have a wave number of (fc, x-k2x)l2 along the flume. Note that in general k{ x and 

k2 x are of opposite sign, and hence (kUx -k2 X)I2 represents an average of the magnitudes of 

the x-components of and k2. Defining kx as 

(3.9) 

kx +kv~ is in close agreement with the experimental 

measurements. In general the wave number of the internal waves across the flume, ky, is of 

the same order as kx. The quantity ^k2 + k2 is the wave number of the 3D standing wave 

in figure 3.4. 

Now attention is turned to the time-scales of the internal waves as predicted by equation 

3.8. From the ordering analysis of section 2.3.1 it can be shown that co0/2~ 0(1), and 

(ft), - ft),)/2 ~ 0(8). Hence, there exist a long and a short scale for the time variation of the 

internal waves. According to (3.8), in short time-scale the internal waves have a frequency of 

co0/2, consistent with the experimental observations. It is interesting to note that at the short 

time- and length-scale equation 3.8 can be approximated by 

r/ i n t(x,y,0 = 4bCos(kyy)Cos(kxx)sin 
v 2 / 

(3.10) 

indicating that the internal waves form a 3D standing internal wave (both along and across 

the flume) with a frequency of ft)012 , a fact clearly indicated by figure 3.4. 

According to equation 3.8 in long time-scale the internal wave pattern has a frequency of 

(ft), -ft>,)/2 (of order 8 ). Unlike the short time-scale, it is difficult to measure this time-

scale accurately in the laboratory due to experimental errors. However, the long time-scale 
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can be identified in the videotaped experiments by observing that although the 3D standing 

internal wave looks stationary, it moves slowly in the surface wave direction and is unsteady 

in the long run, indicating a quasi-standing state. 

Before leaving this section, it is worth noting that according to equation 3.8 the long 

wavelength of the three-dimensional pattern moves at the same speed as the surface wave. 

This is clear from the two successive pictures in figure 3.3, where it is seen that the internal 

waves with the largest amplitude and the surface wave crest move with the same speed. This 

can be seen by playing back slowly the companion videotape as well. 

3.3.2 Wavelength of the Standing Internal Wave 

The experiments in which the x and y components of the wavelength of the 3D standing 

internal wave, ly and ly, were measured are summarized in Table 3.1. In the table, the first 

digit in the experiment number indicates the series number. The surface wave period is 

denoted by T0. For each experiment the interface half thickness h and Ap = p- p' have 

been obtained from a regression analysis of density profile across the interface. The 

measured wavelength of the standing internal wave along the flume (x-axis) is denoted by / v . 

Note that lx is related to kx in equation 3.10 by 

kx=2nllx (3.11) 

The quantity lx can be regarded as an average of the x-components of the wavelengths of the 

internal waves 1 and 2. The experimental value of ly for each case is given in the second last 

column. It was calculated from (3.1) using the observed value of n, which is given in the 

third last column for each experiment. The experimental values of n are compared with 

those from the theory in section 3.3.4. In the experiments, internal wave patterns with 
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different n's were observed. Figure 3.7 gives pictures of some of the observed modes of the 

standing internal wave. 

In the last column of Table 3.1, the direction angle 6 in each experiment is given for later 

use. Having lx and ly, 0 for each experiment is calculated from the following equation. 

6 = ArcTan = ArcTarn 
I 

(3.12) 

The angle 0 can be regarded as an average of G{ and 02-7C in figure 3.5. Note that in 

general 0, ~ 92 -n , see figure 2.17, and hence 8 ~ 0{ ~ 62 -n . 

A typical variation of the density across the interface in the experiments along with the 

corresponding regression curve is given in figure 3.8. As density had nearly tanh variations 

with z in the experiments, the regression curve in figure 3.8 was obtained from fitting 

equation p(z) = c, + c2 tanh[c3(z + c4)] to the data points. The constants c,, c2, c,, and 

c4 were obtained using the least-squares method. Constant c3 gives the parameter hp in 

Table 3.1 for each experiment. 

Having obtained lx and Zv of the standing wave in each experiment, one then can compute 

the wavelength of the standing internal wave I = [lx +1 ) . These are tabulated in 

the second column of Table 3.2. In the following the theoretical wavelengths are obtained 

and compared with / 's. 

According to Appendix A, the dispersion relation for a wave motion in a two-layer fluid 

with finite depths is 

—(co4-g2k2)tanh(kh) 
P • • . 2 

(gktanh( kh)-co ) —— + gk-cucoth(kd) = 0 (3.13) 

Equation 3.13 is used to compute a theoretical wavelength for each experiment. These 

computed wavelengths are denoted by lnm_laver and are tabulated in the third column of Table 
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3.2. In computation of lM0_laxer, the internal wave frequency was assumed to be co0 /2. Note 
/ — 2 2 — 

that in Jkx +kx , kx is the average of the x-components of the wave numbers of the 

internal wave 1 with co, > co012 and the internal wave 2 with co2 <co0/2 (see the resonance 

conditions 2.1), and kx is the same in both waves. Knowing that <a, and co2 are close to 
— 2 2 

kx + ky can be well approximated by the wave number of an internal wave with 

frequency co0/2. These theoretical wavelengths are plotted against the experimental values 

in figure 3.9. As seen, all the theoretical wavelengths are greater than the experimental ones. 

This can be explained by the fact that in the experiments the interface of the two layers was 

diffuse. To account for the diffusion effects, one needs to have the dispersion relation for the 

internal wave motion in a 2-layer, finite-depth system with a diffuse interface. Not having 

access to such a dispersion relation, here an attempt is made to obtain the desired theoretical 

wavelength approximately. 

Let /, denote the desired theoretical wavelength. /, is a function of the diffuse-layer half 

thickness hp, and the depths of the two layers, h and d. It can be shown that in all the 

experiments the standing internal wave was deep in the upper layer. Therefore, lt can be 

regarded independent of the upper-layer depth, and there is no need to consider variations in 

h . Mathematically, one can say /, = l,(hp Ald) assuming the other parameters of the system 

remain unchanged. Using Taylor's series expansion, one can approximate I, (h ,11 d) as 

i,{hpMd)~i,(vm+ d l 

9(1/d) 
1 dl, 

.— + • 

(0,0) d d h

P 

p 
(0,0) 

with the assumption that hp and l/d are small enough. The quantity lt(0,0) is the internal 

wavelength when hp = 0 and d = ° o . It corresponds to the internal wave motion in an 

infinite two-layer fluid. It is obtained from (Turner 1973, p. 16) 
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ft)2 =gk (P-P') 

(P + P') 
(3.15) 

Next, the right hand side of (3.14) is rearranged to 

Zf(0,0) + 
dl. 

9(1/d) (0,0) 
/,(0,0) + 

dl. 

(0,0) 

-/,(0,0) (3.16) 

In (3.16), the first bracket is approximately the wavelength when lid is not zero, but h = 0 . 

Therefore, the first bracket can be replaced with lMo_,(iyer. The second bracket in (3.16) 

corresponds approximately to the wavelength of the internal wave when 1 / d = 0 but 

hp ^ 0. This wavelength is denoted by ldjffuse, which is the wavelength of the internal wave 

in an infinite two-layer medium with a diffuse interface of tanh form. The appropriate 

dispersion relation for ldjffuse is given by (Groen ,1948) 

k = ^ - h 
2ft)2 p 

(3.17) 

where ep = In V 
\H J 

(3.18) 

Having density properties of the interface, one can use the above dispersion relation to obtain 

Effuse
 w i t n t n e assumption that ft) = &)0 / 2 . 

With the preceding approximations, (3.14) can now be replaced with 

h I two-layer ^ diffuse h (0'0) (3.19) 

The values of /, obtained from (3.19) are given in the 4th column of Table 3.2. In Fig 3.10, 

/, values have been compared with the experimental wavelengths. It can be seen that now a 

close agreement between the experiments and the theory exists. 
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3.3.3 Growth Rate of the Internal Waves 

It is recalled from the theoretical study of chapter 2 that the amplitudes of the internal waves 

change exponentially at large time, i.e., 

b, ~ er' (3.20) 

where bt is half of the internal wave amplitude. The parameter y , which is an indicator of 

the growth rate of the internal waves, is given by equation 2.40 

y = -[3 + a\a0\ (2.18) 

where —ft is the dissipation term, a is a measure of efficiency of the energy transfer 

between the waves, and \aQ\ is half of the surface wave amplitude, equal to Hs / 4. 

Among the experiments performed, two were repeated with different surface wave 

amplitudes. The variations of the amplitude of the standing wave with time in experiment 3-

1 are plotted in figure 3.11 for the surface wave heights of 2.1 cm, 2.6 cm, 3.4 cm, and 3.6 

cm. Figure 3.12 presents the similar plots for experiment 3-3 for surface wave heights of 1.6 

cm, 2.7 cm, and 2.9 cm. To obtain y for each surface wave height, the exponential function 

2bj(t) = cxev was fitted to the data points using the least-squares technique, and the result 

was plotted on the same graph. The regression factor rg is indicated for each case on the 

graph. 

An interesting result from the plots of the regression curves regards their prediction of the 

internal wave amplitude at t = 0. Although bi ~ 0 at t = 0 was not included as a data point 

in any of the plotted data sets, the regression curves all nearly passed through the origin. This 

along with the values of rg close to 1.00 in all the cases (>0.99 in experiment 3.1, and 

> 0.96 in experiment 3.3) is an indication of the exponential growth of the internal waves 

with time in the flume, as predicted by the theory. 
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Plots of 7 versus |a0| for experiments 3-1 and 3-3 are given in figure 3.13. Theoretically, 

the relationship between y and |a0| is linear. Hence, for each case a line was fit to the data 

points using the least-squares method. The slope of the line in each case gives the parameter 

a, see (2.18). The regression factors have been indicated on the graphs. It is interesting to 

note that the points corresponding to the high amplitudes lie off the line. This can be 

attributed to the non-linearity of the surface wave at the high amplitudes. It is recalled that 

the proposed theory was developed assuming nearly linear waves. Nevertheless, in the 

experiments increasing the amplitude of the surface wave did not affect the interfacial 

pattern. 

Table 3.3 compares the experimental values of a obtained above with the theory. The 

theoretical values of a have been obtained using the three-dimensional model of chapter 2 

with the assumption that the internal waves are traveling in the same direction as in the 

corresponding experiments. The last column in Table 3.3 gives k hp where kexp = 2K / lexp. 

This parameter is a measure of significance of diffusivity of the interface in the interaction; 

the higher k h , the bigger the effect of the diffuse layer on the motion of the internal waves 

and hence on the interaction. 

As seen from Table 3.3, although the experimental and the theoretical values of a are of 

the same order of magnitude, they are not in close agreement. In fact, the theoretical values 

are higher. This can be explained by noting that octheon. has been obtained from an analysis 

that does not take into account the effects of a diffuse interface on the interaction. In a real 

situation, a diffuse interface smoothes the velocity variation at the interface and hence 

reduces the magnitude of the forcing for excitation of the internal waves (Davis and Acrivos, 

1967), represented by the parameter a . This explanation is consistent with the experimental 

results presented. In Table 3.3 atlienry for experiment 3-1 with k h =0.041 is in a better 

agreement with the experimental value than a,hegry for experiment 3-3 with a higher k h . 
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It is expected that a more sophisticated theory that takes into account the effects of the diffuse 

interface on the interaction would yield a better agreement between experiment and theory. 

The plots in figure 3.13 can also be used to calculate the damping parameter f3 in each 

experiment knowing that the y-intercept of the regression line in each case is equal to - j8 . 

However, the experimental values can not be compared with those from the theory. In the 

salt-water experiments the two layers had similar viscosities, and there existed boundary 

layers at the flume sides, the free surface, the interface, and the flume floor. In contrast, the 

proposed equation 2.33, from which j5 is computed, is valid only when the lower layer is 

much more viscous than the upper layer. In addition, since the upper layer is assumed to be 

inviscid, the equation does not take into account the effects of the boundary layers at the 

flume sides and those in the upper layer at the free surface and the interface. Note that 

internal wave dissipation due to the neglected boundary layers is of the same order as that by 

the rest. 

3.3.4 Direction Angle of the Internal Waves 

According to the theoretical analysis of chapter 2, the internal waves have a higher growth 

rate when they are more oblique to the surface wave. Hence, it is expected that in the wave 

flume the internal waves would occur at the maximum possible 6 . First it should be noted 

that unlike an infinite medium, a finite-width wave flume restricts the values of kx through 

equation 3.1, and hence for a given configuration the internal waves can admit only certain 

directions. The admissible angles 6 satisfy 

S i n e J ^ 7 ^ (3.21) 
k Bk 

where n > 1 is an integer, and k = ^k2 + k2 . Note that k is almost independent of the 

direction angle, e.g., see figure 2.16, and hence can be regarded as a constant in (3.21). The 
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admissible angles for kx are shown schematically in figure 3.14. Note that the y-component 

of kx at each angle is a multiple of K IB as dictated by equation 3.1. According to equation 

3.21, a higher growth rate requires a bigger n. However, since Sin(9) < 1, and hence 

n can not be unbounded. For a given configuration the maximum value of n which satisfies 

(3.22) gives the highest growth rate. Denoting this maximum value by n m a x , the internal 

waves are expected to appear with n = nm a x in the wave flume. In the following the observed 

n's are compared with the calculated nmax's. 

To compute , one needs to have k for each experiment. The value of k can be 

calculated theoretically. However, since the exact dispersion relation for wave motion in a 

two-layer system with diffuse interface is not known, the experimental data are used to 

compute k . This minimizes the error in calculating n m a x . Having the experimental values 

of lx and / , k is obtained from 

The final results indicate that for all the experiments the calculated value of nmax coincided 

with the observed n. This clearly shows that the internal waves have occurred at the 

maximum possible angle in the wave flume in order to acquire the highest growth rate. 

3.3.5 Effect of Viscosity on the Interaction 

To study the effect of viscosity on the interaction, two experiments with salt water were 

repeated with diluted corn syrup. The experiments with corn syrup are denoted as series 4. 

The syrup mixture had a density of 1.160 gr/cm and its viscosity was approximately 

22xl0~6m2/sec, 20 times greater than the viscosity of water. In Table 3.4, the 

(3.23) 
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corresponding corn syrup and salt water experiments are grouped together for comparison. 

The time f, gives the time when the internal waves became first visible for cases with 

excitation of the internal waves, and the time t gives duration of the experiment for cases 

without excitation of the internal waves. The measurements indicate that the experiments 

with the corn syrup did not result in appearance of the internal waves. However, the 

experiments with the salt water, with the same or even smaller surface wave amplitude, led to 

generation of the internal waves in a time interval shorter than the duration of the 

corresponding corn syrup experiment. Note that a smaller surface wave amplitude means 

lower forcing for excitation of the internal waves. These experimental findings are in 

agreement with the theoretical results in figure 2.9(c), which indicates that growth rate is a 

decreasing function of viscosity. In chapter 4, by introducing a new interaction model, the 

subject of interaction in a highly viscous medium is studied. The analysis takes into account 

both forcing and dissipating effects of the viscosity on the interaction. 

3.3.6 Effect of Surface Wave Amplitude on the Interaction 

According to the theoretical analysis of chapter 2, the growth rate is an increasing function of 

the surface wave amplitude, see equation 2.40. The analysis also suggests that there exists a 

critical wave amplitude for excitation of the internal waves. To examine these results, two 

experiments with salt water were repeated for a different surface wave height. These 

experiments are tabulated in Table 3.5, where the corresponding tests are grouped together. 

Experiments 5-4 and 5-6 were performed immediately after experiments 5-3 and 5-5 

respectively, and hence the thickness of the diffuse interface layer did not change appreciably 

between the consecutive experiments. 

It is clear from the measurements that increasing the surface wave amplitude has led to the 

appearance of the internal waves in the flume. In experiment 5-3 the internal waves didn't 
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appear during the six-minute experiment. However, increasing the height of the surface wave 

from 1.9 cm to 2.5 cm brought about enough forcing to cause the appearance of the internal 

waves in 3.7 minutes. Also in experiment 5-5 the internal waves didn't appear during the 

7.3-minute experimentation, but increasing the height of the surface wave from 3.8 cm to 4.3 

cm resulted in the appearance of the internal waves in 3.0 minutes. These experimental 

results confirm the theoretical findings. 

3.3.7 Effect of Depth Ratio on the Interaction 

To explore the effect of depth ratio on the interaction, two experiments with the identical 

configuration except in the depth ratio were performed. These experiments are summarized 

in Table 3.6. The parameter kexpd is a measure of deepness of the standing internal wave in 

the lower layer. In experiment 6-1, kexpd is equal to 2.7, which indicates that the internal 

waves are in the intermediate-depth range. According to theoretical results of figure 2.8, 

when the internal waves are in this range, decreasing the depth ratio reduces the growth ratio. 

This is in agreement with the experimental results in Table 3.6. According to measurements, 

the time for the first appearance of the internal waves has increased from 1.2 minutes in 

experiment 6-1 with d / H =0.16 to 3.5 minutes in experiment 6-2 with d / H =0.09 . 

Therefore, the growth rate has decreased by lowering the depth ratio, in accord with the 

theoretical result. It should be mentioned that the thickness of the diffuse layer was almost 

the same in these experiments. 

3.3.8 Comparison with Hill (1997) 

In his experiments with the fresh water and the mineral oil, Hill (1997) observed the same 

three-dimensional internal wave pattern as in here. However, in his experiments only the 

mode n = 2 was observed. This can be attributed to the high density-difference between the 
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two fluids (Ap = 0.176) in his experiments. Theoretically, when the density difference 

becomes larger while the other parameters are kept constant, the internal waves tend to 

become longer (e.g., see equation 3.15 for the deep-water wave case). This leads to a longer 

standing wave across the flume and hence a smaller n, see (3.22). From this discussion it 

can also be concluded that for the sufficiently high density-difference the two-dimensional 

interaction, which corresponds to n = 1, is possible provided viscosity does not inhibit the 

growth. Besides the high density-difference, viscosity of the mineral oil seems to be an 

important factor for the absence of the higher modes in Hill's (1997) experiments. 

According to Table 3.1, the present experiments led to the appearance of the standing 

internal waves with n 's ranging from 3 to 7. In his study, Hill (1997) did not address the 

possibility of occurrence of higher modes nor the fact that the pattern was the result of the 

reflection of the internal waves. 

In comparing the experimental growth rates with the theoretical values, Hill (1997) used 

the results of his inviscid analysis and neglected the effects of the high viscosity of the 

mineral oil on the evolution of the internal waves. This can be a partial explanation to the 

lack of a close agreement between the measured growth rates and the theoretical values in his 

study. 

In his theoretical study, Hill (1997) found that the growth of internal waves is confined to 

narrow bands of density ratio and surface wave frequency. His analysis also indicated that 

there are close upper and lower bounds on the direction angles of the internal waves. Hill 

(1997, p. 105) concludes: 

"The net effect of these various bounds was that instability of the internal waves, i.e., 
internal wave growth, was found to be a very selective process, occurring under very 
specific conditions." 

These findings of Hill (1997) are addressed below in light of the experimental results. 
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First, reference is made to the direction angles of the internal waves. According to table 

3.1, the values of 6 in the experiments ranged between 43° and 83°. These values have 

been plotted against k0H in figure 3.15(a). The range of 0 observed in the experiments 

indicates the internal waves can grow within a wide range of the direction angle, and their 

evolution is not confined to specific bounds. It is also interesting to note that in Table 3.1 the 

range of density ratio over which the instability was observed is not narrow either. The 

instability took place at all density ratios tested, i.e., 1.04, 1.07, 1.12, 1.16. 

Next, the range of the surface wave frequency within which the internal waves were 

excited is considered. The non-dimensional parameter kQH is a measure of the deepness as 

well as the frequency of the surface wave. In the experiments, k0H varies between 0.50 and 

1.80, see figure 3.15(a) or (b). Given that a surface wave is shallow when k0H ~ 0.3, and 

deep when k0H ~ 3.0, it is clear that the instability is not restricted to a narrow band of the 

surface wave frequency. 

In figure 3.15(b) the parameter d IH in each experiment has been plotted against k0H . It 

is seen that the range of the tested depth ratios is not narrow either. The parameter d IH 

varies between 0.09 and 0.33 in the experiments. 

From the preceding discussions, it is concluded that the process of excitation of the 

internal waves is not restricted to very specific conditions and may occur within a wide range 

of each parameter. It should be noted that the actual ranges of the parameters for instability 

in the wave flume might be wider than the tested ones. 

3.3.9 Other Experimental Observations 

Two more phenomena observed in the wave flume are worth mentioning here. These are the 

long-term behavior of the internal waves and the occasional excitation of some harmonic 

internal waves besides the sub-harmonic ones. These are discussed below. 
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As discussed in section 3.3.4, the internal waves grew exponentially in the wave flume. 

However, this process did not continue forever. At some stage the internal waves stopped 

growing further and reached a temporary equilibrium state with a large amplitude. This 

phenomenon which is visible in the companion videotape was accompanied by some mixing 

of the layers. The stabilization process was also detected by Hill (1997) in his measurements 

of the interface displacement. The phenomenon can be explained by considering that it 

occurred when the internal waves had become quite large in amplitude and hence were highly 

non-linear. For a non-linear wave the dispersion relation is a function of the amplitude. This 

implies that the resonance conditions (2.1), initially satisfied by the weakly non-linear waves, 

did not hold, and hence the waves were not in exact resonance any more. However, since the 

triad was still close to resonance, the interface oscillated with a constant, large amplitude 

similar to the motion of a simple oscillator subject to a forcing which has a frequency close to 

the natural frequency of the oscillator (see, for example, Clough and Penzien, 1993). After 

this stable period, the internal waves started decaying very slowly. In long term the internal 

waves seemed to have a cyclic slow growth and decay. However, due to mixing of the layers 

the long-term process was not clearly visible in the wave flume. 

The next observed phenomenon is the occasional excitation of harmonic standing internal 

waves in the flume. These waves, in the form of narrow strips riding on the sub-harmonic 

internal waves, are shown in the first picture (n = 3) of figure 3.7. They were two-

dimensional standing waves across the flume and were occasionally excited simultaneously 

with the sub-harmonic internal waves. However, they had shorter wavelengths than the sub-

harmonic waves, and their amplitudes remained quite small, implying that these waves are 

less unstable than the sub-harmonic ones. In each experiment, the harmonic standing wave 

appeared with a n different from that of the standing sub-harmonic wave. 
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3.4 SUMMARY 

The results of an experimental investigation of the interaction in a laboratory flume were 

presented. The study consisted of six series of experiments. The common phenomenon 

observed in all the experiments was the generation of a three-dimensional internal wave 

pattern at the interface. This was shown to be the result of the reflection of the excited 

internal waves from the flume sidewalls. The observations also indicated that the internal 

wave pattern had two length- and two time-scales. At the large length-scale the pattern had a 

wavelength of twice the surface wavelength and at the short length-scale it had the form of a 

three-dimensional standing internal wave. At the short time-scale, the frequency of the 

interface oscillation was half of the frequency of the surface wave, and at the long time-scale, 

the short length-scale (three-dimensional standing internal wave) was moving slowly along 

the flume. All of these observations were explained theoretically. 

The wavelength of the 3D standing internal wave was measured in each experiment. It 

was found that the diffusivity of the interface has a direct affect on the wavelength. In 

comparing the measured wavelengths with the theory, a closer agreement was obtained when 

the thickness of the diffuse interface was taken into account in the computation of the 

theoretical values. 

To study the evolution of the internal waves, the amplitude of the standing internal wave 

was measured with time in a few experiments. The measurements confirmed the theoretical 

result that the internal waves have an exponential growth in time. However, in terms of the 

growth rate, a close agreement between the experimental and theoretical values was not 

obtained although the values were of the same order of magnitude. This was attributed to the 

diffusivity of the interface in the experiments. As the interface becomes diffuse, the velocity 

profile across the interface smoothes out leading to less interface shear and hence less forcing 
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for excitation of the internal waves, which results in a lower growth rate. The explanation 

was in agreement with the experimental results as the measured growth rates were less than 

those from the two-layer theory presented in chapter 2. 

According to the three-dimensional model, the more oblique the internal waves to the 

surface wave, the higher their growth rate. This result was confirmed by the experimental 

measurements as in the wave flume the internal waves occurred at the maximum possible 

angle from the surface wave. 

According to the theoretical studies of Wen (1995) and Hill and Foda (1996) viscosity has 

a destabilizing effect on the interaction. However, the three-dimensional analysis of chapter 

2 indicates the growth rate of the internal waves decreases with the viscosity of the lower 

layer. This was found in agreement with the experimental results as replacing the salt water 

with a viscous mixture (diluted corn syrup) resulted in the disappearance of the internal 

waves in the wave flume. 

The effects of the surface wave amplitude and the depth ratio on the interaction process 

were also examined in the laboratory. According to the three-dimensional analysis of chapter 

2, the growth rate increases with the surface wave amplitude, and there is a critical surface 

wave amplitude below which the internal waves can not grow. These results were verified by 

the experimental measurements. Also, the theoretical result that when the internal waves are 

not deep in the lower layer, the growth rate decreases as the depth ratio d/H reduces was 

found to be in agreement with the experimental observations. 

Also, reference was made to the work of Hill (1997). Hill's (1997) theoretical analysis 

indicated that there are narrow bands of the surface wave frequency, the direction angle of the 

internal waves, and the density ratio of the layers only within which the internal waves can 

grow. These results were found in conflict with the experimental results as no specific 
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bounds on the interaction process were found. The interaction took place in the laboratory 

flume over wide ranges of the parameters. 

Finally, two more phenomena observed in the wave flume were discussed. These were the 

long-term behavior of the internal waves and the occasional excitation of some harmonic 

internal waves besides the sub-harmonic ones. 



Exp. 
No. 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

Ap 
gr/cm 

hp 
(cm) (cm) 

n 
(cm) 

0 
(deg) 

1-1 16.4 3.9 2.2 0.96 0.040 0.26 17.3 5 10.6 58 
1-2 16.5 3.9 2.8 0.80 0.039 0.19 15.6 7 7.0 65 
1-3 16 3.9 2.0 0.90 0.040 0.29 20.8 6 8.4 68 
1-4 16.5 3.9 3.0 0.84 0.040 0.24 40.1 7 7.0 80 
1-5 16.3 3.8 2.4 1.11 0.040 0.27 26.8 4 14.1 62 
1-6 16.5 3.8 2.7 1.19 0.041 0.34 67.3 4 14.5 77 
1-7 15.8 3.8 3.5 1.30 0.041 0.35 20.1 3 21.1 43 

Exp. 
No. 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

Ap 
gr/cm 

hp 
(cm) (cm) 

n 
(cm) 

6 
(deg) 

2-1 16.0 4.1 3.0 1.21 0.041 0.51 44.0 4 14.1 72 
2-2 16.7 4.1 3.0 1.33 0.040 0.52 32.8 3 21.1 57 
2-3 17.2 4.1 3.7 1.56 0.040 0.43 84.7 3 21.1 76 
2-4 19.8 4.1 3.5 1.57 0.040 0.54 85.0 3 21.1 76 
2-5 19.0 4.1 3.3 1.24 0.040 0.54 55.8 4 14.1 75 
2-6 18.8 4.1 3.5 1.13 0.041 0.57 18.1 4 14.1 52 
2-7 19.1 4.1 3.5 1.10 0.041 0.61 17.0 5 10.6 58 
2-8 18.7 4.1 2.3 0.89 0.040 0.55 19.4 7 7.0 70 
2-9 13.0 4.2 2.6 1.15 0.040 0.45 26.7 4 14.1 62 
2-10 12.9 4.2 2.7 0.91 0.040 0.45 32.0 6 8.4 75 
2-11 13.2 4.2 2.4 0.97 0.040 0.53 35.0 6 8.4 76 

Exp. 
No. 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

Ap 
gr/cm 

hp 
(cm) 

h 
(cm) 

n 
(cm) 

0 
(deg) 

3-1 12.7 4.1 3.6 1.01 0.071 0.11 27.5 3 21.1 52 
3-2 13.2 3.5 2.3 0.79 0.071 0.24 16.4 4 14.1 49 
3-3 13.2 3.4 2.7 0.72 0.072 0.25 20.4 5 10.6 62 
3-4 12.8 3.3 2.2 0.67 0.072 0.24 28.4 6 8.4 73 
3-5 13.2 3.6 2.6 0.69 0.071 0.12 15.2 5 10.6 55 
3-6 16.3 3.6 2.8 0.97 0.072 0.28 21.4 3 21.1 45 
3-7 17.2 3.6 3.2 0.78 0.072 0.28 15.6 5 10.6 55 
3-8 17.1 3.6 2.2 0.70 0.072 0.30 74.6 6 8.4 83 
3-9 17.2 3.6 2.3 0.68 0.072 0.30 16.8 6 8.4 63 
3-10 16.5 3.6 4.0 1.12 0.072 0.30 64.0 3 21.1 71 
1 ly =2B /(« -1), where B is the flume width equal to 21.1 cm. 

Table 3.1 Summary of the experimental series 1, 2, and 3. 
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Experiment 
No. 

lexp 
(cm) 

hwo-layer 
(cm) 

/* 
(cm) 

Observed 
n 

1-1 9.0 11.1 9.4 5 
1-2 6.4 7.6 6.4 7 
1-3 7.8 9.8 8.2 6 
1-4 6.9 8.6 7.1 7 
1-5 12.5 14.5 12.7 4 
1-6 13.8 16.5 14.8 4 
1-7 14.6 19.1 17.2 3 
2-1 13.4 17.0 14.3 4 
2-2 17.8 20.0 16.9 3 
2-3 20.5 25.7 23.0 3 
2-4 20.5 2.6.0 22.6 3 
2-5 13.6 17.8 14.4 4 
2-6 11.1 15.1 11.9 4 
2-7 9.0 12.3 8.8 5 
2-8 6.6 9.7 6.3 7 
2-9 12.5 15.6 12.9 4 
2-10 8.2 10.1 7.3 6 
2-11 8.2 11.5 8.4 6 
3-1 16.7 20.1 19.0 3 
3-2 10.7 13.1 11.3 4 
3-3 9.4 11.1 9.4 5 
3-4 8.1 9.7 8.1 6 
3-5 8.7 10.3 9.3 5 
3-6 15.0 18.5 16.6 3 
3-7 8.8 12.9 11.0 5 
3-8 8.4 10.6 8.6 6 
3-9 7.5 10.0 8.0 6 
3-10 20.0 23.0 20.8 3 

Table 3.2 Experimental and theoretical wave lengths and observed n's. The theoretical n's 
are the same as the observed ones. 

Experiment 
No. (sec-cm)'1 

(^theory 
(sec-cm)'1 

kexp hp 

3-1 0.104 0.139 0.041 
3-3 0.114 0.202 0.168 

Table 3.3 Experimental and theoretical values of a . 
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Experiment 
No. 

Lower 
Layer 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

n Ap 
gr/cm 

texp 
(min) 

ti 
(min) 

4-1 Corn 
Syrup 

13.0 3.3 2.9 0.64 - 0.160 13 -

5-1 Salt 
Water 

13.0 3.3 2.9 0.64 3 0.160 - 2.0 

4-2 Corn 
Syrup 

17.3 3.7 3.4 0.64 - 0.160 9.0 -

5-2 Salt 
Water 

17.3 3.7 3.2 0.64 3 0.160 - 6.5 

Table 3.4 Experiments for evaluation of effects of viscosity. 

Experiment 
No. 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

n Ap 
gr/cm 

texp 
(min) 

ti 
(min) 

5-3 13.0 3.0 1.9 0.64 - 0.160 6.0 -

5-4 13.0 3.0 2.5 0.64 3 0.160 - 3.7 

5-5 17.0 3.0 3.8 0.64 - 0.160 7.3 -

5-6 17.0 3.0 4.3 0.64 3 0.160 - 3.0 

Table 3.5 Experiments for evaluation of effects of surface wave amplitude. 

Experiment 
No. 

H 
(cm) 

d 
(cm) 

Hs 

(cm) 
To 
(sec) 

n Ap 
gr/cm3 

kexp 
d 

texp 
(min) 

ti 
(min) 

6-1 17.0 2.7 3.6 0.70 4 0.120 1.3 - 1.2 
6-2 17.0 1.5 3.6 0.70 5 0.120 0.9 - 3.5 

Table 3.6 Experiments for evaluation of effects of depth ratio. 
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Figure 3.2 Configuration of the problem in the experiments. 



Figure 3.3 Two successive pictures of the surface and internal wave motion in the flume. 



t = T0/2 



Figure 3.4 Continued 



Surface Wave Crest 

Plan of Wave Flume 

Figure 3.5 The four waves comprising the observed 3D standing wave pattern. Waves 1' 
and 2' are the reflections of waves 1 and 2 from the side-walls respectively. 



Resonant Interaction 

Surface Wave 

Resonant Interaction 

Linear Superposition 

3D Interface Pattern 

Figure 3.6 Mechanism of generation of the 3D standing wave at the interface. 
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n=5 

Figure 3.7 Top-side views of 3D standing internal waves with different n's. 



Figure 3.7 Continued. 
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Figure 3.8 Typical density variation across the interface in the experiments. 



100 

Figure 3.9 Comparison of the theoretical wave lengths lnm_,ayer with the measured values 



Figure 3.10 

^exp * 

Comparison of the theoretical wave lengths /, with the measured values 



Figure 3.11 Time variation of the amplitude of the standing internal wave in experiment 3-1 
for a) Hs = 2.10 cm ,b)Hs = 2.60 cm , c) Hs = 3.40 cm, and d) Hs = 3.60 cm. 



Figure 3.12 Time variation of the amplitude of the standing internal wave in experiment 3-3 
for a) Hs = 1.60 cm ,b)Hs = 2.70 cm, and c) Hs = 2.90 cm . 



Figure 3.13 Variation of 7 with a0 in experiments a) 3-1 and b) 3-3. 
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Figure 3.14 Admissible directions of internal wave 1 in the wave flume. 
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Figure 3.15 Plots of the experimental values of a) 6 and b) d/H as functions of LH 
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CHAPTER 4 

TWO-DIMENSIONAL VISCOUS ANALYSIS 

OF INTERACTION 

4.1 INTRODUCTION 

In this chapter, the interaction is studied theoretically in two dimensions based on a fully 

viscous analysis. In the three-dimensional analysis of the interaction in chapter 2 the forcing 

role of viscosity was neglected in the formulation of the problem, and only the damping 

effect of viscosity was considered in the analysis. In this chapter both effects of viscosity on 

the interaction, particularly in a highly viscous medium, are taken into account in the 

analysis. It is worth noting that according to the experimental results, the two-dimensional 

interaction may not be realistic. However, as the formulation of the problem in two 

dimensions is much simpler than in three dimensions, and both roles of viscosity in the 

interaction are still simulated, the viscous interaction is studied in two dimensions. 
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A technique that is capable of handling both low and high viscosity of the lower layer is 

used to find the evolution equations. The results for a typical problem are presented and 

compared with those from the three-dimensional model in chapter 2. It will be shown that 

the two models are asymptotically equivalent when viscosity of the lower layer approaches 

zero. 

A main finding of the present analysis regards the relative significance of the viscous 

damping and the viscosity-induced forcing in the interaction process. It is shown that when 

the lower layer is highly viscous, the viscous damping dominates the interaction process and 

inhibits growth of the internal waves even at large surface wave heights. This is far different 

from the results of the viscous analyses of Hill and Foda (1996) and Wen (1995), whose 

theoretical analysis indicated that viscosity enhances excitation of the interfacial waves. 

4.2 GOVERNING EQUATIONS 

Consider the fluid system shown in figure 4.1. It consists of an inviscid upper layer and a 

viscous lower layer. The depth of the upper layer is denoted by h, depth of the lower layer 

by d , and the corresponding densities by p' and p. The lower layer is assumed to have a 

kinematic viscosity of v. The surface wave is denoted as wave 0 and the two opposite-

traveling internal waves as waves 1 and 2. 

With the assumption of inviscid, incompressible fluids and an irrotational flow, the 

velocity field in the upper layer can be described by 

9 * (4.1) 

3z 
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where 0 is a potential function. In the lower layer, the velocity field can be described by a 

stream function w. 

dw 
u — dz ( 4 2 ) 

dw 
dx 

Definition of the stream function in the lower domain leads to automatic satisfaction of the 

continuity equation. 

In the upper layer, the continuity equation is described by 

V2c/>=0 (4.3) 

and the momentum equations are given by unsteady Bernoulli equation. 

p % +1 p '(<t>2

 +<t>l) + p'+p'gz = C(t) (4.4) 

where p' is the pressure in the upper layer, and the subscripts refer to the corresponding 

derivatives. In the lower layer, the momentum equations can be written as 

x-Momentum pwzt + px - pvV2wz - p(wxwu -wzwzx ) (4.5) 

z-Momentum pwxl -pz- pvV2wx - pg = p(wxwxz - wzwxx) (4.6) 

Elimination of p from the above equations results in the well-known vorticity equation. 

V>, - W > = V*VVZ -VZV
2wx (4.7) 

The advection term makes the above equation nonlinear. 

The above field equations are subject to the boundary conditions at the free surface, the 

two-layer interface, and the solid bed. At the free surface, there is one dynamic and one 
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kinematic boundary condition. The dynamic boundary condition is resulted from the 

assumption of the atmospheric pressure at the free surface. Implementing p' = 0 in the 

Bernoulli equation, equation (4.4), results in 

p'0t+^pX^+^) + p'gz = C(t), z = h + Z(x,t) (4.8) 

where £,(x,t) is the displacement of the free surface. The kinematic boundary condition can 

be expressed as 

£ , - 0 z = - 0 A > z = h + Z(x,t) (4.9) 

which ensures that the fluid particles do not leave the air-fluid boundary. 

At the two-layer interface, there are two kinematic and two dynamic boundary conditions. 

The kinematic B.C.'s are 

r\t-<pz =-(pxrix, z=ri(x,t) (4.10) 

and 

rlt+Vx=-VzTlx> z=ri(x,t) (4.11) 

where r\(x,t) is the displacement of the interface. The dynamic boundary conditions, with 

reference to figure 4.2, can be expressed as 

f = 0, z=ri(x,t) (4.12) 

<722 + p' = 0, z=r)(x,t) (4.13) 

The first equation comes from the fact that the upper layer can not carry any shear stress, and 

thus the shear stress along the interface should be zero. The second one states that the normal 

stress to the interface should be continuous across the boundary. One can use stress 
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transformation rules and write f and a22 in these equations in terms of o~n , c2 2 and x, 

which are components of the stress tensor in x-z directions. The transformation rules in terms 

of the interface displacement are 

^ 2 2 = ^ 2 2 - ^ - 2 7 - ^ + 0 - , , - ^ (4.14) 

T ^ r ^ - f c r ^ - o - , , ) - ^ - (4.15) 
1+7]A I+77, 

Using the above expressions for 622 and f, and the Bernoulli equation for p' at the 

interface, one can rewrite (4.12) and (4.13) as 

T ^ ^ - ( a 2 , - o - „ )-^-T = 0 (4.16) 
I + 77 2 I + 7 7 2 

o 2 2 - ^ - 2 x - ^ + CTu-^-pU,+^(ti+ti ) + 8V) + Qt) = 0 
I + 7 7 2 I + 7 7 2 l+r/2 2 

(4.17) 

Next, equation 4.2 and the constitutive laws between stress and rate of strain in the lower 

layer, i.e., 

an=-p + 2fiux (a) 

a22=-p + 2pwz (b) (4.18) 

r = H(wx+uz), (c) 

are used to rewrite equations 4.16 and 4.17 in terms of w and p (lower layer pressure). 

Mwzz ~V,*)(Vi -1) + = 0, z=r)(x,t) (4.19) 
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{-p-2fiy/xz -2p(-y/xx +Vu)nx+(-p + 2/xy„ )Ux}/( 1+n\ )-

P'(^t+\(<t>x+^z ) + gz) + C(t) = 0 

z=T](x,t) (4.20) 

Equations 4.19 and 4.20 are the appropriate forms of the dynamic boundary conditions at the 

interface for later use. 

The set of boundary conditions for the problem becomes complete with knowing that at 

the solid bed, the horizontal and vertical velocities vanish. These conditions can be written 

as 

Wx =0, z = -d (4.21) 

Vz=0, z = -d (4.22) 

Equations 4.3 to 4.7 along with boundary conditions 4.8 to 4.11, and 4.19 to 4.22 are the 

governing equations for the fluid flow in the two-layer system. 

4.3 FORMULATION OF THE WEAKLY NONLINEAR WAVE 

INTERACTION 

In a weakly nonlinear interaction analysis, it is assumed that the amplitudes of the interacting 

waves are small enough to allow truncation of the governing equations at order e2, where e 

is a typical non-dimensionalized wave amplitude. In the following this assumption is used to 

simplify the governing non-linear equations. 

Simplification of the equations starts with the free surface boundary conditions, i.e., 

equations 4.8 and 4.9. These equations are transferred from the unknown free surface to 

y-h using the Taylor's series expansions of the equations at the undisturbed surface. The 



113 

resulting equations are truncated at 0(e 2), and, as a result, the kinematic boundary condition 

at the free surface reduces to 

£ + ^ - 0 , - 0 ^ = 0 , z = h (4.23) 

and the dynamic boundary condition at the free surface to 

p'<Pl+^P'{<P;+ti) + p'gh-C(t)+p'(<piz+g)^Q, z = h (4.24) 

To eliminate £(x, t) from the equations, the above two equations can be combined. As a 

result, the following equation is obtained after some simplification. 

<t>„ + gt = j-1(ti +tij + U,ti} - I , z = h (4.25) 

which is correct to 0(e2). Similarly, the Taylor's series expansions of the kinematic and 

dynamic boundary conditions at the interface, truncated at 0(e 2), yield 

T], + wx = -wx_7] - wzr}x, z = 0 (4.27) 

(¥a -¥xx) = 4V„VX ~ ( ¥ z z z ~ ) n , z = 0 (4.28) 

p-C(t)+2pvwxz + pj] + p'(<pt+gri) = 2pvwxxrix -2pv(wjr\)x 

-p'^(ti+ti) + ̂ ,^ 

z = 0 (4.29) 

Again, the above equations are correct to 0(e2). 

Equations 4.3, 4.5 to 4.7, 4.9, 4.25 to 4.28, 4.21 and 4.22 are used to perform a weakly 

nonlinear interaction analysis of the problem. Note that in all these equations except 4.29, all 

the linear terms are gathered on the left-hand side, separated from the nonlinear terms on the 
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right hand side. In equation 4.29, the term pj] on the left side produces one linear and one 

nonlinear term at 0( e2). 

Next, it is assumed that three waves, one surface and two opposite-traveling internal 

waves, form a resonant triad. The following kinematic conditions of resonance ensure 

effective and continuous energy transfer between the three waves. 

ft>n =Re[co, ] + Re[co7 ] 
0 1 2 (4.30) 

where u)'s are the frequencies; k's are the wave numbers; and subscript 0 refers to the 

surface wave (traveling in the positive x-direction), and subscripts 1 and 2 refer to the 

positively and negatively traveling internal waves respectively. In the above equations all the 

frequencies and wave numbers can be complex numbers, except co0, which is real. Given 

co0, (4.30) and the linear dispersion relations for waves 0, 1, and 2 form a system of algebraic 

equations from which all the wave numbers and frequencies can be determined. 

The wavelengths of the internal waves computed from the above kinematic relations turn 

out to be small compared to that of the surface wave, consistent with the experimental 

observations. This point will be demonstrated later in the numerical example. Considering 

the fact that the dissipation in short waves is much higher than the long waves, one can 

simplify the analysis by neglecting the attenuation of the surface wave with space; therefore 

k0 is assumed to be real in 4.30. One consequence of this simplification is that k, and k2 

also turn out to be real from the calculations. 

Next, the solution to the governing equations is expanded as power series in terms of the 

amplitudes of the waves. For the surface displacement, it is assumed 

2 2 

x,t) = £0(x,t; + x,t) + £2( x,t) + x,z,t) + 0(e3 ) + c.c. (4.31) 
/=0 j=i 
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where 

£i(x,t) = aiei*i, i=0,l,2 (4.32) 

and for the interface displacement 

2 2 

r](x,t) = Tj0(x,t) + r}l(x,t) + ri2(x,t) + XX V x >z>0 + 0(e3 ) + c.c. (4.33) 
i=0 j=i 

where 

Tii(x,t) = biei*', i = 0,l,2 (4.34) 

In the above equations, the single-indexed terms such as T/(. are first-order terms, and the 

double-indexed terms such as are second-order terms. The quantity t̂  is kjX-CQjt, i = 0 

to 2, and c.c. denotes complex conjugate. The a,'s and &,'s, / = 0 to 2, are half of the 

amplitudes of the waves at order e (linear order) respectively at the free surface and at the 

interface. 

Similarly, the following forms are assumed for(p, ij/ and p. 

2 2 

(f>( x,t) = (p0( x.z.t )+</>,( x,z,t) + <p2( x,z,t)+^^ij( x,z,t) + 0(e3 ) + c.c. (4.35) 

;'=0 ;=/ 

2 2 

y/( x,t) = y/0( x,z,t)+yf1( x,z,t)+y/2( x,z,t)+^^tMfij( x,z,t) + 0( e3 ) + c.c. (4.36) 
i'=0 j=i 

2 2 

p(x,t) = p(z)+p0(x,z,t)+Pi(x,z,t)+p2(x,z,t) + Y^Pij(x,z,t) + 0(e3 ) + c.c. 
i=0 j=i 

(4.37) 

In (4.37), p(z) represents the zeroth-order pressure, which is the static pressure in absence of 

any motion in the system. 
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In a medium with weakly nonlinear waves in resonance, energy is exchanged continuously 

among the triad in a time-scale much longer than the characteristic wave period. Therefore, it 

is justifiable to follow the method proposed by Bogoliubov and Mitropolski (1958) and 

assume that at 0(e) the waves have amplitudes which are weak functions of time as follows. 

^ = 0(e2), i = 0,1,2 (4.38) 
dt 

^t = 0(£2), i = 0,1,2 (4.39) 
dt 

More precisely, the following forms for the variation of ai 's and b{ 's with time are assumed. 

^ = 0(b,b2) (a) 
dx 

db -
-± = O(a0b0) (b) (4.40) 
dx 

db 
= O(a0b1) (c) 

dx 

where symbol ~ indicates complex conjugate. This technique was first adapted by Benny 

(1964) from Bogoliubov and Mitropolski's works on nonlinear oscillations and was applied 

to wave interaction problems. The above assumptions simplify the solution and result in the 

appearance of time-derivatives of the amplitudes in the governing equations at second order. 

After the above assumptions are incorporated into the perturbation scheme, the complete 

solution of the problem can be obtained by solving the resulting equations order by order. 

However, here in a weakly nonlinear interaction analysis, only the solution up to 0(e2) is 

needed. First, zero-th and first order solutions are obtained. In order to develop expressions 

for the variation of at 's and b{ 's, i = 0 to 2, with time, one then needs to carry on to second 

order. At this order, the equations are inhomogeneous with the time variation of the 



117 

amplitudes of the waves appearing in the forcing functions. The sets of governing equations 

have secular solutions at this order unless a solvability condition is imposed on the forcing 

functions. As it will be seen later, this solvability condition gives the desired equations for 

the variation of the amplitudes of the surface and internal waves with time. 

4.3.1 Zeroth-order Solution 

At zeroth-order 

C(t)=p'gh (4.41) 

p(z) = g{p'h-pz) (4.42) 

The above expression for p(z) corresponds to the pressure distribution in the system in 

absence of any motion. 

4.3.2 First-order Solution (linear theory) 

The field equations at 0(e), with subscripts dropped, are 

V 2 0 = 0 (4.43) 

in the upper layer, and 

V y , - W V = 0 (4.44) 

in the lower layer. Similarly, the corresponding boundary conditions are 

<r>„+g<r>z=0 , z = h (4.45) 

£ = f , z = h (4.46) 

*7,=0Z, z = 0 (4.47) 
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v, = -wx, z = 0 (4.48) 

p + 2pvwxz-- Pgri + p'((j),+gri) = 0 , z = 0 (4.49) 

PVZ, + Px-pvV2wz = 0, z = 0 (4.50) 

z = 0 (4.51) 

¥z=0, z = -d (4.52) 

V,=0, z = -d (4.53) 

Solution to the above set of differential equations for a wave with wave number k and 

frequency CO is given in Appendix C. 

4.3.3 Second-order Solution 

Substitution of 4.31 to 4.37 in the governing equations and collection of 0(e2) terms result 

in sets of linear partial differential equations (PDE's) with associated boundary conditions. A 

close inspection of these equations in conjunction with the kinematic relations of (4.30) 

shows possibility of resonance (or semi-resonance as explained later) as the secular terms in 

the solutions may appear at this order. 

For instance, in the set of PDE's at 0(a o£>,), the forcing functions, which are due to 

nonlinear coupling of waves 1 and 0, have terms some of which are in phase with the solution 

to the homogenous problem. This means the nonlinear coupling of waves 1 and 0 is in 

resonance with wave 2, and therefore the secular terms could appear in the solution of the 

interaction problem at 0( aQbx). 

To illustrate the above point, the governing equations at 0(a0£>, ) are derived. First, the 

following convenient form for the linear solution to the motion of wave 2 is assumed. 
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r\2(x,t) = b2e ' 

<p2(x,z,t) = b2f2(z)ei&2 (4.54) 

'y/2(x,z.t) = b2g2(z)e'*' 

p2(x,z,t) = b2rp2(z)e"}2 

The quantities | 2 , p2(z), f2( z), and g 2(z) can be easily determined from the appropriate 

relations in Appendix C. The governing equations at order a0bx are 

V2</>01=0, 0<z<h (4.55) 

l v 0 A- V2(r, X +(r, ) V V 2 ( ^ A ~(¥o IXJV, K-(¥, )X(Wo k) 

+ • 
db, 
dr 

^ 2 

*2 -fc2 s2(z) V 

-d<z<0 (4.56) 

C 0oi A, + g( K K = 

+ \r(<t>o m ),-(h )J<t>0 ),l +\l^ico2f2(z)e'^ 

z = h (4.57) 

C^oi ),-(K)z={-( ^o KWi-(h )xv0\ + j - ^ 6 ^ 2 } ' 2 = 0 ( 4 - 5 8 ) 

^ o i A + ^ o . A — l - f ^ o A ^ . - f r J ^ o i + i - ^ ^ 1 ' z = 0 ( 4 - 5 9 ) 
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{40o KM K+^Wi UVo )x + [(¥0 )xxz ~(¥o L mi+[(¥x )xxz-(¥ )zzz ]%} 

z = 0 (4.60) 

P01 + 2pv( wm )xz + P'[( 0O1 )t + gn0l ] - PGT]0L = 

Pi2v(¥0 )„(fTi)x+2v(y/i )xx(n0 )x -2v[(w0 )arfx+(¥x LV0 7, 

-r[(<P0 )x +(<t)0 )z(h )z +(</>„ ;3TT, +(h ; a r j 0 7 

+1^2(¥0 h '(Wo), m, + [vV2(W, )x-(¥, )x, K I-Pf2(z)^e'*' 
dt 

z = 0 (4.61) 

P O o . ^ + O o i )x-pW2(y/m )z = 

p{Oo )x(Wi )zz +(Wx )x(Vo )a - O o W > )a ~(Wx )z(¥o ) J 

dg2(z) db2 Wz 

dz dt 

-d < z < 0 (4.62) 

(¥o^)x=0, z = -d (4.63) 

(¥oih =°> z = -d (4.64) 

where single indices 0 and 1 refer to waves 0 and 1 respectively. In the above equations, 

symbol ~ denotes complex conjugate. Note that equation 4.61 has been included here just to 

give the expression for p01 in (4.62). Using the kinematic relations of resonance, equations 

4.56 to 4.62 are simplified to 

db2 

dt 

( J 2 dzg2(z) , 2 

dz2 
k2 g2( z) 

-d < z < 0 (4.65) 
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(K K+8(K K = e^'e'6* +^2^.iQJJ2(z)ei^, z = h (4.66) 

(Ho.), ~(K K=B2 e"»e»> A ~ ^ \ z = 0 (4.67) 

(Voi), +(¥oi )x = e^e'* + j - ^ j , z = 0 (4.68) 

(Vo> )a ~ (Vo, L = B4 e"»e'* , z = 0 (4.69) 

pm +2pv(¥oi )„+p'[(<l>01 )t+g710i]-P8^ = PB5 e^e'*- -p'f2(zAe^ , 
dt 

z = 0 (4.70) 

P( Voi K, +( An )x ~ PW 2(VA 0 1 )z = PB6 e^e'* - p^M^e'* , 
dz dt 

-d<z<0 (4.71) 

where Aco2 = Im[co0+cox-co2] = Im[cox-co2], and eAc°2' is an unbalanced term in the 

equations. The functions B0(z) and B6(z) are known functions having a0bx as their 

common factor. Similarly, the constants 5,'s, i = l,2,...,5, are known multiples of a0bx. 

Due to their excessive lengths, Bj's, i = 0 , 1 , 6 , are not presented here. The term eAa}2' has 

appeared in the above equations because unlike the real part, the imaginary part of 

co0 - blx - 0)2 does not vanish in the above equations. However, the internal waves have 

close complex frequencies, so Aco2 is small compared to co2. This will be shown later in the 

numerical example. In the inviscid limit of the interaction, the frequencies do not have 

imaginary parts, and therefore Aco2 = 0 exactly. 

Next, equation 4.71 is used to eliminate pox from equation 4.70. This gives 
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2pvf Voi )m - p(Wo, )a + pW 2 fw m )z + p'[(0O1 )x, + g(n01 )x ] - pg(r/01 )x = 
f , " ds ^ -p'ik2f2(z)+p g p[B5(ik)-B6]eAove^ + 

dz 
db. 
dt 

2 eW2 

z = 0 (4.72) 

Equations 4.55, 4.63 to 4.69, and 4.72 establish a complete set of PDE's and corresponding 

boundary conditions at order (a0b,). 

When Ao)2 =0, i.e., when the waves interact in an inviscid medium, the forcing functions 

can be of the form that produces secular terms te'&1 in the solution. These secular terms 

grow wildly in t and destroy uniformity of the perturbation series. To avoid this, one needs to 

place a condition on the form of the forcing functions. Applying this solvability condition to 

the set of equations gives an equation in which db2 / dt is expressed as a function of a0bx. 

Similarly, one can get db, / dt and da0 / dt from imposing proper conditions on the form of 

the forcing functions at order (a0b2) and (bxb2) respectively. These equations for t-

derivatives of the amplitudes can be solved to give a0, bx and b2 as functions of time, and 

hence the time variations of the waves can be determined. 

In the present case, where due to viscosity Aft), is not zero but is close to it, the forcing 

functions can cause close-resonance behavior in the solution. This again leads to a solution 

that grows in time and hence destroys uniformity of the perturbation scheme, similar to the 

case Aco2 = 0. To avoid this, a technique similar to that used by Rott (1970) in analyzing the 

undamped motion of a double-pendulum close to internal resonance is employed. Closeness 

of Aft), to zero implies that eA<°2' does not vary much with time compared to e'°2, and 

therefore it can be approximated as a constant. With this approximation, the problem can be 

treated as an undamped wave interaction, although viscous effects are present in the 

equations. Since for both weak and heavy viscosity Aft)2 is close to zero, the technique is 

valid for a broad range of damping. 

Next, it is assumed that the solution to the problem at 0( a0bx) has the following form. 
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%,(x,t)=f}m e'6* +c.c. 

4>m(x,z,t) = f0l(z)eid2+c.c. 

\l/0](x,z,t) = g0](z)ew> +c.c. 

(4.73) 

After substituting the above forms in equations 4.55, 4.63 to 4.69, and 4.72; and neglecting 

all complex conjugate parts for the moment, the following equations are derived after 

elimination of f/01. 

fo\(z)-klfJz) = 0, 0 < z < h (4.74) 

g0i""(z)-(k2+k2

2)g;i(z) + k2X2

2gJz) = ̂ ^ -
v 

+ • 
1 db, f J 2 -

v dt 
dg2(z) 

dz 

-o}2

2f0l(z) + gf^(z) = Bl e^'+l2^ico2f2(z)\, 

2 ~k2'g2(z) 

-d < z < 0 

z = h 

(4.75) 

(4.76) 

ik2 gol(z)+foi(z) = (B3-B2)e Aft),' z = 0 (4.77) 

g0l(z) + k2

z g0l(z) = B4e^', z = 0 (4.78) 

\v[-3k2gJz) + g"(z)] + ia2g'jz)+rco2k2fm(z)-(r-l)gk2^^- = 
I CO, 

B5(ik2)-B6+(r-\)g^B2 

co, 
e ^ 2 , + 

• i i , i dg2 , k, \db, 
-nk2f2(z) + -f^ + (\-r)g-±r —-

dz co, dt 

z = 0 (4.79) 
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gm( z) = 0, z = -d (4.80) 

SoiC z) = 0 z = -d (4.81) 

where the primes refer to the derivatives with respect to z. 

The set of equations corresponding to c.c. parts of equations 4.55, 4.63 to 4.69, and 4.72 is 

in fact the complex conjugate of the above system of equations and hence its solution will be 

the complex conjugate of the solution to the above equations. As a result, the complex 

conjugate system does not need a separate treatment. 

The above set of ordinary differential equations and associated boundary conditions do not 

yield a uniform solution unless a solvability condition as discussed in Appendix D is imposed 

on the forcing functions, which are gathered on the right hand sides. This solvability 

condition ensures that at 0(a0b{ ) the original problem has a solution of the form e'°2 and 

not of the secular form t e'dl. Applying the solvability condition from Appendix D1 to the 

forcing functions gives the following equation. 

where a2 is a known constant. 

Similarly, if the above procedure is carried out for the governing equations at O(a0b2) 

and 0(bxb2), the following relations for db, / dt and da0 / dt are obtained. 

db2 

= a2eAco>'a0b, (4.82) 
dt 

db, 
—- = a,e 
dt ' 

(4.83) 

da, •o 
dt 

(4.84) 
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where a, and oc0 are known constants; and Aco]=Im[co2-co] ] and AQ)0 = Im[col+co2] . 

Mathematica® was extensively used to simplify the expressions for the interaction 

coefficients a0, a, and a2. However, even after exhaustive algebraic simplifications, the 

expressions are still too long to be presented here. Simultaneous solution of (4.82) to (4.84) 

gives the amplitudes of the waves as functions of time. 

Considering the fact that the surface wave has much more energy than the internal waves, 

one can simplify the analysis by assuming that the surface wave amplitude does not change 

with time, or a0 is constant. Hence, from now on, equation 4.84 is neglected and a0 is 

treated as a constant in (4.83) and (4.82). 

Now, an attempt is made to obtain an approximate, but useful, solution for bx (t) based on 

the above approximations. By combining (4.82) and (4.83), the following second-order 

differential equation in terms of bx(t) is obtained. 

b?( t)-(Pl-P2 )b[(t)-(axa2aQa0 )bx(t) = Q (4.85) 

where 

j8,. = - / « / " © , . ; , i = l,2 (4.86) 

The quantity j8; is the damping coefficient of internal wave i . It is obtained from the linear 

wave theory and is a positive number. The exact solution to (4.85) is 

b](t) = Cle 2 +C2e 2 (4.87) 

where 

A = ( p,-p2 f +4ala2\a0\1 
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The constants C, and C2 are determined from the amplitudes of the internal waves at 

/ = 0. Assuming Re[axa2 ] > 0, the second term in the solution diminishes rapidly with 

time and hence can be neglected. This assumption will be verified later in the numerical 

example. Also, as the internal waves have close kinematic properties, (/3, - /32 f is nearly 
I 1 2 

zero and hence A ~ 4a,cc2\a01 . As a result, the approximate solution to bx (t) at large t is 

bx(t)~Cxe 2 (4.88) 

where 

a ^ ^ a 2 (4.89) 

with Re[a]>0. From (4.88) and (4.34), the interface displacement due to internal wave 1 

is 

((j1Ji±+ I 
r\x(x,t)«Cxe 2 e" 1 ' "^" (4.90) 

or 

D.ix.t) « C i ; ^ A + ^ f f ; k l
 V f c ^ ^ ^ t t W * } (4.91) 

as a>, = Re[cox ] -//3,. The first term on the right hand side of (4.91) is exponential, and the 

second is oscillatory in time. Note that according to (4.91), the frequency of internal wave 1 

is shifted because of viscosity. Defining y as in chapter 2 and denoting the shifted frequency 

by Q, one has 

£2, = Re[ coj- Im[ a ]\a0\ (4.92) 

y = -(3 + Re[a]\a0\ (4.93) 

where 
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P = 
(P1+P2) (4.94) 

2 

is the average of the damping coefficients of the two internal waves. Note that p and 

Re[a ] are both positive real numbers. 

The solution of b2(t) yields the same expression for y, but a little different expression 

for Q2: 

According to the above expressions, both the growth rates and shifted frequencies are 

functions of the surface wave amplitude; the higher aQ, the higher the growth rates and the 

more shifted the frequencies. The form of y in (4.93) is very similar to that obtained in 

chapter 2. 

4.4 NUMERICAL EXAMPLE AND DISCUSSION 

Consider the case where d = 4.0cm, H = l6.0cm, p' = 1.00gr/cm3, p = l. 12gr/cm 3, 

co0 - 7.85 rad/s, g — 9.%\m/s2, v = 5x lO^m/s2, and a0=2.5cm. The kinematic 

viscosity of the lower layer is 500 times bigger than the kinematic viscosity of water, and the 

amplitude of the surface wave corresponds to the breaking point. 

From simultaneous solution of the kinematic relations of resonance and the dispersion 

relations, one can obtain 

Q2 - Re[ co2]- Im[a ]\ a, o (4.95) 

fc0 = (7.654 + 0.092 /) rad/m , 

kx = 36.15 rad/m , CO, = (4.21- 0.75 i) rad/s, 

•28.49 rad/m, CO = (3.64 -0.63 i) rad/s 
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The interaction analysis yields the following values for a, and cx2. 

a, =3.55-1.42/ (m.sec)'\ a2 =-15.85-3.92/ (m.sec)'1 

With the frequencies and wave numbers determined, the assumptions in the formulation and 

the solution of the viscous interaction problem can be examined. First, from the above 

results it is observed the imaginary part of k0 is very small compared to the real part. This 

justifies neglecting the imaginary part of k0 in the analysis. Also, ACQ, = -Aco2 = /32 - /3, is 

very small compared to the frequency of wave 1 or 2. Therefore, the main assumption in the 

viscous model to take eA<°1' and eAohA' constant in comparison to the time variation of e~"°'' 

and e~,0hJ is also validated. Finally, from the above values Re[a,a2 ] >0, consistent with 

the assumption to neglect the second term in (4.87). Note that these results are not specific to 

this example and are typical of the interaction. 

In the following, the results of the viscous model are compared with those of the three-

dimensional analysis in chapter 2. In particular, attention is paid to the two opposite roles of 

viscosity in the interaction. Viscosity can enhance growth of the internal waves through 

production of higher shear at the interface. At the same time, however, it dampens the 

internal waves. The net effect of viscosity on the interaction is determined by the 

combination of these two counteracting roles. 

As discussed in the previous chapters, Re[a]\aQ\ is a measure of the surface wave forcing 

for excitation of the internal waves, and (3 is a measure of the dissipation rate of the internal 

waves. Figure 4.3(a) shows variations of Re[ a ]a0 / co0 from the two analyses with the non-

dimensionalized viscosity v/(gH3, fn. In derivation of the results of the three-dimensional 

model, it has been assumed that the interaction is two-dimensional and therefore 6, =02 - 0. 

For a viscosity of 5XKT 4 m/ s\ v/(gH3 fn is about 2.5xl0"3. It is seen the results of 

the three-dimensional analysis are valid only for low values of v/(gH3 f'1. As the three-
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dimensional model has an inviscid formulation with regard to the calculation of the 

parameter a , the values of Re[a ]a0 / co0 according to this model is a constant. Of interest 

is that according to the viscous analysis Re[a]a0 /co0 increases with v/(gH3 )W1 at high 

viscosity. In other words, the surface wave forcing increases with viscosity. However, it will 

be shown that the damping effect of viscosity on the interaction is much more important than 

its forcing effect. Figure 4.3(a) also indicates that as expected the viscous model is 

asymptotic to the three-dimensional model when v —> 0. This can be considered as a check 

of the long calculations in the two analyses. 

Variations of /3 / coQ with the non-dimensional viscosity according to the two analyses are 

shown in figure 4.3(b). As seen, the two graphs are asymptotically identical when v —>0 

and remain still close together at large viscosity. Also, it can be seen that /3 / ft)0 increases 

almost linearly with viscosity. 

According to the preceding discussions, a larger viscosity gives rise to a higher surface 

wave forcing as well as a higher damping of the internal waves. It is interesting to examine 

the net effect of viscosity on the growth rate. In figure 4.3(c), y / co0 is plotted as a function 

of v / (gH3, f'1. It is seen that the viscous model predicts that an increase in viscosity 

reduces the growth rate considerably from a positive value at v = 0 to a negative value, 

which means decay, at high viscosity. This can be explained by noting that although both 

forcing and damping increase with viscosity, damping rises faster. The net effect will then be 

a reduction in the growth rate. 

The preceding result is in direct conflict with the findings of Wen (1995), and Hill and 

Foda (1996). Based on their analyses of the interaction in a viscous medium, these authors 

found that for the range of the real fluids, presence of viscosity is necessary for excitation and 

growth of the internal waves. However, the present study indicates that the net effect of 

viscosity is to suppress the instability. To resolve the issue, experiments with both salt water 
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and diluted corn syrup as the lower layer were performed in a wave flume. The results of 

these experiments have been presented in section 3.3.6. The experimentation indicated that 

for the cases in which the internal waves were excited in the salt-water experiments, no 

instability were observed in the corresponding corn syrup experiments. This verifies the 

results of the present study regarding the significance of the dissipation role of viscosity in 

the interaction. 

Another interesting result from figure 4.3(c) is that both the viscous and the three-

dimensional models have predicted nearly the same values of 7 at large viscosity. This can 

be explained by noting that from figures 4.3(a) and 4.3(b), the damping term in equation 4.93 

at large viscosity is much bigger than the forcing term and thus - /3 will be the dominant 

term in the equation. Considering that both models have predicted nearly the same damping 

(3 / co0 for the internal waves, the closeness of the two curves in figure 4.3(c) at large 

viscosity is explained. 

As discussed earlier, viscosity also affects the frequencies of the internal waves. Figure 4.4 

shows variation of non-dimensional frequency, Re[ co, ] / co0, and non-dimensional shifted 

frequency, Q, / co0, of wave 1 with v/(gH3 fn. Note that co, is obtained from the linear 

theory. As seen, the shifted frequency deviates more and more from the linear theory as 

viscosity increases. It is also interesting to note that Re[co, ] / co0 does not change much 

with viscosity and remains approximately equal to 1 / 2. 

4.5 SUMMARY 

The three-dimensional model in chapter 2 considered only the dissipating effect of viscosity 

on the interaction. In this chapter a theoretical model that took into account both forcing and 

damping effects of viscosity was developed. Given the complexity of the viscous 
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formulation, the analysis was restricted to two dimensions. In contrast with the three-

dimensional model, developed for a weak viscosity of the lower layer, the current model is 

not restricted in its ability to handle high viscosity. 

Comparison was made with the results of Wen (1995) and Hill and Foda (1996) regarding 

the viscous interaction. These authors found that growth of the internal waves is critically 

dependent on presence of viscosity. However, the present study indicates that the net effect 

of viscosity on the interaction process is to suppress the internal waves. The model results 

showed that both surface wave forcing and viscous damping of the internal waves increase 

with viscosity, but the net effect is a decrease in the growth rate. This was shown to agree 

with the results of the corn syrup experiments in chapter 3. 

It was shown that as expected the viscous model is asymptotic to the three-dimensional 

model when v —> 0. This can be considered as a check of the long calculations in the two 

analyses. 
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Figure 4.1 Configuration of the problem. 



133 

Figure 4.2 Stresses on a fluid element at the interface. 
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CHAPTER 5 

CONCLUSIONS AND 

RECOMMENDATIONS 

5.1 INTERACTION IN A WEAKLY VISCOUS MEDIUM 

The interaction between a surface and two internal waves in a weakly viscous medium was 

studied theoretically and experimentally in chapters 2 and 3 respectively. In the following, a 

summary of the study is given. 

5.1.1 Theoretical Study 

A conventional wave interaction analysis of the problem was presented in chapter 2. The 

three-dimensional two-layer fluid system was assumed to consist of an inviscid upper layer 

and a weakly viscous lower layer. Viscosity was neglected initially in the formulation of the 

problem, but after deriving the evolution equations the damping effect of viscosity on the 

internal waves was taken into account. The analysis indicated that under certain 
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circumstances a surface wave traveling in a two-layer fluid can excite two internal waves. 

The internal waves are much shorter than the surface wave and propagate nearly in opposite 

directions. The frequencies of the internal waves were found to be almost half of the 

frequency of the surface wave. These results are in accord with the previous theoretical and 

experimental studies as well as the present experimental investigation. 

The interaction analysis indicated that the amplitudes of the internal waves vary as e7' at 

large time. The growth parameter 7 is the sum of two terms: cc|a0|, which is the forcing 

term, and - fi, which is the viscous damping term. The excitation takes place when the 

forcing is high enough to overcome the viscous dissipation of the internal waves, that is, 

when 7 is positive. 

To evaluate the effects of each system parameter on the interaction, a typical example was 

chosen, and a sensitivity analysis was performed by changing each independent parameter 

separately and observing the effects on the properties of the internal waves, in particular, on 

their evolution. The study indicated that the surface wave forcing is most affected by the 

depth ratio d I H, the surface wave frequency, the direction of the internal wave pair, and the 

surface wave height. The density ratio does not seem to have an appreciable influence on the 

forcing. The forcing increases with the surface wave amplitude and the obliqueness of the 

internal waves. 

In terms of dissipation of the internal waves, the density ratio, the depth ratio, the viscosity 

and the surface wave frequency were found to have the biggest effect on the interaction. 

Unlike the forcing, the viscous damping of the internal wave pair was found to be nearly 

independent of the propagation directions of the internal waves. The results also indicated 

that the damping increases as the density difference or the depth ratio d/H approaches zero. 

The damping is large also when the surface wave frequency or the viscosity is high. 
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The parameters that significantly influence the growth rate of the internal waves are the 

depth ratio, the density difference, the viscosity, the surface wave frequency, the direction of 

the internal wave pair, and the surface wave amplitude. It was found that when the depth 

ratio d / H or the density difference is sufficiently small, the internal waves are unable to 

grow. The same is true when the viscosity or the surface wave frequency is high enough. 

These were shown to be the results of the high viscous damping of the internal waves. 

One important finding of the three-dimensional analysis was that the internal waves have a 

higher growth rate when they become more oblique to the surface wave. It was shown that 

the growth rate becomes maximal when the internal waves form a symmetric arrangement 

with the surface wave and have exactly a frequency of co0 /2 . In this situation, the internal 

waves propagate nearly perpendicular to the surface wave. Also, it was found that the growth 

rate is an increasing function of the surface wave amplitude, and for excitation the amplitude 

of the surface wave has to be bigger than a critical value. 

Comparisons were made with the theoretical study of Hill (1997) on the subject. In his 

inviscid analysis of the three-dimensional interaction, Hill (1997) found that there are narrow 

bands of surface wave frequency and density ratio only within which the growth of the 

internal waves is possible. Furthermore, he found that there are close upper and lower 

bounds on the direction angle of the internal wave pair. These were found to be in conflict 

with the present three-dimensional results as well as the experimental findings. Another 

discrepancy between the two analyses is their different predictions of the interaction in two 

dimensions. Hill (1997) found that in an inviscid medium there is no growth of the internal 

waves when the internal waves are in the same plane as the surface wave. However, the 

results of the present analysis and those of Jamali (1997a and b) suggest that even in two 

dimensions the internal waves may grow in an inviscid medium. 
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The differences between the results of the present analysis and those of Hill (1997) stem 

from their different treatments of the second-order equations. To preclude the possibility of a 

secular solution at second order, Hill (1997) sought the solvability condition to be the 

orthogonality of the forcing functions and the homogenous solution. This is correct only 

when the system of equations is self-adjoint. However, in the current problem the systems of 

equations at second order are not self-adjoint, and the correct solvability condition is obtained 

by requiring that the forcing functions be orthogonal to the homogeneous solution of the 

adjoint system (Drazin and Reid, 1981, p 385) as adopted in the present work. 

5.1.2 Experimental Study 

In chapter 3, the results of an experimental investigation of the interaction were presented. 

The common phenomenon observed in all the experiments was the generation of a three-

dimensional internal wave pattern at the interface. This was shown to be the result of the 

reflection of the excited internal waves from the flume side-walls. The observations also 

indicated that the internal wave pattern had two length- and two time-scales. At the long 

scale the pattern had a wavelength of twice the surface wavelength and at the short scale it 

had the form of a three-dimensional standing internal wave. At the short time-scale the 

frequency of the interface oscillation was half of the frequency of the surface wave. At the 

long time-scale the 3D standing internal wave was moving along the flume. All of these 

observations were clearly explained by the theory. 

The wavelength and the amplitude of the standing internal wave were measured in a 

number of experiments. It was found that the diffusivity of the interface has a direct effect on 

the wavelength and evolution of the internal waves. A closer agreement between the theory 

and the experiments was achieved when the thickness of the diffuse interface was taken into 

account to obtain the theoretical wavelengths. However, in terms of the growth rate, the 
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experimental and theoretical values were not in close agreement. This was attributed to the 

diffusivity of the interface in the experiments, which is not taken into account in the 

theoretical analysis. A diffuse interface reduces the surface wave forcing for excitation of the 

internal waves and hence leads to a lower growth rate once the interface becomes diffuse. 

The explanation was found consistent with the experimental results. The experiments also 

clearly confirmed the theoretical result that the internal waves grow exponentially with time. 

According to the three-dimensional model, the more oblique the internal waves to the 

surface wave, the higher their growth rate. This result was supported by the experimental 

measurements, which showed that the internal waves occurred at the maximal possible angle 

from the surface wave. 

The effects of surface wave amplitude on the interaction process were investigated 

experimentally. The results confirmed the theoretical result that the growth rate increases 

with the surface wave amplitude, and that there is a critical surface wave amplitude below 

which the internal waves can not grow. 

Reference was made to the work of Hill (1997). Hill's (1997) theoretical analysis 

indicated that there are narrow bands of the surface wave frequency, the direction angle of the 

internal waves, and the density ratio of the layers only within which the internal waves can 

grow. These results were found in disagreement with the experimental results as no specific 

bounds were found on the interaction process. The interaction took place in the laboratory 

flume over wide ranges of the experimental parameters. Also, in the experiments different 

modes of the standing internal wave were observed. The values of the observed modes range 

from n = 3 to n = 1. However, Hill (1997) did not address the possibility of occurrence of 

higher modes nor the fact that the pattern was the result of the reflection of the internal 

waves. 
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The effect of viscosity on the interaction has been a central issue in the past theoretical 

studies. The three-dimensional analysis of chapter 2 indicates that an increase in the viscosity 

of the lower layer causes a reduction in the growth rate of the internal waves. This result was 

supported by the experiments as the replacement of the salt water with the corn syrup in the 

laboratory flume resulted in the suppression of the internal waves. The experiments also 

confirmed the results of the viscous analysis in chapter 4 that the combined forcing and 

damping effect of viscosity on the interaction is to reduce the growth rate of the internal 

waves. 

Finally, two more phenomena observed in the wave flume were addressed. These were 

the long-term behavior of the internal waves and the occasional excitation of some harmonic 

internal waves besides the sub-harmonic ones. 

5.2 INTERACTION IN A HIGHLY VISCOUS MEDIUM 

The three-dimensional model in chapter 2 considered only the damping effect of viscosity on 

the interaction. In chapter 4 a fully viscous model of the interaction that took into account 

both forcing and damping effects of viscosity was developed. The model had a fully viscous 

formulation, and due to its complexity its development was restricted to two dimensions. 

The viscous model placed no restriction on the viscosity of the lower layer. 

Wen (1995) and Hill and Foda (1996) found that for the range of real fluids growth of the 

internal waves in two dimensions is critically dependent on presence of viscosity. However, 

the viscous study in chapter 4 indicated that the net effect of viscosity is to suppress the 

internal waves and inhibit their growth. According to the results both surface wave forcing 

and viscous damping increase with viscosity. However, the damping rises much faster than 

the surface wave forcing, and hence the net effect of a higher viscosity is to decrease the 
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growth rate. The experiments with the corn syrup presented in chapter 3 are in agreement 

with this theoretical result. It is worth mentioning that like Hill (1997), Wen (1995) and Hill 

and Foda (1996) obtained the evolution equations by requiring the forcing functions be 

orthogonal to the homogeneous equations at second order. This was shown earlier to be 

incorrect and can provide a partial explanation for the discrepancy between the results of the 

present viscous analysis and those of Wen (1995), and Hill and Foda (1996). 

5.3 RECOMMENDATIONS 

In many real situations, the water body is stratified into two layers and is subject to the 

action of the surface waves. For instance, in many lakes and muddy coastal regions a layer of 

fluid mud is present beneath the clear water, and the surface waves continuously disturb the 

interface of the two layers. Similarly, in many stratified estuaries and oceans the water body 

is almost two-layer, and the interface oscillates under the influence of the surface waves. The 

current study has considerable applications in mixing studies of two-layer fluids subject to 

large surface waves. Reference is made to the companion videotape for the experiments with 

salt water and with a sediment bed. Both sets of experiments led to the same instability 

phenomenon. In the experiment with the sediment bed, after a fluid-like layer of suspended 

sediments formed above the bed shortly following the generation of the surface wave in the 

flume, a three-dimensional standing internal wave was observed at the interface of the fresh 

water and the fluidized sediment. 

The study indicates that the interaction of a surface wave with two sub-harmonic internal 

waves growing from the background noise is a strong mechanism for instability of the 

interface. The results suggest that the interface becomes easily susceptible to this type of 

instability under conditions that are commonly realized in nature. The degree of mixing of 
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the two layers after the initial growth of the internal waves depends on the energy content of 

the surface wave; the bigger the surface waves, the faster the energy transfer and the higher 

the mixing. 

The phenomenon of the interaction between a surface and two internal waves has not yet 

been explored in all aspects although the understanding has improved considerably. There 

are a number of sub-areas that still demand further studies. These include, i) study of the 

effects of a diffuse interface on the interaction, in particular, on the forcing, ii) prediction of 

the long-term behavior of the growing internal waves and the corresponding mixing, and iii) 

derivation of simple equations to describe the interaction process. 

In nearly all the physical situations, whether in the laboratory or in nature, there is always 

a diffuse layer present at the interface of the fluid layers. The experiments indicated that this 

diffuse interface reduces the forcing and changes the kinematic properties of the internal 

waves. To have a better understanding of the phenomenon in the real situations, the 

diffusivity of the interface has to be taken into account in the theoretical modeling of the 

problem although this adds considerable complexity to the problem. 

In all the theoretical studies of the problem so far, the problem was formulated assuming 

the amplitudes of the waves are small. However, with the growth of the internal waves their 

amplitudes increase in time until at some point the preceding assumption breaks down. 

Analysis of the phenomenon beyond this point requires a more sophisticated theory as the 

internal waves are finite-amplitude waves and hence non-linear processes are more 

significant than before. In this regard, in the experiments that were allowed to continue for a 

long time it was observed that the internal waves do not have an exponential behavior in the 

long run, see the companion videotape. The observations indicate that after the initial stage 

during which the exponential growth occurs and leads to the substantial amplitudes of the 

internal waves, the waves stop growing and stabilize. However, in a longer run their 
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amplitudes seem to undergo a slow decay and growth with time although due to mixing of 

the layers this was not clearly visible. The stabilization phenomenon was also observed in 

Hill's (1997) experiments. An explanation for the stabilization behavior of the internal waves 

was given in chapter 3. It is believed that the high non-linearity of the internal waves is the 

main cause of this phenomenon. However, the problem demands further study. 

In the present work, Mathematica® was extensively used to perform the long algebraic 

calculations and simplify the interaction coefficients. However, the expressions for these 

coefficients even after exhaustive simplifications are still complex and long. As study of this 

type may have considerable applications in the engineering studies of mixing in the aquatic 

systems, finding simple closed-form expressions to predict the onset of the interfacial 

instability is a need. This can be accomplished by simplification of the problem through 

making further approximations. Mathematically, it can be achieved by incorporating the 

other possible small parameters of the problem into an appropriate multi-parameter 

perturbation analysis. For this purpose, the density difference of the two layers is a potential 

candidate. 
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APPENDIX A 

LINEAR SOLUTION 

Here the solution to the linear equations of motion of a wave in a two-layer inviscid medium 

is presented. The equations of motion are given by (2.3) to (2.10). The wave is assumed to 

move in the x-y plane with wave number k =(kx,ky)and frequency co. The solution to 

the linearized equations of motion for a surface wave can be obtained as (e.g., see Lamb 

1934) 

<t>'(x,y,z) = {C,Sinh( kz) + C2Cosh{ kz )}ei{ **Jr+*<•v-a', > (A. 1) 

<(>(x, y, z) = {D,Sinh(k(z + d)) + D2Cosh{k(z + d))V ( M + A ' V " M ) (A.2) 

$(x,y,t) = ae (A3) 

rj(x,y) = be (A.4) 

where 

ia( gkSinh( kh)- co2Cosh( kh )) 
C l = Vco ( A - 5 ) 

-ia( gkCosh( kh)-co2 Sinh( kh)) 
°2 = Tco ( A ' 6 ) 
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D , = 0 (A.7) 

ia( gkSinh( kh)-co2 Cosh( kh)) 
2~ kcoSinh(kd) ( A ' 8 ) 

b = a 
gkSinh(kh) 

Cosn( kh) — j (A.9) 
or 

In the above equations, a is the amplitude of the surface wave, and the system parameters are 

defined in figure 2.1. The dispersion relation can be written as 

— (co4 - g2k2 )tanh(kh) 
P' , , , / f , . , . +gk- co2 coth( kd) = 0 (A. 10) 

( gk tanh( kh)-CO ) 

For the motion of an internal wave, the above equations are still valid. However, It is 

convenient to write the coefficients in equations (A.l) to (A.4) in terms of the internal wave 

amplitude b: 

-ibco 

C , = — — (A.ll) 

^ ibco\gkCosh(kh) - co2 Sinh(kh)) 
C2= f- — (A. 12) 

-k(co2Cosh(kh)-gkSinh(kh)) 
£>,=0 (A. 13) 

- ibcoCsch( kd) 
D2= (A. 14) 

bo* 
(co2Cosh(kh)- gkSinh(kh)) ( A " 1 5 ) 

The dispersion relation remains the same. 
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APPENDIX B 

RESONANCE SOLUTION 

Here the solution to the governing equations at second order in the three-dimensional 

interaction (chapter 2) is sought. The equations of motion are given by equations 2.3 to 2.10. 

As the free surface and interface boundary conditions are applied on the unknown free 

surface and interface, it is convenient to transfer these equations to the undisturbed fluid 

surfaces using Taylor's series expansion. After truncating the expansions at second order, 

equations 2.5 to 2.9 reduce to 

l+4>'£x+4>;Sy-4>:-<l>'J = o, Z = h (B.l) 

h (B.2) 

z = 0 (B.3) 

r7,+0JnJt+0vnv-0z - M = ° . z = 0 (B.4) 
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P'<p;+y2pWx

2+$y

2+0'z

2)-c'(t)+p'(<t>;z+g)n = 

P<t>,+/2p(<t>2 +f.2 +(t>2)-Q t)+p(<t>tz + g )n 

z = 0 (B.5) 

To simplify the resonance calculations further, equations (B.l) and (B.2) as well as equations 

(B.3), (B.4), and (B.5) are combined together to eliminate linear terms involving £ and rj 

(e.g., see Benny, 1962, for the simplification of the free surface boundary conditions). The 

resulting equations are 

¥„+sK ={~w:2+0;2 + f 2 ) + - f 0 ; } r - { 0 > ; i v - { 0 > ; } v , z = h 
2 g 

<t>.-K = If -<t>: )nl+it-K )n\ , z = o (B.7) 

(</>„ + g0J - rfa + gti) = {(f- - r(t>'x )gr)\ + {0}. - )gr\\y 

+ \{r(<t>l2 +<P'2 +</>} +<t>2 )\ ~^,-rK M, 

z = 0 (B.8) 

where r = p'I p . The above equations are correct to second order. 

The systems of equations at second order are linear and have forcing functions that are 

products of first-order terms. When the resonance conditions (2.1) hold among the waves, 

resonance appears at O(a0bx), O(a0b2), 0{b,b2), and at the corresponding conjugate orders. 

As the calculations at each order are quite similar, here only the equations at O(a0/?,) are 

considered. 

First, the following form for the linear solution to the motion of wave 2 is assumed. 
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T]2(x,t) = b2eidi 

£2(x,t) = b2£2e>»2 -

§'2{x,z,t) = b2f2(z)e*2 

(p2(x,z,t) = b2g2(z)e"}2 

where #2 = k2 x-co2t. The quantities cf2, f2(z), and g2(z)can be easily determined from 

Appendix A. Substituting the expansions (2.11) in the Laplace's equations gives the 

following equations at O(a0bx). 

V 20o, = 0 , 0 < z < h (B.9) 

V> 0 1 =0 - J < z < 0 (B.10) 

The free surface and interface boundary conditions at this order have forcing functions that 

are proportional to e,<>2. For instance, consider equation B.6. At O(a0bx) this equation 

becomes 

I S g ), 

~H )M\ +(<t>0 ),(tih\-{ti )>•(¥{), +(K ),(fl)y l 
+ 2icoJ2(z)^e>»2 

dt 

z = h (B.ll) 

Note that the third equation in (2.13) leads to the appearance of the time derivative of b0 in 

the above equation. It is seen that products of the first-order terms of waves 0 and 1 form 

part of the forcing function. Implementation of the resonance conditions (2.1) in these 

products leads to the appearance of e^2. Consider the product (</>0 ) v ( 0 , ' ) v , for instance. The 
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terms (0O )v and (0') v are proportional to e"5" and e "?l respectively. Hence the term 

eKk0.x-t0ot)-i(.kl.x-co,t) a p p e a r s m m e product. Using the resonance conditions (2.1), 

g;(*o.*-«v)-<-(*,.i-«y> c a n b e Simpiified to e'"2, and hence (0 o ' ) , - (< /O.v becomes proportional to 

e'&1. Similarly, all the other products on the right hand side of (B.ll) are proportional to 

e'^2, and hence (B.ll) can be simplified to 

(0o ' i )„+S (0oi )z = ^ W l +2iC02f2(z)^-ei62, z = h (B.12) 
dt 

where m, is a constant given by 

mxe'»2 = l-MM, ~(0o)v(̂ )v -M),(4>i)z + +-(0,'),(S)4 -
k'Xv(W), +(0O'),(W) . v l -k')v(W), +(0o),(W) , }v 

(B.13) 

Having the linear solutions of waves 0 and 1, m, is obtained as follows. 

m, = ia0/?, — (ft)0ft),(-ft)0
3 +2G)0

2a)1 -2CO0CO2 + co3)+ g2(-k2co0 +k0(2kl xco2 +k0co])))/ 

(o),2Co5/i(fcj/i) - gkxSinh(kxh)) 

(B.14) 

By a similar argument it can be shown that the term e®2 appear as a factor in the forcing 

functions of equations B.7 and B.8 as well. Similar to (B.6), equations B.8 and B.7 at 

O(a0b,) reduce to 

{(0o,)» +g(0oi) J - ^ ) , , + S ( 0 o ' , ) z } = " V ^ 2 +2ico2(g2(z)-rf2(z)} 
db2 

z = 0 (B.15) 

(0o.) z -(0oi) z = ^ 3 « ' ^ > z = 0 (B.16) 
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where m2 and ra3 are constants. The expressions for these constants are quite long. The 

outputs of Mathematica® for m2 and m3 after simplification are given in figures B.l and B.2 

respectively. In the figures, I = V-I and aO = a0. 

Equations B.9, B.10, B.12, B.15, B.16, and the bed boundary condition 

(0oi) z=O, z = -d (B.17) 

form a complete set of equations at 0{\aQb{). It is interesting to note that the associated 

homogeneous equations are the same as those from the linear theory, and hence each of the 

linear waves 0, 1, and 2 is an eigen-solution to the associated homogeneous system. Since 

the term e' ( k 2' x~'° 2' ) appears in the forcing functions with k2 and co2 being the eigenvalues of 

the homogeneous equations, the forcing functions may cause resonance in the system. At 

resonance, the solution takes the form te"*2, which has a secular form. A secular solution 

grows with time and destroys the uniformity of the perturbation expansion. 

To solve the preceding system of equations, the following form for the solution is 

assumed. 

0oi (x,y,z,t) = f01(z)e'^ 

<p0l(x,y,z,t) = gcn(zy»2 (B.18) 

By substituting (B.18) in the governing equations, the following set of ordinary differential 

equations is obtained. 

d'f

i°\iz)-k2

2fol(z) = 0, 0<z<h (B.19) 
dz 

8°\ -k2

2g0l(z) = 0, -d<z<0 (B.20) 
dz 
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g _ ( z ) = ^ + j {z)db2 

dz dt 
z = h (B.21) 

>01 

dz -G>2 801 (z) 
#01 „ 2 

« 2 /oi(z) = m2 + 2i'o)2 (g2 (z) - r/2 (z)} 

^ o i (z) # o i (z) 
= m3, 

z = 0 

z = 0 

(B.22) 

(B.23) 

^goi(z) = 0, z = -d (B.24) 

where fc2 = Since (co2,k2) is an eigenvalue of the associated homogeneous system, a 

non-secular solution exists only if the forcing functions are orthogonal to the homogenous 

solution of the adjoint system. To obtain the desired solvability condition, (B.19) and (B.20) 

are multiplied by F(z) and G(z) respectively, and integrated over the corresponding depths. 

Adding the integrals and applying the Green's theorem result in the following equation with 

the subscripts dropped. 

dz2 

dz dz Ao dz dz A-d 

(B.25) 

Following Drazin and Reid (1981), for instance, the adjoint system is obtained as follows 

(see also Appendix D). 

d2F(z) 
dz2 

k2F(z) = 0, 0 < z < h (B.26) 

d2G(z) 
dz2 

-k2G(z) = 0, d < z <0 (B.27) 
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dz 
z = h (B.28) 

r-ldG(z) 
co2 dz 

+ G(z)-F(z) = 0 z = 0 (B.29) 

dF(z) dF(z) _ r = 0, 
dz dz 

z = 0 (B.30) 

dG(z) 
dz 

= 0, (B.31) 

where F(z) and G(z) are now the solution to the adjoint system. 

It is interesting to note that the adjoint system and the homogeneous form of equations 

B.19 to B.24 are not the same. This implies that the systems of equations at second order are 

not self-adjoint. The difference between the two systems of equations stems from the 

interface boundary conditions. 

Replacing / and g in (B.25) with /01(z) and g0](z) respectively, (B.25) reduces to the 

following orthogonality condition, which is the desired solvability condition. 

(m, + 2ico2f2(z) —-
8 dt 

+ • 
z=h 

G(z)- 8 dG(z) 
co2 dz + 

z=0 

1 dG(z) 
co2 dz 

m2 + 2iC02(g2(z)-rf2(z))^-
dt 

= 0 

(B.32) 

For a similar calculation, see Appendix D. Knowing F(z) and G(z), the above equation 

simplifies to 

db2 — 
dt 2 0 1 (B.33) 
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which is the evolution equation for internal wave 2. The expression for a2 as calculated by 

Mathematica® is given in figure B.3. 

Taking a similar procedure as above for the equations at O(a0b2) and 0(bxb2) leads to 

dbx 

~-r- = a,xa0b2 (B.34) 

da0 

and ~-r- = a0bxb2 (B.35) 

respectively, which are the other desired evolution equations. In chapter 2 it is shown that by 

approximation equation B.35 can be neglected in the analysis, so there is no need to compute 

a0. Mathematica® output for a{ is given in figure B.4. 

The equations at the corresponding conjugate orders, i.e., O{d0bx), O(a0b2), and 

0{bxb2), are the complex conjugates of the equations at O(a0bx), O(a0b2), and 0(bxb2) 

respectively and hence lead to the same evolution equations. 



I aO Conjugate[b^J wj |̂ 4 (ug - u^) 

(Sinh[hk 0l (gSinhthkil (gCothldkil kj5 kj - g Coth[d kg) kg k 2 + r kf ujj - rk§u^] + 
Coshlhkil (g 2 r k|j kj - gCothldkx] kg u 2 + gCoth[dkg] kg kj ujj; - r kj ug u 2)) • 

Cosh[hkg] (SinhlhkjJ 

(-g2 rkg k 2 - gCoth|d kjj k 0 k1 ug + gCoth|dkg] k 2 ug + r kg ug u 2) • CoshlhkjJ 
^-grkgkiwg+grkgk^cj 2+Coth[dk^]kgwgw 2-Coth[dkg]kicjg W j J ) ) ) / 

(g kg (gSinhlhk!) kj - Coshlhki] u 2)) • (Csch[dkg] CschldkjJ 

(g (-Sinh[(d-h) kg] + rSinh[(d-h) kg] + Sinh[(d<-h) kg] • r Sinh[ (d + h) kg]) kg + 
t-1 .r) Cosh[ (d- h) kg] ujj - (1 + r) Cosh[ (d + h) kg] ug2) 

(g (-Sinh[(d - h) kjj • r Sinh| (d - h) k±] • Sinhl (d • h) kjj * r S i n h | (d + h) kj ]) kj . 

(-1 * r) Cosh[ (d- h) kjj u 2 - (1 • r) Cosh| (d+ h) k;i] u 2) 
(kg-k! x) (kgui tug k l .x>) / 

((-1 • r) kg kj ug (gSinhlhki] ̂  - Coshlhk!) u 2)) • — 
ug 

4 (ug - -g Sinh(h kg ] kg « 

? Coth[dkg] CothJdkjJ f-g Sinh[h kg] kg * Cosh[h kg ] wjj) k 1 x Coshfhkg] ug + -

2 
-gSinh[hkg] kg + Cosh[h kg] ug -

(g Cosh[h kg] kg - Sinh[hkg] u(j) [gCoshlhk!] kj - Sinh[hk]J uj) k l , x 1 

gSinhlhkj] kj -Cosh[hk 1] kj^wj 

[4 (Sinh[hkg] (gCothldkgl kg - rug) • Coshlhkg] (gr kg - Coth|dkgl ug)) 

(Sinh|h kj] (-gCothldkjJ kj + r u 2 ) + CoshlhkjJ (-g r kj^ + CothldkjJ w2)) k 2
 y) / 

((-1 + r) kgkj (gSinhlhkjj kj -CoshlhkjJ u^)) 

Figure B . l Mathematica® output for m2. 



aO Conjugate!bjj ui I — (Csch[dkg] kg (gSinh( (d • h) kg] kg - Cosh[ (d + h) kg] wg) 

( S i n h l h k J (gCothldkiJ k x - r y j ] + Cosh[hkiJ (gr kL - Cothldkj] "1))) * 

C s c h l d k J (Sinh|hkg] (gCoth[dkg] kg - rug) *Cosh[hkg] (g r kg - Coth[d kg ] wg)) 

(gSinh[ (d + h) kjj k1 - Cosh[ (dt h) kj] w^) k! x + 

— (Cschldkg! f-gSinhl (d*k) kg] kg • Cosh( (d + h) kgl CJQ) 

(SinhlhkjJ (gCothldkjJ k± - r y f j + CoshlhkjJ ( g r k j - Cothldkul t^i)) kj x) + 

— (Cschldk!) (Sinh[hkg] (gCoth[dkg] kg - rug) + Cosh [h kg] (gr kg - Coth[d kg ] uig 

(-gSinh[ (d • h) k^l k± • Cosh[ (d + h) kjj uj) kj x) • 

— (Csch[dk]J (Sinh[hkg] (gCoth[dkg | kg - rcjg) * Cosh [h kg] (gr kg - Coth[d kg] ug 

(-gSinh[(d,h) kt] k x • Coshl (d • h) k i ] OJ | ) kI.y)JJ/ 
3 C-l * r) k1 (gSinhlhkjJ k1 - Coshlhkj] c^)) 

Figure B.2 Mathematica output for m3. 



II "'I gSinh (hk2]k2-Cosh [hk2]^ J 

(woWj (-^+2(jgwi -2«oui + u?)+g ! ( - k f w 0+ko(koW, + 2w 0ki i X -2a>i k ] - x)))j/' 

(g Wo (-g Smh[h k, ] ki + Coshfh k, ] to?)) + 

L f Coth[dk2] _ lk VJ_ (Csch[dko]ko(gSinh[(d + h)ko]ko - Cosr((d + h)ko]w2)Wi 
I I r r w i J ^ o 

(Sinh[hki](gCoth[dk, ]ki - rwft + Costfhki ] ( g r k ) - Coth[dk, ]<J2))) + 
Csch[d k J (Sii^hko ] (g Coth[ dko]ko - rwg) + Coshfhkg] (gr lq, - Coth[d ko]wg)) 

(gSmh[(d + h)k!]ki -Cosh[(d + h)ki]6)J)k u + 

— (Csch( d ko ] (-g Sinh[ (d + h) ko ] ko + Cosh[ (d + h) ko ] £J§) io, 

(Sinh[hki ] (g Cothf d k , ]k[ - r ̂ ) + CosKh k t ] (gr k, - Cotl< d k, ]w?)) k,_J + 

2- (Csch[dki ] (Sinh[hko] (g Coth[dko ]ko - r <̂ o) + c°sWhko ] r ko - Coth[d ko ]w2,)) ko 
(-gSinh[(d + h) k] ]ki + Cosh[(d + h) k, ]w2) k 2

rJ + 

-5- (Csch[dk1](SmHhk0](gCotydk0]k0-rajg) + CosKhko](grk0-Coth[dko]^)) ko 

(-g Sinh[(d + h) ki ]k, + Cosh[(d + h) k, ]wf) k2„))j/ 

(g (-1 + r) ki (g Sinh[hk, ]k, - Ccsh[hki ]w2)) + — ^ 11k2 <J, | (4 (u 0 - u,) co, 

(Smh[hko](gSinhlhk,](gCoth(dki]l^ki -gCoth[dko]kok2 + rk? co2,-rkg co2) + 
Cosh[hki](g2rk2,ki -gCoth[dki)kgw? + gCoth[d 

koJko ki -rkidjg w?)) + Cosh[hko](Sinh[hki ] 
(-g'rkokj -gCoth[dki]kok, dJ§ + gCoth[dka]k?u§ +rko u§uf) + 

CcsKhk^C-grkoki coo + grkok! co2 + Cotti[d 
k; ]ko £J§ <j? - Coth[d ko ] ki to2)))) / 

(gkok, (gSinh[hk,]k, -Cosh[hki]cj|)) + (Csch[dko]C!ch[dki] 
(g (-Smhf (d - h) ko ] + r Sinh[ (d - h) ko ] + Sinh[ (d + h) ko ] + r Sinh[ (d + h) ko J ko + 

(-1 + 0 Cosh[(d - K)ko]wg - (1 +r) Cosh[(d + h) kojcog) 
(g(-Sinh[(d-h)ki] + rSmh[(d-h)ki] + Sinh((d + h)k1] + rSiii}i[(d+h)kiDki + 

(-1 + r) Cosh[(d - h)k, ]to2 - (1 + r) Cosh((d + h) k, ]w2) 
(ko-ki, x)(kowi+w 0k u))/ 

((-1 +r)koki £JD(gSinh[hki]ki -Cosh[hki ]C02)) + 

1 • ̂ 4(co0 -Wi)|-gSinh[hko]ko + Cosh[hko](j§H to0 

Cc.th[dko]Cothtdki](-gSinh[hko]ko + Cosh[hko]tjg)ki,K 

ki 
r (-g Sinh[h ko ] ko + Cosh[hko ] ^ - ((g Cosbfh 

ko]ko-Smh[hko)£jg)(gCosh[hki]ki -Sinhfh 

kl ]"i) ki,„)/ (g Sinh[hki ]k2 - CoSh[h k, ]ki CJ 2)) 11 + 
>))' 

(4 (Sinh[hko](gCoth[dko]ko-rug) + Cosh[hko](grko - Coth[dko]wg)) 

(SinhIhki](-gCoth[dk,]ki + rco2) + Cosh[hki](-grk, + Coth[dk,]co2))k2 )/ 

((-1 + r)kok, (gSinh[hki]ki -CosHhk,)(jf))jjj // 

r « 2 

^ [llJs^2]+ ^hk 2](-gCo Sh[hk 2]k 2 + S m h [ h k 2 ] ^ 
i\ \ gSinh[hk2]k2-Cosh[hk2]w^ 

( ISinh[hk2]cj2 | ICosh[hk2]to2(gCosh[hk2]k2-SiiJi[hk2]cj|) 
I k2 gSinh[hk2]ki 

Figure B .3 Mathematica output for a2 
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I Cosh[hk, ] f-gCoshlhk,] k, + Sinh[hk, ] w? 
Sinhlhk,} * i — i — — i i i -

gSinh[hk!l ki -Coshlhkjj 

-2 («0«2 H*2« g u 2-2 W | J u ^ u 3 ) * 

g 2 {-k^ 0 . kQ (k Qw 2 • 2wQ k 2 - 1 - 2u 2 k, H))]J / 

(gu 0 (-gSinh|hk 2] k 2 + Cosh[hk 2] * 
L f Cothldk]) _gki | ̂  
I t r ruf J 

_L (Csch|dk 0) k 0 (gSinh[(d.h) kg] k D-Cosh((d. h) kg] ug) w2 

(Sinh{hk 2] [gCothidk 2] k 2 - rŵ j « Cosh{hk 2] ( g r k 2 - Coth|dk 2] CJ^))) • 
Csch[dk 2l 
(Si nh(hkg| (gCothidk 0| k 0 - r w g ) .Coshjhkg) (g r kg - Cothid kg) w§)) 
(gSi<.h[fd,h) k 2] k 2-Cosh|(d. h> k 2 l u ^ ) k 2 x * 

— (Csch|dk Q] (-gSinh[(d*h) k 0] kg * Cosh[<d . h) kg| wg) w2 (Sinh(hk 2] w0 

(gCoth[dk 2) k 2 - rw2,) *Cosh[hk 2] ( g r k 2 - Coth[d k 2 ] a^)) k 2 • 

— (Csch[dk 2] 
k0 

(Sinh[hk Q] [gCoth|dk 0] k g - r ^ ] . Cosh[h kg ]. (g r kg - Coth|d k Q] wg)) 

(-gSinhKd . h) k2) k 2 * Coshl (d • h) k 2| u>\\) k\\ x ) * — (Cseh[dk 2l 
kD 

(5inhlhk 0) (gCoth[dk Q! kD-rwg) . Coshlhkg] (grkp- Coth|dkg] wg)) 

(-gSinh((d*h) k 2| k 2 .Cosh( (d* h) k 2] w|)
 kf,y)jJ/ 

(g (-1 . r) k 2 (gSinh|hk 2] k 2- Cash(hk 2] w|)) * 

— 2 — I k 1 « 2 (wo -w2J w2 (Sinh[hk 0| (gSinh|hk 2] [gCoth[dk 2] kg k 2 - gCoth[d 

k Q] kgkg.rkj'wg-rkgwg) .CoshIhk 2] ( g 2 r kg k 2 - g Cothjd 
k 2] kgwf ,gCoth|dk 0] k 0 k z w | - r k 2 U 8 « | ) ) • 

Cosh|hkg] (Sinh[hk 2] (-g2 r k 0 k\ - g Cothtd k 2 ] kg k 2 wg. gCoth|d 
k Q] k^wg.rkgugwf) .Cosh[hk 2] (-grkgk 2<jg.grkg 

k 2w^-.Cothldk 2] kgwgŵ  - C o t h l d k 0 l k2ugw|)))) / 

( s k 0 k 2 (gSinh[hk 2) k 2 -Coshlhk 2l . 
(Csch[dk Ql Csch[dk 2l (g (-Sinh[ (d - h) kg] . rSinh[ (d- h) kg] . 

Sinh[(d*h) k 0] . r S i n h [ ( d . h) kgl) kfl + (-1 . r) Cosh((d- h) k ^ g -

(1 *r) Coshl (d*h) kg] wg) (g (-Sinh[(d-h) k 2) -
rSin h [ ( d - h) k 2] + Sinh|(d- h) k 2] • rSinh( (d. h) k 2)) k 2 . 

(-1 . r) Cosh[(d-h) k 2 l ^ - ( l * i ) Cosh[ (d + h) k 2] w2,) 

<k0-k2.x> < k 0 u 2 * w 0 k 2 . * ) ) / 
((-1 - r) k 0 k 2 w0 (g5inh[hk 2] k 2 - Cosh[hk 2| w^)) . 

4 ( u Q - u 2 ) -gSinh|hkg] kg .Cosh[hkg] wg . 
w0 I 

Cath[dk 0] Coth[dk 2] (-gSinh[hk D] kg + Coshlh k 0] wg) k 2 x 

-

r j-gSinh[hk 0| kg .Coshlhkg] wg -

(gCoshlhkg] k 0 - Sinh[hkg] wg) [gCosh[hk 2] k 2 - Sinh|h k 2 ] aty k2 x 

gSinh[hk 2] k^ - Coshih k 2 ] k2w£ 

(4 (Sinh|hkg] [gCoth[dkg] kg-rug) .Coshlhkg] j g r k g - C o t h [ d k 0 ] wg)) 

(Sinh|hk 2] [-gCoth[dk 2] k 2 . rw|) + 

Cosh[hk 2] (-grk 2.Coth[dk 2]aj|)) kf y) / 

[(-1 + r) kg k 2 (gSinh[hk 2) k 2 -Cosh[hk 2] •«)]]]/ 

gSinhlhkiJkJ-Coshlhk!] k t«| 

f . ' Coshlhk!] (-gCoshlhkil k : .SinhlKkj] wj) 
1 1 g S i n h l h k j l k x - Coshlhkj] w| 

I Sinhlhk!] w! 1 Cosh|hk 1| wL (gCoshlhk^ kj - Sinhlhkjj wf) 

kj g S i n h l h k i l k\ - Cosh[hk;i] kx wj 

Figure B.4 Mathematica output for a, 
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APPENDIX C 

WAVE MOTION IN A VISCOUS, TWO-

LAYER FLUID 

To find a wave-like solution to the linear equations 4.43 to 4.53, it is assumed that the 

solution has the following form. 

Z(x,t) = aei(kx-°'} 

ri(x,t) = bei(kx-m> 

<t>(x,z,t) = 0(z)ei(kx-") 

y/(x,z,t) = y/(z)ei(h'-m> 

p(x,z,t) = p(z)em-a,) 

(C.l) 

The resulting equations after substituting the above in the governing equations are 

y/zzzz-(k2+X2)ij/zz+k2X2y/ = 0, 

(ico)2$+(ik)(j)z=0, 

-icoa=(j)z, 

0< z < h 

-d<z<0 

Z = h 

Z = h 

(C.2) 

(C3) 

(C.4) 

(C.5) 
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-itob = <l>z, z = 0 (C.6) 

-icob = -ik\j/, z = 0 (C.7) 

p(z) + 2pv(ik)y/z-pgb+p'(-ico^ + gb) = 0, z = 0 (C.8) 

y/zz-(ik)2\{f=0, z = 0 (C.9) 

¥z=0, z = -d (CIO) 

ik\j/ = 0, z = -d (C.ll) 

where in equation C.3 

X^k1-1— (C.12) 
v 

Equations C.2 and C.3 have the general solution 

<p(z) = Ci Sinh(kz) + C2 Cosh(kz) (C. 13) 

xj/(z) = Dl Sinh(kz) + D2 Cosh(kz) + £>3 Sinh( kz) + D4 Cosh( kz) (C. 14) 

The first two terms in C.14 represent the irrotational part of the velocity field, whereas the 

next two terms are the rotational part due to viscosity. The irrotational part dominates in 

regions far from the boundaries while the rotational part persists near the boundaries. 

By substituting C.13 and C.14 in the boundary conditions, except (C.9), b and 

coefficients C,, C 2 , Dy, D2, D3, and D4 are obtained in terms of a . The result is 

c^ia(gkSh-co2Ch) ( C 1 5 ) 

kco 

c^-ia(gkCh-co2Sh) ( C 1 6 ) 

kco 
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_f2iaXvCkSx -k2-X2 +2k2CkCx-2kXSk Sx (. 
• + 

co~ ko)2( XSkCx-kCkSx) 
(idXvCxCk~]) 

idvSAk2 + X2) ,/ , „ 2„ \ 
(C.17) 

D 2 = 
iav(k2+X2 )(gkSh -co2Ch ) 

kco2 
(C.18) 

D3 = 
idvjk1 + X1 -2k2CkCx + 2kXSkSx XgkSh -co2Ch ) 

co2(-CxXSk+CkkSx) 
(C.19) 

D4 = 
2idkv(gkSh -co2Ch ) 

CO 
(C.20) 

and 

where 

b = d 8kS„ A 

co 
(C.21) 

Sh = Sinh(kh), Ck = Cosh(kd), Sx = Sinh(M), 

Ch = Cosh( kh), Sk = Sinh( kd), C, = Cosh( Xd) (C.22) 

Equation C.9 serves to develop the dispersion relation: 

p'(co4-g2k2)Sh 

Ch(gk^-co2) 
+ pgk + p(2k2v-ico)2 

'(2k2-ico/v )[XCkCx-kSkSX]]-2k2X 

(2k2-ico/v)[XSkCx -kCkSx ] 

1p]:\2x\(2k2~i(0/v)~lk[kCkC"~xs's"]' 
{ 2k[XSkCx-kCkSx] 

= 0 

(C.23) 
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APPENDIX D 

SOLVABILITY CONDITION 

The general form of the sets of differential equations and the corresponding boundary 

conditions in chapter 4 is 

LJp(z)] = Sl(z) , 0<z<h (DA) 

L2[q(z)] = S2(z), -d<z<0 (D.2) 

-co2 p(z) + g p'(z) = S,, z = h (D.3) 

q(z) + Rrf- = SA, z = 0 (DA) 
i k 

q"(z) + k2q(z) = S5, z = 0 (D.5) 

z = 0 (D.6) 

q(z) = S7, z = -d (D.7) 

q'(z) = 0, z = -d (D.8) 
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where operators Lx and L 2 are 

L2=^--(k2+X2)^— + k2X2, 
2 dz4 dz2 

Sx and S2 are known functions of z, and S3 to 56 are constants. The primes refer to the 

derivatives with respect to z. For the above system of equations not to yield a secular 

solution, the solution of the associated adjoint system should be orthogonal to the forcing 

functions. In the following the adjoint system as well as the desired solvability condition are 

obtained 

Assume that P(z) and Q(z) are the solution to the adjoint system in the upper and lower 

layer respectively. Equation D. 1 and D.2 are multiplied by P(z) and Q(z) respectively. 

The products are integrated over the respective domains, and the results are added up. 

Finally, after applying the Green's theorem to the integrals, the following is obtained. 

I) h 0 0 

jP(z)Ll[p(z)]dz-\p(z)LJP(z)]dz+\Q(z)h2[q(z)]dz-jq(z)L2[Q(z)]dz = 
0 0 -d -d 

[PP - P'PKZ  + ~ 2V+2V - QTq -(k2+X2 )(q'Q - qQ')]^ 

(D.9) 

The field equations of the adjoint system are obtained by requiring LJ P(z)] and L2[Q(z)] 

be zero: 

L\[P(z)] = 0 , 

L2[Q(z)] = 0, 

0 < z < h 

-d < z < 0 

(D.10) 

(D.ll) 
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The boundary conditions for the adjoint system are obtained by requiring that the right side of 

(D.9) be zero when S3 to 56 are zero. For this to be true, the following equations are to hold 

at the boundaries. 

-co2P(z)+gP'(z) = 0, z = h (D.12) 

Q(z) = 0, z = -d (D.13) 

Q'(z) = 0, z = -d (D.14) 

v Ci) k 
P'(z) —Q(z) = 0, z = 0 (D.15) 

v 

ik ik v co 

Q"(z) + k2 Q(z) = 0, z = 0 (DAI) 

It is interesting to note that the adjoint system and the homogeneous form of equations D. 1 

to D.8 are not the same. This implies that the systems of equations at second order are not 

self-adjoint. The difference between the two systems stems from the interface boundary 

conditions. 

Differential equations (D.10) and (D.ll), and boundary conditions D.12 to D.17 form a 

complete set of equations from which P(z) and Q(z) can be computed. Marthematica® 

was used to find the expressions for P(z) and Q(z): 

P(z) = Cx Sinh(kz) + C2 Cosh(kz) (D. 18) 

Q(z) = Dx Sinh(kz) + D2 Cosh(kz) + D 3 Sinh( fa) + D4 Cosh( fa) (D. 19) 

where C, = 1 (D.20) 
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C 2 = 
-(g kCh-co2Sh) 
(gkSh-co2Ch) 

(D.21) 

- 2 M v 2 c ; ' s ; 

rO>2 

ACAQ/fcv2(2/fc2 + - ) 
v_ 

m2k(ASkCk - kCkSx ) 

2lCxCkik2v2(-kSkSx + kCkCx) 
rco2k(XSkCx -kCk Sx ) 

v2Sk(2ik2 + — ) 
+ • rC02Ck 

v2(2ik2+-) 

rCO 

(D.22) 

(D.23) 

-kv2(2ik2 + — ) 
D3 = • + 

2ikzv2(-XSk Sx+kCk Cx) 
rco2( XSkCx-kCkSx) rco2(XSkCx-kCkSx) 

(D.24) 

2, . 2 

D4 = 
-2iklv 

rco 
(D.25) 

where Sh = Sinh(kh), Ck=Cosh(kd), Sx=Sinh(Xd), 

Ch=Cosh(kh), Sk=Sinh(kd), Cx=Cosh(Xd) (D.26) 

The adjoint system gives the same dispersion relation as by the linear wave theory. Hence, 

its inclusion here is avoided. 

After P(z) and Q( z) are determined, (D.9) changes to 

// u 

\P( z) SJz) dz+\Q(z) S2(z) dz = 

[P(z)S3/gj\z=h + {-Q'(z)S5+Q(z)S6+[-Q"(z) + (2k2 +X2) Q'(z)]Sj\^ 

+ {[Q"(z)-(k2+X2)Q'(z)]S1}\ 
.-=o 

\z=-d 

The above equation is the desired solvability condition. 

(D.27) 


