A STUDY OF THE RELAT IONSHIP BETWEEN THE ABIIITY TO COMPUPE WITH DECTMAL FRACTIONS AND THE UNDERSTANDING OF THE BASIC PROCESSES Involved In The use of decimal FRACI IONS
by

HUGH ERNEST FARQUHAR

A. THESIS SUBMITTEB IN PARITAL FULFIMMENI OF THE REQUIREMENIS FOR THE DEGREE OF

MASTER OF ARTS

in the Department of

EDUCATION

We accept this thesis as conforming to the standard required from candidates for the degree of lasster or arts.

Members of the Department of Eduoation

THE UNIVERSITY OF BRITISH COLTMBIA

A STUDY OF THE RELATIONSHIP BEETWEEN THE ABIIITY TO COMPOTE WITH DECIMAL FRACTIONS AND THE UNDERSTANDING OF THE BASIC PROCESSES INVOLVED IN THE USE OF DECTMAL FRACTIONS

Modern theory of arithnotio instruotion supports the idea that the development of understandings of basic mathematical principles prom duces a desirable type of learning. This is a reaotion against the traditional method of instruction whioh places emphasis upon meohanical drill procedures, devoid of meanings. This study is an attempt to determ mine what relationship, if any, exists between computational ability and understanding of fundamental prooesses. The investigation has been limited to the area of decimal fractions.

Two tests were developed for the purpose of the investigation. The test in ocmputation was constructed and validated using pupils of the junior high school level as testees. Student-teachers constituted the persomal for the oonstruction and validation of the test in understandings.

The investigation of relationship was performed using 236 Normal Sohool students as testees, The tests, whioh had been constructed for use in the study, were administered at the begiming of the school term.

The data obtained fram the investigation were analyzed and the following conclusions were formalateds

1. There is a positive correlation of considerable magnitude between the soores on the test in ocmputation and the soores on the test in understandings. $(\mathbf{r}=.640)$. This is an indioation that there is a tendency for the scores to vary in the same direction.
2. When the factor of intelligence is held constant, there is a net correlation of marked magnitude whioh is somewhat less than the apparent coafficient. This indicates that the common factor of intelligence has an influence upon the relationship between the two variables.
3. The magnitude of the relationship between scores in understanding and intelligence test scores is an indication of common elements in both these tests.
4. The relationship between the scores in computation and the intelligence test scores is not high. A high intelligence does not appear to be a prerequisite for high achievement in omputation.
5. There is ovidenoe that ability in ocmputation is not essential for high achievement in understandings and vice versa, nor do high scores in one of these factors guarantee high scores in the other.
6. Although a study of the scatter diagram suggests that sucoess in computation is more probable if it is accompanied by a high degree of nnderstanding, it cannot be inferred from the data that one variable is the cause or the effect of the other.

The assistance and cooperation of many students and teachers at various educational lovels were necessary in this investigation. The writer is most appreciative of the help he has receited from these sources. It is impossible to name all the prinoipals and teachers who have oontributed in some way to the development of this study. Without the testees, obtained through the permission of the Chiof Inspeotor of Schools of the Greater Viotoria School Distriot and the Principals of the Provincial Normal Sohools, this thesis could not have been written.

Dr. C. B. Conway of the British Columbia Department of Education gave muoh needed advice in the early stages of the preparation of the tests. His help is acknowledged with thanks.

The guidance and oonstant encouragement, generously given by Dr. J. R. MoIntosh of the University of British Columbia, provided the stimulus that was neoessary to bring the work to a conolusion. The writer wishes to acknowledge his debt to Dr. McIntosh, with sincere appreciation.

TABLE OF COMIENIS

Chapter

Page
I IMPRODUCTION
Introductory Statement 1
Statement of the Problem 2
Plan of the Study 3
Materials of the Study 3
Background of the Problem. 4
The Measurement of Understandings 7
Criteria for Moasurement of Onderstandings 7
Related Studies 8
Summary 11
II CONSTRUCT ION AND ANALYSIS OF A TEST IN
COMPUTATION WITH DECTMAL FRACTIONS
Introduotion 12
Charecteristics of a Good Test 12
Currioular Validity 13
Experimental Form 14
Preliminary Forz 15
Mothod of Item Analysis Used in This Study 15
Reliability 18
Final Form 24
Item Validity Indices Based on Flanagan's Tables 24
Reliability of Final Form 30
Surumary 30

TABLE OF CONTENPS--Contimed
Chapter Page
III CONSTRUCTION AND ANALYSIS OF A TEST IN UNDERSTANDINGS OF PROCESSES IIVOLVING DECIMAL FRACT IONS
Introduction 32
Faotors Involved in the Construction of Test Items 38
Experimental Form 34
Preliminary Forfil 35
Reliability 40
Final Form 41
Item Validity Indices Based on Flanagan's Tables 47
Reliability of Final Form 49
Relationship Between Scores on Test in Under- standings and Intelligenoe Test Scores 49
Summary 50
IV TNVESTIGATION OF THE RELAT IONSHIP BETWEEN COMPUTATION AND UNDERSTANDINGS IN THE USE OF DECDMAL FRACTIONS
The Subjects 51
Administration of the Tests 52
Analysis of the Results 52
Partial Correlation 55
Summary 56
Chapter Page
v SUMMARY AND CONCLUSIONS
Surmary 57
Conclusions 59
Suggestions for Further Study 61
BIBLIOGRAFHY 63
APPENDIX A: Test in Computation with Decimal Fractions 66
APPENDIX B: Test in Understanding of Processes with Deoimal Fractions 67

LIST OF TABLES

Table
Page
I The Validities and Difficulties in Terms of Per Cent of the Items of the Preliminary Form of the Test inComputation with Decimal Fractions19
II Coefficient of Reliability of Preliminary Form ofthe Test in Computation with Decimal Fractions Deter-mined by the Odd-Even Split-Halves Technique22
III Coefficient of Reliability of the Preliminary Form of the Test in Computation with Decimal Fractions Determined by the KuderaRichardson Formula 23
IV The Validities and Diffioulties in Terms of Per Cent of the Items of the Final Form of the Test in Computation with Deoimal Fractions 25
V Internal Consistency of the Final Form of the Test in Computation with Deoimal Fractions; Based on Flanagan's Estimates of Correlation between Individual Items and the Test as a Whole 29
VI Coefficients of Reliability of the Final Form of the Test in Computation with Decimal Fractions 30
VII The Validities and Diffioulties in Terms of Per Cent of the Items of the Preliminary Form of the Test in Understandings of Processes 37
VIII Coefficient of Reliability of the Freliminary Form of the Test in Understandings of Processes Determined by Odd-Even Split-Hialves Technique 40
IX Coefficient of Reliability of the Preliminary Form of the Test in Understandings of Processes Determined by the Kuder-Richardson Formula 42
x. The Validities and Diffioulties in Terms of Fer Cent of the Items of the Final Form of the Test in Understandings of Processes 44
XI Internal Consistenoy of the Final Form of the Test in Understandings of Processes; Based on Flanagan's Estimates of Correlation between Individual Items and the Test as a Whole 48

IISI OF TABIES-Contimed

Table Page
XII Coeffioients of Reliability of the Final Form of the Test in Understandings of Prooesses 49
XIII Relationship Between Scores on Test in Understand- ings of Processes and Otis Test of Momtal Abjlity Obtained by 150 Normal School Students 50
KIV Relationship between Scores Obtained on Tests in Computation and Understandings of Processes involved in the Use of Decimal Fractions Obtained by 236 Normal Sohool Students. 53
XV Coefficients of Correlations Between Test Scores 55

LIST OF FIGURES

Figure Page
I Graphical Analysis of Items of Test in Computation with Decimal Fractions in Terms of Per Cent of Validity and Per Cent of Diffiaulty - Preliminary Form 21
II Graphioal Analysis of Items of Test in Computation with Decimal Fractions in Terms of Per Cent of Validity and Per Cent of Diffioulty - Final Form 27
III Graphical Analysis of Items of Test in Understanding of Processes in Terms of Per Cent of Validity and Por Cont of Difficulty - Proliminary Form 39
IV Graphioal Analysis of Items of Test in Understanding of Processes in Terms of Per Cent of Validity and Per Cent of Diffioulty - Final Form 46

CHAPIER I

INFRODUCPION

Introduotory Statement

During the past two or three decades, the theory of arithmetio ingtruction has been subjected to a close scruting because of fairly general dissatisfaction with the achievement of the graduates of our sohools. As a resuit, there has emerged a mothod of instruotion kown as the meaning theory, which etresses the deairability of developing undergtandings of processes in contrast to the teaching of the mechanical manipalation of numbers, devoid of meanings. The advocates of this theory include suah authorities as Bromell, Morton, Wheat, Brueckner, Grossmickle, Spitser, Bucleingham, and many others. However, in spite of the weighty opinions of these experts; moh teaching continues to be of the more traditional type-based upon meaningless drill. reperition and rote memory. If teachers are to pay more than inp-serfice to the meaning theory in classrocm practice, doubtlesa it will be meoessary to demonstrate conclusively, timo and again, that learning procesds best, and is more permanent, when a high degree of understanding is present. Hot ontil they have been convinced of the efficacy of the meaningful approach, by the eridenoe of sound statistical stadies; are teachers likely to be concerned about objectives in the arithootic programme other than those that are purely mochanioal.

Failure to produce a strong case in support of the moaning theory may well result in a coutination of the statas quo as set forth by

Wingo ${ }^{1}$ in the following:
With few, if any, exceptions, the investigators have found grounds for dissatisfaction with the present status of arithmetio instruction. Administrators, supervisors, and teachers cannot dismiss the criticism lightiy. It is founded on sober, and sometimes alarme ing faot. It is direoted at the most important aspect of and teaching problem: the problem of mothod.

Statement of the Problem

How adept at manipulating mubers may students become and yot possess little or no understanding of the underlying prinoiples infolved in the computations? Will they be more suocessful in the operation of mumers if meanings of basic ooncepts are clear to them? Weaver ${ }^{2}$ suggeats that:
(1) It is quite possible that a person may possess oonsiderable skill in arithmetio ocmputation but have little or no understaniding of why he does things in a manner which has beocme habituated.
(2) It is equally possible that a person may have a thorough understanding of the mathematioal bases for the algorisms which ho uses but operate at a relatively low level of computational efficienoy. Neither ability is prerequisite for the other. The attaiment of either ability does not guaraxtee attaiment of the other.

The present study will attempt to examine what relationships if any, exists between the ability to manipalate mumbers on a meohanical level and the understanding of the processes which underly the number operations in one phase of arithmetio; namely, deofmal fractions.

A major aspect of this study will be the construction of

[^0]appropriate tests for the investigation This will ontail testing, observation and analysis extending over a period of more than a year. This task in itself, while subordinate to the main investigation, will constitute a study of considerable magnitude. It is hoped that the resulting tests will provide evaluative instruments which will have further usefulness.

Plan of the Study

The background of the study and a statement of the problem are presented in the introduotory ohapter. This will be followed by a description of the development and analysis of a test in oomputation with decimal fractionse Hext, the construction and validation of a test in understandings of basio processes involving deoimal fractions will be described. With the use of these tests, an investigation will be made to determine the degree of relationship, if any, that exists between mechanios and meanings. The results will then be analyzed and the oonolusions formulated.

Materials of the Study

The investigatior deoided to work in the area of deoimal fraotions beoause of the essential nature of this subject matter and its extensive use both in and out of sohool, and also because of fairly general oriticism of the lack of competence demonstrated in the appilastion of this phase of arithmetic. When oonsidering the subjects to be used in the study, he was guided by the availability of sufficient numbers for the purpose. It was deoided to perform the investigation with Normal Sohool students because, in this case, teachersain-training provided a couvenient group with which to work. Also, it was thought that, if the possession of understandings
is a desirable outocme of arithmetio instruotion for the pupils, surely, at the student-teacher level, it must be an even more essential aspect of learning. In the opinion of Wren: ${ }^{3}$

It should be a trite remark to say that, unless the teacher hime self oan tread over hill and dale through the fields and forests of arithmotic with confidence and assuranoe that he knows where he is going and how he is going to get there, he certainly cannot render a great deal of assistance to his pupils.

As Normal School students were to proride the ultimate group to be used in the investigation, it was deemed necessary to use similar subjeots for the purpose of validating the test on understandings. However, it was felt that the test on computation could be prepared by using any groups of unseleoted students who had completed the work on decinal fractions, since the basic material remains the same. By working with papils at the Grade 7-8-9 level in a aity school system, the investigator had available a large number of subjects, thas obtaining more scope for the construction of the test. It was thought that the resulting test could be used equally well with groups at higher levels and that it would provide a satisfactory testing instrument for the parpose of the proposed investigation.

Background of the Problem

A popalar concoption exists that the sabools are not adequately preparing the pupils to handle the basic skills of arithmetio.

[^1]Grossniolrle ${ }^{4}$ reports that:
A frequent oritioism directed towards public and elementany sohools concerns the failure of their students to demonstrate adequate preparation in the fundamental subjects. This partioularly holds true in the field of aritmmotic.

As a result of the concern over the plight of arithmetio in the elementary sohools, there has been extensive research conduoted in this area during the past forty years.

Psyohologioal study on the prooess of learning has directed attention to how the ohild learns and has developed the view that one of the objeotives of axithmotio instruction ahould be the development of understandings. According to Brownell: ${ }^{5}$

From all this researoh and fram experimentally oriented teaching emerged the notion that one ingredient in a funotional program in arithnetic is provision for meaningful learning.

This theory of meaning or understanding impregnates the philosophy of practioally all the authorities in the field of arithmetio today. While there are minor differences in interpretation of this theory, most of the exports bese their philosophy upon the basio ideas propounded by Brownel1 ${ }^{6}$ in the following:

The "meaning theory oonoeives of arithmetic as a olosely knit system of understandable ideas, prinoiples, and prooesses. According to this theory, the test of learning is not mere meahanical "figuring". The true test is an intelligent grasp upon maber relations and the ability to deal with the arithmetical situations with proper ocmprehension of their mathematioal as well as their practical significanoo.
${ }^{4}$ Foster E. Grossniokle, "Dilenmas Confronting the Teachers of Arithmotic", The Arithmetio Teacher, I (Pebruary, 1954), p. 12
$5_{\text {William A. Brownoll, "The Revolution in Arithmetio", }}$ The Arithroetio Teaohor, I (February, 1954), pp. 3-4.

6William A. Brownell, "Psyohologioal Considerations in the Learning and the Teaching of Arithmetio" The Teaching of Arithmotio, p. 19. Tenth Yearbook of the National Conncil of leaohers of leathematies. Hew York: Teachers' College, Columbia Uaiversity, 1935.

Brownoll goes on to explain that the meaning theory has been designod to encourage the understanding of arithmetic and the most frequent question put to the ohild should be; "Why did you do that?"

This study is conosrned with that aspect of the meaning thoory whioh relates to the understanding of basio akills-ato the ability to rationalise processes-to that mathematical phase of aritimetio whioh provides the "why" for the algarisme.

There is a comrinoing body of opinion in support of the idea that the development of meanings and understandings is an essential aspoot of the kind of inatruotion that will produce better results in arithmetio. Brueckner and Grossnicile ${ }^{7}$ state:

Today there is almost universal acceptanoe of the view that ahildron learn arithmotie more easily if thoy understand what they are leaming and if it is mathomatically moaningfol to themp

Further support for the effiosoy of the meaming theory is prom vided by Wren ${ }^{8}$ in the following:

Appreaiation of significant meanings oannot be overemphasized either for the papil or for the teacher Meanings not only form a basis for more intelligent use of computational skills, but they also give a background for a better appreciation of arithmetio as part of our cultural heritage.

Beoause of opinions such as these, impetus has bean given to the pursuanes of a method of instruction designed to develop understandings. The emorgenoe of this new approach to arithmatic instruotion forms the baoleground of the present study.

Leo J. Brueokener and Foster E. Grossniekle, Making Arithmotio Meaningful, pe iii. Philadelphia: The John C. Winston Company, 1953.

EWren, opo oit.; p. 85.

The Measurement of Understandings

If the aforementioned gospel of the proponents of the meaning thoory of arithmetic instruotion is to spread, convinoing evidence of the superiority of this mothod mast be produced. To do this requires, firstiy, sone method of evaluating the existence and growth of basic mathematioal understandings.

The inmediate problem becomes one of determining just what constitutes a body of understandings in arithmetio. One aspeot of the study of arithmetio during the past twenty years has been an attempt to identify and isolate the ideas, prinoiples, relationships and generalizations which constitute the understandings of the mathematical phase of the subjeot. A_{B} yet, research has produced ilitile to guide the imveatigator In this field and, to some extent, he is foroed to grope in the dark. For the purposes of this study, it is assumed that a person's understanding of a prooess may be revealed by his ability to rationalize the prooedure and that his insight into momber operations may become apparent by his grasp of the "why" behind the performanoe of the algorism. This will forin the basis of the measurement of understandings in the present investigation.

Criteria for Measurement of Understandings

The attempt to measure understandings of arithmetic processes is rendered very difficult by the laok of oriteria for this purpose. The setting up of suitable oriterion measures by which to evaluate understandings suggests an area for further research. In lieu of existing oriteria, the investigator mast determine arbitrarily those conoepts that should be
inoluded in a moasuring instrument designed to evaluate understandings of any phase of arithmotio. (Most researchers have been forced to adopt this prooedure.)

The mechanics of the test on understandings will be disoussed in a later ahapter. It is considered that an understanding of the proeesses involved in ocmputation with dooimal fraotions should include intelligent control of the following concepte:

> 1. Meaning of deoimal fractions 2. Reading and writing deoimals 3. Value of deoimal fraotions 4. Comparison of deoimal fraotions 5. Function of zero 6. Rounding off numbers 7. Aoouraey of measuremont 8. Effeot of moring the deoimal point 9. Looation of the decimal point in 10. Looation of the deoimal point in maltiplioation 11. Location of the deoimal point in division 12. Changing comimon fractions to decimals 13. Changing deoimals to coumon fraotions 14. Relative value of digits

Related Studies

While the literature is replete with material supparting the meaning theory of instruotion, more studies are needed to show the result of its applications and there seems to have been little attempt made to
ovaluate the mathematioal understandings aoquired by pupils. Little research is available to lend support to the opinion that the developmext of understandings produces a higher level of aohievement.

The following studies are illustrative of the researoh that has been conduoted in this area:

1. Glemnon ${ }^{9}$ oonducted a frontier research study designed to disoover the degree of mathematioal understanding possessed by representative groups on different educational levels. For this purpose he was obliged to construct a special test. His study revealed that scone prom gress is being made in the fleld of ovaluation in arithmetic. Howerer; he reports that his findings "do not offer a favorable pioture of our present practices in teaching meanings and understandings in aritmmetic". He was forced to the conclusion that teachers are not sucoeeding in doveloping an understanding of mathomatioal principles. 2. Kilgour ${ }^{10}$ used Glemnon's test to conduct a study on the developmont of understandings in a ono-year teacher-training programme. She found that small, but significant, gains were made by the students in their understandings of basio concepts.
2. Orleans and Wundt ${ }^{11}$ conducted a study to ascertain the extent of understandings possessed by teachers and student-teachers. They designod
[^2]11
Jacob S. Orleans and Edwin Wandt, "The Understanding of Arithmotic Possessed by Teachers ${ }^{\text {n }}$, The Elementary Sohool Journal, IIII (May, 1953). pp. 501-507.
their own test for the inrestigations. They concluded:
There are apparently few prooesses, concepts; or relationships in arithmotic which are understood by a large per cent of teachers.
4. Brownel1 ${ }^{12}$ reports a study conducted by Spainhour to determine the relationship between aritmotio understanding and ability in problem solving and computation. He found correlations of .665 and . 751 in grade four and . 751 and .756 in grade 6.
5. Taylor ${ }^{18}$ tested college frestonen on mathomatical meaninge and rerealed a woeful lack of understanding of basic ooncepts. His findings lead him to the conclusion that "students entering teachers colleges are deficient in both the mochanics and the understanding of arithmetic".

These studies reveal, in the opinion of the writer, that iittle research has been done in the area of evaluation of arithmetioal understandings; that, generally speaking, students possess very little insight in respect to basic momber operations and that only slight progress has been made in developing meanings in arithmetio; that growth in understandings may be an outoome of arithmotic instruotions and that there is a significant positive correlation betveen understanding of processes and ocxputational ability. Obriously, there is a definite noed for further research in this field of arithmotic.

12
William A. Brownell, "The Evolution of Learning in Arithmetic"; Arithmetio in General Education, p. 289. Sixteenth Yearbook of the National counoll of Teachers of Mathematices. Hew York: Teachers' College, Columbia University, 1941.

13
E. H. Taylor, "Mathematics for a Four-Year Course for Teachers in the Elementary School", School Soience and Mathematios, XXXVIII (May, 1938). pp. 499-503.

Summary

The "new" theory of arithnetic instruotion is based upon the psychologists ${ }^{8}$ knowiedge of how the child learns. While much has been written about the meaning approach to the teaching of arithmetic; more evidence is desirable to give support to the opinion that this theory of instruction is likely to produce more worthwile results. The purpose of the present study is to investigate the relationship, if any, between a student's achievement in a test in computation with deoimel fractions and a test in understandings of the processes used in the computations. It is an attempt to supply data which will help to answer the question: "Does instruction designed to develop meanings result in higher achievement than a method of teaching which stresses mechanical operation of maners only?

The investigation necessitates the construction and raidation of suitable teste for the purpose. The construetion of a teat on understandings is made difficult because of relatively little research in this area, beoause of the diffioulty of defining understendings, and beaause of the lack of adequate criteria for the purpose of validation.

The study will be conducted with the aid of Normal School students as subjects. An attempt will be made to analyze the results and to arrive at conclusions which may have signifioance in terms of the method of arithmetic instruotion which is most desirable.

CHAPTER II

CONSTRUCTION AND ANALYSIS OF A TEST IN COMPOTATION WIPH DECTMAL FRACTIONS.

Introduction

As discussed in the previous chapter, it was deoided that a neoessary part of the investigation must be the construction and validation of a test on the basio skills involved in computation with decimal fractions. The material of such a test should consist of items based upon the subject-matter in the curriculum of the elementary schools of British Columbia. As the basic essentials of computation with deoimal fractions are remtaught and used throughout the school years beyond the elementary grades, a test on this material should be suitable for the evaluation of pupils of any higher grade level. Pupils of the Junior High School grades should possess a high degree of proficiency in comprotation with decimal fractions, and it is likely that this degree of skill will be maintained or raised during the following yoars. Thus, it is felt that the construction of a test based upon the achievement of subjects at the grade 7-8-9 level should provide a valid testing instrment which could be used for evaluating proficienoy at a more advanoed level, including high school graduation and teachermtraining. A desoription of the preparation and validation of the test on computation with decimal fractions will be presented in this chapter.

```
Charaoteristics of a Good Test
```

In the construction of a test there are a number of factors which
must receive due consideration. Greene, Jorgensan and Gerberioh include the following distinguishing oharacteristios of good examinations in their speoifioations: validity, reliability, objectirity, administrability, oomparability, eoonoany, utility.

In a study in which he examined the worth of a teacher-made test, Carlile ${ }^{2}$ considered the following oriteria to be significants validity, reliability, disorimination, level of difficulty, objectivity, ease of administration and ease of sooring.

In the constraction of the present tests attention will be paid to the aforementioned factors in an ondeavour to produce statistioally sound testing instruments.

Currioular Validity

An examination of the course of study and the ourrent text books wres made and a list of the major skills and oonoepts involving oompartation with deoimal fraotions was campiled. Items; designod to test these concepts; were constructed and entered on Individual cards. These items were then put together indisoriminately and mimoographed oopies were submitted to a maber of teachers for oritioism and suggestion. In this manner material which fitted the curriculum was selected for the test and an attempt was made to assure ourricular validity.

1
Harry A. Greene, Albert H. Jorgensen, J. Raymond Gerberich, Measuremont and Evaluation in the Secondary School. Hew Yorkz Longmans, Green and Co., 1943.

2
A. B. Carlile, "An Eramination of a Teacher-made Test", Educational Administration and Supervision, 40 (April, 1954), pp. 212-218.

Bxperimontal Form

On the bases of suggestions received and scme individual testing which was oarried out, changes were made and the items were put into an experimental form. This form of the test was administered to 135 papils in grades 7-8-9 in different types of sahools in the Greater Victoria School District. The writer personally administered some of the tests, made careful observations to determine "face" validity and interest, and recorded the time factor.

The results of the first experimental run were oarefully studied and discussed with olassroom teachers. Certain weaknosses in form, content and wording were inmediately apparent and furthar revision ensued. A orude analysis of the degree of difficulty wes made and the test items were rearranged in what appeared to be ascending order of difficulty. The test contained 32 items at this stage of development. After consultation with an expert in the field of testing, the material was put into a form suitablo for a trial run.

The time factor appoared to be satisfactory. Thirty mimites provided ample time for most pupils to finish the work, which meant that the test could be administered comfortably in a normal forty-minute pariod.

As the population upon which the final study was to be made consisted of teaohers-inntraining it was deemed wise to obtain some indioation of the performance of such a group on the test. Therefore, the test was administered to 165 students of the Victoria Hormal School. Although these students had been studying the topic of deoimal fractions recently, their scores were distributed over a fairly wide range of aohievement.

Analysis of this performanoe led to further revision to olear up
ambiguities and to improve objectivity. The opportunity of closely observing reaction to the items at various stages in the development of the test made it possible to revise and restate the items in suoh a way as to ensure a high degree of objectivity. At this stage it was deoided that a few more items could be added to advantage, bringing the total up to thirty-five.

Preliminary Form

The test was now organized into a Proliminary Form, containing 35 items, with a time limit of 30 minutes. It was adainistered to over 300 papils in grades 7-8-9 in various types of schools throughout the Greater Victoria area. A brief list of instructions for administering the test was issued for the purpose of ensuring uniformity of procedure. The papers were returned and soored and were made ready for analysis. As the nature of the scoring was highly objective, it was possible to enlist the assistance of student-teachers for the task.

Mothod of Item Analysis Used in This Study

An accepted method of determining the discriminating powrer of a test item is to compare the performance of the best section of the group with that of the poorest section. Although of obscure origin, the teohnique of comparing portions of the group is widely used and is desoribed in some detail by Long and Sandiford ${ }^{3}$. They explain:

The idea underlying all the Upper and Lower Methods is that the good item is one which the good pupils do well, and the poor pupils do poorly.

[^3]While various fractions of the distribution may be used, Long and Sandiford ${ }^{4}$. state unequivocally that the Upper and Lower Thirds technique gives the best results.

Experiments show that Upper and Lower Halves, whioh use all the data at the disposal of the examiner, is not so good a method as Upper and Lower Thirds or the Upper and Lower 27 per cent.

They ${ }^{5}$ go on to point out that the Upper and Lower Thirds technique tends to discriminate in farour of items of 50% diffioulty.

Taking both effectiveness and ease of computation into consideration, of those teohniques which tend to select 50%, or balanced diffioulty, the Upper versus Lower Thirds may be adopted as the preferred technique.

The procedure used in this study is outlined belows

1. A group of 300 papers was seleoted for analysis and arranged in score order.
2. The papers were divided into three groups of 100 eachan Upper Third-a Lower Third-a Middle Third. The number of papers employed facilitated the use of per cents.
3. Large sheets of squared paper were prepared and the correot responses to each item on each test paper were tabulated.
4. Per cents of correot responses on each item were calculated for the upper Third and for the Lower Third.
5. Discriminatory value or item validity was found by comparing the performanoe of the Upper Third group with that of the Lower third group. Validity of each item was expressed as a per cent and determined by finding the difference between the per cent correct in the upper Third and that in the Lower Third.
6. Per cent difficulty was calculated on the basis of the total item-errors in the Upper and Lower Thirds combined.

4
ibid., p. 32

5
ibid., p. 118
7. Per cent difficulty and per cont validity ${ }^{6}$ were plotted on graph paper. An arbitrary curve was drawn. An item falling unduly far below the eurve was considered unsuitable or in need of revision. Items falling above the ourve were considered satisfactory and were retained in that form.

An example or two will serve to illustrate the procedure. An item with a validity of one hundred per cent would be answered correotly by all in the Opper Third and incorrectly by all in the Lower Third; its difficulty would thus be fifty per cent. A situation of this kind would be quite wilikely to cocur. (Per cent of difficulty refers to the per cent of inoorrect responses to an iteme) An item with fifty per cent difficulty might be answered correctly by eighty per cent of the upper group and by twenty per cent of the lower groap, which would give it a validity of sixty per cont. This item would lie well above the curre and would be considered a satisfactory item to retain. An item answered correctly by forty-five per cent of the top group and by thirty-five per cent of the bottom group would have a sixty per cent difficulty (forty per cent ease) but its power to discriminate would be only ten per cent. It would fall well below the curve and would contribute little to the test. In order to place items along the full range of difficulty, which is desirable, there will, of course, be some with small value from the point of view of discriminatory power. This cannot be avoided. Any item showing negative validity; however, would be discarded immediately.

Following the procedure as outlined, the papers were grouped and analyzed. Per cents of validity and difficulty were oomputed using the

This graphical technique was devised and is used by Dr. C. B. Comay, Director, Division of Tests, Standards and Research, Department of Education, Victoria; B. C.

Upper Third-Lower Third technique. The results of this procedure appear in Table I_{0}

Using a prepared grid, with the vertical axis representing the per cent of validity and the horizontal axis the per oent of difficulty, the efficiency of the items was demonstrated graphically. An arbitrary curve was drawn and items appearing above the curve were considered satisfactory for inclusion in the test, while those falling below appeared to be in need of revision or deletion. As will be seen by the graph, shown in Figure I, no item falls seriously out of line and it was decided that all might be retained for the final form of the test. Per cents of validity range from 14% to 70% and all are positive. Thus, each item has some power to discriminate between the good and the poor pupils. Per cents of difficulty for the items extend from 9% to 81% with an average difficulty of 44\%. This is in line with the findings of Hawies, Lindquist and Mann ${ }^{7}$ who report that in general test anthorities "..... are agreed that thare should be a range of difficulty from about 5 to 20 per cemt to 80 to 95 per cent, and that the average difficulty of all items should be about 50 per oent."

Reliability

The reliability of a test must be estimated statistically but it is not dependent upon an external criterion. Thus, it does not present the same difficulties as are encountered in establishing the validity of

Herbert E. Hawkes, E. F. Lindquist, C. R. Hann, The Construotion and Use of Achievement Bcaminations; p. 32. Boston: Houghton Miffilin Company, 1936.

Table I
THE VALIDITIES AND DIFFICUIT IES IN TERMS OF PER CENI **
OF THE ITEMS OF THE PRELTMTNARY FORM OF THE TEST IT
COMPUTATION WITH DECDMAI FRACT IONS

Item	Per cont of Validity	Per cent of Difficulty
1	47	29
2	24	17
3	20	15
4	21	15
5	35	-. 19
6	49	68
7	43	30
8	18	12
9	22	23
10	52	41
21	28	25
12	36	29
13	62	53
14	63	50
15	37	31
16	54	41
17	26	38

** While it is recognized that the term "per cent of validity" is one of current usage, it is realized that it. is somewhat of a misnomer and, as pointed out previously, it represents the difference between the per cent of correct responses obtained by the top third of the group and the bottom third of the group.

Table I (contimed)

THE VALIDITIES AND DIFFICULTIES IN TERUS OF PER CERTI OF THE IIEMS OF THE FRELTMTIARI FORM OF THE TEST IN COMPUTAT ION WIPH DECTMAL FRACT IONS

Item	Per cent of Validity	Por cent of Diffioulty
18	43	46
19	55	46
20	53	47
21	51	67
22	56	66
23	70	52
24	51	58
25	50	52
26	38	72
27	20	81
28	40	70
29	45	75
30	48	72
31	57	57
32	52	73
33	32	42
34	36	26
35	14	9

Figure I

> GRAFHICAL ANALYSIS OF ITEMS OF TESI IN COMPUTAT ION WITH DECTMAL FRACTIONS IN TERMS OF PER CENM OF VALIDITY AND PER CENI OF DIFFICUTYY - PRELIMINARY FORM

a test. For the purpose of determining the reliability of this test, all of the 300 papers were included in the caloulations. The oddeoven splithalves teohnique was used and the result was corrected by the SpearmanBrown Prophecy Formula. Greene, Jorgensen and Gerberich ${ }^{8}$ point out that, while the coefficient obtained by this method is likely to be spuriously high, "... this is one of the most feasible mothods for use with informal objective examinations for which ordinarily no second or alternate form is arailable."

The result of these caloulations appears in Table II.

Table II

COEFFICIETIT OF RELIABIIITY OF PBELIMITARY FORM OF THE TEST IN COMPYTAT ION WIPH DECDUAL FRACTIONS DET ERMINED BY THE ODD-EVEN SFLTI-EALVES TECHNIQUE

Forfll	Coeffioient	Corrected Coefficient
Preliminary	.780	.876

Although the coefficient of correlation appeared to be reasonably satisfactory, it was decided to estimate the reliability coefricient by a second method. Kuder and Richardson have devised a simple formala for determining the reliability of a test. The only data used by this method

Greene, Jorgensen and Gerberich, ope oite, p. 63
are the muber of test items, the standard deviation, and the arithmetic moan. It is based upon a number of assumptions which are hard to meet but, nevertheless, Remmers ${ }^{9}$ believes that: ${ }^{n}$...... it is probable that the guick estimate afforded by this formala is good onough for all prectical purposes." This teohnique usually gives an estimate lower than that obtained by the split-half method used with the Spearman-Brown Formula. The result obtained by the Kader-Richardson method is given in Table III and, as is to be expected, is slightly lower than the previously determined coefficient. In terms of reliability the test now seemed to be acceptable and ready for use in final forme.

Table III

COEFFICIEII OF REIIABIIITY OF THE PRELIMITARY FORM OF THE TEST IN COMPUTATION WITH DECIMAL FRACTIONS DEHERMINED BY THE KUDER-RICHARDSON FORMJLA.

Form Reliability Coefficient

Preliminary . 820

9
H. H. Remmers and N. L. Gage, Educational Moasurement and

Evaluation, p. 205. New Yorks Harper \& Brothers, 1943.

Final Form

The only revision undertaken for the Final Form of the test was to arrange the items in order of difficulty. With this; the test was ready to be administered for a final run.

The test was now given to over 300 grade $7 m 8 \mathrm{~m} 9$ pupils in a single junior high school. The same precedure was used as in the Preliminary Form. The papers were checked objectively, arranged in rank order, and divided into three seotions of 100 each.

Correot item responses were tallied and per cent of validity and per cent of difficulty were caloulated as before. Table IV shows the results. As before; the material is presented in graphical form in Figure II. It may be seen that only one item falls slightly below the arbitrary curve. The validity of all items is positive and ranges from 7% to 79%. The per cent of difficulty of items runs fram 9% to 8% with an average difficulty of 31.51%. It will be noted that the test appeared to be less difficult for this group than for the group tested in the proliminary run. This may be acoounted for; in part, by the fact that only one school was used in this run and by the fact that the test was administered later in the school year. It may also be observed that the order of difficulty of the items, although not identioal with that found in the first run, is approximately the same.

Item Validity Basod on Flanagan's Tablos

Although the method above appeared to provide a satisfactory estimate of the internal consistency of the items of the test, it was decided to apply a further cheok of the item validity indices. According

Table IV

THE VALIDITIES AND DIFFICULTIES IN TERMS OF PER CENI OF THE THEMS OF THE FINAL FORM OF THE TEST IN COMPUTAT IOIV WIIH DECDMAL FRACT IONS

Item	Per cent of Validity	Per cent of Difficulty
1	7	11
2	9	9
3	7	10
4	23	13
5	20	13
6	27	15
7	19	17
8	22	15
9	15	10
10	30	19
11	21	14
12	29	17
13	22	21
14	29	28
15	36	20
16	51	29
17	14	24

Table IV (continued)

THE VALIDIPIES AND DIFFICULTES IN TERMS OF PER CENT OF THE THEMS OF THE FINAL FORM OF THE TEST IN COMPUTAT ION WIPH DECTMAL FRACT IONS

Item	Por cent of Validity	Per cent of Difficulty
18	34	35
19	48	30
20	37	27
21	51	32
22	56	32
23	47	35
24	49	27
25	41	32
26	65	48
27	54	36
28	33	32
29	55	68
30	15	87
31	65	59
32	79	47
33	58	67
34	68	50
35	38	73

to Thorndike ${ }^{10}$, who favours working with the top 27 per cent and the bottom 27 per cent of the total group:

The most satiafactory item validity index based on the upper and lower 27 per cent is the estimate of the coefficient of correlation between item and test obtainable fram tables prepared by Flanagan

Using the data obtained Pran the final administration of the test, per cents sueceeding in the upper 27 per cent and the lower 27 per cont were caloulated. Estimates of product-moment coefficients of correlation were found by reference to tables prepared by Flanagan ${ }^{11}$. The results appear in Table ∇. It will be seen that the coefficients of correlation range from . 120 to . 810 and that all are positive. Items 1 and 2 are not significantly greater than zero at the 1% level and are barely significant at the 5\% level. The rest. of the items are significantly greater than zero.

10
Robert L. Thorndike, Personnel Seleotion, p. 242. New York: John Wiley \& Sons, Inc., 1949.
11.
ibid., pp. 348-351.

Table V

INTERNAL CONSISIENCY OF THE FINAL FORM OF THE TEST IN COMPOIAT IOM WITH DECTMAL FRACTIONS, BASED ON FLANAGAN'S EST TMATES OF THE CORRELAT ION BEIWEEN IIDIVIDUAL ITEMAS AND THE TEST AS A WHOLE

Item	Coeffioiont
1	.120
2	. 140
3	. 215
4	. 243
5	. 400
6	. 700
7	. 280
8	. 420
9	. 370
10	. 580
11	. 505
12	. 520
13	. 320
14	. 375
15	- 560
16	. 665
17	. 245
18	. 400
19	. 640
20	. 495
21	. 638
22	. 680
23	. 510
24	. 795
25	. 533
26	. 600
27	. 605
28	. 460
29	. 600
30	. 345
31	. 680
32	. 810
33	. 715
34	. 690
35	. 470

Reliability

Reliability of the Final Form of the test was determined by using the same methods as those used in the Preliminary Form. The findings are given in Table VI. While the reliability coefficients have drapped slightly, the figures are reasonably close to those obtained for the oarlier form.

Table VI

COEFFICIENS OF RELIABILITY OF THE FINAL FORM OF THE TEST IN COMPETATION WIPH DECTMAL FRACTIONS

Sumary

In the opinion of the writer, the analysis has demonstrated that the Final Form of the test is a satisfactory instrument for use in this study. The test is almost self-administering; it can be given in a normal olassroom period; it is easily scored and is highly objeotive; it is economioal in terms of cost; the material of the test is based entirely upon the curriculumg in construction of the test, logical and "face" validity have received consideration; the items meet the require-
ments of validity and difficulty and succeed in discriminating between the good and the poor pupils; on the basis of two statistical techniques the test is found to possess a fairly high degree of reliability. In the light of the foregoing arguments, the test is considered suitable for its intended purpose and will be used in the investigation.

[^4]CONSTRUCTION OF A TEST IN UNDERSTANDINGS OF PROCESSES IWVOLVING DECTMAL FRACTIONS

Introduction

The construction of a test in understandings of processes involves not oniy the same problems as those encountered in the preparation of the test in cornputation, but also, additional difficulties due to the nature of such a test. A discussion of understandings and meanings was presented in an earlier chapter. The problem now arising is one of securing a test designed to evaluate a pupilis understanding of the basic processes inherent in omputation with decimal fraotions. That little research has been carried out in this area is indicated by Glemnon in the following:

The paucity of research studies in the area of testing for meanings justifies the conclusion that this is one of the most neglected educational problems of the day.

An examination of Glemnon's teat in mathomatical understandings revealed that, by its nature, it would not suit the purpose of this study. In addition, no data relative to its velidity were available. As no other tests which would fit the requirements of this stady could be loceted. it was decided that it would be necessary to construct a test in understandings of basic processes involved in the use of decimal fractions.

$$
\text { Glemnon, ope cit., po } 68
$$

Factors Involved in the Construction of Test Items

In constructing the test items the testmaker had to be consoious of a maber of factors that were not relevant to the computational test. The items mast not involve omputation, otherwise they would duplioate the funotion of the other test. The material must be based upon the material of the companion test in computation-wit mast try to evaluate the subject's understanding of his use of the mechanics which involve the same basic concepts. Verbalism must be minimized so that the test does not become an ovaluation of reading oomprehension. Wording of the items mast receive careful consideration $s 0$ that ambiguity may be avoided. A suitable form of item nust be selected to ensure a high degree of objectivity.

With an awareness of these requirements in mind, the writer set about to prepare the material for the test. The lack of a criterion against which to validate the test made it imperative to oonstruct it with the greatest care so that it might be efficient in terms of ourrioular or analytical validity. Both Carlile and Glennon ${ }^{2}$ deponded upon this aspect of validation in their tests.

The questions on the omputational test were taken as a basis on which to work and an attempt was made to design items to test understandings of the processes used in these ocmputations. To obtain scme idea of the manner in whioh students are likely to describe their thought processes when performing oomputations; some subjective questions were given inform-

```
    2
        Carlile, op, cite, p. 2l4
        3
        Glemon, op, oit.s p. 70
```

ally to several groups. A series of questions was then prepared on individual cards.

The form of iten decided upon was the multiple-choice. Discussing the use of this style of question, Ross ${ }^{4}$ has this to say:

The multiplemoice type of item is usually regarded as the most valuable and most generally applicable of all test forms. Lee regards it as "one of the best means for testing judgment that is available". Lindquist asserts that it is "definitely superior to other types ${ }^{n}$ for measuring such educational objectives as "inferential reasoning, reasoned understanding, or sound judgment and discrimination on the part of the pupils".
Remmers ${ }^{5}$ and others support this opinion. In addition, this style of item ensures objectivity of scoring which is an essential oharacteristic for this test.

Exparimental Form

An exploratory group of twenty-seven items was prepared and the material was submitted to a number of competent educationalists for critioism and suggestion. The cambined judgments of these people ensured some degree of validity and made it possible to prepare an experimental form of the test.

The test was administered to over one hundred grade 7-8-9 papils in the Greater Victoria Sahool Distriot. Some of the testing was done personally by the writer to observe pupil reaction and to calculate the time factor. In addition, some testing of individual subjects was perm formed. Results were carefully analyzed and a orude ocmparison was made
C. C. Ross, Measurement in Today's Sohools, p. 145. Nevf York: Frentice-Ha11, Inc., 1941.
5.

$$
\text { Remmers, op. oit., p. } 167
$$

with the performance of the same pupils on the test in compuitation. At this point it was decided that there was little to be gained by validating the test at this grade level because reading ability appeared to be such an important factor. As the study was to be performed ultimately with a group of student-teachers, it appeared that further testing should be conducted with a similar group.

The Experimental Form was next administered to a groap of first year college students under the personal supervision of the writer. In all stages of preparation of the test comments and suggestions were invited from the students so that revision might be made with a view to securing greater "face" validity. A careful analysis of individual working times was made and it was found that the test could be completed with ease in fifteen to twenty minutes. The results of this group were carefully analyzed in terms of alterpatives selected and a crude comparison was made with their general achievement standing in mathematics: As a result of these observations, it was now possible to revise the test and prepare a Preliminary Form.

Preliminary Form

The Preliminary Form of the test was made up of twenty-seven maltiple ohoice items of four or five alternatives. The time factor was set at fifteen minutes or until a large per cent of the group had completed the paper. Simple directions were prepared and a marking key was provided. The paper was administered to over three hundred teachers-in-training who were invited to comment upon their reaction to the various items. The items were easily and objectively scored by competent students.

Three hundred completed papers were selected and arranged in score order. They were then divided into three piles of one hundred eack, thus providing an upper and a lower third. Item responses were tabulated on large sheets of squared paper and, using the Upper ThirdmLower Third technique, per cent of validity and per cent of difficulty were oalculated. The analysis is given in Table VII.

As in the test in computation, the per cents of validity and of difficulty were plotted apon a grid and an arbitrary cuxve was drawne This is illustrated in Figure III. It will be seen that only one item falls below the aurve to any appreciable degree. All items show a positive validity ranging from 10% to 52% with only a few much below 20%. Thus they meet the requirement set up by carlile ${ }^{6}$ in his study. He reported:

Items whioh did not show a positive disorimination af as much as twenty per oent were considered lacking in the power of disorimination.

At the same time, he pointed out that there is a tendenoy to include scme easy and some difficult items which will have little discriminative value.

Por oent of difficulty of the itoms ranges from 7% to 69% with an average difficalty of 33%. The test, as a whole, is easier than desirable but perhaps that is inovitahle in a test of this type. At the same time, it must be remombered that the test was administered near the end of a year's consideration of the content.

$$
\text { Carlile, op, oit., p. } 215
$$

Table VII

THE VALIDITIES AND DIFFICULTIES IN TERMS OF PER CENT OF THE ITEIVS OF THE PRELTMIIARY FORM OF THE TEST IN UNDERSTANDITY OF PROCESSES

Itern	Per oent of Validity	Per cent of Difficulty
1	25	17
2	13	33
3	32	34
4	43	30
5	19	79
6	25	19
7	18	10
8	31	31
9	10	7
10	30	35
11	33	36
12	18	10
13	19	11
14	25	17
15	42	33

Table VII (contimed)

THE VALIDITIES AND DIFFICUITIES IN TERMS OF FPR CENI OF THE ITEMS OF THE PRELIMTNARY FORM OF THE TEST IN UNDERSTANDING OF PROCESSES.

Item	Per cent of Valiaity	Per cent of Difficulty
16	52	37
17	44	55
18	29	32
19	34	24
20	52	36
21	14	17
22	35	76
23	31	22
24	27	60
25	41	36
26	28	20
27	24	76

FIGURE III
GRAPHICAI ANALYSIS OF ITEMS OF TEST IN ONDERSTANDITHG OF PROCESSES IN TERMIS OF PER CENT OF VALIDITY AND PER CENH OF DIFFICULTY -- PRBLTMINARY FORM

Reliability

The coofficient of reliability was calculated by dividing the test into chance-halves, using the odd and even scores. The Pearson Product-lfoment mothod was employed to find the ooefficient of the half test. The result was corrected by the Spearman-Brown Prophecy Formula and appears in Table VIII.

Table VIII

COEFFICIENI OF RELIABIIITY OF THE PRELIMTMARY FORM OF THE TEST IN UNDERSTANDING OF PROCESSES DETERMINED BY ODD-EVEN SFLIT-EALVES TECHNIQUE

Form \quad Coefficient | Corrected |
| :---: |
| Coefficient |

Preliminary
. 566
.723

The Kuder-Richardson Formula was then applied with the result shown in Table IX.

Table IX

COEFFICIENI OF RELTABIITIY OF THE PRELIMINARY FORM OF THE TEST IN UNDERSTANDING OF PROCESSES DEIERMINED BY THE KUDER-RICHARDSON FORMULA

The reliability coefficients obtained for the Preliminary Form of the test were disappointingly low.

The Final Form

The results of the Preliminary Form were subjected to a most careful scrutiny and a muber of changes in the wording of the items were made. The questions were then arranged in approximate order of difficulty. Three additional items were added, bringing the total up to thirty. The test was now prepared in final form.

In Chapter I there was set forth a list of the concepts which, it is believed, forms the basis of the understandings involved in the use
of decimal fractions. It is the function of the present test to evaluate the students! understanding of these concepts. Following is an analysis of the test which indioates the items that are designed to measure the various concepts:

> Conoept Item

1. Meaning of decimal fractions. - 27
2. Reading and writing of decimals $\quad 7$
3. Value of decimal fractions - 5, 10, 21, 28
4. Comparison of decimal fractions - 4
5. Function of zero - 3, 8, 9
6. Rounding off numbers - 21, 22, 28
7. Accuracy of measurement - 18, 30
8. Effect of moring decimal point - 6, 8, 14; 19,

23, 25
9. Location of point in addition $\left\{\begin{array}{l}\text { 10. Location of point in subtraction }\end{array}\right.$ - 1
11. Location of point in multiplication * 16 , 25, 26
12. Location of point in division - 12, 13, 14, 17,

23; 24
13. Changing common fractions to
decimals - 2s 29
14. Changing decimals to camon
fractions - 15
15. Relative value of digits 11,20

The revised test was now administered to 150 teachersmintraining. It was made up of thirty maltiplemchoice items and the time
factor was set at twenty minurtes. The test was completed by nearly ail students in the allotted time. Interest appeared to be fairly high and ambiguity had been largely eliminated. The test was readily scored and was oompletely objeotive.

The results were tabulated and analyzed as in the Preliminary Form. Table \bar{X} gives the per cent of validity and difficulty of the items. In Figure IV the results are depicted graphically. Per cents of validity run fram 8% to 72%. Difficulty of the items ranges from 4% to 77% with an average difficulty of 33%, the same as for the Preliminary Form. The graph shows that only a fow items fall below the curve but none so far as to cause any real concern. The three additional items proved to be quite satisfactory, having the following ratings:

No.	Per oent of Validity	Per cent of Difficulty
5		
7	66	59
14	26	55

Table X

THE VALIDIFIES AND DIFFICULTIES IN TERMS OF PER CENP OF THE TPHMS OF THE FINAL FORM OF THE TEST IN UNDERSTANDING OF FROCESSES

Item	Per cent of Validity	Per cent of Difficulty
1	10	5
2	8	4
3	14	9
4	12	8
5	66	59
6	40	34
7	26	55
8	34	19
9	16	14
10	30	67
11	22	13
12	26	13
13	32	16
14	68	48
15	16	24

Table X (contimed)

THE VALIDIFIES AND DIFFICULTIES IN TERMS OF PER CENH OF THE ITEMS OF THE FINAL FORM OF THE TEST IN UNDERSTANDING OF PROCESSES

Item	Per cent of Validity	Per cent of Difficulty
16	38	25
17	18	29
18	34	31.
19	32	30
20	42	23
21	50	29
22	32	32
23	56	32
24	48	40
25	58	45
26	44	32
27	44	50
28	72	58
29	34	77
30	30	59

FIGURE IV
GRAFHICAL ANALYSIS OF ITEMS OF TEST TN UNDERSTANDING OF PROCESSES IN TERMS OF PER CENT OF VALIDITY AND PER CENI OF DIFFICUITY \sim FINAL FORN

Item Validity Indices Based on Flanagan's Tables

Following the same procedure as that used in the test on computation, validity coefficients were determined on the basis of the upper and lower twenty-seven per cent of the group tested. Reference to Flanagan's tables gives values as shown in Table XI. All coefficients are positive and range from . 150 to . 820. The coefficients of all items, with the exception of one, are significantly greater than zerc. The ooefficient of item No. 15 is too small to be indicative of any real correlation.

Table XI

INIIERNAL CONSISIENCI OF THE FINAL FORM OF THE TEST IN UNDERSTANDING OF PROCESSES, BASED ON FLANAGAM'S. ESI TMATES OF CORRELATION BEHWEEN INDIVIDUAL ITEMS AND THE TEST AS A WHOLE

Item	Cooffioient
1	. 430
2	. 500
3	. 415
4	. 415
5	. 700
6	. 485
7	. 280
8	. 600
9	. 380
10	. 280
11	. 505
12	.655
13	. 700
14	. 725
15	. 150
16	- 550
17	. 205
18	. 415
19	- 540
20	. 780
21	. 645
22	. 415
23	. 805
24	. 665
25	-730
26	. 560
27	-450
28	. 820
29	. 645
30	. 720

Reliability

The meliability ooefficient of the Final Form of the test was calculated by the same methods as were used previously and the results are shown in Table XII. The coefficient of reliability was estinated to be considerably higher than that found for the Preliminary Form and was considered to be satisfactory.

Table XII

COEFFICIENIS OF RELTABITITY OF THE FINAL FORM OF THE TEST IIT UNDERSTANDINGS OF PROCESSES

Form \quad Method | Reliability |
| :--- |
| Coefficient |

Final	Split-halves	.809 (oorreeted)
n	Kuder-Richardson	.717

> Relationship Between Soores on Test on Understandings and Intelligenoe Test Scores

In an endeavour to discover more clearly the nature of the test on understandings, the scores on this test were compared with the scores obtained by the same students on the Otis Test of Mental Ability. The coefficient of correlation was determined by the Pearson Product-Moment

Method with the result shown in Table XIII. This is somewhat higher than the usual $4=.45$ (approx.) found between intelligenoe test scores and achiovement scores at this level. A oorrelation of this magnitude is olassified by most writers as denoting substantial or marked relationship. We may conclude that a fairly strong relationship exists between the two sets of measurese Based upon logical considerations, this may suggest the influenoe of suoh factors as reading comprehension or the existence of similarities in the two tests, but the causemandeoffect relationship cannot be determined from the data.

Table XIII

RELAT IONSEIP BETWEEN SCORES ON TEST IN UNDERSTANDINGS OF PROCESSES AND OFIS TEST OF WENILAL ABIIIIY OBTAINED BY 250 NORMAL SCHOOL STUDENIS

$$
\boldsymbol{r}=.585
$$

Surmary

After eonsidering the foregoing factors, i.e., curricular and "face" validity; discriminatory value, degree of diffioulty, objeotivity, practiaality, eto., it was decided that all the items in the test should be retained and that the test might be considered an acceptable instrument of evaluation to be used in the present study. The Test in Understandings of Basic Processes Inrolved in the Use of Deoimal Fractions will be found in Appendix B.

CHAPIER IV

INVESTIGATION OF THE REHATI IONSHIP BETWEEMN COMPUTAT ION AND UNDERSTANDINGS IN THE USE OF DECIMAL FRACT IOMS

The Subjects

The subjects selected for the investigation of the relationship betreen oompratational ability and understanding of basie processes involved in the use of decimal fractions consisted of students enrolled in the onoyear teacher-training course at the Victoria Normal Sohool. All of these students possessed the basio qualifioations required for admission into the Normal Schools of the Province of British Columbia, i.e., graduation from high school on the University Entrance Programme (or its equivalent). Many had acquired additional credits extending from first year university standing through to the Bachelor of Arts Degree. While the majority of the students were graduates of the high schools of British Columbia, some had acquired their basic education in other parts of Canada and Europe. The range of I.Q. scores of the group measured by the otis Test of Mental Ability, extended from 91 to 137, with a standard deviation of 8.7. The ages of the testees ranged from 17 to orer 40. While the students formed a diversified group, they were typical of the people who teach school in British Columbia. It may be assuned that, having fulfilled the requirements for entranoe ixto Normal Sohool; all had received basie instruction in the fundamentals of computation with decimal fractions. Howerer, it is likely that there would be considerable variation in the methods by
which they had received their instruction.

Administration of the Tests

The tests which have been described in the previous chapters, and whiah appear in Appendix A and Appendix B, were used for the investim gation of relationship. Shortly after the students assembled for the fall term, and before any instruction had taken place, the tests were administered to the entire student-body, consisting of two hundred forty students. Thus, the testees recsived no benefit from the course of instruction at the Normal School in which the maaning theory is emphasized. The students answered the papers, equipped with the lonowiedge and understanding acquired from their previous education and experienoe.

The test in computation with decimal fractions was administered first and a time-limit of thirty minutes was allowed. This proved to be ample time for most students to finish with ease. The test in understanding of processes was given imendiately following the first test and a time-limit of twenty mimutes provided long enough for the majority to complete all the items. This order of presenting the tests appeared to be the logical one as the intention was to disoover the subjects ${ }^{\text {t }}$ under. standing of the prooesses employed in the compratation. Had the reverse order been used, it is possible that the items in understandings might have provided clues to the solution of some of the questions in computation.

Analysis of the Results

The scoring of the papers, under the supervision of the writer, was completely objective. In the test in computation the scores ranged from 23% to 100% correct with a mean of 74% correct. In the test in
understandings the scores were distributed fram 18% correct to 100% correct with a mean of 61% correct. There is a wide range in achievement shown in the results of both tests-an outeome which might be axticipated from the range in intelligent quotient scores previously stated.

Two hundred thirty-six papers were selected and the Pearson Product-Moment method was employed to caloulate the coefficient of correlation between the results of the test in computation and the test in understandings. The result is shown in Table XIV. The data indioates the existence of a positive relationship of considerable magnitude between the scores obtained on the tests in computation and understandings.

Table XIV

RELAT IONSHIP BETWEEN SCORES OBTATNED ON TESTS IN COMPOTATION AND UNDERSTANDING OF PROCESSES INVOLVED IN THE USE OF DECDUAL FRACTIONS BY 236 NORMAL SCHOOL SIUDERTS

$$
r=.670
$$

A study of the scatter diagram reveals the following points of interest:

1. High soores in understandings tend to be accompanied by high scores in computation.
2. Low scores in computation are generally aooampanied by low scores in understandings.

However,
3. High soores in computation are found throughout a fairly wide range of scores in understandings,
and
4. There is a fairly wide range in scores in computation acocmpanying low scores in understandings.

Two examples of extreme scores may be cited. Case A succeeded in answering 86% of the items in computation correotly while possessing only 21% of the understandings of the other test. This individual had a relatively low I. Q. rating. Case B scored 54\% in the understandings but only 28% in computation. These cases; however, were isolated and not indicative of the general trend of relationship.

In a further attempt to analyze the results and to secure more data on the inter-relationships of the tests; ooefficients of correlation between the results of the tests and intelligenee test scores were determined. The relationship between I.Q. and scores on the test in understanding was found to be $r:$. 547. (This is reasonably olose to the correlation of $r=.585$ referred to in the last ohapter ${ }^{1}$) The relationship between omputation and I. Q. was calculated to be $r=.481$. A composite statement of these correlations is given in Table XV.

Table XV

COEFFICIENTS OF CORRELAT ION BEIWEHR TESTS

	I. Q.	Compua tation	Under- standings
I. Q.		.481	.547
Computation $:$.481		.670
Understandings	.547	.670	.

Partial Correlation

The influence of the factor of intelligence, which has a common relationship to the variables of oomputation and understandings, tends to obsoure the true results. The differences among individuals, introduced by the factor of intelligence, can be eliminated by using the method of partial oorrelation. Using the technique described by Garrett, ${ }^{2}$ the net correlation between computation and understandings, with intelligenoe "partialled out", was caloulated. The result obtained was:

$$
x=.554
$$

Henry E. Garrett, Statistios in Psyohology and Education, pp. 378-403. New York: Longmans, Green and Companys. 1953.

Sumarey

The tests in computation and understandings in the field of decimal fractions; mere administered to a group of student-teachers. While the testees formed a diversified group, it was assumed that they had a comon bacloground in the area corered by the tests. No instruction preceded the testing programme. The results of the investigation indicated the existenoe of a positive relationship of considerable magnitude between computation and understandings. The ooefficient of correlation was found to be $x=.670$. When differences in intelligence had been allowed fors the net correlation was found to be someminat less than the apparent relationship; i.e. $\quad=.554$.

CHAPTER V

SUMAMARY AND CONCLUSIONS

Summary

Purpose of the study:
This study was undertaken in an attempt to discorer what relationship, if any, exists between a subject's ability to perform mechanical computations and his understanding of the inherent mathomatioal principles, in the area of decimal fractions. Modern theory of arithmetic instruction places great emphasis apon the acquisition of mathematioal meanings in the learning process. The writer's purpose in conducting this study was to investigate the validity of the olaims set forth by the proponents of the meaning theory and to add some ovidence to the slowly accumalating body of lenowledge conoerning the place of understandings in arithmetio instruction.

Materials of the study:
The topic of decimal fractions was ohosen as the area of inrestigation because of the universality of its oontent and the essential nature of its material in our society. The subjeats chosen for the investigation were student-teachers, because the topic of the investigation has particular significance for teachers and also because Nomal School students provided a convenient group for the oonduct of the study.

Prooedure of the study:
The pursuance of the investigation depended upon the use of suitable testing instruments. As no tests which met the rather rigid requirements of the study could be obtained, it became necessary to undertake the construction and validation of original materials saitable for the speoific purpose. The preparation of the tests in computation and understandings became a major phase of the study.

Much preliminary testing took place and the tests were revised several times in an effort to meet the specifications of sound, aoceptable testing instrments. Pupils of the grade 7me9 level provided the subjects for the establishment of the validity and reliability of the test in computation. The test in understandings was developed using studentteachers as testees.

The internal consistency of test items was determined by using a technique based upon the disoriminating power and the degree of difficulty of the items, using the upper and lower thirds of the groups. A further cheok of internal consistenoy was made by reference to tables prepared by Flanagan, using the upper and lower twenty-seven per cent of the groups. Reliability was estimated by the split-halves teohnique and a further estimate was made using the Kuder-Richardson method. These statistical results indicated that the final forms of the tests could be used for the purpose of the investigation with some oonfidenoe in their efficienoy. The finished tests should have further usefulness beyond the purpose of this study.

Results of the investigation:

The investigation was conducted using student-teachers as sub-
jeots. The group tested was diversified in respect to age, bacigground,
academic status, and intelligence. All had in common some knowledge of the use of decimal fractions. No instruction or explanation preceded the administration of the tests. The test in computation (Appendix A) was first given and was immediately followed by the test in understandings (Appendix B). Two hundred thirty-five papers were used to ostimate the degree of relationship between computational ability and understandings of mathematical principles. The ooefficient of oorrelation was found by the Pearson Product-Moment method to be: $r=.640$. Further correlation coofficionts were computed whioh produced the following data:

$$
\begin{array}{lll}
\text { 1. Understandings - Intelligenee: } & r=.547 \\
\text { 2. Computation - Intelligence: } & r=.481
\end{array}
$$

The ocmanon factor of intelligence was "partialled out" and the not correlation between computation and anderstandings was found to be: $r=.554$.

Conclusions

The data obtained from the investigation leads to the following inferences and conolusions:

1. There is a positive coefficient of correlation between soores on the test in computation and scores on the test in understandings in decimal fractions. This indicates that there is a tendency for the scores to vary in the seme direotion. High scores in one tend to accompany high scores in the other, while low soores in one are usually found along with low scores in the other. The size of the correlation coefficient ($\mathbf{r}=.640$) is of substantial magnitude.
2. The common factor of intelligence has an influence upon the relationship between the two variables. When intelligence is hold constant, the partial coeffisient is less than the apparent cooffioient, whioh indioates that relationship is due, in part, to the comon dependenoe of both variables upon the intelligenoe factor. The net correlation is of marked magnitude ($r=.554$).
3. The magnitude of the relationship between understandings and intelligence is indicative of oonmon elements in both ($\mathbf{r}=.547$). However, a high I. Q. is not a guarantee of a : high level of understanding.
4. The relationship between intelligence and computational ability is positive but not high ($\mathbf{r}=$.481). Computational competence in decimal fractions seems to be possible with a relatively Iow I. Q. (in terms of the group used in this investigation).
5. While the trend is that increase or decrease in one variable is acocmpanied by increase or deorease in the other, there is considerable oridence that neither is essential for the other, and that high scores in one do not guarantee high scores in the other.
6. Although it appears, from a study of the soatter diagram, that one who is aware of the mathematiogl prinoiples involved in the use of deoimal fractions has a greater likelihood of success in computation, the suggestion of causal influence must be rejected. It cannot be inferred frcm the data that the concomitance is an indication that understandings insure better computation or Vice versa.

Suggestions for Further Study

As the study progressed, lack of sufficient researoh in certain areas became ovident. The following points are suggested as fields for further investigation:

1. It inmediately becam apparent that there is need for a cleariy defined statement conoerning what constitutes a body of understandings in arithmetic. While volumes have been written on understandings, there seems to be reason for Van Engen's ${ }^{1}$ statement that:

Judged by its crucial importanoe in determining methods of instruction, currioulum content, and supervisory practices, the precise nature of meaning has received relatively little attention in the educational literature dealing with the outstanding problems of arithontic in the elementary schools. Failure to make more precise the nature of meaning in aritmetic has resulted in confusion and controversy.

This laok of a specific statement of the nature of understandings presented a difficulty to the writer and points the way to noeded studies.
2. After deciding upon the nature of the investigationg it became neoessary to secure suitable testing instruments. It beoame apparent at once that satisfactory tests were not available and would have to be construoted. While there are many good tests in computation with deoimal fractions; none could be found that entirely met the specifications demanded by the proposed study. It was found that, while a small begimning has been made in the measurement of understandings, there is noed for muoh more research in this area of evaluation.

[^5]3. Having embarked upon the task of constructing a test on understandings; the writer was confronted with the problem posed by lack of adequate and valid criterion measures. Thus, it was neoessary to employ internal consistency teohniques in validating the test items. It is obvious that there is great need for research in this area.
4. Although mach has been written about the desirability of developing mathematical understandings; more studies are noeded to reveal the results which aocrue fram the use of the meaning theory of instruction. More investigations, based upon the evaluation of the outoomes of different methods of instruotion, are needed to indicate the results of meaningful instruction.
5. Many more studies, similar to the present one, should be conducted in other areas of arithmetic and at other educational levels to provide data on the relationship of computation and understandings. Only by diligent applioation to these relevant problems, can data be acoumulated to add to the body of knowledge conoerning arithmetio instruction and the place in it of understandings.

BIBLIOGRAPHY

Broom, M. E. Educational Measurements in the Elementary Sohool. New York: MoGraw-Hill Booz Company, Ino., 1939.

Brownoll, William A. "Psychological Considerations in the Learning and the Teaching of Arithotic", The Teaching of Arithmetic. Tenth Yearbook of the National Council of Teachers of Mathematics. New York: Teachers College, Columbia University, 1935.
------- "The Evolution of Learning in Arithmetio", Arithmetio in General Education. Sixteenth Yearbook of the National Council of Teachers of Mathematics. New York: Teachers College, Columbia University, 1941.
------- "The Place of Meaning in the Teaching of Arithmetic", Elementary School Journal, XIVII (Jamary, 1947), 256-265.
-men--- "The Revolution in Arithmetic", The Arithmetic Teaoher, I (February, 1954), l-5.

Brueokner, Leo J. and Grossnickle, Foster E. Making Arithmetio Meaningful. Philadelphia: The John C. Winston Company, $\overline{1953 .}$

Buswell, G. T. "Mothods of Studying pupils T Thinking in Arithmotio", Arithmetic 1949. Supplementary Monographs, No. 70. Chicago: University of Chicago Press, 1949. 55-63.

Carlile, A. B. "An Examination of a Teacher-made Test", Educational Administration and Supervision, 40 (April, 1954). Baltimore: Warwick \& York, Inc. 212-218.

Cronbach, Lee J. Essentials of Psyohological Testing. New York: Harper \& Brothers, Publishers, 1949.

Garrett, Hemry E. Statistics in Psyohology and Education. New York: Longmans, Green and Co., 1953.

Glennon, Vincent J. "Testing Meanings in Arithmetic", Arithmetio i949. Supplementary Educational Monographs, No. 70. Chicago: Jniversity of Chicago Press; 1949. 64-74.

Greene, Harry A., Jorgensen, Albert N. and Gerberich, J. Raymond "Measurement and Eraluation in the Secondary Sohool. New York: Longmans, Green and Cos; 1943.

Grossnickle, Foster E. "Dilenmas Confronting the Teachers of Arithmetic", The Arithmetic Teacher. I (February, 1954), 12-15.

Hawkes, Herbert E., Lindquist, E. F., Mann, C.R. The Construction and Use of Achievemont Examinations. Boston: Houghton Mifflin Company, 1936.

BIBLIOGRAPFY--Continued

Kilgour, Jean Alma. The Effect of a Year's Teacher-Training Course on the Vancouver Normal School Students: Understanding of Arithmetic. Unpublished Master's thesis in education. University of British Columbia. 1953.

Lindquist, E. F. A First Course in Statistics. Boston: Houghton Mifflin Company, 1938.

Long, J. A. and Sandiford, P_{0} The Validation of Test Items. Bulletin No. 3 of the Department of Educational Research. Toronto, Ontario: The Department of Educational Research, University of Toronto, 1935.

McConnell, T. R. "Recent Trends in Learning Theory: Their Application to the Psychology of Arithmetic"; Arithmetio in General Education. Sixteenth Yearbook of the National Council of Teachers of Nathematics. New York: Teachers College, Columbia University; 1941.

Measurement of Understanding, The. The Forty-fifth Yearbook of the National Society for the Study of Education, Part I. Chicago: University of Chicago Press, 1946.

Morton, Robert Lee. Teaching Arithmetic in the Elementary School Volume II. New York: Silver Burdett Company, 1938.
---men Teaching Children Arithmetio. New York: Silver Burdett Company, 1955.

Orleans, Jacob S. and Wandt, Edwin. "The Understanding of Arithnetic Possessed by Teachers", Elementary School Journal, LIII (May, 1953), 501-507.

Renmers, H. H. and Gage, No L. Educational Measurement and Evaluation. New York: Harper \& Brothers, 1943.

Ross, C. C. Measurement in Today's Schools. New York: Prentice-Hall, Ince, 1941.

Spitzer, Herbert F. The Teaching of Arithmetic. Cambridge: The Riverside Press, 1948.

Stokes, C. Newton. Teaching the Meanings of Arithmetic. New York: Appleton-Century-Crofts, Ince, 1951.

Storm, W. B. "Arithmetical Meanings that Should be Tested", Arithmetio 1948. Supplementary Educational Monographs, No. 66. Chicago: University of Chicago, 1948. 26m31.

BIBLIOGRAPHY-Continued

Sueltz, Ben A. "Measuring the New Aspeots of Functional Arithmetic", Elementary School Journal, XIVII (February, 1947), 323-330.

Taylor, E. H. "Mathematics for a Four-Year Course for Teachers in the Elementery School", School Science and Hathematics, XXXVIII (May, 1938), 499-503.

Thorndike, Robert L. Persomel Selection. New York: Wiley \& Sons, Inc., 1949.

Tiegs, Ernest W. Tests and Measurements in the Inprovement of Learning. Boston: Houghton Mifflin Company; 1939.

Van Engen, H. "An Analysis of Meaning in Arithmetic. I", Elementary School Journal, XIX (February, 1949), 321-329.
-a---a- "An Analysis of Meaning in Arithmotic. II", Elementary School Journal, XIIX (March, 1949), 395-400.

Weaver, J. Fred. "Some Areas of Misunderstanding About Meaning in Arithmetic", Elementary School Journal, LI (September, 1950), 35-41.

Weitman, Ellis and McNamara, Walter J. Construoting Classrocm Examinations. Chicago: Science Research Associates, 1949.

Wingo, G. Max. "The Organization and Administration of the Arithmetic Program in the Elementary School", Arithmetio 1948. Supplementary Educational Monographs, No. 66. Chicago: University of Chicago Press, 1948. 68-79.

Wren, F. Lymwood. "The Professional Preparation of Teachers of Arithmetic", Arithmotic 1948. Supplementary Educational Monographs, No. 66. Chicagos University of Chicago Press, 1948. 80m9.

APPERDIX A

TEST IN COMPPTATION WIPH DECDMAL FRACTIONS

APPENDIX A

DECIMAL FRACTIONS

Time: 30 minutes

SCHOOL NAME \qquad
GRADE \qquad DATE \qquad

Place answers in spaces at the right.

1. $.09+.06+.07$
2. . $4 \times .2$
3. \qquad
4. \qquad
5. $\$ 1.67+\$ 4+\$.03+\$ 12.00+\$ 2.05$

6.

$\begin{array}{r}\$.78 \\ \times \quad .56 \\ \hline\end{array}$
5. 1000×19.62
6. Which is largest:
1.01; 101; 11.001; .010; 100.1 6. \qquad
7. $.012 \times 2.45$
8.
$. 2 5 \longdiv { 6 . 5 }$
.001 x 1.01
$.001 \div 1$
$4 \longdiv { . 0 1 0 4 }$
11. \qquad
12. Subtract \$15.67 from \$4671
12. \qquad
13. \qquad
13. From 9674.196 take 362.8074
14. $69.7+145.962+.0346+1.002+18.11$
\qquad
\qquad
\qquad
\qquad
14. \qquad
15.

15. \qquad
16. Write as a decimal fraction: fifteen hundredths
16. \qquad
17.
$. 6 \longdiv { . 0 1 2 6 }$
$.7+.9$
17. \qquad
18.
18. \qquad
19. Find $2 / 3$ of $\$ 3.15$
19. \qquad
20. Write in words: (as common fraction)

$$
.09
$$

20. \qquad
21. Express as a mixed number:

$$
8.031
$$

21. \qquad
22. Find the difference between . 044 and .22
23. \qquad
24. Divide to find the value of :

$$
\frac{3.69}{12.3}
$$

23. \qquad
24. Express as a common fraction: . 0017 24. \qquad
25. Write as a mixed decimal:
six hundred thirty and seventeen thousandths
26. Find the average of: (give answer to the)

95; 103; 90.5; 105年; 100
26. \qquad
27. Divide 9.02 by 1000 (answer in decimal form) 27. \qquad
28. Write in words: (as mixed number)

$$
107.029
$$

28. \qquad
29. Which is largest:

$$
\text { .1764; .2; .199; .003; . } 21
$$

$$
29 .
$$

\qquad
30.

(Correct to 2 places of decimals)
30. \qquad
31. What will be the cost of $6 \frac{1}{2}$ gallons of gasoline at $40.4 \not \subset$ per gallon? (nearest cent) 31. \qquad
32. Express to the nearest hundredth: (as a decimal)

$$
0.106
$$

$$
32
$$

\qquad
33. Express as a decimal fraction correct to the nearest hundredth:

$$
6 / 7
$$

33. \qquad
34. Express to the nearest thousandth(as a decimal)
1706.17428
35. $\quad \$ 57.00 \div 60 \varnothing^{\prime}$
36. \qquad
37. \qquad

APPERDIX B

TEST ITI UNDERSTANDING OF PROCESSES WITH DECTMAL FRACTIONS

			: SBCORE $^{\text {: }}$
	UNDERSTANDING OF PROCESSES WITH DECIMAL FRACTIONS		
SCHOOL	NAME		
		DATE	

CHOOSE THE MOST SUITABLE ANSWER FOR EACH QUESTION.

1. In addition of mixed decimal fractions it is important to arrange the numbers so that:
A. the last figures of all numbers are. in the same column
B. all figures with the same place value are in the same column
C. the first figures of all numbers are in the same column
D. none of these
2. To change a common fraction to a decimal fraction one must know that a common fraction indicates:
A. multiplication
B. enumeration
C. addition
D. division
E. subtraction
3. Adding a zero to the end of a decimal fraction:
A. makes the value 10 times as much
B. makes the value $1 / 10$ as much
C. makes the value 10 more
D. does not change the value
4. The largest of several decimal fractions will be the one with the largest figure in:
A. tenths place
B. hundredths place
C. thousandths place
D. any place
5. The number: 6.00 has a value of:
A. 6 hundreds
B. 600 hundreds
C. 6 hundredths
D. 600 hundredths
6. If a decimal point is moved two places to the left the number becomes:
A. one-tenth as large
B. ten times as large
C. one-hundredth as large
D. one hundred times as large
7. The number . 0170 should be read:
A.. seventeen hundredths
B. One hundred seventy ten-thousandths
C. one hundred seventy thousandths
D. seventeen thousand ths
8. Changing . 645 to . 0645 :
A. does not change the value
B. makes value 10 times as much
C. makes value $1 / 10$ as much
D. makes value $1 / 100$ as much
9. If the number 42.56 is changed to 42.056 , by inserting a zero after the decimal point, the value becomes:
A. unchanged
B. less
C. greater
D. ten times greater
E. one-tenth as much
10. The value of a decimal fraction is determined by:
A. the size of the first digit after the decimal point
B. the position of the last digit after the decimal point
C. the position of the largest digit after the decimal point
D. the position of the first digit, not including zeros, after the decimal point.
11. Which of the following numbers has the figure "6" in the thousandths place:
A. 4695.5417
B. 6495.1724
C. 4325.2163
D. 4175.6000
12. In the question $.5 T$ - 16 the answer is larger than the number divided because:
A. 16 is more than .5
B. it is the same as multiplying by $\frac{1}{2}$
C. dividing a number always gives an answer larger than the number
D. it is the same as finding how many $\frac{1}{2}$'s in 16
13. If a decimal fraction is divided by 1000 the decimal point is moved three places to the left because:
A. the number becomes 1000 times as lerge
B. the number is increased by 1000
C. the number becomes $1 / 1000$ as large
D. the number is decreased by 1000
14. In the question: 1.6) 620.54 if the decimal point
is moved one place to the right in the divisor and one place to the left in the dividend, the answer will be:
A. one hundred times as great
B. ten times as great
C. one hundredth as great
D. one tenth as great
E. unchanged
15. When a decimal fraction is changed to a common fraction (not reduced) the denominator will have one zero for:
A. every figure to the right of the decimal point
B. every figure, except zeros, to the right of the point
C. every zero to the right of the point
D. none of these
16. Multiplying a decimal by 1000 moves the decimal point
A. two places to the right
B. three places to the lef't
C. two places to the left
D. three places to the right
17. In division with decimals the divisor may be made a whole number before dividing because:
A. you can't divide by a decimal
B. moving the point does not change the value of a number
C. it is more convenient.
D. the point in the quotient must be directly above the point
in the dividend
E. the value of a fraction is unchanged when both terms are multiplied by the same quantity.
18. The measurement 1.050 inches is accurate to the nearest: \qquad
A. tenth of an inch
B. hundredth of an inch
C. thousandth of an inch
D. ten thousandth of an inch
19. Moving a decimal point two places to the right has the same effect as:
A. multiplying the number by 10
B. multiplying the number by 1000
C. dividing the number by 100
D. none of these
A. Digit (a) is 100 times digit (b)
B. Digit (a) is 10 times digit (b)
C. Digit (a) is $1 / 10$ of digit (b)
D. Digit (a) is $1 / 100$ of digit (b)
20. The number .6925 has a value of about:
A. . 69 hundredths
B. 2 hundredths
C. 9 hundredths
D. 69. hundredths
E. 692 hundredths
21. If a number is to be expressed accurately to the nearest hundredth it must be found to at least:
A. one place after the decimal point
B. two places after the decimal point
C. three places after the decimal point
D. four places after the decimal point
22. In the question: 1.25 642.3 if the decimal point \qquad were located one place to the right in both numbers the answer would be:
A. ten times as large
B. one-tenth as large
C. one hundred times as large
D. one-hundredth as large
E. unchanged
23. If no zeros are added to the dividend, the answer to the
question: 4.2$) 69.735$ will be a two-place
decimal because:
A. thousandths divided by tenths is hundredths
B. there are two figures in the divisor
C. tenths times tenths is hundredths
D. there are two places before the point in the dividend
24. In the question: 6.42×15.7 if the decimal point were located one place to the right in the first number and two places to the left in the second number the answer would be:
A. ten times as large
B. one tenth as large
C. one hundred times as large
D. one hundredth as large
25. In the question: $6.92 \times 74.3=514.156$ the decimal point is located thus in the answer because:
A. one and two are three
B. hundredths times tenths is thousandths
C. tens times hundreds is thousands
D. there are three places to the left of the point in the numbers multiplied.
26. A "decimal" is a fraction with an unwritten, but understood, denominator which will always be:
A. one
B. ten
C. any multiple of ten
D. any power of ten
E. none of these
27. The number: 2.134 has a value of about:
A. I tenth
B. 13 tenths
C. 21 tenths
D. 213 tenths
E. 2.1 tenths
28. To change a fraction, such as $3 / 4$, to a two-place decimal we divide the numerator by the denominator and we must think of the numerator as:
A. 3 hundreds
B. 3 hundredths
C. 300 hundredths
D. 30 hundredths
E. none of these
29. The sum of: $16.17^{\prime \prime}, 459.4^{\prime \prime}, 142.167^{\prime \prime}, 2.130^{\prime \prime}$
will be accurate to the nearest:
A. inch
B. tenth inch
C. hundredth inch
D. thousandth inch

[^0]: 1
 G. Max Wingo, "The Organization and Administration of the Arithmetic Program in the Elementary Sohool", Arithmatio 1948, p. 69. Supplemontary Educational Monographs: No. 66. Ghicagos University of Chicago Press, 1948.
 ${ }^{2}$ J. Fred Weaver, "Scme Areas of Misunderstanding About Moaning in Arithmetic", The Elementary Sohool Journal, II (September, 1950), p.36.

[^1]: 3
 F. Lymrood Wren, "The Professional Preparation of Teachers of Arithmetion, Arithmetio 1948, p. 82. Supplementary Bducational Monographs, No. 66. Chicago: University of Chioago Press, 1948.

[^2]: Vinoent J. Glemon, "Testing Meanings in Arithmotio", Arithmotio 1949; pp. 64-74. Supplementary Educatiomal Monographs, No. 70. Chioagor University of Chicago Press, 1949.

 10
 Alma Jean Kilgour, The Effect of a Year's Teacher-Iraining Course on the Vancourver Normal School Students' Understanding of Arithmetic. Unpublished Master's thesis in edueation. University of British Columbia, 1953.

[^3]: 3J. A. Long and P. Sandiford, The Validation of Test Items. Bulletin No. 3 of the Department of Educational Research (Toronto, ontario: The Department of Educational Researoh, University of Toronto, 1935), p. 31.

[^4]: The Final Form of the Test In Computation with Decimal Fractions appears in Appendix A.

[^5]: H. Van Engen, "An Analysis of Meaning in Arithnetic. I", The Elementary Sahool Journal, XlIX (February, 1949), p. 321.

