THE GEOLOGY AND MINERALOGY

OF

THE LITTLE BILLY MINE

TEXADA ISLAND, B.C.

by

John L. De Leen

A thesis submitted to the Department of Geology and Geography of the University of British Columbia, as partial fulfillment of the requirements for the Degree of Master of Applied Science.

Vancouver, B.C. April 1946
CONTENTS

Acknowledgments ... 1

Chapter I.

Introduction ... 3
Previous Work and Sources of Information 4
History of Mining on Texada Island 5
Mineral Deposits ... 7

Chapter II. Topography and Geology of Texada Island

Topography .. 9
Relief ... 9
Geology of Texada Island 11
Anderson Bay formation 12
Texada formation .. 14
Intrusive Rock .. 14
a) Stocks ... 14
b) Dykes ... 15

Chapter III. The Geology of the Little Billy Mine.

Marble Bay Limestone 16
Quartz-Diorite ... 17
Alaskite Dykes .. 18
Andesite Dykes ... 19

Chapter IV. Ore of the Little Billy.

Kinds of Ore .. 20
The Prosser Ore Body 21
Location of the Little Billy Ore 22
Related Deposits ... 22
Summary ... 22

Chapter V. Mineralogy.

Contact Metasomatic Minerals 23
The Ore Minerals .. 25
Method of Determining Wehrlite and Hessite 26
Note on Wehrlite .. 28
Note on Hessite ... 28
Minerals of Polished Sections 29
Summary ... 34

CONTENTS (cont'ed)

<table>
<thead>
<tr>
<th>Chapter VI. Paragenesis.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Wollastonite-Bornite Ore</td>
<td>35</td>
</tr>
<tr>
<td>The Bornite-Magnetite Ore</td>
<td>36</td>
</tr>
<tr>
<td>Source of Solutions</td>
<td>37</td>
</tr>
<tr>
<td>Mode of Transfer</td>
<td>38</td>
</tr>
<tr>
<td>Conclusions</td>
<td>39</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chapter VII.</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of the Little Billy ore by the...</td>
<td>40</td>
</tr>
<tr>
<td>Haultain Super-panner.</td>
<td></td>
</tr>
<tr>
<td>Table I - Gold in Bornite-Wollastonite Ore</td>
<td>44</td>
</tr>
<tr>
<td>Table II - Silver in ""</td>
<td>45</td>
</tr>
<tr>
<td>Table III - Comparison of Gold and Silver in sized products</td>
<td>46</td>
</tr>
<tr>
<td>Table IV - Gold in Bornite-Magnetite Ore</td>
<td>47</td>
</tr>
<tr>
<td>Table V - Silver in Bornite-Magnetite Ore</td>
<td>48</td>
</tr>
<tr>
<td>Table VI - Copper in tips</td>
<td>49</td>
</tr>
<tr>
<td>Observations of Super-panner results</td>
<td>50</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Conclusion.</th>
<th>52</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Appendix - Photomicrographs.</th>
<th>53</th>
</tr>
</thead>
</table>

| Bibliography. | 70 |
The author would like to acknowledge his indebtedness to Mr. Prosser, manager and owner of the Industrial Metal Company, for his kind permission to collect specimens and to stay at the Little Billy Mine. He would like to thank Dr. V. Dolmage for his kind assistance and for the use of his Marble Bay specimens.

The research for this report was conducted in the laboratories of the Department of Geology and Geography at the University of British Columbia. Dr. H.V. Warren, Associate Professor of Mineralogy and Petrography, gave his usual enthusiastic assistance which was very much appreciated.

The author wishes to thank Dr. H.C. Gunning, Professor of Economic Geology, for his help and criticism. He would also like to thank Doctors M.Y. Williams and V.J. Okulitch for their instructive suggestions and careful criticism of this thesis.

Mr. James Patrick Donnan, Laboratory Technician of the Department of Geology and Geography, gave his valuable assistance in the making of thin and polished sections.

The writer further wishes to thank Messrs. RM. Thompson and Richard Manning; Mr. Thompson for his x-ray
powder photos, and Mr. Manning for his copper, gold, and silver analyses.
Chapter I.

INTRODUCTION

The object of this thesis is to summarize the published information on the geology of the Little Billy mine, and to augment this data by a further study of the gangue and the ore minerals and to describe the types of ore. In answering the above problem, frequent use has been made of the ore of the nearby Marble Bay mine. This ore is massive and the minerals are readily visible for determination, whereas the ore of the Little Billy is disseminated, a fact which made the determination of minerals and paragenesis difficult and uncertain.

The research involved in this thesis was intended to answer the following questions:

1. The mode of occurrence of the gold and silver in the ore of the Little Billy mine.
2. The nature of the volatiles or mineralizers associated with the contact-metasomatism of the Little Billy mine.
3. The size of screened product which will give the best separation of gold, silver and copper.
The Little Billy mine is located about a quarter of a mile west of Vananda on Texada Island, which is about seventy miles north-west of Vancouver and about two miles from the mainland (fig.1).

PREVIOUS WORK, AND SOURCES OF INFORMATION

The first report on Texada Island was given by Mr. J. Richardson of the Geological Survey in the Annual Report of 1873-84, after he made a brief examination of the iron range on the west coast of the Island. Two years later G.M. Dawson examined the entire coast line. His work was published in the Annual Report, Vol. II, 1887.

Reference to the mining progress on Texada Island was given in the Reports of the Minister of Mines, British Columbia, and the Summary reports of the Department of Mines, Ottawa. Detailed accounts of the mining progress and general geology was published by W.M. Brewer of Victoria in the Engineering and Mining Journals from 1900 to 1906.

The first general survey of the Island was made by O.E. Le Roi of the Geological Survey in 1906. This report was published in 1908 as "A preliminary Report on a Portion of the Main Coast of British Columbia and Adjacent Islands". In the same year an accurate geological survey of the Island
was made by the late R.C. McConnell. His work was published in Memoir 58, 1914, as "Texada Island, B.C."- Mr. McConnell's Memoir was the first publication to give a detailed report on the geology and the mines of Texada Island.

The first detailed study of the "Marble Bay Mine" was published in 1921 by Dr. V. Dolmage in "Economic Geology". A careful study of the genesis of the Magnetite deposits of Texada Island was made by Dr. C. O. Swanson in 1923. His report "The Genesis of the Texada Island Magnetite Deposits" was published in the Summary Report of the Geological Survey, 1924.

The publications mentioned above, and others in the "Selected Bibliography", have been consulted frequently during the research for this report, and free use has been made of McConnell's descriptions of topography, relief, and general geology.

HISTORY OF MINING ON TEXADA ISLAND.

The first discovery of bornite on Texada Island was made in the early nineties, but attracted very little attention because the ore was disseminated in limestone and was of a low grade.

The ore body of the Marble Bay Mine was discovered in 1897, during the ownership of Palmer & Cristie of Toronto.
After preliminary surface work the shaft was sunk to 500 feet and proved the presence of a large quantity of bornite ore. By 1901 the Marble Bay Mine had become the largest mine on Texada Island, and it was worked continuously until 1924. By this time the available ore was mined, and exploration failed to show any new ore. Approximately twenty-five million dollars in copper, gold, and silver ore had been extracted from the Marble Bay Mine. The ore yielded approximately 5% copper, .3 ozs. gold and 4 ozs. of silver, with no decrease of the gold or silver values with depth.

At the same time as development was started on the Marble Bay Mine, work was started on the Copper Queen, Cornell, and Little Billy mines by the Vananda Copper and Gold Companies Limited. These mines are located within a mile and a half of Vananda. Although they contained the same minerals, and were a similar type of deposit, they did not have the same quantity or quality of ore as the Marble Bay. To utilize this low-grade ore, the Vananda Copper Company built a 50-ton copper smelter. These mines were worked until 1903 and then were leased and worked intermittently until they were abandoned in 1920.

In 1943 the abovementioned mines were purchased by the Industrial Metal Mining Company, and the first to be reconditioned was the Little Billy. (Fig.2). Extensive
diamond drilling from the old workings and from the surface located the "Prosser Ore Body". (Map in folder). Encouraged by finding the new ore body, the Industrial Metal Company started to recondition the Copper Queen Mine, half a mile south of the Little Billy.

In December 1944, the Little Billy, the Copper Queen and the Cornell Mines were leased by Pioneer Gold Mines Ltd. of Vancouver, B.C. In January 1945 the Industrial Metal Mining Co. started to de-water the Marble Bay Mine, and by March 1945 the first three levels were de-watered and reconditioned. An extensive diamond drilling and development programme is planned for the future.

Since the purchase of the Little Billy mine the Pioneer Gold Mining Company has deepened the shaft 200 feet and has started the development of the 480 level.

MINERAL DEPOSITS OF TEXADA ISLAND

"The mineral deposits consist of replacement deposits of the contact metamorphic type, and a few gold-quartz veins. The former are the more important and may be subdivided into deposits worked principally for their copper content, and those worked for iron. These groups are not sharply divided since magnetite ore invariably contains chalcopyrite and bornite, and chalcopyrite-bornite
ore contains minor amounts of magnetite." (28)

In addition to the copper and iron deposits, the limestones, marbles, clays and sands are important. The limestone of the Marble Bay formation, which contains over 95 percent calcium carbonate, is widely used on the Pacific coast as a source of lime.
Chapter II.

TOPOGRAPHY and GEOLOGY of TEXADA ISLAND.

TOPOGRAPHY. (28)

Texada Island is a partially submerged ridge paralleling the mainland at a distance of two to four miles. It has a length of thirty miles, a maximum width of five miles, and an average width of three miles. The shore line is indented by few deep bays, except at Long Beach on the east coast and Lower Gillies Bay on the west coast. The coast consists mostly of low rock cliffs worn and broken by the incessant action of the ocean.

RELIEF. (28)

Except for limited movements of elevation and depression, Texada Island has not been noticeably disturbed since Cretaceous times. The present topographic forms are the results of long continued erosion. The softer rocks, represented by Cretaceous sandstones and shales, and limestones of lower Mesozoic age, have been worn down into basins and rough seaward-sloping plains. The more resistant rocks, such as porphyrites, project as hills and ridges.

The vertical relief in the southern portion of the island, where the rocks consist largely of porphyrites, is in strong contrast to that in the northern portion, where
the rocks are largely limestone, sandstone, and shale. The southern portion of the island is a single steep-sided, rock-crested ridge rising from the water's edge on both shores and culminating in Mt. Shepherd, 2892 feet above sea level. In the central part of the island, the highland which continues northward from Mt. Shepherd, broadens out, becomes more irregular, and is interrupted on both sides by wide depressions. The prominent elevations here are Mt. Davies, 2484 feet, Mt. Grant, 2450 feet, and Pocahontas Mountain, 1800 feet.

North and west of Pocahontas Mountain the general elevation sinks abruptly several hundred feet, and from this point to the northern end of the island the relief is comparatively low. The high rugged peaks and ridges which characterize the southern portion of the island are replaced by round-topped hills and ridges not exceeding a thousand feet in height. Surprise Mountain, a long ridge rising from the west coast to a height of nearly a thousand feet, is the most conspicuous elevation in the northern portion of the Island. Comet Mountain, just south and east of the Little Billy Mine, attains a height of 750 feet.

With the exception of a few small drift-covered areas, the surface of Texada is everywhere rough and broken. The low-lying portions are incised by shallow rock canyons, and worn hummocks and ridges project above the thinly dis-
tributed boulder clays.

The general deepening of the valleys near the coast is a post-glacial feature, and is attributed to an uplift of the island which occurred at the close of the glacial period. Beaches with marine shells are found at a number of points, at elevations 428 feet above the present sea level.

GEOLOGY OF TEXADA ISLAND.

The Anderson Bay formation is the oldest on Texada Island. This formation, a volcanic series, was placed by McConnell\(^2\) in the Triassic. The youngest Mesozoic rocks are a group of upper Cretaceous rocks composed of soft sandstones, sands, clays and shales.

Glacial and recent deposits are represented by boulder clays, sands, silts, and creek gravels.

The Formations of Texada Island\(^2\).

Quaternary	Recent	Creek gravels, peat, etc.
Glacial	Boulder clays, sands, silts, etc.	
Mesozoic	Upper Cretaceous	Soft sandstone, sands, clays and shales.

| Lower Cretaceous |) |
| or |
| Upper Jurassic |) |
|) | Diorites and diorite-porphyrites in small stocks and dykes. |
Upper Jurassic (?) - Quartz-diorites
 (Coast Range batholith ?)

Lower Jurassic (?) - Texada group, porphyrites,
 Texada Group of Le Roi (25)
 (in Part)

Triassic or Jurassic} - Marble Bay formation (Limestone).

Triassic - Anderson Bay formation:
 schists, tuffs, agglomerates, amygdaoids, and marbles.
 (Texada group of Le Roi in part).

ANDERSON BAY FORMATION (28)

The rocks of the Anderson Bay formation are exposed only on the south-eastern edge of the island (fig.1). The formation is made up of an alternating series of slates, quartzites, conglomerates, marbles, tuffs, agglomerates, amygdaoids, and lead-green schists. These beds resemble lithologically the Sicker series of the Vancouver group which have been placed by Clapp (13) in the Triassic or Lower Jurassic.

MARBLE BAY FORMATION (28)

The limestones of the Marble Bay formation occur in two belts; one belt just south of Lower Gillies Bay, and the other across the northern portion of the island (fig.1).
In addition to these areas, McConnell\(^{28}\) reports numerous limestone inclusions in the porphyrites of the Texada formation. These inclusions vary in size and shape, ranging from angular shreds a few yards in length to rounded or lenticular areas a quarter of a mile or more in length.

The bedding planes of the Marble Bay limestone, except in a few unaltered places, are usually obscured. The principal partings consist of strong vertical jointage planes. In the less altered areas the beds undulate in low folds with an occasional sharp upturn near dykes and other igneous bodies.

The Marble Bay formation contains the important contact metamorphic copper deposits of the Marble Bay, Cornell, Copper Queen and Little Billy Mines. As well as these copper deposits, the Marble Bay formation contains the important magnetite deposits of the Lake, Paxton and Preston Mines.\(^{28,32}\)

The Marble Bay formation was placed by McConnell\(^{28}\) in the Lower Jurassic or Triassic. This would correspond to the Sutton limestone of the Vancouver group.\(^{13,14}\) On Quadra Island, forty miles north of Texada Island, is a massive limestone which is similar, and hence has been called the Marble Bay formation.\(^{25}\)
TEXADA FORMATION. (28)

The Texada formation, which covers the greater part of Texada Island, consists mostly of basic, massive igneous rocks of varying composition and texture, but classified generally as porphyrite. (28) The formation, which is several thousand feet thick, comprises a series of volcanic rocks including much andesite and andesite porphyry. In addition to the andesite there are diabase and augite-porphyrite, hornblende-porphyrite and some basalt. The rocks are seldom fresh, and usually contain large amounts of secondary chlorite and epidote, which gives them a greenish colour. The rocks of the Texada formation are a group of superimposed flows, folded steeply in the southern part of the island along an axis having a northwest trend, (18) and are probably of the same period of volcanism as the Vancouver Volcanics. (13)

INTRUSIVE ROCKS.

(a) Stocks.

The quartz-diorite occurs in small stocks and dykes, intruding both the Marble Bay and Texada formations (28). There are four areas of quartz-diorite exposed, one being at the Little Billy Mine. In papers by Dr. Dolmage (18) and Dr. Swanson (32) these intrusions have been further described. Dr. Swanson called the more acidic phase of the quartz-diorite
the "Gillies intrusive", which is a tonalite in composition.

(b) Dykes.

Several types of dykes occur, such as syenite-porphyrite, augite-syenite, diorites, and diorite-porphyrites. The diorite-porphyrite dykes are of interest: Some of the ore bodies of Copper Queen and Marble Bay Mines were cut by these dykes\(^{(28,6)}\) which are generally later than the quartz-diorite intrusive.
Fig 2
Chapter III.

THE GEOLOGY OF THE LITTLE BILLY MINE

The two main formations at the Little Billy mine are the Marble Bay limestone and the quartz-diorite. (fig. 2) The ore bodies, which have been formed at the contact of these formations, are of contact-metamorphic origin.

MARBLE BAY LIMESTONE

The Marble Bay limestone is the oldest formation at the mine and is cut by the quartz-diorite intrusive, alaskite and some andesite dykes. The andesite dykes are suggested by their alteration to be pre-quartz-diorite.

The hand specimens of unaltered limestone are composed of coarse grey crystals of calcite up to 10 centimeters in length, but specimens of limestone from the contact-metamorphic areas are usually white or light grey in colour and occur as subhedral crystals not more than a centimeter in length. In thin section, the limestone of the contact areas is composed of 80 percent clear cloudy anhedral crystals of calcite and 20 percent of irregularly shaped areas of serpentine, containing interstitial carbonaceous material.
The quartz-diorite crops out in the Little Billy mine area as a stock of roughly rectangular outline, half a mile long by a quarter of a mile wide, intruding the Marble Bay limestone. The quartz-diorite is also cut by numerous andesite dykes.

Lithology. In hand specimen, the quartz-diorite is, in general, a light grey holocrystalline rock composed of quartz, feldspar, and minor amounts of biotite and hornblende. The feldspars are generally subhedral crystals, while the quartz is interstitial. Irregular masses of pyrite, chalcopyrite, and molybdenite are scattered throughout the specimen. In thin section the quartz-diorite is composed of 55 percent plagioclase feldspar ($\text{Ab}_{60}\text{An}_{40}$), 17 percent hornblende, 15 percent quartz, 10 percent orthoclase, 2 percent biotite, and subordinate amounts of magnetite, apatite and augite. Feldspars occur as subhedral crystals up to 1 millimeter in length, with an abundance of equi-dimensional zoned feldspars. Quartz is largely interstitial in interlocking grains up to .7 millimeters in diameter. Biotite and hornblende occur as subhedral grains, with some of the former chloritized. Magnetite is concentrated in and around the other mafic minerals. The early crystallization and
consequent settling of the crystals would explain the concentration of the magnetite with the mafic minerals.

Sections of quartz-diorite taken from the contact zones show that the hornblende and biotite have been altered to chlorite. The feldspars show alterations to sericite.

In the quartz-diorite are rounded dioritic inclusions up to 12 inches in diameter, which are similar to inclusions noted by Dr. Swanson(33) in the Gillies Intrusive. Concerning these inclusions, he suggested that they "probably represent some of the earliest products of the crystallization of the dioritic magma".

1. **ALASKITE DYKES.**

Lithology. Hand specimens from both dykes were very similar. The specimens were white with a watery appearance, composed of feldspar, interstitial quartz and a few scattered grains of biotite and hornblende.

In thin section the alaskite is composed approximately as follows: 40 percent quartz, 35 percent plagioclase (Ab90An10), 25 percent orthoclase and a few crystals of biotite and hornblende. The quartz occurs as anhedral crystals and the feldspars as subhedral crystals up to 1 millimeter in length. There is an abundance of equi-dimensional zoned plagioclase, the centres of which are altered to
sericite and have a cloudy appearance. The slide contains no metallic minerals.

2. **ANDESITE DYKES**. (Diorite-porphyrite of McConnell\(^{28}\)).

Lithology: Hand specimens of these dykes are medium to dark green in colour and aphanitic. Some specimens have a few scattered crystals of plagioclase about 2 millimeters in length. The metallic minerals seen in the hand specimens are pyrite, molybdenite and magnetite.

In thin section, these dykes are composed approximately as follows: 53 percent plagioclase (\(\text{Ab}_{60}\text{An}_{40}\)), 17 percent hornblende, 12 percent orthoclase, 10 percent quartz, 5 percent biotite, and subordinate amounts of sericite, magnetite, pyrite, apatite and calcite. The plagioclase occurs as subhedral crystals about 1 millimeter in length, which have been partially altered to sericite. The hornblende occurs as lath-shaped crystals, both singly and in clusters. Biotite, quartz, apatite, orthoclase and calcite occur as subhedral crystals less than .2 millimeters in diameter. The metallic minerals are interstitial and are irregularly scattered throughout the slide.

The pre-quartz-diorite dykes have been altered by the development of grossularite. A section across an altered zone shows that hornblende and biotite have been
altered to chlorite. There is a vein of grossularite about 4 millimeters wide and adjacent to it there is a notable increase in calcite and magnetite. Flakes of molybdenite appear in the vein with the grossularite. In the chloritized areas are two small veins of axinite.

Dykes of similar composition were found in the Copper Queen(6) and Marble Bay mines.(18) According to the investigators, these andesite dykes had no control over the deposition. Similarly, in the Little Billy mine these dykes appear to have no control over the deposition of the ore.
Chapter IV.

KINDS OF ORE.

The intrusion of the quartz-diorite into the limestone has formed areas of skarn up to 100 feet in width, which contain the ore bodies of the Little Billy mine. These ore bodies can be classified as follows:

1. A bornite-magnetite ore in a skarn gangue, which occurs as a lenticular body about fifteen feet in width and roughly parallel to the quartz-diorite intrusive at the east end of the 180 level. Mine assays of this ore are as follows:

 Copper \(\pm 1.5\) percent
 Gold \(\pm 0.05\) oz/Ton
 Silver \(\pm 1.5\) oz/Ton

2. A disseminated bornite-chalcopyrite ore in a fibrous wollastonite gangue, the "Prosser ore body" and the ore in the old stopes on the west end of the 180 level are of this type, assaying as follows:

 Copper \(\pm 2\) percent
 Gold \(\pm 0.2\) oz/Ton
 Silver \(\pm 0.6\) oz/Ton

Hand specimens show bornite and chalcopyrite in long narrow bands one or two millimeters in width in the wollastonite.
THE "PROSSER ORE BODY".

The "Prosser ore body was located by a vertical diamond drill hole drilled from the surface some three hundred feet south and west of the collar of the shaft. This hole was known as the Prosser hole and showed 60 feet of ore 273 feet below the surface. Average values for this core are:

- Silver _______ .2 oz/Ton
- Gold ________ .5 oz/Ton
- Copper _______ 2 percent

Further information was obtained by diamond drilling from the east end of 280 level. The copper, gold and silver values were slightly lower than the above assays.

Two thin sections from the Prosser hole show that the copper minerals are bornite and chalcopyrite; the gangue minerals are wollastonite, serpentine and quartz. The thin sections have a banded appearance (fig.9). The bornite and chalcopyrite appear to be interstitial and have partially replaced the wollastonite crystals, (fig.8).

Thin sections of ore from margins of old stopes on the 180 level and from the Prosser ore show that the ore bodies are similar.
LOCATION OF THE LITTLE BILLY ORE

The ore of the Little Billy occurs in the limestone and at the margins of the quartz-diorite, and is of contact metamorphic origin. The bornite-magnetite ore occurs as a lenticular body parallel to the quartz-diorite intrusive, and the bornite-wollastonite, which comprises the bulk of ore, occurs in an embayment in the quartz-diorite. (See map in folder).

Related Deposits.

In the Marble Bay mine, the ore bodies were in limestone and when mined to a depth of 1700 feet, the ore was bottomed at the contact of a granodiorite intrusion. (18) At the Prescot and Paxton mines, four miles south of Vananda, are copper magnetite deposits similar to that in the east end of the 180 level of the Little Billy. These deposits were also formed at the contact of the Marble Bay limestone and the quartz-diorite.

Summary.

The copper and iron deposits of Texada Island occur at or near the contact of the dioritic intrusions of the Coast Range batholith and the Marble Bay limestone. A close genetic relation is suggested by the proximity of each deposit to a dioritic intrusion.
Chapter V.

MINERALOGY.

Contact Metasomatic Minerals.

In the areas adjacent to the quartz-diorite intrusion are developed the following contact metasomatic minerals:

Calcite. The calcite, associated with both types of ore, is usually anhedral and white to grey in colour.

Grossularite. Grossularite occurs as large masses and individual cinnamon-coloured garnets. The specific gravity varied from 3.64 to 3.75. Although grossularite is associated with both types of ore, it is much more abundant with the bornite-wollastonite than with the bornite-magnetite ore. Associated with the grossularite are dark green acicular crystals of epidote. Some of these garnets show double refraction.

Diopside. Diopside is a common gangue mineral and occurs as well-formed crystals with garnets, being contemporary with them. In some thin sections the diopside forms about 30 percent of the gangue and shows replacement by chalcopyrite.
and bornite.

Wollastonite. Wollastonite forms about 60 percent of the gangue of the Prosser ore body, and occurs as fine acicular intergrown crystals less than three millimeters in length. Large white crystals of wollastonite, with no bornite or chalcopyrite replacement, were found on the margins of old stopes. However, in the Marble Bay mine, three quarters of a mile west of Little Billy, bornite and chalcopyrite replace a similar type of coarse wollastonite.

The wollastonite crystals have formed normal to the sides of the grossularite, diopside and andradite, suggesting that the wollastonite is of a later period of deposition.

Andradite. Andradite occurs as small green crystals (sp. gr. 3.85) at the edges of old stopes. Although the andradite is associated with both types of ore, it is more abundant with the bornite-magnetite than with the bornite-wollastonite. The andradite was developed at the same time as the grossularite.

Epidote. Epidote formed in small bunches of acicular crystals. It is associated with the grossularite, andradite and white calcite, and formed about the same time.

Quartz. Quartz occurs as small subhedral to anhedral
crystals interstitial with the other gangue minerals. In polished sections the edges and centres of several quartz crystals have been replaced by bornite or chalcopyrite. There are repeated instances of quartz crystals being replaced by irregular masses of quartz, suggesting more than one generation of quartz.

Serpentine. Serpentine (var. antigorite) appears in thin sections of the wollastonite-bornite ore as short fibrous flakes, light green to colorless. The serpentine appears to be one of the latest minerals to form.

Axinite. \(\text{H} (\text{Fe, Mn}) \text{Ca}_2\text{Al}_2\text{B} (\text{SiO}_4) 4 \). Small veins of axinite were identified in the thin section taken from the altered zone of an andesite dyke and from some thin sections of calcite. The axinite appears to have formed at the time of the recrystallization of the limestone.

THE ORE MINERALS.

The study of the mineralogy of the Little Billy mine was made from ore specimens collected by the writer. Polished sections were made of ore typical of the "Prosser Ore Body", magnetite-bornite ore and some ore composed entirely of chalcopyrite. Polished sections were also made from
Dr. Gunning's Marble Bay suite of specimens.

In the preliminary examination of the sections, the following minerals were noted: pyrite, chalcopyrite, bornite, pyrrhotite, magnetite, tetrahedrite, molybdenite, sphalerite, galena, chalcocite, covellite, silver and gold. As well as the forementioned minerals, there were disseminated throughout the chalcopyrite and bornite small anhedral to subhedral masses of silver-white and galena-grey coloured minerals. These two minerals occurred in masses never larger than 40 microns in diameter. The silver-white mineral was wehrlite (Bi₃ Te₂) and the galena-grey mineral was hessite (Ag₂ Te).

Method of Determining Wehrlite and Hessite.

The size of the minerals prevented the writer from obtaining definite etch reactions and microchemical tests. Furthermore, these minerals appeared to be isotropic under crossed nicols. A study was therefore made of some twenty sections of the Marble Bay ore, which is chiefly massive bornite or chalcopyrite. The massive bornite sections contained the same silver-white and grey metallic lustered minerals in masses up to 40 microns in diameter, and the massive chalcopyrite contained the same minerals in masses up to 300 microns in diameter. (fig.17, 18). The hessite occurred
always intergrown with wehrlite, while the wehrlite often occurred alone. (fig. 21).

Etch reactions on the minerals were as follows:

\[
\begin{array}{cccccc}
\text{HNO}_3 & \text{HCl} & \text{KCI} & \text{FeCl}_3 & \text{KOH} & \text{HgCl}_2 \\
\text{Silver-white (Wehrlite)} & + & - & + & - & - \\
\text{Galena-grey (Hessite)} & + & - & +\text{in one} & + & - \\
\end{array}
\]

From the following chart, the writer assumed that the silver-white mineral was tetradymite. However, microchemical and spectroscopic analysis of a clean fragment always gave a good test for silver. Spectroscopic analysis showed that silver was always present in an amount greater than one percent. As no etch reactions are given for wehrlite in the literature, the writer assumed the mineral to be an argentiferous variety of tetradymite.

Spectroscopic analysis, etch reactions and anomalous anisotropism of the galena-grey mineral readily suggested that the mineral was hessite.

Two fragments of the forementioned minerals were sent to Mr. Robert Thompson of the Department of Geology at the University of Toronto for x-ray analysis. He confirmed the writer's determination of hessite and pointed out that the silver-white mineral was wehrlite. The etch reactions for wehrlite have been included on the accompanying chart.
<table>
<thead>
<tr>
<th>Mineral</th>
<th>Stb.</th>
<th>System</th>
<th>Mode</th>
<th>Colour</th>
<th>Anisotropism</th>
<th>NO₂</th>
<th>HCl</th>
<th>KCN</th>
<th>FeCl₃</th>
<th>FeO</th>
<th>H₂SO₄</th>
<th>among</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amethyst (Ca₂Al₂)</td>
<td>25</td>
<td>?</td>
<td>B</td>
<td>purple-red, lime green</td>
<td>strong, grey in red</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Keil (Ca₂Al₂)</td>
<td>25</td>
<td>?</td>
<td>B</td>
<td>grey-white</td>
<td>strong, grey in red</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Rutile (TiO₂)</td>
<td>15</td>
<td>I</td>
<td>B</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Anorthite (Ca₂O₅)</td>
<td>25</td>
<td>?</td>
<td>B</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Pyroxene (Ca₂O₅)</td>
<td>25</td>
<td>I</td>
<td>B</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Jaspilite (MgO·SiO₂)</td>
<td>36</td>
<td>H</td>
<td>B</td>
<td>steel grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Natrolite (MgO·SiO₂)</td>
<td>25</td>
<td>H</td>
<td>B</td>
<td>silver-white</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Tephroite (MgO·SiO₂)</td>
<td>25</td>
<td>H</td>
<td>B</td>
<td>green-grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Tephroite (MgO·SiO₂)</td>
<td>25</td>
<td>H</td>
<td>B</td>
<td>silver-white</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Andesine (Na₂O·Al₂O₃·SiO₂)</td>
<td>35</td>
<td>H</td>
<td>B</td>
<td>silver-white</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Plagioclase (Na₂O·Al₂O₃·SiO₂)</td>
<td>12</td>
<td>33</td>
<td>A</td>
<td>light yellow to grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Kaolinite (Al₂O₃·2SiO₂·H₂O)</td>
<td>17</td>
<td>33</td>
<td>B</td>
<td>green-white</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Sericite (Al₂O₃·2SiO₂·H₂O)</td>
<td>17</td>
<td>33</td>
<td>M</td>
<td>green-white to grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Biotite (Fe₃O₄)</td>
<td>10</td>
<td>H</td>
<td>A</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Chlorite (Fe₃O₄)</td>
<td>10</td>
<td>H</td>
<td>A</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Petrified (Fe₃O₄)</td>
<td>10</td>
<td>H</td>
<td>A</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Garnet (Mg₃Al₅Si₃O₁₂)</td>
<td>23</td>
<td>H</td>
<td>B</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Orthopyroxene (Ca₂Mg₃Si₂O₆)</td>
<td>25</td>
<td>H</td>
<td>B</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
<tr>
<td>Hypersthene (Ca₂Mg₃Si₂O₆)</td>
<td>25</td>
<td>H</td>
<td>B</td>
<td>grey</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
<td>brown</td>
</tr>
</tbody>
</table>

Note: Some minerals may show anisotropism, which means that their properties vary depending on the direction of measurement. This is indicated by the presence of two or more colors in the list.

Also, some minerals may be associated with other minerals, such as copper ores and molybdenite.
Note on Wehrlite.

Wehrlite is a member of the tetradymite group. The mineral was first found by Wehrle in the Deutsch-Pilsen, Hungary, in 1831, and was the only known authentic occurrence. In 1944, Dr. H.V. Warren, of the Department of Geology at the University of British Columbia, noted a second occurrence of wehrlite in the ore of the White Elephant mine, near Vernon, B.C. The wehrlite of the Little Billy and Marble Bay mines of Texada Island is the third authentic occurrence.

Wehrlite contains the following:

Bismuth $59.47 - 70.02$ percent
Tellurium $28.52 - 35.47$ percent
S $0 = 2.33$ percent
Ag $0.48 = 2.07$ percent

Wehrlite is a medium temperature mineral and is not common in contact metamorphic deposits.

Note on Hessite.

Hessite is associated with other tellurides, gold, silver and native tellurium. It has a rather widespread occurrence and is found in Liberia, Roumania, Western Australia, Mexico, the United States and Canada. In British Columbia it has been found at North Star Mine, near Rossland, the Conwest claims, Taseko Lake and the Little Billy and
Marble Bay mines, Texada Island.

Hessite contains the following:

\begin{align*}
\text{Ag} & \quad 59.4 - 62.8 \text{ percent} \\
\text{Te} & \quad 35.9 - 37.7 \text{ percent}
\end{align*}

Hessite, like wehrlite, is a medium temperature mineral and is not common in contact metamorphic deposits.

Minerals of the Polished Section.

The polished sections of the Little Billy ore contain the following: pyrite, molybdenite, magnetite, bornite, chalcopyrite, chalcocite, wehrlite, hessite, sphalerite, pyrrhotite, galena, tetrahedrite, covellite, gold and silver. The minerals are described in the probable order of their age.

Pyrite. (FeS₂) - Pyrite occurs as cubes up to two centimeters in width in hand specimens taken from the margins of old ore bodies. In polished section of both types of ore, it occurs as crystals and irregularly-shaped masses scattered unevenly throughout. Two generations are suggested by cubes of pyrite being replaced by irregular masses of pyrite. In almost every specimen, quartz accompanies and occurs as hexagons or irregularly-shaped masses within the pyrite. Pyrite is the earliest of the metallic
lustered minerals of the Little Billy ore. The deposition of pyrite ceased before the other sulphides were deposited. The bornite and chalcopyrite tend to surround and replace pyrite.

Molybdenite (Mo S_2). No definite age relationship of the molybdenite could be deduced from the polished sections, as the molybdenite was not in contact with any of the other minerals. Flakes of molybdenite were noted in hand specimens and thin sections of grossularite formed in the andesite dykes. Molybdenite appears in the skarn, quartz-diorite, and limestone of the upper level. The association of the molybdenite with the grossularite would suggest that it is earlier than the chalcopyrite and bornite and about the same age as the pyrite.

Magnetite (Fe_3O_4). In polished sections the magnetite appears to be about the same general age as the bornite and chalcopyrite. However, the association of the magnetite with the pyrite and molybdenite in the skarn would suggest that it is earlier than the chalcopyrite and bornite. Magnetite composes about one percent of the bornite-wollastonite ore, and about forty percent of the bornite-magnetite ore.

Bornite (Cu_5FeS_4). Bornite is the most important copper
mineral of the Little Billy ore. In thin and polished sections the bornite has replaced the gangue minerals wollastonite, diopside, etc. (Fig.20). Intergrowths between the bornite and chalcopyrite indicate essential contemporaneity (Fig.15). All gangue minerals are earlier than the bornite, except the serpentine and the late calcite.

Chalcopyrite (Cu Fe S₂). Chalcopyrite is the second in importance of copper minerals in the ore of the Little Billy. Although the chalcopyrite appears to be contemporaneous with the bornite in most of the sections, there are a few which show chalcopyrite in long narrow veins in the bornite. The chalcopyrite appears in irregular masses replacing the wollastonite and diopside.

Chalcocite (Cu₂S). Chalcocite is not an abundant mineral in the ore. It is usually intimately associated with the bornite and occurs as irregular boundaries and veins replacing the bornite. The writer did not see any graphic intergrowth or "grating" suggested by Bastin(42) as common to hypogene deposits of bornite and chalcocite. However, chalcocite was found in increased quantities in the lower levels of the Marble Bay mine. The depth below the sea level and consequent lack of ground water circulation, the undiminished quantity of chalcocite with depth, and the
association of chalcocite with bornite were criteria used by Dr. Dolmage to prove chalcocite to be hypogene.

Wehrlite \((\text{Bi}_3\text{Te}_2)\). Wehrlite occurs as anhedral to sub-hedral masses in the chalcopyrite and bornite, usually larger than 70 microns in diameter. It is often associated with blebs of hessite, suggesting a simultaneous crystallization. A few crystals of wehrlite and hessite, associated with gold, were noted in the gangue. (fig.20,21). Wehrlite is the most abundant of the silver minerals in the Little Billy ore.

Hessite \((\text{Ag}_2\text{Te})\). In the material used for the positive determination of the tellurides, hessite always appeared in contact with wehrlite (fig.17). However, one specimen from the 180 level of the Little Billy shows hessite as irregular masses within the gangue (fig.20) about 90 microns in diameter.

Sphalerite \((\text{ZnS})\). A minor amount of sphalerite (less than one percent) occurs in the polished sections as irregular masses within and bordering the chalcopyrite. Blebs of sphalerite, spotted with specks of chalcopyrite formed by "ex solution" often occur in the chalcopyrite, suggesting that the sphalerite is about the same general age as the chalcopyrite.

Pyrrhotite \((\text{FeS})\). Pyrrhotite occurs as small irregular
masses about 100 microns or less within the chalcopyrite and bornite, and appears to be the same general age as the bornite and chalcopyrite.

Galena (Pb S). Galena was not seen in the polished sections. However it was noticeable in the super-panner tips of both types of ore.

Tetrahedrite 5 (Cu₂S). 2 (Cu Fe). 2 (Sb₂S₃).

Tetrahedrite occurs as scattered irregular blebs less than 70 microns in diameter. It appears to be more abundant in the bornite-magnetite ore than in the bornite-wollastonite. No definite age relation can be determined for tetrahedrite.

(Cu₄)
Covellite (Cu). Covellite is sparsely scattered throughout the bornite as small veins or rosettes of small plates, along seams or gangue boundaries. Covellite, like chalcopyrite, in the Marble Bay mine (18) was found to be more abundant in the lower levels. Hence the same reasoning can be used to prove that covellite is of hypogene origin.

Gold (Au). No definite age can be given for the gold. It was found only in one section. In this section it was found in the gangue alone, (fig. 23) with wehrlite and hessite. Silver (Ag). Silver occurs as veinlets (fig. 13) and blebs
(fig.16) in the chalcopyrite and bornite and appears to be deposited a little later than the sulphides (fig.13).

Summary.

Definite age relations of the sulphides were not readily visible in the polished sections. The sulphides appear to be of the same general age with the pyrite being a little earlier. Silver was the only mineral that veined the bornite. Gold was found in a small irregular mass in a gangue-filled fracture in some pyrite, suggesting that it was probably of a later period of deposition.

The gold of the Little Billy occurs as native gold and the silver occurs as native silver and silver tellurides.
Chapter VI.

PARAGENESIS.

The paragenesis of the silicate and the sulphide minerals will be discussed under the following headings: the bornite-wollastonite ore, the bornite-magnetite ore, source of solutions, and the mode of transfer.

The Bornite-Wollastonite Ore.

The largest ore body is composed of bornite and chalcopyrite replacing fibrous wollastonite (fig. 7). The formation of this ore suggests the following sequence of events:

1. The formation of the skarn minerals at the contact of the quartz-diorite and the limestone. The skarn being composed of diopside, epidote and quartz deposited first, grossularite, andradite and white calcite developed later, and final deposition of pyrite, magnetite and molybdenite.

2. The partial replacement of the epidote, diopside and grossularite by wollastonite. A small amount of calcite and quartz was deposited with the wollastonite.

3. A general replacement of the wollastonite, diopside and garnet by the bornite, chalcopyrite and the tellurides.
A small amount of quartz appears to have been deposited with the sulphide minerals (x). The gold and silver appear to be deposited a little later than the sulphides.

4. A general fracturing and crushing of the silicate and sulphide minerals. In the openings caused by the movement, there was deposited quartz, calcite and serpentine.

The Bornite-Magnetite Ore.

The occurrence of this small lense-like deposit of bornite-magnetite is very similar to those on the west coast of the Paxton, Lake, and Prescott mines. The same conditions and formations are present in the Little Billy as in these mines: that is, the proximity of the bornite-magnetite to the quartz-diorite intrusion, the late alaskite dykes, and the replacement of the skarn rocks by magnetite with lesser amounts of bornite and chalcopyrite. Dr. Swanson (32) concluded that the magnetite deposits of the west coast"were formed by magmatic solutions in which the materials were concentrated by the crystallization of the intrusive......

(x) In the contact metamorphic deposits of the Dolores mine in Mexico, Fenner (41) found that quartz was one of the most important minerals with regard to ore deposition. The repeated instances of intimate association of the quartz with the sulphides suggested a close genetic relation.
The release of solutions from the intrusive was effected by fracturing caused by cooling of the mass, and, as a consequence, the distribution of the deposits is mainly controlled by structural conditions at the time of replacement which favored the movements of solutions along the general contact zone.

Source of Solutions.

The ore-forming solutions probably originated as the end products of the differentiating dioritic magma. The following evidence supports this statement:

1. The occurrence of the ore body in an embayment in the quartz-diorite. (See plan of 280 level in folder).

2. The presence of disseminated masses of pyrite, molybdenite and chalcopyrite in the quartz-diorite.

3. The fact that the ore bodies of the Marble Bay mine when followed down through the limestone, lead directly to a stock of granodiorite, which is itself considerably mineralized (18).

4. The occurrence of contact metamorphic deposits on Vancouver Island (13), deposits which are formed at the contact of the coast range intrusive and the limestone of the Vancouver Group.
The alteration of the Marble Bay limestone, at the contact of the quartz-diorite by the development of the contact metasomatic minerals discussed in Chapter V, has involved the transfer of carbon dioxide, and the addition of iron, aluminium and silica. Mineralizers or volatiles which aid in this transfer have been suggested by Lindgren\(^{27}\) to be sulphur, chlorine, boron, fluorine and arsenic.

In the contact metamorphic deposits at Hedley, B.C., Dolmage and Brown\(^{20}\) found scapolite developed in large quantities at the marble line - the edge of the altered zone. From this they concluded that the chlorine of the scapolite was one of the volatiles. The scapolite formed at the marble line when the available silica had been used in the formation of the skarn. With the above idea in mind, the writer made a close examination of the thin sections of the Little Billy ore for minerals containing chlorine, fluorine or boron, e.g. scapolite, chondrite, or axinite, and only two small veins and a few scattered crystals of axinite were found. However, spectroscopic analysis of 19 samples of calcite from the skarn and adjacent areas showed that the calcite contained varying amounts of boron, all less than one percent. The largest concentrations of boron were found in the calcite
from areas close to the quartz-diorite intrusive. Calcite or marble from the adjacent areas, contained only traces of boron. (See map in folder). Hence it appears that one of the volatiles associated with the contact metasomatism of the Little Billy mine was boron.

CONCLUSION.

The sequence of events that led to the formation of the Little Billy ore bodies can be summarized as follows:

1. The gentle folding of the area in a north-westerly direction.
2. The intrusion of the quartz-diorite into Marble Bay limestone.
3. The differentiation of the dioritic magma to a siliceous magma and the consequent formation of alaskite dykes.
4. The expulsion of the volatiles (contact metasomatism) and the solutions of iron, aluminium, silica and boron, with the formation of the skarn minerals.
5. The replacement of the skarn minerals by bornite, chalcopyrite, and the gold and silver minerals.
6. The final fracturing and crushing, and the filling of these fractures by quartz and calcite.
Chapter VII.

EXAMINATION OF THE LITTLE BILLY ORE

BY Haultain Super-Panner.

The object of this examination is to determine which particle size will give the best gravity separation.

The Haultain super-panner was used for this gravity separation and was chosen in preference to a Wilfey table, the alternative machine, because the feed can be worked until a good separation is obtained. The super-panner separates the feed into three products; a tip, a middlings product and a slime, and is designed to handle low-grade ores or mill tailings. The Little Billy ore is a higher grade than normally used on a super-panner; consequently large amounts of copper, gold and silver were held in the middlings product.

Examination of the table of results will show a series of discrepancies between the amount of gold or silver in the feed and the sum of the values in the tip, middlings product and slime in each group. The presence of free gold and silver, combined with the smallness of the assay samples, has caused this erratic distribution of values.
Two large samples were picked; one sample of bornite-wollastonite ore from the west end; the other sample a bornite-magnetite ore from the east end of the 180 level. These were crushed and screened.

Four size groups were obtained as follows:

- 100 + 150 mesh
- 150 + 200 mesh
- 200 + 325 mesh
- 325 mesh

After weighing, these products were separated on the super-panner. Each size of the bornite-wollastonite ore gave three products; a bornite tip, a middlings product and a tailings or slime. The same procedure was used for the bornite-magnetite ore, and a fourth product - magnetite - was separated from the ore by moving a magnet in a beaker over the super-panner. The products were dried, weighed, examined under the ultra-pekar and assayed.

Ore used for these tests was originally picked for the making of polished sections and consequently gold, silver and copper values are higher than the mine ore would average, as shown in the following

<table>
<thead>
<tr>
<th>Sample</th>
<th>Au (oz/Ton)</th>
<th>Ag (oz/Ton)</th>
<th>Cu (percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bornite-wollastonite ore</td>
<td>0.3</td>
<td>0.9</td>
<td>2%</td>
</tr>
<tr>
<td>average</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Super-panner</td>
<td>0.7</td>
<td>1.9</td>
<td>9.16%</td>
</tr>
</tbody>
</table>
Sample | Au. oz/Ton | Ag. oz/Ton | Cu. percent
--- | --- | --- | ---
Bornite-magnetite ore: Mine ore | 0.04 | 1.4 | 2%
Super-panner | 0.07 | 4.72 | 5.2%

Examination of the bornite tips under the "ultra-pak" indicated the following approximate percentages by area of constituents:

The bornite-wollastonite ore (tips)

95% Bornite
2% Chalcopyrite
1% Pyrite
(Chalcocite
(Covellite
(Galena
(Sphalerite
2% Magnetite
(Gold
(Silver
(Wehrlite
(Hessite

The bornite-magnetite ore (tips-magnetite removed)

85% Bornite
10% Chalcopyrite
2% Pyrite
(Galena
(Sphalerite
(Tetrahedrite
3% Barite?
(Gold
(Silver
(Tellurides

The galena and tellurides were distinguished by formation of
a tellurium pool upon heating the tips on a pyrex slide. (fig.17).

In the following tables and corresponding graphs, which were computed from the results of ore separation on the super-panner, the bornite-wollastonite ore has been called the disseminated bornite ore.
TABLE 1.
GOLD IN DISSEMINATED BORNITE ORE

Distribution in -100 feed.

<table>
<thead>
<tr>
<th>Product</th>
<th>Corrected Weight in Grams</th>
<th>Oz/Ton</th>
<th>Total (Mg)</th>
<th>In Each Size In Total</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1-100 Feed</td>
<td>-100 Feed</td>
</tr>
<tr>
<td>-100 + 150</td>
<td>124.3</td>
<td>0.7</td>
<td>2.98</td>
<td>18.8 38.7</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>11.8</td>
<td>3.04</td>
<td>1.230</td>
<td>9.5 66.5 1.8 20.6</td>
</tr>
<tr>
<td>Middling</td>
<td>109.4</td>
<td>0.16</td>
<td>0.600</td>
<td>87.9 32.4 16.5 7.2</td>
</tr>
<tr>
<td>Slime</td>
<td>3.1</td>
<td>0.20</td>
<td>0.021</td>
<td>2.6 1.1 0.5 0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.851 100.0 100.0 23.2</td>
</tr>
<tr>
<td>-150 + 200</td>
<td>86.7</td>
<td>0.56</td>
<td>1.675</td>
<td>13.2 19.1</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>88.3</td>
<td>3.2</td>
<td>0.910</td>
<td>9.6 68.3 1.3 15.3</td>
</tr>
<tr>
<td>Middling</td>
<td>70.7</td>
<td>0.14</td>
<td>0.339</td>
<td>81.5 25.4 10.7 5.7</td>
</tr>
<tr>
<td>Slime</td>
<td>7.7</td>
<td>0.30</td>
<td>0.084</td>
<td>8.9 6.3 1.2 1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.333 100.0 100.0 22.4</td>
</tr>
<tr>
<td>- 200 + 325</td>
<td>125.3</td>
<td>0.24</td>
<td>1.030</td>
<td>18.8 11.7</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>2.1</td>
<td>6.6</td>
<td>0.450</td>
<td>1.8 46.8 0.3 7.6</td>
</tr>
<tr>
<td>Middling</td>
<td>85.2</td>
<td>0.14</td>
<td>0.408</td>
<td>67.8 42.4 12.8 6.8</td>
</tr>
<tr>
<td>Slime</td>
<td>38.0</td>
<td>0.08</td>
<td>0.104</td>
<td>30.4 10.8 5.7 1.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.962 100.0 100.0 16.2</td>
</tr>
<tr>
<td>- 325</td>
<td>326.8</td>
<td>0.24</td>
<td>2.680</td>
<td>49.2</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>6.0</td>
<td>3.20</td>
<td>0.555</td>
<td>1.9 33.2 0.9 11.0</td>
</tr>
<tr>
<td>Middling</td>
<td>110.8</td>
<td>0.12</td>
<td>0.455</td>
<td>33.8 23.1 16.7 7.7</td>
</tr>
<tr>
<td>Slime</td>
<td>210.0</td>
<td>0.12</td>
<td>0.863</td>
<td>64.3 43.7 31.6 14.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.973 100.0 100.0 33.2</td>
</tr>
<tr>
<td>Total</td>
<td>663.1</td>
<td>6.119</td>
<td>100.0</td>
<td>100.0 100.0</td>
</tr>
</tbody>
</table>
Fig. 4
Graph Showing Distribution of Gold in Disseminated Bornite Ore

- \(\% \text{ Au Calculated on sized products} \)
- \(\% \text{ Au Calculated on total -100 feed} \)

Percentage Gold

Total Au in -100 mesh

Bornite tip

MP

Stim

Grain Size in Microns

180 - 190
160 - 170
150 - 160
140 - 150
125 - 130
100 - 110
80 - 90
60 - 70
40 - 50
20 - 30
0 - 10

-325 mesh
<table>
<thead>
<tr>
<th>Product</th>
<th>Corrected Weight in Grams</th>
<th>Oz/Ton</th>
<th>Total Size Mg.</th>
<th>% Wt. Ag. %</th>
<th>Total -100 Feed % Wt. Ag. %</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100 x 150</td>
<td>124.3</td>
<td>2.32</td>
<td>9.950</td>
<td>18.8</td>
<td>19.5</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>11.8</td>
<td>25.00</td>
<td>10.100</td>
<td>9.6</td>
<td>59.0</td>
</tr>
<tr>
<td>Middling</td>
<td>109.4</td>
<td>1.84</td>
<td>6.900</td>
<td>87.9</td>
<td>40.3</td>
</tr>
<tr>
<td>Slime</td>
<td>3.1</td>
<td>1.00</td>
<td>0.106</td>
<td>2.5</td>
<td>0.7</td>
</tr>
<tr>
<td>Totals</td>
<td>17.106</td>
<td>100.0</td>
<td>100.0</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>-150 x 200</td>
<td>36.7</td>
<td>2.52</td>
<td>7.500</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>8.3</td>
<td>37.80</td>
<td>10.750</td>
<td>9.6</td>
<td>63.0</td>
</tr>
<tr>
<td>Middling</td>
<td>70.7</td>
<td>1.86</td>
<td>4.500</td>
<td>81.5</td>
<td>26.4</td>
</tr>
<tr>
<td>Slime</td>
<td>7.7</td>
<td>6.88</td>
<td>1.810</td>
<td>8.9</td>
<td>10.6</td>
</tr>
<tr>
<td>Totals</td>
<td>17.060</td>
<td>100.0</td>
<td>100.0</td>
<td>23.1</td>
<td></td>
</tr>
<tr>
<td>-200 x 325</td>
<td>126.3</td>
<td>2.16</td>
<td>9.270</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>2.1</td>
<td>25.40</td>
<td>1.745</td>
<td>1.8</td>
<td>17.1</td>
</tr>
<tr>
<td>Middling</td>
<td>95.2</td>
<td>2.26</td>
<td>6.600</td>
<td>67.8</td>
<td>64.6</td>
</tr>
<tr>
<td>Slime</td>
<td>38.0</td>
<td>1.44</td>
<td>1.870</td>
<td>30.4</td>
<td>18.3</td>
</tr>
<tr>
<td>Totals</td>
<td>10.215</td>
<td>100.0</td>
<td>100.0</td>
<td>13.3</td>
<td></td>
</tr>
<tr>
<td>-325</td>
<td>326.8</td>
<td>2.16</td>
<td>24.20</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>6.0</td>
<td>26.80</td>
<td>5.500</td>
<td>1.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Middling</td>
<td>110.0</td>
<td>2.88</td>
<td>10.901</td>
<td>33.8</td>
<td>36.4</td>
</tr>
<tr>
<td>Slime</td>
<td>210.0</td>
<td>1.88</td>
<td>13.500</td>
<td>64.4</td>
<td>45.2</td>
</tr>
<tr>
<td>Totals</td>
<td>29.901</td>
<td>100.0</td>
<td>100.0</td>
<td>40.5</td>
<td></td>
</tr>
</tbody>
</table>

Totals | 663.1 | 73.382 | 100.0 | 100.0 | | | |
Fig. 5
Graph Showing Distribution of Product

- Calculated on sized products
- Calculated on total -100 feed

for silver in disseminated bornite ore

Percentage Silver

Total Ag in -100 mesh

Wt. for sizes in -100 feed

MP

Total Ag in

MP

Silica

Grain Size in Microns
TABLE 3.

COMPARISON OF GOLD AND SILVER IN SIZED PRODUCTS TO TOTAL -100 FEED

1 DISSEMINATED BORNITE ORE

<table>
<thead>
<tr>
<th>Product</th>
<th>Oz/Ton</th>
<th>Total (Mg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au.</td>
<td>Ag.</td>
</tr>
<tr>
<td>Sample</td>
<td>0.40</td>
<td>2.60</td>
</tr>
<tr>
<td>-100 * 150</td>
<td>0.80</td>
<td>2.32</td>
</tr>
<tr>
<td>-150 * 200</td>
<td>0.52</td>
<td>2.52</td>
</tr>
<tr>
<td>-200 * 325</td>
<td>0.24</td>
<td>2.16</td>
</tr>
<tr>
<td>-325</td>
<td>0.24</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>8.79</td>
<td>50.92</td>
</tr>
</tbody>
</table>

2 MAGNETITE-BORNITE ORE

(following 2 Pages.)

Distribution in -100

<table>
<thead>
<tr>
<th>Product</th>
<th>Oz/Ton</th>
<th>Total (Mg.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Au.</td>
<td>Ag.</td>
</tr>
<tr>
<td>Sample</td>
<td>0.08</td>
<td>3.9</td>
</tr>
<tr>
<td>-100 * 150</td>
<td>0.10</td>
<td>4.16</td>
</tr>
<tr>
<td>150 * 200</td>
<td>0.08</td>
<td>4.56</td>
</tr>
<tr>
<td>-200 * 325</td>
<td>0.06</td>
<td>4.64</td>
</tr>
<tr>
<td>-325</td>
<td>0.07</td>
<td>4.46</td>
</tr>
<tr>
<td></td>
<td>3.57</td>
<td>181.20</td>
</tr>
<tr>
<td>Product</td>
<td>Corrected Weight in Grams</td>
<td>Oz/Ton</td>
</tr>
<tr>
<td>-----------------</td>
<td>---------------------------</td>
<td>--------</td>
</tr>
<tr>
<td>-100 + 150</td>
<td>524.3</td>
<td>0.10</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>8.0</td>
<td>2.10</td>
</tr>
<tr>
<td>Middling (NP)</td>
<td>280.7</td>
<td>0.04</td>
</tr>
<tr>
<td>Magnetite</td>
<td>202.0</td>
<td>0.06</td>
</tr>
<tr>
<td>Slime</td>
<td>33.6</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-150 + 200</td>
<td>280.3</td>
<td>0.08</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>9.1</td>
<td>2.6</td>
</tr>
<tr>
<td>Middling</td>
<td>188.8</td>
<td>0.06</td>
</tr>
<tr>
<td>Magnetite</td>
<td>51.2</td>
<td>0.04</td>
</tr>
<tr>
<td>Slime</td>
<td>31.2</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-200 + 325</td>
<td>225.8</td>
<td>0.08</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>1.5</td>
<td>3.4</td>
</tr>
<tr>
<td>Middling</td>
<td>75.3</td>
<td>0.08</td>
</tr>
<tr>
<td>Magnetite</td>
<td>52.4</td>
<td>0.05</td>
</tr>
<tr>
<td>Slime</td>
<td>96.6</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-325</td>
<td>175.4</td>
<td>0.07</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>1.2</td>
<td>3.0</td>
</tr>
<tr>
<td>Middling</td>
<td>58.4</td>
<td>0.06</td>
</tr>
<tr>
<td>Magnetite</td>
<td>38.5</td>
<td>0.06</td>
</tr>
<tr>
<td>Slime</td>
<td>77.3</td>
<td>0.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TOTAL</td>
<td>1205.2</td>
<td>3.750</td>
</tr>
</tbody>
</table>
Fig 6
Graph Showing Distribution of Gold in Magnetite Ore

- % Au Calculated on sized products
- % Au Calculated on total -100 feed

Percentage Gold vs. Grain Size in Microns

- % Wt for sizes in -100 feed
- Bornite Tip
- Total Au in -100 head
- Magnetite MP
- Bornite Tip
- Magnetite MP
- Slime
Table 5.

Silver in Bornite-Magnetite Ore

Distribution in - 100 Feed

<table>
<thead>
<tr>
<th>Product</th>
<th>Weight in Grams</th>
<th>Weight in Oz/Ton</th>
<th>Total (Mg.)</th>
<th>Total -100 Feed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Size</td>
<td>% Wt. % Ag.</td>
</tr>
<tr>
<td>-100 to 150</td>
<td>524.3</td>
<td>4.16</td>
<td>74.90</td>
<td>43.9</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>8.0</td>
<td>16.90</td>
<td>4.63</td>
<td>1.6</td>
</tr>
<tr>
<td>Middling</td>
<td>280.7</td>
<td>3.96</td>
<td>38.20</td>
<td>53.4</td>
</tr>
<tr>
<td>Magnetite</td>
<td>202.0</td>
<td>2.14</td>
<td>14.80</td>
<td>38.6</td>
</tr>
<tr>
<td>Slime</td>
<td>33.6</td>
<td>4.16</td>
<td>4.78</td>
<td>6.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>62.41</td>
</tr>
<tr>
<td>-150 to 200</td>
<td>230.3</td>
<td>4.56</td>
<td>43.70</td>
<td>23.1</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>9.1</td>
<td>25.84</td>
<td>7.95</td>
<td>3.2</td>
</tr>
<tr>
<td>Middling</td>
<td>188.8</td>
<td>2.54</td>
<td>16.40</td>
<td>67.3</td>
</tr>
<tr>
<td>Magnetite</td>
<td>51.2</td>
<td>1.46</td>
<td>2.55</td>
<td>18.1</td>
</tr>
<tr>
<td>Slime</td>
<td>31.2</td>
<td>4.36</td>
<td>4.66</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>31.56</td>
</tr>
<tr>
<td>-200 to 325</td>
<td>225.8</td>
<td>4.64</td>
<td>35.80</td>
<td>18.6</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>1.5</td>
<td>27.60</td>
<td>1.42</td>
<td>0.6</td>
</tr>
<tr>
<td>Middling</td>
<td>75.3</td>
<td>4.40</td>
<td>11.01</td>
<td>33.4</td>
</tr>
<tr>
<td>Magnetite</td>
<td>52.4</td>
<td>1.39</td>
<td>2.49</td>
<td>23.2</td>
</tr>
<tr>
<td>Slime</td>
<td>96.6</td>
<td>3.96</td>
<td>13.10</td>
<td>42.8</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.02</td>
</tr>
<tr>
<td>-325</td>
<td>176.4</td>
<td>4.46</td>
<td>26.8</td>
<td>14.4</td>
</tr>
<tr>
<td>Bornite Tip</td>
<td>1.2</td>
<td>47.00</td>
<td>1.93</td>
<td>0.8</td>
</tr>
<tr>
<td>Middling</td>
<td>58.4</td>
<td>3.82</td>
<td>7.52</td>
<td>33.2</td>
</tr>
<tr>
<td>Magnetite</td>
<td>38.5</td>
<td>1.94</td>
<td>2.56</td>
<td>21.9</td>
</tr>
<tr>
<td>Slime</td>
<td>77.3</td>
<td>4.96</td>
<td>13.10</td>
<td>44.1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28.21</td>
</tr>
<tr>
<td>Totals</td>
<td>1205.8</td>
<td></td>
<td>149.2</td>
<td>100</td>
</tr>
</tbody>
</table>
Fig 7A

Graph Showing Distribution of Silver in Magnetite Ore

- % Ag Calculated on sized products
- % Ag Calculated on total-100 head

Percentage Silver

Grain Size in Microns
TABLE 6.

COPPER IN DISSEMINATED BORNITE ORE (TIPS ONLY)

<table>
<thead>
<tr>
<th>Sample</th>
<th>%Cu.</th>
<th>Wt. of Tip</th>
<th>Gms Cu. in Tip</th>
<th>%Cu. Feed in Feed</th>
<th>Gms. in Feed</th>
<th>Gms.Cu. for Each Tip.</th>
<th>% Cu. Conc. in Tip.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-100 Sample</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-100 & 150</td>
<td>50.86</td>
<td>11.8</td>
<td>6.00</td>
<td>4.08</td>
<td>124.3</td>
<td>5.08</td>
<td>118%</td>
</tr>
<tr>
<td>-150 & 200</td>
<td>45.16</td>
<td>8.3</td>
<td>3.74</td>
<td>4.05</td>
<td>86.7</td>
<td>3.51</td>
<td>106%</td>
</tr>
<tr>
<td>-200 & 325</td>
<td>47.80</td>
<td>2.1</td>
<td>1.10</td>
<td>3.06</td>
<td>125.3</td>
<td>3.84</td>
<td>28%</td>
</tr>
<tr>
<td>-325</td>
<td>41.44</td>
<td>6.0</td>
<td>2.48</td>
<td>2.95</td>
<td>326.8</td>
<td>9.65</td>
<td>25%</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22.08</td>
</tr>
</tbody>
</table>

COPPER IN MAGNETITE-BORNITE ORE (TIPS ONLY)

<table>
<thead>
<tr>
<th>Sample</th>
<th>%Cu. Recovered</th>
<th>Wt. of Tip</th>
<th>Gms Cu. in Tip</th>
<th>%Cu. Feed in Feed</th>
<th>Gms. in Feed</th>
<th>Gms.Cu. for Each Sample Size.</th>
</tr>
</thead>
<tbody>
<tr>
<td>-100 & 150</td>
<td>38.08</td>
<td>8.0</td>
<td>3.05</td>
<td>5.96</td>
<td>524.3</td>
<td>31.2</td>
</tr>
<tr>
<td>-150 & 200</td>
<td>42.66</td>
<td>9.1</td>
<td>3.99</td>
<td>6.66</td>
<td>280.3</td>
<td>18.9</td>
</tr>
<tr>
<td>-200 & 325</td>
<td>38.12</td>
<td>1.5</td>
<td>0.57</td>
<td>6.80</td>
<td>225.8</td>
<td>15.3</td>
</tr>
<tr>
<td>-325</td>
<td>41.88</td>
<td>1.2</td>
<td>0.50</td>
<td>7.50</td>
<td>175.4</td>
<td>13.2</td>
</tr>
</tbody>
</table>

| | | | | | | |
| 8.01 | | | | | | |

-3%
OBSERVATIONS OF THE SUPER-PANNER RESULTS.

1. The best separation or freeing is indicated by the highest ratio by percent of gold or silver to the total weight, by percent of the material, or on the graph by the maximum difference of ordinate.

2 (a). In the disseminated bornite or the bornite-wallästonite ore, the best separation of the gold was at 110 microns. The maximum amount of gold was in the - 150 + 200 mesh. The gold still contained minor amounts of gangue at 100 microns. (fig.16).

(b). The best separation of silver was at 90 microns. The greatest percentage of silver was in the - 150 + 200 mesh product.

3 (a). In the magnetite-bornite ore the best separation of gold was at 90 microns. This is shown clearly by the sudden rise of the graph of the percentage of gold (in each sized product).

(b). The best separation of silver was at 22 microns. However a good separation of silver was obtained at 90 microns.

4. The slime or tailing in the + 150 mesh is due to dry screening. Some of the "fines" have coated the larger particles and have been separated by the washing water.

5. The copper assays of the bornite tip (table 6)
show that the best concentration of copper, in the bornite-wollastonite ore was in the -100 + 150 mesh, or at an average grain size, at about 90 microns. This result would be in agreement with the average size of the bornite masses seen in Fig. 8.

6. For the bornite-magnetite ore, the best concentration was in the -150 + 200 mesh. However this recovery was only 20.6%. A large percentage of bornite was noted in middlings product.

7. The graph of the silver in the bornite-wollastonite ore rises suddenly for the -325 mesh size. This is due to the presence of brittle silver tellurides - wehrlite and hessite - The graph of the silver falls rapidly in the -325 mesh size of the bornite-magnetite ore, because the silver occurs chiefly as native silver rather than as a silver telluride.

8. The silver-gold ratio was not included in the tables as the results were erratic owing to the presence of free gold and silver.
CONCLUSION.

The following conclusions have been reached:

1. The gold of the Little Billy ore occurs chiefly as native gold, the silver occurs as the silver tellurides, hessite and wherlite, and as native silver.

2. One of the volatiles or mineralizers associated with the contact metasomatism of the Little Billy ore was boron.

3 (a). In the bornite-wollastonite ore, the best separation of gold was at 110 microns or the -150+200 mesh size. The best separation of silver was at 90 microns. The best concentration of copper was in the -100+150 mesh size.

 (b) In the bornite-magnetite ore, the best separation of gold was at 90 microns, while the best separation of silver was at 22 microns. However, a good separation of silver was also obtained at 90 microns. Hence the best separation of gold and silver was in the -100+150 mesh size. The best separation of copper was in the -150+200 mesh size.
APPENDIX A

PHOTOMICROGRAPHS
Typical ore from the Little Billy mine, showing disseminated bornite and chalcopyrite in a garnet-wollastonite gangue.
FIGURE 8

Bornite replacing wollastonite. Thin section from the Prosser ore body, 468 feet from the surface.

X 67
FIGURE 9

Bornite replacing wollastonite, showing the banded appearance of the ore. Thin section of the Prosser ore body 443 feet from the surface.

X 37
FIGURE 10
Crystal of wehrlite in -150+ 200 mesh product of the bornite wollastonite ore.
X 77

FIGURE 11
Wehrlite in bornite
X 1500
FIGURE 12

Gold with quartz in bornite tip from -150+200 mesh of bornite-wollastonite ore.

X 100
FIGURE 13

Silver (Ag) and wehrlite (w) in Bornite.

X 1500
FIGURE 14

"Tellurium Pool"
from hessite heated on pyrex slide.
-100 150 mesh tip.

X 100
FIGURE 15

Wehrlite and bornite in Chalcopyrite.

X 370
FIGURE 16.

Silver replacing bornite

and chalcopyrite.

X 250
FIGURE 17

Wehrlite and hessite in chalcopyrite
Marble Bay Mine.

(material used for positive identification of wehrlite and hessite).

X 120
FIGURE 18

Wehrlite and hessite in chalcopyrite
Marble Bay Mine.
(material used for positive identification of wehrlite and hessite).

X 120
FIGURE 19

Silver in wehrlite
and chalcopyrite.

X 350
FIGURE 20

Gold, wehrlite, hessite
and chalcopyrite in quartz.

X 165
FIGURE 21.

Gold, wehrlite and hessite in chalcopyrite and quartz.

X 405
FIGURE 22

Gold, wehrlite and hessite in quartz.

X 810
FIGURE 23

Gold in a quartz vein cutting pyrite.

X 470
BIBLIOGRAPHY.
BIBLIOGRAPHY.

17. " Geology and Examinations of the Northern Part of Vancouver Island and Adjacent Coasts. Geology and Natural History Survey of Canada, 1887.

36. Warren, H.V. and Davis, Philip
 "Some Bismuth Minerals from British Columbia"
 University of Toronto Geol Series
 No.44, pp 107-111, 1940.

37. Weed, W.H. "Ore Deposits Near Igneous Contacts"

Compilations

38. Dana's System of Mineralogy
 Palache, Berman, Frondel

39. "Ore Deposits of the Western States"
 Am. Inst. Mg. & Met. Eng. - 1933.-

40. "Milling Investigations at Lake Shore"

41. "Study of a Contact Metamorphic Ore Deposit"
 The Dolores Mine at Matchuala S.L.P.Mexico.
 J.E.Spurr, G.R.Carrey, C.N.Penner

42. "Contact Metamorphism at Nickel Plate" Discussion

43. "Some Studies with the Haultain Super-panner and
 Infrasizer"
 Warren, H.V., Madsen, C., White, H.W.

44. "The Distribution of Gold in Chelan Tailings"
 Warren, H.V., White, W.H., and Davis, P.
 C.I.M.M. Bull. p 143 1939.

45. "Iron Ores of Canada Vol. I - British Columbia & Yukon"
 Young, G.A. and Uglow, W.L.

46. "Criteria of Age Relations of Minerals with Especial
 Reference to Polished Sections of Ores"
 Bastin, E.S. and Others