A CYTO-TAXONOMTC REVISION OF THE GENUS ROSA

IN THE PACIFIC NORTH-WEST

by

WALIER HEPWORIH LEFIS

A THESIS SUBMITTED IN PARTLAL FUWFIMMENTI
 OF THE REQUIREPMENTS FOR THE DEGREE OF
 Master of AFIS

in the Department of Biology and Botany

> We accept this thesis as conforming to the standard required fram cendidates for the degree of MASTER OF .ABTS..

A CYTO-TAXONOMIC REVISION OF THE GENUS
ROSA IN THE PACIFIC NORTH-TVEST

Abstract

The delimitation and taxonomic study of Rosa species in the Pacific North-west was approached by utilizing several experimental methods. Randomly sampled mass collections analyzed statistically and grouped into climatic regions was the most important method and it served as the basis for all conclusions. To corobarate these results, 'ordinary' herbarium material, transplants, progeny testings, and cytological examination of chromosome and cell sizes were examined for each species. From the results, the populations were divided into four species, four subspecies, one hybrid, and one form. They heve been named: Rose acicularis Lindl., R. arkansana Porter, R. pisocarpa Gray, R. Woodsii Lindl., R. gymnocarpa Nutt. ssp. gymnocarpa, R. gymocarpa Nutt. ssp. apiculata (Greene) Lewis ined., R. nutkana Presl, ssp. nutkane, R. nutkana ssp. Spaldingii (Crép.) Lewis ined., R. acicularis Lindlo X R. nutkana Presl, and R. nutkana Presl f. muriculata (Greene) Lewis ined.

ACKTNOTITEDGEMAENTS

The author is grateful to all members of the Master's Committee including Dr. K. Cole, Dr. V. C. Brink, Dr. J. W. Neill, and particularly to the Chairman, Dr. T. 1 . C. Taylor for their guidance and encouragement during the study. Gratitude is also extended to Dr. A. H. Hutchinson, Dr. V. Krajina, Mr. R. W. Pillabury, and Mr. H. Sweet for their assistance, and to Dr. S. W. Nash for his edvice on atatistics.

Special acknowledgement is made to all who contributed specimens, particularly to Mir. R. D. Gilbert for his collections from Nootke Sound, and to Mr. B. F. Smith for his collections from the Great Plains.

Further appreciation goes to the President's Committee on Research of the University of B. C., end to the National Research Council for grants which have made possible two summers of research on the revision of Rosà.

TABLE OF CONTENTS
page
I Introduction 1-2
II Experimental Methods and Procednres
A. Statistical

1. Mass collection criteria 3-4
ii. Criteria analyzed 4-6
B. Transplants 6
C. Progeny testing
i. Embryo culture 6-8
ii. Seedling development 8
D. Cytology 9
S. Herbarium material 9
III Results
A. Mass Collections, Transplants, Progeny testing
i. Separation "gymnocempous", "diploid", \& "polyploid" divisions 10-13
ii. "gymocarpous" populations
a. Mass collection analysis 13-16
b. Transplants 16
iii. "diploid" populations
a. Mass collection analysis 16-24
R. pisocarpa 21
R. Hoodsil 23
b. Trensplants 23. 25
c. Progeny testing 24-26
III Results (cont'd) page
iv. "polyploid" populations
a. Rass collection analysis 26-36
R. nutkana 29
R. nutkana f. muriculata 29
Ro acicularis 31
R. acicularis X R. nutkana 35
b. Transplants 35-37
c. Progeny testing 36-39
B. Cytology
i. Chromosome counts 39, 43
i1. Pollen analysis 39-40, 42
C. Herbarium Studies
2. Anthesis 41-42
ii. Leaflet shape 41, 44
IV Taxonomy
A. Genus Rosa 45-46
B. Analytical Key 46-47
C. Genus divided into Sections 48-49
D. Species, hybrid, and form of genus
3. A: gymocarpa 49-54a
ii. R. pisocarpa 55-57
iii. R: Hoodsii $57-63 a$
1v. R. aciculèris 64-69
V. R. arkansana 70-71
Vi. R. nutkana 72-80
vii. Re acicularis X R. nutkana 80-81
Vili. Exotic species 82
page
V Sumary 82
VI Appendix
A. Appendix I; Mass collection localities 83-85
B. Appendix II; Mass collection data 86-98
C. Appendix III; Bxotic species described 99-102
VII Literature Cited 103

The genus Ross is emong the most interesting in the North American flora. Its continent-wide distribution and great range of ecological tolerance has promoted the development of many tasa within the genus. The delimitation and taxonomic study of these taxa in the Pacific North-west constitute this investigation.

That there is no unanimity among taxonomists as to the signifo icance of morphological criteria customarily used in distinguishing species in Rose is evident by the contrasting the treatment of Greene (1912) and Eydberg (1918) with that of Brlanson (1934). Several of the specific criteria used by Fydberg (1. c.) were found by Erlanson (l.c.) on the same bush as well as among the offspring of similar parental species. From the writer's populations studies, a group of individuals in one region often consist of from four to five species using Greene's criteria. These taxonomists included just one morphological variant under one binomial. This gave rise to the neming of many, so-called, new species. In her studies, Erlanson (l.c.) concluded that the number of North American species in the genus is relatively amall and intermediate forms should be classified under the species they most nearly resemble. The diversity of approach and concluaion of Rydberg and Greene, and Brlanson emphasize the need for reliable morphological criteria.

The application of experimental methods to taxonomy, or biosystematy, has provided new approaches to this problem. By studying species as populations, it seeks to define the composition and limits of the various taxa present. One of the most useful innovations has been the application of statistical methods to problems of taxonamy. By randam sampling a number of individual plants from one locality, this 'mass collection' will serve as a record of the population as well as its individuals. Hass collection analysis by statistics will give the facts about variation. It will bring into the herbarium information which can now be obtained only in the field. In analyzing kinds of populations, the usual procedure of collecting only morphologically different specimens gives an erroneous picture of population deliminations. Such collections are too selective for variates and, therefore, limit an understanding of variation and its frequency. A slight extension of the usual collecting technique will increase the accuracy of herbarium studies.

Other approaches are to utilize the data of transplant and progeny tests. These give indications of the cause of variation. Environmental variations will be detected by the use of the transplant technique and those attributed to the genotype by progeny differences. Still further helpful data are those provided by cytological examinations of chromosome and cell sizes. These methods have all been utilized in the present study.

SECTION II: EXPERTMRENIAL MAETHODS AND PROCEDURES

Statiatical:

The significance given to analyzed criteria rests primarily upon the method used for collecting the apecimens. If a high degree of objectivity in sampling is to be obtained, the individuals must be selected at random. Only then will they represent clearly a part of the natural population and be capable of accurate presentation through statistics.

From ten individual plants in an area of about one-half mile, three flowering branchlets and three turions formed the mass collections. To ensure that each plant was not part of the same clone, they were chosen only when a discontinuity saparated them one from another. In an attampt to standardize their position on the bush, brenchlets were taken only from the uppermost portion. In this way, comparisons could be made of the same organ at the same stage of development. By standardizing the position of the branchlets and randomly selecting discontinuous plants, a high degree of objectivity was maintained in the field. In this manner, fifty-five collections were made throughout British Columbia in seven climatic regions. Their locations are indicated in appendix I.

Data from twenty-four criteria were used to characterize each coliection. All these criteria have been used at one time or another in differentiating taxa within the genus. Of these, twelve criteria were
quantitative, the remainder qualitative. Those analyzed quantitatively included: leaflet width, leaflet length, number of serrations per half leaflet, petiolule length, stipule length, inflorescence, stemen number, sepal width, sepal length, petal width, petal length, and pollen grain size. The qualitative criteria were: type of serration, glandularity of serrations, leaflet with glands below, leaflet pubescent below, petiole and petiolule with bristles, stipule glendular, sepal pubescent, sepal glandular, sepal bristled, peduncle pubescent, peducle glandular, and armature type.

All leaflet data were taken from the first mature leaf below the inflorescence. The exemination of the epical leaflet and its petiolule was chosen, measurements were made in mano of its meximum width, length, and petiolule length. Counts of the number of serrations per half leaflet and the measurement in me of the stipules free portion constituted the vegetative quantitative characters.- In the flowering part of the plant, the number of flowers in each inflorescence, and the number of stamens in one flower mere counted. Measurements of sepal with, at its base, the length of a mature sepal, and maximum petal width and length were all recorded.

The qualitative criteria examined were classed into one of three categories: either the characteristic was not present (-), more or less present (娄), or completely present (*). These three classes were used for all exsminations except the leaflet serration type, armature type, and bristly sepals. Thestype of armature for branchlets, includIng the upper stem, divided into: bristles and prickles (a), scattered thoms (b), infrastipular thorns (c), and marmed (d). The third
exception, bristly sepals, has two frequency classes, bristles are either absent (-), or present (*).

In analyzing the quantitative data, it was felt that the following statistics would be the most illumating: arithmetic mean (x), standard deviation (s), standard error ($s-$); coefficient of variation (C), and in one case, correlation coefficient (r). These were worked out for each population. The qualitative data, on the other hand, were sumarm ized by class frequencies expressed as percentages. The statiatical ano alysis of date is represented in plates I-XII, appendix II.

The populations, divided into three major parts ${ }^{l}$, "diploid", "polyploid", and "gymocerpous", were tested to determine significant differences between their criteria. Tho tests of significance; t and X_{2}; compared the populations.

Several species populations, however, could be hidden within these large divisions. It was found necessary to eplit them into more suitable categories. To group the populations in their climatic regions, from Chapman (1952) after W. Koppen, proved satisfactory. In the climatic regions, map 1, populations were found in the Cool Sumer Mediterranean (Csb), Marine West Coast (Cfb), Humid Continental-wCool Summer (Dfb), Humid Continental-Cool, Short Sumer (DPc), Humid Continental-o Hot, Dry Sumer (Dsq), Humid Continental-COOl, Dry Sumer (Dsb): and Middle Latitude Steppe (Bsk). Becanse few populations were collected in the last three regions, they were often united with others depending upon their affiliation.

1. Details of this division will be given in Section III: Resums.

Climatic Regions from Chapman (1952) after Koppen

For the quantitative data in each climatic grouping, four parameters, $x, s, \frac{s}{x}$, and C were calculated. Tested parameter means and their fiducial limits ${ }^{2}$, together with qualitative X_{2} test results, afforded a basis for characterizing the populations.

Trangplents:

Individuals from many parts of B. C. were planted in the University Botanical Gerden. The plants have grown under standard climatic and edaphic conditions for two years, and changes in morphology noted. Two sets of herbarium specimens have been prepared in each case to show the morphological characters modified by the change in environment. These have been deposited in the Herbarium of the University of B. C. In all, twelve such comparisons were made, the plants being obtained from Burns Lake, Dawson Creek, Fernie, Hope, Nelson, Prince George, Revelstoke, Telkwa, Terrace, and Williams Lake.

Progeny Teating:

For this test, achenes from single hips were planted under similar conditions. A comparison of the resulting seedlings should provide evidence for either homozygosity or heterozygosity of the mother plant. This evidence could be inconclusive if apomixis were found in the species. While Balckburn and Harrison (1921) reported apomixis to be general in European species, its occurrence in North American species has yet to be established. Erlanson (1929) has reported in two cases

[^0]of Rosa blanda Ait. the formation of achenes following castration. Her experimental technique is open to question, however, and the resilts must be considered invalid.

Achenes, from the previous summers growth, were stratified in sand and peat at $5^{\circ} \mathrm{C}$. for six weeks before being placed outside in February. They germinated in late July and August. Those achenes plented directly outaide in the late fall also gemminated late the next sumer. In an attempt to obtain faster germination, an ambryo-ereiaion mothod of Asen and Larsen (1951) was adopted. By bathing the achene in concentrated sulfuric acid for $1.5-2.5$ hours most of its pericarp was removed. After washing in water, the mechanical removal of the remaining pericarp and the testa exposed the embryo. It was immediately transferred to an anticeptic, a 2% chlorine solution made by ahaking 10 em. of celcium hypochlorite in 140 cc . of water and filtering, and imersed in it for ten minutes. The embryo was placed in a 1.2% agar solution consisting of 5 g. of glucose, 12 gm. of agar, and 1.5 gn. of mineral salts to one litre of water. The embryo, transferred aseptically to sterile cotton-plugged culture bottles, began germinating within one week at room temperature and normal daylight. After four weeks, the seedlings were removed to a mixture of 10% sand, 10% peat, and 80% verniculite in the greenhouse at $55^{\circ}-60^{\circ} \mathrm{F}$. The plants were watered by a nutirient solution ${ }^{4}$ through a glass tube, which extended to the base of the culture

[^1]pans.
After three weeks in this medium, the plante were transferred to soil pots and left outdoors for five months in the open sum. At the end of October, some seedlings were placed in beds outside, while others were transferred to greenhouse benches. The latter, pruned to the height of six inches, soon began development of lateral branchlets. Growth was slow, however, in the cool greenhouse temperatures and the ahort days of the winter months. At the end of February, 300 w. incandescent buibs giving 5500 ft . candles at bench level were installed. The bulbs were kept illuminated for four hours daily after sunset and with this increased unit of light and accompanying rise in temperature ($55^{\circ}-63^{\circ} \mathrm{F}$.), plant growth was more rapid than previously. . At this time, the amount of watering was increased in order to offset the increased evaporation rate. Because of extensive vegetative growth during March and April, the use of artificial light was no longar felt necessary and was as a result discontinued at the end of April. Laterel branchle.ts were pruned In May in an attempt to obtain flowering material from the sublateral branchlets, but by July, there was still no indication of such material. It is difficult to correlate these results with the inferences made by Asen and Largen (1951) where they claimed two generations of Rosa could understandably be raised in one year using the embryo-excision methode After seventeen months, neither the plants grown in the greenhouse nor those growm in the Botanical Garden have any suggestion of flowering material. :That the two investigations were conducted with different species, is the only obvious explanation for this discord.

Cytology:

Anthers, for cytological exsinination, were removed from buds about two weeks before expected anthesis. After pre-fixing in 0.1\% colchicine solution for several hours, they were fimad in Farmer's solution for twenty-four hours before squashing in 2\% Brilliant Cresyl Blue. This procedure gave same melotic figures for chromosome counts.

The viability of pollen grains was determined by squashing anthers in 0.5% aceto-camine solution, those that stained bright red were considered vieble, while those that failed to do so or were shrunken were taken to be nonviable. The viability of the pollen of each specimen was based on an examination of approximately 100 grains, the results being expressed as a percentage.

In determining the diemeter of the pollen grains, five to ten from each sample, were measured in microns using a filar micrometer. The measurements were made from the (one) germinal furrow across the diameter of the pollen grain. Thes were expressed by the usual statistics for quantitative data, the arithmetic mean, standard deviation, standard error of the mean, and coefficient of variation.

Herbarium Haterial:

Several thousand herbarium specimens obtained fram several herbaria ${ }^{6}$ were also examined, in particular from those regions not covered by mass collections. The study of taxa not. included in the mass collecting was made thereby possible.

[^2]
SECTION III: RESULTS

An initial study of all mass collection data showed some basic differences between the populations. These populations could be grouped according to their greatest affinities of morphological and cytological criteria. They were divisable into three parts named: "gymocarpous", "diploid", and "polyploid".

Populations malyzed in these groupings, showed that there werg significant differences between the "gymnocarpous" ones and those of the "polyploid" in all quantitative tests. Reference to table 1 points out significantly smaller leaflet widths and lengtha, petiolule lengthe, stipule lengths, and pollen sizes more serrations per leaflet, and fewer flowers in an inflorescence for the "gymnocarpous" populations then for the "polyploid" ones. In particular; the high tests of significance for leaflet width and length, stipule length, and pollen size emphasize their diacontinuous paramater means.

Similar characteristics tested for significant differences between the "diploid" and "gymocarpous" divisions indicate that discontinuity exists between their leaflet lengths, serration numbers, inflorescence, and stipule lengths. The "gynnocarpons" populations
6. Rose species examined included collections from: Herbarium, University of Alberta, Plent Pathology, Science, Service, Saskatoon, Sask., Boteny Depertment, University of Sask., Herbarium, University of Man., Provincial Museum, Winnipeg, Man., National Herbarium, Ottava, Provincial liuseum, Victoria, B. C., Herbarium, University of Wash., Herbarium, State College of Wash., Herbarium, Fnip. Oregon State College, Herbarium, Univ. of California. The thanks of the writer are due to the curators of these various herbaria for the courtesy of loaning specimens for study.
have smaller leaflet widths ($X=12.9 \mathrm{~nm}$. as apposed to 14.7 mm) and lengths ($X=21.2 \mathrm{mm}:. 26.7 \mathrm{mmo}$), and stipule lengths ($X=2.8 \mathrm{mm}:. 4.1 \mathrm{mmo}$) fewer flowers in each inflorescence ($X=1.3$: 4.0), and a greater number of serrations ($X=20.5$: 14.3) then those ${ }^{(1) d i p l o i d}$ ones. In contrast, pollen size, petiolule length, and leaflet width have little statistical significance.

TABTE 1

TESR OF SIGNIFICANCR: QUANPITATIVE CRITRRIA

X	Leaflet W1dth		Leaflet Liength		Serration No.	
	$\begin{gathered} \text { Gymnocarpous } \\ 12.92 \end{gathered}$		Gymocarpous		Gymocarpous20.49	
	diploid	polypl.	diploid	polypl.	diploid	polypl.
X	14.66	19.15	26.74	34.57	14.26	17.03
t	1.914	6.663	3.548	7.746	4.581	2.601
	Inflorescence		Rachis Length		Stipule Length	
$X$$X$	gymocaxpous		gymocarpous		gymnocarpous	
	diploid	polypl.	diploid	polypl.	diploid	polypl.
	3.908	1.558	7.26	10.25	4.09	5.24
t	5.757	2. 980	1.563	2.881	5.296	12.266
			Pollen Size			
X			gymocarpous			
\mathbf{X}			$\begin{gathered} \text { diplodd } \\ 88.00 \end{gathered}$	$\begin{gathered} \text { polyple } \\ 35.62 \end{gathered}$		
t			. 049	12.52		
	.05, $t=$					

The "diploid" and "polyploid" populations are divisible by eleven quantitative criteria, the most striking of which is.pollen size (table 2). If the large polien size in "polyploids: is correlated with polyploidy, as Blakeslee (1941) consistently found in other genera, then other organ, particularly thoge with a determinate type of growth, might well be comparably 'gigas'. Examination of twelve criteria ahow that the "polyploids" do have largar parameter means for eleven of these criteria, the only exception being inflorescence.

TABLE 2						
TTEST OF SICNIFICANCE: QUANTTITATIVE CRITERIA						
Leaflet Width			Leaflet Length		Serration No.	
X	$\begin{gathered} \text { diploid } \\ 14.66 \end{gathered}$	$\begin{gathered} \text { polypl. } \\ 19.65 \end{gathered}$	$\begin{aligned} & \text { diploid } \\ & 26.74 \end{aligned}$	$\begin{gathered} \text { polypl. } \\ 34.57 \end{gathered}$	$\begin{gathered} \text { diploid } \\ 14.26 \end{gathered}$	$\begin{gathered} \text { polypl. } \\ 17.03 \end{gathered}$
t	7	4		276	6.3	
Inflorescence			Retiolule Length		Stipule Length	
X	$\begin{gathered} \text { diploid } \\ 3.908 \end{gathered}$	$\begin{gathered} \text { polypl. } \\ 1.558 \end{gathered}$	$\begin{gathered} \text { diploid } \\ 7.257 \end{gathered}$	$\begin{aligned} & \text { polypl. } \\ & 10.25 \end{aligned}$	$\begin{gathered} \text { diploid } \\ 4.09 \end{gathered}$	$\begin{gathered} \text { polypl. } \\ 5.24 \end{gathered}$
t			6.696		6.149	
Sepal Leneth			Sopal WIdth		Stamen Humber	
X	diploid 14. 20	$\begin{aligned} & \text { polyp1. } \\ & 22.59 \end{aligned}$	$\begin{gathered} \text { diploid } \\ 2.107 \end{gathered}$	$\underset{3.356}{\substack{\text { polypl }}}$	$\begin{gathered} \text { diploid } \\ 83.5 \end{gathered}$	$\begin{gathered} \text { polypl } \\ 95.8 \end{gathered}$
t	14.735		11.564		1.369	
Petal Width			Petal Length		Pollen Size	
\mathbf{X}	$\begin{gathered} \text { diploid } \\ 13.49 \end{gathered}$	$\begin{aligned} & \text { polypl. } \\ & 19.78 \end{aligned}$	$\begin{gathered} \text { diploid } \\ 16.5 \end{gathered}$	polypl. 22.3	$\begin{gathered} \text { diploid } \\ 28.0 \end{gathered}$	$\begin{gathered} \text { polypl. } \\ 25.6 \end{gathered}$
t	6		3.713		$\underline{16.933}$	
$\mathrm{p}=.05, \quad t=1.97$						

The "polyploid" popolations were large than the "diploid" ones in: leaflet width and length, serration number; petiolule and stipulelength, sopal width and length, petal width and length, stamen number, and pollen size. Even without the analysis of their chromosome numbers, this:evide 'ence suggests "polyploid" populations might well be composed of polyploid individuals, while the "diploid" populations are made up of diploid individuals.

The heterogeneity of the "diploid" and "polyploid" divisions invalidates usual X_{2} testing of their qualitative data, or between them and the "gymocarpous" division. Plates IX-XII illustrates the general lack of leaflet glands in the "gynnocarpous" populations. This agrees with the "diploids", but not the "polyploids". The "gymnocarpous" populations are alone in their general absence of pubescence on the leaflets, all other populations having almost uniformly pubescent leaflets. Furthermore, glandular peduncles occur in 94% of the "gymocarpous" individuals, yet are rarely found in "diploids" or "polyploids".
"Gymocarpous' Populations:

The "gymnocarpous" mass collections, because they were collected in the Marine West Coast (Cfb), and Cool Summer Mediterranean (Csb) climatic regions, were separated into two? Fow mass collections are included in each climatic region. Reference to table 3 will show statistically different parameter means for leaflet width and length, number of serrations, and stipule length. The Csb populations have smaller

[^3]leaflets with more serrations, and shorter stipule lengths than those found in the Cfb populations. On the other hand, petiolule lengths, and inflorescence overlap in their fiducial limits and as such, they lack a statistical basis for representing discontinuity.

TABLE 3

ROSA GYNNOCARPA: QUANITTATIVE CRITERIA TESTED

Cool Summer Mediterranean (Csb) : Marine West Coast (Cfb)

	Leaflet Width	Leaflet Length	Serration No.
X	Csb* Cfb 11.3 14.4	Csb Cfb 18.8 23.3	Csb Cfb 21.7 19.1
t	7.48	6.49	5.27
m_{1}	10.6-12.0	17.8-19.8	21.0-22.4
m_{2}	13.7-15.1	22.3-23.3	18.3-19.9
	Petiolule Length	Stipule Length	Inflorescence
	Csb cfb	Csb cfb	Csb cfb
X	7.98 .7	2.23 .2	1.22 1.29
t	1.36**	7.41	1.08***
m_{1}	6.8-9.0	2.0-2.4	1.14-1.30
m_{2}	8.1-9.3	$3.0-3.4$	1.19-1.39

* The fiducial limits of Csb are m_{1}, those of CPb m2.
** One concludes from this test a lack of discontinuity; fiducial limits of their parameter means (Csb 6.8-9.0 and Cfb 8.1-9.3) verify this.
*** A single line under the test value indicates overlap of parameter means in fiducial limit.

Populations of the Marine West Coast with leaflets over 13 mm . wide and 21 mm . long with more than 18 serrations, and atipules of 3 mm . or more in length approximate Rosa gymnocarpa Nutt. ssp. gymnocarpa. Those populations of the Cool Sumer Mediterranean with leaflets less than 13 mm . wide and 20 mm . long, with serrations more than 20 , and stipule lengths less than 3 min. agrees with Rosa apiculata Greene. In the writers view, it is best regarded as a subspecies of Re gymnocarpa. As such, it should be referred to as ssp. apiculata (Greene) Lewis ined. These criteria used to differentiate the two subspecies are represented in table 4 and graph 1.

TABUB 4

CRITERIA DIFFERENTIATING ROSA GYMNOCARPA SUBSPECIES

Leaflet width	\cdots	13.0--15.0*m.	*10.5--12.5 mm.
Leaflet length		21.0--23.0* mm .	*17.0--20.0 nm.
Stipule length		3.0--3.4* mm .	*2.0---2.6 mm.
Serration number		*18.0--20.0	21.0--22.0* .ime
		ssp. gymnocarpa	ssp. apiculata

* Criterion most likely to vary in that direction.

Transplant data, illustrated in table 5, were obtained from four plants in two climatic regions, Humid Continental (Dfc) and Marine West Coast (Cfb). Removal to the Botanical Gerden reduced their leaflet and petiolule lengths in three instances. In these cases, the originel

GRAPH 1

CRITERIA DIFFERFNTIATING CLIMAIIC GROUPING OF ROSA POPULATIONS ("GYMNOCARPOUS")

In each radius there is represented a criterion for each of three populations. Six criteria for each population are given in the form of a polygon, Hutchinson (1940).

The criteria on the six radii are respectively:
I Petiolule length (no diagnostic value)
II Stipule length
III Inflorescence (no diagostic value)
IV Leaflet width
\checkmark Leaflet length
VI Serration number

GRAPH 1

CRITGRIA DIFFERENTIATING CLTMATIC GROUPING OF

 ROSA POPULATIONS ("GYMNOCARPOUS")

IV
locality was "at the edge of" or "in the shelter of woods". The fourth plant (1313), not reduced in its new environment, was collected mon rock ledges. Since all the plante in the Botanical Garden lack protection and shae, greater emphasize can be place upon modification by ecological rather then climatic change.

The number of serrations and the stipule length are not altered by the canges. Since both criteria are used to differentiate the subspecies in two different climates, their usefulness is emphasized.

TABLE 5

TRANSPLARTIS: ROSA GYMNOGARPA

Coll.	Clim	*Leaf T.	Leaf L.	Serr No.	Pet L.	Stip L.	Infl.
1287	Dfb	12.0	23.0	18	8.0	3.0	1
	B. G.**	11.0	16.0	20.	4.0	3.0	1
1298	Dfb	15.0	19.0	25	6.5	2.5	1
	B. Ge	10.0	16.0	24	5.0	2.5	1
1313	cfb	10.5	15.0	17	5.0	2.0	1
	B. G.	10.0	15.0	16	5.0	2.0	1
1316	Cfb	12.0	20.5	19	8.0	2.5	1
	B. G*	9.0	15.5	18	4.0	2.0	1

[^4]
Diploid Populations:

In all climatic regions except the Polar (E), "diploid mass
collections were made. Few collections made in the Humid Continentals (Dsb, Dsq) and the Middle Latitude Steppe (Bsk) climatic regions neces sitated their grouping with the populations of the Humid Continatal (Dfe). The remaining collections were grouped into the Cool Sumer Mediterranean (Csb); and the Marine West Coast (Cfb) regions.

Reference to table 6 will show statistically different means between Csb and Cfb populations in leaflet width and length, stemen number, stipule length, and petal width and length. Overlap in their means at Ifidicual limit eliminate leaflet width and stipule length as useful criteria. In addition, serration number, inflorescence, petiolule length, and sepal width and length are not significant.

In table 7, qualitative differences in type of leaflet eerration, serration giends, leaflet and stipule glands, petiolule bristles, and amature type, are shown. Die to high intra-group variation, and often intra-population variation for any criterion, chi square tests show apparently significant.for criteria between groupa. Examination of populations within each group will caution conclusions from low (below 40.0) X_{2} values alone. In this case, the particularly consistent characteristics are: type of leaflet serrations-(double serrations.unknown in Csb), the petiole bristles (alweys found in Cfb, rarely in Csb), and the stipule glande (never commonly present on Csb stipules, always on those in Cfb).

The populations found in the Cool summer mediterranean (Csb) are readily distinguished from those of the Marine West coast (Cfb) by their amaller leaflet lengthe ($X=23.3 \mathrm{~mm}$. : 27.0 mmo), more stamans per flower ($X=105$: 65), smaller petal widhs ($X=10.7$ num. : 15.4 mime), and lengths ($\mathrm{X}=12.3 \mathrm{mme}$: 15.4 mmo). In addition, Csb populations have

TABLE 6

"DIPLOID" QUANTITATIVE DATA

Cool:Sumer Mediterranean (Csb): Marine West Coast (Cfb) And Humid Continentals (Dfe)

Leaflet Width

Csb
13.5
12.6-14.4

Leaflet Length
Csb
23.2
$22.2-24.2$

Serration No.

Csb
13.8
12.9-14.7

	Cfb	Dfe	cfb	Dfe	cfb	Dfe
X	15.0	14.9	27.0	27.3	14.7	14.0
t	2.28	3.19	4.18	6.60	1.57	0.417
III	14.0-16.0	14.5-15.3	25.5-28.5	26.6-28.0	14.1-15.3	13.7-14.3
	Inflorescence		Stamen No.		Petiolule Length	

	$\begin{aligned} & \text { Csb } \\ & 5.02 \end{aligned}$		Csb		Csb	
X						
m	4.1-5.9		92-118		6.4-7.4	
	Cff	Dfe	Cfb	Dfe	Cfb	Dfe
\mathbf{x}	3.67	3.95	65	72	7.6	7.6
t	1.90	2.28	4.47	4.89	1.27	1.84
m	2.5-4.	- 4.4	52-78	68-	7 -	7.5-

Sepal Width
Sepal Length
Stipule Length

> Csb
> 2.17
> $2.1-2.3$

Cfb
$\mathrm{X} \quad 2.33 \quad 2.06$
$t \quad 2.26 \quad 1.55$
m 2.2-2.4
2.0-2.2

Potal Width
Csb
10.7
9.4-12.0

> Cfb 15.4 3.50 $13.0-17.8$

Dfc
15.1
5.75
$14 . \stackrel{3}{3}-15.9$
Csb
13.7
12.8-14.6
Csb
3.3 2.8-3.8

Cfb	Dfc	Cfb	Dfc
13.4	14.2	4.3	4.3
0.41	1.02	$\frac{3.16}{3.9-4.7}$	$4 . \frac{3.94}{2-4.4}$

Petal Length

> Csb
> 12.3
> $11.0-13.7$
m
Potgl

9.4
Cfb
15.4
$13.0-17.8$

Cfb	Dfc
15.4	17.4
4.65	-6.48
$15.7-19.1$	$16.5-18.1$

singly serrate, occasionally doubly serrate leaflets (rarely singly serrate in Cf), and petiole bristles and stipule glands commonly absent in Cab (always present in Cfo).

TABLE 7

DIPLOID": QUALITATIVE DATA HESTIED
Cool sumer Mediterranean (Cab): Marine West coast (CAb)

$$
p=.05, \quad x^{2}=7.815
$$

* Criteria of significant consideration.

The Csb populations differ from those in the Dfe by five quantitative end seven qualitiative criteria. Reference to table 6 shows Cab populations with significantly smaller leaflet widths ($X=13.5 \mathrm{~mm}$. : 14.9 mo.), more stemens per flower ($x=105: 72$), smaller petal widths,
 compared to those found in Dfc. They differ further, as shown in table B,

in that Csb has 80% of its individuals with singly serrate, eglandular tipped leaflets (as apposed to 20% for those in Dfc), 100% leaflets glabrous or slightly glandular (50% glandular ones in Dfe), bristly petioles rare (common in Dfc), rarely glandular stipules (commonly glandular in Dfe). Another difference between these populations is in leaflet shape (plate XV). The Csb individuals have, typically, ovate-cordate, subcordate based leaflets, while those in the Dfc group have generally obovate-elliptic, cuneate based ones.

By these criteria, the populations of Csb are readily separated from the "diploids" found in both the Cfb and Dfe climetic regions. They approximate closely the taxon Rosa pisocarpa Gray

In table 9, the quantitative means and tests for the Dfe and

TABLE 9

"DIPLOID": QUANTITATIVE DATA
Marine West Coast. (Cfb): Humid Continentals (Dfc)

Leaflet Width		Leaflet Length	Serration No.
	Cfb Dfe	Cfb Dfe	Cfb Dfe
X	$15.0 \quad 14.9$	$27.0 \quad 27.3$	14.714 .0
t	0.186	0.366	1.72
m	14.0-16.0 14.5-15.3	25.5-28.5 26.6-27.9	14.1-15.3 13.7-14.3
	Inflorescence	Stemen Number	Petiolule Length
	Cfb Dfe	Cfb DfC	Cfb Dfe
X	3.67 3.95	65 . 72	7.6
t	. 290	1.061	0.0
m	2.5-4.8 3.5-4.4	52-78 68-76	
	Sepal Width	Sepal Length	Stipule Length
	Cfb - Dfe	Cfb - Dfc	Cfb - Dfe
X	2.332 .06	13.4 14.2	4.3 4.3
t	2.40 .	1.28	0.0
III	2.2-2.4 2.0-2.2	12.2-14.6 13.8-14.6	
	Petal Width	Petal Length	
	Cfb Dfc	Cfb - Dfe	
X	15.4 15.1	12.3 17.4	
t	0.23	0.11	

Cfb populations ahow a parameter mean difference for sepal length only, but even this is not statistically significant. Similarly, the qualitative data, illustrated in table 10, indicates little discontinuity for all the characteristics examined. No X^{2} value was particularly high and it is felt that the small variations are due primarily to intra- and

inter-population, rathar than inter-group, differences 8 .
Thus it is evident that the populations in the Marine West Coast (Cfb) and Humid Continentals (DPC) constitute a unit, and one that differs from Rosa pisocarpa (table 11, graph 2). Its characteristics agree with those of Rosa Woodsii Lindl.

Plants of Rosa poodsii, tranaferred to the Botanical Garden and greenhouse, are compared with their original clone in the field in table 12. Reduction in leaflet size and minor indumentum variations characterize those specimens now in the Botanical Garden. The others, transferred to the greenhouse in general show some marked modifications, especielly in increased petiolule length. One specimen collected at Burns Lake (1267) has increased its leaflet size, added petiole bristles, and modified its armature. This plant, originally found on "dry exposed hill" has been growing under quite different conditions in the greenhouse. The great plasticity it exhibits is apparent, so emphasizing a cautious use of such characters in diagnosis.
8. Consider, for exemple, the largest X^{2} value in table 10, leaflet serration glands. Its test value of 29.56 is 11.74 above the significant value of $7.815, p=.05$ at d.f. 3. For three degrees of freedom at $p=.001$, the value is only 16.268, well below that of 29.56.

Examination of plate IX, particularly the Dfe populations, elucidates their high degree of variation. That these populations were grouped irroneously has been considered. Populations \#204 and \#205, both from Marble Canyon, have alternately 80% and 23% of their samples free from gland-tipped serrations. To consider them distinct and in different groups when their indumentum emphasis varies, would hardly seem accurate. In, however, the populations were found in different habitatis at Marble Canyon, an explanation for this diversity might be possible. The field labels for \#204 and \#205 read "shaded and exposed slopes, and bases of canyon..." and "exposed limestone-iron rock ledge." That these individuals when pertly shaded have less indumentum than those on exposed rock ledges is a plausible interpretation. It would seem that the populations, although extibiting variation, are grouped according to their closes affinities. Veriation, however, between the individuals of each population and between populations in one group, modify the results of the X^{2} test. A higher X^{2} vaiue than is normally significant aids in isolating examples of intergroup discontinuity, only.

GRAPH 2

CRITERIA DIFFERENTIATING CLIMATIC GROUPING OF ROSA POPUATIONS ("DIPLOID")

In each radius there is represented a criterion for each of three populations. Eigth criteria for each population are given in the form of a polygon, Hutchinson (1940).

The criteria on the eight radii are respectively:
I Leaflet width
II Leaflet length
III Inflorescence
IV Stamen number
∇ Serration number
VI Petal Width
VII Petal length
VIII Petiolule length

GRAPH 2

CRITERIA DIFFERENTIATING CLIMATIC GROUPING OF ROSA POPULATIONS ("DIPLOID")

TABLE 11

CRITERIA SEPPARATING R. PISOCARPA \& R. WOODSII

	R. pisocarpa	R. Woodsil
Leaflet width	*12-14 mm.	14-16 mm. ${ }^{\text {a }}$
Leaflet length	*22-24 Im.	25-29* mm.
Stamen number	85-120*	*50-85
Petal width	*9-12 Im.	13-16*
Leaflet shape	ovate-cordate, subcordate based	obovate-elliptic, cuneate based
Leaf. serr. type	80\% single 20% single and double	40\% double, 20\% single 40% single and double
Leaf. serr. glands	90\% eglanduler 10% more or less	40\% eglandular, 45\% glandular 15% more or less
Leaflet glands	66\% absent 34% more or less	18\% absent, 50% present 32\% more or less
Petiolule bristles	94\% absent, 4\% present 2% more or less	30% absent, 60% present 10\% more or less
Stipule glands	85\% absent 15% more or less	10\% absent, 65% present 2\%\% more or less
Peduncle pubescence	100\% absent	40\% absent, 20% present 40% more or less

[^5]The three progeny of Rosa Woodsii, Williems Lake parentage (1277), differ from one another in leaflet size, in gland-tipped serrations, and armature type (see table 13). Similarly, those from Penticton differ in stipule glands and armature type. In this case, one of the progeny has glandular stipules and thorny branchlets, while the other

TABIE 12

TRANSIPLRTS: ROSA :OODSII ${ }^{9}$

Coll CIIm LW LU Sr FM SL I SW SI LS LSG LG STG SG PP PG A , RP

TABLE 13

PROGXRY TESTS: ROSA WOODSII ${ }^{9}$

1. Parent from $\begin{array}{ll}\text { Williams Lake, W. H. Lewis } 1282 .\end{array}$ Progeny three.

2. Criteria used include: leaflet width (LW) and length (IT) serration number (ST), petiolule length (RL), atipule length (SL, Sti), inflorescence (I), sepal width (SW) and length (SI), type leaflet serration (LS), serrations elend-tipped (LSG), leaflet glands (LG), petiole bristles (RP), stipule glands (STG), sepal glends (SG), peduncle glands)PG) or pubescence (PP), and ammature type (A).
has atipules more or less glandular and briatly branchlets. Since these two progeny have been grown under the seme conditions, the differences are attributable to heterozygosity in the parents. These results offer en explanation for the diversity found in thepopulations of R. Woodsi1.

Polyploid Populations:

The polyploid populations were arbitrarily grouped on the basis of four climatic areas: the Cool Sumer Mediterranean (Cab), the Marine West Coast (Cfb), the Humid Continental and Middle Latitude Steppe (Dfb), and the Fumid Continentals (Dfe).

Tests of nine quantitative criteria, compering the populations of Csb and Cfb, table l4, gave a significantly high t value for one only, the sepal width. Their parameter means differ by 0.2 mm., but as their Piducial limits gave a continuous renge from $3.6-4.0 \mathrm{~mm} . \mathrm{g}$ this cannot be considered significent. It is apparent therefore that these populations are not discontinuous for any quantitátive criteria tested. Their criteria illustrated in graph 3, however, do seam to suggest that the Csb populations are the extreme cases of those found in the Cfb. Their leaflet and petal widthe are smaller, and their sopal widths, stamen numbers, and inflorescences are characterized by somowhat greater means than those found in the Cfb region.

The qualitative data, in tible 15, comparing the two groups, Csb and Cfb, resulted in eight criteria having above table x^{2} values. of these, type of leaflet serration, leaflet serration glands, leaflet glends, end.sepal glands have significantly bigh X^{2} values. The populations of

TABLE 14

HEXAPLOID QUANTITATIVE DATA:
MARINE WEST COAST (Cfb): COOL SUMMER MEDITERRANEAN (Csb) AND HUMID
$\cdots \quad$ CONTINANTAL. (Dfb \& BsK).

	Leaflet Width	Leaflot Le	th	Serration	on No.
	Cfb	Cfb			fb
Z	17.5	30.7			6.3
m	16.9-18.1	29.7 -	1.7	15.8	- 16.8
	Csb Dfc	ceb	Dfe	Gsib	Dfe
X	15.9 21.3	27.8	38.2	17.2	17.1...
t	3.40 .-- 7.30	3.72	-9,04	2.14	2.05
m	15.1-16.7 20.5-22.1	26.6-29.0	36.9-39.5	16.5-17.9	16.5-17.7
	Inflorescence	Stamen Num		Petiol	10 Length
	Cfb	Cfb			fb
Z	1.55	109			0.1
m	1.5-1.7	103-11			- 10.5
	Csb Df	Cab	Dfe	Csb	Dfe
X	1.71 1.24	129	79	9.5	10.2
t	2.26 - 4.85	1.94	6.77	1.47	0.30
m	1.6-1.8 1.16-1.32	109-149	$7 \overline{2-86}$	8.8-10.2	9.7-10.7
	Sepal Width	Sepal Len		Stipul	Length
	cfb	cfb			fb
\mathbf{X}.	3.7	21.5			. 2
II	3.6-3.8	20.9-22			-5.3
	Csb Dfe	Csb	Dfe	Csb	Dfc
X	3.93 .0	20.8	21.5	5.3	5.2
t	3, 13 12.5	0.74	0.00	0.052	0.00
II	3.8-4.0 2.9-3.1	19.7-22.5	20.7-22.3	4.9-5.7	5.0-5.4
	Petal	dth	Petal	Length	
	Cfb			Cfb	
X	21.4			23.1	
	20.5-22.3			22.2-24.0	
	Csb Dfc		Csb		Dfe
X	17.819 .0		20.0		22.2
t	3.21 年.33		1.78		0.85
m	15.7-19.9 18.3-19.7		16.6-23.4		.21.2-23.2

GRAPH 3

CRITERIA DIFFERENTIATING CLIMATIC GROUPING OF ROSA POPULATIONS ("POLYPLOID")

In each radius there is represented a criterion for each of three populations. Eight criteria for each population are given in the form of a polygon, Hutchinson (1940).

The criteria on the eight radil are respectively:
I Leaflet width
II Leaflet length
III Inflorescence
IV Stamen number
V Sepal width
VI Petal width
VII Armature type
VIII Sepal length (no diagnostic value)

```
                        Humid Continental--Cool, Short (Dfc) \& Dry (Dsb) Summer
                        Humid Continental--Cool Summer (Dfb)
    ..-... Marine West Coast (Cfb)
    ————Cool Sunmer Mediterranean (Csb)
```

CRITIERIA DIFFERRTNTIATING CLIMATIC GROUPING OF
ROSA POPULATIONS ("POLYPLOID).

Csb have over aine-tenths of their individuals with double serrate leafe lets, all with gland-tipped leaflet serrations, glandular leaflets, and glandular sepals. Although the Cfb populations have many of their individuals with similar class characteristics, they have, in addition, the indumentum more or less present or more rerely, absent. These then afford

some basis for distinguishing the two population groups. Since they are tendencies, however, and not discontinuities, the two are best regarded as formae.

The populations often found in the cool Summer Hediterranean (Csb) with leaflets glandular below, 16 mine or less wide, double serrate, always with gland-tipped teeth, sepals always glandular, often wider than 3.9 mis. at its base, stemens approximately 129 per flower, usually more than one flower in each inflorescence agrees closely with Rosa muriculata Greene. Populations, which may be found in the Csb as well as the Cfb regions, with less indumentum on leaflets and sepals, larger leaflet and petal widths, smaller sepal widhs and inflorescences, and fewer stamens than those described above, are best regarded as Rosa nutkana Presl. In the writers view, R. muriculata is an extreme form of Ro nutkana, referred to as Rosa nutkana Presl f. muriculata (Greene) Lewris iden.

Mean differences in leaflet width and length; inflorescence, stamen number, sepal width, and petal width separate the populations in the Dfe and Cfb climatic regions. Their fiducial limits indicate that these criteria are diacontinuous (table 14). High X^{2} velues (table 16), emphasize significant differences between the groups' bristly petioles, and armature type. On the other hand, type of leaflet serration; leaflet serration glands, leaflet glands and pubescence, stipule glands and pubescence, sepal pubescence and glands and bristles, and peduncle glands and pubesceñce have little significance.

By six quantitative and two qualitative criteria, the populations found in the Dfc and Cfb climatic regions can be differentiated (see table 17, graph 3). The Dfc populations, in contrast to those in
in the Cfb region, have larger leaflet widths ($X=21.3 \mathrm{~mm}: 17.3 \mathrm{mm}$.) and leagthe $(X=38.2 \mathrm{~mm}: 30.7 \mathrm{mme})$, amaller width of petals ($X=19.0 \mathrm{mme}:$ 21.4 mm) and sepals at base ($\mathrm{X}=3.0 \mathrm{~mm}$. $\mathrm{m}_{0} 6 \mathrm{mmo}$), fewer stamens in each flower ($\mathrm{X}=79$: 109), and rarely more than one flower in an inflorescence ($X=1.24$: 1.55). In addition, bristly petioles are particularly

TABLE 17

CRITERIA SEPARATING THE "POLYPLOIDS"

R. acicularis
R. nutkana ssp. nutkana
R. nutkena $\mathrm{P}_{\text {. }}$ muriculata

Leaflet width	20-22* mm.	X	*16-19 mm. =	
Leaflet length	35-40* nm.	X	*29-34 nm. =	
Inflorescence	$1.16-1.32$ rarely more then 1		$\underset{\text { nonly more than }}{1.45-1.55}=$	
Stamen number	*70-95	X	100-115*	
Sepal width	2.9-3.1 mm.	X	3.5-3.8* IEn. $=$	
Petal width	*18-20 mm.	X	20-22* mm . =	
Petiole bristles	25% absent 25% more or less 50% present		15\% absent = 10\% more or less 75\% present	
Armature type	93% bristly 7% unarmed		30% thorny $=$ 70% unarmed	
Leaf. Ser. type		=	15% single X 35\% single/double 50% double	$\begin{aligned} & 0 \% \text { single } \\ & 1 \% \text { sing./doub. } \\ & 99 \% \text { double } \end{aligned}$
Leaf. Ser. glands		=	20\% absent 37% more/less 43% present	0% absent 5% more/less 95\% present
Leaflet glands		$=$	10% absent 40\% more/less 50% present	0% absent 1% more/less 99\% present
Sepal glands		$=$	$\begin{aligned} & 7 \% \text { absent X } \\ & 23 \% \text { more/less } \\ & 70 \% \text { present } \end{aligned}$	0% absent l\% more/less 99\% present

cormon in Cfb populations, rerer in those of Dfc. The predominant absence of armature in Cfb populations constrasts with the 93% armed individuals in DfC. When armed, Cfb populations have thorns, the other group, bristles and prickles.

The discontinuity between these two population groups is eve ident (see table gh, graph 3). Those of the Humid Continental (Dfc) region are identified with Rosa acicularis Lindl, the others in the Marine West Coast (Cfb), have been considered above and were named Rnutrana:

The populations of the Humid Continentel (Dfb) alimatic region differ from those of the Marine West Coest (Cfb) by six quantfative and four qualitative criteria. In addition, they differ from the populations in the Humid Continentals (DPC) by one quantitative and two qualitative criteria.

Reference to table 18 shows significantly different means between Dfi and Cfb for leaflet width and length, stamen and serration number, and sepel and petạl widths. Their fiducial limits are all dise
 (X 27.8 man : 37.5 mim.) with more serrations (X 16.3 : 17.3), narrower petals (X 19.7 mm. : 21.4 mm) and sepals at base (X 3.2 man: 3.7 mmo), and fewer stamens per flower (X 89 : 109) differentiate the Dfb populations from those of the Cfb. On the other hadd, there is no statiatical difference between inflorescence, stamen number, and petiolule, sepal, stipule and petal lengths.

Type of leaflet eerration, leaflet glands and pubescence, and armature type show high X^{2} teats between Dfb and Cfb climatic regions.

TABLE 18

"POLYPLOID" QUANTTTATIVE DATA
HUKID CONTINENTAL (Dfc \& Dab): MARINE WEST COAST (Cfb) \& HUAID CONTINENTAL (Dfb \& Bsk)

Leaflet Width			Leaflet Length		Serration No.	
	Dfb		Dfb		Dfb	
X	21.4		37.5		17.3	
m	20.6-22.2		36.6-38.4		16.9-17.7	
	Cfb	Dfe	Cfb	Dfe	Cfb	Dfe
X	17.5	21.3	30.7	38.2	16.3	17.1
t	2880	0.18	9.71	\cdots	3.91	0.55
m	16.9-18.1	20.5-22.1	29.7-31.7	36.9-39.5	15.8-16.	16.5-17.7
	Inflorescence		Stamen No.		Petiolule Length	
	Dfb		Dfb		Dfb	
区	1.67		89		10.7	
m	1.59-1.75		84-94		10.3-11.1	
	Cfb	Dfe	Crb	Dfe	crb	Dfe
X	1.55	1.24	109	79	10.1	10.2
t	2.16	7.61	5 K 38	2.33	1.97	1.47
m	1.45-1.65	1.16-1.32	103-115	71-87	9.7-10.5	9.7-10.7
	Sepal Width		Sepal Length		Stipule Longth	
	Dfb		Dfb		Dfb	
X	3.2		22.0		5.2	
m	3.2-3.3		21.5-22.5		5.1-5.3	
	Cfb	Dfe	cfb	Dfc	cfb	Dfe
X	3.7	3.0	21.5	21.5	5.2	5.2
t	7.89	4 4 04	1.23	1.11	0.0	0.0
m	3.6-3.8	2.9-3.1	19.9-22.1	21.1-21.9	5.1-5.3	5.0.-5.4
	Petal Width			Petel Length		
	Dfb			Df		
X	19.7			22.7		
m	19.2-20.2			22.2-23.2		
	Cfb	Dfe		Cfb	Dfe	
X	21.4	19.0		23.1	22.2	
t	3.46	1.58		0.78	0.94	
m		20.5-22.3 18.3-19.7		22.2-24	- 21.2 -	3.2

These are illustrated in table 19. There is no distinct gap, however, between the four criteria, the populations of the Dfo possesaing more indumentum with more doubly serrate leaflets than those in the Cfb. An extremely high test value for armature type appears to emphasize a eomplete discontinuity. Unarmed branchlets in both climatic groups, however, are high, Dfb with 47% and Cfb with 70%, illustrating a wide overlap for this anmature alass.

Reference to table 18 illustrates the discontinuous Dfb and Dfc population means for inflorescence, stamen number, sepal width, end petal width. Of these, however, on the sepal width is significantly different. The Dfb individuals have larger sepal means at base (X 3.2 mm .) than those of the Dfc (X 3.0 mm).

Brom the X^{2} tests (table 20) the qualitative criteria leaflet

serration type, and armature type show large differences. Sampling in the Dfb region resulted in 80% of the individuals showing double serrate leaflets. Those sampled in the Dfe region had but half as many. Dfe populations have bristly and prickly armature except for 7\% unarmed. branchlets as contrasted to the Dfb populations that have approximately half their populations unarmed, 10% thormy, and the remainder bristly and prickly. Those criteria lacking any atatiatical difference include type of leaflet serration, leaflet glands and pubescence, petiole bristles, stipule glands, sepal pubescence, gands, bristies, and peduncle pubescence and glands.

The sumary of distinguishing data between Dfo populations, and Cfb and DfC populations is given in table 21 and graph 3. For sepal length the fiduciel limits of the Dfb populations lie between those of the other two groups. In the other major difference, the three groups Cfb , Dfb and Dfo are armed as follows: (a) bristles and prickles, 0%, 44\%, 93%; (b) thorns, 30%, $10 \%, 0 \%$; (c) no armature, $70 \%, 46 \%, 7 \%$. In each case, the Dfb populations are intermediate between those of R. nutkana and Re acicularis. It appears very likely therefore that these intermediate populations represent the hybrid Re acicuiaris Lindl. X R. nutkana Presl.

Transplant material from Fernie, Hope, Nelson, Prince George, amd Terrace to the Botanical Garden was modified particularly in leaflet size, type of leaflet serration, and petiolule length. Decrease in leaflet size and the inconsistant modification of other characteristics emphasize the role of enviroment, and possibly, selection. These

transplat results are recorded in teble 22.

The results of three progeny tests representing material from Benff, Alta., Centrel Saanich, V. I., and Vancouver (Point Grey) are shown in tables 23, 24, and 25. It can bee seen that leaflet size, number of serrations, petiolule length, and glandular leaflets vary somewhat in the progeny. On the other hand, and of perhaps greater aignificance, the consistance of stipule lengths, type of leaflet serrations, glandetipped leaflet serrations, petiole bristles, stipule glands, and armature type, w1l be noted. This consistancy emphasizes the value of these criteria
in the "polyploid" and "diploid" populations.

TABIE 22

TRANSPLLANTS: FPOLYPLOIDS"

 1307 DFb , Nelson: R. nutkanavssp, nutkana

1318 Dfb, Hope: R. nutkana sspe nutkana-

1261. Cflb, Terrace: Re nutkana sep. nutkena
$\begin{array}{llllllllllllllll}\text { Cfb } & 31 & 45 & 21 & 13 & 6 & 1 & 4.5 & 15 & d & * & * & * & * & 1 & d \\ \text { *G.H. } & 20 & 36 & 33 & 13 & 3.5 & -- & -0 & -2 & d & * & - & - & * & & d\end{array}$

1273 Dfb, Prince George: R. acicularis X R. nutikana
$\begin{array}{llllllllllllllll}\text { Dfb } & 19 & 41 & 11 & 12 & 3 & 1 & 3 & 23 & \pm & - & * & - & * & - & d \\ \text { B.G. } & 15 & 27 & 18 & 12 & 4 & 1 & 3 & 23 & d & \pm & * & - & * & - & d\end{array}$

1301 Dfb, Fernie: R. acicularis X R. nutkana

*Those planted in Botanical Garden (B.G.), others in greenhouse (G.H.) **Abbreviations for criteria, page 25, footnote 9.

TABLE 23

PROGENY TEST: ROSA ACICULARIS*

**LT LL Sr RL SIL LS LSG LG RP SIG A

Parent: Banff, Alta., 胃. H. Lewis 127

14	26	13	6	5	$*$	$*$	$*$	-	$*$	a
						$*$				
21	38	25	12	3	d	$*$	$*$	$*$	$*$	a
19	36	21	14	2.5	d	$*$	$*$	$*$	$*$	a
18	30	23	17	3	d	$*$	-	$*$	$*$	a
14	25	17	8	2	d	$*$	0	$*$	$*$	a
16	27	23	12	2	d	$*$	0	$*$	$*$	a

* Parent and progeny apical leaflets and petiolules are illustrated in plate XV, number 4.
** Criteria include: leaflet width (LTM) and length (LL), serration mimber (8r), petiolule and stipule lengths (RL and SIL), type of leaflet serration (LS), serration glands (LSG), leaflet glands (LG), petiole bristles (RP), stipule glands (SIG), and armature type (A). These characters häre been naed to define the individuals in tables 24 and 25.

TABIE 24

PROGHNY TEST: ROSA NUTTKANA sBp. NUTTKANA

LW IL Sr FL SIU LS LSG LG RP STG A*
Parent: Central Seanich, V. I., Florence Lewis 1325

*Abbreviations for criteria, table 23.

TABTE 25

PROGENT TEST: ROSA NUTEANA f. MJRICULATA

LT IL Ar RL STL LS LSG LG RP STG A^{*} Parent: Vancouver (Point Grey), W. H. Lewis 1560
$\begin{array}{lllllllllll}13 & 20 & 30 & 6 & 4 & d & * & * & * & * & c\end{array}$

*Abbreviations for criteria, table 23, page 38.

Chromoscme counts were made for each divisional group from meiotic figures. The chromosome number of $2 n=14$, plate XIV, is apparent for Rosa gymnocarpa ssp. apiculata and Rosa pisocarpa. On the other hand, Rosa nutkana ssp. nutikana has in 42 chronosomes. 9a The diploid species, R. pisocarpa and R_{0} Hoodsil examined for pollen grain size, were found to have meanciof 27.6 u. and 28.0 u., respectively. R. gymocarpa ssp. apiculata, with a mean of 27.97 u., together with the other diploids, demonstrate a correlation between pollen size and a diploid numer of ehromosomes ($2 n=14$). This is 9a. These results supplement those of Erlmson (1934), and Flory (1950).
further borne out by noting that the hexaploids have pollen grains of mean diemeter 35.62 u. Fram these results, it would be expected that an unkown species with pollen grains $28.0=1.5 u_{0}$ in diameter would be diploid in chramosome number, while one with pollen grains 36.0-2.5 u. in diameter would be hexaploid. Further, tetraploid species might be thought to have mean pollen sizes between those of the diploids and hexaploids. Although no chromoscme counts were made establishing tetraploidy in B. C. species, specimens of Rosa californica C. \& S., found to be tetraploid by Erlanson (1934), occurring in central California, have bean examined for pollen size. Their mean diamoter of 30.8 u., range 28.6 u. $^{\left(-32.4 u_{0},\right.}$ illustrates an intermediate pollen size between those found in the diploid and hexaploid species. ${ }^{10 a}$

All pollen studied above was taken from dried material, scme of winich was collected and placed in herbaria during the last century. 10 Since an estimate of ploidy can be made fron these flowering specimens, the use of the pollen criterion, when chromosome counting is impossible, is necessary for a complete understanding of the material.

Pollen was examined for indications of viability and aterility. The results, in percentages of vabale and ebortied: pollen, aie giveñ in plate VII. It will be seen that viability is high for Ro acicularis, R. nutkana, and R. gymocarpa sap. apiculata, intermadiate for the hybrid R. acicularis X E. nutkana, and R_{i} Woodsii, and lów for Re pisocarpa.
10. Pollen from several species are illustrated in plate XIII, pg. 42. 10a. Similar results were obtainod by Erlanson (1929) working with Rosa microsporocytes at diakinesis.

The herbarium material has provided interesting date on enthesis (graph 4). The data for each taxpn represent thirty randomly sampled herbarium specimens providing their distribution was below $51{ }^{\circ} \mathrm{N}$. Since R. acicularis is prodominantly a northern species, its individuals were chosen completely at randam. Although there has been no opportunity for climatic standardization, it can be seen that such a factor is not always important in anthesis studies. For example, R. nutikana ssp. nutkana, which is usually found growing with Ro pisocarpa in the southern coast regions, has 95% of its blooming during May and June, while R. pisocarpa blooms 80% of the time during July. Of interest is an anthesis difference between the sabspecies of R. nutkana Presl. The subspecies Spaldingii (Crép.) Lewis ined. (R. Spaldingil Crép.) has completed 80% of its blooming by 15 June, yet in ssp. nutikena, 33% of its blooming occurs in the following two weeks. The length of their blooming periods differ, as well, the subspecies Spaldingii blooming the longer. The typically northern distribution of R. acicularis may explain the late anthesis of its individuals. There is little blooming before 1 June, but similar to R. nutkana sop. nutkana, 66\% of anthesis takes place in Jume: Differences in the shape of leaflets are difficult to express verbally, and yet are of considerable taxonamic importance. Plate XV, page 44, has been prepared for assistance in this connection. It consists of photographs of herbarium specimens of leaves of a number of our species. Attention is dram particularly to the obovate-elliptic, cuneate based leaflets of R. Woodail, which are in contrast to the ovatecordate, subcordate based ones of R, pisocarpa. This difference can be very helpful in differentiating these two species.

GRAPH 4

ROSA SRASONAL ANTHESIS

f: frequency

```
range: seasonal
```


ROSA POLLEN GRAIN SITE

1. R. gymnocarpa Nutt. ssp. gymnocarpa (26.8 u.), three viable grains; Campbell River; B. Pepin.
2. R. Hoodsii Lindl. (27.4 u.), two viable grains; T. M. C. Taylor \& 酔. H. Lewis 206, Lillooet.
3. R. pisocarpa Gray (29.5 u.); two viable grains; Duncen, T. M. C. Taylor \& T. H. Lewis 523.
4. R. nutkana Presl ssp. nutkana (46.3 u.), one geminating grain; Yale, T. M. C. Taylor \& W. H. Lewis 101.
5. R. acicularis Lindl. (41.0 u.), one viable and one aborted grain; Hay River; W. H. Lowis 1204.
6. R. acicularis Lindl. X R. nutkana Presl (36.0 u.); Hazelton, T. M. C. Taylor \& W. H. Lewis 508.

RODA MRONOSOLTY YOLNTS: POLLN MEIO.jE

1. R. nutkana 3sp. nutkans, Contral Saanich

Florence Lew1s $1 \overline{331}$
Composite drawing, first division prophase, showing afproximately 42 chronosome pyirs.

2. R. pisocarfa Gray, Central Saanich T. W..C. Tajlor \& W. H. Lewis 549 Composite drawing, first division prophase (polur view), showing approximately 14 chromosome pairs.

3o R. gymocarpa ssp. apiculata
Vancouver, I. W. C. Taylor \& iv. I_{H} Lewis 734
Composite drawing, first division prophase, showine l4 chromosome petrs.

ROSA LEAFLETS AND PETIOLULES

1. Re acicularis, Coal River, W. H. Lewis 1238
2. Re arkensane, Fort Saskatchewan, Alta., G. H. Turner.
3. R. nutkana ssp. nutkana, Central Saanich, V. I., Florence Lewis 1325; progeny test: parent and 6 progeny.
4. Re acicularis, Banff, Alta., W. H. Lewis 12?; progeny test: parent and 5 progeny.
5. R. gymnocarpa ssp. gymnocarpa, Revel stoke, We H. Lewis 1287.
6. Ko pisocarpa, Duncan, T. M. C. Taylor \& W. H_{\circ} Lewis 523.
7. R. Woodsil, Penticton, We H. Lewis 1309; progeny test: parent, 2 progeny.
8. R. Yoodsii, Willizns Lake, 思. H. Lewis 1282 ; progeny test: parent, 3 progeny.

PLATE XV
ROSA LEARLETS IND PETIOLULES

- R. arkansana Porter

1. R. acicularis ind.
\square

1

3. R. nutkana Presel sep. nutkana

4. R. acicularis Lindl.

6. R. pisocarpa Gray

8. R. Woodait iladi/

SECTION IV: TAXONOMY

Few tazonomists have ever suggested that Rosa is other than a 'natural' group. A. P. de Candolle (1818) was the first to attempt an intra-generic classification. He divided the genus into IX sections, only one of which CINRAMOMEAF, has species native to the Paciflc Northwest. Rydberg (1918) added en additional section, GYMNOCARPAR, its individuals found in this regional study.

Rosa L., Sp. Pl. 491, 1753
Rhodophora Neck., Elem. 2: 91, 1790

Shrubs or vines, usually with prickly stems; leaves alternate, pinnate, with stipules chiefly adnate to the petiole, leaflets usually serrate; flowers perfect, solitary or corymbose; sepals 5, rarely 4; petale 5, rarely 4, usually obcordate; stamen numerous, inserted on the thickened margin of the hypanthium; atyles long-exserted or only reaching the mouth of the hypanthium, sometimes united into a colum; stignas thickened; hypanthium urceolate, globose, ellipsoid, or turbinate, contracted at the mouth, enclosing the bomy achenes, becoming fleshy in fruit.

Type species: Rosa cinnamomea L., Sp. P1. 1: 703, 1764 (Thabitat in Europa australis").

Distribution: Temperate and subalpine regions of the northern hemisphere, southern limits in North Africe, Abyssinia, east side of the Indian peninsula, and Mexico.

Below is the analytical key to the species, subspecies, hybrid, and form found in the Pacific North-west. Because there are no population data for Re arkansana Porter, R. nutkana ssp. Spaldingil, and the exotic species, R. canina L.g R. multiflora Thunb., R. rubiginosa L., and R. rugosa Thunb., they have been omitted from the key.
a. Sepals deciduous; fruit solitary, 3-5 m. wide; leaflets glabrous, 18 or more serrations on one side; peduncles usually glendular.Section GYMNOCARPAE
b b. Leaflet $13-15^{*} \frac{11}{\operatorname{mma}}$. wide, $21-23^{*}$ nen. long, 20 or fewer semrations on one side; stipules 3.0-3.4* mol long; Marine West Coast and Humid Continental climatic regions.
-............R. gymocorpa ssp. gymocarpa
bb. Leaflets 12.5 mm . or less wide, 20 mm . or less long, 2l-23* serrations on one side; stipules 2.6 mm . or less long; cool Summer Mediterranean climatic region.
-............. gymnocarpa ssp. apiculata
ea. Sepals persistent; fruit $7-15 \mathrm{~mm}$. wide, if smeller, numerous; leaflets usually pubescent, rarely more than 20 serrations on one side; peduncles occasionally glandular.
............ Section CINHAMMOMRAR
b. Leaflets rarely over 17 mm . wide; inflorescence many-, occasion-ally,few-flowered; petals about 13 man . wide sepals 2.0-3.0 ma. wide at base; 10-17 mm. long; pollen grains about 28 u . in diameter.
11. Asterisk beside \pm fiducial limit of population means indicates var-
iation in a particular direction.
c. Leaflets *l2-14 m. wide, *2R-24 mm. long, ovate-cordate, subcordate based, singly serrate, usually eglandular below; petiole rarely bristly; stipules rarely glandular; petals *9-12 mm. wide, *10-14 mm. long; stamens 85-120* per flower; peduncles glabrous.

> pisocarpa
cc. Leaflets 14-17* m. wide, 25-29* mm. long, obovate-elliptic, cuneate based, singly or doubly serrate, usually glandular below; petiole usually bristly; stipules eglendular; petals 13-16* nm. wide, 15-20* mm. long; stamens *50-85 per flower; peduncles often puberulent.
.............R. Woodsii
bb. Leaflets 18 mm . or more wide; inflorescence solitary; three-, or occasionally, many-flowered; petals about 19 mm . wide; sepals $3.0-5.0 \mathrm{~mm}$. wide at base, $18-24 \mathrm{~mm}$. long; pollen grains about 36 u. in diameter.
c. Stems with bristles and prickles, rarely thorns, or armless; leaflets '20-22* mm. wide, 35-40* mm. long; petiole often bristly; inflorescence solitary, rarely more; petals*1820 mm . wide; sepals *2.9-3.4 4 mm. wide at base.
d. Stems with bristles and prickies, very rarely unarmed; leaflets occasionally singly serrate; sepals *2.9-3.1 mm . wide at base.

- R. aciculeris
dd. Stems with bristles and prickles; thorns, or often unarmed; leaflets very rarely singly serrate; sepals $3.2-3.4 \mathrm{~nm}$. wide at base.
........... R. acicularis X R. nutkana
cc. Stems with scattered or infrastipular thorns, comnoniy unarmed at apex; leaflets ${ }^{16-19 \mathrm{~mm} .}$ wide, ${ }^{2} 29-34 \mathrm{~mm}$. long; petiole almost always bristly; inflorescence solitary to three-flowered; petals 20-22* nm. wide; sepals 3.5-3.8* mm. wide at base.
d. Leaflets. usually glanduler, often more or less glandular, or rarely eglandular, doubly, occasionally singly, serrate; sepals glandular, occasionally eglandular.
............... nutkana
dd. Leaflets glandular, doubly serrate, sepals glandular.

> nutkana f. muriculata

Section CINTAMAOMRAE DC.

Upright. species with new-shoots usually more or less bristly, old atems and branches either marmed or bristly, or armed with infrastipular prickies which sometimes are paired; stipules adnate, the upper ueually dilated; leaflets 5-11; sepals usually entire or some with a few lobes, erect and persiatent after anthesis; hypanthium glabrous or rarely bristly; achenes inserted on the inner walls of the hypanthium as well as on the bottom; styles rarely exserted from the mouth of the hypanthium.

In the Pacific North-west, the following are found: Diploid,

Rosa pisocarpa Gray
Rose Moodsii Lindl. Polyploid,

Rose acicularis Lindl.
Rosa acicularis Lindl. X R. nutkana Presl
Rosa arkansana Porter
Hosa nutkana Presl

Section GYMNOCARPAR Rydb.;

Slender shrubs more or less bristly, with infrastipular spines scarcely strongar then the bristles; stipules adnate, the upper ones dilated; leaflets 5-7, usually doubly serrate; flowers solitary or few; sepals short, deciduous together with the upper part of the hypanthium and the styles; achenes very few; styles scercely exserted.

In the Pacific North-west, only a single species is present: Rosa gymnocarpa Nutt.

ROSA GYMMOCARPA NUTT:

Rosa gymocarpa Nutt. ex Torrey \& Gray, Fl. N. Am. 460, 1840

```
R. Eymocarpa Nutt. var. pubescens Wats., Bot. Calif 1: 187, 1876
R. Bridgesil Crep., Bull. Soc. Bot. Belg. 15: 54, 1876
R. spithamea Wats. var. subinermis Englem., Bot. Gaz. 6: 236, 1881
R. amplifolia Greene, Bot. Leaf. 2: 258, 1912
R. Bolanderi Greene, Bot. Leaf. 2: 261, 1912
R. calvaria Greene, Bot. Leaf. 2: 257, 1912
R. Covillei Greene, Bot. Leaf. 2: 262, 1912
R. crenulata Greene, Bot. Leaf. 2: 262, 1912
R. dasypoda Greene, Bot. Leaf. 2: 260, 1912
R. glaucodermis Greene, Bot. Leaf. 2: 259, 1912
R. Helleri Greene, Bot. Leaf. 2: 259, 1912
R. leucopsis Greene, Bot. Leap. 2: 258, 1912
R. piscatonia Greene; Bot. Leaf. 2: 256, 1912
R. oligocarpa Rydb., N. Am. Fl. 22: 532, 1918
R. abietorum Greene apud Rydb., Bull. Torrey Bot. Cl. 48: 170, 1921
```

Stems 0.5-3.0 m. tall, slender, teret, with scattered, slender,
terete, often deciduous, bristles and prickies; leaflets 5-9, 10-15*man. 12 ($X=12.9 \mathrm{mmo}$) wide, $17-25^{*}(X=21.2 \mathrm{~mm}$) long, ovate to cordate, thin, rarely pubescent or glandular below, doubly serrate, with *is-23 ($\mathrm{X}=\mathbf{2} .5$) gland tipped teeth; stipules largely adnate, free portion 1.5m4.0 ($X=$ 2.75) mm., glabrous on beck, glandular-serrulate on margin; rachis and petioles generally glendular-hispid; inflorescence one-, rarely fewflowered; petals 10-15 mm. long obcordate; sepals 5-12 mm. long, acuminate, rarely caudate, glabrous on back, tomentose within and on margin, deciduous; stamens 45-75 per flower, pollen grains about 28.0 u. in diameter; peduncles $10-30 \mathrm{~mm}$. long, slender, glabrous, generally glandular;
hypanthium ellipsoid, elabrous, in fruit 3-5 mm. wide, often pendent, containing 1-7 large achenes; $2 n=14$ (plate XIV).

Type: MOregon, in shady woode, common, Nuttall! Douglas!"
Habitat: A very ahade tolerant species, which, if grown in the open, may be stunted and aterile through premature dropping of hips. General Distribution: Central B. C., to Calif., east to western Mont., and Wyo.

Pacific North-west Distribution: Pacific.coast, including Vancouver Island, from as far as $52^{\circ} \mathrm{N}$. in B . C., scattered throughout the Interior of B. C., Wash., and Ore., east to the B. C. - Alta. boundary, Ida., western Mont. and Wyo., map 2.

Greene (1912) described twelve new species in the section GYMOOCARPAE Rydb. Rydberg (1917) did not agree with Greene's segregations from R. gymnocorpa and accepted none of his-new species. He did, however, recognize R. prionate Greene, R. leucopsis Greene, and R. desypoda Greene as varieties of F . gymocarpa. The study of populations has ahown great variation (both intra and inter) in many morphological characters and that it is easy to pick out individuals that look very unlike one another. Results have emphasized, however, the true nature of these varients. They can be considered at the most biotypes and not worthy of formal designation. As such the species of Greene, which vary from R. gymocarpa by one or two minor morphological characters, are considered as synonyms of that species.

The melysis of the morphological criteria from the mass collections of R. gymnocarpa has shown, however, that there does exist two
different groups of populations. On the basis of these criteria, the taxon has been divided into two subspecies.

Leaflet 13-15* ma. wide, 2l-23* mm. long, 20 or Pewer serrations on one side; stipules 3:0-3.4* nm. long; Marine West Coast and Humid Continental climatic regions.
ssp. gymnocarpa
Leaflets 12.5 or less wide, 20 nm. or less long, $21-23^{*}$ serrations on one side; stipules 2.6 mm . or less long; Cool Summer Mediterranean climatic region.
-sap. apiculata

Rosa gymnocarpa Nutt. sep. gymnocarpa

Selected Specimens Examined: BRITISH COLUMBIA ${ }^{13}$: Cranbrook D.:
Yahk, 28 July 1952, S. Brown-John; Fernie D.: Fernie, W. H. Lewis 1298;
Kaslo D.: Ainsworth, T.T. McCabe 6548 (as R. Macounil Greene); KamLoops D.: Shuswap Lake, 18 June 1889, John Macoun; Lillooet D.:

Lillooet, 9 June 1916, E. M. Anderson, Pemberton, J. W. Easthem 14964; Nelson D.: Creston, Goat Mt., J. W. Eastham 15321, Deer Park, Lower Arrow Lake, 25 July 1890, John Macoun, Nelson, W. H. Lewis 1304, Ross Spur and Fruitvale, J. W. Eastham 15243, Trail, 28 May 1902, J. Mo Macoum, Ymir, 19 Aug 1916, W. C. Sandercock; New Westminster D.: Chilliwack Lake, 22 July 1901, J. M. Macoun (as R. dasypoda Greene), Hope, W• H. Lewis 1316, Mission, 파. H. Lewiz 1554, Skagit River, Lake House, 25 June 1905, Jo M. Macoun, Yale, 17 May 1889, J. M. Bacoum; Osooyos D.: Arnstrong, 11 Jume 1904, E. Wil son; Lumby, e. of, J. W. Bastham 7319;
13. B. C. has been divided into Land Recording Districts, illustrated map 3.

2. Alberni
3. Cranbrook
4. Fernie
5. Fort Fraser
6. Fort Ceorge
7. Golden
8. Kamloops
9. Kaslo
10. Lillooet
11. Nanaimo
12. Nelson
13. New Hestminster
14. Osoyoos
15. Peace River
16. Prince Rupert
17. Quesnel
18. Revelstoke
19. Similkameen
20. Smithers
21. Telegraph Creek
22. Vencouver
23. Victoria

Revelstoke D.: Mt. Revelatoke, 19 July 1937, Mrs. I. McT. Cowan (as R. Woodsii Lindl.); Similkameen D.: Hope-Princeton Highway, mi. 15, 1.6 July 1949, G. A. Hardy (as R. pisocarpa Gray); Vancouver D.: Bella Coola, H. Mo Laing 566 (as R. Pacioularis Lindl.); IDAHO: Idaho CO.: Selway Falls, Nez Perce National Forest, L. Constance \& R. C. Rollins 1648; Latah CO.: Moscow Mt., G. No Jones 662; Lemhi Co., Penther Creek, 5 mi . north of Cabin Creek, C. L. Hitchcock \& C. V. Muhlick 14252; Weshington Co.: Weiser River, 4 July 1923, T. Lommasson; MONTANA: Lincoln Co.: Kootenai River, 60 mi . Wo of Kalispell, C. Le Hitchcock 17675, Kootenai Falls, 6 June 1946, W. B. \& V. G. Cooke 17329; Missoula Co.: Missoula, F. H. Rose 194, Mount. Stuart, C. L. Hitchcock \& C. V. Muhlick 14562; OREGON: Clackemas CO.: Oregon City, W. H. Lewis 1510; Clatsop Co.: Saddle.Mt.; G. B. \& R. P. Rossbach 364; Coos Co.: Iron Mountain, W. H. Baker 4240; Curry Co.: Serpentine Ridges, Siskiyou Mts., J. W. Thompson 12876; Hood River Co.: Mt. Hood National Forest, 29 June 1927, Goodding \& Evinger; Jackson Co.: Table Rock, nr. Medford, J. We Thompan 103i2; Jefferson Co.: Lake Suttle, J. S. Martin 4893; Josephine Co.: Flder Cr. Trail, Siskiyou Forest, D. C. Ingram 1062, Greyback $\mathrm{M}_{\mathrm{t}}^{\mathrm{o}}$, 11 July 1928, F. P. Slpe; Linn Co.: Peoria Road, 10 oct 1928, H. M. Gilkey; Nultnomah CO.: East Portland, J. W. Thompson 854; Wesco Co.: Bigth Mile Creek, Mt. Hood National Forest, Ge N. Jones 4086; mashivgrory: Asotin Co.: Blue Mountains, G. No Jones 985; Chelan Co.: Bridge Creek, G. H. Ward 650, nr. Merritt, G. N. Jones 4761, Peshastin Creek Canyon, nr. Leavenmorth, C. L. Hitchcock \& J. S. Mart in 4743; Cowlitz Co.: Kelso, H. H. Lewis 1506; Columbia Co.: Wenaha Forest Reserve, H. T. Darlington 218, Wildcat Spring, H. St. John \& C. P. Smith

8314; Ferry CO.: Republic, 20 mi . east of, C. L. Hitchcock 17571;
Kittitas Co.: Cle Blum, C. L. Hitchcock 8043, Hyas Lake, C. L. Hitchcock 75658, Kachees Lake, G. N. Jones 1415, Paddy-Go-Easy Pass, J. W. Thompson 10680; Lewis C0.: Toledo, W. H. Lewis 1505; Mason Co.: Dayton, P. B. Freer 201; Stevens Co.: Cedonia, M. E. Dennis, 6 Aug 1946; Thurston Co.: Bucoda, W. H. Lowisl502.

As can be seen fran the above, the typical subspecies is found in two main regions, the coast area and the interior wet belt. It appears to be confined to these areas because of its ecological requirements of moisture and shade. From its general distribution, one can conclude that this taxon has entered B. C. from the south following the routes determining its ecological prefernces.

Rosa gymnocarpa Nutt. ssp. apiculata (Greenel comb. nov.
R. apiculata Greene, Bot. Leaf. 2: 256, 1912

Type: Fwhidbey Island, in Puget Sound, near Coupeville, July 1899, by De Alton Saunders."

Selected Specimens Exemined: BRITISH COLUMBIA: Nanaimo D.: Comox, T. M. C. Taylor and W. H. Lewis 534, Green Lake, 29 Aug 1937, K. Racey, First Nanaimo Lake, V. Krajina and R. H. Spilsbury 6158, Nanaimo, 24 July 1908, John Macoun (as R. leucopsis Rydb.), nr Parksville, V. Krajina and R. H. Spilsbury 4236, Qualicum, 15 Aug 1928, W. Redfern, Wellington, T. M. C. Taylor \& W. H. Lewis 5\%; Vancouver D.: Vancouver (Kerrisdele), 13 Sept 1913, J. Davidson, Vancouver (Point Grey), T. M. C. Taylor and
W. H. Lewis 734; South Vancouver, T. R. Ashlee 3670; V1ctoria D.: Goldstream, 27 June 1899, J. R. Anderson, Koksilah River, 1 Sept 1895, J. R. Anderson, Lost Lake, 25 May 1924, G. A. Hardy, Mayne Island, 4 June 1914, J. M. Macoun, Mill Bay, T. M. C. Taylor \& Wo H. Lewis 520, Shawnigan, 5 Sept 1899, J. R. Anderson, Victoria, 24 April 1885, Fletcher; WASHINGION: Clallum Co.: Mount Angeles, 22 July 1929, G. B. Rigg; Island Co.: Langley, J. M. Grant 2063, Oak Harbor, 22 Sept 1935, C. H. Harrison, Widbey Island, H. W. Smith 1723; KIng Co.: Saattle, C. V. Piper 82; Kitsap CO.: Charleston, 14 Dec. 1907, G. Ao Rigg; San Juan Co.: Briday Harbor, B. D. Blanchard 100; Skagit Co.: Anacortes, 5 mi . S., C. L. Hitchcock 3479, Bowan Hill, Fidalgo Island, H. W. Smith 1489, Mount Erie, L. E. MaElvain 137; Snohomish Co.: Maryeville, May 1930, J. M. Grant; What com CO.: Bellinghem, Lyman Benson 1510.

As damonstrated above (pg. 15), populations of this subspecies from Mill Bay, Nanaimo, and mellington on V. I., and Vancouver (Point Grey) differed from the other populations by four criteria. These populations, and many herbarium specimens also collected at different looalities within the limits of the Cool Sumer Maditerranean area appear to constitute a distinct texon within the species. In the writers view their characters agree with those of Rosa apiculata Greene.

The subspeciesp,found in the coastal trench, south-east V. I. and mainland, south in the Puget Sound, distribution is illustrated in map 2.

MAP 2

ROSA GYMNOCARPA NUTTT.

PACIFIC NORTH-WEST DISTRIBUTION

R. gymnocarpa ssp - gymnocarpa

ROSA PISOCARPA GRAY

Rosa pisocarpa Gray, Proc. Am. Acad. 8: 382, 1872
A. nutisana Presl var. microcarpa Crép., Bull. Soc. Bot. Belg. 15: 45, 1876
R. blanda Wats., Bot. King's Expl. 91: 1871, non A1t. 1789
R. rivalis Eastwood, Bull. Torrey Bot. Cl. 32: 198, 1905
R. anacentha Greene, Bot. Leaf. 2: 264, 1912
R. Copelandil Greene, Bot. Leaf. 2: 264, 1912
R. Pringlei Rydb., Bull. Torrey Bot. Cl. 44: 79, 1917
R. rotumdata Rydb., Bull. Torrey Bot. Cl. 44: 76, 1917
R. Bastwoodiae Rydb., N. Am. Flora 22: 427, 1918

Stems 1.0-2.5 m. tall, subcernuous, slender, maybe unarmed, or with scattered or infrastipular thorns; leaflets 5-9, *12-15 ($X=13.5$) mm. wide, *22-25 ($\mathrm{X}=23.2$) mm. iong, ovate to cordate, puberulent below, rarely glandular, singly serrate; stipules largely adnate, free portion *2.8-4.0 ($X=3.3$) mm., rarely glandular; rachis and petiole pubescent, occasionally bristly, rarely glandular; inflorescence corymbose, fewto many-flowered, conspicuously leaf-bracted; petals obcordate, *9-13 ($X=10.7$) rm. wide, ${ }^{*} 10=15(X=12.3)$ rim. long; sepals 2.0-2.5 ($X=2.17$) nim. wide at base, $10-17(X=13.7) \mathrm{mm}$. long, glandular or rarely eglandular, pubescent; stamens 80-130* ($X=105$) per flower, pallen grains about 28.0 u. in diemeter; peduncles glabrous, rarely glandular; hypanthium glabrous, globose, sometimes short necked, in fruit to 10 mm . wide, 5-15 achenes; $2 \pi=14$ (plate XIV).

Type: Multnomah County, "oregon: coll. Elihu Hall, ann. 1871.".

Habitat: Species camonly found along exposed roadsides, often associated with R. nutkana sap. nutkana.

General Distribution: From southern B. C. to northern Calif., west of Coast, Cascade, and Slerra Nevada Mountain Ranges.

Pacific North-west Distribution: From $50^{\circ} \mathrm{N}$. in B. C., west of the Coast, and Cascade Mountain Renges, map 3.

Selected Specimens Examined̃: BRITISH COLUNBLA - Nénaimo Do: Nanaimo, 11 July 1887, John Macoun (as Ro, pisocarpa Gray); New Westminster Do: Elgin, sow, of Cloverdale, 8 Sept 1917, John Davidson, Fraser Valley, I. MOT. Cowan 20x, Huntingdon, T. T. MfcCabe 3716; Victoria D.: Central Sasnich, T. M. C. Taylor \& W. H. Lewis 549, Brentwood, To H. Lowis 1559,
 combe 8759, Oak Bay, 18 oct 1917, J. R. Anderson (as; R. californica), Sidney; John Macoun 198; OREGON -- Clackamas Co., s. of Portland, W. H. Lewis 1509; Curry Co., Rogue River Canyon, Agness, W. H. Baker ; 4740 (as Re canina L.); Douglas Co., Cames Valley, W. E. Lawrence 2085; Linn Co., Peterson Butte, Oak Creek, 4 July 1938, Louis Whitaker; Marion Co., Scotts Vills, W. Fo Lawrence 1958; Multnomah Co., Portland, L. Fo Henderson 280; HASHINGTON -- Pierce Co.: Fitch, D. S. Galbreath 259 (as R. gymocerpa Nutt.), s.ow. of Game Reffuge, D. S. Gal breath 285, Voss, D. S. Galbreath 248 (as R. gymnocarpa Nutto); Thurston Co.., nr. Tenino, 21 Jume 1946, Daisy Overlander, Olympia, 27 June 1946, Daisy Overlander and H. Ma Gilkey; Snohomish Co., Maryaville, May (?) 1927, J. M. Grent (as R. nutkena Presl).

From these specimens, it can be seen that the species occurs in the Cool Sumer Mediterranean as well as the Marine Fest Coast clim-

```
MAP 3A
```

ROSA PISOCARPA GRAY

PACIFIC NORTH-WHEST DISTRIBUTION

R. pisocerpa Gray

PACIFIC
atic regions. Mass collections were made from one region only, the Cool Sumer Mediterranean, at two localities both on Vancouver Island, at Central Saanich, and Duncan. From such limited data, it is not possible to delimit the species accurately. Its southern boundary in Califormia is unknown, but in that state, it appears to be placed gradually by a morphologically similar species, R_{p} californica C. \& S. This species is, however, a tetraploid, while R. pisocarpa is dipioid.

ROSA MOODSII ITNIL.

Rosa Woodsil Lindl., Ros. Monogr. 21, 1820
R. Maximiliana Nees., in Max. Reise N. Am. 2: 434, 1841
R. foliolose Nutt. var. lelocarpa Torrey ex. Frem., Rep. 85, 1843
R. Fendleri Crép., Buil. Soc. Bot. Belg. 15: 91, 1876
R. californica C. \& S. var. glabrata Parish, Erythea 6: 88, 1898
R. Woodsili Lindl. var. Fendleri (Crep.) Rydb., Fl. Nebr. 22: 22, 1895.
R. Racounil Greene, Pittonia 4: 10, 1899
H. grossesserrate Nels., Bot. Gaz. 30: 119, 1900
R. mohavensis Parish, Bull. S. Calif. Acad. 1: 87, 1902
R. ultramontana (Wats.) Heller, Ahulenbergia $2: 107,1904$
R. neomexicana Ckll., Entom. News 12: 41, 1901
R. praetincta Ckil., Proc. Acad. Phila. 56: 110, 1904
R. aciculata Rydb., Fl. Colo. 191, 1906
R. Maximiliani Rydb., Fl. Colo. 191, 1906
R. fimbriatula Greene, Bot. Leaf. 2: 135, 1911
R. Sandbergil Greene, Bot. Leaf. 2: 136, 1911
R. deserta Lunell, Am. Nidl. Nat. 2: 156, 1912
R. subunda Lunell, Am. Midl. Nat. 2: 153, 1912
R. adenosepala Woot. \& St., Contr. U. S. Nat. Herb. 16: 131, 1913
R. hypoleuca, Woot. \& St., Contr. U. S. Nat. Herb. 16: 131, 1913
R. naiadum Lunell, Am. Midl. Nat. 3: 159, 1913
R. poetica Lunell, Am. Midl. Nat. ⿹ㅡ: 139, 1913

Re chrysocarpa Rydb., Bull. Torrey Bot. Cl. 44: 74, 1917
R. puberulenta Kydb., Fl. Rocky Mt. 443, 1917
R. pyrifera Rydb., Fl. Rocky Mt. 445, 1917
R. salictorum Rydb., Bull. Torrey Bot. C1. 44: 77, 1917
R. arizonica Rydb., N. Am. Fl. 22: 516, 1918
R. granulifera Rydb., N. Am. Tl. 22: 517, 1918
R. lapwaiensis St. John, Fl. S. E. Wash., 208, 1937
R. 700 dsii Lindl. var ultramontana (wats.) Jeps., Fl. Calif. 210, 1936
R. pisocarpa Gray var. ultremontana (Wats.) Peck., Pl. Ore., 404, 1941

Stems 0.5-2.0 m. tall, with bristles and prickles, more rarely with thorns, or unarmed; leaflets $5-7,14-17^{*}(X=15)$ nm. wide, 25-29* ($\mathrm{X}=27.1$) mm . long, obovate-elliptic, typically cuneate based; singly or doubly serrate, often glend-tipped, occasionally glabrous below, glandular or eglandular below; rachis and petioles usually glabrous, glandular and bristly; stipules largely adnate, free portion 4-5* ($X=4.3$) mim., usually glabrous and glandular; inflorescence rerely one-, camoniy many-flowered; petals 13-18* ($\mathrm{X}=15.2$) man. wide, 16-19* ($\mathrm{X}=17.3$) mm . long; sepals 1.5-3.0 ($X=2.10$) im. wide at base, $9-20(14.1=X)$ m. long, pubescent; glandular or eglandular; stamens *68-76 ($X=72$) per flower, pollen grains about 28.0 u. in dimeter; peduncles $10-20$ manelong, glabs : rous or pubescent, eglandular, rarely glandubar; hypanthium globose, rarely ellipsoid, glabrous, in fruit 8-10 mm; wide; achones 5-12; $2 n=14$ (Flory 1950).

Type: "juxta flumen Missouri Americae septentrionalis (v.v.c. hort. Sabine.) ${ }^{\prime \prime}$; along river Missouri in North America.

General Distribution: Yukon and North-west Territories, to Oregon, Otah, and Kanses.

Pacific Nórth-west Distribution: Yukon and N. W. T., south in Sask., Altaís and B. C., east of Coast and Cascade Mountain Ranges, to Ore., and Wyo., map 4:

Selected Specimens Eigamined: ALBERTA -- Benff, Mo C. MCCalla 2092 (as R. Mačounif Greene), Banff; 10 Aug 1898, Anderson \& Fletcher (as R. acicularis Lindlo), nr. Bassano, E. H. Moss 3226 (as R. Macounii Greene), Battle River, nr. Notikewin, E. H. Moss 2260 (as R. blanda Ait. var. hispida Farwell): Belly River, 15 July 1881, Dawson (as R. Fendleri Grep.), Bobs Creek Velley, Crowanest Forest Reserve, 22 July 1920, W. D. Cram (as R. Macounil Greene), Calgary, 28 Allg 1897, Dawson (as R. Fendleri Crep.), Cammore, 29 June 1885, Macoun (as R. Macounii Greene), Caribou Mountains, Wood Buffalo Park, H. M. Raup 2679, Fort Assiniboine, E. H. Moss 1897 (as R. Macounil Greene), Fort Saskatchewan, G. H. Tormer 132l, Fort Vermilion, E. H. Moss 8774, Edmonton, E. H. Moss 6424 (as R. Macounii Greene), Jasper, W. H. Lewis 1254, Kananaskis, 26 June 1885, Macoum, (as R. arksmsana Porter), Keg River Settlement, E. H. Moss 8935, Lethbridge, 5 June 1894, Macoun (as Re arkansana Porter), Maligne River, 5 July 1898, W. Spreadborough, Mamawi Lake, Woods Buffelo Park, H. M. Raup 2680, Medicine Hat, 1 June 1894, Macoun (as R. arkansana Porter), Orion, E. H. Moss 7010, Peace Point, Wood Buffelo Park, H. M. Raup 2678, Pincher Creek, S. S. Survey 191, Waterton, S. S. SurVey 615; BRITISH COWURBIA - Cranbrook D.: Cranbrook, Aug 1917, John Davidson; Fernie D.: Fernie, Wo H. Lewis 1302, Fort stèele; W. B: Anderson 2074 (as R. pisocarpa Gray), Sand Creek, 4 Sept 1883, Dawson (as R. Fendleri Crep.); Fort Fraser D: : Ootsa Lake, ToM. C. Taylor \& = W. H. Lew1s 24l; Rose:- Lake, T. M. C. Teylor \& W. H. Lewis 246; Fort George D.: Cluculz Lake, To Ma Ce Taylor \& E_{0}° W. H. Lewis 236, w: Fraser Lake, T. M. C: Taylor and W. H. Lewis 24l; colden Di: Canoe River, 2 'Aug 1898, W. Spreädborough (as R. nutkena Presl), Golden,
W. H. Lewis 1294, Lake Windermere, T. T. Miccabe 5060 (as R. Mecounii Greene), Faixmont, J. W. Eastham 15889 (as R. pisocarpa Gray); Kamloops De: Canford, Nicola Velley, 22 May 1952, C. C. Brayshav, Cache Creek, 6 June 1952, T. G. Atkinson, Chase, 15 June 1921, W. B. Anderson (as R. pyrifera Rydb.), Dead Man's Creeks. W. Ao Weber 2540 (as R. Spaldingil Crep.), Lytton, T. M. C. Taylor \& W. H. Lewis 202, Kamloops, W. H. Lewis 1285; Tranquille, July 1936, V. C. Brink (as R. pisocarpa Grey. ver. ultramontana (Fats.)Peck; Kaslo D.: Crawford Bay, 1912, H. Rayray (as R. ultramontana (Wats.) Heller, Mirrow Lake, Jo Wo Eastham 3686 (as Ro pisocarpa Gray var. ultramontana (Wets.) Peck; Lillooet D.: Chasm, T. M. C. Taylor \& W. H. Lewis 222, Lac la Hache, T. Mo Ce Taylor \& W. H. Lewis 224, Lillooet, T. M. C. Taylor \& W. H. Lewis 2ll, nr. Rexmount, T. 觙. C. Teylor \& W. H. Lewis 2l 6, Shelalth Mountain, T. M. C. Taylor \& W. H. Lewis 220; Nelson D.: Deer Park, Lower Arrow Lake, 8 June 1890, Macoun (as R. pisocarpa Gray), Shhep Creek; 20.July 1920; Jo Re Ander* Son; Osoyoos D.: Kelowna, E. Wilson 1048 (as R. pisocarpa Gray), Okenagen Landing, 21 Dec 1898, Jo R. Anderson (as R. nutkana Presl), Vernon, 2 June 1900, J. R. Anderson (as R. nutkana Presl); Peace River D.: Dawson Creek, W. H. Lewis 1234, nr. Hudson Hope, H. M. Raup \& E. C. Abbe 3664; Quesnel D.: Macalister, T. M. C. Taylor \& W. H. Lewis 225; Similkameen D.: Okenagan Fells, W. H. Lewis 1548, Oliver, W. H. Lewis 1545, Pentiction, W. H. Lewis 13iO; Smithers D.: Fazelton, T. M. C. Taylor \& W. H. Lewis 509, Telkwa, T. M. C. Taylor \& W. H. Lewis 502; Telegraph Creek D.: Telegraph Creek, 15 Jme 1943, W. H. Matthewe; IDAHO - Adems D.:. New Meadows, C. L. Hitch cock \& C. V. Muhlick 13892 (as R. Spaldingii Crep.); Blaine Co.: Hailey, C. L. Hitchcock \& C. Vo

Muhlick 10434 (as R. ultramontena (watso) Heller); Boise Co.: Sweet, J. Fo MacBride 1620 (as R. Grosseserrata Nels.); Bonneville Co: : Ro Jo Davis 233 (as R. ultramontana (Wats.) Heller); Canyon Co.: Nampa, Ae Nelson \& J. F. MacBride 1800 (as R. pisocarpa Gray); Custer Co., Clayton, J. F. Christ 11378 (as R. ultramontana (Wats.) Heller); Elmore Co., King Hill, A. Nelson \& J. F. MacBride 1112 (as R. Macounii Greene); . Idaho Co.: Squaw Creek, Snake River Canyon, St. John \& L. A. Mullen 8415; Kootenai Co., nr. Coeur d'Alene, W. H. Lewis 1533; Latah Co., Moscow, W. H. Lewis 1531; Lemhi Co., now. of Indianola Renger Station, C. L. Hitchcock \& C. V. Muhlick 14329 (as R. Spaldingii Crep.); Nez Perce Co.: nr: Lewiston, W. H. Lewis 152B; Owyhee Co.: Twilight Gulch, F. Macbride 471; Twin Falls CO.: Shoshone Fells, R• J. Davis, 11 May 1936, (as R. ultremontana (Wats.) Heller); MONTANA - Beaverhead Co., nre Dillon, C. L. Hitchcock 15802 (as R. Macounil Greene); Broadwater Co.: Brown's Lake, C. L. Hitchcock \& C. V. Muhlick 13i64; Gallatin Co.: nr. Bozeman, C. Le Hitchcock \& C. V. Muhlick 1246 ? (as R. acicularis Lindl.); Flathead Co., Flathead Lake, H. T. Rogers 848 (as R. ultramontana (Watso) Heller); Glacier Co., Babb, R. F. Daubenmire 48366 (as R. acicularis Lindl.); Granite Co., Rock Creek Canfon, C. L. Eitch cock \& C. V. Buhlick 14407 (as R. pisocarpa Gray); Lake Co., Polson, C. L. Hitchcock 17756 (as R. Macounii Greene); Lewis and Clark Co.: mr. Silver City, C. L. Hitchcock 17913 (as R. Spaldingii Crep.); Magher Co., nr. White Sulphur Springs, C. L. Hitchcook 16263 (as R. Macounli Greene); Missoule Cọ., Missoula, E. D. \& F. A. Barkley 1666° (as R. Fendleri Crep.) ; Minerel Co., Lolo Hot Springs, C. L. Hitchcock \& C. V. Mohlick 14619 (as R. ultramontana (Wats.) Heller; Park Co.: nr. Wilsall, W. N. Sukadorf 33l; Ravalli Co., nr. :

Skalkaho Road Sumnit, C. L. Hitchcock \& C. V. Muhlick 14510 (as R. pisocarpa Gray); Sanders Co.: D. R. Hudson 154 (as R. arkansana Porter); Wheatland CO.: ir. Harlowton, C. L. Hithcock \& C. V. Muhlick 12059 (as R. Macounil Greene); OREGON-- Grook CO.: 42mi. from Prinoville, W. E. Lawrence, 27 July 1922; Gilliam Co., nr. Blalock, Wo H. Lewis l524; Grant Co.: Blue Mountains, W. E. Lawrence 952A (es R. pisocarpa Gray) ; Herney CO., Steen Mits., 23 June 1947, R. M. Yancey; Hood River Co.: Hood River, May 1889, Drake \& Dickson (as R. Fendleri Crep.); Jefferson Co.: Warm Springs, E. V. A. Mirphey \& H. M. Gilkey 85 (as R. pisocarpa Gray); Lake Co., ir. Paisley, J. S. Elder 162; Malheur Co., Sucker Canyon Creek, Reeder \& Merkle 267; Horrow Co., 13 mi . e. of Heppner, W. E. Lawrence 575 (as R. pisocarpa Gray); Wallowa Co.: nr. Deep Creek, Snake River Cańyon, D. Hedrick, W. R. Moore \& B. Harmon 62 (as R. ultramontana (Wats.) Heller); Wasco Co.: pr. The Dalles, W. H. Lewis 1513;
 Lower Hay River, We. H. Lewis 1202; Mackenzie River, Wrigley; V. C. WynneEdward 8602 (as R. blanda Ait.); SASKATCHEWAN -- Cypress Hills, 23 June 1894; Miecoun (as R. Macounii Greene); Hebb, A. J. Breitung 5840 (as R. terrens Lunell); Cypress Hills, A. J. Breitung 5440 (as R. texrens Lunell); WASHINGTON =- Adens CO.: nr. Macall, 7 June 1946, R. G. Jeffrey (as R. ultramontena (Wats.) Heller); Asotin Co.: nr. Asotin, C. L. Hitchcock \& C. V. Muhlick 8368 (as-R. ultramontena (Wats.) Heller); Benton Co.: Prosser, L. F. Henderson 335 (as Re pisocarpa Gray); Chelan Co., Wenatchee, K. Whited 1125 (as R. pisocarpa Gray); Columbia Co., nr. Dayton, W. H. Lewis 1526; Douglas Co.: Grand Coulee, W. H. Lewis 1542; Kittitas Co., Whiskry Dick Coulee, Ho Wo Snith 1253 (as r.
ultramontana (Wats.) Heller); Klickitat Co.: Bingen, W. No Suksdorf 12071 (as R. pisocarpa Gray); Iincoln Co., Reardan, W. H. Lewis 1539; Okanogan Co.: Okanogan, W. H. Lewis 1544; Spokane Co.: nr. Green Acres, We H. Lewis 1536; Stevens Co.: Kettle Falls, L. Boner \& V. Weldert 170 (R. ultramontana (Wats.) Heller); Walla Walla Co.: College Place, 22 May 1942, Ernest Booth (as R. Spaldingii Crep.); 解itman Co.: Colfax, C. S. Parker 591 (as R. pisocarpa Gray); Yakima Co.: Tieton River, nr. mouth, G. N. Jones 9642 (R. ultramontma (Watse) Heller); WYOMNG -- Yellowstơne National Park, Firepole River, G. N. Jones 5269 (as Re acicularis Lindl.); YUKON - \quad Whitehorse, A. E. Porsild \& A. J. Breitung 10676.

As shown earlier, R. Woodsii is an highly heterogeneous apecies in central British Columbia. At the same locality the species is often distinctly modified in several criteria. This has been emphasized above, page 23, by the collections made at Marble Canyon.

In one test from a single hip culture (\#1221l) of Re Macounii Greene, Erlanson (1934) was able to identify: 2 Ro Macounil Greene, 2 Re puberulenta Rydb., 1 R. Fendleri Crep., 1 Re granulifera Rydb., 1 Re salicetorum Rydb., and 1 R. Woodsii Lindl. Other progeny tests supported her conclusion that all these so-called species were only biotypes of one species.

PACIFIC NORITH-WEST DISTRIBUTION

R. Woodsil Lindl.

ROSA ACICULARIS LINDL.

Rosa acicularis Lindl., Ros. Monog. 44, 1820

R. Gmelini Bunge, in Ledebour Fl. Alt. 2: 228, 1829
R. majalis Borrer, in Hook. Fl. Bor. Am. 1: 200, 1832
R. Sayi Schw., in Keating Narr. Exp. Long 2: 388, 1842
R. stricta Macoun \&f Gibson, Trans. Bot. Soc. Edinb. 12: 324, 1842
R. carelica fries, Suma Vego Scand. 1: 171, 1846
R. acieularis Lindl. var, Gmelini Meyer, Mem. Sci. Nat. Acad. Sci. St. Petersb. ser. 6 (Sci. Nat.), 6 Bot.: 17, 1849
R. acicularis Lindl. var Bourgeauiana Crép., Bull. Soc. Bot. Belg. 15: 30, 1876
R. Engelmanni Wats., Garden \& Forest 2: 376, 1889
R. acicularis Lindl. var. carelican Matsson, in Neumen Sverig. FI. 372, 1901
R. acicularis Lindl. var. Engelmanni Crep., in Bailey Cycl. Am. Hort. 1555, 1902
R. acicularis Lindl. var Sayi (Schwo) Rehder, in Bailey Cycl. Ane Hort. 1555, 1902
R. flauriei Leveille, in Repert. Sp. Nov. Reg. Veg. 7; 199, 1909
R. Taquetii Leveille, in Repert. Sp. Nov. Reg. Veg. 7; 199, 1909
R. Korsakoviensis Leveille, in Repert. Sp. Nov. Reg. Veg. 10: 378, 1912
R. acicularis Lindl. var. Taquetii Nakai, Bot. Mag. Tokyo 30: 241, 1916
R. collaris Rydb., Fl. Rocky Mts. 44i, 1917
R. Bourgeauiana (Crép.), Bull. Soc. Bot. Belg. 14: 9, 1875, pro hypon., Rydb., FI. Rocky Mifts. 442, 1917
R. Butler1 Rydb., N. Am. Fl. 22: 506, 1918
R. acicularis Lindl. ver.rotunda Erl., Papers Mich. Acad. Sci. Arts \& Letters 5: 84, 1925
R. acicularis Lindl. var. Sayiana Erl., Papers Mich. Acad. Sci. Arts \& Letters 5: 85, 1925
R. acicularis Lindl. var. lacorm Erl., Papers Mich. Acad. Sci. Arts \& Letters 5: 86, 1925
R. acicularis Lindl. var cucurbiformis Raup, Sergentia 6: 203, 1947

Stens $0.3-2.0 \mathrm{~m}$. tall, densely covered to apex with bristles and prickles, rarely unarmed; leaflets 5-9, 19-23* ($\mathrm{X}=21.3$) mm. wide, 35-40* ($X=38.2$) nm. long, ovate to sublanceolate, pubescent below, glandular, rarely eglendular below, doably, sometimes singly, serrate, often
gland-tipped; rachis and petiole often pubescent, glandular, and bristly; stipules largely adnate, free portion 4-6 ($X=5.2$) mong glandular; inflorescence one-,rarely three-flowered; petals obovate, 18-20 ($X=19$) mm. wide 15-32 ($X=22.2$) mm. long; sepals $2.9 \sim 3.1$ (2.99 = X) man. wide, 16-27 $(X=2 l .5) \mathrm{mm}$. long, pubescent, glandular, rarely eglandular, caudate-acuminate; stamens 50-100 ($X=79$) per fiower; pollen grains about 36 u. in diameter; peduncles $20-40 \mathrm{~mm}$. long, rarely glandular-hispid; hypanthium typcally glabrous, obovate-elliptic to pyriform, in fruit $10-15 \mathrm{~mm}$. wide, 15-25 mm. long, with neck, achenes 6-15; \quad R $=42$, Erlanson $(1934)^{14}$.

Type: "in Siberia, Bell."

Habitat: The species is common at the edge of woods and elong roadsides.

Genersl Distribution: Alaska to Colorado, east to Hudson's Bay, New York, and Maine.

Pacific North-west Distribution: Yukon, and N. W. T., south in central B. C., and Alta, to Mont., Wyo., rare in Ida., map 5.

Selected Specimens Exemined: ALBERTA - Athabasca River, 11 July 1937, E. M. Kindle, Banff, 26 Jume 1891, John Macoun (as Ro acicularis Lindl. var Bourgeauiana Crep.); Calgary, 5 June 1897, Macoun (as R. Bourgeauiana Crep.), Carcajou Settlement, along Peace River, H. M. Raup \& B. C. Abbe 4381, Caribou Mits., Wood Buffalo Park, H. M. Raup 2662, Edmonton, E. H. Moss 1805, Fort McMurray, H. M. Raup 7113, Fort Saskatchewan, Go H. Turner 11 (as R. acicularis Lindl. var. rotunda Erl.). Gibbons, E. H. Moss 1791 (as R. acicularis Lindl. var lacorm Erl.), Granite Hill, Ir. Lake Mamari, H. M. Raup 2658 (as R. acicularis Lindl.
14. Erlanson al so reported an octOploid specimen (2n=56) of what she believes to be this species from Fairbanks, Alaska.
ver. lacorum Erl. P), Jasper, 略. H. Lewis 1256, Kananaskis, 25 June 1885, John Macoun (asR. Sayi Schwo), SPirit River, now. at Kaituan River, E. H. Moss 8369, Looma, E. H. Hioss 1009 (as R. aciculeris Lindl. ver. Sayiana Erl.), Mamawi Lake, Wood Buffalo Park, H. M. Raup \&e. E. C. Abbe 4415, Ma-Me-O Beach, G. H. Turner 6463, Minnewanka Lake, R. H. Moss 2925, 01d Man River, 8 Aug. 1883, Dawson (as R. californíca C. \& S.), Peace Point, Wood Buffalo Park, H. M. Raup 2675, Peace River, H. M. Raup 2666, Peace River Lending, 13 June 1908, J. M. Macoun (as R. acicularis Lindl. var. Sayiana Erl.), Red Deer, 15 July 1895, H. H. Gaetz, Sheiter Point, n. shore Lake Athabaska, H. M. Raup \& E. C. Abbe 4446, Sleve River, Wood Buffalo Park, H. M. Raup 2674, Sweet Grass Hills, is July 1895, gio H. Gaetz (as R. arkansana Gro), Waterton Lakes National Park, J. Hutton \& S. Molbourn 26-2, Watino, E. H. Moss 7681, Whitecourt, E. Ho Moss 1347, (as R. acicularis Lindl. var. Sayiana Erl.), Winterburn, E. H. Moss 1925 (as R. acicularis Lindl. var. Sayiana Erl.); . BRIIISH COLUNBIA -Atlin D.: Bennett, 8 July 1929, A. A." Heller; Cranbrook D.: Cranbrook, 29 May 1915, C. B. Garrett (as R. Sayi Schwa) ; Fernie D.: Sand Creek, Kootanie Valley, 4 Sept. 1883, Dawson; Fort Fraser D.: Burns Lake, W. He Lewis 1266, Fort St. James, T. T. McCabe 7458, Vanderhoof, J. W. Eastham 1176l; Fort George D.: Germansen Landing; Omineca River, T. T. HeCabe 7665 (as R. Spaldingil Crep.), Ingenika River, 23 Jume 1914, C. V. Copley (as R. Woodsii Lindl.), McBride, Jo Wo Easthem 14677, Wicked River, H. M. Raup \& E. C. Abbe 4254; Golden D.: Devil's Lake, Macoun 8092, Fairmont Hotsprings, 23 July 1939, J. W. Easthem (as R. Sayi Schw.), Golden, W. H. Lewis 1293, Kicking Horse Lake; Macoun 8092, Windermere, Sheep Creek, W. B. Anderson 6022 (as R. acicularis Lindl. var. ratunda Erl.);

Kamloops D.: Spence's Bridge, Macoun 8139 (as R. pisocarpa Gray);
Lillooet Da: Chilco Lake, 27 July: 1944, J. W. Eestham (as R. nutkana Presl), Lac la Hache, 27 June 1942, G. Ab Hafdy, Watch Lake, 22 June 1944, J. W. Eastham (as R. nutkane Presl); Peace River Do: Bear Flat, Peace River, 7 June 1935, Maldred Vauee (as R. ultramontana (Wats.) Heller), Carbon River, H. M. Raup \& E. C. Abbe 4310, Dawson Creek, H. H. Lewis 1232, Fort Nelson, W. H. Lewis 1244, Fort St. John, 1931, Mo Birley (as R. Sayi Schw.); Hudson Hope, H. M. Renp \& E. C. Abbe 377, Muskwe River, W. Ho. Lewis 1250, Pouce Coupe and Peace River Junction,: 20 June-10 July 1943, C. H. Crickmay (as R. Sayi Schwo); Quesnel Do: Williams Lake, TH. H. Lewis 1237; Smithers D.: Takla Lending, T. T. McCabe 7829; Telegraph Creek D.: Alaska Highway, Hot Springs nr. Liard River crossing, A. E. Porsild 9085, Coal and Liard River Junction, W. H. Lewis. 1239, Telegraph Creek, T. T. McCabe 9040; IDAHO -- Idaho National Forest, Don Robins; MONTMNA - Beaverhead Co., Brown's Lake, C. L. Hitchcock \& C. V. Muhlick 13157 (as R. Woodsii Lindlo); Fergus Co., Helf Moon Canyon, C. L. Hitchcock \& C. V. Muhlick 12014 (as R. Macounil Greene); Glacier Co.: D. Lynch 6177; Lewis and Clark Co.: Augusta, 25 mi . nowe, C. L. Hitchcock 18031; Lincoln CO., nr. Kootenai Fells, W. Bo \& C. G. Cooke 17330; Meagher Co.: White Sulphur Springa, 35 mi. n.w., C. L. Hitchcock $^{\text {Con }}$ 16165; Missoula Co., Missoula, F. H. Rose 195; Park CO: Suksdor's Gulch, nr. Wilsall, W. N. Suksdorf 230 (as R. pyrifera Rydb.); POndera CO.: nr. Glacier Park, C. L. Hitchcock 18130; NORIH-WEST TBRRRITORIES Aklavik, I. MCT. Cowan 9, Alexandra Fells, Hay Riveř, W. H. Lewis 1205, Brabant Island, Great Slave Lake at MacKenzie River, W. H. Lewis 1220, Fort Snith, W. J. Cody \& C. C. Loan 3916, Long Islend, Great Slave Lake,
W. H. Lewis 1214, Lower Hay River, W. H. Lewis 1201, Wilson Island, Great Slave Lake, J. P. Kelsall 20; WYOMING -- Sublette Co.: Pinedale, E. B. Payson \& L. B. Payson 2915; Yellowstone National Park, Mt. Everts, Aven Nelson \& Elias Melson 5702; YUKON TERRRITORY -- Bear Creek, nr. Lake Desert D'Asche, 6 Aug. 1920, A. Muller, Canol Rd., Lower Lapie River Crossing, A. E. Porsild \& A. J. Breitung 9548, Carcross, Lake Bennet, A. E. Porsild 18502, Dawson, Alice Eastwood 277, Fort Solkird, M. We Gormen 1070, Haines Rd., nr. mi 85, C. H. D. Clarke 494, Klondike River, W. E. Cockfield 33, Kluane Lake, Burwash Landing, C. H. D. Clarke 166 (as R. Woodsii Lindl.), Lewis River, 26 Aug 1887, Dawson (as.R. Sayi Schw.), Liard River, upper, 27 June 1887, Dawson (as R. Sayi Hats.), Mcquesten River, mt. to n., R. L. Christie 57, Mayo, J. P.-Anderson 9689, Pelly River, 7 Aug 1887, Dawson (as R. Sayi Mats.), Whitehorse, A. E. Porsild \& A. J. Breitung 10675, White River and Alaska Highway; J. P. Anderson 9328, White River, Snag Air Station, G. A. Noel 31.

Erlanson (1925) attempted to segregate R. acicularis by using a combination of three sets of characters, including: hip, round, pyriform or elliptic; leaflets, pubescent, glabrous; leaflets, glandcompound teeth, eglandular teeth. From these criteria, eight combinations ere possible. The descriptions of two varieties, var. Bourgeauiana crép. and var. Engelmanni (Wats.) Crép. typified three of the combinations. It was found necessary, however, to create three new varieties to name the remaining combinations. Fror her further research, Erlanson (1933) (1934) abondened the splitting of species into innumerable varieties, since hybridizing proved that such criteria had little taxonomic significance.

Fernald (1950) regarded R. Bourgeauiana (Crép.) Rydb. as a variety of R. acicularis Lindl. distinguishable by the shape of the hip alone. Erlanson (1925), attempting to differentiate between Re acialaris and $R_{\text {. Bourgeauiana }}$ Pound both pyriform and subglobose hips on the same plant. From this alone, one must doubt the significance of the variety. Supporting his creation of R. Fagelmanni, Watson (1889) wrote:: the species $n_{i s}$ distinguished from $\mathrm{R}_{\text {. acicularis most prominantly by the }}$ frequent occurrence of a pair of slender spines below the stipules, by the resinous puberulance often found upon the leaves, wit the accompanying glandular serrulation of the teeth, by the naked peduncles....f Exemination of his type for 'infrastipular apines' has shown them to be large prickles, often infrastipuiar, but also scattered over the entire stem. These are comonly found in R. acicularis populations as are all the other diagnostic criteria. The type's infrastipular prickles, and scattered prickles and bristles do not in any way resemble the armature found in R. nuticana Presl, contrary to Erlanson (1934). In this species, the stems are armed with large, dilated, infrastipular, or rarely scattered, thorns, or they lack armature. an relationship to R. nutkana using this criterion is unlikely.

Population studies have shown of Re acicularis have shown a wide diversity in several criteria including: the type of leaflet serration and their indumentum, indumentum of the petiole and sepal, and to some degree, in most quantitative characters. From these results, it would seem that Erlanson (1934) was justified in discontinuing the splitting of the species into smaller categories. Until distinctive criteria are found, forms given specific and variatal status have been combined under the one taxonis

PACIFIC NOFIH-VEST DISTRIBUTION OF

f. acicularis

R. acicularis X R. nutkana
 0

ROSA ARKANSANA PORTERR

Rosa arkansaraPorter, ex Porter \& Coult. Syn Fl. Colo. 38, 1874
B. blanda Ait. var. arkansana (Porter) Best, Bull. Torrey Bot. Cl. 17: 145, 1890.
R. Virginiana Mil. ver. arkansana (Porter) MacM., Metosp. Minn. Valley 304, 1892
R. pratincola Greene, Pittonia $4:$ 13, 1899 non A. Br. 1888
R. suffulta Greene, Pittonia 4: 12, 1899
R. arkansana Porter var. suffulta (Greene) Cockll., Bull. Torrey Bot. Cl. 27: 88, 1900
R. alcea Greene, Bot. Leaf. 2: 63, 1910
R. heliophila Greene, Bot. Leaf. 2: 132, 1911
R. Lunellii Greene, Bot. Leaf. 2: 132, 1911
R. pratincola Greene var. angustiarum Cockll. in Daniels Univ. Miss. Stud. Sci. 2: 148, 1911
R. pratincola Greene var. setulosa Cockll. in Daniels Univ. Miss. Stud. Sci. 2: 148, 1911
R. Rydbergii Greene, Bot. Leaf. 2: 133, 1911
R. heliophila Greene var. foliosissima Lunell, Am. Midl. Nat. 2: 157, 1912
R. dulcissima Lumell, Am. Midl. Nat. 2: 287; 1912
R. arkansanoides Schneid., Handb, Laubh. 2; 971, 1912
R. angustiarum Cockll., Torreya 18; 180, 1918
R. subglauce Rydb., N. Am. Flora 22: 503, 1918

Stems 2-4 dm. tail, erect, bristly; leaflets 5-11, pubescent below, coursely and sharply serrate, obovate-obcordate; stipulea glandulartoothed and ciliate, often glandular-granuliferous on back; rachis and petiole glabrous or sparingly pilose, often glandular; inflorescence rarely solitary, commonly many-flowered; petals obcordate, $20-25$ man. long, sepals caudate-acuminate, $10-15 \mathrm{~mm}$. long, somewhat glandular; peduncles $10-30 \mathrm{~mm}$. long, glabrous; hypanthium subglobose, glabrous, without neck, in fruit 12-15 mim. Wide; $2 n=28$, Erlanson (1934).

Type: "Banks of the Arkansas near Canon City, Colorado."

General Distribution: Central Manitoba, and B. C., south to New Mexico,
western Texas, and Illinois.

Pacific North-mest Distribution: North-east B. C., centrel Alta., and Sask., south to Mont., and Wyo., map 6.

ALBERTA --
Selected Specimens Exemineḍ: nr. Alix, E. H. Moss 1987 (as R. suffulta Greene), Alix, E. H. Moss 3414 (as R. alcea Greene), Bulwark, E. H. Moss 1858 (as R. alcea Greene), Calgary, 21 July 1897, Macoun (as R. pratincola Greene), Calgary, C. L. Hitchcock \& J. S. Martin 7848 (as R. acicularis Lindl.), Cardston, H. P. Hansen \& J. Merkle 37, Crow's Nest Forest Reserve, 10-24 Aug 1915, M. O. Malte (as R. alcea Greene), Drumheller, E. H. Moss 7097, Dunvegan, E. H. Moss 7531, Edmonton, E. H. Moss 402\%, Fort Saskatchewan, G. H. Turner 15 (as R. alcea Greene), Fort Saskatchewan, G. H. Turner 1358 (as Re Woodsii Lindl.), Grande Prairie, E. H. Moss 8098 (as R. Woodaii Lindl), Pincher Creek, S. S. Survey 82, Sexsmith, E. H. Moss 8466° (as R. Woodsil Lindl), Spirit River, E. H. Moss 8634, Veteran, Nose Hill, E. H. Mose 1497a; BRITISH COLUMBIA -- Dawson Creek, A. J. Brietung 1808; MONTANA - Carbon Co.: nr. Luther, C. Le Hitchcock 16617 (as R. acicularis Lindl.); McCone Co.: Vida, F. H. Rose 426(as R. acicularis Lindl.).

No mass collections were made of this species. It has been found at one locality only in British Columbia at Dawson Creek, but probm ably is more widely distributed in the province east of the Rocky Mountains.

MAP 6

ROSA ARKANSANA PORTER

PACIFIC NORTH-WEST DISTRIBUTION
R. arkansana Porter

ROSA NUTKANA PRESS

Rosg nutkana Presl, Epim. Bot. 203, 1849
R. fraxinifolia Hook., Fl: Bor. An. 1: 199, 2832 non Borkh. 1790
R. aleutenais Crép., Bull. Soc. Bot. Belg. 14: 41, 1875
R. caryocarpa Dougl., in Crép. Bull. Soc. Bot. Belg. 15: 39, 1876, pro synon.
R. blanda Durand, Rep. Superint. U. S. Coast Surv. 332, 1876, pro synon.
R. Lyalliana Crép., Bull. Soc. Bot. Belg. 15: 39, 1876, pro synon. R. Woodsii Regele, Açta Hort. Petrep. 5: 299, 1877, non Lindl 1820 R. Brownil Rydb.s Bull. Torrey Bot. Cl. 44: 70, 1917 R. nutkana Presl var paliida Sukgd.; Herdenda 1: 23, 1927

Stems 0.5-3.0 m. tall, stout, erect, with scattered, or more connonly, infrastipular thorns, or unarmed; leaflets 5-7, rarely 9, *16-19 ($X=17.5$) man. wide, *28-35 ($X=31$) mo long, ovate-elliptic to cordate, doubly, or more rarely, singly serrate, usually glandetipped, pubescent, rarely puberulent or glabrous below, glandular, rarely eglandular below; rachia and petioles glandular, often pubescent and bristly; stipules largely adnate, free portion 4-7 ($X=5.2$) me, glandular; inflorescence one- to three-flowered; petals 20-23* (X=21.4) mm. wide, 16-35 ($X=23.1$ m. long; sepals $3.5-4.0^{*}(X=3.7) \mathrm{mm}$. wide at base, 15-30 ($X=22$) mm. long, caudate-acuminate, often with foliaceous appendage at apex, pubescent, glandular, rarely eglandular; stamens 100-120* (X=109) per flower, pollen grains about 36 u. in diameter; peduncles $20 \sim 30 \mathrm{~mm}$. long, rarely glandular or pubescent; hypanthium typically glabrous, globose, in fruit 15-20 men wide, without neck, achenes 10-40; 2n = 42 (plate XIV).

Type: Hin Nootka-Sound, Haenke"

Habitat: Found in most cleared areas, rarer at the edge of woods.

General Distribution: Alaska to California

Pacific North-west Distribution: Coastal Alaska, south in B. C., Wash, and $\mathrm{Orem}_{\mathrm{m}} \mathrm{map} 7$.

Individuals of R. nutkena heve been studied throughout the Pacific North-west using data from both mass collections and herbarium specimens. They were foumd to be sufficiently alike in stature, ermature, and anthesis to constitute a single species. Throughout parts of the Cool Summer Mediterranean region, however, the species is modifled. Its densely glandular-muriculate leaflets, stipules, and petioles, occur sporadicelly, chiefly whenever the plant is growing under exposed conditions. Modifications in indumentum alone, only justifies its recognition in the rank of a form.

In view of the great morphological aimilarity between Re nutkana and R. Spaldingii as shown previously and their illustrated interfertility, Erlanson (1934), it would appear that Erlanson was Justified in combining them in a single species. On the other hand, there do seem to be different populations in the more arid regions east of the Cascade Mountains. Bramination of the herbariun specimens illustrate a decrease in indumentum the more easterly they occur. Other criteria modified include: type of leaflet serration, commonly singly serrate; inflorescence, predominantly solitary flowered; sepal width, large at base. Until a mass collection anelysis of these populations can be made, the limits and composition of the populations cannot be accurately described. They are, however, closely related to F_{p} nutkena and are best considered as a subspecies of it.

In ̧aividuals of R. nutkana, divided into two subspecies and one form, are separated as follows:
a. Leaflets usually eglandular, singly serrate, rarely double serrate; sepals usually eglandular; inflorescence oner, rarely, three-flowered.
ssp. Speldingii
aa. Leaflets usually glandular, doubly serrate, rarely singly serrate, sepals usuelly glandular, inflorescence one or threefl owered.
b. Leaflets usually glandular, often more or less glandular, or rarely eglendular, doubly, occasionally singly, serrate; sepals glandular, occasionally eglandular.
ssp. nutkana
bb. Leaflets glandular, doubly serrate, sepals glandular.
muriculata

Rosa nutkana Presl ssp. nutkana

Selected Specimens Examined: BRITISH COKOMBIA - AIbemi D.: Stamp Falls, T. M. C. Taylor \& W. H. Lewis 530; Kaslo D.: Mirror Lake, 10 June 1938, J. W. Bastham; Lillooet D.: Rexmount, T. Me C. Taylor \& 略. He Lew1s; Nanaimo D.: Elk Falls, T. M. C. Taylor \& M. H. Lewis 539, Nanaimo Lake, nre second, V. Krajina, R. H. SWilsbury, \&c A. Szczawinski 4471, Qualicum, T. M. C. Taylor \& W. H. Lewis 533 (in part), Roberts Laire, D. Me C. Taylor \& W. H. Lewis; Nelson D.: Nelson, W. H. Lewis 1308; New Hestminster D.: Hope, W. H. Lewis 1319, Sumas Mt. T. M. C. Taylor
\& W. H. Lewis 51; Osooyos D.: Armstrong, E. Wilson 552 (as R. acicularis); Revelstoke D.: Revel stoke, W. H. Lewis 1289; Vancouver D.: Namu, 24 June 1913, C. F. Nerrcombe; Victoria D.: Honeymoon Bay, T. M. C. Taylor \& W. H. Lewia 518, Mill Bay, T. M. C. Paylor \& W. H. Lewis 519 (in part); OREGON -- Jackson Co.: : Rogue River, D. C. Ingram 1210; Linn Co.: Corrallis, W. E. Lawrence 1582; WASHINGTON Clallam Co.: Clallam Bay, G. N. Jones 5843, Neah Bay, G. B. \& R. P. Rossbach 497; Jefferson Co.: Hoh River, I. C. Otis 1287, $O^{\prime} N e i l$ Creek Shelter, G. Bo \& R. P. Rossbach 438; King Co.: Seattle, E. S. Meany 1898; Kitsap Co.: Charleston, G. B. Rigg, 14 Dec. 1907; Mason Co.: Hoodsport, Ge.N. Jones 8698, Skokomish River, L. F. Henderson 1893; Okanogan Co.: Big Coyote Creek, C. B. Piker 1914; Pierce Co.: Tacoma, G. N. Jones 4653; Skagit Co.: Anacortes, C. L. Hitchcock 3489, Deception Pass Park, Fidalgo Island, H. W. Smith 1699; Snohomish Co.: Mukilteo, G. N. Jones 4851, Snohomish, Lyman Benson 1465.

The subspecies nutkana is found throughout the Marine West Coast climatic region. It varies considerably from individual to individual in indumentum characteristics, but they are sufficiently alike in other respects, e. ge stature, armature, and anthesis, to constitute a single species.

The Skeena, Fraser, and Columbia River Valleya provide effective migration routes through the Coast and Cascade Mountains, enabling the subspecies to migrate eastward. That this migration has taken place is shown by the presence of individuals of the subspecies found particularly in the enterior plateau of B. C. Their frequency decreases slowiy to the
eastward, where they are replaced by populations characteristic of ssp. Spaldingii.

Rosa nutkana Presl P. muriculsta (Greene) comb. nov.
R. muriculata Greene, Bot. Leaf. 2: 263, 1912
R. nutkana Presl var. hispida Henry, Fl. S. B. C. 175, 1915, non Fern. 1894
R. nutkana Presl var. muriculata (Greene) Jones, Hiadrona 3: 128, 1935
R. nutkana Presl var. setosa Jones, Madrona 3: 129, 1935

> Leaflets *l6-19 mm. wide, *28-35 m. long, doubly serrate, gland-tipped, glandular; rachis and petiole bristly; sepals 3.5-5.0 nm. wide at base, glandular; stamens 100-145* per flower; peduncles often glandular:

Type: "near Woodland, Cowlitz County, Washington, F. V. Coville, 15 July 1898."

Habitat: The form is particularly abundant in exposed areas near the sea. General Distifibution: Parts of coastal trench of Wash., southern B. C. to central ore.

Selec̣ted Specimens Examined: BRIIISH COUNBIA -- Nanaimo Di: Extension to Petroglyph Park, T. M. C. Paylor \& W. H. Lewis 545 (in : part), Courtenay, T. M. C. Taylor \& W. H. Lewis 548 (in part), Quailcum, T. M. C. Taylor \& W. H. Lewis 533 (in part); Victoria D.: Mill Bay; T. M. C. Taylor \& M. H. Lewis 519; WASHINGION -- Ialand Co.: Oak Harbor, 22 Sept 1935, C. H. Harrison; Whidbey. Island, G. N. Jones 6142 (as R. nutkana

Presl var. muriculata (Greene) Jones); San Juan Co.: Friday Harbor,
B. D. Blanchard 99 (as R. pisocarpa Gray), Friday Herbor, A. S. Pope, 27 July 1904 (as R. Durandii Crép., sensu Erl.)...

Rosa nutkana Presl ssp. Spaldingil (Crép.) comb. nov.

Re macrocarpa Raf., Med. Fl. 2: 258, 1830 non Merat, 1812
R. cinnamomea Borrer; Hook., Fl. Bor. Am. 1: 200, 1833, non L. 1753
R. megacarpa Nutt., T. \& G. FI. N. Am. ㄱ: 460, 1840, pro synon.
R. Spaldingii Crép., Bull. Soc. Bot. Belg. 15: 42, 1876
R. nutkana Presl var. hispida Fern., Bot. Gaz. 19: 335, 1894
R. MacDougali Holz., Bot. Gaz. 2l: 36, 1896
R. nutkana Preal var. MacDougali (Holzo) Piper, Contr. U. S. Nat.

Herb. 11: 335, 1906
R. columbiana Ryab., N. Am. Fl. 22: 514, 1918
R. nutkana Presl var. elta Suksde; Werdende $1: 23,1927$
R. megalantha Jones, Proc. Biol. Soc. Wash. 41: 194, 1928
R. Spaldingii Crép. var. alta (Suksd.) Jones, Madrona 3: 132, 1935
R. Spaldingii Crép. var. chelanensis Jones, Mmarona 3: 133, 1935
R. Spaldingii Crép. var. hispida (Fern.) Jonea, Madrona 3: 130, 1935
R. anatonensis St. John, E. S. E. Wash. 206, 1937
R. Jonesil St. John, FI. S. E. Wash 207, 1937
R. caeruleomontana St. John, F1. S. B. Wash. 207, 1937
R. Spaldingii Crép. var. Parkeri St. John, Fl. S. E. Wash. 210, 1937

Type: "Clear Water, Oregon (Idaho), Rev. Mir. Spalding."

General Distribution: B. C., to Wyo., Utah, and Ore.
Pacific North-west Distribution: East of the Cascade Mountain Range, southern B. C., to Ore., east to Mont., and Wyo., map 7.

Habitat: At the odge of woods and along rapdsides.

Selected Specimens Examined: BRITISH COLUMBIA - Kamloops D.: Kamloops, June, 1937, E. W. Tisdale (as R. nutkana); Nelson De: New Denver, T. T. McCabe 6602 (as R. Spaldingil Crep.), Trail, 19 June 1902, J. M. Macoun,
(as R. Spaldingil Crep.); IDAHO - Benewah Co.: Moose Creek Mts., H. St. John 9076 (as R. Spaldingii Crep.); Bonneville Co.: Pine Creek, R. J. Davis 231 (as R. Speldingif Crep.); Clearwater Co.: nr. Weippe, 28 July 1929, N. M. Cook (as R. MacDougali Holz.); Idaho Co.: Lowell, L. Constance \& R. C. Rollins 1615 (as R. Spaldingii Crep. var. hispida (Fern.) Jones), Nez Perce National Forest, Le Contance \& R. C. Rollins 1676 (as R. Spaldingii Crep.), nr. Powell, C. L. Hitchcock \& C. V. Mahlick 14694 (as R. acicularis 9 Lindl.), Shëep Creek Canyon, Fred Meyer 1609 (as R. nutkana Presl P), Snake River, Verne Comstock 118 (as R." Spaldingii Crep.); Latah Co.: Cedar Mountain; G. N. Jones 661 (as Re Jonesii 'St. John), Moscow; G. N. Jones 664,' Moscow Mountain, 'H. 'St. John \& G. N. Jones 9621 (as R. Jonesil st. John), Viola Hills, Harold St. John 5874 (as R. MacDougeli Holz.) ; Nez Perce Co.: nr. Culdesac, F. A. Werren, 1530 (as R. Spaldingii Crep. var. hispida (Fern.) Jones), Lake Waha, A. A. \& E. G. Heller 3323 (as R. nutkena Presl); Shoshone Co.: St. Maries River, nr. Clarkia, C. B. Wilson 402 (as R. Speldingii Grep.); MONPANA - Lake CO.: St. Mary's Lake, G. N. Jones 5605 (as Re acicularis Lindl.): Lincoln Co.: 60 mi. w. Kalispell, C. L。Hitchcock 17687 (es R. Macounii Greene); Missoula Co.: Missoula, F. H. Rose 193 (as R. acicularis Lindi.); OREGON -- Baker CO.: Fish Lake Road, Whitmen Nat'l. For., 5 June 1938, T. Gustafson; Jefferson Co.: Lake Suttle, C. L. Eitchcock \& J. S. Martin 4895 (as R. Spaldingii Crep.); Umatilla Co.: Pendleton and La Grande, J. W. Thompson 4741 (as R: Spaldingii Crep.); Wallowa co.: Lostine, 14 June 1938, H. M. Gilkey; WASEINGION -- Asotin Co.: Anatone, H. St. John \& Ro Palmer 9555 (as R. anatonensis St. John), Grand Ronde River, H. St. John 9756 (as R. Spaldingii Crep.); Chelan Co.:

Blewatt Pass, Go N. Jones 4819 (as R. Spaldingii Crep.), Chiwaukum, G. N. Jones 4787 (as Re. Spaldingil Crep.); Rntiat Valley, G. F. Morrill 275, (as R. Spaldingii Crep. var. alta (Suksd.) Jones); Columbia Co.: Blue Mountains, L; Constance \& H. F. Olements 1773 (as R. Spaldingii Crep.), Tellow Flat, Wenaha Forest Reserve, H. T. Darlington 220 (as R. nutikana Presl); Douglas Co.: Badger Mt., J. W. Thompson 14656 (as R. ultramontana (Fats.) Heller); Garfield Co.: Blue Mountains, L. Constance, J. Fo G. Clarke, W. Staats, \& G. Van Fleet 1246 (as R. Spaldingii Crep.); Kittitas Co.: Cle Elum, G. No Jones 4824 (as R. Spaldingii Crep.), Fllensburg, G. N. Jones 1399; Klickitat Co.: Carp Lake, G. No Jones 1417; Okenogan Co.: Mathow River, H. St. John, W. D. Courtney, C. S. Parker 5526 (as R. Spaldingii Crep.); Pierce Co.: Mount Rainier, Pe A. Warren 1610 (as R. Pṛinglei Rydb.), Mount Rainier, F. A. Warren 1549 (as Re nutkana Presl); Spokane Co.s Spokane, G. No Jones 614 (as R. megalanthe Jones); Stevens Co.s: C̣edonia, 11 Aug 1946, M. E. Dennis; Walla Walla Co.: Blụe Mountains, H. St. John 8306; Whitman Co.: Palouse, G. N. Jones 650, Pullman, C. V. Piper 1540 (as R. nutikana Presl var. hispida Pern.), Pullman, C. Vo Piper 1539 (as R. nutikana Presl).

No mass collections were made of the many forms occurring east of the Coast and particularly the Cascade Mountain Renges. Many have been given specific rank, especially by St. John (1937), but an examination of his types and herbarium apecimens has shown them to be markedly similer to ssp. Spaldingii. Until discontinuities between the forms can be established, they are best considered as synonyms of the subspecies. one of the most striking is an hispid hypanthium form, var. hispida (Fern.) Jones. It is clearly related to ssp. Spaldingii and has been included as a
synonym until further study determines its status.

ROSA ACICULARIS LINDL. X ROSA NUYLKANA PRESL

Stems erect, 10-3.0 m. tall, with bristles and prickles, infrastipular or scattered, dilated, thorns, or often unarmed; leaflets 5-9, 20-23 ($X=21.4$) mm. wide, $35-40(X=37.4)$ mm. iong, pubescent below, rarely glabrous, glandular below, rarely eglandular, doubly, rarely singly serrate, often gland-tipped; rachis and petiole often glandular, pubescent, and rpickiy; stipules largely adnate, free portion 4-7 (X=5.2) nm., glandular; inflorescence one-; rarsly, three-flowered; petals 18$20(X=19 \pi 7)$ me wide, $15-32(X=22.7)$ mime long; sepals 3.2-3.4 ($X=3.22$) rim. wide at base, 15-30 ($X=22$) m, long, pubescent, glandular or rarely eglandular; stamens 70-95* $(X=89)$ per fiower, pollen grains about 35 u. in diameter; hypanthium globose or obovate, with or without neck, achenes 10-20.

Habitat: In similar localities as its parents.

General Distribution: Alaska to 畂., to be expected wherever the two parental species occur together.

Pacific North-west Distribution: Central B. C., s.e. to Mont., map 5. Selected Specimens Examined: Fernie D.: Fernie, W. H. Lewis 1297, Rock Creek, nr. Gailoway, J. Bron 18522; Fort Fraser D.: Burns Lake, W. H. Lewis 1269, Stuart Lake, Aug. 1939, E. A. Cooke (as R. Moodsii Lindl.); Fort George D.: Eaglet Lake, T. M. C. Taylor \& W. H. Lewis 233,

Cluculz Lake, T. M. C. Taylor \& W. H. Lewis 235 (in part), Prince George, T. M. C. Taylor \& W. H. Lewis 234 (in part); Lillooet D.: Lac la Hache, T. M. C. Teylor \& W. H. Lewis 223 (in part); Lake Bootahnie, Marble Mts., J. W. \& E. M. Thompson 151; Osooyos De: Armatrong, 27 July 1913, John Davidson; Guesnel D.: Cinema, T. M. C. Taylor \&c H. H. Lewis 230, (in
 C. Taylor \& W. H. Lewis 231; Revelstoke Do: Kinbasket Lake, 18 July 1953, V. Krajina; ' Smithers D.: Beaument, T. M. C. Taylor \& W. H. Lewis 506 (in part), Hazelton, T. M. C. Taylor \& W. H. Lewis 507 (in part); MONTANA -- Flathead Co.: Columbia Falls, H. T. Rogers \& J_{0} M. Rogars 961; Missoula Co.: Rattlesmake, Frank Rose 293; WASHTNGION -- Stevens Co: nr. Cedonia, 6 Aug 1946, M. E. Dennis, nr. Northport, C. W. Sharsmith 4040 (as R. Spaldingii Crép.).

The intermediate condition of several morphological characters is taken to indicate a hybrid between R. acicularis and R. nutkana. The hybrid populations appear to be intermediate for sepal length and armature type. In most of these populations studied, individuals are present which can be described as typically R. ecicularis and R. nutkana, being cited above as populations with samples 'in part' hybrid. Since both species occur in central B. C., have anthesis in June, have the same ecological requirements, and have demontrated interfertility, Erlanson (1934), there is apparently no factor present in the field to prevent such hybridization.

MAP 7

ROSA NUTKANA PRESL

PACIFIC NORTE-WEST DISTRIBUTION

R. nutkana ssp. nutkana

R. nutkana ssp. Spaldingii 0

Four exotic species, Rosa canina L., Re multiflora Thunb., R. Fubiginosa L.: and $R_{\text {. Fugosa Thunb., are occasionally found throughout }}$ the Pacific North-west. As garden escapes, they readily naturalize in the mild climatic regions along the coast and more rarely in the interior areas. Since there is no mass collection data and only a limited nuber of herbarium specimens representing the species, their accurrate delimitation is impossible. They have been omitted, consequently, from the main part of this work, but rare briefly described in Appendix III.

SECTION V: SURMARY

The morphological and cytological atudy of the Rosa species native to the Pacific Northmest constituted this investigation. This made possible a revised classification of the species.

A new method of approach included the randan sampling of inde ividuals, mass collections, representing populations of each species. Data collected from these individuals, after statistical analysis, served as the basis for all results. From these data, it was possible to differentiate populations fram one another. When this discontinuity was great, the distinct populations were nemed according to their closest taxonomic affiliation. Utilization of the information firom transplants, progeny testing, cytology, and herbarium specimens completed the definition of each species populations.

From the results of this work, four species, four subspecies, one hyrid, and one form have been described. Although population analysis has ex-
posed many characteristics which may be used together with reasonable accurracy to differentiate these taxa, their high heterogenelty often makes determinations difficult. It would seem impracticle to recognize more forms until discontinuous criteria are found.

The application of statistics to the differentiation of species populations has proved to be a valuable asset in the study of taxonomy. The suggestion is made that the discipline be applied to other genera where a ereater understanding of species variation is required.

VI: APPENDIX I

The localities of the mass collections according to Land Recording Districts are as follows:

```
"DIPLOID" --
    102 Yele, New Testminster D.
    200a Anderson River, New Westmingter D.
    523 Duncan, Victoria Do:
    549 Central Saenich, Victoria D.
    222 :' Chasm, Lillooet D.
    228 Macalister, Quesnel D.
    204 Marble Canyon, Lillooet D.
    205 Marble Canyon, Lillooet D.
    241 Fraser Lake, Fort. Fraser D.
    502 Telkwa, Smithers D.
    509 Hazelton, Smithers D.
```

1202 Hey River, N. W. T.
202 Lytton, Kamloops D.
206 nr. Lillooet, Ifllooet D.
211 Lillooet, Lillooet D.

"POLYPLOID" --

51 Sumas Mit., New Westminster D.
101. Yale, New Westminster D.

104 Alexandra Bridge, New. Westminster D.
104a Alexandra Bridge, New Westminster" D.
200 Anderson River, New Westminster D.
515. Terrace, Prince Rupert D.

518 Honeymoon Bay, Victoria D.
530 Stemp Fells, Alberni D.
537 Roberts Lake, Nenaimo D.
539 Elk Falls, Nanaimo D.
519 Mill Bay, Victoria D.
533 Qualicum, Nanaimo D.
545 Extension, Nanaimo D.
548 Courtenay, Nanaimo D.
223 Lac la Hache, Lillooet D.
227 Macalister, Quesnel D.
230 Cinema, Quesnel D.
232 Aleza Lake, Fort George D.
234 Prince George, Fort George D.
235 Cluculz Lake, Fort George D.
504. Lake Kathiyn, Smithers D.

506 Beaument, Smithers D.
507 Hazelton, Smithers D.
50 Seeley Lake, Smithers D.
511 Seeley Lake, Sinithers D.
212 Lillooet, Lillooet D.
203 Marble Canyon, Lillooet D.
240 Fort Fraser, Fort Fraser D.
243 Perow, smithers D.
1201 Hay River, N. W. T.
214 Tyaughton Lake, Lillooet D.
"GMMNOCARPOUS" -
103 Alexandra Bridge, New Westminster D。
529 Stemp Falls, Alberni D.
536 Roberts Lake, Nanaimo D.
538 Elk Falls, Nanaimo D.
520 Mill Bay, Victoria D.
528 Wellington, Nanaimo D.
544 Nanaimo, Nanaimo D.
734 Vancouver, Vancouver D.

APPENDIX II

Pages 86 to 98

Clim : Climatic region
Coll : Collection number
n/no. : Frequency
Z : Arithmetic mean
s : Standard deviation
$s_{\bar{x}} \quad: \quad$ Standard error of the mean
C : Coefficient of variation
r : correlation coeficient
$\mathrm{Pa} / \mathrm{pa}:$ Parameter

- : Absent
* : Absent/Present (more or less)
* : Present

	C11m	Coll	no.	PL\&T: 11				\pm	INFLORESCENCE		
				NMMBER OF SERRATIONS							
				x	8	$\boldsymbol{s}_{\tilde{\boldsymbol{x}}}$	C		$\text { B } \quad 8 \bar{x}$		C
	Crb	102	14	14.7	1.33	. 38	9.0	1.86	1.07	. 29	57.2
		200a	13	14.7	1.94	. 54	13.2	5.60	2.43	. 68	43.4
		pa		14.7	1.64	.3?	11.2	3.87	3.03	. 58	82.5
	D								3.52	. 64	60.4
I		549	18	13.6	1.97	.47	14.5	3.87	1.84	. 48	52.8
P		pa		13.8	3.14	. 45°	22.7	5.02	2.88	. 42	57.3 .
1											
0		228	30	13.6	1.77	. 32	13.0	4.78	2.38	. 43	50.0
	Dro	204	30	14.3	2.54	1.18	17.8	3.30	1.63	. 30	49.4
I	.	205	30	14.5 .	3.04	. 55	20.9	3.03	2.25	. 41	74.2
		241	15	17.6	2.03	. 53	11.5	6.00	2.48	. 64	41.3
D		502	21	16.6	2.88	. 59	16.1	2.30	1.00	. 33	43.5
		1202	14	12.8	2.52	.42	11.9	1.92	1.07	. 29	55.7
	Daq	202	30	12.6	1.92	. 35	15.2	8.56	3.89	. 71	59.3
	Dsk	206	30	13.6	2.49	. 45	18.3	4.10	2.80	. 47	63.4
		211	30	13.7	. 1.54	. 28	11.2	. 4.51	3.86	. 67	81.1
		pa		14.0	2.67	. 17	19.0	3.95	3.17	. 21	80.2
	crb	51	30	17.5	3.84	. 70	21.9	2.07	. 92	. 17	44.4
		101	30	16.1	2.07	.38	12.9	1.40	. 64	. 12	45.7
		104	26	17.4	3.50	. 88	20.1	1.19	. 37	. 09	31.1
		104 a	28	17.9	2.83	. 66	14.7	2.13	. 88	. 15	41.7
		200	18	15.5	2.37	. 59	25.3	1.80	. 82	. 21	50.0
		518	24	15.8	3.82	. 80	25.1	2.12	. 91	. 15	42.9
		530	50	14.6	3.19	.46	21.8	1.48	. 68	. 12	45.9
		537	30	15.8	3.76	. 89.	23.8	1.38	. 81	. 15	60.9
		539	30	16.1	3.38	. 61	20.9	1.20	. 48	. 09	40.0
		515	30	18.4	2.93	. 54	15.8	1.43	. 82	.15	57.3
		pe		16.3	3.49	. 21	21.4	2.55	. 82	. 05	52.9
	csb	518	30	17.4	3.01	. 55	17.3	1.90	1.16	. 21	50.0
		533.	30	17.7	3.12	. 57	17.6	1.70	. 88	.16	51.8
P		545	30	16.2	2.55	. 47	15.7	1.43	. 62	.11	43.4
		548	30	17.4	2.56	. 47	14.7	1.80	. 99	. 18	55.0
0		ps		17.2	2.85	. 36	18.6	1.71	. 49	. 05	28.7
L											
1	Dfb	223	30	15.3	2.14	.38	13.9	1.43	. 62	.11	43.4
		227	50	15.9	2.94	. 42	18.5	2.20	1.35	.19	61.3
P		230	25	18.6	5.69	1.14	30.8	1.72	. 35	. 07	20.3
		232	30	16.8	4.37	. 80	26.0	1.43	.39	. 07	27.2
1		234	30	25.6	1.25	.21	7.4	1.53	. 88	. 16	57.2
		235	30	19.2	3.84	. 70	20.0	1.80	1.21	. 22	67.2
0		504	30	16.6	3.44	. 63	20.7	1.63	. 81	. 15	. 49.6
		508	30	17.7	3.44	. 63	19.4	1.60	. 82	. 11	38.7
I		507	30	17.5	3.29	. 80	18.8	1.58	. 08	. 01	5.1
		510	30	18.7	4.59	. 84	24.5	1.86	. 82	. 15	44.0
D		511	30	20.0	1.24	. 23	6.2	1.73	. 74	. 13	42.8
	Bak	212	30	18.8	2.88	. 52	17.0	1.17	.37	. 06	31.6
		pe		17.3	3.77	.19	21.8	1.87	. 83	. 04	49.7
	Dro	203	30	18.6	3.20	. 58	17.2	1.07	.28	. 05	24.2
		240	30	17.0	4.28	. 78	25.2	1.46	.15	. 03	10.3
		243	30	18.6	2.78	. 50	14.8	1.13	. 35	. 08	31.2
		248	30	14.7	2.95	. 54	20.1	1.38	. 62	. 11	45.6
		1201	25	16.5	3.04	. 81	18.4	1.12	. 35	. 07	31.2
	Dsb	214	30	17.0	4.16	. 76	9.0	1.27	. 28	. 05	22.0
		pa		17.1	3.68	. 28	21.5	1.55	. 51	. 04	32.9

	Cl1m	Coll		HLATE III				\checkmark.			
				PETIOLULE LENGTH				STIPUEE EMGNH			
				x	s	${ }^{8} \bar{x}$	c	x	8	$8_{\bar{x}}$	c
	crb	102	14	9.2	2.07	. 55	22.7	3.8	2.04	. 28	27.4
		200a	13	5.8	2.20	. 3.3	22.2	4.8	.71	. 20	14.7
		pa		7.6	2.46	. 47	32.4	4.3	1.04	. 20	24.2
	csb	523	30	6.9	2.13	. 39	30.8	3.2	1.13	. 21	35.3
		549	18	6.9	1.55	. 37	22.4	3.3	. 59	. 14	17.0
		pe		6.9	1.80	. 27	27.5	3.3	1.64	. 24	50.1
I	Drb	222	30	8.2	1.52	. 28	18.5	3.7	1.16	2.12	31.8
		228	30	9.3	2.43	. 45	26.1	4.2	. 81	. 15	18.1
P	Dro	204	30	7.1	1.27	. 23	17.8	5.4	.37	. 07	6.8
		205	30	6.6	1.24	.23	18.7	4.2	. 96	.17	22.9
I		241	15	7.1	1.17	.30	16.5	3.6	0.0	0.0	0.0
		502	21	6.7	1.24	. 27	18.5	4.8	1.86	. 41	38.8
0		1202	14	7.6	1.82	. 49	23.8	3.6	1.94	. 52	54.3
	Daq	202	30	4.8	3.41	. 82	71.0	4.1	1.34	. 24	32.7
I	Bak	200	30	8.1	2.00	$.37{ }^{\circ}$	24.8	3.8	. 31	. 56	8.0
		211	30	7.3	1.80	.35	26.0	4.8	.24	. 04	5.0
$\stackrel{\text { d }}{\text { \% }}$		pa		7.6	2.08	.13	27.3	4.3	1.03	. 06	24.1
	,										
	Crb	51	30	9.5	3.22	. 59.	40.4	5.3	. 55	. 10	10.4
		101	30	12.6	2.75	. 50	21.8	5.3	. 89	. 18	16.8
		104	16	13.8	4.35	1.09	31.5	5.1	. 55	. 14	10.8
		104a	16	10.1	3.51	. 88	34.8	6.1	1.36	. 38	22.2
		200	16	9.4	2.03	. 51	21.6	5.9	1.61	. 40	27.3
		515	30	10.5	1.11	. 20	10.8	5.3	2.12	. 39	40.0
		518	24	9.1	4.01	. 82	44.0	5.6	2.15	. 44	38.3
		537	80.	7.1	2.08	. 38	29.3	4.9	. 98	. 18	20.0
		530	50	9.9	3.03	. 43	30.6	4.8	. 83	.12	16.9
		538	30	10.2	2.68	. 49	26.3	4.8	. 67	. 12	23.7
		pa		10.1	3.48	. 21	34.5	5.2	1.17	. 07	22.3
	Csb	519	30	11.1	3.39	. 62	30.5	4.6	1.20	. 22	26.1
	cob	533	30	10.0	4.22	. 77	42.2	6.1	1.29	.24	21.1
P		545	30	8.0	3.59	. 66	44.9	5.3	. 74	. 14	13.9
		548	30	8.8	3.58	. 65	40.7	5.0	1.01	. 18	20.2
0		pa	,	9.5	3.85	. 35	40.5	5.3	1.97	. 18	37.0
1.											
Y	Dfb	223	30	10.8	3.39	. 82	31.4	4.9	2.34	. 43	47.8 27.8
		227	50	12.5	4.94	. 70	39.5	5.2	1.45 1.80	. 218	27.9 36.7
P		230	25	10.8 8.5	3.19 3.10	. 64	29.8 36.5	4.9 4.5	1.80 1.47	.38	38.7 82.7
		232 234	30 30	8.5 8.3	3.10 2.68	. 57	36.5 28.8	4.5	1.47 .93	. 17	32.7 21.1
L		235	30	8.6	2.17	. 40	25.2	5.2	.87	. 16	16.7
0		504	30	7.9	2.44	.45	30.9	5.2	. 83	.15	15.9
		506	30	10.2	4.46	. 81	43.7	5.8	2.03	. 38	35.2
1		507	30	8.4	2.51	. 46	10.9	5.0	1.67	.31	53.2
		510	30	13.6	3.44	. 63	25.3	5.9	1.20	. 22	20.3
D		511	30	11.1	2.08	. 38	18.8	5.3	. 93	1.69	17.6
	Bek	212	30	14.0	2.89	. 53	20.8	5.7	1.41	. 26	24.7
		pa	:	10.7	4.24	. 22	39.6	5.2	1.39	. 07	26.7
	Dfo	203	30	10.5	3.82	. 70	36.4	5.3	1.28	. 23	24.1
		240	30	11.5	4.57	. 83	39.7	5.5	1.20	. 22	21.8
		243	30	8.8	1.41	. 26	18.0	5.3	1.51	. 28	28.7
		248	30	7.9	3.37	. 62	42.7	4.5	1.98	.38	44.0
		1201	25	10.9	2.83	. 57	25.9	5.2	1.29 1.45	. 28	24.8
	Dab	214	30	11.6	3.25	. 59	28.0	5.5	1.45	. 26	26.4
-		pa		10.2	3.50	. 26	34.3	5.2	1.50	. 11	28.7

cfb	51	6	113	21.5	6.50	16.7
	103	4	97	7.2	3.60	7.5
	104a	4	115	5.8	2．90	5.1
	200	2	108	3.5	2.50	3.2
	515	7	115	13.7	5.20	11.9
	518	5	116	18.1	8.10	15.6
	530	11	122	22.5	7.10	18.4
	537	6	89	12.2	5.00	13.7
	539	7	93	22.2	8.40	23.8
	pa		109	20.6	2.86	18.9
Y Csb	519	7	129	26.4	9．90	20.5
Dfb	223	7	81	13.7	5.10	16.9
	227	11	91	15.2	4.60	16.7
	230	5	88	14.6	5.80	16.5
	234	7	82	20.2	7.60	24.7
	235	5	76	28.2	12.60	37． 2
	504	5	61	14.8	6.60	24．3
	506	7	100	12.1	4.60	12.1
	507	7	92	21.3	8.00	23.1
	510	6	113	11.6	4．70	10.3
	511	7	103	7.0	2.60	12.9
	pa		89	20.3	2.37	22.9
Dfo	203	6	96	18.3	7.50	19.1
	240	6	78	20.5	7.70	26.3
	248	7	66	19.0	7.20	28.5
	1201	6	79	35．2	7.10	44.5
B8x	212	6	77	22.3	9.10	29.1
	pa		咸79	20.3	3.56	18.9

PLATE XII

PEDUNCIE GLANDS PEOUNCLE PUBESCENCE SEFAL PUBESCENCE
01100011

100	0	0	100	0	0	0	0	100
100	0	0	100	0	0	0	0	100
100	0	0	100	0	0	0	0	100
95	0	5	100	0	0	0	0	100
76	10	14	38	3	59	0	0	100
23	37	40	30	20	50	0	0	100
100	0	0	20	27	63	0	7	83
87	\bigcirc	3	40	30	30	0	0	100
100	2	0	0	20	80	0	0	100
100	0	0	12	0	89	0	0	100
100	0	0	50	7	43	0	0	100
100	0	0	40	23	37	0	0	100
67	2.3	13	74	13	13	0	0	100
100	0	0	24	21	55	0	0	100

[^6]Cs

103	30
529	30
536	30
538	30
520	13
528	30
544	30
734	30

3	0	97
0	0	100
27	16	57
0	3	97
0	0	190
0	0	100
3	3	94
0	0	100

100	0	0
100	0	0
100	0	0
100	0	0
100	0	0
100	0	0
100	0	0
100	0	0

APPFANDIX III 15

Rosa canina L., Sp. PI. 491, 1753
R. dolosa Godet, F. Jura Supp. 72, 1869, non Waitz 1811
R. flemuosa Raf., Prec. Dec. 35, 1814
R. Rafinesquiana Tratt., Ros. Monog. 2: 234, 1823

Stema branched, upright, $2-3 \mathrm{~m}$. high, armed with stout, curved, flattened thorns; leaflets $3-7,10-40 \mathrm{~mm}$. long, oval or ovate, glabrous, rarely glandular below, sharply serrate, occasionally doubly serrate; rach1s and petiole often glandular-hispid; stipules adnate, cormoniy glabroys, glandular; inflorescence l-3 flowered; petals about 20 mm . long, obcordate, pink; sepals 15-20 mm. long, pubescent; hypanthium ellipsoid, glabrous, in fruit $10-15 \mathrm{~mm}$. wide, $15-20 \mathrm{~mm}$. long.

Type: Furope

General Distribution: Native to Europe; naturalized in parts of North America.

Pacific North-west Distribution: Washingtion and Oregon.

Specimens Examined: ORRGON - Umatilla Co.: Pendleton, W. H. Lewis 1523; WASHINGION -- Clallam Co.: Sol Duc Hot Springs, G. N. Jones 8332; Mason Co.: nr. Kennedy Creek, G. íN. Jones 3488.
15. Most of the descriptions of species taken from Rydberg (1918)

Rosa multiflore Thunb., Fl. Jap. 2l4, 1784
R. polyentha Sieb. Zucc., Abh. Akad. Munch $\frac{4}{2}^{2}: 128$, 1845

Stems l-2 m. high, climbing, asmed with mostly paired infrastipular prickles; leaflets 5-9, obovate or elliptic, obtuse or acute, sharply serrate, pubescent, $2-3.5 \mathrm{~cm}$. long; stipules adnate, glandularciliate; inflorescence pyramidel, often many flowered; petals mostly white, l0-15 man. long; sepals ovate-lanceolate, l2ol5 mm. long, pubescent; hypanthium globose to ellipsoid, pubescent, 5-6 man in diameter.

Type: near Nagasaki, Japan

General Distribution: Native of Japan and China; occasionally escaped from cultivation in North America.

Pacific Northowest Distribution: B. C. to Ore.

Specimens Fxamined: BRITISH COLURBIA - Sumas Mountain, T. M. C. Taylor \& W. H. Lewis 58.

Rosa rubiginosa Le: Mant 564, 1771
R. suaveolens Pursh, Fl. Am. Sept. 346, 1814
R. Walpoleana Greene, Bot. Leaf. 2: 264, 1912

Stems branched, often 2 m . high, armed with strong, curved, thorns or rarely somewhat bristly; leaflets 5-7, 10-30 mm. long, suborbicular or broady oval, doubly serrate, glanduloso-serratus, pubescent on both sides, glendular-pruinose below; rachis and petiole pubescent, glandular-hispid, bristly; stipules adnate, glandular-puberulent; inflor
escence l-4 flowered, subtended by foliaceous bracts; petals rose, 15 20 mm . long; sepals $15-18 \mathrm{~mm}$. long, glandular-hispid; hypanthium broadly ellipsoid or pyriform, ebruptly contracted above, often with few bristles, in fruit $10-12 \mathrm{~mm}$. Wide, $12-15 \mathrm{~mm}$. long.

Type: Southern Europe.

General Distribution: Native to Europe; escaped fram cultivation and naturalized in meny parts of North America.

Pacific North-mest Distribution: B. C. to Ore.

Specimens Examined: BRITISH COLUMBIA - Nanaimo Di: Extension, To Mo C. Taylor \& W. H. Lewis 547, Nanaimo, 18 June 1947, F. Foster, Wellington, T. M. C. Taylor \& W. H. Lewis 526; New Westminster D.: nr. Boston Ber, T. M. C. Tayior \& W. H. Lewis 201, Hope, W. H. Lewis 1321, Yale, T. M. C. Taylor \& W. H. Lewis 60; Victoria D.: Esquimalt, 23 July 1908, John Macoun, North Saanich, 6 Oct 1929; W. A. Newcombe,: Victòriá, Aug 1893, J. Macoun; " OREGON -- Josephine Co.: Oregon Caves Junction, C. L. Hitchcock \& J. S. Martin 5193 (as R. Spaldingii Crep. var. hispida (Fern.) Jones); Lane Co.: Eugene, G. N. Jones 5822; WASHINGTON -Cowlitz Co.: Kalama, Go N. Jones 6068, Island Co.: Couperille, G. No Jones 4843; Meson Co.: Skokomish River, J. Schwartz 52; Pierce Co.: Roy, 14 May 1933, G. Jones.

Rosa rugosa Thunb., Fl. Jap. 213, 1784

```
R. ferox Lawrence, Coll. Roses 42, 1799
R. Regeliana Linden & Andre, Ill. Hort 18: 11, 1871
```

Stems 1.5-2.5 m. tall, stout, pubescent, armed with dense bristles or thorns; leaflets $5-9,20-55 \mathrm{~mm}$. long, singly serrate, pubescent below, usually eglandular; rachis and petiole pubescent, bristly, rarely glandular; stipules adnate, pubescent; inflorescence typically one flowered; petals pink or white; sepals glandular-hispid; peduncles short, bristlyglandular; hypanthium oval, rarely with bristles, in fruit about 15 mm . wide.

Type: Japan

General Distribution: Northern China, Korea, Japan; naturalized in Atlantic and Pacific Coast regions of North America.

Pacific North-west Distribution: B. C., and Wash.

Specimens Examined: BRITISH COLUMBIA -- Terrace, W. H. Lewis 1264; WASHINGION -- Island Co.: Useless Bay, Whidbey Island, G. N. Jones 6133.

LITERATURT CITED: VII

Asen, S. \& R. F. Larson, "Artificial culturing of rose embryos", Pa. State Coll., Prog. Rpt. 40, 1951

Blackburn, K. Bo, \& J. W. H. Harrison, WThe status of the British rose forms as determined by their cytological behaviours ann. Bot. 35: 159-188, 1921.

Blakeslee; A. F., "Effect of inanced polyploidy in plants," Biol. Symp. 4: 183-201, 1941

Chapmen, J. D., "The climate of British Columbia," Trans. Fifth B. C. Nat. Res. Conf. 8-33, 1952

De Candolle, A. P., 1818, in Crepin, F., "Sketch of a new classification of roses," Journ. Roy. Hort. Soc. 11: 217-228, 1889

Erlanson, E. W., "The wild roses of the Mackinac region of Michigan, ${ }^{n}$ Papers Mich. Aced. Sci. Arts and Letters 5: 77-94, 1925
, "Cytological conditions and evidences for hybridity in North American wild roses," Bot. Gaz. 87: 443-506, 1929
"Chromosome pairing, structural hybridity and fragnents in Rosa, " Bot. Gaz. 94: 551-566, 1933 , MExperimental data for the revision of the North American wild roses," Bot. Gaz. 96: 197-259, 1934

Fernald, M. L., Gray's Manual of Botany, American Book Co., N. Y., 1950
Flory, W. S. Jr., "Pollen conditions in some species and hybrids of Rosa with a consideration of associated phylogenetic factors," Ve. Jour. Sc. $1: 11-59,1950$

Greene, E. L., "Some western roses." Bot. Leaf. 2: 254-266, 1910-1912
Rydberg, P. Ao, MNotes on Rosaceae XI, roses of California and Nevada," Torr. Bot. Cl. Bull. 44: 65-84, 1917
, Mionograph on Rosa, $"$ N. Am. Fl. 22: 483-533, 1918
St. John, H., Fl. of S. E. Wash, and adjacent Ida., Student Book Corp., Pullman, Fash., 1937

Watson, S., Wew or little known plants: Rosa Engelmanni, n Garden \& Forest 2: 376, 1889
Hutchinson, A. H., "Polygonal Graphing of Ecologeal Data," Ecology 21 : 475-487, 1940

[^0]: 2. Ninety-five percent of the population mans are included in 1 fiducial limit from the parameter mean at p. 05 .
[^1]: 3. 1.5 gm . of mineral salts made up as follows: $0.70 \mathrm{gm} . \mathrm{KCl}, 0.17 \mathrm{gm}$. $\mathrm{CaSO}_{4}, 0.17 \mathrm{gm} \cdot \mathrm{MgSO}_{4}, 0.17 \mathrm{gm} \cdot \mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}, 0.17 \mathrm{gm} . \mathrm{FaPO}_{4}$, and 0.12 gm . KNO_{3}.
 4. Solution was composed of: $2.6 \mathrm{gm} . \mathrm{KNO}_{3}, 2.0 \mathrm{gm} . \mathrm{MgSO}_{4}, 1.1$ gm. $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}, 0.4 \mathrm{~g} .\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}$, and 4.9 gm . CaSO4 in one gallon of water.
[^2]: 5. 2% solution of Brilliant Cresyl Blue in 45% solution of acetic acid.
[^3]: 7. The grouping of populations into climatic regions is not necessarily an indication of discontinuity.
[^4]: * Criteria include leaflet width and length, serration number, petal length, otipule length, and inflorescence.
 ** Plants moved to Botemical Garden.

[^5]: * The criterion may vary in this direction.

[^6]:
 CP
 Cs

