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Abstract 
 

In the majority of vision applications, sensor calibration is a prerequisite to proper 

use of the sensor for both measurement and control. The objective in camera calibration 

is to estimate a set of parameters to construct a mapping between the 3D position of a 

target point and its 2D image coordinates. This thesis presents an autonomous stereo 

camera calibration technique based on a pinhole camera model with applications in 

industrial outdoor visual servoing systems. An efficient iterative least-squares parameter 

estimation algorithm is used to estimate the camera model parameters. The obtained 

stereo camera model is used to estimate the pose of the target object during the robot 

servoing process. The heavy-duty stereo camera rig is installed on the torso of an outdoor 

3DOF robotic manipulator.  

The stereo camera calibration is entirely an autonomous process as the robot 

moves the calibration tool within its workspace and the stereo camera model is produced 

after the data collection process. The stereo cameras are treated as a single unit and a 

single transformation is obtained for the stereo camera pair in the system. The calibration 

process is fast, efficient and no human interaction is required during the process.  

The developed vision system is capable of detecting the 3D positions of the 

objects within the robot workspace with an average error of 1.93cm (maximum error of 

7.6cm) for a region equal and smaller than the region in which the camera calibration is 

performed. The errors are comprised of errors in camera calibration, robot positioning 

and image processing. The maximum error represents an error of 2.1% of the total robot 

workspace reach. The visual servoing tasks are being performed with an update rate of 

29ms.  

The complete visual servo system, used for pipe handling, has been implemented 

on a combined platform with two main processing units and a fully integrated 3DOF 

torso-mounted robotic manipulator. The processing units include an industrial PC104 

embedded system with 900MHz Pentium III CPU for vision related tasks and an 

industrial Programmable Logic Control (PLC) unit for low level control of the robot.   
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Chapter 1. Overview and Background 

1.1 Introduction 
 

Outdoor machine vision applications have recently gained a lot of attention in the 

automation industry. Contriving visual servoing on outdoor manipulators provides remote 

sensing in different applications such as object placement, welding, component handling 

and so on. Visual servoing opens a vast area for vision guided robotic systems to provide 

closed-loop control using cameras as the main sensors of the system. Vision is a useful 

robotic sensor since it mimics the human sense of vision and allows non-contact 

measurement of the environment ‎[1]. Heavy-duty vision sensors have been manufactured 

by high-tech industries to be employed in extreme conditions and environments. 

Examples of such conditions are extreme weather, extreme humidity, temperature 

between -40
o
C and +50

o
C, wind velocity to 60 km/h, shock and vibration, dust and so on. 

Cameras as the most delicate parts of such visual aided robotic systems have evolved to 

meet these requirements. 

A pipe handling robotic manipulator with applications in the oil industry is 

selected to accommodate the stereo camera rig as a torso-mounted visual servoing 

system. The robotic manipulator designed and fabricated by Roboweld Inc. will be 

referred to as TDH
1
 in this thesis. A position-based look-and-move visual servoing 

method has been explained in detail to provide a comprehensive understanding of the 

performed work.  

A heavy-duty stereo camera rig was designed and fabricated by Motion Metrics 

International Corp. to meet the required environmental effects. In this thesis work, a 

novel direct calibration process for the stereo cameras is introduced and explained in 

detail.  

The developed visual servoing system has been successfully integrated with the 

TDH robotic manipulator over a period of one year. The system passed several testing 

procedures in its real-world environment (on top of the mast of the mobile rig). The 

shortcomings and problem areas were documented to be addressed in future work.  

                                                      
1
 TDH is the abbreviation for Top Deck Handler. This is referred to the robot handling the required tripping 

actions on top deck of an oil well. 



 

                                                                                                                     Page 2 

1.2 Problem Statement and Machine Vision Solutions  

1.2.1 Oil Well Service Industry 

 

The oil well service industry provides the maintenance of the oil wells around the 

world. One of the most dangerous jobs in this area is assigned to a human operator to 

handle the pipes tripped out/in form/to the well. The typical height of the structure where 

the operator stands is 18 meters. The “trip out” action refers to the action of extracting the 

pipes from the well and the “trip in”‎action‎refers to the task of inserting the pipes back 

into the well. The servicing operation is performed on the pipes after they are extracted 

(tripped out) from the well and stacked in the fingers.   

Figure ‎1-1. The TDH robot installed on top deck of a mobile rig 

in Red Deer, Alberta owned by Nabors Canada Ltd. 

Monkey board 

TDH robot with torso-mounted 
stereo cameras 

Stacked pipes 

Oil well 

End-effector (gripper) 
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The employed vision guided robotic manipulator is intended to perform the tripping in 

and out actions. The goal is to replace the human operator with the vision guided robotic 

system. Figure ‎1-1  shows a typical mobile well service rig (a tall mast located on top of 

the well). The TDH robot is installed on the so-called monkey board structure.  

1.2.2 Position-Based Visual Servoing 

 

The robotic manipulator should be able to capture the pipe in real-time during trip 

out action. A torso-mounted position-based look-and-move visual servoing technique has 

been employed on the TDH robotic manipulator to accurately control the robot end-

effector. The vision system provides the desired joint commands to the motion controller 

unit discussed in Section ‎2.1.2. The motion controller (not part of the vision system) then 

guides the robot end-effector to the desired position to capture the pipe and store in the 

predetermined location on the monkey board, during the trip out action.  

1.2.3 Stereo Cameras and Calibration Process  

 

Stereo vision is intended to be employed to perform the 3D position estimation. 

Two heavy-duty monochrome analog cameras have been placed on a bracket mounted on 

top of the TDH robot torso. The two cameras have been carefully aligned in parallel with 

each other and fastened tightly to the mounting bracket. Figure ‎2-5 shows the stereo 

camera rig installed on the TDH torso. The stereo camera system provides the required 

image coordinates to estimate the 3D position of the pipe cross section with the gripper 

motion plane. Different calibration methods have been performed and investigated in this 

thesis and the method satisfying the application requirements has been selected. The 

camera calibration process provides a transformation model to estimate the 3D position 

of the target object using its 2D footprint (image coordinates) in the acquired real-time 

images.  

A calibration technique was employed that meets the industrial requirements of 

the application. The examples of such requirements are: easy to be performed, to be fast 

enough to impose the shortest possible downtime in the operation cycle. 
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The main environmental requirements for the cameras: 

1- Extended temperature from C40  to 85 C   

2- Wider baseline than commercially available stereo cameras due to the close 

distance of the robot reachable space to the cameras. This provides noticeable 

disparity in the image pairs. 

3- Heavy-duty to handle the high amount of shock and vibration 

4- Waterproof 

5- Easy to be installed tightly on the robot 

1.2.4 3D Position Sensing 

 

An accurate 3D position sensing algorithm is required to estimate the 3D position 

of the target object in the robot workspace. The process should be performed in real-time 

to meet the application requirements. The 2D coordinates of the target object should be 

detected in both images captured from the stereo cameras. In this application the pipe 

appear with lower intensity and different width compared to the other objects in the 

image. A 3D reconstruction algorithm is needed to provide the position of enough points 

on the pipe. The equation of the line associated with the pipe should be obtained. As the 

TDH robot workspace is planar, crossing the line with the gripper motion plane provides 

the desired grabbing position to successfully capture the pipe in trip out action.     
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1.3 Review of Previous Work and Proposed Solutions 

1.3.1 Three-dimensional Position Sensing Systems 

3D position sensing can be performed using different methods and sensory 

equipment. In this section the laser scanners and cameras as vision sensors are compared. 

It will then be shown why a camera as a vision sensor has been selected in the proposed 

visual servoing application. 

1.3.1.1 Laser Range Scanning (LRS) 

  A review of Laser Range Scanning (LRS) and 3D laser scanner-based 

positioning systems is provided in this section. The review focuses on the shortcomings 

mentioned in the literature for laser-based positioning systems. It will be described how 

the mentioned drawbacks could affect the accuracy and requirements of the proposed 

visual servoing system.  

 

 

 

 

 

 

 

 

 

3D Laser range scanning method has been widely used in navigation and mobile 

robotics. Object detection and collision avoidance are the main goals in systems using the 

laser scanning methods. As there is no fast 3D scanner available at present, a commercial 

2D Laser scanner that works on the time-of-flight measurement principle and an extra 

servo drive to reach the third dimension can be deployed ‎[2]. Fast data collection with 

this type of sensor is still a challenging problem. In this case accurate synchronization of 

Figure ‎1-2. 3D scanner consisting of a 2D scanner and servo driver 
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the laser measurement and the scanning device is important. The majority of 

commercially available 3D LADAR (Laser Radar) devices are too expensive ‎[3]. A 2D 

Laser scanner provides a vertical scan line and in order to obtain the 3
rd

 dimension, 

mirrors or servo motors can be used. Implementation of a 3D Laser Radar system using 6 

mirrors to form a hexagon-shaped reflector is presented in ‎[4]. Wulf et al. has introduced 

a 3D Laser scanner consisting of a 2D laser range sensor (SICK) and a servo drive 

(Powercube) in ‎[3].  

Scanning rate and 3D reconstruction of the objects in the scene can be a 

challenge. By using a real-time operating system to generate accurate measurement 

timestamps and data correlation upon this timestamps, it is possible to get undistorted 

point clouds within a short scanning time of 4 seconds ‎[2]. Nuchter et al. ‎[5] introduces 

an object localization technique employing 3D laser range scans using a cascade of 

classifiers. The learning process employed in their research has to be executed once for 

training and the classification in the fastest mode requires 300ms. The whole process for 

the accurate object localization in 3D takes 1.4s.   

1.3.1.2 Laser Scanners vs. Cameras 

The main two drawbacks of position sensing systems based on laser scanners are 

the electro mechanical requirements and the processing speed. Servo motor-based 

actuators and mirrors are required to provide the 3
rd

 dimension in the scanning process. 

The outlined visual servoing problem requires a fast processing speed to satisfy the real-

time requirements of live tracking. Camera based 3D position sensing has been selected 

in this research based on the information below: 

 

 Employing cameras in a visual servoing application can help provide a visual 

perception of the environment to the operator using the system. This can be 

extremely advantageous when the visual servoing or 3D position sensing is 

performed in inaccessible and remote locations.  

 Employing a stereo camera system leads to obtaining a 3D mapping of the scene 

without a need for using additional components (actuators and mirrors). In 

scanners, accurate servoing of the laser beam requires a delicate and sophisticated 
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mechanical structure that may get damaged during extensive shock and vibration. 

In fact, using fixed-lens camera-based systems does not require any moving parts 

in the sensory equipment.  

 Image acquisition systems are available for collecting the stereo images with a 

sampling rate of typical 30fps. The image update can be significantly increased by 

employing high speed digital image acquisition sensors (e.g. Firewire). Such 

systems lead frame rates of up to 90fps for images with a resolution of 640x480.  

 High-tech camera manufacture companies provide heavy-duty rugged cameras 

that can perform well in extreme weather conditions and low temperature. These 

cameras have been widely used in the mining and underwater industries and their 

improvement is an ongoing process. 

 Using the color characteristics and histogram information in color and 

monochrome image acquisition respectively, provide useful information to 

localize the objects in 2D images.  

1.3.2 Camera-Based Range Sensing   

1.3.2.1 Available Sensors  

As mentioned in the previous section, a camera-based method has been selected 

over the 3D laser scanning method. In this section a review of single and stereo camera 

sensing systems is provided and then it will be explained why the stereo camera system 

has been selected over single camera case. Before comparing the single and stereo 

camera platforms, it is important to consider what we lose in the single camera case. 

Depth is the most important variable that cannot be extracted from the 2D image 

produced by a single camera alone. However, various augmented systems have been 

employed in various ways to recover the depth as the 3
rd

 required dimension. Structured-

light and biprism-based systems employ a single camera and provide the required inputs 

to a 3D reconstruction engine.  
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 Structured-light (single camera) 

Structured-Lighting was introduced in 1970s as a means of recovering 3D 

shape of objects. It uses the same principle of triangulation that is used in stereo 

vision but avoids the difficulty in matching stereo points as explained in ‎[6].  

Structured-light scanners are widely used for various applications in 

robotics and computer vision. They are especially effective in 3D object bin 

picking and 3D object modeling applications because of the accuracy and 

reliability of the range data yielded ‎[7]. Figure ‎1-3 shows a typical structured-light 

scanning system. 

 

 

 

 

 

 

 
 
 
 

 

Two important conditions that should be always considered in structured-light sensing 

systems: 

1- There should be one or more light sources to illuminate the object of interest.  

2- Occlusion which can be the result of the object shape and its orientation 

should not affect the light source illumination and the camera observation. 

To address the second condition researchers have introduced structured-light 

techniques using dual beam and multiple cameras ‎[7]-‎[9].  

 

 Biprism-based vision system (single camera) 

Lee et al. in ‎[40] proposed a practical stereo camera that uses only one 

camera and a biprism in front of the camera. Biprism is an optical device for 

obtaining interference fringes. The equivalent of a stereo pair of images is formed 

Figure ‎1-3. A conventional structured-light scanning system  
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as the left and right halves of a single charge coupled device (CCD) image using a 

biprism. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Stereo cameras and binocular vision (two cameras) 

Stereo vision systems provide a binocular vision of the target object in 3D 

scene. Stereo matching is generally used to extract the projection of the points on 

the target object in the left and right image plane. A 3D reconstruction algorithm 

uses the obtained stereo points to estimate the 3D position of the target object.  

A stereo camera system consists of two cameras with a certain baseline 

(the distance between the two CCD planes of the cameras) and orientation related 

to a base frame. Stereo vision has been widely used in 3D sensing since it mimics 

the human visionary system. In stereo vision systems, 2D images of an object 

appear with a certain disparity in the left and right images. This disparity is a 

valuable source of information to reconstruct the 3D position of the object using 

triangulation method.  

Stereo camera systems must deal with more input data but can also offer 

accurate 3D information ‎[36]. Twenty one years ago, Kuno et al. ‎[37] introduced 

a robotic system using stereo vision to perform object grasping.  Silva et al. ‎[38] 

designed a stereo vision system for real-time inspection and 3D reconstruction. 

Yamamoto et al. ‎[39] introduced an arm-pointing gesture system using stereo 

cameras. Stereo vision has been widely used in visual servoing applications where 

the eye-to-hand ‎[17]-‎[20] approach is considered for sensor configuration. The 

Figure ‎1-4. Biprism-based vision system 
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main problem of employing stereo cameras for eye-in-hand applications is the 

size of the stereo camera rig that may interfere with the objects in the workspace 

of the robot. 

1.3.2.2 Selection of Single Camera and Stereo Vision 

Non-stereo-camera based vision systems require additional devices and 

components in order to obtain the depth information lost in the 2D image plane. Here are 

the most important reasons why a stereo camera has been preferred over the other 

platforms: 

1- Components such as the light source, laser beam, biprism may not meet the 

required industrial standards for outdoor environment.  

2- The baseline between a stereo camera pair can be adjusted to give accurate depth 

reading over the range required (unlike biprism). 

3- A high laser intensity is required to overcome sunlight and this may be unsafe. 

This can be a disadvantage for systems employing structured-light or laser 

scanners. 
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1.3.3 Visual Servoing and Image Guided Robots 

 

Efforts is the area of visual servoing are too numerous to exhaustively list here. 

Instead some notable efforts that led to the proposed visual servoing system are provided. 

1.3.3.1 Definition of Visual Servoing 

Hutchinson et al. in ‎[1] defines visual servoing as when machine vision provides 

closed-loop position control for a robot end-effector. Shirai and Inoue in ‎[10] refer visual 

servoing to when visual feedback loop can be used to correct the position of a robot to 

increase the task accuracy. The term visual servoing was introduced in 1977 by Hill and 

Park and prior to this introduction, the term visual feedback was generally used. 

Visual servoing can be employed using different techniques. There are two preliminary 

concepts in visual servoing that categorize the techniques to be used in the visual servo 

system design. 

1- Camera configuration refers to where to install the cameras 

2- Servoing architecture refers to how to control the robot using vision 

1.3.3.2 Camera Configuration in Visual Servoing  

Camera configuration (location of the camera on the robotic work cell) in visual 

servo systems can be categorized as follows: 

1- Mounted on the end-effector. This is called eye-in-hand. 

2- Fixed in the workspace. This is referred to eye-to-hand. 

Employing the cameras in the eye-in-hand configuration leads to installing the 

cameras on the robot end-effector. In this scenario, there is known relationship between 

the pose of the camera and the pose of the end-effector. The image of the object is 

dependent on the pose of the end-effector. The eye-in-hand configuration is the most 

popular method of visual servoing and has been extensively described in ‎[11]-‎[16]. 

In the eye-to-hand approach the image of the target is independent of the robot 

motion. In this case the cameras are related to the base coordinate system. Therefore 

knowledge of the robot joint angles does not directly lead to the camera location in the 

eye-to-hand approach. In systems in which the camera location is unknown, a calibration 

process should be employed to obtain the relationship between the cameras and the base 
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coordinate system. The eye-to-hand method is described in ‎[16]. Muis et al. ‎[18] and 

Flandin et al. ‎[19] have introduced a method that incorporates both the eye-in-hand and 

the eye-to-hand techniques to perform the desired visual servoing task.  

 

1.3.3.3 Servoing Architecture in Visual Servoing 

The discussion in this section is based on the tutorial by Hutchinson et al. ‎[1]. 

Visual feedback can be provided either using the image-based perception of the 

environment or the 3D position of the desired object calculated via a reconstruction 

algorithm. As such four categories have been identified as follows: 

1- Dynamic position-based look-and-move (‎[22], ‎[30], ‎[34]): 

When the control architecture is hierarchical and uses the vision system to calculate 

the set of inputs to the joint level controller, making use of inner joint feedback loops to 

stabilize the robot, it is referred to as a dynamic look-and-move structure. Using the 

camera model, the position of the target object is estimated. The setpoint inputs are the 

desired joint angles calculated based on the estimated target position. 

 

2- Dynamic image-based look-and-move (‎[28], ‎[29], ‎[35]): 

In image-based look-and-move architecture the control values are computed on the 

basis of image features directly. A feature space control law is required to calculate the 

desired joint angles.  

 

3- Position-based visual servo (PBVS) (‎[21], ‎[23]) and image-based visual servo 

(IBVS) (‎[23]‎[24]-‎[26], ‎[31]-‎[32]): 

The visual servo structure eliminates the robot controller by replacing it with a visual 

controller. The visual controller is used to compute the joint inputs directly, thus using 

vision alone to control the mechanism. Both position-based and image-based methods 

can be employed in this architecture. Since the term visual servoing has come to be 

accepted as a generic description for any type of visual control of a robotic system, the 

term direct visual servo is used for PBVS and IBVS. 
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1.3.3.4 Comparing Direct Visual Servo and Dynamic Look-and-Move 

Dynamic look-and-move requires a very accurate calibration process ‎[27] and 

could be preferred to direct visual servo because of the following reasons: 

1- The relatively low sampling rates of the vision systems make the direct control of 

a robot end-effector with complex, non-linear dynamics an extremely challenging 

problem. 

2- Many robots already have an interface for accepting Cartesian velocity and 

incremental position commands. 

3- The look-and-move strategy separates the kinematics singularities of the 

mechanism from the vision control. The robot is then considered as an idealized 

Cartesian motion device. 

Because of the above reasons and the available advanced technology, people prefer to 

employ the dynamic position-based or image-based look-and-move for their visual 

servoing tasks. However there are applications in which position-based and image-based 

(PBVS and IBVS) visual servo have been employed. For example Weiss et al. ‎[32] 

introduced an IBVS system that integrates visual servoing with robot movements. They 

have emphasized the design of such a‎“visual‎servo‎control‎system”‎in‎order‎to‎achieve‎

stable and predictable system dynamics. Mahony et al. ‎[31] designed an IBVS control of 

a serial robotic system using linear image features. 

1.3.3.5 Comparing Position-based and Image-based Approaches 

The main drawback of the image-based approaches is that the desired feature (the 

image of the robot end-effector) should be taught to the vision system. This is called 

teach by showing ‎[32]. The advantage of the image-based approach over the position-

based approach is that it does not require precise calibration and modeling as the 

feedback loop is closed in the image space ‎[20]. Image based methods are mostly used in 

eye-to-hand applications ‎[24]. In image-based servoing when the control error is 

calculated directly from image plane measurements, the main drawback would be the 

unpredictability of trajectories in Cartesian space particularly for the large initial pose 

error ‎[22]. However, position-based approach is sensitive to camera calibration and the 

chosen pose estimation algorithm ‎[22]. Another issue in image-based servoing is that 
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near singular configurations of the robot, very large changes in the joint space are 

required for very small Cartesian space changes.  

 The selected architecture in this work is dynamic position-based look-and-move 

and Section ‎1.3.6 explains the reasons why this architecture was preferred.  
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1.3.4 Camera Calibration  

 

Camera calibration has been a long standing research issue in computer and robot 

vision. This survey is mainly focused on stereo camera calibration since this thesis 

employs stereo cameras.  

According to Tsai ‎[41], camera calibration in the context of three dimensional 

machine vision is the process of determining the internal camera geometric and optical 

characteristics (intrinsic parameters) and/or the position and orientation of the camera 

frame relative to a certain world coordinate system (extrinsic parameters). Camera 

calibration can be roughly classified into two categories: Photogrammetric calibration 

and self-calibration ‎[42]. The self-calibration technique is usually employed for moving 

cameras e.g., when the camera is moved by an eye-in-hand manipulator. There are 

reports of self-calibration technique in ‎[43]-‎[46].  

The closest research to the calibration process employed in this thesis is provided 

in ‎[47] and‎[70]. Sid-Ahmed et al. in ‎[47] performed a calibration process for the stereo 

cameras individually using the DLT (Direct Linear Transformation) method. Hence, a 

transformation must be obtained for each camera in the stereo rig. The introduced stereo 

camera calibration method provides a reduced transformation to relate the 3D calibration 

points to their corresponding image coordinates in both left and right image planes. The 

reduced transformation is obtained by adding the equations with equal vertical image 

displacement and representing them as one equation. This assumes that the image 

coordinates in the stereo images (with parallel and coplanar images) share the same 

vertical displacement. 

Studying the literature has revealed that raw data collection (collecting the 3D 

calibration and image points) is an essential step in all calibration procedures. Most of the 

proposed camera calibration techniques use a simple cardboard sheet containing equal 

black and white squares with known dimensions and pose relative to an arbitrary base 

frame. However there are techniques using other calibration tools to perform the 

calibration. Marita et al. in ‎[48] calibrated the cameras using square shape objects with 

printed cross signs on them. Zhang ‎[49] has used a bar with three equally distanced beads 

to calibrate the camera. Mallem et al. ‎[50] introduced a calibration system with a data 
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collection technique using a LED mounted on the end-effector of a robot. The 3D 

position of the LED is known using the robot encoders. This technique is the closest 

research to the calibration method proposed for this thesis.  
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1.3.5 Selection of Stereo Camera Locations 

The eye-to-hand and eye-in-hand camera configurations were discussed in 

Section ‎1.3.3.2. These configurations dictate whether the camera(s) is mounted on a 

location fixed in the workspace or a moving location on the robot, respectively. The 

figure below shows the possible camera locations on the employed TDH robot structure: 

 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

Location 1 and 2 in Figure ‎1-5 show the concept of the eye-to-hand and eye-in-

hand configurations respectively. The stereo cameras employing the eye-to-hand 

configuration can be installed on the monkey board structure. The orientation of the 

stereo camera rig is fixed to the robot base frame in this configuration. The stereo 

cameras employing the eye-in-hand configuration can be installed on the robot end-

effector (gripper). Since most of the eye-in-hand visual servoing systems employ one 

single camera on the robot gripper, the stereo camera rig has not been considered in this 

configuration. A third possible stereo camera rig position is on the top of the robot torso 

as depicted in Figure ‎1-5 and it is referred to as torso-mounted in this thesis.  

Figure ‎1-5. The possible camera locations on the TDH robot structure 

Location #1 
On the MB 
Eye-to-hand 
 

Gripper 
 

Monkey board 
(MB) 
 

Fingers to store 
the pipes 
 

Location #3 
Robot torso 
 

Location #2 
On the gripper 
Eye-in-hand 
 

TDH robot 
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The angular displacement of the TDH robot base (robot torso) is the single DOF 

for the stereo camera rig. The TDH robot with such torso-mounted camera configuration 

acts similar to human body as the eyes are located on the human head. The pros and cons 

of the mentioned camera configurations have been listed in Table ‎1-1 .The table is 

prepared solely for the proposed visual servoing system. 

Table ‎1-1. Camera configuration table of comparison  

 

 

 

 

 

 

Camera 

configuration 
Pros Cons 

Eye-in-hand 

1- Image-based solution is 

easier to implement ‎[11]-

‎[16]. 

 

1- The camera rig interferes with 

the fingers on the Monkey 

board. 

2- The camera may be hit by 

other pipes during the trip 

actions. 

3- Camera may be facing in the 

wrong direction. 

Eye-to-hand 

1- The image does not change 

with the robot 

motion ‎[17], ‎[18].  

2- No need for robot motion 

compensation. 

1- The stationary scene does not 

satisfy the visual monitoring 

requirements for the operators.  

2- Hard to install on the monkey 

board structure due to the 

space constraints. 

3- Great demands on calibration 

accuracy 

4- Asymmetric 3D position 

sensing within the workspace. 

 

Torso-mounted 

1- The tripping actions, pipe 

manipulation and the stored 

pipes can be monitored by 

operators. 

2- The most convenient 

installation position w.r.t 

mechanical constraints.     

3- No rain or sun effects as the 

cameras are tilted down. 

4- Symmetric 3D position 

sensing for the pipes. 

1- The cameras move with the 

robot base angle. 

2- The robot base angle should be 

compensated during the 

servoing tasks. 
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The torso-mounted camera configuration was selected for three main reasons: 

1- Provide a dynamic view of the robot workspace during tripping, pipe handling, 

and stacking phases. 

2- In this configuration the cameras are installed well above the robot workspace and 

can be titled down. This significantly reduces the effects of sun beam and rain in 

the images and on the front glasses of the cameras respectively. 

3- The stereo rig in this location is protected against the possible impacts caused by 

other objects in the workspace.   

4- Due to the symmetry of the workspace as viewed from the camera pair 

perspective, a symmetric 3D position sensing accuracy is achieved. 

1.3.6 Selected Servoing Architecture  

Now‎ that‎ the‎ “torso-mounted”‎ camera‎ configuration‎ has‎ been‎ selected,‎ the‎

servoing architecture should be selected out of the four major architectures discussed 

previously in Section ‎1.3.3.3. Dynamic position-based look-and-move visual servoing has 

been chosen to be used in the proposed visual servoing system. In the following, a quick 

comparison is outlined between position-based vs. image-based methods, as well as 

dynamic look-and-move vs. direct visual servoing. 

 

1.3.6.1 Position-based vs. Image-based Approach 

As discussed in Section ‎1.2, the target object to be grabbed by the robot end-

effector in the trip out action is a pipe located in the reachable workspace of the robot. 

The position-based approach was selected for two main reasons: 

 

1- The TDH robot is a planar manipulator. The objects placed in its workspace can 

be grabbed if their cross section positions with the robot gripper motion plane are 

determined. Considering the pipe as a line in 3D space, intersecting this line with 

the robot planar workspace provides the desired cross section. The equation of the 

line associated with the pipe should be obtained for this purpose. The obtained 

cross section is in fact the desired position for the robot end-effector (gripper). 

The complete algorithm has been provided in Section ‎4.4. Unlike an image-based 
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system which requires the features of the target object and the end-effector to be 

taught to it, a well-calibrated position-based system can perform this process by 

less computation and memory allocation.  

 

2- The robot and the desired visual servoing tasks take place in a remote structure 

with no human operator access. The real-time simulation of the robot as well as 

the instantaneous 3D position of the pipe can be graphically depicted on the 

Graphical User Interface (GUI) in front of the operator monitoring the tasks. The 

3D position of the pipe cross section with the robot planar workspace can be 

derived from a reliable position-based system. In an image-based system the 

robot end-effector is guided to the target object using the observed features and 

the system may not necessary produce any 3D perception of the environment. 

1.3.6.2 Dynamic Look-and-move or Direct Visual Servo? 

The look-and-move architecture is selected for the proposed visual servoing 

system. The TDH robotic manipulator is equipped with a powerful PLC-based closed-

loop position controller and as such, it only makes sense to take advantage of this rather 

than build a separate closed-loop controller. The available motion controller unit requires 

the joint-space commands as setpoint inputs. The control scheme inside the motion 

controller unit performs the coordinated motion control of the robot and guides the robot 

to the desired joint angles and consequently the grabbing position. The look-and-move 

approach is essentially the most appropriate method here to provide the desired joint 

angles by solving the inverse kinematics of the robotic arm for the destination position 

(estimated by the 3D positioning system). 

A definite advantage of the dynamic look-and-move approach is its generality regardless 

of the robot configuration. The stereo camera pair is used as a remote 3D sensing device 

for the pipe that appears within the scene and its dynamic maneuver generates the 

commands to be followed by the robotic manipulator. Due to the fairly simple structure 

of the TDH robot, direct visual servoing may as well produce satisfactory results. 

However, such approach is not considered in this thesis.    
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1.4 Contributions of Thesis 

 

The contributions of the proposed visual servoing system fall into three 

categories. The contributions have been specifically made for the purpose of the unique 

visual aided robotic system and its applications in the discussed industry.  

 

 Outdoor Torso-mounted Visual Servoing using Stereo Vision  

 

 One of the main features of the proposed visual servoing system is its outdoor 

functionality. In this thesis the outdoor functionality is referred to as a stereo camera 

based visual servoing robotic system tolerating the extreme weather conditions 

discussed in Section ‎1.1. The other main feature of the proposed visual servoing 

system is the fact that the cameras are installed on the robot torso and turn with the 

robot base angle. The contribution in this section is the selection of torso mounting 

cameras to make it compatible with human operator as well as robot control.  

Mobile robots are the main robotic systems employing camera(s) for object 

detection and trajectory planning out of doors. The mobile robot in ‎[72] can be an 

example.‎To‎ the‎ best‎ of‎ the‎ author’s‎ knowledge‎ there‎ is‎ no‎ report‎ of‎ such‎ outdoor‎

torso-mounted visual servoing robotic system to be used in the oil well service 

industry or similar industries. However there is at least one report of an indoor robotic 

system with torso-mounted cameras (see ‎[22]). 

 

 In situ Stereo Camera Autonomous Calibration 

 

In a majority of applications, sensor calibration is a prerequisite to proper use of 

the sensor for both measurement and control. Such a calibration method should be 

effective and not to be repeated frequently during the system long term performance. 

The in situ or in place stereo camera calibration has four main advantages not only 

satisfying the application requirement but to be considered in similar industrial visual 

servoing applications: 
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i. The system does not require an extra manipulator to move the calibration tool 

within the workspace of the robot. The in situ calibration tool can be simply 

installed on the robot end-effector. Please refer to ‎3.6.2 for further detail. 

ii. The possibility of camera position misalignment due to shock and vibration is 

high during the pipe handling process. Additionally, there may be a need to 

replace a faulty camera with a new one. The stereo cameras can be recalibrated on 

site in case of such problems. However, one needs to first manually install the in 

situ calibration tool on the robot gripper. The robot manufacture designed the 

gripper structure for fast and easy accommodation of the in situ calibration tool.   

iii. The in situ stereo camera calibration can be started by pressing a button on the 

user interface of the system. The TDH robot moves the in situ calibration tool 

within the robot workspace automatically and after a data collection period of 

approximately 4min, the required camera parameters are estimated.   

iv. Most importantly, the in situ calibration takes into account any inaccuracies in 

camera installation and the TDH robot joint angle readings. It is well-known that 

the calibration of a sensor should be performed at similar conditions to its use. 
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Chapter 2. System Design 

2.1 Overview of System 

2.1.1 Introduction 

The proposed visual servoing system employs a novel platform containing 

industrial PC104 and PLC architectures. The description of the hardware components has 

been provided in Appendix A. The system block diagram containing the main hardware 

components is provided in Section ‎2.1.2. The developed visual servoing system employs 

the torso-mounted camera configuration as the stereo cameras are mounted on the TDH 

robot structure. Sections ‎2.2.1 and ‎2.2.2 discuss the designed stereo cameras and the 

selected camera location on the real TDH robot structure. A position-based look-and-

move architecture was selected to be the visual servoing architecture. Section ‎2.3 

provides the details of the architecture implementation. The kinematics of the TDH 

robotic arm and its relation to the camera frames requires a well defined coordinate 

system assignment. Section ‎2.4 provides the assignment of the robot and camera 

coordinate systems. This section also discusses the employed notation for different points 

and coordinate systems. 

2.1.2 System Block Diagram 

 

The block diagram depicted in Figure ‎2-1 shows the components employed in the 

proposed visual serving system. The system contains the following main components: 

1- TDH manipulator 

2- Stereo cameras 

3- PC104 embedded system 

4- PLC and motion controller units 

5- Servo motor drives 

6- LCD touch screen monitor 

The main focus of this thesis has been placed on the camera configuration, stereo camera 

calibration and the 3D position sensing algorithms. These algorithms together with the 

robot joint-level control (not discussed here) construct the desired position-based look-

and-move visual servoing system.  
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As shown in the system block diagram below, the data channel between the PC104 and 

the PLC/motion controller unit is in charge of the data exchange between these two 

computing devices. A position-based look-and-move servoing process running on the 

PC104 embedded vision system is directly communicating with PLC/motion controller 

via this channel. Section ‎2.5 discusses this communication. 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-1. The proposed visual Servoing block diagram  

Servo motor drives for 3 DOFs PLC and motion controller 

PC104 CPU box 
Frame Grabber and DAQ 

Touch Screen (TS) LCD  

TDH manipulator, Servo motors and encoders 

motion commands 
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VGA 
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Joint angle commands (qd) 
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Stereo camera rig 
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(Pictures‎are‎included‎with‎permission‎from‎Motion‎Metrics‎Int’l‎Corp‎and‎Roboweld‎Inc.) 
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The stereo camera is the only visual sensor employed in the proposed visual servoing 

system. The sub-block associated to this sensor in Figure ‎2-1 falls into four categories 

indicating the organization of this thesis.  

 

 

 

 

 

 

 

 

 

 

The implementation of the torso-mounted camera configuration and the position-

based look-and-move architecture is explained in this chapter. The stereo camera 

calibration methods and the proposed novel stereo camera calibration are discussed 

in ‎Chapter 3. The 3D position sensing algorithm and the proposed method are discussed 

in ‎Chapter 4.   

 

Figure ‎2-2. The stereo camera based visual servoing block diagram 
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2.2 Stereo Cameras and Torso-mounted Camera Location 

2.2.1 Custom-designed Stereo Cameras 

For the purpose of providing a heavy-duty and rugged stereo camera platform, the 

stereo camera mount shown in Figure ‎2-3 has been designed and fabricated to 

accommodate the cameras. 

There are two DOFs for each of the cameras in the fabricated stereo camera rig. 

The DOF on the bottom of the camera stand provides the pan angle and the DOF at the 

joint connecting the camera to its stand provides the tilt angle. The adjustable pan and tilt 

angles were determined by mounting the stereo rig on the robot torso to obtain the 

required viewing angles. Once the angles were determined, specialized mechanical 

fasteners were used to tightly fasten the cameras to the steel mounting bracket. Two cubic 

steel pieces have been welded on the mounting bracket around the camera stand. These 

small pieces will help the camera fasteners to tolerate more vibrations during the robot 

operation. Figure ‎2-3 shows the employed fasteners. 

The relatively long baseline (21in≈53cm) between the camera centers has been 

selected to provide a noticeable disparity between the image coordinates of the object of 

interest located in the robot workspace, about 1 to 3m from the camera planes. 

The pan and tilt angles as well as the camera positions on the mounting bracket have been 

adjusted to construct a stereo vision sensor such that: 

1. The CCDs are coplanar 

2. The right CCD is horizontally shifted  parallel to the left CCD 

3. Stereo matching points in the left and right images have the same vertical 

displacement from the images origins. Consequently, the disparity between 

the stereo image points is in their horizontal displacement only. The 

specification of such geometry has been explained in detail in Section ‎4.2.  

 

Figure ‎2-4 shows the stereo images captured form the left and right cameras on 

the stereo rig. The stereo coordinates of a point on the pipe as well as some other random 
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stereo points have been highlighted to show the observed disparity in the images. The 

FOV of the stereo cameras has been adjusted to satisfy the visual requirements of the 

servoing system. Such requirements are the appearance of the end-effector in both images 

and to the ability to see the fingers accommodating the tripped out pipes. The employed 

coordinate system and the notation will be discussed in Section ‎2.4 in detail. 

 

 

 

 

 

 

 

 

 

Figure ‎2-3. The designed torso-mounted stereo camera rig (Courtesy 

of‎Motion‎Metrics‎Int’l) 

Figure ‎2-4. The real-world stereo images of the proposed visual servoing system  

Installed on a mobile service rig in Red Deer, Alberta, owned and operated 

by Nabors Canada Ltd. 
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2.2.2 Torso-mounted Stereo Cameras 

As discussed in Section ‎1.3.5, the torso-mounted camera location was selected for 

the proposed visual servoing system. Figure ‎2-5 shows the stereo cameras mounted on the 

robot torso at 190cm height above the monkey board structure surface. The TDH robot is 

a 3 DOF manipulator with two revolute joints and one linear actuator (to provide the 

radial motion). As shown in Figure ‎2-5, the motion of the stereo camera rig installed on 

the robot torso is independent of the last two DOFs ( 2d  and 3 ). The robot base angle 1  

is the only DOF providing an angular motion for the stereo camera rig. The estimated 3D 

position of the object of interest is local to the robot torso. Section ‎4.1 discusses how the 

robot base angle 1  must be compensated during the servoing task. It discusses the 

required homogenous transformation to transfer the estimated 3D position to the base 

(world) coordinate system fixed to the monkey board 0 0,o C .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-5. The stereo cameras rig installed on the TDH robot torso 
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Robot planar workspace ( ) 

. X

 

The pipe cross section 



 

2.3 Position-Based Look-and-Move Visual Servoing 
 

The position-based look-and-move servoing architecture was selected in 

Section ‎1.3.6. The concept of the selected architecture can be explained more elaborately 

using Figure ‎2-6. An appropriate usage of the developed 3D position sensing system 

discussed in ‎Chapter 4 is to estimate the cross section of the pipe and the planar 

workspace of the robot for trip out action. The TDH robot end-effector (gripper) moves 

on a plane horizontal to the monkey board structure. This plane contains the robot base 

origin and is coplanar with the plane formed by the 0i  and
0

j  axes of the base frame 

(refer to Section ‎2.4 for more details). The estimated cross section of the pipe is in fact 

the desired position for the robot end-effector. This explains the position-based 

functionality of the servoing architecture. 

Using the estimated desired end-effector position and the inverse kinematics of the 

TDH robotic manipulator allows one to calculate the robot desired joint angles. As the 

inverse kinematics of the TDH robot is a straightforward process, it has not been 

discussed here. The calculated joint angle commands are sent to the motion controller 

unit to be used in the closed-loop joint-level control of the robot.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎2-6. The Position-based (pipe cross section) servoing architecture 
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The block diagram depicted in Figure ‎2-7 shows the concept of position-based 

look-and-move architecture. The calculated joint-space commands ( dq ) are sent to the 

motion controller unit.  

 

  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎2-7. Position-based look-and-move visual servoing block diagram  
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2.4 Coordinate System Assignment 
 

The Denavit-Hartenberg (DH) frame assignment of the TDH robotic manipulator has 

been shown in Figure ‎2-8. 

 

 

 
 
 
 
 
 
 
 
 
The frame assignment for the TDH robotic arm and the stereo cameras has been shown in 

Figure ‎2-9.  

Figure ‎2-8. DH frame assignment for TDH robot 

Figure ‎2-9. Frame assignment for 

the TDH arm and the stereo cameras 
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The description of the employed notation in Figure ‎2-9 is as follow:  
 

-  0 0,o C is the base (world) coordinate system where 0 00 0
C i j k    is a right-

handed Cartesian frame with 0o  as its origin. This coordinate system is fixed to the 

monkey board. 

- Point X  is represented in  0 0,o C by its homogenous coordinates  0
0 0 0 1

T
X x y z .  

-  1 1,o C  is assumed to be attached to the TDH robotic manipulator link 1 (the torso).  

-  ,lcam lcamo C  and  ,rcam rcamo C  are the left and right camera coordinate systems 

respectively with lcamo  and rcamo  as the camera centers. 

- Point X  is represented in the left and right camera coordinate systems  

by lcamX  and rcamX  respectively.  

- The projection of point X  in the 2D image plane of the left camera is point lx  and 

it is represented by the homogeneous coordinates  1
Tl

l lx x y  in ,lp lpo C . 

- The projection of point X in the 2D image plane of the right camera is point 
r

x  and 

it is represented by its homogeneous coordinates  1
Tr

r rx x y  in ,rp rpo C . 

- The representation of a point in a coordinate system is referred to the coordinates of 

that point in that coordinates system in this thesis. 

 

The DH table of parameters for the TDH robotic arm is as follow: 

Table ‎2-1. DH table for the TDH robot 

Link ia  i  id  i  

1 0 
2


  0 

*

1  

2 0 
2


  

*

2d  0 

3 3a  
2


  0 

*

3  

 

 The homogenous transformation between the robot gripper frame and the robot base 

frame can be written as follows: 

31 2 2 2
0 0 1 2 2 3

3 1 2 3

0

0 1 0 1 0 1

i i ikk

T T T

e e e d k e e a i
T T T T

            
       

          
 (‎2-1) 

* variable joint 
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Point X  is transformed to the camera coordinate systems using the homogenous 

transformations based on the pinhole camera model and the DLT approach (explained in 

Section ‎3.2: 

1 0

1 0

l rp

lw x H H X  (‎2-2)  

1 0

1 0

r lp

rw x H H X  (‎2-3) 

Important note: In projective geometry lw  and rw  are arbitrary scale factors according 

to the pinhole camera model ‎[62]. In fact, the quantities in projective geometry are 

determined up to a scale factor ‎[63]. Ignoring scale factors lw  and rw  in (‎2-2) and (‎2-3) 

constructs a weak perspective under an affine camera model.  

1

0H is a known transformation and can be written as follows: 

1 2
1 0 1

0 1

0
( )

0 1

ik

T

e e
H T

  


 
  
  

 (‎2-4) 

In fact, (‎2-2) and (‎2-3) can be written in the following form considering the fact that 

vertical pixel coordinates in the stereo images are equal ( l ry y y  ): 

1 0

0

( )

l l

l r

l

r r

r

w x

w w y

H H Xw

w x

w

 
 
 

 
 
 
  

 (‎2-5) 

In Section ‎3.4, a stereo camera calibration method will be introduced to estimate the 

matrix H .  
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2.5 Hardware Interrupt Driven Data Communication 
  

Based on the principles of the position-based look-and-move visual servoing 

architecture, the vision system (PC104) transmits the joint-space commands to the PLC 

and the motion controller units. The vision system does not perform the joint level 

control of the robotic arm as the motion controller unit performs this task. All data 

acquisition and transmission is via hardware interrupts. In particular the camera frame 

acquisition and joint-space command generation are performed in real-time with 30ms 

update rate. A delay of less than 30ms is introduced due to the algorithm processing load. 

This delay in its worst case may decrease the update rate of 30ms to approximately 28ms. 

Unlike the software-generated interrupts, the hardware interrupts guarantee a stationary 

update rate between the PC104 and the PLC systems.  

A bilateral RS232 serial communication link has been established to provide the 

data communications between the PC104 and PLC systems.  

Figure ‎2-10 shows the schematic of the hardware interrupt driven software threads 

running inside the proposed position-based look-and-move visual servoing system. 

 

 

 

 

 

 

 

 

 

 

 

 

Note: dq  is the desired robot joint angles. 

Figure ‎2-10. The hardware interrupt driven threads 
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Chapter 3. Stereo Camera Calibration 

3.1 The Finite Camera Projection Model 

3.1.1 Camera Extrinsic and Intrinsic Parameters 

The general pinhole camera projection model is product of two matrices: 

1- A 3x4 matrix of intrinsic parameters.  

2- A 4x4 matrix of extrinsic parameters. This matrix holds the rotation and 

transformation parameters of the camera pose and orientation relative to an 

arbitrary coordinate system. In the proposed visual servoing system, the matrix of 

extrinsic parameters holds the rotation and transformation parameters between the 

camera coordinate system and the coordinate system attached to the robot torso 

( 1 1,o C ) indicated in Figure ‎2-9.  In this figure such transformation is shown by 

1
lcam H  and  1

rcam H  for the left and right cameras, respectively. 

A matrix 3 4P   relates the coordinates of a point X  to its image plane coordinates l x  for 

the left camera: 

1l

l lw x P X  (‎3-1) 

where   

1 2 3

4 5 6

1

7 8 9

0

0 0 0
0 1

0 0 1 0
0 0 0 1

x

p

ylcam

l pT

z

r r r t
f s x

R t r r r t
P K H K f y

r r r t

 
   

             
    

 

 (‎3-2)  

3 3K  : Matrix of intrinsic camera parameters 

3 3
R


: Matrix of extrinsic orientation parameters 

3 1t  : Matrix of extrinsic translation parameters 

f : The camera focal length 

s : The angle between the x and y sensor axes of the CCD sensor 

px  and py :  The principal point in x and y directions 

l x : The image plane coordinates of X  

1 X : The homogeneous coordinates of X  in the robot frame 1C  

lw : The scale factor according to pinhole camera model 
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3.2  Estimation of Camera Model Using DLT Method 

3.2.1 Introduction  

Estimation of the camera intrinsic and extrinsic parameters has been a long 

standing research in computer vision. In this thesis, extraction of the physical (intrinsic) 

and extrinsic parameters was not considered. Instead, the camera projection model in 

Equation (‎3-2) can be written in the format of a Direct Linear Transformation (DLT) 

which is a classic method in photogrammetry ‎[74]-‎[76]. The DLT method was originally 

introduced by Abdel-Aziz and Karara in ‎[71] and was later revised in several public-

ations, e.g., ‎[73]. DLT bridges the gap between photogrammetry and computer vision so 

that both areas can use DLT directly to solve the camera calibration problem ‎[41]. In the 

process of obtaining the camera model using the DLT method, the lens distortion is 

ignored. It will be later shown in this chapter how the lens distortion correction can be 

employed to estimate the real pixel coordinates using their distorted image coordinates.   

3.2.2 Implementation of the DLT Method   

In the proposed visual servoing system with stereo vision, two camera models lH  

and rH  should be obtained to map a point from  1 1,o C  to the 2D image planes of the 

left and right cameras, respectively. Obviously, it is important to have the points in the 

FOV (Field of View) of the cameras. In fact, lH  and rH  are equal to homogeneous 

transformations 1

lp H and 1

rp H , respectively. Hence the conditions below should be 

considered: 

-  1 1,o C  is attached to the column (link1) of the TDH manipulator. During the 

calibration process, this coordinate system is stationary with respect to  0 0,o C  as 

the robot base angle does not change during calibration.  

- 0 X  should be transformed to  1 1,o C  using (‎2-4) and 1  is assumed to be zero. 

- Point X  is represented in  1 1,o C  with its homogenous coordinates 

 1
1 1 1 1

T
X x y z . 
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Transferring point X  from  0 0,o C  to  1 1,o C  can be written as follows: 

1 1 0
0X H X  (‎3-3) 

where 

1

1 1

01 11
0

cos 0 sin 0 1 0 0 0

sin 0 cos 0 0 0 1 0

0 1 0 0 0 1 0 0

0 0 0 1 0 0 0 1

H


   
   
  
     
   
   
   



 

 
 (‎3-4) 

l x  and r x  are the projection of point 1 X  in the 2D image planes of the stereo cameras. 

As discussed before, the 3D coordinates of a point in  1 1,o C  is mapped to 2D 

coordinate system of the left and right images ( ,lp lpo C and ,rp rpo C ) using the 

equations below: 

1 1

1

l lp

l lw x H X H X   (‎3-5) 

1 1

1

r rp

r rw x H X H X   (‎3-6) 

We start with the left camera to estimate the camera model parameters. The 

following equations can be obtained using the DLT method for the left and right cameras 

individually. A homogeneous 3x4 matrix can be utilized between the image and world 

coordinates of the calibration point. lw  and rw  are arbitrary scale factor according to 

pinhole camera model ‎[61]. 

1 1

1 2 3 4 1 2 3 4

1 11

5 6 7 8 5 6 7 8

1 1

9 10 11 12 9 10 11 1
1 1

l l

l l l

l

x x
w x

y y
w y H X

z z
w

       

       

      

   
        
          
        
             

   

 (‎3-7) 

1

1 2 3 4

11

5 6 7 8

1

9 10 11 1
1

r r

r r r

r

x
w x

y
w y H X

z
w

   

   

  

 
     
      
     
        

 

 (‎3-8) 

In order to avoid a trivial solution ( 1 12 0  ), a proper normalization must be 

applied ‎[70]. Abdel-aziz and Karara ‎[71] used constraint of 12 1 . The parameters 

1 11( )   have no physical meaning, and this technique can be also considered as the 
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implicit camera calibration stage ‎[70]. The same assumption should be utilized for the 

right camera in the system. 

The parameter lw  can be eliminated by expanding (‎3-7) in the following form: 

1 1 2 1 3 1 4

9 1 10 1 11 1 1
l

x y z
x

x y z

  


  

   

  
 

5 1 6 1 7 1 8

9 1 10 1 11 1 1
l

x y z
y

x y z

  


  

   

  
 (‎3-9) 

From (‎3-8) the following equation can be obtained: 

 
1 1 2 1 3 1 4 9 1 10 1 11 1

5 1 6 1 7 1 8 9 1 10 1 11 1

l l l l

l l l l

x x y z x x y x z x

y x y z x y y y z y

      

      

      

      
  (‎3-10) 

It is important to consider that the above equations should be obtained for both left and 

right images in a stereo or non stereo vision system. 

3.2.3 Estimation of Camera Model Parameters 

The right hand side of  (‎3-10) can be decomposed into two matrices of the known 

( A ) and unknown (k) parameters of the camera model.  

1 1 1 1 1 1

1 1 1 1 1 1

1 0 0 0 0

0 0 0 0 1

l l l l

l l l l

x x y z x x x y x z
k

y x y z y x y y y z

     
        

  (‎3-11)  

 

 

where 

 1 2 3 4 5 6 7 8 9 10 11

T
k              

 

So we write (‎3-11)  in the form of the equation below. 

2 1 2 11 11 1xU A k   (‎3-12) 

The DLT camera calibration method solves the above equation to obtain the components 

of column matrix k of the left camera. The components of matrix 2 11A  are constructed 

from the Cartesian coordinates  1
1 1 1 1

T
X x y z  and image coordinates ( , )l lx y . 

Matrix 2 1U   is column matrix containing the image coordinates of the calibration object 

in the left camera plane.             

U  
A  
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One approach to solve the 11 unknown parameters of matrix 11 1k   is to construct a 

linear system of equations with at least 11 equations. Matrices 2 11A  and 2 1U   are 

constructed using only one calibration point, so employing six calibration points can lead 

to resizing these two matrices to 12 12A  and 12 1U  . In fact the more points collected in the 

calibration process, the more overdetermined the linear system of equations. Collecting N 

points in the calibration process, (‎3-12) can be generalized as follows: 

2 11 11 1 2 1.Nx x NxA k U  (‎3-13) 

The equation below shows the expanded form of (‎3-13): 

 

1 12 11 2 1

2 22 11 2 1

11 1

2 11 2 1

.

N N

A U

A U
k

A U

 

 



 

   
   
   
   
   
   

 (‎3-14) 

Obviously, to solve the 11 unknown parameters of 11 1k  , N should at least be equal to 6. 

Consequently the normal equation of the below form can be solved to find k . 

1( )T T T TA Ak A U k A A A U    (‎3-15) 

In Section ‎3.3.3, an iterative least-squares method is provided to avoid the solution of the 

large matrices TA A  and TA U . 
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3.3 Least-Squares Solution to Obtain Camera Model Parameters 

3.3.1 Parameter Estimation by Minimizing LS Loss Function 

 

As explained in previous section, collecting a lot of data points in the calibration 

process constructs an overdetermined linear system of equations. This section describes 

the preparation of the known and unknown parameters in the calibration process to be 

solved using least-squares estimation.  

Considering the least-squares loss function: 

2

1

1
( , ) ( ( ) ( ) )

2

t
T

i

V t v i i  


   (‎3-16)  

The measured variable v  is linear in parameters  and the least-squares criterion is 

quadratic. The notation below is used to associate the corresponding parameters: 

The residuals )(i  are defined by: 

 

ˆ( ) ( ) ( ) ( ) ( )Ti v i v i v i i        (‎3-17) 

 

The loss function (‎3-16) can be written as: 


2

1

2

2

1

2

1
)(

2

1
),( 




t

i

TitV    (‎3-18) 

ˆV V V        (‎3-19)  

The function of (‎3-16) is minimal for parameters ̂  considering: 

ˆT TV     (‎3-20)  

If the matrix T is nonsingular, the minimum is unique and given by: 

1ˆ ( )T TV       (‎3-21)  

Equation (‎3-21) can be written as:  

1

1 1 1

ˆ ( ( ) ( )) ( ( ) ( )) ( ) ( ) ( )
N N N

T T

i i i

i i i v i P t i v i    

  

 
   

 
     (‎3-22)  

The condition that the matrix T is invertible is called an excitation condition.   
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3.3.2 Associating the LS Components with Camera Parameters 

We define the image coordinates in the camera plane as the measured variables 

for the least-squares approach. The least-squares approach should be applied to the left 

and right cameras separately to obtain the camera model parameters for each camera.  

The measured variables can be the results of a successful template matching or any other 

image processing procedures providing the associated pixel coordinates to the calibration 

object in the robot base frame. The parameters of the known function   are constructed 

from the known world and image coordinates of the calibration object. Considering 

(‎3-16) and defining the column matrix Y as the measured variables in one of the cameras: 

   1 1(1) ( ) ( ) ( ) ( ) ( )
T T

l l l N l Nv v N x y x y    (‎3-23)   

The matrix of the known functions ( )N  can be formed for several data points in  

(‎3-10): 

1 1 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 11

1 1 1 1 1 1

1 1 1 1 1 1
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0 0 0 0 ( ) ( ) ( ) 1 ( ) ( ) ( )

( ) ( ) ( ) 1 0 0 0 0 ( ) ( ) ( )

0 0 0 0 ( ) ( ) ( ) 1 ( ) ( ) ( )

l l l

l l l

N N N N l N l N l N
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x y z x x x y x z

x y z y x y y y z
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  
     

  
  
      

  












 

 

 (‎3-24) 

Like previous section, N is the number of collected points during the calibration process. 

The matrices of the known and measured parameters for both left and right cameras can 

be as follows when considering (‎3-12). Subscripts l and r denote the left and right 

cameras: 

1 1 1 2 12 2 2 12 2 12

T T
T

l l l l l li Ni N N
A A A

   

    
   

     (‎3-25)  

1 1 1 2 12 2 2 12 2 12

T T
T

r r r r r ri Ni N N
A A A

   

    
   

     (‎3-26) 

1 1 2 1 3 1 1 2 1 2 2 1 2 1

T T
T

l l l l l li Ni N N
v v v U U U

     

    
   

  (‎3-27)  

1 1 2 1 2 1 1 2 1 2 2 1 2 1

T T
T

r r r r r ri Ni N N
v v v U U U

     

    
   

 (‎3-28) 



 

                                                                                                                     Page 42 

After collecting N calibration points in the FOV of the left and right cameras, l
i

 , r
i

 , l
i

v  

and r
i

v  with i=1…N will be obtained to be used in (‎3-22). Hence the camera parameters 

for the left and right cameras can be estimated as follows: 

1

1 1

ˆ ( ( ) ( )) ( ( ) ( ))
N N

T T

l l l l l l
i i

Left camera parameters k i i i v i   

 

      (‎3-29) 

1

1 1

ˆ ( ( ) ( )) ( ( ) ( ))
N N

T T

r r r r r r
i i

Right camera parameters k i i i v i   

 

      (‎3-30) 
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3.3.3 An Iterative LS Approach to Find the Camera Parameters 

The least-squares estimation of the camera parameters explained in (‎3-29) and 

(‎3-30) requires the system to hold the matrices of the known and unknown parameters 

l
i

 , r
i

 , l
i

v  and r
i

v  (with i=1…N) during the data collection process. Once this period 

has come to its end, the summation operators will be employed. 

A very efficient way of solving the least-squares problem with the explained 

format is to perform the summation operation after each sample data is collected. 

See ‎[77] for further discussion of iterative LS approach. The flowchart below shows this 

process: 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The main advantages of the proposed iterative method over the least-squares solution: 

1- The computation time in the iterative method is distributed between the data 

sampling process. The system does not need to solve (‎3-29) and (‎3-30) for 

1i N  after the data collection period.  

2- The iterative method is memory efficient as the matrices l
i

 , r
i

 , l
i

v  and r
i

v  are 

not required to be held in the memory for 1i N . 
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3.4 A Reduced Stereo Camera Model Calibration 

3.4.1 Introduction  

 

So far, the camera calibration method was performed to calibrate the left and right 

cameras individually. This method does not assume any geometric relationship between 

the image planes (e.g., parallel and coplanar image planes). The obtained models lH  and 

rH  will be later used in a triangulation method to provide the 3D estimation of the point 

in the FOV of the cameras.  

In this section the fact that the left and right cameras obey the stereoscopic 

constraints is considered. As mentioned in Section ‎2.2.1, the most important property in 

systems with stereo images is to have equal vertical displacements on the stereo image 

coordinates l ry y . If the cameras can be installed on the stereo rig to a given tolerance 

then one can add the middle rows of the equations (‎3-7) and (‎3-8) together considering 

l ry y y  . It will be shown that fewer number of parameters will be introduced using 

this technique.  

To distinguish the camera calibration methods performed in this thesis, each 

method has been named as following: 

- The conventional method of camera calibration using the DLT camera 

model estimation‎remains‎unchanged‎as‎“DLT”. 

- The‎ term‎ “Stereo”‎ is‎ added‎ to‎ “DLT”‎ in‎ this‎ thesis‎ to‎ form‎ “SDLT” 

method as for when a model is obtained for the stereo cameras. 

3.4.2 System Parameterization  

A 5x4 matrix can be utilized to relate the image coordinates of the calibration 

object (  1
Tl

l lx x y and  1
Tr

r rx x y ) to its 3D homogenous coordinates 

 1
1 1 1 1

T
X x y z  in the robot torso coordinate system 1 1,o C . (‎3-3) can be 

considered again to obtain
1X . Considering (‎3-7) and (‎3-8), the following reduced 

equation can be utilized assuming l ry y y   while the second rows of the matrix 

equations (in (‎3-7) and (‎3-8)) have been added together.  
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1 2 3 4
1
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1 1
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1 2 3 4
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w x
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   

  

  
   

       
     
   
   
      

 (‎3-31) 

The matrix equation above can be reorganized by defining 18 parameters as follows: 

1 2 3 4
1

5 6 7 8
1 1

9 10 11
1
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( )

1

1
1

l l

l r

l

r r

r

w x
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w w y
y

H Xw
z

w x

w

   

   

  

   

  

  
   

    
     
   
   
      

 (‎3-32) 

Scale factors lw  and rw  can be eliminated by writing the equations in (‎3-32) as follows: 

1 1 2 1 3 1 4 9 1 10 1 11 1

5 1 6 1 7 1 8 9 1 16 1 10 1 17 1 11 1 18 1

12 1 13 1 14 1 15 16 1 17 1 18 1

2

l l l l

r r r r

x x y z x x y x z x

y x y z x y x y y y y y z y z y

x x y z x x y x z x

      

         

      

        
   

         
   
           

 (‎3-33) 

The three equations in (‎3-33) can be rearranged to yield 

1 1 1 1 1 1

1 1 1 1 1 1 1 1 1

1 1 1 1 1 1

1 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1

l l l l

r r r r

x x y z x x y x z x

y x y z x y y y z y x y y y z y k

x x y z x x y x z x

     
   

      
   
        

   

           (‎3-34) 

where  1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

T
k                   . 

 3 1 3 18 18 1U D k    (‎3-35) 

Collecting N number of calibration points resizes (‎3-35) to:   

3 1 3 18 18 1N NU D k    (‎3-36) 

Using the iterative method in Section ‎3.3.3, the unknown parameters can be obtained as 

the equivalent of (‎3-15) except that both set of camera parameters are obtained at once. 

1

1 1

( ( ) ( )) ( ( ) ( ))
N N

T T

i i

k D i D i D i U i

 

    (‎3-37) 

U  
D  
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3.5 Different Uses of the Camera Models 
 

The DLT classic method of camera calibration calculates the camera models as 

stated in (‎3-5) and (‎3-6): 

1l

l lw x H X  

1r

r rw x H X  

The SDLT method, in comparison, provides a single transformation for both stereo 

cameras as stated in (‎3-32): 

 
1

( )

l l

l r

l

r r

r

w x

w w y

H Xw

w x

w

 
 


 
  
 
 
  

 

Three different scenarios can be considered in Table ‎3-1 and Table ‎3-2 for the above 

equations. 

Table ‎3-1. Camera calibration and 3D estimation procedures for the DLT method 

Given Procedure Find 
l x ,

r x  and 
1 X  Camera calibration lH  and rH  

l x ,
r x , lH  and rH  3D position estimation 0 X  (explained in Chapter 4) 

lH , rH  and
1 X  Camera calibration evaluation l x   and 

r x  

 
 

Similar to what stated for the classic method, the table below indicates the three 

conditions for different known and unknown components: 

Table ‎3-2. Camera calibration and 3D estimation procedures for SDLT method 

Given Procedure Find 
l x ,

r x  and 
1 X  Camera calibration H  

l x ,
r x  and H  3D position estimation 0 X  (explained in Chapter 4) 

H  and
1 X  Camera calibration evaluation l x   and 

r x  
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3.6 Data Collection Techniques for Camera Calibration 

In this thesis two different methods of data collection for camera calibration have 

been employed. As indicated in the first rows of Table ‎3-1 and Table ‎3-2, the camera 

calibration technique requires X  as the coordinates of the calibration object and l x  and 

r x  as image coordinates. The two techniques for automatic data collection are: 

1- Using a 3DOF Cartesian robot to move the calibration object in front of the 

cameras. In this thesis this method is called “camera calibration using a 

Cartesian robot”. 

2- Using the torso-mounted TDH robotic manipulator itself to move the calibration 

object in the cameras FOV. This method is called “In situ camera calibration”. 

3.6.1 Camera Calibration Using a Cartesian Robot 

The volume of interest in the camera FOV (Field of View) should be considered 

for the data collection in the proposed camera calibration process. We assume this 

volume is a cube and will be referred to as the calibration cube in this thesis. The 

requirements of the application dictate the dimensions and position of this cube. Simply, 

the calibration cube is the volume where the 3D position sensing is happening. The 

calibration object should be moved inside the calibration cube. The corresponding 

coordinates in  0 0,o C  and image planes are captured at the same time. As shown in 

Figure ‎3-1 the calibration robot has been placed within a certain distance from the TDH 

robot. The position for the calibration cube (where the pipe 3D detection is performed) is 

selected based on the application description explained in Sections ‎1.1 and ‎1.2. Extra care 

was taken to transfer the coordinates of the object to the robot base frame since the 

position of the calibration object is obtained relative to the calibration robot frame.  

The calibration object is a bright LED which is mounted carefully on the Z 

actuator of the Cartesian calibration robot (shown in Figure ‎3-2). Increasing the number of 

LEDs helps to decrease the required motion on the calibration robot when the calibration 

cube is desired to be navigated. For the sake of simplicity only one LED case was 

considered for data collection in this thesis, but the system can be also calibrated using 

two LEDs mounted on an aluminum bracket (shown in Figure ‎3-2).  
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3.6.1.1 Camera Calibration Setup 

 

The schematic in Figure ‎3-1 shows the camera calibration setup when a Cartesian robot is 

used to move the calibration object (LED) in the cameras FOV. 

Figure ‎3-1. Schematic diagram of data collection using Cartesian robot 
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Notes regarding the schematic depicted in Figure ‎3-1: 

1-  1 1,o C  is attached to the TDH robot column. 

2- (1) ( )X X N is the set of collected coordinates of the position of the LED moved 

in the calibration cube using the employed Cartesian robot. 

3-  ,c co C  is the base coordinate system attached to the Cartesian robot. The 

required homogenous transformation required to transform the coordinates of the 

calibration point (LED) to  0 0,o C  is not mentioned in this thesis since it is a 

simple transformation. 

4- The number of points collected from the scene depends on the sampling rate of 

the frame and data acquisition system used to read the configuration of the 

Cartesian robot. 

5-  (1) ( )l lx x N  and  (1) ( )r rx x N  are the corresponding image 

coordinates of the data points (1) ( )X X N  in the calibration cube. 
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3.6.1.2 The Specification of the Cartesian Camera Calibration Robot 

 

As stated in the camera calibration schematic (Figure ‎3-1), a bright LED was 

navigated within the FOV of the cameras rigidly attached to the robot body. Image 

binerization was performed to distinguish the emitted LED light from the other dark 

objects. The emitted light from the LEDs appears as white‎or‎“1”‎in‎the binarized images, 

so the camera perception from the LED light could be mismatched with other white 

objects in the scene. To address this problem, two different approaches were considered 

in this work: 

1. Perform the calibration in a dark environment to make the emitted lights from the 

LEDs as the only source of illumination. The binarized images were then 

searched to find the coordinates of the bright spots in the image frame. 

2. Locally search for the LED lights in the binarized image while a black 

background was added to the LED structure. The black background is shown in 

Figure ‎3-2.  

The Cartesian robot similar to a gantry robot moves the bright LED in the depicted cube 

in Figure ‎3-1. The properties of the employed Cartesian robot are as below: 

1. The Cartesian robot (calibration robot) has three DOF. The robot moves the 

calibration object (bright LED) along its three linear actuators (x, y and z). 

2. The workspace of the robot is limited to 50cm on the X axis, 30cm on the Y axis 

and 30cm on the Z axis. 

3. Every axis is equipped with an encoder providing the real-time displacement on 

the respective dimension. 

4. The real-time encoder values are transferred to the PC104 system via the RS232 

serial communication. The serial communication update rate is 30ms.  

5. The received encoder values of the 3D position of the LED will be matched with 

its corresponding image coordinates to be used in the camera calibration process. 

6. The position of the origin of the calibration robot as well as its frame orientation 

is precisely measured from the origin of  0 0,o C . 
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7. A homogeneous transformation is required to transfer the LED coordinates from 

the calibration robot coordinate system  ,c co C  to the TDH robot base coordinate 

system 0 0,o C . 

8. The PLC/motion controller unit generates the motion commands for the 

calibration robot. 

9. The PLC unit is programmed to send the required trajectory commands to the 

calibration robot. The LED trajectory covers different layers of the calibration 

cube in x and y directions. Raising the LED structure along the Z axis provides a 

new layer in the calibration cube. The calibration cube can be seen in Figure ‎5-1.   

10. Due to the system delays, the update rate of the encoder values (in PC104) is 

slightly variable between 28ms and 30ms. This means that approximately 1800 

data points of the calibration object (including the world and image coordinates) 

are collected every minute.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎3-2. The Cartesian calibration robot 
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3.6.2 In situ camera Calibration  

The‎term‎“in situ”‎refers to‎“in‎place”‎or‎“on‎site”.‎In‎this‎application the camera 

calibration‎ is‎called‎“in situ”‎because‎ the‎ torso-mounted robot (TDH) is selected as the 

main manipulator to move the calibration object in the desired volume. The advantages of 

employing the so-called‎“in situ”‎calibration are:   

1- No additional manipulator such as the Cartesian robot explained in previous 

section is required to move the calibration object. 

2- The proposed visual servoing application can track and capture the object in the 

reachable space of the robot. The best manipulator to cover the reachable space of 

the TDH robot is the robot itself. 

3- Employing another robot to move the calibration object requires the calibration 

robot to be placed precisely in a known position to the TDH robot base 

frame 0 0,o C . Thus one needs to transform the coordinates of the calibration 

object to the TDH robot base frame. Assigning a permanent location for the 

calibration robot while it is not attached to the TDH robot is not a straightforward 

job. By rigidly installing the in situ calibration tool on the end-effector of the 

robot, the coordinates of the calibration object (LED) can be calculated by solving 

the robot arm forward kinematic in joint-space. 

4- The in situ approach is less expensive. 

5- From the industrial point of view, when the system is installed on its real-world 

structure (top of the oil well mast), any damage to either of the stereo cameras 

perturbs the vision system accuracy and performance. Replacing the damaged 

camera requires another calibration process in the field since the camera model 

parameters may vary slightly with the previous settings. The in situ camera 

calibration provides this opportunity to calibrate the cameras using the TDH robot 

while it is placed on top of the oil well. There is no need to employ the mentioned 

Cartesian robot or any other manipulator to move the calibration object in the 

scene.    

6- With proper training, the operators or the technicians at a mobile oil rig can 

perform the in situ calibration without high level knowledge of the vision system. 
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7- Unlike the case when another robot is employed for the calibration purpose, the in 

situ calibration process is independent of the orientation of the monkey board. 

The calibration tool orientation and position are local to the monkey board and the 

robot base frame 0 0,o C . Changes on orientation of the monkey board do not 

affect the transformation between the calibration tool and the TDH base frame. 

This is absolutely helpful as in the real-world application of this system there is 

no guaranty to have the monkey board in horizontal plane. 
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3.6.2.1 System Parameters for In situ Camera Calibration 

The most important part of the in situ camera calibration system is the 

calibration tool that has been specifically designed and fabricated. The tool 

accommodates the objects to be tracked by the cameras while their 3D coordinates are 

known using the robot joint sensors. Figure ‎3-3 shows the in situ camera calibration 

concept. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3-3. Schematic diagram of data 

collection for in situ camera calibration 
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3.6.2.2 Specification of the In Situ Camera Calibration Setup 

As depicted in Figure ‎3-3, the calibration volume is a sector with parallel sides. 

The specifications below were used for the in situ calibration setup: 

1- The calibration volume is created by moving the calibration tool containing the 

LEDs with equal distances on its vertical bar. 

2- Only two degrees of freedom ( 2d and 3 ) have been used to move the calibration 

tool. The gripper radial and revolute motions are the two degrees of freedom 

required to create the depicted volume. Radial and revolute motions of 60cm and 

45 degrees on 2d and 3  respectively produce the depicted volume. The 

dimensions of the volume are stated in the Figure ‎3-3. 

3-  1 1,o C  is attached to the TDH robot column. 

4- (1) ( )X X N is the set of collected coordinates of the position of the LED moved 

in the calibration volume. A forward kinematic process calculates these 

coordinates using the two active joint angles 2d and 3 . 

6-  (1) ( )l lx x N  and  (1) ( )r rx x N  are the corresponding image 

coordinates of the data points (1) ( )X X N  in the calibration cube. 

5- A dark background plate has been added to the calibration tool to simplify the 

local search for the lit LEDs. With this in place, the calibration process can be 

performed in a room with normal lighting. 

6- The sampling rate of the data collection process is 25Hz. This means that 25 

frames and 25 3D coordinates of the calibration object are captured every second 

during the process. Considering this sampling rate, if 40000 points were captured 

then the process takes approximately 2.6min.  

7- The calibration tool is specifically designed and fabricated to be connected to the 

gripper structure with the highest possible precision. The tool is not a permanent 

part of the TDH robot and is solely used for camera calibration purposes. 
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8- As the calibration points (LEDs) have been located on a vertical line on the 

calibration tool, they all share the same coordinates along 1i  and 
1

j  with 

different 1z  coordinates along 1k  as their heights. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎3-4. The in situ camera calibration setup 

Figure ‎3-5. The left and right image views of the in situ calibration tool 

Gripper 

Calibration points (LEDs) 

Dark background plate 

In situ extension arm 

Calibration points (LEDs) 
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3.7 Lens Distortion Correction 

3.7.1 Introduction 

 

Up to this point in the thesis, lens distortion has not been considered for the 

cameras in the stereo rig. The lenses employed in the cameras in this work are 

conventional non-linear micro lenses used in surveillance and security camera systems. In 

this section, only the radial lens distortion has been considered. The process to obtain the 

lens distortion model has been greatly influenced by the major contributions in this area 

by Zhang, Tsai and Heikkila et al.‎[62], ‎[41] and‎[70], respectively. More elaborate models 

have been obtained in ‎[64], ‎[67]. The distortion model is totally dominated by radial 

components and more elaborate modeling not only would not help but may also introduce 

numerical instability ‎[41], ‎[68]. 

To obtain the lens distortion model of the cameras in a stereo system, the Matlab 

toolbox developed by Bouguet ‎[68] has been employed. The lens distortion models 

obtained for each of the cameras are then applied to the image coordinates of the left and 

right camera planes individually. It has been determined that the accuracy of the 3D 

position sensing was improved by considering the lens distortion correction and pixel 

coordinates compensation.  

Lens distortion has direct effects on the visual servoing applications. The 

accuracy measurements performed in Section ‎5.2 shows how much error the system 

experiences for the objects at the edges of the accuracy measurement area. However, the 

3D positions of the objects placed in the middle of the robot workspace and consequently 

in the middle of the image planes are not influenced significantly by the lens distortion 

correction.  

Since distortion calibration is only required once for a camera lens, and it cannot 

be changed in the field, it is not necessary to make this step part of the camera calibration 

parameters in the field. 
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3.7.2 Lens Distortion Extraction 

3.7.2.1 Distortion Coefficients Calculation 

The direct method of stereo camera calibration ignores the lens distortion 

components. In the proposed visual servoing system the lens distortion correction has 

been applied to the obtained (distorted) image coordinates to calculate their ideal 

(undistorted) image coordinates in the image plane. The first step in lens distortion 

correction is to obtain the distortion coefficients.  

The Matlab calibration toolbox developed in ‎[69] was used to obtain the 

distortion coefficients. The process requires images of a planar   taken in different 

orientations and some user inputs to calculate the distortion coefficients.  

In order to provide a background of the process the employed Matlab toolbox 

performs, only the left camera image components have been considered here. 

The relation below is held between the real observed image coordinates and ideal 

(nonobservable distortion-free) image coordinates: 

2 2 2 2 2

1 2( )[ ( ) ( ) ]l l l l l l l

u d d px x x x k x y k x y          (‎3-38) 

2 2 2 2 2

1 2( )[ ( ) ( ) ]l l l l l l l

u d d py y y y k x y k x y          (‎3-39) 

where: 

 

( , )l l

d dx y : Real (distorted) image coordinates 

( , )l l

u ux y : Ideal (undistorted) image coordinates 

( , )p px y : Principal point 

( , )l lx y  :  Normalized ideal image coordinates 

1 2,k k : Distortion coefficients to be calibrated  

 

The system of equations below can be formed to solve for the distortion parameters 1k  

and 2k : 

2 2 2 2 2

1

2 2 2 2 2

2

( )( ) ( )( )

( )( ) ( )( )

l l l l l l l l
d p d p u d

l l l l l l l l
d p d p u d

kx x x y x x x y x x

ky y x y y y x y y y

          
               

 (‎3-40) 

The distortion parameters then can be found by solving the above equations for n number 

of images and m points in every image. 
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3.7.2.2 Obtained Distortion Model Visualization 

To visualize the distortion model of the left camera in the stereo rig, the radial distortion 

visualization graph has been plotted. As expected, the amount of radial disparity close to 

the edges of the image is more than the centre of it. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Now that the distortion coefficients ( 1k  and 2k ) have been calculated, the undistorted 

coordinates of the image coordinates can be calculated using (‎3-38) and (‎3-39). 

Figure ‎3-6. The radial distortion visualization  
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Chapter 4. 3D Position Sensing Using Stereo Vision 

4.1 Introduction 

Chapter 3 discussed the proposed camera calibration techniques where two 

transformations were obtained using DLT and SDLT methods. As explained in Table ‎3-1 

and Table ‎3-2, knowing the image and world coordinates of a set of calibration points 

leads to obtaining the camera models: 

 1: ,l r

l rknown x x and X H and H  or  1: ,l rknown x x and X H  

In this chapter the goal is to obtain the position of a 3D point using its perception in the 

image planes and the stereo camera models: 

  1: , , ( , ) ( , )l r l l r rknown H H x y and x y X  or   1: , ( , )l l rknown H x y and x X  

Section ‎4.2 explains how a reliable perception of an object in the image planes can be 

obtained using the epipolar geometry principle. Section ‎4.3 explains how the acquired 

image coordinates and the camera models can be used in the 3D position sensing. 

The proposed 3D position sensing process provides the estimated position of the object of 

interest in  1 1,o C  attached to the robot torso. This estimation does take into account the 

robot base angle rotary motion.  In order to transfer the estimated position to  0 0,o C  

while the robot base angle 1  changes, a homogeneous transformation should be applied 

to compensate the base angle and represent the estimated position in 0 0,o C .  

0 0 1
1X T X  (‎4-1) 

Where 

1 1

1 2 1 10
1

cos 0 sin 0

sin 0 cos 00

0 1 0 0
0 1

0 0 0 1

ik

T

e e
T



 

  

 
  
   
  

   
 

 (‎4-2) 

The obtained position of the object ( 0 X ) will be labeled as the desired position in the 

proposed visual servoing system. The TDH robot end-effector will be guided to this 

destination.  
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4.2 Stereo Vision and Epipolar Geometry 

4.2.1 Stereo Vision Principles 

 

The epipolar geometry between two views is essentially the geometry of the 

intersection of the image planes with the pencil of planes having the baseline as axis (the 

baseline is the line joining the camera centers) ‎[61]. 

The two possible geometries between the image planes will be reviewed. The first one 

deals with intersecting (non-parallel) planes and the second one with parallel image 

planes. The latter is the main focus of this chapter and all the 3D sensing processes 

consider this geometry. 

 

 Intersecting image planes 

We briefly review the essential epipolar geometry knowledge required in this thesis. 

More readings regarding the stereo and binocular vision are provided in ‎[61]. 

 

 

 

 

  

  

 

 

  

 

 

 

 

The geometry of a point in 3D space and its images in two CCD planes (image planes) 

has been depicted in Figure ‎4-1. The description of the components of this geometry is as 

below: 

lcamo , rcamo :  The camera centers 

le , re :  Epipoles. The intersection of the baseline (the line joining the camera centers) 

with the image planes 

lx , rx : The images of the point X  in left and right image planes 

ld : The distance between the left camera center ( lcamo ) and image point lx .  

Figure ‎4-1. The epipolar geometry schematic 

Principal axis 
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rd : The distance between the left camera center ( rcamo ) and image point rx . 

lL , rL : The distance between the camera center and the point X  

l , l  : Epipolar lines or pencils. The line between the epipole and the image point. 

T : The stereo camera baseline 

,l rf f : The focal length of the left and right cameras. The distance between the camera 

center and the image plane (the camera CCD). 

rZ : The depth of the point X  in the right camera. The projection of the point X on the 

principal axis (The axis starts from the camera center and passes through the principal 

point which is the image plane center). 

 : Epipolar plane, is defined as the plain formed by the point X  in 3D space and the 

camera centers. The epipolar plane intersects with the image planes in two lines (the 

epipolar lines). It can be observed that the epipolar plane rotates about the baseline as the 

point X  varies in 3D space. So, all the epipolar lines intersect at the epipole.  

From the perspective projection: 

r r

r r

f d

Z L
         l l

l l

f d

Z L
  (‎4-3) 

The trajectory of point X  on the epipolar plane lies on the epipolar lines that are 

obviously not parallel with each other. This fact constructs a very important phenomenon 

used to determine the corresponding image point of an object in 3D space when the 

camera planes are parallel with each other.  
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 Parallel image planes  

We now discuss the case when the camera planes are parallel. In this thesis, the stereo 

camera system refers to the system with parallel camera planes. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

l rT x x Z f f
Z T

T Z d

  
    (‎4-4)  

l rd x x   (‎4-5) 

Notes regarding Figure ‎4-2: 

1- The epipoles le  and re  will be placed at infinity. This makes the epipolar line to 

be parallel to the baseline of the cameras. 

2- The depth of the point X  is inversely proportional to disparity d. This fact 

imposes that the farther the point in 3D space, the less disparity observed from its 

motion in the image planes.  

3- The epipolar line l   is collinear with l .  

Principle ‎4-1. Assuming a point in 3D space, the corresponding epipolar lines in the left 

and right images are collinear and must lie on a straight line parallel with the camera 

baseline if the following conditions are perfectly satisfied: 

 The camera image planes are coplanar 

 The image axes lp
i  and rp

i are collinear 

Figure ‎4-2. The stereo camera system with parallel image planes 

Principal axes of left and 

right camera 
lcamk  

rcamk  
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Corollary ‎4-1. When Principle ‎4-1 is held, assuming an image point lx  lies on l  (in the 

left camera plane), an image point rx  can be obtained by continuing the epipolar line l  

towards the right image plane. Equivalently l  is along the l . 

Proof: Consider the figure below: 

 
 

 

  

 

     

 

  

   

  

 

Plane   contains points X , lx , rx , lcamo and rcamo . Consequently these points are coplanar. 

If the camera planes are precisely parallel, then the epipolar lines must be collinear and 

have the same distance from the origin of the image planes ( lpo and rpo ) along 
lp

j  and 

rp
j   axes. This distance has been indicated as ly and ry  respectively. 

The relation below holds for every 3D point in the common FOV of the stereo camera 

system with parallel and coplanar image planes: 

4.1 :

3 , ,
l rl r

l r

l r

When principle is held

x x
X D space and in camera FOV x x y y

y y

 
 

    
         

   

 Corollary ‎4-2 

The proof of the above corollary is provided in ‎[61]. 

Figure ‎4-3. Stereo vision with parallel and coplanar image planes (The image 

origins have been shown on the image corners to avoid confusion) 
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4.2.2 Facts Perturbing Parallel Stereo Vision Characteristics 

 

Lens distortion: It is important to consider the lens distortion as a factor perturbing the 

facts in epipolar geometry with parallel image planes. Since the lens distortion is smaller 

in the central region of the image planes, points located in this area of the image are less 

subject to distortion. The detrimental effects of lens distortion show up especially while 

the visual servoing is in process. During the visual servoing process, the image 

coordinates of the object of interest may reside in the edges of the image planes due to 

changes in the robot base angle. The lens distortion model for both left and right lenses 

are obtained later in this chapter. The obtained model will be used to estimate the ideal 

(undistorted) coordinates of the image points.     

 

Gradual mechanical misalignment: In order to satisfy the coplanar properties of the 

two cameras in a stereo rig, a rugged and solid mechanical structure should be 

manufactured to hold the cameras tightly in their place. Depending on where the cameras 

are installed, the environmental conditions may also affect the tightness of the 

mechanical fasteners and consequently the structure. Among those environmental 

conditions shock and vibration are the most important sources in losing the alignment of 

the cameras. Considering the items below can reduce the chance of misalignment on the 

adjusted stereo cameras: 

1. Using a smaller number of fasteners and incorporating fixed mating 

materials (with no need for fasteners) in a stereo rig 

2. Designing the stereo rig with few joints and adjustable components 
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4.3 3D Reconstruction and Position Estimation 

4.3.1 Two Methods to Estimate the Object Position in 3D 

 

As explained in the introduction section of this chapter, the goal is to find the 3D 

position of the object of interest using the known image coordinates and the camera 

models. 

There are two methods in this section to obtain the 3D position of the target point 

in the FOV of cameras. In the first method, the coordinates of the desired point is 

obtained by solving an over-determined linear system of equations while the coordinates 

of the point in 3D space have been assumed to be the unknown components ‎[61]. 

The second method uses Singular Value Decomposition (SVD) to obtain the desired 

coordinates of the point in the 3D space. This method has been introduced in ‎[61].  

 The first and second methods can be employed for systems with camera 

calibration models obtained from the DLT and SDLT methods, respectively. 

4.3.1.1 First method, matrix equations 

Considering Equations (‎3-7) and (‎3-8) introduced in the DLT method, the 

matrix equations for the left and right cameras can be rearranged as follows:  

1
4 1 9 2 10 3 11

1
8 5 9 6 10 7 11

1

( ) ( ) ( )

( ) ( ) ( )

l

l

x
x

y
y

z

      

      

 
        

              

  (‎4-6) 

1
4 1 9 2 10 3 11

1
8 5 9 6 10 7 11

1

( ) ( ) ( )

( ) ( ) ( )

r

r

x
x

y
y

z

      

      

 
        

              

 (‎4-7) 

An overdetermined linear system of equations can be solved to calculate the Cartesian 

coordinates of the target object given the camera model parameters  , , 1, ,11i i i    

and the image coordinates 1 1 1( , , )x y z .  
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4.3.1.2 Second method, direct transformation 

 

In Section ‎3.4 the introduced SDLT method was used to calculate the 

transformation matrix H  to map the 3D coordinates of the target point to its image 

coordinates in the left and right cameras. Referring to (‎3-31) with the format:  

1 2 3 4
1

5 6 7 8
1 1

9 10 11
1

12 13 14 15

16 17 18

( )

1

1
1

l l

l r

l

r r

r

w x
x

w w y
y

H Xw
z

w x

w

   

   

  

   

  

  
   

    
     
   
   
      

  

In the above equation, the known components are matrix H and the image coordinates. 

The above equation can be formed in the system of homogenous equations as follows: 

1 9 2 10 3 11 4 1

5 9 16 6 10 17 7 11 18 8

12 16 13 17 14 18 15

( ) ( ) ( ) ( )

( ( ) ) ( ( ) ) ( ( ) ) ( 2 ) 0
1

( ) ( ) ( ) ( )

l l l l

r r r r

x x x x
X

y y y y

x x x x

      

         

      

    
  

         
      

 (‎4-8) 

The components of the left hand side matrix in the above equation are known. We call 

this matrix   and re-write (‎4-8) as follows: 

1

0
1

X

 

 
 

  (‎4-9) 

Singular Value Decomposition (SVD) now be employed to find the right null space 

vector of matrix   which is estimation for 1 X .  

It is important to apply the transformation indicated in (‎4-2) to compensate for the TDH 

robot base angle 1  during the visual servoing process.  

Important note: This method has been used in this thesis to estimate the 3D position of 

the target points.     
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4.4 Line and Plane Intersection in 3D  

Finding the intersection of a line with a plane in 3D space has various applications in 

machine vision and visual servoing. As mentioned earlier, the TDH robotic manipulator 

is a planar robot in the sense that its gripper travels in a flat plane. Considering Figure ‎4-4 

and  0 0,o C  as the world coordinate system, the robot end-effector moves on a plane 

with 0k  as its normal vector. The proposed visual servoing technique controls the robot 

end-effector to approach to the desired positions on this plane (  as shown in 

Figure ‎4-4). In fact the desired position on this plane is the intersection of the object and 

the robot planar workspace.  

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎4-4 shows the schematic of a pipe when it is placed in the robot workspace. In this 

case the object of interest has a cylindrical geometry and can be considered as a line in 

Figure ‎4-4. The cross section schematic of the pipe with gripper plane 
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3D space. Hence the problem becomes finding the equation of this line in 3D and then 

interesting it with plane . Algorithm ‎4-1 describes the process.     

Algorithm ‎4-1. Cross section estimation of a line with a plane 

 

Step1: Estimate the 3D position of two random points on the line. The two random points 

1X  and 2X  are represented by their coordinates in  0 0,o C  as 

 0

1 0 1 0 1 0 1( ) ( ) ( ) 1
T

X x y z  and  0

2 0 2 0 2 0 2( ) ( ) ( ) 1
T

X x y z  respectively. 

Step2: The equation of the straight line passing through these two points is as follows: 

0 1 0 2 0 1 0 2 0 1 0 2

0 2 0 2 0 2

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( )

x x y y z z

x x y y z z

  
 

  
 

Step3: Intersect the plane   with a certain height ( 0h ) with the equation of the line and 

obtain the intersection: 

0 2
0 3 0 1 0 2 0 2

0 1 0 2

( )
( ) (( ) ( ) ) ( )

( ) ( )

z z
x x x x x

z z


   


 

0 2
0 3 0 1 0 2 0 2

0 1 0 2

( )
( ) (( ) ( ) ) ( )

( ) ( )

z z
y y y y y

z z


   


 

 0

0 3 0 3 0 3 0( ) ( ) 1
T

z h X x y h    

If 0 2( )z = 0 1( )z  then: 

1- if  0h = 0 2( )z = 0 1( )z  then the line is inside the plane and at least one solution and at 

most infinite solutions exists 

2- if 0 0 2 0 1(( ) ( ) )h z z  then no solution exits 
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Chapter 5. Experimental Results 

5.1 Camera Calibration Experimental Results 
 

In ‎Chapter 3 two methods were discussed to relate the 3D coordinates of the 

calibration points to their image coordinates. The first method assumed individual camera 

models for the left and right cameras that are not necessarily placed in a stereo camera 

geometry with parallel and coplanar image planes. This method estimated the two camera 

models using the classic DLT method. The second method introduced a reduced format 

of the DLT method by assuming equal vertical coordinates in the observed stereo images. 

The single transformation matrix obtained can be used to relate (transform) the world 

coordinates of the calibration points to their image coordinates in both left and right 

image planes. So, the methods can be categorized as follows: 

1- Obtaining individual camera models using the Classic DLT method (Section ‎3.2). 

2- A single transformation using the SDLT method (Section ‎3.4). 

 

After considering either of the above methods, the data collection process should be 

started to provide the coordinates of the calibration points in the 3D robot base frame and 

the 2D image planes. The iterative least-squares estimation will then be used to calculate 

the transformation matrix by estimating the required parameters. The two employed data 

collection methods (using a Cartesian robot and the in situ calibration tool) were 

discussed in Sections ‎3.6.1 and ‎3.6.2. In this section the experimental results have been 

categorized as follows.  

 Data collection using the Cartesian robot 

- Validate the obtained camera models using the DLT classic method 

- Validate the obtained H  matrix using the SDLT method 

 Data collection using the in situ calibration tool  

- Validate the obtained camera models using the classic DLT method 

- Validate the obtained H  matrix using the SDLT method 
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The plotted 3D trajectory are 0x , 0y  and 0z  components in (‎3-24). All axes values are in cm. 

5.1.1 Data Collection using the Cartesian Robot 

 

Figure ‎5-1 shows the trajectory of the LED (calibration object) coordinates in the 

calibration cube represented in 0 0,o C . For the purpose of the calibration, 7500 data 

points have been collected. The first 4500 data points were employed for the camera 

calibration process and the reaming 3000 points were used to validate the obtained 

camera model(s) (cross validation).   

Notes regarding the LED trajectory in the TDH robot base coordinate system ( 0 0,o C ):  

1- Considering the components shown in Figure ‎3-1 and what the plotted data 

represents, the LED travels from 149cm to 201cm along 
0

j  axis, from -49cm to 

49cm along 0i  and from 10cm to 40cm along 0k . Hence, the calibration cube 

dimension is 98x52x30cm. This cube is only employed in this section and in the 

rest of this chapter the volume formed by the in situ tool is considered. 

2- The robot piecewise motion in the calibration cube is not the same on all axes. 

The robot travels 52cm continuously along
0

j , 5cm along 0i  and so on. When 0i  

is traveled for 92cm then the calibration object is raised by 5cm along 0k .  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-1. The calibration cube generated by the Cartesian robot 
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Figure ‎5-2 shows the LED trajectory in the image planes in the left and right cameras. 
 

 

 

 

 

 

 

 

 

 

 

Notes regarding the trajectory of the LED in the image planes using the Cartesian robot: 

3- As plotted above, the camera CCD resolution is 640x480 pixels. 

4- The stereo camera rig has been designed to hold the cameras firmly with coplanar 

and horizontally shifted CCD planes. Hence all the points in the image planes 

share the same vertical displacement along 
lp

j  and 
rp

j  axes. As can be seen in 

the plots, the trajectories of the points are limited between 150 and 300 pixels. 

5- As shown in the figure, the long camera baseline (53cm) has provided a 

significant disparity. The disparity depending on the LED distance to the cameras 

is variable between 161pixels and 218pixels. 

Figure ‎5-2. The image trajectory of the 

LED during the calibration process using 

Cartesian robot.  

lp
i  

lp
j  

lp
o  

rp
i  

rp
j  

rp
o  

The image planes axes have been depicted. 

All axes values are in pixels. 
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5.1.1.1 Validate Camera Model using DLT and SDLT Methods 

 

In this section the camera model(s) obtained using the DLT and SDLT methods 

are compared to investigate the obtained camera model(s). 

The general conditions below as stated in the second row of Table ‎3-1 and Table ‎3-2 

should be considered to verify the obtained camera model(s): 

  0 ˆ: , , ,l r
l rknown H H x x X  

  0 ˆ: , ,l rknown H x x X   

The estimated 3D Cartesian coordinates will be compared with their actual values. The 

plots below show the error between the actual and estimated 3D Cartesian coordinates 

while the above conditions were considered. The DLT and SDLT methods were 

employed to obtain the camera model(s) using the collected 3000 points reserved for 

camera model validation.  

Figure ‎5-3. The absolute error between est and act 3D Cartesian coordinates 

 The method of data collection: using the Cartesian robot 

The camera model is obtained: using DLT method 
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The results show that the mean absolute errors between the actual and estimated 3D 

Cartesian coordinates are not the same. The calculated mean Euclidean distance between 

the actual and estimated 3D coordinates in the DLT method is 0.99cm whereas in the 

SLDT method is 1.26cm. This shows that the DLT method provides a slightly more 

accurate estimation of the camera model(s).   

3D points 
MAE-Cartesian 

DLT (cm) 

MAXE-Cartesian 

DLT (cm) 

MAE-Cartesian 

SDLT (cm) 

MAXE-Cartesian 

SDLT (cm) 

0 0
ˆ,x x  0.5296 2.3698 0.3199 2.1045 

0 0ˆ,y y  1.0258 5.7620 1.6410 7.8731 

0 0ˆ,z z  0.7337 3.2906 1.2059 5.5190 

Figure ‎5-4. The absolute error between est and act 3D Cartesian coordinates 

  

Table ‎5-1. Comparing the Mean Absolute Error (MAE) and Maximum Error (MAXE) between 

the actual and estimated Cartesian coordinates obtained using the classic and direct method  

The method of data collection: using the Cartesian robot 

The camera model is obtained: using SDLT 
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5.1.2 Data Collection using the In situ Calibration Technique 

The trajectory of the calibration objects (bright LEDs) have been depicted in 

Figure ‎5-5. During the in situ camera calibration, 7500 points were collected. Unlike the 

Cartesian calibration robot, the coordinates of the 3D calibration points are obtained 

using the TDH robot encoders and a forward kinematics process. The first 4500 data 

points have been used for camera calibration and the remaining 3000 data points were 

used to validate the obtained camera model(s). In this thesis it has been assumed that the 

encoders provide the closest joint angles to their actual values. All the linkage 

measurements have been assumed to be accurate.  Hence the 3D coordinates of the 

calibration points (using a forward kinematics process) is assumed to be as close as 

possible to their actual coordinates.      

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The plotted 3D trajectory are 0x , 0y  and 0z  components in 

(‎3-24). All axes values are in cm. 

 

Figure ‎5-5. The calibration volume generated by in situ calibration  
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5.1.2.1 Validate Camera Model using DLT and SDLT Methods 

The obtained camera model(s) from the in situ data collection technique is 

validated and compared when the DLT and SDLT methods were used. The plotted 

information shows the error between the actual and estimated 3D Cartesian coordinates 

for the 3000 collected points reserved for camera model validation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎5-6. The absolute error between est and act 3D Cartesian coordinates 

 

Figure ‎5-7. The absolute error between est and act 3D Cartesian coordinates 

 

The method of data collection: using the in situ calibration, using the DLT method 

The method of data collection: using the in situ calibration, using the SDLT method 
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Table ‎5-2. Comparing the Mean Absolute Error (MAE) and Maximum Error (MAXE) between 

the actual and estimated Cartesian coordinates obtained using the classic and direct method 

 

The results show that the mean absolute errors between the actual and estimated 3D 

Cartesian coordinates are not the same. The calculated mean Euclidean distance between 

the actual and estimated 3D coordinates in the DLT method is 1.0343cm whereas in the 

SLDT method is 1.0445cm. This shows that the DLT method provides slightly a more 

accurate estimation of the camera model.   

3D points 
MAE-Cartesian 

DLT (cm) 

MAXE-Cartesian 

DLT (cm) 

MAE-Cartesian 

SDLT (cm) 

MAXE-Cartesian 

SDLT (cm) 

0 0
ˆ,x x  0.8589 5.2523 0.9005 5.8542 

0 0ˆ,y y  2.0240 7.7411 2.0646 8.3629 

0 0ˆ,z z  1.7215 8.2598 1.8228 9.6080 
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5.2 Experimental Results for 3D Position Estimation 

In this section the camera models are constructed using the collected data in the in 

situ data collection technique. The last 3D reconstruction algorithm explained in 

Section ‎4.3 is employed to estimate the 3D position of the target object. The accuracy of 

this reconstruction is verified in two tables when the DLT and SDLT methods are 

employed.   

The TDH robot has been assigned to move a LED within the robot workspace. The 

forward kinematics process using the robot encoders provides the position of the LED 

installed at the end-effector of the robot. The LED is installed with 8.5cm height from the 

robot base origin 0o . An image processing algorithm is able to track the LED in the 

image planes. The results will be the image coordinates in the left and right images 

( ,l rx x ). Hence 2
nd

 condition in Table ‎3-2 has been satisfied: 

  0 ˆ: , , , ,l r l rknown H x x y y y X     

The actual positions of the LED (  0

0 0 0 1
T

act act
X x y z ) will be compared with the 

estimated positions (  0

0 0 0
ˆ 1

T

est
X x y z ).  

Important Note: In the performed experiments it has been assumed that the real 3D 

position of the LED, obtained from the robot encoders, is as close as possible to its actual 

position in 0 0,o C . 

In order to visualize the accuracy of the 3D position estimation process, color accuracy 

maps have been prepared. These color maps are useful to verify the accuracy of the 3D 

estimation in different locations within the area of the LED trajectory. The experimental 

results have been organized as follows considering both DLT and SDLT camera models: 

- 3D positioning without radial lens distortion correction 

 3D positioning for the area larger than calibration area   

 3D positioning  within the calibration area 

- 3D positioning with radial lens distortion correction 

 3D positioning for area the larger than calibration area 

 3D positioning within the calibration area 
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 3D positioning for area smaller than the calibration area 

Figure ‎5-8 shows the areas that the experimental results were performed inside them: 

 

 

 

 

 

 

 

 

 

 

 

 

 

From now, Accuracy Measurement Area (AMA) is referred to the area that the accuracy 

measurement is performed within this area. The descriptions and dimension of the areas 

are as follow: 

R1: The area smaller than the calibration area. The dimension of this area is 70x50cm 

which is from -35cm to 35cm along 0i  and 150cm to 200cm along 0j . 

R2: The stereo camera calibration is performed within this area. This area is in fact the 

first layer of the LED trajectory shown in Figure ‎5-1. The LED trajectory during the 

calibration is between -40cm to 40cm along 0i  and 150cm to 200cm along 0j  on 

different heights. Hence the dimension for area R2 is 80x50cm.  

R3: The area larger than the calibration area. The dimension of this area is 90x50cm 

which is from -45cm to 45cm along 0i  and 150cm to 200cm along 0j . 

The Mean Absolute Error (MAE) of the actual and estimated 3D positions of the LED 

trajectory is calculated. The MAE is calculated separately for the Cartesian coordinates 

( 0x , 0y  and 0z ). The MAE is also calculated for the Euclidean distance of the Cartesian 

coordinates.  

Figure ‎5-8. The 3D positioning validation areas 

R2 
R1 

R3 

0o  

0C  
0k  

0
j  

0i  



 

                                                                                                                     Page 80 

0o

 

0C

 

0k
 0

j

 

0i
 

0.77

0.87

MAEE cm






 

1.18

1.09

MAEE cm






 

1.25

1.26

MAEE cm






 

2.08

1.26

MAEE cm






 

5.2.1  3D Positioning without Distortion Correction 

5.2.1.1 3D Positioning for Area Larger than Calibration Area 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-9. The Mean Absolute Error (MAE) between the Euclidean distance of the actual 

and estimated 3D positions. R3 without lens distortion correction has been selected. 

Figure ‎5-10. The histogram of the MAE between the Cartesian coordinates (x0, y0, z0) 

of the actual and estimated 3D positions (first three plots). The MAE between the 

Euclidean distances of the actual and estimated 3D positions.   
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5.2.1.2 3D Positioning within Calibration Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎5-11.  The Mean Absolute Error (MAE) between the Euclidean distance of the actual 

and estimated 3D positions. R2 without lens distortion correction has been selected. 

Figure ‎5-12. The histogram of the MAE between the Cartesian coordinates (x0, y0, z0) 

of the actual and estimated 3D positions (first three plots). The MAE between the 

Euclidean distances of the actual and estimated 3D positions.   
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5.2.2 3D positioning with Distortion Correction 

5.2.2.1 3D Positioning for Area Larger than Calibration Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎5-13.  The Mean Absolute Error (MAE) between the Euclidean distance of the 

actual and estimated 3D positions. R3 with lens distortion correction has been selected. 

Figure ‎5-14. The histogram of the MAE between the Cartesian coordinates (x0, y0, z0) 

of the actual and estimated 3D positions (first three plots). The MAE between the 

Euclidean distances of the actual and estimated 3D positions.   
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5.2.2.2 3D Positioning within Calibration Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure ‎5-15.  The Mean Absolute Error (MAE) between the Euclidean distance of the 

actual and estimated 3D positions. R2 with lens distortion correction has been selected. 

Figure ‎5-16. The histogram of the MAE between the Cartesian coordinates (x0, y0, z0) 

of the actual and estimated 3D positions (first three plots). The MAE between the 

Euclidean distances of the actual and estimated 3D positions.   
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5.2.2.3 3D Positioning for Area Smaller than Calibration Area 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure ‎5-17.  The Mean Absolute Error (MAE) between the Euclidean distance of the 

actual and estimated 3D positions. R1 with lens distortion correction has been selected. 

Figure ‎5-18. The histogram of the MAE between the Cartesian coordinates (x0, y0, z0) 

of the actual and estimated 3D positions (first three plots). The MAE between the 

Euclidean distances of the actual and estimated 3D positions.   



 

                                                                                                                     Page 85 

5.2.3 Comparing the Accuracy Measurement Results Using DLT Method  

 

Table ‎5-3 shows the accuracy of the 3D positioning system for the mentioned 

areas in the robot workspace. The first three rows show the Mean Absolute Error (MAE) 

between the actual and estimated 3D positions on the Cartesian coordinates. The forth 

row shows the MAE between the actual and estimated 3D positions in Euclidean 

distance. The last row indicates the standard deviation of the Euclidean distances.  

Table ‎5-3. The accuracy measurement comparison in three different †AMA  using DLT.  

 

NLDC = No Lens Distortion Correction, WLDC = With Lens Distortion Correction 

† AMA = Accuracy Measurement Area, ED = Euclidean Distance 

In another attempt the worst case error between the actual and estimated 3D positions in 

different AMA has been provided in table below: 

Table ‎5-4. The worst case error between the actual and estimated 3D positions using DLT 

Unit = cm 

Area of R3 

90x50cm 

NLDC 

Area of R2 

80x50cm 

NLDC 

Area of R3 

90x50cm 

WLDC 

Area of R2 

80x50cm 

WLDC 

Area of R1 

70x50cm 

WLDC 

MAXE (x0) 4.9006 4.9006 4.9524 4.9524 3.9415 

MAXE (y0) 6.5344 6.5344 7.3571 7.3571 5.8666 

MAXE (z0) 8.4882 6.9241 7.7484 6.2757 6.1975 

MAXE (ED) 10.3217 8.1945 9.2595 8.1456 6.9405 

 

MAXE = Maximum Error 

 Important note: It can be confirmed from the provided histograms that the worst case 

error provided in Table ‎5-4 has the lowest frequency magnitude in the distribution.  

Unit = cm 

Area of R3 

90x50cm 

NLDC 

Area of R2 

80x50cm 

NLDC 

Area of R3 

90x50cm 

WLDC 

Area of R2 

80x50cm 

WLDC 

Area of R1 

70x50cm 

WLDC 

MAE (x0) 0.8517 0.7982 0.8554 0.8009 0.7602 

MAE (y0) 1.0929 1.0485 1.0612 1.0521 1.0488 

MAE (z0) 1.2362 1.1102 1.1408 1.0682 1.0420 

MAE (ED) 2.0485 1.9100 1.9707 1.8842 1.8397 

STD (ED) 1.3217 1.1791 1.2113 1.0855 1.0826 
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5.2.4 Comparing the Accuracy Measurement Results using SDLT Method  

 

In this section the accuracy measurement has been performed when the 3D 

positioning algorithm uses the camera model obtained from SDLT process. Same tables 

as represented in the previous section are provided here. 

Table ‎5-5. The accuracy measurement comparison in three different AMA  using SDLT.  

Table ‎5-6. The worst case error between the actual and estimated 3D positions using SDLT 

Unit = cm 

Area of R3 

90x50cm 

NLDC 

Area of R2 

80x50cm 

NLDC 

Area of R3 

90x50cm 

WLDC 

Area of R2 

80x50cm 

WLDC 

Area of R1 

70x50cm 

WLDC 

MAXE (x0) 4.6939 4.1995 4.6309 4.2001 4.2001 

MAXE (y0) 5.5089 4.8104 5.4740 4.8405 4.8405 

MAXE (z0) 7.5376 7.0118 7.5885 6.4095 5.9955 

MAXE (ED) 9.8757 8.3349 9.9154 7.6061 6.8671 

 

It can be concluded, for both DLT and SDLT methods that the lens distortion correction 

slightly improves the accuracy of the 3D positioning as the average error is reduced in the 

columns of the tables that the lens distortion correction was in effect. E.g., the average 

error for the area R2 has been reduced by 1.35% and 2% when DLT and SLDT methods 

were used, respectively. In Section ‎5.2.5 the minimal effects of the lens correction 

distortion is discussed. Limiting the accuracy measurement area to the area that the 

camera calibration was performed within that area (R2), less average error is introduced 

than the area larger than the calibration area (R3). This is due to the fact that the system is 

dealing with similar data set that was used during the camera calibration process. 

Unit = cm 

Area of R3 

90x50cm 

NLDC 

Area of R2 

80x50cm 

NLDC 

Area of R3 

90x50cm 

WLDC 

Area of R2 

80x50cm 

WLDC 

Area of R1 

70x50cm 

WLDC 

MAE (x0) 0.7707 0.7553 0.7618 0.7454 0.7180 

MAE (y0) 1.1884 1.2575 1.1856 1.1194 1.1028 

MAE (z0) 1.2591 1.1675 1.2118 1.1269 1.0718 

MAE (ED) 2.0825 1.9778 2.0404 1.9381 1.8750 

STD (ED) 1.2632 1.1304 1.2185 1.1155 1.0676 
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5.2.5  Effects of Lens Distortion Correction 

 

The first two columns of Table ‎5-3 and Table ‎5-4 are the results of the accuracy 

measurement experiment when the radial lens distortion is not corrected. The third to 

fifth columns show the same type of experiment when the lens distortion correction was 

employed. One can simply verify that the results are close to each other. Presumably, lens 

distortion correction should improve the system accuracy and it does it slightly in this 

case. This correction could be crucial especially when the camera calibration deals with 

the image coordinates in the nonlinear or distorted areas of the left and right images. In 

order to investigate the reason behind the similarity of the accuracy measurements 

with/without lens distortion correction, the plot below have been prepared.  

 

 

 

 

 

 

 

 

 

 

The above figure shows the footprint of the image coordinates of the target object used in 

the accuracy measurement experiment. It can be seen that only small portions of the 

image coordinates in both left and right image planes are placed in the areas with radial 

distortion between 1 and 2 pixels. The lens distortion for the areas of the images with the 

most population of the image coordinates is in fact less than 1 pixel. This provides some 

evidence of why the lens distortion correction (at most by 2 pixels) does not significantly 

improve the system accuracy. However, considering the portion of the data in the 

distortion area of (1 to 2 pixels), it can be confirmed from Table ‎5-3 that the accuracy has 

been slightly improved when the lens distortion correction is applied.  

Figure ‎5-19. The image coordinates of the target object coincided with the radial distortion map 

The areas with radial  distortion 
between 1 and 2 pixels 
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5.3 Sensitivity Analysis of the 3D Position Sensing 

5.3.1 Introduction  

As described earlier in this chapter, the 3D positioning system requires the image 

coordinates and camera models to be determined. The camera models are assumed to be 

accurately calculated as the result of a successful stereo camera calibration. The stereo 

matching process correlates the stereo coordinates in the left and right images. This 

process is vulnerable to number of phenomena that may disturb the correct detection of 

the stereo points in the image planes. Among all the possible problems, the items below 

are the most common: 

 

1- Slight errors in the baseline distance (The distance between the camera origins). If 

one of the cameras moves horizontally along the baseline, the original disparity of 

the image coordinates changes. This introduces a horizontal displacement error 

between the stereo matching points. 

2- Unlike the presented work in this thesis, some applications require the image 

processing to be performed in areas close to the edges of the stereo images.  In 

such applications, stereo point matching process is supposed to provide the 

corresponding image coordinates in all areas of the image planes if linear lenses 

are employed for the cameras. This is not usually the case as the radial lens 

distortion is the inevitable part of the lenses. The radial lens distortion can disturb 

the stereo matching principle which has considered equal vertical displacement 

for the stereo points. However, correction of the radial lens distortion can 

significantly improve the distortions in those applications.  

3- Phenomena such as occlusion and camouflage can affect the accuracy of the 

stereo matching algorithm. In this case the stereo matching process is not able to 

detect the corresponding image coordinates in the left and right planes correctly. 

 

In this section, the sensitivity analysis experiment has been performed to verify the 

sensitivity of the system to camera physical motions and stereo matching errors.   
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5.3.2 Horizontal Pixel Error 

In this section, an intentional displacement error has been applied to the 

horizontal displacement of the obtained image coordinate in the right camera ( rx ). A 

cumulative error starting from 1 pixel to 50 pixels has been considered to disturb the 

actual image coordinates as shown in Figure ‎5-20. This error affects the estimated 3D 

Cartesian coordinates of the target point as shown in Figure ‎5-21. 

 

 

 

 

 

 

 

 

 

 

 

 

The dotted regions (Rl and Rr) depicted in Figure ‎5-20, indicates the projection of the 

calibration points trajectory on the first layer of the calibration volume. Only the layer 

with z0=8.5cm has been selected. The origin of the image coordinate system is in the 

centre of each image plane.   

The observed error in Cartesian coordinates at a randomly selected target point 

( [ 14 187 7]TtX   ), has been plotted in Figure ‎5-21 when 1 to 50 pixel error has been 

added to its horizontal coordinate ( rx ) in the right image plane. The plotted blue circles 

show the amount of errors in cm between the original coordinates of the target point and 

the estimated coordinates in the presence of the pixel error. 

Figure ‎5-20. The region of interest in the left and right image planes 
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Based on the plotted errors in Figure ‎5-21, one can verify that if there is 10 pixels error on 

horizontal displacement of the target image coordinate in the right camera, the amount of 

error introduced on the target point ( [ 14 187 7]TtX   ) are approximately 2cm, 

10.6cm and 8.16cm on its Cartesian coordinates x0, y0 and z0, respectively. It has been 

verified that one pixel error on the horizontal coordinates in the right image introduces 

0.17cm, 0.91cm and 0.70cm error in average on the on x0, y0 and z0, respectively. 

Considering the frame 0C  in Figure ‎5-1, the errors are introduced as follows: 0.17cm 

along 0i  (side), 0.91cm along 
0

j (depth) and 0.70cm along 0k  (up) for every pixel error. 

 

Figure ‎5-21. The error on the Cartesian coordinates of the target point occurred 

by the misplacement of the horizontal pixel in the right image plane.  

 The original coordinates of the arbitrary point in 0 0,o C  is [ 14 187 7]TtX   in 

cm. 
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5.3.3 Vertical Pixel Error 

In another attempt, the cumulative pixel error has been applied to the vertical 

displacement of the image coordinates in the right image plane. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure ‎5-22. The region of interest in the left and right image planes 

Figure ‎5-23. The error on the Cartesian coordinates of the target point occurred by the 

misplacement of the vertical pixel in the right image plane.  

 The original coordinates of the point in 0 0,o C is [ 14 187 7]TtX   in cm. 
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It has been verified that one pixel error on the vertical coordinates in the right image 

introduces 0.01cm, 0.25cm and 0.39cm error in average on the Cartesian coordinates x0, 

y0 and z0, respectively.  

 

Based on the simulation performed for the arbitrary point in this section, the three 

discussions below can be considered:   

  

- The horizontal pixel misplacement introduces larger error on Cartesian 

coordinates of the estimated 3D positions compare to the case when the 

vertical pixel misplacement is applied. This shows that the 3D position 

sensing system is more sensitive to pixel errors occurred horizontally. In fact, 

the horizontal pixel misplacements can be interpreted as disparity changes in 

the stereo images. 

- The pixel errors on the image coordinates can be interpreted as random 

vertical or horizontal camera motions. The errors appeared in the image planes 

should be interpreted as very small physical camera motions. If one considers 

the width of the camera CCD plane approximately equal to 1.5cm while it 

contains 640 pixels in horizontal resolution, every 10 pixels are equal to 

0.23mm. This shows how sensitive the camera system could be to the image 

noises and camera vibration. 

- To reduce the effects of the errors on the image coordinates, it is important to 

employ a highly accurate image processing algorithm for precise detection of 

the image coordinates. Image noise removal and moving average techniques 

can be considered as well to reduce the observed pixel errors.   
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5.4 Joint Angle Independent Visual Servoing 
 

As explained in ‎Chapter 2, a torso-mounted camera location has been considered 

for the proposed visual servoing system. The torso-mounted position constructs one DOF 

for the stereo cameras. This degree of freedom is in fact the TDH robot base angle ( 1 ). 

Reliable visual servoing should be performed when the robot base angle is changing 

while the target object remains in its stationary 3D position. In this section, an experiment 

was run to verify the accuracy of the vision system during random robot motion. An LED 

was selected to be the target object. The target object was placed in a known 3D position 

to the base coordinate system 0 0,o C . The system was programmed to rotate the robot 

torso with joint angle ( 1 ). Obviously to obtain the 3D position of the stationary target 

object, the base angle of the robot should be compensated during the angular motion of 

the robot torso. If the estimated 3D position does not change during the robot torso 

angular displacement, the 3D positing system can be considered as a reliable system 

independent of the changes on the robot base angle. 

Figure ‎5-24 shows the explained process as follows: 

The top subplot: the image coordinates of the stationary object in the left and right 

cameras. As is expected the vertical displacements along lp
j  and  rp

j  in the left and right 

image planes is minimal and approximately equal in both image planes. This is due to the 

constraint explained in Section ‎4.2.1 for the cameras with parallel image planes.  

The middle subplot: The estimated 3D Cartesian coordinates of the target object is 

plotted. The dotted line close to each curve shows the actual coordinates of the target 

object measured accurately in coordinate system 0 0,o C . The Cartesian coordinates of 

the target object is: [ 44 200 40]TtX   .      

The bottom subplot: The angular motion of the TDH robot base angle ( 1 ) has been 

plotted. The maximum and minimum base angle in degrees is as follows: 

1 127.8 5.6
min max

and     
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The maximum and minimum base angle limits are set to always provide the projection of 

the target object in both image planes. Such constraint on the base angle displacement 

guarantees that the image coordinates of the target object in both image planes are 

obtainable. Four elliptical dotted curves in Figure ‎5-24 relates the global extremum points 

of the TDH robot base angle displacement to the corresponding image coordinates and 

the 3D Cartesian coordinates of the target object. Lens distortion correction is employed 

in this experiment. In the magnified plot, maximum errors of 5.5cm, 7.2cm and 8.1cm are 

obtained for the stationary coordinates of 0 44x   , 0 200y   and 0 40z   respectively. 

    

   

 
 

  

Figure ‎5-24. The 3D position estimation of a stationary object during the 

angular motion of the robot base angle ( 1 , third subplot form top) 
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The table below shows the MAE and the maximum error between the estimated and 

actual 3D coordinates of the target object during the explained servoing task. 

 

Table ‎5-7. The errors between the actual and estimated stationary coordinates 

MAE on 0x , (cm) 2.0004 

MAE on 0y , (cm) 1.3593 

MAE on 0z , (cm) 1.5629 

MAX error on 0x , (cm) 5.5883 

MAX error on 0y , (cm) 7.2053 

MAX error on 0z , (cm) 8.1532 
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Chapter 6. Conclusions and Future Work 
 

The stereo camera calibration presented in this thesis is a practical method with 

applications in industry. Accurate 3D position sensing can be obtained if the 3D and 2D 

positions of the data points in the world and image frames are provided accurately for the 

purpose of camera calibration and position estimation. The stereo camera pair is mounted 

on the robot torso using highly accurate mechanical fasteners. This allows the calibrated 

camera pair to be removed from the robot torso for shipping purposes. In the design and 

manufacturing process of the stereo camera pair and the accommodating surface on the 

robot torso, extra care was practiced to be able to mount the stereo rig back on its original 

position. However, the stereo camera pair can be recalibrated using the introduced in situ 

camera calibration technique to fine tune the camera model parameters in the case of 

misplacements on the robot torso. In this chapter a summary of the system field trials, 

problem areas and future refinements are provided. 

6.1 System Evaluation 

6.1.1 3D Position Sensing Accuracy 

In Sections ‎5.2.3 and ‎5.2.4, the 3D position sensing accuracy was evaluated. In 

these two sections, the errors between the actual and the estimated 3D positions were 

compared when the DLT and SDLT camera calibration methods (explained in 

Sections ‎3.2 and ‎3.4) were used. The average error increased by 2.8% when SDLT 

method was used. However, the maximum error was reduced by 6.6% with the DLT 

method. ED stands for Euclidean Distance in the tables below. 

Table ‎6-2. Average error in DLT and SDLT 

 

Unit = cm 

Area of R2 

80x50cm 

(DLT) 

Area of R2 

80x50cm 

(Stereo DLT) 

MAXE (x0) 4.9524 4.2001 

MAXE (y0) 7.3571 4.8405 

MAXE (z0) 6.2757 6.4095 

MAXE (ED) 8.1456 7.6061 

Table ‎6-1.Maximum error in DLT and SDLT 

 

Unit = cm 

Area of R2 

80x50cm 

(DLT) 

Area of R2 

80x50cm 

(Stereo DLT) 

MAE (x0) 0.8009 0.7454 

MAE (y0) 1.0521 1.1194 

MAE (z0) 1.0682 1.1269 

MAE (ED) 1.8842 1.9381 
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6.1.2 Lens Distortion Correction Effects  

The effects of lens distortion correction were shown in the accuracy measurement 

tables in Sections ‎5.2.3 and ‎5.2.4. The tables below are the replicas of the associated rows 

in the accuracy measurement tables indicating the effects of Radial Lens Distortion 

Correction (RLDC).   

Table ‎6-4. Effects of RLDC in DLT method 

 
NLDC = No Lens Distortion Correction, WLDC = With Lens Distortion Correction   

 
 

MAXE = Maximum Error 

As stated in Section ‎5.2.5, the radial lens distortion correction does not 

significantly decrease the 3D position sensing average errors for both DLT and SDLT 

methods. The lens distortion correction reduces the average error by 1.35% when the 

camera model is obtained suing the DLT method. This reduction is 2% when the camera 

model is obtained using SDLT method. However, the maximum error has dropped by 

18% when the lens distortion correction is employed in the SDLT method. This shows 

Unit = cm 

Area of R2 

80x50cm 

(Stereo DLT) 

NLDC 

Area of R2 

80x50cm 

( Stereo DLT) 

WLDC 

MAE (x0) 0.7553 0.7454 

MAE (y0) 1.2575 1.1194 

MAE (z0) 1.1675 1.1269 

MAE (ED) 1.9778 1.9381 

Table ‎6-3. Effects of RLDC in SDLT method 

 

Unit = cm 

Area of R2 

80x50cm 

(DLT) 

NLDC 

Area of R2 

80x50cm 

(DLT) 

WLDC 

MAE (x0) 0.7982 0.8009 

MAE (y0) 1.0485 1.0521 

MAE (z0) 1.1102 1.0682 

MAE (ED) 1.9100 1.8842 

Table ‎6-5. Max error with RLDC (DLT) 

 

Table ‎6-6. Max error with RLDC (SDLT) 

 

Unit = cm 

Area of R2 

80x50cm 

(Stereo DLT) 

NLDC 

Area of R2 

80x50cm 

(Stereo DLT) 

WLDC 

MAXE (x0) 4.1995 4.2001 

MAXE (y0) 4.8104 4.8405 

MAXE (z0) 7.0118 6.4095 

MAXE (ED) 8.3349 7.6061 

Unit = cm 

Area of R2 

80x50cm 

(DLT) 

NLDC 

Area of R2 

80x50cm 

(DLT) 

WLDC 

MAXE (x0) 4.9006 4.9524 

MAXE (y0) 6.5344 7.3571 

MAXE (z0) 6.9241 6.2757 

MAXE (ED) 8.1945 8.1456 
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that the stereo assumption ( l ry y y  ) has improved the worst case error (only for the z 

component shown in Table ‎6-6) when the SDLT method was employed. In fact, the 

system suffered from the inequality in the pixel vertical displacement (due to image 

processing) when the DLT method was used.   

6.1.3 Real-world System Test  

In the course of development of the system, three site visits to the final 

installation location of the system were performed. The first two trips were arranged with 

the main goals below: 

1- Get familiar with the industrial requirements of the system 

2- Examine different locations for the stereo camera pair 

3- Verify the environmental conditions to meet the outdoor requirements 

The third visit was performed to install the first prototype of the completed visual 

servoing system on the original location of the system. The performance of the visual 

servoing system was fully investigated and very good results were obtained during the 

system servoing tasks. The system shortcomings and the problem areas were documented 

to be used in the future improvements of the system.     

6.1.4 Vision System Errors 

Detection of the target image coordinates is required in both camera calibration 

and 3D position sensing. Hence, accurate correspondence between the image points must 

be performed during all vision related algorithms. The accuracy of the image processing 

algorithm becomes worse in the existence of image noise. With the cost of the system 

speed (dropping the image frame acquisition rate), algorithms such as template matching 

can be used to detect the target points in the stereo images.   

6.1.5 Mechanical Inaccuracies 

As in any mechanical system, there is inaccuracy in endpoint motion due to sensor 

error and servoing errors. These errors contribute to the overall system error. E.g. a 

maximum error of approximately 6cm was measured mechanically on the end-effector 

height relative to the robot base coordinate system when the end-effector was fully 
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retracted. Considering Figure ‎2-9, this error occurs during the radial motion of the robot 

arm. 

6.1.6 Comparing with Affine (Weak Perspective) Stereo Systems 

The stereo camera calibration method implemented in this thesis employs the 

pinhole camera model with full perspective transformation. Hollinghurst and Cipolla ‎[78] 

have introduced a camera calibration technique based on weak perspective camera 

modeling. Their method is fast and the camera model requires fewer parameters than the 

implemented model in this thesis. The weak perspective camera model was evaluated for 

use in the proposed visual servoing system. It was observed that the average error in 3D 

position estimation using the full perspective (pinhole camera) is 57% of the average 

error when the weak perspective was used.  

 

6.2 Future Refinements  

6.2.1 An Automatic Accuracy Test for Obtained Camera Model 

There is no specific testing procedure in this thesis to verify the accuracy of the 

obtained camera model. This verification can be accomplished by estimation of 3D 

positions of some known target objects and comparing them with their actual positions. 

E.g. one can program the robot to move its end-effector to a few known positions in the 

stereo camera FOV. The 3D estimation algorithm detects the position of the end-effector 

and it will be compared with the actual value obtained from the arm forward kinematics 

process. If the 3D positioning system introduces errors more than what the system 

tolerates, the in situ camera calibration process can be repeated to recalibrate the stereo 

cameras. It is important to make sure that during this process the image coordinates are 

detected accurately.   

6.2.2 Accurate Camera Calibration Platform 

As stated in Section ‎6.1.6, mechanical error disturbs the robot endpoint motion 

and this introduces unexpected error in positioning the end-effector. The camera model 

can be estimated with high accuracy if the 3D positions of the control points are obtained 

accurately. The first solution to address this problem is to request that the robot 
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manufacture improves the mechanical problems of the robot. This solution could be 

costly and specially may not be considered by the manufacture as a necessary fix since 

the errors reside in the system accuracy tolerance. A simple and cheap procedure is to fit 

polynomial functions to estimate the position of the end-effector. This requires sample 

known positions of the end-effector together with accurate encoders reading.   
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Appendix A 
 

System Components 
 

The proposed visual servoing system contains the main hardware components below: 

1- TDH robotic manipulator: 

A 3DOF custom made robot to be installed on the so-called Monkey Board (MB) 

structure.  The robot is designed and manufactured by Roboweld, Coquitlam, BC. 

The stereo cameras are installed on the robot torso as shown in Figure ‎2-1.  The 

robotic arm is equipped with the following components: 

- Two AC servo motors: The first servo motor provides the revolute motion of the 

robot torso. This DOF is called TDH robot base angle indicated by 1  in 

Figure ‎2-1. The second servo motor provides the radial motion on the robot arm 

by driving a linear actuator installed inside the robot column (torso). This DOF 

is indicated by 2d .  

- Stepper motor: Provides the revolute motion on the robot end-effector (gripper). 

The DOF is indicated by 3 .  

- Absolute encoders: The servo and stepper motors are equipped with absolute 

encoders to be read by the PLC unit. The robot joint angles are obtained by 

reading the employed absolute encoders. 

 

2- PC104 embedded system with X86 CPU architecture: 

A heavy-duty rugged PC104 embedded system to transfer the calculated joint 

angle commands to the (Programmable Logic Control) PLC and motion controller 

units. The PC104 Embedded CPU box has been designed and manufactured by 

Motion Metrics International, Vancouver, BC. The CPU box contains the  hardware 

below: 

- CPU board: The image processing and machine vision algorithms are executed 

using its 900MHz processor. 
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- Frame grabber: The NTSC signals (analog video) from the stereo cameras are 

acquired and converted to digital frames using a high performance four channel 

frame grabber with maximum of 30Hz frame rate. 

- DAQ board: The main purpose of using this board is to benefit from its onboard 

hardware interrupt. Delivering a constant timing between different software 

threads requires the interrupts to be generated using software independent 

routines. The other use of this board is to read the analog voltages of a joystick 

employed for manual motion control of the TDH robot as well as reading of 

other analog sensor signals such as those of accelerometers. The mentioned 

joystick and analog sensors have not been discussed in this thesis. 

-  

3-  Programmable Logic Control (PLC) and Motion Controller: 

An industrial PLC and motion controller systems employed for robot motion 

control using the joint angle commands sent from the PC104 system. The system 

contains the following components: 

- PLC unit: Two primary tasks are performed by this unit. The PLC system is a 

bridge between the PC104 embedded system and the motion control unit. It 

transfers the desired joint angles calculated by the PC104 to the motion 

controller unit. The other main task of this unit is to control/execute all the 

required pipe handling tasks defined by the application requirements. 

- Motion Controller unit: This component performs the joint level closed-loop 

motion control of the robot.  

 

4- Servo motor drives: 

These units receive the control signals from the motion controller unit and 

generate the required amplified voltages to be used by the servo motors. Each servo 

motor requires a servo drive unit. 

 

5- Stereo camera rig:  

The stereo camera rig accommodates the two monochrome analog cameras. The 

cameras are heavy-duty and specially designed and manufactured for harsh 
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environment such as mining and underwater industries. This unit is designed and 

fabricated by Motion Metrics International and Roboweld. 

 

6- LCD touch screen monitor: 

The touch screen monitor is used to show the interactive Graphical User Interface 

(GUI) and to provide a visual perception of the tripping actions using the real-time 

video signals from the stereo cameras.  
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