THE JUSTIFICATION FOR TEACHING COLOUR by

BARBARA GAIL SHBLLY

B. Ed., The University of British Columbia, 1966

A. THESIS SUBMITTED IN PARTIAL FULFIMITNT OF THE REQUIREIENTS FOR THE DEGREE OF MASTER OF ARTS

 In the Department of Fine Arts Faculty of ElucationWe accept this thesis as conforming to the required stenderd

The University of British Columbia

- September 1967

Abstract

In presenting this thesis in partial fulfilment of the requirements for an advanced degree at the University of British Columbia, 1 agree that the Library shall make it freely available for reference and study. I further agree that permission for extensive copying of this thesis for scholarly purposes may be granted by the Head of my Department or by his representatives. It is understood that copying or publication of this thesis for financial gain shall not be allowed without my written permission.

Depertment of FINE ABTS, Fraculty of Faucation
The University of British Columbia Vancouver 8, Canada

Date Septembex 20y-1967

Abstract

This thesis attempts to justify an intensive course in colour for Fine arts students at the university and art school. The teaching of colour is justified from a theoratical and a practical standpoint.

In the first section, the various disciplines concerned with the subject of colour are examined for evidence of colour's effect on the life of the human organism. This evidence is compiled from reports of research in educational and psychologicel journals, from the theories ent aiscussions available in books on the physicel and psychophysical evaluation of colour and the physiolozy and psychology of colour vision. The hypothesis that colour influences man's life pattern is substentiated in this compilation.

The phenomeno of colour is not only a significant aspect of man's environment, it is also an element of art, The responsibility for its teaching lies with the art educator. The second hypothesis that the presentation of colour to university and art school stuaents is incompatible with practical needs is supported by an evaluation of contemporery pedagogy of colour in V_{a} ncouver. Interviews with teachers of Fine Arts in the Faculties of Arts an Equeation, The University of British Columbiag in the Vencouver School of Art and the Vencouver Art Gallery revesled that for the most part, the method of teaching colour perpetuates the instructor's orn background in colour wheel theory and the mixture of pignents. Interviews with student colourists, and questionnaires distributed arong Fins Arts majors in the Faculty of Eacation revealed that

the theoretical presentation of colour has little application to the practical neeas of art students.

This theris concludes with a proposed revision in the approach to colour with students of Fine Arts. The outlined course is designed to develop the ability to manipulate colour through problem-solving experiences.

TABLF OF CONTENTS

PAGE
INTRODUCTION 1
PART I--THE EFFFECT OF COLOUR ON MAN 2
CHAPTER
I. THE HISTORICAL ROLE OF COLOUR 3
II. THE VISUAL STIMULUS 6
Physics 6
Psychophysics 7
III. THE PHYSIOLOGICAL ROLE OF PIGNENT IN VISION 10
Vision via Pigment 10
Variations in Sight Due to Digment 12
IV. THE PSYCHOLOGY OF COLOUR
VARIABLFS IN THE RESPONSE TO COLOUR 15
Developmental Stage of Colour Perception 15
Intensity of Experience 17
Acquired Response 18
V. THE PSYCHOLOGY OF COIOUR
THE DIRECT RESPONSE TO COLOUR 20
The Physical Effect 20
Fmotional Effect 24
VI. THE PSYCHOLOGY OF COLOUR ASSOCIATIVE ASPECTS OF COLOUR 29
Colour in Language 29
Colour Symbolisin 32
The Development of Colour Symbolism 35
Individual Colour Symbolism 37
VII. THE PSYCHOLOGY OF COLOUR
THE LINK BETWEEN COLOUR VISION AND THE OTHER SENSES 40
Taste 40
Synesthesia 42
VIII. THE PSYCHOLOGY OF COLOUR VISUAL PHEIVOUENA: 45
General Acaptation 45
Local Adaptation 47
Lateral Adaptation 50
Non-Aaptive Phenomena 54
CONCLUSION TO PART I 58
PaRT II--EVALUATION OF THE PRESENT SITUATION 59
CHAPTER
I. INTERVIEMS WITH TEACHERS 60
II. INTERVIEVIS WITH SIUDEINS 67
III. RESULTS OF THE QUESTIONNAIRE 70
CONCLUSICN TO PART II 77
THE PROPOSED COURSE 78
AFPENDIX A. INTERVIEW--TEACHERS OF ART AT THE UNIVERSITY ANO ART SCHOOL 81
APPFNDIX B. INTKRVIENT--STUDENTS OF ART--FACULIT OF EDUCATION, THE UNIVERSITY OF BRITISH COLIMBIA. 82
APPENDIX C. STUCENT SURVEY ON COIOUR 83
APPENDIX D. PROPOSED OUTLINE OF COLOUR COURSE 86
GLOSSARY 93
BIBLIOGRAPHY 94

LIST OF TABLES

TABLE Pagk
I. Student Scores on Definitions 72
II. Stuant Consideration of Different Aspects in the Study of Colour 74

LIST OF FIGURES

FIGURE PIGE

1. Brightness Contrast 51
2. Colour Contrast 52

ACKNOTLEDGETENTS

I am indebted by my advisor. Professor Sam Black, for his guidance throughout this undertaking. His enthusiastic support sustained my effort. The valuable advice of the committee members, Professor Elmore Ozard and Professor Philip Penner, is sincerely appreciated. Finally, I wish to thank all those persons who granted time for interviems and questionnaires. Their cooperation permitted an assessment of the present state of the teaching of colour in Vancouver.

The purpose of this thesis is to justify a more intensive and extensive teaching of colour to art atudents at the university or art school, and. beving done this, to propose a suitable course in colour. The justification is in two parte. The firat section presents research from history, physics, psychophysics, physiology, and psychology illustrating the interdependence of man and colour. The second part assesses the present pedagogy of colour In one institution to determine whether or not a need for revision exists. The theoretical and practical studies provide substantial evidence that there is a place for the proposed course. The outlined procedure for teaching colour is an experimental, problem-solving mathod, based on the principle that colour is the most relative medium in art. T_{h} e purpose of the course is to promote a sensitivity to colour in the environment. and to capitalize on this awareness in developing dexerity in the personal use of colour.

PART I
TEE EFFECT OF COLOUR ON MAN

The ensuing eight chapters will attempt to aubstantiate the hypothesis that man is affected by colour. Chapter I discusses the role of colour in relation to man's technological development. Colour as the objective physical stimulus for vision is the topic of Chapter II. Chayter III points out how the physiological functioning of various parts of the visual receptor depends on pigments. For example, the plements in the rods and cones transform radiant energy into nerve activity. The psychological aspects of colour are contained in Chapter IV through Chapter VIII. These aspects include the variability of the conscious response to colour, the effect of colour on the emotions and physiology of man, the evidence of man's learned associations with colour, the link between colour vision and other senses, and finally, the deception inherent in the risual senee itself. It is hoped that this theoretical compilation will indicate that man is afected by colour in aiverse ent limitless ways.

CHAPTRR I

THE HISTORICAL ROLE OF COLOUR

Many centuries ago, the value of minerals, plants, and animals was partially determined by the colours they produced. T_{h} e artistic expression of early man was limited in colour to indigenous flora. earthen colorants, and charcoal. As his desire for colour expanded, man discovered that minerals could be ground and mized with a vehicle such as fat. Because orange-red cinnabar was a desirable hue, mercury sulphide becane a valued mineral. Similarly, azurite and malachite crystals of copper carbonate, and lapis lazuli increased in worth. In ancient Tyre the gland of the murex snail was esteemed because thousands of snsils were required to produce a: sinall portion of purple dye. This scarcity is directly related to purple's prerogative as the hue of royalty. The craving for colour also promoted exploration for new sources anc trading connections. puring the age of exploration new coloura were brought to Frope from the Fast. Spanish conquistadores returned from the New Horld with a vivid caraine red, derived from the cochineal.

As man's technology aãvancea, colorants emerear as an important commodity. In 1858, quite by accident, William Henry Perkin created the first anilene dye, Perkin's Msuve. Since then, many synthetic colorants have been produced from chenicals such as anthracene, cobalt phosphate, cobalt arsen ate, barium, and phthalocyanine. The discovery of nem colorants becoues economically essential when stannard sources for a hue are dapleted. A. new colorent must be found to replace the cadmiuns being exhausted by the snace progranme. Scientists strive to proauce colorants to fill diverse denands,
such as fast dyes, washable inks, and non-poisonous pigments. Chemical reearch profits from man's search for new colour resources.

Discoveries involving colour have frequently led to technological advancement. Certein plents and substences have been found to react differently to light of opposite wavelengths. Plants will perish in rooms painted certain colours, although light, heat anc nourishment are ample. ${ }^{1}$ The oxidetion of sodium sulfate is retarded by violet light, but accelerated by redaish-yellow light. E. E. Land, whose invention of the Polaroid camera employed principles of colour technology, is now proceedine from Hering's statement, "one and the seme ray can be seen, according to circumstances; in all possible hues. ${ }^{2}$ Lana has produced green from a red filter plus bleck and white. He submits that colour vision depents not only on the stimulus of wavelength and intensity, but also on whether or not the patterns presented are acceptable renditions of the objects. For exemple, brown cannot be perceived until contrast, pattern, anc preferable interpretation of areas of light as surfaces of objects are all present. ${ }^{3}$ Land's investigations will no douot enlighten the puzzie of colcur perception, making possible further strides in man's continuous probe for the new and the better.

In sumnary, colour has been an important factor in the evolution of bumen technology. The desire for colour has provided the motivation to

[^0]explore and investigate. Man's understanding of the chemical and physical properties of colour and their inherent working principles has been crucial in such discoveries as photography, spectrophotometry, and the laser beam.

CHAPTER II

THE VISUAL STIMULUS

Physica

The physical basis of colour is light, and life is inconceivable without light. In addition to his dependence on colour for life itsolf, man is affected by colour in specific ways. Physics is the one scientific discipline considering the subject of colour from an objective piempoint. The physicist studies the atimulus qualities of colour, without eny reference to an observer. The physical characteristics of colour, namely mavelength and intensity, determine the manner in which colour reaches the human receptor. ${ }^{1}$

Wevelength, the first physical property of colour, determines hue. Ine visible spectrum is proauced by wevelengths between 390 mp and 710 mp . F. A. Taylor mrites, The spectra of natural sunlight is the basis on which a knowledge of colour for the practical colourist is founded, and it will thus be realized that a sounc knowleage of colour theory based on scientific principles is the only sure guiae to the artist. . . ${ }^{2}$ Because light trevels in waves, it behaves in specific ways affecting human vision. Rofraction, diffraction, diffusion, and polarization all determine the manner in which colour is preaented before the retine, but they are seliom acknowledged by man as affecting him to the extent that they do. The countliess

[^1]phenomena such as the colour of the sky and the transparency of water occur because of wavelength behavior. Similarly, reflection and absorption, permitting colour to be seen as a surface depend on the wavelength composition of light. The predominant wavelength in the illumination alters the wavelength distribution reflected from the surface. Red paper illuminated by green light will appear black because the green light lacks red wavelengths for the colorant to reflect. Determining the hue of a surface is just one way that waveleagth affects colour vision.

The second physical property of colour is intensity, that is, the rate of the incidence of energy of each wavelength reaching the visual receptor. The intensity necessary to make a wavelength visible to the humen eye is adequate between 400 mp and 700 mp . Although it is theoretically possible to increase the intensity of invisible wavelengths in order to make them Visible, the amount of energy required to make 1500 mp visible would cook the eye. ${ }^{3}$ Thus, intensity, the second characteristic of colour, affects man by determining which wavelengths will be visible, and how much light each wavelength will radiate.

Psychophysics

Before the effect of these physical properties can be realized, man must respona to colour. This involves the realm of psychophysics, where the reaction of the visual mechanism to a specific set of stimulus cond-

3yemes R. Gregg and Goraon G. Heath, The Eye and Sight (Boston: D. C. Heath and Co., 1964), p. 119.
lions is investigated. Man's reactions to the three dimensions of colour-a. hue, saturation, and brightness--are separately measured. First, hue refers to scale of perceptions ranging from red through yellow, green and blue. Psychophysicists state that although wavelength changes regularly from one end of the spectrum to the other, the perception of hue does not change accordingly. The ability to distinguish hue peaks at 500 mp and again at 570 mp , then diminishes towards the ends of the spectrum. All reds beyond 650 mp look the same to the human observer. ${ }^{4}$ Saturation, the second admension of colour, is related to the purity and strength of the hue. Psychophysicists: find that the ends of the spectrum have more intrinsic saturation then the center. The amount of wavelength required to produce a hue from White light decreases as the intrinsic saturation increases. 5 As the third dimension of colour, brightness is the mental evaluation of luminance. ${ }^{6}$ Psychophysicsts studying the relative amounts of energy in each wavelength region can predict that the yellow region of the spectrum will cause the most luminous sensation in man's visual receptor. Hue, saturation and brightness cannot be separated from wavelength and intensity, their physical determinants.

In summary, the physical concept of colour, characterized by wavelength end intensity, determines the quality of light reaching the visual receptor. The reaction of the eye to the pattern of radiant energy cen be measured in separate terms of hue, saturation and brightness. Colour
4 Gregg. p. 116.
6
Ibis. . p. 116.
5Ibia.. p. 118.
affects man through these three dimensions. From now on when the noun 'colour' is used, it refers to the conscious reponse, the perception of colour. Strictly speaking, all visual appearance depends on colour.

CHAPTER III

THE PHYSIOLOGICAL ROLE OF PIGMENT IN VISION

Vision via Pigment

The eye does not see the energy distribution of light directly. It sees only the relative effectiveness of the light on its own receptor system. The evaluation of radiant energy in terms of visual perception rests squarely on the properties of the human eye. Support for the hypothesis that colour is important to the humen organism lies in the examination of the visual pechanism. Pigments play an indispensable role in colour vision. -The radiant energy penetrating the cornea is . . . modified in spectral composition by pigments (lens, macula), transformed to nerve activity by pigments (rods, cones), and most of it is finally absorbed by pigment in the choroid coat. ${ }^{1}$

The first pigments necessary for colour vision are contained in the rods and cones of the reting. The photosensitive material used by the rods to absorb radiant energy is called 'rhodopsin'. Because rhodopsin is bleached by light, the rods are insensitive during the day. Sailors often prepare for night watch by mearing red goggles half an hour before duty; to allow the rhodopsin time to become active. There is sone speculation that the rods act as the blue channel in colour vision, because night vision is blind to all hues but blue. We ourselves create the silver hue of moonlight by looking at it with our colour-blind rods. ${ }^{2}$ Rhodopsin, then, is

[^2]the known pignented component of the rods. The work of Tiald indirectly indicates the existence of one cone pigment, 'iodopsin', but tre existence of others is speculated. ${ }^{3}$ scientists theorize that the cones are composed of pigments corresponding to the hues to which they are sensitive. T_{k} retina is divided into colour zones according to the distribution of rods and cones (cones predominate in the foveal centralis, roda in the periphery). The sensation of most chromatic colour appears to change from strong red to weak yellow to pure gray during the sion movement of the stimulus from the fovea to the periphery. ${ }^{4}$ Buddenbrock observes that in order to see a star, a person must glance to one side for rod vision. 5

The second pigment necessary for colour vision is the 'melanin' in the choroid coat. This bromish-black pignent absorbs radiant energy to prevent the image cast by the lens from being overly degraded by stray light. Haemoglobin, another pigment, assists in the absorption of light.

The 'macula lutea', composed of bromish-yellow pigment called 'xanthophyll'. is loceted on the retina. It protects the central cones from overstimulation by short wave energy. known to cause long-lasting 6 after-images. The understimulation supersensitizes the cones to short wave energy, so that the uniform field of vision is never interrupted by the macula spot. In addition to preventing uncomfortable after-images,

3Juda, p. 17.
4Committee on Colorimetry, Optical Society of Anerica, The Science of Color (Washington, D.C.: Optical Society of America, 1963), p. 103.

5 Buddenbrock, p. 80.
${ }^{6}$ Juãd, p. 15.
this valuable pigment also increases the resolution of fine detail. ${ }^{7}$
Finally, pigments contribute to colour vision by tinting the lens of the eye. The lenses of children are relatively pigment-free. Hith increased age, a melanin-type of yellowish-brown pigment develops in the lens, octing as a yellow filter preventing short wave energy from reaching the retins. This, like the mecula luten; protects the retina from overatinulation by ultraviolet rays.

Colour, then, in the form of pigment, is vital to the visual process. Pigments in the rods, cones, lens, macula lutea, haemoglobin, and choroid coat enable vision to teke place.

Veriations in Sight Due to Pigment

Variations in the kind and amount of pigmentation cause discrepancies in colour vision. The first variation in sight caused by a pigment is related to age. Although the melen in in the lenses of older people prevents overstimulation of the retina by ultraviolet rays, the macula lutea provides the same service. In persons of advanced age, when both factors are operating, the sensitivity to violet anc blue light diminishes. In colourmatching tasks, oleer people have been found to be less sensitive to blue. Industries requiring employees to discriminate between hues are elert to this unavoidable deciine. In general, the quality of colour vision increases to the age of twenty-five years: the decresse which becomes pronounced by the age of sixty-five can be partially attributed to the pigmantation. ${ }^{8}$

Ralph Ma Evana, An Introduction to Color (New York: John Wiley and Sons, Inc., 1961). p. 99.

Robert.W. Burnham, Handall M. Hanes and C. James Bartleson, Color: \& Guide to Besic Facte and Concepts (Nem York: John Filey and Sons, Inc.. 1963). p. 91.

There are three variations in colour vision independent of age. The first is caused by the variation in size of the macula lutea. Firans found that the difference in colour matches performed by observers was due to the amount of macula pigmentation present in the foveal region。 ${ }^{9}$ Burnham, Hanes and Bartleson write. The extent and distribution of macular pigmentation vary irregularly and significantly from one person to another, and these variations can cause considerable individual differences in colour vision." 10
T_{h} second ageless factor contributing to discrepancies in the quality of colour vision is the lack of melanin in the choroid coat. Albinos depend on the inadequate heemoglobin to absorb the stray light within the eyeball. Consequently, retinal images are diluted by the ungbsorbed light: the albino suffers from lop visual acuity and photophobia.

The third ageless factor in individual colour vision differences is colour-blindness, or to be more correct. 'colour deficiency'. Judd says that colour-bilnaness results from cones containing the wrong pigment. Colour deficiency is explained through the three-receptor theory. Assuming that normal vision is trichromatic, deficient colour vision can be broken down into categories of mono-chromacy, dichromacy, and trichromacy, depending on whether the subject uses one, two or three primaries to produce a colour match. Many people never realize their own colour vision deficiency unless it is discovered in a medical exanination, in the Ishihara Test, or in a course teaching the use of colour.

To sumarize, from the physiological standpoint, the pigmented parts of the eye assume a large responsibility for colour vision. Individual differences in colour vision cen also be attributed to pigments. Variations are so plentiful that the perception of colour on this basis alone must be considered a totally relative phenomenon.

CEAPTER IV

THE PSYCHOLOGY OF COLOUR
VARIABLES IN THE RESPONSE TO COLOUR

The preceaing two chapters have explained how colour affects man in general. Colour is the physical stimulus for vision. Pigments comprising various parts of the humen receptor moaify the spectral composition of light absorb light, an transform light into messages received by the brain. Thus the effects of colour can be enumerated in physical and physiological terms, applying equally to any human organism possessing colour vision. Colour's major effect on man, hovever, is psychological. Of paramount concern in probing the effect of colour on the human organism is tha individuel conscious response of man. "Visual perception is defined as the integrated response modified or interpreted in terms of the stored physiological remnants of past experience which are brought to bear in that situation."1 This definition emphasizes the individual element of colour perception. The psychology of colour accounts for variations in the physical stimulus, in the physiological condition of the eye, and in the psychological state of the observer's mind. Variations occurring as a result of age, the intersity of experience, and the acquired response, are noted carefully in the psychologicel evaluation of colour's effect on men.

Developmental Stage of Colour Perception

The influence of colour on the humen varies according to age. Reaction

[^3]to colour beging at a comparatively primitive stage in perception. Patients who have been blind since birth, and who have gained sight through an operstion for cataracts, are reputed to perceive colour more readily than simple form. Patients recovering from injury to the occipital lobe may be able to see colour as a soft, hazy film before they can see colour as the surface property of an object. ${ }^{2}$ Research by Staples shows that babies can distinguish between red, yellow, blue ond green at fifteen months. The colours are effective as stimuli in that order. ${ }^{3}$ Chilaren under three years of age respond immediately to shape, whereas between the ages of three end six years, they are more attracted to colour. ${ }^{4}$ Faber Birren says amall chilaren are colour dominant because colour is a more immediate experience than form. Studies indicate that colour dominates over form in sorting skills. Kindergarten children will sort objects of different shapes and colours by their colour. 5 Elsewhere, Birren states, "Basically speaking, colour is more emotional in its impression than form. This is particularly true of young children." 6 Lindberg concludes that the tendency to respond to colour decreases with increasing age at the elementary

[^4]
Abstract

school level. 7 The majority of studies show humans being less affected by colour as they grow into adulthood.

Intensity of Experience

Harland Bopst says. "Color is a dominant idea in the consciousness of everyone." ${ }^{8}$ In actuality, some people have intense reactions to colour. some are hardly affected at all.

> The intensity . . . varies because of the differences in affective sensitivity to colors as well as because of differences in the colors themselves. Thus, some artists and others pay a lot of attention to colors and refer to them by such terms as sober, hot, heavy, Ary, juicy, voluptuous, sensual, insipid, brutel, tranquil, aiscoraant. Such terms suggest that such people are affected by colors more than most. 9

Most people take colour for grented unless their attention is focused upon an isolated colour in an experiment. Although they can supply an affective judgment, this response cannot be regarded as typical of their normal reaction. The intensity of experience is thought to be mainly a native response, but it can be influenced by learning, enc it can fluctuate with changes in attention and mood. Colour preference can also influence man's response to colour. Intensive reactions are expected from highly liked or disliked hues, compered to those eliciting a neutral feeling.

[^5]
Acquired Response

Repeated experiences with a colour usually result in an autamatic colour association. A dyer, for example, may prefer fast colorants to fugitive colorants. In a test for colour preferences, he will respond more favourably to the sample corresponding to his fast dye, despite the fact that the psychologist does not intend this association to take place. Association can play a major role in determining the pleasantness or unpleasantness of a colour. Both the mention of a colour name and the actual Visual perception of a colour are capable of producing a connection with a past cognition. The atimulus anf the idea connect simultaneously and seem to be one. This probably accounts for the negative response an airline company receiven when its aircraft interiors were painted brown and yellow. The combination reminded passengers of air-sickness, and they promptly became ill. Another airline official attributed the reflection of the bulkhead green onto the passengers' faces to their feelings of sickness. Walter Sargent writes, Our responses to colours are bound up with associations of other experiences. " ${ }^{10}$ Hospital roons are no longer painted white because patients associate white with sterility. Mrs. P. Gouldstone, a member of the Faculty of Education, The University of British Columbia, installed a mural in a Manchester children's hospital during World Far II. Before she was pernitted to execute her design, she met with doctors, psychiatrists, and psychologists, who eliminated all substantial areas of

[^6]black, purple and red from her design because of the associations they might arouse. The connections resulting from past experience cen be very personal, or coimon among many people. The scope is limitless.

In aumary, although colour is affecting every human, this effect varies between individuals, according to the stage of their colour perception, the intensity of response, and the influence of past learaing on juagment.

CHAPTER V

THF PSYCHOLOGY OF COLOUR
THE DIRECT RESPONSE TO COLOUR

The ensuing aiscussion is based on the assumption that colour can evoke a direct response from man. No matter what degree of intensity accompanies this response, it is independent of associations.with past experience. Arnheim writes, "The effect of color is much too direct and spontaneous to be only the product of an interpretation attached to it by learning." ${ }^{\text {l }}$ The direct effect of colour on the human organism can be studied as it pertains to physiology and amotions.

The Physical Effect

One of the most common physical effects of colour is the feeling of warmth evoked from reds and yellows, and coolness eroked from blues and greens. Although the comfort zone is defined in terms of temperature, humidity and air movement, colour is aiso an important consideration. For example, patrons felt chilly in a cafeteria painted blue. Management redecorated in pink, held the temperature constant, and the complaints ceased. ${ }^{2}$ Bilson tells how he changed the colour scheme of the moaving shed in Yorkshire, only to be confronted by workers returning from their

1
Riudolf Arnheim, Art and Visual Percention (Berkeley: University of California Press. 1965), p. 326.
${ }^{2}$ Comattee on Colorimetry, Optical Society of America, The Science of Color (Washington, D.C.: Optical Society of America, 1963). 1. 168.
holidays, demending the temperature of the work room be raised. 3
Speculation exists between the associative explanation and the physiological explanation of the apparent temperature of colour. Two of the explanations for the apparent thermal effect of colour on body comfort are associative in nature. One hypothesis states that because fire is warm and ice is cold, people associate red with heat and blue with cold. Another theory states that the sunny, yellow sky provides warmth, whereas the sunless, blue-gray sky obstructs radiation and is therefore associated with coolness. The apparent temperature of colour has been included in this chapter, because in the opinion of the writer the physiological explanation is more significant. In 1900 in Paris, Féré found that musculer pover and blood circulation are increased by coloured lights in the following sequence of hue; blue least, through green, yellow, orange and red. This research has since been validated many times. An increase or decrease in blood circulation could certainly contribute to feelings of warmth and coolness.

In addition to warm and cool colours affecting the temperature of the bory, they are also said to affect muscular activity. Nakshisn finds marm colour conducive to muscular activity, wherees cool colours promote mental exercise. People exposed to large areas of red overestimate periods of time, but underestinate time in blue and green surroundings. ${ }^{4}$ Birren writes, "Physically red is exciting and increases restlessness and nervous tension. 5

3Robert F. Wilson, Colour apd Light at Fiork (Lonion: Seren-Oaks Press, Ltd. . 1953). p. 75.

4Jacob S. Nakshian, The Effects of Fed zna Gresn Surroundings on Behsvior," Journal of General Psychology, XXXII (December, 1964), p. 161.

5 Fabor Birren, Color Psychology and Color Therapy (Toronto: MCGrawoHill Book Co.. Inc. . 1950), p. 258.

Blue is used in hospitals to minimize babies' crying and patients' anxiety because it is tranquilizing. The football coach who keeps his team in a blue room during half-time to relax, and then delivers the pep talk in a red anteroom is utilizing this knowledge of colour to affect his players. 6 Other exemples of the physical effect of colour are not nearly as abundant as teaperature, blood circulation and muscular activity, but thay are more sensational. One of the most incredible examples of the power of colour is related by Bernard Shaw.

> Among my many mecical acquaintances was a country doctor, now dead, whose children all died within a few days of their births, leeving him prolific but chilaless. In desperation he tried a senseless experiment. He took the last beby into the garden and shaded it in a little tent of Turkey red. That baby survived. When I last heard of him from his father, he was flourishing in the prime of life in the Antipodes. A spot of pleasant colour had made all the difference between life and death where the most intimate doctoring had failed. 7

In contrast, a man who was blind until the age of thirty become physically 111 when he first saw yellow. 8

6
The fact that cool colours promote mantal activity, and warm colours promote physical activity can be compared to the correlation betveen personality and colour preference. Generally speaking. people who are less cultural. extroverted, and octive prefer the saturated hues, and the particuler hue of red. People who are introverted, sensitive, self-anare, thought-oriented, and more culturally mature prefer tints, as well as blue and green.
D. Grant Ross, "Psychology of Color Preference in Projection Slides," Journsl of the Association of Medicel Illustriators. No. XVI (1965). pp. 14-15.

7Bernard Sham. Aesthetic Science, "published for the Council of Induse trial Design (London: Sun Engraving Co. Ltd., n.d.), p. 143.

Br $_{\text {R L Latta, British Journal of Psychology. I, quoted by R. A. Houstoun, }}$ Light end Colour (Toronto: Longman's, Green and Co.. 1923). p. 167.

Dr. Kurt Goldstein says that colour has a strong physical effect on the emotionally unstable. The stimulation occurring as a result of exposure to a red environment is particularly detrimental. The well-known neurologist describes a patient who stumbled when she wore ared dress. Blue and green clothing restored her equilibrium to a point of being almost normal. Dr. Goldstein writes, "It is probably not a false statement if we say that a specific color stimulation is accompanied by a specific pattern of the entire organism. 9 The authors of Human Senses and Ferception concur with this statement, "There is indeed psychological justification for maintaining that the quality of a particular color sensation represents a state of sensory equilibrium. ${ }^{10}$ In research with cerbellar diseases, D_{r}. Goldstein had his patients look at coloured paper while they held their hidden arms outstretched. When they viemed yellow, the arm controlled by the defective brain center vould deviate 55 cm . from the midine. Red caused a deviation of 50 cm. . White- -45 cm ., blue- -42 cm. , green- -40 cm. . and closed eyes caused a deviation of 70 cm . Goldstein concluded that the colours corresponding to long wavelengths go with expensive reaction, while colours corresponding to short wavelengths accompany constriction. ${ }^{11}$

[^7]Colour evokes an emotional response in the humen organism.

> - all affective responses from visual stimuli must depend upon color because visual perception is impossible without some visual stimulus pattern, which, in turn, is impossible without the colors that are its elements. No one can question the reality of affective responses to visual stimuli because they are often of the most violent anr unmistaksble nature. Therefore, no one can question a, fundamental dependence of affective responses upon color.

Comparing the response to colour with the response to shape, Rorschach found that cheerful people iaentify colour at the expense of contour, whereas depressea people most often react to shape. People exhibiting a colour dominance are open to external stimuli, sensitive, easily influenced, unstable, disorganized and given to emotional outbursts. ${ }^{13}$ Although Rorschach offered no explanation of the correspondence between perceptual behavior ana personality, Schachtel points out that the experience of colour resembles that of affect or emotion. He says that with both emotion and colour the human is a passive observer of stinulation. With shape, a more active response is required. ${ }^{14}$

Psychologists at Brandeis Oniversity placed normal subjects in a gray room to find that the drab enviroment made them critical and fault-finding. They developed physicsl symptoms of headache and fatigue, and emotional traits of discontent, irritability, monotony, and hostility. ${ }^{15}$

12The Science of Color, 1. 150. 13Art and Visual Percention, p. 324.
14Ibia. . p. 325.
$I 5_{\text {Gibson, }}$ p. 23.

Goethe contends that yellow-red elicits an emotionsl response from a few people. "I have known men of education to whom its effect was intolerable If they chenced to see a person dressed in a scerlet coat on a gray, cloudy dey. ${ }^{16}$

Fhen normal people react to colour with a chenge in erotions, it is understandable that colour evokes a strong affective response from the mantally unstable. Accounts dating back to 1875 relate how a man afflicted With a taciturn delirium becane gay after spending three hours in a red room, how a violent case in a straight-jacket was celmed in one hour by blue light, and how another madman was completely cured after one day's exposure to violet light. 17 of questionable validity, these accounts provide evidence that the effect of colour on man was being investigated in the late nineteenth century. In validated cases, the evidence of response to colour by mentally unatable patients is very pronounced. Bengt J. Linaberg observes that substable types heve the greatest colour attitude. 18 on the other hand, persons who dislike colour or fail to respond to it are likely to be repressed individuals. Failure to repond seldom goes hand in hand with a well-adjusted personality. ${ }^{19}$ Birren states that severe cases of depression frequently reject colour, preferring a gray world and disdaining

16
Johann Folfgang von Goethe, Theory of Colour, trans. E. L. Eastleke (London: Murray, 1840), p. 776.
${ }^{17}$ R. A. Houstoun, Light and Colour, pp. 162-163.
18
Bengt J. Lindberg. Experimental Sturies of Colour and Non-Colour Attitude in Schocl Children and Adults (Copenhagen: Levin and Munksgaard, 1938), p. 147.
${ }^{19}$ John E. Gibson, "How Color Affects Your Life," p. 64.
a colourful one. According to Birren, green represents a psychologicel withdramal from stimuli, suggesting escape from anxiety. Yellow pronotes infentile outbursts, and red is associated with maniac tendencies. ${ }^{20}$

Closely akin to the relationship between colour and emotion is the power of colour to induce mood. Dr. Robert R. Ross of Stanford University allies colour with arametic intensity and emotion. Blue, purple, and gray are best used to enforce the mood of a tragedy, whereas red, orange and yellow are appropriate for comedy. ${ }^{21}$ In motion pictures colour is often used to support and sustain mood. Herman Daremski conducted some experiments to determine the effect of colour on his musical compositions. He looked at light through a variety of coloured gelatines and tabulated his mood reactions. Thereafter, he frequently employed gels to produce the mood appropriate for his compositions.

> - colour has put me in the required state of mindeagiven me the desired conception or else quickened or enlarged conception--for practically all the tunes which I heve written lately. i Leoking through a deep blue strip of gelatine made me feel the exact music which had previously eluded me, o the result wes what I regard as being one of the best bits of composition I have ever done.

Faber Birren, Color: a Survey in Words and Pictures (Nem York: University Books, Inc.. 1963), pp. 187-190.
${ }^{21}$ Ibid.. p. 210.
${ }^{22}$ Herman Darewski, "Composing by Colour," Pearson's Hagazine (December, 1916). quoted by R. A. Houstoun, p. 161.

Schail found that the influence of colour on the strength of mood and amotional tone is general an reliable, 23 Other investigations between colOurs and mood names have been carried out by Beck and Dunbar, ${ }^{24}$ Ross and Karmoski, and Oabert and Eckerson 25 with the same significant agreement. Then there is the remark of the witty Frenchman, who, according to Goethe, "pretended that his tone of conversation with Madame had changed since she changed the color of the furniture in her cabinet from blue to crimson. 26

In brief, psychologists are investigating the direct physical and emotional impact of colour on man. Physically, colour can make man feel warn and cool; it can increase and decrease his blood circulation and muscular activity. Colour is intimately connected with sensory equilibrium, and with constrictive and expansive movement. The response to colour is also manifestec in emotions and in mood. A positive reaction to colour is considered emotionally healthy, whereas a fallure to respona to colour is characterise tic of emotional instability. Gray causes depression among normal subjects, and is preferred by the depressed. Colour and mood correlate highly. Warm hues correspond to heppy, optimistic moons, while cool colours are quieter in tone. Colour is used to establish en sustain the dominant mood in

[^8]drane end motion pictures. Every human experiences some degree of direct response to colour. This response, manifested in emotions and physical functions, constitutes a noteworthy influence on the life pattern.

CRAPTER VI

THE PSYCHOLOGY OF COLOUR

ASSOCIATIVE ASPECTS OF COLOUR

The suggestive pover of colour, arising from associations, affecta man strongly.". . . the processes of learning and conditioning are constantly producing colour associations with various feelinge, emotions and meanings. " ${ }^{1}$ Two aspects of associative colour will be aiscussed; first. colour in language, and secondly, colour symbolism.

Colour in Languaga

Marion Miner writes, "Clearly the subject of colour is, on the evidence of language alone, very elosely bound up with feelings. " ${ }^{2}$ Accoraing to Wilson, colour woras ceme into our lenguage to express emotions. ${ }^{3} \mathrm{~T}_{\mathrm{h}}$ e use of colour words in the preaent finglish languege is frequentiy accompanied by an ersotional connotation. A review of colour vocabulary reveals how the communication of feeling depends to a considerable extent on the associations with colour.

Connected etymologically with the Sanscrit 'rudhirs', meaning blood. red is essociated with the stern qualities and the passions of man. To be caught 'red-handed' implies a feeling of guilt. When angry, people isee

[^9]red', when showing a net loss, their position is described as 'in the red'. Confusion and delay are termed 'red tape', and a diversion is celled a: 'red herring'. A special day is a 'red letter day', and the celebration may take the form of 'painting the tom red'. References to intoxication, prostitution, and Communism often contain the word red.

Originating as the name for the colour of the sky, the celestial qualities of blue still figure in expressions such as 'out of the blue'. 'a bolt from the blua', and 'once in a blue moon'. An air of superiority surrounds the 'blue ribcon', the 'royal blue blood' and the 'bluestocking', while 'true-blue' is the Scottish description of loyalty. At the other end of the scele is the depression of 'blue Monday', 'feeling blue', and the inectivity of 'bluing time'. Inexplicable paradoxes accompany the mention of blue.

Derived from the same root as grow; green is associated with freshness. nemess and youth. Taken to the extreme, it can mean inexperience, e.g. 'greenhorn'. Immaturity is understood in the expressions 'green wood' and 'green beer'. Inmature emotions such as envy and jealousy cause a person to 'turn green'. Aptitude, however, is assumed in the gardener with a 'green thumb', and the person who is confronted with the 'green light'. The connotations of the word green oscillate between inexperience and confidence.

Yellow has a less than enviable emotional impact in the English language. "Looking with a jaundiced eye" is an expression of disapproval. Yellow is often essociated with cowerdice, e.g. 'yellow streak', or with low nemspaper morality, e.g. 'yellow journalism'.
"That.'s mighty white of you," and "white flower of a blameless life," praise considerate actions and high morality. White enforces the unpleasant situation as well. People tell 'white lies', and are burdened with the 'white elephant'. 'White-lipped' is a deacription of rege: 'vhite as a sheet' is a reaction to fear. A 'white-livered' person is a coward, and a 'whitewash' is a cover-up.

Black has unfavourable connotations. It is associated with wickenness, e.g. 'black-hearted', and with disaster, e.g. 'Black Death', 'black Friday', 'black cats'. 'black despair', and 'a black outlook'. An outcast is a: 'black sheep'. Poor behavio: is indicated by a 'black eye', a: 'black mark' or a 'black recora'. Secrecy is implied in 'black-balling', and in 'blackmail!.

Adaitional word associations are worthy of attention. To be angry is to be 'browned off', ant the after-effect is sometimes called a 'brown taste'. Contemplation is referred to as a 'brown stuay'. Expressions of 'purple pasaion' and 'yurple with rege' indicate peaks in emotion. 'Purple patches' are the nigh points in a 'highly coloured' or enotional statenent. An optimist sees the viorla through 'rose-coloured glasses', and believes "every cloud has a silver lining." He anticipates a 'rosy futurs'. 'In the pink' refers to superb condition. The glib orator is 'silver-tongued', but 'silence is golden'. 'Golden opportunities', 'golden memories' and 'golden days of youth are recelled with nostalgia.

In summary,

[^10]constantly and we know so iittle about it. 4

In her book, The Worda I Live In, Helen Keller indicates the importance of colour association for the blind.

> Witkout color. . ilfe to me wuld be dark, berren, a vast blackaess. . Thus through an inner lar of completeness my thoughts are not permitted to remain colorless.
T_{h} eassociations and emotions aroused by the use of vocabulary in the English language influence man through his: apeech and writing. Although colour words in other lenguages will have different connotations, they will undoubtedly serve the same purpose, that of implementing the cammunication of emotions. "Color is used in daily expression to heighten and clarify meaning. ${ }^{6}$

Colour Symbolism

Tha associative power of colour is evident in symbolism as well as in language. There are many instances where these categories ovarlap, where a colour word becomes a symbol, e.g. 'Red' signifies a member of the Cormunist party. Just as the enotions associated with colour worde vary from one laguage to mother, so the syabolic meaning of colour fluctuates between cultures. For instance, the purity symbol of the bride is white in
${ }^{4}$ Harlend Bopst, Color and Porsonality (New York: Vantage Press, 1962), p. 15 .
$5_{\text {Quoted by }} \mathrm{F}_{\mathrm{a}}$ ber Birren, Color: a Survey in Hords min Pictures (Nem York: University Books, Inc., 1963), p. 190.

6
Donald M. A A n erson, Elements of negign (Ner York: Holt, Rinohart and Finston, 1961), p. 185.
western nations, yellow in China and Israel, and red in India. Colour means exactly what society says it means. ${ }^{7}$ In most coses, symbolic use of colour adheres closely to the inherent characteristics of each colour. ${ }^{8}$

Symbolisa created by the church is more arbitrary.
Yellow, the colour neareat the sun, is charecterized by aplendor, radiance, warmth ane happiness. In the shape of a circle, yellow spreads out from the center, markedly approaching the apectator. Yellow, emblematic of the sun, is the hue of the ancient German sun god. Baldur. In ecciesiasticel symbolism, saffron denotes the confessor. Then blue, green or black ere added to yellow, the intrinsic optimism reverses to pessimism. The socallea 'cuckold' colour has been the sign of the bankrupt, the traitor, the criminel, the Jew, and the plague.

Red is glowing, solid and masculine. Light red is gracious and charming, whereas dark, intense red is dignified. Red is a symbol of charity and the life-giving qualities of blood. It is associated with sacrements in the Greek, Roman and Anglicen churches, and symbolizes mertyraom for faith in Occidental religions. Red can signify beauty, bashfulness and love. On the other hand, it is symbolic of strength end bravery (Hannibal's shield). Red can represent fire, anger, bate, war and danger. Graves claims it is favourad by anarchists and terrorists as emblem of
$7_{\text {Ander son. }}$ p. 183.
8
$8_{\text {The }}$ characteristics of each colour have been derived from Goethe and Kandinsky, who have been instrumental in describing the impressiveness and expressiveness of each hue.

Joham Holfgang von Goethe, Theory of Colour, trans. E. L. Eastlake (London: Murray, 1840), pp. 763-801.

Wassily Kandinsky. On the Spiritusl in Art (New York: Solomon R. Guggenheim Foundation for the Nusewn of Non-Objective Painting, trans. Hilda Rebay, 1946). pp. 61-62.
defiance and violence. ${ }^{9}$ The symbolic function of any colour can vacillate With the connotations of the situation or object in question.

The syincolism of purple varies. O_{n} the cool side, violet is withdram, hard and melancholy. Appropriately. It is the colour of mourning in China, and the symbol of sorrow, suffering and penitence of the saints in Christianity. Violet is elso said to be the colour of older infertile women. Reference to Queen Victoria's declining reign in the nineties as the 'mauve decafe' is apt. The warner purple is more optimistic in impression, and is associated with pomp, regality, wealth, and rule.

Blue is negative, draming the observer into it. It is spacious, serious and calm. Blue is considered to be a feminine colour, synbolizing maternity, faithfulness, and chastity. The influence of the church has led blue to symbolize truth and faith.

Green is satisfying, beneficial, passive and restful. In Christianity green is symbolic of hope, the resurrection, and everlasting life. Pale green symbolizes baptism.

Fhite represents a paradox because on one hand it is the integration of all colours, anf therefore symbolic of supreme fulfilment, while on the other hand, it is the absence of hue, and therefore of life, thus symbolizing the emptiness of the dead. Hebbel once wrote in his aiary, "We freaze if we see a white mass, we shiver before a white figure. Snow is white. We think of ghoats as being white." 10 Welville's menorable description of

[^11]the panic and terror accompanying the white whole in Moby Dick illustrates the psychological power of the absence of colour. ${ }^{11}$

Characteristically, black is solemn, subdued and depressing. In addition to symbolizing mourning, it signifies night, secrecy and evil. In the case of black, as with the other colours, symbolism and colour words revolve arouna the inherent cheracteristics of the colour in question.

The Development of Colour Symbolism

A few examples of colour symbolism will illustrate how colour has long been a part of man's concepts. Of the four elements constituting the Greek concept of matter, earth was green, fire was red, air was yellow, end water was blue. During the Elizabethan era, it was customary to compare the four major hues with four human temperaments. Elizabethans spoke of sanguine yellow, choleric red, phlegnatic green and melencholy blue. Another exemple of colour symbolism occurs in the medieval tradition of heraldry. Ferly in the development of heraldry, each man chose his identifying colour, signifying a virtue, which mas knit into a design morn over his armour or on his shield. Later, it become the king's prerogative to assign armorial bearings and colours to reward valour. In this way, red became the attested colour of courege. The notion of a stain on one's escutcheon derivea from the punishment of incorporating an abased colour into the coat of arms of a knight. ${ }^{12}$ Another form of early visuel symbolism was the
${ }^{11}$ Herman Melville, Moby Dick (New York: The Macmillan Co., 1962), pp. 198-203.
$12_{\text {Thomas }} H_{\text {. Wolf, The }}$ Kezic of Color, illustr. Ned Seialer (New York: The Odyssey Press, 1964), p. 19.
custom of painting actor's faces in the Chinese theatre. Through a long tradition, certain colours and designs came to symbolize the personality of the character. Body decoration, sand paintings, and hex designs all employ the symbolic use of colour. Colour symbolism has elways pervaded man's life.

When man began to notice that colour symbolism was consistent in a group of people with similar customs end learning, he realized it could be employed for a beneficial purpose. He considered the charecteristics of colours, and set about making his own symbols. The colours of traffic lights were originally chosen for aistingulshability. Bright lights are most easily seen, but vhere intensities are kept uniform, red lights are easiest to recognize, followed by green and yellow. Red is used for the most pertinent aspect of traffic control, stop lights. People have learned to associate red with the command to stop, so that the mere perception of the stimulus can suffice to set off the fear response."l3

In 1944 Faber Birren collaborated with du Pont to create a colour safety code for industry. He utilized the characteristics of colour to best advantage. Yellow, the most luminous colour, denotes stunbling or falling hazaras, such as low beams or an alteration in floor level. Orange carries the message of attention and danger, and designates acute hazards likely to cut or shcek. Green, the combination of yellow's 'attention' and blue's "caution'. is the colour of first aid equipment. Red, the most insistent, shouting colour, is used to identify fire alarms and spparatus. In industry, caution signals are usually blue, while traffic control and

[^12]housekeeping are governed by white, gray and black. Men like Birren incorporate the characteristics of colour into effective cones of colour communication. 14 Factory workers gradually become conditioned to respond to these colours as safety measures. This is how the colour code becomes symbolic of warning against various hazards.

Safety, then, whether in industry, or in traffic control, is in pert dependent upon colour. The characteristics of the colour. including the visibility factor, are considered prior to symboilc coaes, but through continued association the colours become symbols of utmost efficiency. For instance, following the introduction of the αu Pont safety code, the U. S. army Service Forces reported that the frequency of accidents in some government plants fell from a rate of 46.14 to 5.58. In one Quartermaster Depot, aisabling injuries were cut from 13.25 to 6.99 . The colour employed in the safety code instelled in the New York Transit System was considered the most important factor in reducing the frequency of accidents 42.3% over \& period of 18 months. 15

Individual Colour Symbolism

> Some color situations elicit considerable agreement in emotional response because of the underlying similarities in custom, learning and association. On the other hand, many individual aifferences in emotional responses to color are ascribale to individual differences in environment and association.

[^13]Colour aynbolism can be a very personal matter. On of the few places in art with any symbolic colour consistency is the religious paintings of the Middle Ages. Objects and figures assume their significance through their colours, e.g. Judas is portrayed in yellow. In the realm of creativity, colour seldom has one meaning. Seurat saw gaity in warm hues, calmness in cool hues and sadness in dark hues. 17 Where Gaugin thought yellow symbolized fear, his contemporary, van Gogh, eaid it symbolize hope. Here van Gogh describes his symbolic use of colour in peinting.

I exaggerste the fairness of hoir. I take orange, chrome, dull lemon-yellow. Behind his head, in place of the ordinary wall of the room, I paint infinity. I make a simple background of richest blue, as strong as the palette can produce. ${ }^{1}$

In a letter to his brother Theo, van Gogh mrote,

In my picture of Night $C_{a f e}$ I have tried to express the ides that the cafe is a place where one can ruin one's self, run mad, or comit a crime. So I have tried to express as it were the powers of darkness in a low drink shop, by the soft Louis XV green and malachite, contrasting with yellow green and hard blue-greens, and all this in an atmosphere like a devil's furnace, of pale sulphur. ${ }^{19}$

In this aggressively simple language the reader sees and feels the strong imagery intended in the use of colour. The cormunication of colour symbolism is direct.

17
Birran, Color: a Survey in Woris and Pictures, p. 185.
18 Quoted by Koblo, p. 18.
${ }^{19}$ Quoted by Graves, p. 348.

In summery, woris and symbols contain major associations with colour. Fmotions are expressed by colour vocabulary, and messages are conveyed by colour symbols. Both are a prevalent and vital part of communication in our society. The artist's symbolic use of colour enhances his kind of communication in aforceíul manner. Considering the prevalence of colour in language and in everyday symbols, the importance of man's associations With colour cennot be overstated.

CHAPIER VII

THE PSYCHOLOGY OF COLOUR

THE LINK BETWGEN COLOUR VISION AND THE OTHER SENSES

Colour is intimately connected to the senses other than sight; to touch, smell, taste, and hearing, as well as to certain mental concepts. Inasmuch as colours are warm and cool, heary and light, colour is aligned with touch. hs far as smell is concerned, red, orange, and pink are associated with sweet odors. These exemples of the sensory connection to colour are followed by startling connections in the realm of teste and hearing.

Teste

Colour affects the appetite. Consumers in British Columbia became aware of this connection when oleomargarine was coloured yellow to resemble butter. Sales increased substantially. Few people realize that butter is neturally mite in winter, and is coloured to please the customer. Further, this colouring is carefully controlled because too light a yellow does not appeal to the appetite, whereas too deep a yellow makes the butter appear rancid. If the skin of an orange in injected with an even rich orange dye, the orange will sell better. Psychological stuaies of colour's appetite appeal reveal a specific food palette. "Although not all persons will 'feel' the same about colors or have the same reactions, by and lerge there ere comm denominators worthy of attention in the food industry. ${ }^{1}$. Rede

[^14]orange and orange arouse the most agreeable sensations. Peach, pink, tan, brom, yellow and green also stimulate tre appetite. Appeal to the appetite also depencs on variety. A meal consisting of steamed sole, mashed potatoes and cauliflower, served on a white plate, followed by rice puading and a glass of milk mould be less than mouth-watering. A manufacturer of chocolate candy learned that sugar coating in a variety of hues, all of the same flavour, seld better than one hue. The appeal of foods not only depends on their colour, but also on the colour of the packaging and display facilities. Green-blue is rated the most favourable background colour for food. Birren points to one instance where achool cafeteria doubled the sale of seless by putting them on greon plates.? Thus, the role played by colour in the appetite appeal of food is established.

Colour has a Airect relationship to the taste of food. Researchers have found brow chocolate has a stronger chocolate taste than winite chocolate when the subject can see what he is eating, but there is no difference in flavour when the subject is blindfolded. The introduction of nem food colours has been known to fail completely. People dislike the flavour of pink and green bread used in dainty sandwiches, whereas colouring in cakes, frostings, and cookies is acceptable. The most outlandish test of the roo action to unfamiliar colour in food was conducted by S. G. Hibben, whose dinner party is now famous. Although the food was excellent, many guests lost their appetites, and some became violently ill. The reason? The steaks were coloured whitish-gray, the celery was pink, the salads wore

[^15]blue, the peas were black like caviar, the milk was the unwholesome color of blood," the coffee had a "sickly yellow tinge," and the peanuts pere scarlet. ${ }^{3}$ Colour is a determining factor in the appetite appeal and the taste of food.

Synesthesia

Another connection of colour with the senses occurs in less prevalent instances of synesthesia. The ability to distinguish between primary modes of sensation develops with age. When the sensory links of infancy persist into later life, one kind of stimulus is likely to arouse imagery of another quite sponteneousiy. Colour and taste, odor, touch and hearing have a formal connection in this phenomenon. "It appears that atimull of different sensory modes, vision, hearing, etc., are songhow linken together, so that in 'colouren hearing'. for instance, auditory stimuli are perceived in conjunction with images of colcurs so vivia that they almost resemble percepts. ${ }^{4}$

The connection between colour and other sensations or percepts in the phenomenon of synesthesia is not airectiy due to colour. Rather, colour is the sensation that arises simultaneously with the other sensations or percepts. Therefore, synesthesia cannot be considersd as having an effect on the human organism unless the organism depends to some degrea upon the additional imagery. Indeed, this is the case in people who experience synesthesia, because they come to depend on this onrichment of their perception. A case is reported of a man who had been bling since the age of eleven.
$3_{\text {Birren, p. }} 45$.
4Maitland Graves, The Art of Golor and pesign (Toronto: McGram-Hill Book Co., Inc., 1951). p. 408.

Before he became blind the connections between colour, touch and sound had maintained their original childhood link. This continued efter his loss of sight.
-. . colours appeared to be an integral part of his perceptions of . . . sound and touch. . . Their meaning ... was not fully apprehended until the approprlate colour imagery had developed. 5

Similarly, composers who possess the synesthesic faculty depend on the connections between sound and colour. Scriabin associated the keys from C. to F sharp with hues from red to purple, 6 Composer Liszt supplenented his conतucting directions with such pet phrases as "More pink here." "I want it all azure." "This is too black. ${ }^{7}$ People possessing the synesthesic aptitude find it helpful in remembering the music of certain composers, and the sounds of certain instruments. After describing the fastidious colour connections experienced with letters and words, one momen wrote,

Occasionally, when uncertain how a word should be spelt, I have considered what colour it ought to be, and have decided in that way. I believe this has often been a great hefp to me in spelling, both in English and foreign languages. ${ }^{\text {o }}$

[^16]Fiven though some people are dependent on the synesthesic connection of colour with other sensory perceptions, so few people possess this aptitude that it cannot be considered a significant factor in the total effect of colour on the human orgenism. For the majority of the population, however, the sense of taste is intimately connected with colour vision. Colour has been shom to affect both the appetite and the flavour of foods.

CHAPTER VIII

THE PSYCFOLOGY OF COLOUR VISUAL PHENOMENA

The final chapter in the consideration of colour's effect on man is based on the primary sense of colour perception, vision. The effect of colour on the human orgenism through the illusion of visual phenomena is major. 4 visual phenomena

> is usually not iaentified at all unless it is actively looked for. Furthermore, by definition, subjective phenomena are not obviousiy correlated with external physical events, which makes them difficult to 'prove' on a common sense basis. . . All perceptions are real whether or not they happen to have obvious correlates outside the organism; . . .

There are meny kinds of visual phencmena deserving attention for their effect on men. A number of these can be attributed to one of three kinds of adaptation--generai, local and lateral.

General Adaptation

General adeptation phenomena are aue mainly to the edjustment made by the eye to see under different conditions, As the eye jumps over the visual field, different objects occupy the center of risual attentios. As the eye stops at each one, the sensitivity changes up or down to en appropriate level. Accordingly, each area: is viewed with a sensitivity aetermined by
${ }^{1}$ Cominittee on Colorimetry, Optical Society of America, The Science of Color (Fashington, D.C.: Opticel Society of America, 1963). p. 121.
the previous area. In brightness adaptation, the eye is exposed to a given illumination level until it accepts this level as normal, then all other intensities are seen relative to it. In other words, the phenomenon of brightness adaptation means that the brightness dimension of all colours seen by men is determined by the brightness of the previous stimulus. W. D. Wright found that exposure of the eye to light almost instantly causes the sensitivity to drop. For brief exposures, the eye recovers almost immeilately, but for longer exposures, the recovery takes longer. ${ }^{2}$ Due to brightness adaptation, estimation of absolute brightness is vague. Errors become apparent only when the subject returns to the original situation. The estimation of relative brightness, however, is exceedingly precise. The eye supercedes the camera in ability to distinguish grays.

In the some way that brightness perception is influenced by the light intensity of the previous field, so the perception of colour is partially determined by the colours previously seen by the eye. 'Colour adaptation' or 'colour constancy' is a phenomenon experienced by anyone who wears sunglasses, but soon forgets that everything is tinted green. Similariy, white paper seen in yellow candlelight is assumed to be white, although in physical fact, the yellow light reflected from the white paper makes the paper yellow. Although stimulus changes alter the sensation of colour, the unconscious, with its store of past experience, reinterprets these changes to maintain the epparent constancy of the colour. Colour constancy tends to make colour a property of the object, rather then the variable it mould

[^17]be If the receptor sensitivities were unfixed. 'Object' or 'surface' colour has been investigated by Thouless. Perception, he states, seems to deFiate Prom its stimulus, showing regression toward the real object."3 This phenomenon is important in daily life because it helps the individual identify object colour under edverse conditions such as dusk and deep shadow.
'Memory colour' refers to a similar phenomenon. Memory colour tends to accentuate the dominant colour characteristic. For instance, when the shape of a leaf and the shape of a horse are cut from the same cloth, the observer will usually think the leaf shape is greener. Memory colour also Influences night vision. Fev people realize that there is no perception of colour in night vision, because their memory of object colour from photopic vision persists into scotopic vision. When reproduction is the purpose of an illustration or photograph, accurate colour natching is not essential. The greatest satisfaction is obtained by matching the corresponding memory colours. Thus man's judgment allows his perception to take the path of least resistence, inaccurate though it may be.

Local Adaptation

The second group of phenomena are due to local adaptation, and are best represented by after-images. The majority of after-image explana-

[^18]tions are based on trichromacy. ${ }^{4}$ Adaptation to any one colour decreases the sensitivity to the receptors involved. This makes the eye relatively sensitive to the other colours, whose corresponding receptors are not 'fatigued'. When the viewred stimulus is changed, the fresh receptors govo ern the sensation. After-sensations start forming from the very moment of fixation. The intensity of the after-image increases with the length of fixation on the stimulus. 5

After-images are classified as positive and nezative. The original after-images seen in the contemporary hue are terned 'negative'. They have a latency of one second and a duration of half a minute. ${ }^{6}$ The hue of an after-image viewed on a neutral surface deviates from the strict complementary towards reddish -blue. 7 Viewed on a coloured surface, the after-image Will appear as the subtractive mixture of the complement and the colour of the surface. The hue of the after-inage influences the colour perception of any number of things.

In positive after-images the brightness relationships remain the same as those found in the originsl response to the stimulus. The original
${ }^{4}$ C. A. Pagham, After-Images as a: Mans of Investigating Roas and Cones, " Colour Visioneaphyiology and Experimental Poychology, Ciba Foundation Synposium ed. A. V. S. da: Reuck, and Julie Knight (Iondon: J. and A. Churchill. Itd., 1965), p. 263.

Pagham states that no theory of after-image is satisfactory at present.
5R. W. Pickford. Individual Differences in Colour Vision (London: Routo ledge and Kegen Paul. Ltd.. 1951), p. 20.
${ }^{6}$ Rudolf Arnheim, Art end Visuel Percention (Berkeley: University of California Press, 1965), p. 348.

7Roberst W. Burnham, Randell M. Hanes, and C. James Bartleson, Color: a Guide to Ensic Facts and Concepte (New York: Jobn Wiley and Sons, Inc., 2963), p. 70.
process continues after the stimulus has ceased to exist. The latency is a small fraction of a second. In fact, the positive after-image may even merge with the terminal lag of the originsl sengation, accounting for the fact that this type of after-image is also affecting man's vision in an unobtrusive manner, seldom pin-pointed as interference, because it is seldom recognized. Other after-images are more complex in nature, but they also occur less frequently in daily circunstances. Examples of complex afterimages are the 'flight of colours' and the 'recurrent vision', taking in the Fering Image, Biawell's Ghost, the Purkinje Image, and the Hess Image. 8

A great number of after-images occur in everyday situation, e.g. walking into a dark room and turning on the light. Many after-images are best brought to the attention of people in demonstrations with controlled means. Most people have unconsciously learned to ignore after-image because they interfere with more useful perceptions. Also, under normal conditions, the eyes shift so frequently that there is insufficient time for an afterimage to develop to full strength. "After-images are importent principally because of their implications for the functioning of the visusl mechenism, they are one manifestation of the general process of visual adaptation." 9 After-images represent one kind of local adaptation. A closely related phenomenon is successive contrast, occurring when the subject looks in succession from one stimulus to another. A red stimlus exhausts the red-sensitive cones so that the subsequently fixated surface is mixed visually with blue-green. According to Iinksz, the whole experience is
$8_{\text {Burnham, Hanes, and Bartleson, p. } 71 .}$
9
Ibia.. p. 72.
plainly a sensorial process with no judgment process ${ }^{10}$ all successive contrast demonstrates that the effect of a stimulus does not abruptly end the moment the stimulus ceases to exist.

Laterel Adaptation

The third adaptive phenomenon is lateral adaptation. It is the major factor in simultaneous contrast. Finereas the after-images and auccessive contrast result from a previous stimuli, simultaneous contrest is a proauct of present stimuli. The illusionary effect of simultaneous contrast can be seen in both brightness and colour contrast.

In brightness contrast, the velue of colour is determined to a large extent by the value of its surround. It slso depends on the size and placement of the ground. Colour contrast or colour enhancement is the second type of simultaneous contrast. Color contrast proquces an enhencement or intensification of the percelved difference between neighbouring colors." ${ }^{11}$ Ward sumarizes the phenomenon this way, Contrast of colour is due to the modifications in the appearence of colours that are caused by differences in hue, brightness and purity of adjacent or contiguous colours." ${ }^{12}$

[^19]

Three identical squares of gray placed saparately on white, gray and black grounds appear to change their brightness.

The magnitude of the apparent change in brightness depends on the size of the neighbouring stimulus.

The magnitude of the apparent change in value also depends on the distance between the two fields. In juxtaposition, simultaneous contrast accentuates even small differences.

Brightness contrast also emphasizes the value difference between two colours. The small red square looks black and colourless when placed on a white ground, whereas the same red is more brilliant and colourful on the black ground.

FIGURE 1

Juxtaposed colours of relatively high and low purity appear saturated and desaturated respectively.

When a chromatic hue is contrasted with an echromatic hue, it infuces a complementary hue in place of the hueless sensation.

The teniency of each colour to induce its after-image complementary into its neighbour increases the existing hue difference of non-complementaries.

FIGURE 2
COLOUR CONTRAST
COLOUR CONITAST CONTVD.

The simultaneous contrast of complementary colours of equal light intensity produces illusionary colours vibrating at the boundary. They often appear as a shadow on one side of the boundary and as light reflected on the other, or as a duplication cr triplication of the boundary line. When the figure and ground are reversed, the vibrating boundaries make a corresponding quality alteration.

Complementary colours of equal light intensity tend to enhence each other. Chevieul writes, My experience tends to show: that the effect is a radiating, setting out from the line of juxteposition; that it is reciprocel between two equal surm faces juxtaposed; that the effect of contrast still exists when these two surfaces are at a distance from each other, only it is less evident than when they are contiguous; finally, that the effect exists when we cannot attribute it to fatigue of the eye. 13
${ }^{13}$ M. E. Chevreul, The Principles of Harmony and Contrast of Colours, and Their Application to the Ants (Iondon: George Bell and Sons, 1890), p. 419.

Abstract

Albers underlines the vital less of adaptive colour phonomena. He says the fact that the after-image and simultaneous contrast are psychophysiological phenomena

> - . should prove that no normal eje, not even the most trained one, is foolproof ageinst colour deception. He who claims to see colors independent of their illusionary changes fools only himself, no one else. 14

Non-Adaptive Phenomens

Phenomens not ascribable to adaptation also affect the human organism, but in more isolated circumstances. A few such effects will be mentioned to give the reader a hint of the deceptive quality of colour vision. First is the enigmatic Bezold effect, where a black outline darkens the enclosed hues, and enhances their saturation. This technique is exploited by manufecturers shanging the appearance of designs with the least alteration in production. Secondly, the spreading effect, or 'halation', causes most grid patterns to be incorrectly perceived because the lighter component of the grid, whether it be the lines or the ground, tends to spread and appear lar ger. Thiraly, as illumination is increased, colours tend to appear more blue or more yellow. This phenomenon, called the Bezold-Brucke effect, is experienced by people buying furniture and other merchandise where colour is an important consideration, only to be dissatisfied with the colour on delin Very. (Neediess to say, the colour of illumination contributes to the deception.) Fourthly, the Weber-Fechner Law states that the visual perception

[^20]of an arithmetic progression depends on a physical geometric progression. For example, the steps in a swiming pool deepen in arithmetic progression, but do not appear to be evenly spacea. Any many who has tried to lighten house paint, ana has bein amazed at the amount of white required, has had first-hand experience with the Weber-Fechner phenomenon. The fifth enigma, that of disappearing boundaries, is the concern of anyone depending on the accuracy of colour percention for his safety. Colours of similar hue and equal light intensity tend to merge. For example, the underside of ai cloud is often indiscernible from the sky. In another natural phenomenon, radiant energy does not provide the stimulus.for colour sensation. Accidental colours, resulting from pressure on the eye, have an amusing. though ephemeral effect on man. Finally, yellow has the greatest lightproducing capacity in daylight vision. In scotopic vision, governed by the rods, the wavalength of 507 mp (green) is seen as the brightest hue. This phenomenon, the Purkinje effect, causes the leaves and grass to take on an unnatural brightness in night vision." Other non-adaptive phenomena can be illustrated with simple apparatus. Fechner's colours, producea by presenting an achromatic stimulus intermittently, and 'marginal contrest', produced with black and wite rotating discs, are convincing examples of the illusionery qualities of colour.

In conclusion, colour has apparent distance, temperature, size and weight. The maxim that warm colours ađvance, while cool colours recede is well-known. Pillsbury ans Schaefer have reinterpreted the older view that the stimulus besis for the advancement ond retreat of colour is luminence
rather then hue. 15 Whereas brightness determines colour distance, hue determines colour temperature. The maximum wavelength for warmth bes been pin-pointe? to 610 mp , and the maximum coolness renges through green and blue. ${ }^{16}$ Mueller ${ }^{17}$ and Arnheim ${ }^{18}$ claim that warm and cool colours do not refer to specific hues, but to the deviation of a given colour in the direction of warmth or coolness. (They would have to concede that hues are initially warm or cool, in order to determine whether the direction is warm or cool.) Both the apparent distance and temperature of a colour depend on the neighbouring colours. A green will recede when placed on a warm red ground, but it will not recede when placed on a cooler blue ground. Similarly, green will seen cool when juxtaposed with red, but warm when juxtaposed with blue.

Size and weight are also closely related to colour. Gundach and Macoubrey found that the apparent aize correlates 0.86 with luminance. They demonstrated that lighter objects look larger than darker objects of the same dimensions. ${ }^{19}$ There is general agreement that the apparent weight

155m. B. Pill Ing Colors'," Americen Journal of Psychology, XLIX (1937). pp. 126-130.

This has an interesting correlation with Cheyreul's classification of warm ond cool hues eccoraing to their luminous or sombre quelities. The luminous colours are yellow, orange, rea and light green, the sombre colours are blue, violet and deep green.
${ }^{16}$ The Science of Color, p. 168.
Also, refer to the theoretical explanation for colour temperature on $p .21$ of this thesis.
${ }^{17}$ Conrad G. Mueller, Sensory Psychology (Englewood Cliffs, New Jersey: Prentice-Hall, 1965), p. 328.

18
Art and Visual Parception, p. 329.
${ }^{19} \mathrm{C}$. Gunalach añ D_{0} Macoubrey. "The Effect of Color on Apparent Size," American Journal of Psychology, XLIII (1931), pp. 109-111.
of coloura varies according to brightness. Dark colours appear hesry and light colours appear less heavy. 20 Isay Balinkin describes these factors in the following excerpt.

Suppose you're a foremen in a factory and ask one of your men to move two large boxes, exactly the same size and weight. One is pale green and the other is dark brown. He's almost sure to pick up the green one first because it looks lighter. Now you ask him to put the box on either of two workbenches some twenty feet away. One is pointed red snd one is blue. He'll probably put it one the red one. It looks a good step closer.

In summary, phenomena produced by adaptation heve their impact on all visual appearance, whereas phenomena not ascribed to adaptation occur intermittently, or with specific conditions, and are often transient in effect. Regardess of the explanationand the degree of the effect, the fact is clear thet these phenomena influence man through his vision. What you see is your best guess as to what is out front. ${ }^{22}$

[^21]
CONCLUSION TO PART I

Research discussed in the preceding eight chapters provides evidence to support the hypothesis that man is affected by colour. Colour is the physical stinulus for sight. Physiologists have shown how pigments implement the reaponse process in the visual receptor. The way that man is intellectually, emotionally, and unconsciously bound up with colour experiences is the concern of the psychologist.

Merchandising and arvertising utilize the qualities of colour to proauce a calculated response in the consumer. ${ }^{1}$ Man can be made to feel bored, Indignant, or physically ill by colour. He can be shocked or delighted. Colour determines the reaction. But these business-oriented endeavours are gaints among the disappointingly few instances where the potential of colour is being realized. The constructive approach of the following excerpt nakes an apt conciusion to this section.

> The value of color is determined in significant part by what people come to think, or are made to think, of its value. This being so, it is worthwhile to know how to make people think that color is valuable. The most effective way to do that is to errange for them to discover that color produces the effect wich can satisfy their wants and needs . . that greater satisfaction can be derived from the use of color; and that perceptions and decisions having to do with color tend to have a higher affective valence.

In short, this has been the aim of these eight chapters.

[^22]
PART II

EVALJATION OF THE PRESENT SITUATION

The profound effect of colour on the human orgenism has been established in the preceding presentation of research. If colour is important to man, it is of major concern to the ertist, because colour is a major element of art. In adaition to motivating the artist through its direct Visual impact, colour can affect his emotional state of mind and his rate of motor and mental activity. It provides him with an element capable of producing moods, space, tension, and symbolism. The question arises as to how an artist learns to control and utilize the powerful scone of colour, and how any person becomes awere of the richness of colour in the environment.

The responsibility for teaching colour rests with the art educator. It is assumed that the laymen and natural colourist alike can improve their expressive use of colour. It is further assumed that both the layman and artist can become more sensitive to colour around them. Art educators are obligated to employ their best resources to assist man in seeing and using colour.

The most efficient way to do this is to teach colour in a meaningful manner to future teachers and art majors at the university, and to students at art school, because these people have the potential of creating a sensitivity to colour in their own pugils, in architectural and interior decorating clients, and in the art-conscious public. It was hypothesized that colour is not being taught in the most effective menner to sturents at this level.

CHAPTER I

INTERVIEWS WITH TEACHERS

To aetermine how colour is being taught, interviews were conducted With teachers of art during February an March, 1967. The subjects included 10 members of the art Department of the Faculty of Fducation, 3 members of the Fine Arts Department of the Faculty of Arts, both at The University of British Columbia, in adition to one teacher of the Vancouver Art Gallery docents, ana 3 teachers employed by the Vancouver School of Arto

The 17 teachers answered the interview questions (see Appendix A) with reference to their present teaching assignments. The results are sumarized according to the number of the question, and are followed by a comment on their significance.

1. a) Sixteen teachers separate the elements of design, justifying the division with three general reasons. First, the discussion of the separate elements and their interralationship provides a mesns of approaching works of art for understanding and appreciation. Secondy, this ap proach facilitetes the definition of vocabulary. Finally, it alloms the inexperienced atudent to explore and discover for himself the principles of art in manageable amounts, where a total involvement might be overwhelming. 1. b) The emphasis placed by 7 teachers on one or more elements is aictaten by the nature of the subject, e.g. form and texture in ceramics, colour and tone in painting, line in drawing and in graphics. Ten subjects said they do not emphasize any element, maintaining that all the elements contribute to the total form or concept. One teacher of painting believes
that creativity is restricted when an element such as line or texture is emphasized, because the students tend to forget the other elements. Comment: No teacher is more enthusiastic about colour then the other elements, yet a deep love for colour mas suggested as part of the ideal background of the teacher of colour. (See No. 9.) All teachers are teachers of colour in that the opportunity to mention colour arises in all classes.
2. Fight teachers attributed their ameness of colour to a general development, highlighted by a van Gogh or optical painting. Four teachers recalled experiences with colour in early childhood, 4 remembered school exercises such as the mixing of pigment, onत one describen a recent synesthesic experience.

Comment: No pattern emerged suggesting an approach to amakening a sensitivity to colour in students. Only one subject was conscious of havine experienced the overwhelming effect of colour.
3. Trelve teachers, incluaing all 10 from the Faculty of Education, recommender that instruction in colour begin imnediately, beceuse the sooner mechanics are taught, the sooner an awareness of the relstionships and possibilities of colour will develop into a dexterous handing of this element. T_{∇} teachers saia they time the introduction of colour accordine the need and readiness of the individual. Tyo teachers reserve the second half of their courses for colour.

Comment: Because of its immediate impact, colour is more eesily distinguished as an element of art than line, form or texture. It provides a logical place to begin the identification end explanation of the art ele-
ments. Although the majority of teachers introauce colour immediately, they cover mechanics such as the spectrum and the mixing of pigments. Teaching a student to mix tones and tinte does not not ensure the development of an adept manipulation of colour to auit personal needs. In the opinion of the writer, the teaching of colour should stress the interacting characteristics of this element in vision, because colour is seldom perceived in isolated conditions.
4. a) The instructors all said they deal with colour to some extent.
4. b) In the Faculty of Education, the level and purpose of the course determines the approach to colour. In courses designea to introduce students to media and methods, or to the pedagogy of art, the following aspects are covered in two or three lessons; terminology, theory (colour Wheel, harmony and aiscora), and experimentation in the mechanics of mixing. In advancer courses such as those dealing with painting or design, the stardent is assumed to have mastered the basics, and colour is brought to his attention through motivation and evaluation. Activities such as the matching of tones, mixing of pigment, and optical exercises are assigned to help the student. The fact that colour is taught in a prerequisite course saves one teacher from "going into the boring details."

In the Faculty of Arts, teachers of art. history deal with the artists' use of colour, pointing out any eraphesis on colour that occurs in a work of art. In design classes, the systems of colour notation are the main component of the second term. Colour is reserved for the last half of the docent training at the Vancouver Art Gallery.

At the Vancouver School of Art, the first-year student is exposed to
colour as part of his orientation to painting, itself on of the four areas receiving equal emphasis. Students are introduced to the seven colcur contrasts of Itten, and they also explore the relationship between colour and music. In the ensuing years of speciallzation, the student is assumed to have mastered the basic use of colour, and the teaching of colour becomes a matter of individual attention and timing.

Comment: The detrils of colour theory are as boring to the student as they are to the teacher. The teacher of advanced courses should go beyond this point with his students. The Ostrald and Lunsell systems of colour notation were designed as references for science and industry. The production of inflexible models of painteत cardboard does not enhance the ability to use colour. The Vancouver School of Art is the only institution utilizing coloured paper to eliminate the teafous chore of mixing. The range of colours available in the colour pack is inferior when compared to a similar supply available in the United States. No attempt was being made to supplement the inadequate range with collection of paper from magazines. A give-andtake atmosphere of experimentation involving the teacher and sturents woula be an improvement over the lecture and assignment structure of most classes.
5. Teachers found the following methods successful in heightening the students' perception of colour: collecting objects of one colour to illustrate variations in one hue, mixing variations of one hue in pigment, working with a. limited palette such as black, white and ochre, freely experimenting with paint, then explaining the theory involved, studying the use of colour in works of art, and using the colour wheel to explain the nomenclature. Comment: T_{h} methods declared to be the most successful mirror the present
approach to teaching colour. There is little focus on the changeable, adaptive qualities that contribute to the excitement and mystery of colour. Students at this level would be atimulated by such an approach.
6. All the teachers recommended a free, subjective approach to colour with elementary pupils, moving into on objective approach incluaing theories and formulae with the secondary students. The more advanced the level, the more intellectural an approach was recommended.

Corment: Most university and art school students have learned colour theories in high school. A review of the material will be ineffective if the material is not practical to begin with. Formulae no longer satisfy the student searching for an individual expression. The recomendation that the teaching of colour become increasingly abstract with advanced levels, contradicts the opinion of the majority of teachers that colour shoula not be taught as a thing in itself.
7. All teachers were able to neme ε colour base in their work, but they avoia personal demonstrations that might influence stuaents. Although the art instructors denied seeing their own colour base in the pork of students, they readily perceived the influence of other teachers on students. Comment: The objective onlooker is able to perceive influences the teacher is unable to detect. These influences could be harmful or beneficial.
8. The teachers named their theoretical training in colour, their experience and aiscoveries in the use of colour, and their efforts to keep abreast of current trenas as contributing to their use of colour and the background and preparation they bring to teaching.

Comment: Teachers tend to perpetuate the mechanical training in colour they themselves received, egg. tonal painting, matching tones, limited palette. The introduction of a new approach to colour mould counteract this stagnancg. Although the teachers are dedicated and familiar with current movements in art, not one is seeking a new way to teach colour.
9. The subjects considered a command of all aspects of colour, including the physical qualities of light, the chemical composition and behavior of . pigments and dyes, the psychology of perceptions and affective response to colour and the use of colour by masters to be components in an ideal colour teaching background. This background would ideally be enriched with a love for colour, a sensitivity to colour, and an ability to handle it well. Comment: Together, the teachers' suggestions make a composite description of an ideal teaching background. Few teachers expressed an interest in acquiring the knowledge they lack, or in strengthening the weaker aspects in their teaching of colour.
10. A workshop equipped with physical, chemical, psychological and literany resources, models and machinery, and staffed by a lab assistant, mould facilitate student's personal exploration of colour. A course in colour should comprise theory, including the physical, chemical and psychological aspects of colour, supplemented with experimentation and practice with problems involving the concepts introduced, and appreciation of the use of colour in nature and in painting. Lectures by resource people such as physicists, physiologists, etc. could put the students in contact with specialized colour experts.

Coment: Suggestions for the ideal course in colour vary considerebly from the responses to the fourth and fifth questions, implying that the teachers of art realize that colour is not being taught in an ideal manner. Altbough many teachers named resources such as books, chemicals, coloured light equipment, films, colour systems models, reproductions, and psychological testing apparatus as being ideal but out of the question, it is the opinion of the writer that these resources are readily obtainable, and that their use can be implemented in present classroom facilities without employing a lab assistant. This would require time and initiative on the teacher's part.
11. Finally, mambers of the Faculty of Education were asked to neme any outstending student colourists, so that the background of the students could be determined. This is the topic of the next block of interviews.

CHAPTER II
INTTEVIEWS WITH STUDENTS

The 5 most frequentiy mentioned student colourists were intervieved to determine the influence of their university art background on their use of colour. (See Appencix B.)

1. Three students learned about the colour whel in high school; nothing was applicable to their work. Two students found their high school training valuable; one learned to mix water-colours, while the other investigated the visual phenomena in op art.
2. All students emphasized that the repetitive presentation of charts and wheels at the university level is useless.. One student said. "I didn't talk to any who liked it. The best students were most sick of it." Comment: If the background of colour theory has been taught to most students in high school, it can bereviewed incopendently if the need is felt. leaving the teacher end atudent more time to experiment and explore in depth some of the principles of the interaction of colour.
3. Two students found free experimentation with colour stimulating. The 3 remaining students were unaffected by the methods to which they were exposed.

Comment: This is probably because they were bored with repetition.
4. Every student learned about the use of colour through independent study of works of art.

Comment: An individual. self-direct approach is more offective for the student who feels a need to develop a personal dexterity in colour. The review of theory will seldom motivate a student to explore the field of colour.
5. The students were indebted to teachers who either allowed freedom to discover about colour, or who praised the colour qualities in student work. Comment: Students sense the attitude of the teacher. The teacher supports the sturent just by understanding thet discovery in the field of colour is highly personal ond requires persistence. Enthusiasm for colour is contao gious.
6. T_{h} e subjecte namad the colour base of several instructors, but said the instructors mere not biased towards this use of colour in students. One subject reported overhearing a number of students say they could not help being influenced by a certain instructor's use of colour.
7. When asked for their views on how colour is presently being taught. 4 students repiled that colour is not being taught, and 1 student said har feelings on that matter were vague because she herself has not been taught about colour.
8. All stuèents though a course mould be beneficial to the majority of students. They would like to see the study of light, and colour in films included. Three mentioned thet personally, they did not feel a need for such a course, while 2 said they would enrol.

Coment: Although 3 stuãents are satisfied with their handing of colour.
they have few ideas on the extensive areas of colour that could be presented in a course. It mas not expected that any student mould be interested in a course, because each is a skilled colourist.
9. The background of the teacher of colour should include an ability to verbalize on the visual, a sensitive eye for colour, and an involvenent and inquisitiveness in the field of colour.

Comment: Again, it appears the teacher should be a specialist in the field of colour.

CRAPTER III

RESULTS OF THE QUESTIONNAIRE

Interrogation of the student colourists revealed that the theoretical approach to colour has little application in practice. It was decided to circulate a quesionaire amongst a more representative group of Fine arts. majors to derive the generel opinion on the present methods of teaching colour in the Faculty of Eacation. (See Appendix C.) The questionnaire wes distributed on an anonmous and voluntary basis to students who have commenced their majors.
2. A total of 49 replies have been tabulated; incluaing 22 Elementary single art majors, $6 S_{e}$ condary single art majors, and: $2 l$ Secondary double art majors. Differences occurring in the answers are insignificent because they can be attributer to the variety and number of courses taken. The results are combined to form a composite picture of the teaching of colour in the Fine Arts Department.
2. The degcription of what has been learned broke down into four manners of response. To begin with, 4 stucents gave no answer. Secondly, 6 students checked the box but did not describe what they learned. Fifteen students made evaluatory comments such as: "very little," "not in any detail." "a very basic introduction (i.e. practically nothing)," "learned nothing about colour that I had not known before." Some description of colour presentation was written by 24 studerts. T_{h} e following figures and descrip. tions amelgomate the three latter modes of response. Thirteen students learned how the old masters used colour in F.A. 101. Twenty-eight
students learned about colour in F.A. 300. The most frequently mentioned fecets of colour were mixing and experimenting with poster paint, colour charts and terminology, warmith and coolness, harmony, and clash. Two students mentioned learning about collage in F.A. 301. Nineteen subjects learned the folloving information in F.A. 302: colour wheel and mixing shades, tones and transparencies to achieve various relationships such as discord, and distance. Seven students learned about the use of natural ayes in the design courses. Trenty painting majors, the majority of whom referred to F.A. 401, mentionad the use of colour in composition. Specifically they named the theory behind tones, shades and tints, the apparent distance and the mood of colour. Ten students checked the elementary art education categories, referring to the use of colour themes, music as a atimulus for painting, and the limited palette for chiliren. Tro stufents mentioned learning how to give colour assignments in seconiary schools. Coment: Students described theory and mechanical details of mixing most frequently. No stuaents mentioned that an evaluation of the use of colour had motivated them to enquire into the field in any depth.
3. Twenty-four students were able to apply what they had been taught ebout colour to their own work. They spoke of the use of colour in composition to achieve tone, form and harmony. Fifteen said the information has no value to their work. The 10 students who did not reply to this question are assuned to have the same opinion.

Coment: Only half the students were able to apply their learning, suggesting that the presentation of colour be revised to suit their needs.
4. The following chart tabulates the results of the refinition question.

WABLE I

STUDENT SCORES ON DERINITIONS

	RESULTS				
TERMS	Correct	Semi- Correct	Incorrect	Omitted	Total
Colour	8	10	22	10	49
Hue	5	14	23	7	49
Saturation	2	4	25	18	49
Brightness	4	13	23	9	49
Shade	21	5	16	7	49
Tone	12	5	19	13	49
TOTAL	51	51	128	64	

Coment: Students were able to define 'shade' and 'tone' better then the Other terms. Ability to derine terms does not necessarily indicate an ability to use colour, but nevertheless, all sturents have been exposed to some terms in F.A. 300. Less: than half the subjects correctiy defined 'shade' and 'tone' indicating that either the teaching of terminology is a waste of tine, or it is not taught in a meaningful way that can be practised by the student. The concepts involved in shade and tone ere confusing, and can be better explainéa in terms of brightness and saturation. No student knew thet hue, saturation and brightness are the three dinensions of colour. Terms from the previous questions were borrowed with no demonstration of the comprehension of their meaning, and used in an attempt to define the subsequent term. Many students tried to deduce the meaning from connotation.
particularly in the case of 'saturation'. In fact, saturation was the most poorly defined term, indicating that students are not familiar with it in this context. Sarcasm flavouring 4 responses might indicate that some students felt guilty at demonstrating an inferior ability to cope with the basic terms in their field of specialization. Many felt the need to rationalize or explain their fallure.
5. Six students were ablo to describe the interaction between gray and green. Four were partially correct, 29 were incorrect, and 10 did not attempt to answer.

Coment: More than half the students dia not know the visual result of a simple colour interaction. In view of the fact that colour is almost alWays seen surrounder by other colours, a weakness in the teaching of colour is suspected.
6. Thirty-seven students knew about the advencing-receding phenomenon. Nine answeren incorrectly, and 3 did not attempt the question.

Comment: This is one visual property of colour that has been brought to the attention of this group of students. Their ability to grasp the relative nature of the apparent movement of colour inaicates a readiness to delve into the totel complex of colour's relativity.
7. Fighteen students felt competent in their use of colour. Thirty-one said they did not feel competent in manipulating colour to fulfill a specific need.

Comment: This is considered a more valid evaluation of a student's ability
to use colour then one supplied by a panel of juages, because the student can consider his handing of colour in more than one area, whereas an objective judgent would probably be based on isolated examples of work. The stuaents also has an intimate knomiedge of how this expression with colour evolved, whother the colours were determinen with ease or with struggle. Furthermore, the student coula dare to be honest in a situation where his evaluation mould only be a statistic.
8. Forty stuaents felt there was a need for a course in colour, while 8 did not. One student did not answer.
9. The following table presents the results of Nos. 9, 10, and 1lb.

TABLS II
STUDENT CONSIDERATION OF DIFFERENTT ASPECTS IN THE STUDY OF.COLOUR

EVALUATION			
TOPICS	Need to Study	Competent	Valuable Course Material
Appreciation	17	8	21
Mixing	25	1	31
Light	23	1	26
Interaction	26	4	34
Theory	24	1	24
Psychology	28	0	28
Physiology	28	2	27
Chemistry	20	2	20

Comment: as expected, more students felt competent in the appreciation of the use of colour by old mesters, then in any other field. The number was still surprisingly small. Seventeen said they felt a need to study this aspect further, enç 21 mould etill like to have it included in a course:。 Similar comments can be mado concerning the reaction to the chemistry of pigments, their origin end nature. It surprising to find the number of students feeling a need for instruction in the mixing of pigments, and in the colour theory, as these are the two aspects of colour receiving the most thorough treatment at the present time. The bulk of the needs ocaur In categories elmost totelly neglected by this department. Instructors would be well advised to cater to these neede, because what is now being taught is arailable in books. Students are learning more about colour by studying local exhibitions then memorizing mechanics. By adopting this aproach to the review of theory, teachers pould heve more time to help the student in learning to control the element of colour for his own purposes.
11. e) Thirty-seven students sald they muld take a course in colour, 4 did not know, and 8 said they would not enrol in aecourse..

Comment: Of those mose response was negative, many reasoned that acedenic learning would not eahance their ability to use colour. Tho witer agrees with this opinion. The colour cour se proposed by the writer is not academic but experimental in approach. This was not pointed out to the students. The nature of the questionnaire, designed to evaluate the present teaching of colour, did not give an accurate impression of the writer's approach to colour. On the other hand, it was feared that an ideal description of the proposeत course would be biased.
12. Students suggested that a course in colour be comprised of theory and history, followed by experimentention and practice in application to a field of specialization and independent research. The majority of subjects prea. ferred the acedemic portion of the course to be considerably sasller then, the practical application. Students also favoured illustrated lectures. and the display of good examples of the use of colour. Comment: I_{t} was refreshing to find the majority of sturents preferring so discover rather than be told about colour. In the opinion of the writer. the sturents display the readiness prerequisite to a course in colour.

Infornation from the interviews and questionnaire supports the hypothesis that the present epproach to teaching colour does not satisfy the needs of sturents. This is less a criticism of the present method of teaching than an indication that teachers have insufficient time to present colour in eny other way. $F_{g} c e d$ with a structured intrcauctory course, they can only devote two or three lessons to terminology. physical and chemical theory, experimentation in pignent mixing, and the apparent temperature and distance of colour... Although this is often revien material to stucents. this methodensures a common backeround from which to build. Instructora of advanced courses, hovever, have little opportunity to develop the stuay, of colour because they are primerily concerned with the student's struggle to find a personal expression. The present structure of the Fine Arts programe allotts insufficient time for any course to include a probing study of the interdependence and interaction of colour. At the same time. students need and want more intensive instruction in colour. The most construco tive alternative to the present dilemne: is the introduction of a course in colour.

Because colour plays an indispensable role in the functioning of the human orgenism, and at the same time is a vital elemgnt in art, it should be a major concern of the art teacher. The present theoreticel approach is assessed as perpatuating a poor learning situation. The theoretical justification of part I does not dictate the content of the course, it merely enlightens msn to the omnipotent presence of colour in his life pattern. From the theoretical material in the justification, hovever, emerges a characteristic of colour-the key to a sound educational approach. Colour is a relative phenomena. Not only is there a discrepancy betreen the physical stimulus and the psychic effect, there is a discrepancy botween each individual psychic effect. Men responds to the stimulus with his own receptor, his own past experience. emotions and personality. The iaeal teaching of colour will adhere to its main characteristic, relatio vity。 ${ }^{1}$

Jobn Ruskin mrote to art students many years ago. Every hue througho out your mork is altered by every touch that you add in other places; so that vhat was warm a minute ago, becomas cold when you have put a hotter colour in enother place, and what was in harmony when you left it, becomes discordant as you set other colours besiaie it. ${ }^{2}$ Paul Renner adas. . . . all. the colors . . . are links in the whole, and the whole is ruinereble in

[^23]overy link. ${ }^{3}$ The purpose of a suitable course in colour is to lead the student to understand the interaction of colour and to assist him in draw ing insight from experience, so that eventually colour, the most relative medium in art, becomes a tool to be manipulated by the hands and brain of the artist.

The proposed course (See Appenfix D) is essentially derived from the work of A_{1} bers. ${ }^{4}$ with numerous extensions and modifications. It will demand initiative, patience, persistence, craftsmanship, and problemosolving ability, and in turn, these qualities will be enhanced in the student exo posed to colour in this manner. The course is a step-by-step programe designed to confront the student with a colour problem requiring that he think through the situation to arrive at several suitable enswers, both visual and verbal. The more a problem is practised, the more the student will learn. The exercise is never finished, but cen bereturned to at eny tims to work out new solutions and to evaluate progress.. This experimental approach restores to the teaching of colour the exciting but evasive quality of education that is found in the discovery process. Discoveries can be shared and discussed in a mutual giveandotake classroom atmosphere. Personal and collective evaluation by comparison together with discussion of reassons and conditions for each phenomenon, will accelerate growth of understanaing and ability by providing insight.

The course as it is presently outlined is suitable for Fine Arts majors

[^24]at the university and ert school levels. With adaptation, it can be used in elementary and secondary schools. in classes for the laymen and the mature artist. Studenta who learn to see and use colour through this method will be able to teach it themselves with no instruction in methodology. They will also be able to adept it to any kind of personal work. This course could be introduced on en experimental basis in the Fine Arts Department of the Froulty of Education immedately following F.A. 300. Eventually, it could become a prerequisite for painting and design majors, beceuse the entire course is an exercise in tro-dimensional composition. It has worthwhile application in ceremics (colour and form, texture, and decoration) ond in graphics (brightness and colour contrast, visual phenomena). It will be deemed a success in art education if it does nothing other than sensitize the student to colour in his gurroundings. A more acute amareness of colour will breed appreciation of its complexity and flexibility. An enriched perception enhences life itself, by opening a worla of resources. ineas and motivations.

APPENDIX A:

INTERVIEW

Teachers of Art at the University and Art School

1. a) Do you ©ifferentiate between the elements of design such as line, form, colour, and texture in your teaching of art? $C_{a n}$ you explain Why you do (or do not) make this distinction between the elements?
b) Do you emphesize one element more than the others? If so, which, and why?
2. Can you think of any particular time that you becane aware of colour as an influence in your life and work?
3. Is there any particular time in the teaching of art at the university or art school when you feol it is important to introauce colour?
4. a) Of the art courses that you teach, which include some instruction in colour?
b) What aspects of colour do you cover in each of these courses? Can you estinate the time this requires?
5. What methods do you find most successful in heightening the perception of colour in your students?
6. Would you recommena a different approach to teaching colour for the elementary, secondary, and university or art school teacher? What would this entail?
7. a) Do you have a personal colour base in your artistic expression?
b) Do you detect stunents using colour the way you do? If so, what is your reaction?
8. Woula you tell me a little about your artistic training? Is there anything in your background thet you find particularly helpful in your personal use of colour and/or in teaching colour to students?
9. Ideally, what kind of background (i.e. knowledge, experience), would you recomena for the teacher approaching the subject of colour with university art majors or art school stuaents?
10. If you had the time, equipment, all the ideal resources and conditions, how would you teach colour to art majors? How would you deel with such aspects as theory, practice, ana appreciation?
11. Can you direct me to eny student who uses colour well, so that I may determine his background in colour and learn his views on its teaching?

APPENDIX B

INTEER IETY

Students of Art
Faculty of Education, The University of British Columbia

1. Where have you been taught about colour, other then in your university training? Can you tell me a little about what you learned and what you were able to apply to your work?
2. Can you describe what you have learne about colour in Fine Arts courses of the Faculty of Education, and what you have been able to apply to your work?
3. a) Can you describe the methods used to teach these concepts of colour?
b) What method contributed most to increasing your awareness of colour?
4. Have you learned anything about colour on your own? Do you apply any of this knowleage and/or experience to your work?
5. Have you noticed whether any instructors are particularly sensitive to student's use of colour? If so, how do students respond to this sensitivity?
6. Are you aware of yourself or any student being influenced by an instructor's use of colour?
7. What are your views on the way colour is being taught in the Fine Arts Department of the Faculty of Education? What would you praise and what would you criticize?
8. a) Do you think there is a need to deal more intensively and extensively with colour in this department?
b) What aspects of colour would you include in a course in colour? How should a course in colour be taught?
9. What, in your opinion, is the ideal background for the teacher approaching the subject of colour with students?

APPENDIX C

STUDENT SURVEY ON COLOUR

1. a) Division: Elementary \square Secondary \square
b) Major: Single Art \square Double Art \square
2. If you have learned about colour in any of the following courses, place a check in the box, and describe what you learned.
\square FA. 101
\qquad
\square FA. 300
पF.A. 301 \qquad
\square FA. 302 \qquad
\square FA. 303 \square 403 \square 413
\square FA. $305 \square$ 405 \square 415 \qquad
UFA. 307 \square 407 \square 417 \qquad
\square FA. 401 \square 402 \qquad
\square EtA. 205 \square 305 \qquad
\square EA. 404 \qquad
3. Has this information been of use to you? What have you been able to apply to your own work?
\qquad
4. Define the following terms as well as you can.
a) colour \qquad
b) hue \qquad
c) saturation \qquad
\qquad
d) brightness \qquad
e) shađe \qquad
\qquad
1) tone \qquad
\qquad
5. Describe what happens when a small square of gray paper is placed on a green ground. \qquad
6. Do warm colours always advance? Yes \square No \square Do cool colours always receda? \square
Yes No \square
7. Do you feel competent in your ability to manipulate colour to fulfill specific nseas in your work?
 No \square
8. Do you, as a student. feel there is a need for further instruction in colour in art courses in the Faculty of Education?
Yes \square No \square
9. Place a check in the box beside any area where you could benefit from further instruction in colour.

Appreciation of the use of colour in paintings.
b Mixing pigments, anc glazing.
c Coloured light, additive primarles, theatrical gels, and films.
\square Interaction of colour, subtractive colour and complementary contrast.

Colour theory--Chevreul, Goethe; Munsell, Maxwell, Albers, and Hofmann.
\pm Psychologicel espects of colour, colour in language and symbolisn.

$$
\text { Physiological espects of colour, how the eye percelves colour. }
$$

explanation of visual phenomene.
\square Chemistry of colorants, origin and nature of pigments.

1
\square Other. (Fill in.)
10. List the letters from the foregoing categories in which you feel competent as a result of art courses you have taken in the Faculty of Education.
11. a) Assume that you will be a Fine Arts major in the Faculty of Eaucation next year. Would you be interested in taking a course in colour if it was offered?

b) List the letters from the categories in No: 10 which you would like to see included in such a course.
12. What are your suggestions on how such a course be taught?
\qquad
\qquad
\qquad

APPENDIX D

PROPOSED OUTLINE OF COLOUR COURSE

Motto: Colour is the most relative medium in art.

The exercises mill be executed in paper and mounted on card unless othermise specified. Verbal explanations will be written on the back. Each problem includes the design of a suitable format for the presantation of the solution.

The many advantages of paper make it the ideal material for solving the problems. It is superior to paint because it eliminates the tedious chore of mixing, and is free of textural brush strokes. Paper permits the sturent to choose from a variety of available colours, and to use the same colour repeatedly. Paper is inexpensive: a purchased colour pack of two hundred fifty silk-screen colours can be supplemented by collections from magazines and paint chips. The cnly tools requirec are a cutting edge, a ruler, end glue.

Series A: How Colour Deceives.

1. 3 colours as $4 \quad$ a) brightness
b) hue
c) temperature
d) saturation
e) chromatic an achromatic
(Alternate method--intersecting colours)
2. 4 colours as 3 a) brightness
b) colour
c) complenentary contrast
3. 4 colours as 2 (reflection of reverse grounds)
4. 3 colours as 2 a) brightness
b) hue
c) saturation
5. 4 colours es 1 , expanced up to 7 as 1 .
6. 3 colours as 12 (atripe problem, adaitive end subtractive mixture)

This eries is to be followed by a display end eveluation of results, dise cussion of subtractive colour, and a detailed study of:
a.) adaptation
b) sinmlteneous contrast
i) brlghtness contrast
ii) colour contrast
iii) complementary contrest

Series B: Leaf Studies (A description of the visual result will eccompany examples l-a6, ant a description of theory ane process will appear with examples 7009.

1. Netermine the 要ue of a leaf and place in on the complement.
2. Determine the hue of a leaf and place it on a more satureted ground of the same hue.
3. Determine the hue of a leaf and place it on an achromatic varietion of that hue.
4. Determine the hue of a leaf and place it on:
a) a cool ground
b) a warm grouna
c) neutral ground of the seme light intensity
5. Determine the hue of a leaf and place it on:
a) a complement of greater brilliance
b) a complement of lesser brillience
6. Find tro leaves that are complementary and equal in brightness. Find the corresponding hues in the colour pack and mount the leaves on the reverse grounds.
7. Pull all the hue from a leaf by placing it on scme ground composed of other leaves.
8. Increase the saturetion of a hue by placing it on a ground of leaves.
9. Attempt to make a leaf look transperent.
10. Free Study: dastroy the shape of the leaves and mount them in a personally pleasing colour statement.

Series C: Study in the Compositional Dse of Complementary Contrast.
Fron a coloured magazine photograph make a tracing of shapes, and transfer to cardboard. Recreate the photograph:

1. in achromatic tones, matching the value of arch colour to a gray.
2. in an arbitrarily chosen theme of compleaentery contrast.

Series D: Gray Scoleo

1. From black and white magazine photographs cut thin strips of all the grays available and arrange them in vertical, paro allel stripes from black to white and back to black. Evaluate the accurate judgnent of grays, place strips of white, gray end black across the exercise and describe the illusion. Follow with discussion of relateत pigment mixing in the \#eber-Fechner Law.
2. Create eight stripes graduating from black to white. Mount them in parallel juxtaposed lines, alternating black and white at the left margin. Describe the visual effect.

Series E: Colour in One Plane (9 hues in square format)

1. Which is darker:
a) waril
b) cool
2. Which is lighter?
a) warm
b) $\mathbf{c o o l}$

These exarcisee are to be followed by a discussion of apparent distence, ond teuperature of colours, and by a study of colour space in paintings.

Sories F: Saturation

1. From several of the most saturated versions of one hue. choose:
a) the rediest
b) the bluest
c) the greenest
d) the yellowest
2. The End Effect-mplace samples of one hue in two rows of ine creasing seturation. Ons row will have 4 samples. The see cond row mill duplicate the first, but will have an edditional, more saturated semple. Compere the fourth sempla in each rows
T_{h} is series is to be followed by a discussion of the psychology of colour percoption.

Serios G8 Study in Complementary Mixture

1. Take saturated papers of the three primaries and three secondarias. Find the papers that show three equally spaced mixtures of the parent withits complement. Arrenge in ai hexagonal pattern with a grey center.
2. Repeat the exercise in pigment for one complenantary pair. Paint seven equal steps from rea to green, blue to orange, or yellow to purple.
3. By arranging complementary pairs in vertical stripes, create:
a) adnitive mixture of complements
b) complementary contrast.

Series H: Colour Assimilation

1. Arrange alternating verticaa stripes of yellow ond gray above stripes of blue and gray. Compare the grays.
2. Juxtapose two Haltese crosses of blue and yellow, with ai grey centre. Describe what happens when concentretion is alternated between the blue cross and the yellow cross.

Series I: Stuay in Vibration

1. Create gria patterns using:
a) werm ond cool colours of full saturation ond equal light intensity
b) warm and cool colours of great brilliance
c) warm and cool colours of dim brilliance
d) chromatic an achromatic colours
e) two warn colours
P) two cool colours

Mount the six studies together and determine the principles of vibration.
2. Free study in tro-colour vibration, compositional choice.

Series J: Additive Mixture

1. Find two colours and arrange them in a pattern that will allow optical mixture of the colours before they reach the retina. This will be followed by a discussions of where adतitive mixture is found, e.g. Impressionism, Pointillism, printing process. weaving.

Series K: Stuay in Sproaging Effect

1. Create gria patterns using:
a) dark on light
b) light on dark

This will be follover by an investigation of 'halation', its reason, and its prevalence in daily vision.

Series L: Optical Ambiguities

1. Using black and white striped paper (obtainable in wrapping paper) create a design which will produce the greatest visual ambiguity.
2. Do the same with coloured stripes.
3. Find the combination of colours, which, when mounted in intarsic, angular patteras, oill cause the boundaries to disappear.

Series M: Stury in Transparency and Space Illusion

1. 8 as 5
a) white film over red, blue, green and violet
b) 25% green film over four colours
c) 50% red film over four colours
2. Create a ladar of eight brightness steps of one hue. Fina one colour that, when place? between these steps, will appear to come from behind half the steps, and lie over the other half.

Follow these exercises with a discussion of volume colour, apparent weight. and aistance of colour and how this affects man.

Series N: Stuay in Colour Hermony

1. Using four colours, create twenty-four variations of one pattern. Evaluate in terms of space, temperature, weight, quantity, colour anत brightness changes.
2. Create an harmonious colour composition. Describe how this harmony is achieved in terms of quantity (how much and how often), intensity, and weight.

Series 0: Symbolic Use of Colour

1. Colour and Emotion--With three colours, create a composition deplicting each enotion:
a) love
b) envy
c) hate
d) depression
2. Colour and A_{c} tivity--Uaing the same design and different colours, create one composition that is active and one that is passive.
3. Colour and Age--Using the same design 0 Vary the colours in two compositions to depict old age and youth.
4. Colour and Personality-Free stuãies using different sets of three colours to repict:
a) H_{1} tler
b) Toseanini
c) Cleopatra
d) Napoleon
e) Doris $D_{a y}$
f) personality of choice

The designs must contain no associstive elements.
Series P: finalyses of Great Paintings. (from good reproductions)

1. Using post card reproduction for tracing areas, analyze the folloving paintings in separate studies of value, dominont colour, subordinate colour, colour temperature and colour space:
a) El Greco Assumption of the Virgin
b) Davia Lementation et the Foot of the Cross
c) Degas At the Millinery
a) Seurat Sunday Afternoon on the Island of La Grande Jatte
e) Gaugin Why are You Angry?
f) Cezanne The White Sugar Bovl
g) Matisse Medame Metisso
2. Using the same enalyses of value, dominant and subordinate colours, colour temperature, and colour space, study five paintings in the $V_{a n c o u v e r ~ A r t ~ G a l l e r y ~ t h a t ~ e x h i b i t ~ o u t-~}^{\text {a }}$ standing use of colour.

These exercises will be supplemented with independent research on a topic of the student's choice, to be presented in written and oral form to the class, and to be accompanied by experinents and visual examples where possible.

The students will be required to read Interaction of Color by Josef Albers, "The Color Problem in Pure Painting--Its Creative Origin," by Hans Hofmann, and The Art of Color by Johannes Itten. (See Bibliography.) Student's research presentations will require considerable reading in specific fields. This course, however, does not require extensive reading because its purpose is to promote problem-solving ability with colour. This cannot be learned from reading.

Examples of solutions to the exercises in the course outline are available on request to the writer. So, too, is The Background for Teaching Colour, a two-hunarea eighteen page review of research into physics, psychophysics, physiolosy, psychology and references, designed enrich the background of the teacher approaching the subject of colour. with art students.

GLOSSARY

Achrometic - Colour lacking a distinguishable hue.
diditive Mixture - The mixture of the light primaries--red, blue, and green-in the eye, ultimately forming white.

Brightness - The dimension of colour referring to a scale of perceptions representing a colour's similarity to one of a series of achromatic colours ranging from very aim (dark) to very bright (dazzling).

Cbromatic - Colour with distinguishable hue and saturation.
Colorant - colouring material, taking the form of a soluble dye or an insoluble pigment.

Colour - One aspect of visual experience that can be described as having quentitatively specifiable dimensions of hue, saturation, and brightness.

Hue - The dimension of colour referring to a scale of perceptions ranging from red through yellow, green, and blue.

Light Intensity - The eye's evaluation of the light reflected from a pigment.

Saturation -. The aimension of colour referring to a scale of perceptions representing a colour's degree of departure from achromatic colour of the same brightness. (Sometines called Intensity.)

Shade - A hue which has been darkened by the addition of black.
Subtractive Mixture - The absorbing action of the pigment primaries-magenta, cyen, and yellow-ultimately forming black.

Tint - A hue which has been lightened by the addition of white.
Tone - A colour which has bean modified in hue and saturation by the adition of its complement.

Value - Synonymous with brightness and light intensity.

BIBLIOGRAPHY

1. Books, and Publications by the Government and Equcational Boards:

Albers, Josef. Interaction of Color. New Haven and Lonion: Yale University Press, 1963.

Anderson, Donala M. Elements of Design. New York: Holt, Rinehart and Winston, 1961.

Arnheim, Rudolf. Art and Visuel Perception. Berkeley: University of California Press, 1958.

Art. Elementary Schools. Members of the Bureau of Art, Chicago: mimeographed, n.d.

Balinkin, Isay. The Color Tree. Nem York: Interchemical Corporation, 1965.

Bernstein, M. Colour In Art and Daily Life, trans. R. Granger Watkin. London: Wethuen and Co.. Ltd., 1928.

Bezold, Wilhelm von. The Theory of Color. Boston: L. Prang and Co.. 1876.

Binder, Joseph. Colour in Advertising. Lonतon: The Studio Lta., 1934.
Birren, Faber. Color: A Survey in Horas an Pictures. New York: University Books, Inc.. 1963.
—_ Color Psvchology and Color Therapy. Toronto: McGraw-Hill Book Co.. Inc., 1950.
 tion, 1955.

Boos-Hamburger, Hilde. The Creative Power of Colour. Burnley: F. H. Brom Ltd., 1963.

Bopst. Harland. Color and Personality. New York: Vantage Press, 1962.
Boume, P. J. Physicel Aspects of Colour. Einahoven, The Netherlands: Philips Industries, 1947.

Brinaley, G. S. Physiology of the Ratine and the Visuel Pathwey. London: Eduard Arnola (Publishers) Lta., 1960.

Bucke, Richard Maurice. Cosmic Consciousness. Introduction by George Moreby Acklom. New York: E. P. Dutton and Co.. Inc., 1956.

Buddenbrock, Wolfgang von. The Senses. Ann Arbor: The University of Michigan Press, 1964.

Burnham, Robert 7. , Randall M. Henes, and C. James Bartleson. Color:日 Guide to Basic Facts ana Concepts. New York: John Wiley and Sons, Inc., 1963.

Burris-Meyer, Elizabeth. Historical Color Guide. New York: Villiam Helburn, Inc., 1938.

Burt, C. The Factors of the Mind. London: University of London Press, 1940.

Carpenter, H. Barrett. Colour. Lonãon: B. T. Batsford Lta., 1933.
Chevreul, M. E. The Princinles of Harmony and Contrast of Colours and Their Applications to the Arts. London: George Bell and Sons, 1890.

Committee on Colorimetry, Optical Society of America. The Science of Color. Washineton, D.C.: Optical Society of Americe, 1963.

Eng, Helga. The Psychology of Children's Drawings. Lonton: Kegan Paul, Trench, Trubner and Co., Lta., 1931.

Evans, Ralph M. An Introduction to Color. New York: John Wiley and Sons. Inc.. 1961.

Gibson, Jemes J. The Perception of the Visual Forld. New York: Houghton, Mifflin Co., 1950.

Goethe, Johann Wolfgang von. Theory of Colour, trans. E. L. Eastlake. London: Murray, 1840.

Graves. Maitland. The Art of Color and Design. NcGraw-Hill Book Co.. Inc.. 1951.

Gregg. Jemes R., and Gordon G. Heath. The Gye and Sight. Boston: D. C. Heath and Co., 1964.

Gregory. R. L. Eye and Brain. Toronto: MoGraw-Hill Co.., 1966.
Harris, Chester 7., ed. Encyclonedia of Educational Research. New York: The Macmillan Co.. 1960.

Hartriage, Hamilton. Recent Advances in the Physiology of Vision. London: J. and A. Churchill Ltd., 1950.

Hering, Ewald. Outlines of 旦 Theory of the Light Sense, trans. Leo M. Hurvich an ${ }^{\text {N D D }}$ Dhea Jemeson. Cambrilge, Massachusetts: Harvard Univiersity Press, 1964.

Hochberg, Julian E. Perception. Englewood Cliffs, New Jersey: Prentice-Hall. Inc.. 1964.

Houstoun, R. A. Light and Colour. Toronto: Longmans, Green and Co., 1923.

Itten, Johannes. The Art of Color, trans. Ernest van Haagen. New York: Reinhola Publishing Corporation, 1961.

Jacobson, Egbert. Basic Colour. Chicago: Paul Theobald, 1948.
Juad, Deane B. Color in Business, Science, and Industry. New York: John Wiley and Sons. Inc., 1963.

Kandinsky, Massily, On the Spiritual in Art, trans. Hilda Rebay. New York: Solomon R. Guggeaheim Foundation for the Museum of NonObjective Painting. 1946.

Kargere, Auarey. Color gna Personality. New York: Philosophical Librery, 1949.

Katz, D. The Forla of Colour, trans, R. B. MacLeod and C. W. Foz. London: Kegen Paul. Trench, Trubner and Co., 1935.

Klee, Paul. The Thinking Eye, ed. Jürg Spiller; trans. Ralph Manhein. Ner York: G. Wittenborn, 1964.

Koblo, Martin. Forla of Color, An Introauction to the Theory ana Use of Color in Art, trans. Ian F. Finlay. Toronto: WeGraw-Hill Book Co.. 1963.

Koffka, K. Principles of Gestalt Psychology. New York: HercourtBrace, 1935.

Lindberg. Bengt J. Experimental Stuiies of Colour and Non-Colour Attitude in School Chilaren and Adults. Copenhagen: Levin and Munksgaard, 1938.

Llewellyn, Margaret. Colour and Pattarn in Your Home. London: The Council of Industrial Design, n.a.

Luckliesh, Matthew. Color and Colors. Toronto: General Publishing Co. Lta., 1938.

- Light and Color in Advertising and Merchandising. Now York: D. van Nostrand Co., Inc., 1927.

Maior Art in the Academic High Schools. Curriculum Bulletin No. 11, Board of Eaucation, New York: Pacific Printing Co., Inc., 1960-61.

Melvin, Grace. Design. Outline of a course formerly given at the Vancouver School of Art, lent by Gordon Smith.

Milner, Mifion. On Not Being Able to Palnt. Introduction by Anna Freud. London: William Heinemann, Ltd.., 1957.

Mueller, Conrad G. Sensory Psychology. Englewood Cliffs, New Jersey: Prentice-Hall, 1965.

Ostwald, Wilhelm. Colour Science, trans. J. Scott Teylor. London: Winsor ana Newton Ltd., 1932:

Packard, Vance Oakley. The Hidden Persuaders. New York: D. McKay Company. 1957.

Pickfora, R. W. Individual Differences in Colour Vision. London: Routledge and Kegan Paul, Ltd., 1951.

Rankin, H. A. The Teaching of Colour. London: Sir Isaac Pitnan and Sons, Ltd., n.d.

Reiser, Oliver L. The Alchemy of Light ana Color. New York: W. W. Norton and Co., Inc., 1928.

Renner, Paul. Color: Oraer and Harmony, trans. Alexander Nesbitt. New York: Reinhold Publishing Corporation, 1964.

Roon, Ogaen N. Student's Text-Book of Color. New York: I. Appleton and Co., 1916.

Scott, Robert $\begin{gathered}\text { Hilliarn. Design Eundamentals. Toronto: McGraw-Hill }\end{gathered}$ Book Co., Inc.. 1951.

Sears, F. W. Principles of Physics. Vol. III of Ootics. Cambriage: Addison-Hesley Press, Inc. 1945.

Shearer, Vernon and Arthur Smith. In Search of Colour. Birmingham, England: The Kynoch Press, 1948-49.

Smith, Charles N. Student Hantbook of Color. New York: Reinhola Publishing Corporation, 1965.

Taylor, F. A. Colour Technology. London: Oxford University Press, 1962.

Teevan, Richard C., en Robert D. Birney, eds. Color Vision. Princeton, New Jersey: D. van Nostran Co., Inc., 1961.
D. S. Depertment of Comnerce, National Bureau of Stendards Circular 553. The ISCC--NBS Method of Designating Colors and a Dictionary of Color Names. Washington, D.C.: U. S. Governnent Printing Office, 1955.

Welraven, P. L. On the Mechanism of Golour Vision. Soesterberg, Hollend: Institute for Perception RVO-TNO, 1962.

Wara, James. Colour Harmony and Contrast. London: Chapman and Hell, Ltd., 1932.

Wilson, Mitchell. Energy. Life Science Library. New York: Time Incorporated, a Stonehenge Book, 1963.

Wilson, Robert F. Colour and Light at Hork. London: Seven Oaks Press Lta., 1953.
\qquad - Colour in Industry Toagy. Forward by Faber Birren. Nem York: The Macmillan Co., 1960.

Molf. Thomas H. The Megic of Color. Illustrated by Ned Soialer. New York: The Oayssey Press, 1964.

Wright, W. D. Researches on Normal and pefective Colour Vision. London: Henry Kimpton, 1946.

- The Measurement of Colour. New York: The Macinillan Company, 1958.

Myburn, G. M., R. W. Pickfora, ana R. J. Hirst. Human Sanses and Perception. Toronto: University of Toronto Press, 1964.
2. Periodicals, Essays and Articles in Collection, Lectures, and Interviews:

Barnes, Norman F. "Spectrophotometry," A Symposium on Color. InterSociety Color Council, 1947, pp. 450-58. Reprinted from Technical Association Papers, 1947, pp. 442-490, and a published in the TAPPI Section of the Paper Trade Journel, CXXV (July-December, 1947).

Back, Harry S., and Ann M. Dunbar. "The Consistency of Color Association to Synonynous Words, "Journal of Eaucationgl Research, LVIII (September, 1964). pp. 41-43.

Birren, Faber. "Color and Human Appetite," Food Technology, XVII (May, 1963). pp. 45-47.
_ "Psychology of Color for the Schoolroom, "Nation's Schools, LVII (April. 1956), pp. 92-94.

Block, Jack. "Studies in Phenonenology of Emotions," Journal of Abnormel gns Social Psychology, LIV (1957), pp. 358-63.

Brearley, Neil. "Colour Stendards for Fruit," New Scientist, (November 11, 1965). pp. 423-24.
——— Interviem. Vancouver: B. C. Research Council, (February 15, 1967).
__ and J. E. Breeze. "Spectrophotometric ideasurements of Skin Colours of Apples," Journal of Sci. EA. Agric.. XVII (1966), pp. 62-64.
\qquad , J. E. Breeze, and R. M. Cuthbert. The Production of a Standard Comparator for the Skin Color of Mature Cherries; "Food Technology, XVIII (1964). pp. 231-33.

Brown, Hilton. "Color," Lecturg. Chicago: Art Institute of Chicego, (Octoder 8, 1964).

Bruce, William C. "Colour in Schoolrooms," American School Boara Journel. CXXXIII (December, 1956), p. 46.

Bruckman, E. G. "Color Dynamics ena Safety," Safety Eaucation, XXIII (March, 1949). pp. 8-9.

Bullough, E. "On the Apparent Heaviness of Colour," British Iournal of Psychology. II (1906-09). pp. 111-152.

Campbell. I. G. "A Stuady of the Fitness of Color Combinations, in Duple and in Triple Rhythm, to Line Designs; Journal of Experimental Psychology, XXX (1942), pp. 311-325.

Cerbus, George, and Robert C. Nichols. Mersonality Variables and Response to Color," Eisychological Bulletin IX (1963), pp. 566-75.

Chapanis, Alphonese. Men, Machines and Models," American Psychologist. XIV (March, 1961), pp. 113-131.

Crawford, B. H. "Theories of Colour Vision," Colour Vision-Physiolosy ana Experimental Psychology, Ciba Foundation Symposium. Eas. A. ∇. S. de Reuch and Julie Knight. London: J. and A, Churchill Ltd., 1965. pp. 152-177.

Dashiell, J. F. "Children's Sense of Hermonies in Colors and Tones," Journal of Experimental Psychology, II (1917), pp. 466-75.

DeCamp, J. E. "The Influence of Color on Apparent Weight, A Preliminary Study. Journal of Rxperimontal Psychology, II (1917), pp. 347-370.

Dix, D. S. Complementerism: Physical and Psychical," University of Doronto Stuaies Psychology Series 3-5, III.' The University Library: Published by the Librarian, 1920, pp. 1-85.

Duncker, K. "The Influence of Past Experience Upon Perceptual Proper. ties," American Journal of Psychology. LII (1939), pp. 255-65.

Bncyclonesdia Britannice. 1957, VI: pp. 52-60.
English, Marvin D. Use of Color in Instructional Materials, Equcational Leadership, XVI (April, 1959), pp. 455-60.

Erickson, Lelana H. "Colour as an Ala in Teaching Concepts, Arithmetic Teacher, ∇ (February, 1958), pp. 10-14.

Evans, Ralph M. "The Description and Specification of Color," A Symposium on Colore Inter-Society Color Council, 1947, etc. pp. 458-62.

Eysenck, H. J. "A Critical and Experimental Study of Colour Preferences," American Journel of Psychology. IIV (1941), pD. 385-94.

Gibson, John E. "How Color Affects Your Life, " Toasy's Health, XL (September, 1962), pp. 22-23. 64-65.

Golistein, Kurt. "Some Experimental Observations Concerning the Influence of Colors on the Function of the Organism, "Occupational Therapy and Rehebilitation, XXI (1942), p. 149.

Green, B. F., and Lois K. Anderson. Color Coding in a Visual Search Task," Journal of Exnerimented Bgychology, LI (1956). pp. 19-24.

Gunalach, C., and C. Macoubrey, "The Effect of Color on Apperent Size," American Journal of Psychology. XIIII (1931), pp. 109-111.

Hartridge, H. "The Polychromatic Theory;" Repractionist, XXX (1941), p. 154.

Helson, H. "The Effects of Direct Stimulation on the Blind-Spot," American Journal of Psuchology, XII (1929), p. 345.

Henneman, R. H. "A Photometric Study of the Perception of ObjectColor," Arch. Psychol., CLXXIX (1935), D. 83.

Hofmann, Hans. The Color Problem in Pure Painting--Its Creative Origin," Hans Hofmenn by Fréderick S. Wright. Berkeley: University of California Press, 1957, pp. 51-56.

Jones, Kenneth. Colour as an Aid to Visual Perception in Early Learning," British Journal of Eaucational Psychology, XXXV (February, 1965), pp. 21-27.

Julesz, Bela. "Texture and Visual Perception," Scientific Americen, CCXII (February, 1965). pp. 38-48.

Kansinsky, Wassily. "The Doctrine of Internal Necessity," Creativity in the Arts. Ed. Vincent Tomes. Englewood Cliffs, New Jersey: Prentice-Hall, Inc., 1964.

Karlin, Laprence, and Rudolf G. Mortimer, "Effect of Verbal, Visual and Auditory Augmenting Cues on Learning a Complex Motor Skill," Journal of Experimental Psychology, LXV (January, 1963), pp. 75-79.

Land, Eawin H. "The Retinex," Colour Vision--Physiology ena Exnerimental Psychology, Ciba Founcation Syaposium, etc. pr. 217-227.

McClenaon, LeRoy. "The Effect of Color on School Health and Safety," Texas Outlook. XXXII (June, 1948), pp. 8-10.

MacLeoá, R. B. "An Experimental Investigation of Brightness Constancy," Arch. Psychol., CXXXV (1932), p. 102.
———Pheromenology: A Challenge to Experimental Psychology," a reprint from Behaviorism and Phenomenology. Ed. T. W. Yann. Rice University: Semicentennial Publications, n. d., pp. 57-60.

Mandelbaum, J., and E. U. Mintz, "The Sensitivities of the Color Receptors as Measured by Lark Adaptation," Americen Journal of Ophthelmology, XXIV (1941), p. 124.

Manning, William R., and Lionel R. Olsen. "The Educational Possibilities of Color," American School Boara Journal. CXIVI (January, 1963). pp. 39-40.

Miles, W. R. "Nntoptic Plotting of the Macula Area," Minutes and Proceedings, 14 th Meeting, Army-Nary-OSR Vision Comittee, Sept. 1945.
munz, F. W. "Adaptation of Visual Pigments to the Photic Environment." Colour Vision--Physiology and Experimental Peychology, Ciba Foundation Symposium, etc. pp. 27-51.

Myers, C. S. "A Case of Synaesthesia," British Journal of Psychology, IV (1911), p. 228. - Two Cases of Synaesthesia," British Journal of Paychology, VII (1914). p. 112.

Nakshian. Jacob S. Whe Effects of Red and Green Surroundings on Behavior, "Journal of General Psychology, XXII (December, 1964), pe. 143-61.

Newhall, S. M. Marmth and Coolness of Colors," Psych. Record, IV (1941). pp. 198-212.
\qquad -. D. Nickerson and D. B. Juda. MFinal Repori of the O. S. A. Subcomittee on the Spacing of Niunsell Colors, " Journal of the Optical Society of Americs. XXXIII (1943), pp. 385-418.

Nickerson, Dorothy. "Color and Its Description," A Symosium on Color. Presented before the Design Division of The Ainerican Ceramic Society, 49th Annual Meeting, April, 1947. Reprinted from The Americen Ceramic Eulletin, XXVII (1948), pp. 43-63, 185-187.

Pagham, C. A. "After-Images as a IVeans of Investigating Rods and Cones;" Color Vision--Physiology and Exnerimental Psychology, Ciba Foundation Symposium, etc. pp. 52-88.

Payne, M. Carr Jr. "Colour as an Independent Variable in Perceptual Research," Psucholozical Bulletin. IXI (1964), pp. 199-208.

Peder, Christopher. "Duplicity Theory and Microstructure of the Retina," Colour Vision--Physiology and Experimental Psychology, Ciba Foundation Symposium, etc. pp. 52-88،

Pickford, R. W. "Binocular Fusion," British Journal of Psychology. XXXIX (1948). p. 73.
.. "Human Colour Vision," Colour Vision--Physiology and Exnerimental Psychology, Ciba Foundation Symposium, etc. pp. 228-48.

Pillabury, W. B., and B. R. Schaefer. A Note on 'Advancing and Retreating Colors', American Iournol of Psycholegy, XLIX (1937). pp. 126-30.

Pressey, Sianey L. The Influence of Color upon Mental and Motor Efficiency," Americen Journgl of Psychology, XXXII (1921). pp. 326-56.

Quality Control Instruments for Appearance Measurement, Photometry and Colorimetry Bulletin. Bethesda, Maryland: Gardner Laboratory, Inc. 1967.

Quinn, Hayes. "Reading Color," an Adaress before the Claremont College Reading Conference, Claremont College Reaging Conference 13th Yearbook. 1943.

Rahr, Freনeric $H_{\text {. Color Engineering," A Symoosium on Color. Inter- }}^{\text {Cor }}$ Society Color Council, 1947, etc. pp. 447-49.

Read. Herbert. "Antonio Tapies," A Letter to a Young Painter. New York: Horizon Press, 1962, pp: 182-86.

Rosenblith, Juay F. Imitetive Color Choices in Kinaergarten Children, Chila Development, XXXII (1961), pp. 211-23.

Ross, D. Grent. "Psychology of Color Preference in Projection Slides," Journal of the Associeticn of Mesical Illustrators. No. 16 (1965). pg. 13-17.

Schechtel. Ernest G. "On Color and Affect," Psychistry, VI (1943). pp. 393-409.

Schail. K. Varner. *A Q-Sort Study of Color-Mood Association " Journal of Projective Techniques, XXV (1961). pp. 341-73. - NScaling the Association Between Colors an M Mood-Tones," American Journal of Psychology, IXXIV (1963), pp. 266-73.

Shaw. Bernara. Aesthetic Science:" published for the Council of Industrial Eesign. London: Sun Engraving Co. Lta., n. d.. pp. 143-44.

Shexby, J. H. The Quantum Theory of Colour Vision, Natura, CLX (1947), p. 24.

Sjöstrand, Fritiof S. "The Synaptology of the Retina, " Colour Vision-Physiology and Experimentai Psychology, Ciba Foundation Symposium, etc. pp. 110-51.

Smith, Sidney L. Color Coaing and Visual Separability in Information Displays, Journal of Applien Psvehology, XLVII (1963), pp. 353-64.

Solberg, Nellie. "Color Study at the Elementary Level," School Artg, LXII (September, 1962), pp. 23-24.

Staley, J. J., Willara H. Nelson and F. J. King. "Color in Discriminetive Learning by Children," The Journal of Experimental Eaucation, XXXI (March. 1963), pp. 325-28.

Staples, Ruth. "The Response of Infants to Colour," Journal of Experimental Psuchology, XV (1932), p. 119.

Stenius, Åke S: son, Börje Kyrklund, and Vidar Lorås. "Colour--Its Graphical Presentation, Its Meesurement and Eyaluation, "reprinted from Sartryck ur Syensk Penperstianing, LXIX (1966), pp. 150-58.

Svaotichin, G., K. Negishi and F. Fatechand. "Cellular Mechanisms of a Young-Hering Visual System, " Colour Vision--Physiology and Experi-: mental Pgychology, Ciba Foundation Symposium, etc. pp. 178-207.

Swinale, P. F. "Positive After-Images of Long Duration," American Journal of Psychology, XXVII (1916), pp. 324-34.

Thompson, Colin. Response to Colour. Second Interin Report. Research Centre in Art Education. Bath Academy of Art, Corshem, Wiltshire, England. June, 1965.

Thouless, R. H. MPhenomenal Regression to the Real Object I, "British Journal of Psychology, XXI (1940), pp. 339-59.
_. "Phenomenal Regression to the Real Object II," British Journel of Psychology, XXII (1941), p. 1-30.

Vernon, M. D. "The Perception of Colour," The Psvehology of Perception. Great Britain: C. Nicholls and Co. Lta., 1962. pp. 71-85.

Walton, W. E. "The Sensitivity of Children and Aaults to Color Harmony," Psychol. Monogr., XIV (1933-34), py. 51-56.

Warren, John Sherpe. "The Crusade for Color," American Snhool Board Journe1. CX (January, 1945), pp. 41-43.

Webb, Harola V. "Light anत Colour, Aias to Learning," American School Board Journal, CXXXV (August, 1957), pp. 42-43.

Wheeler, R. H., and T. D. Cutsforth. "Synaestiosia in the Developnent of the Concept," Journal of Experimental Psychology, VIII (1925), p. 149 .

Willmer, E. N. "Duality in the Retine, Colour Vision--Physiology and Experimental Psychology. Ciba Foundation Symposium, etc. pg. 89109.

[^0]: 1 Hilton Brom, "Color, " Lecture ($_{\text {hicago: Art Institute of Chicago, }}$ October 8, 1964).
 ${ }^{2}$ Ewald Hering, Outlines of a Theory of the Light Sense, trans. Leo M. Hurvich and Dorthea Jameson (Cambridge, Mass.: Harvard University Prass, 1964). p. 289.

[^1]: ${ }^{1}$ Neil Brearley, Interview (Vencouver: B. C. Research Council. Feb. 15, 1967).

 2F. A. Taylor, Colour Technology (London: Oxford University Press, 1962). p. 6.

[^2]: IDeane B. Juad, Color in Business, Scienca, and Industry (New York: John Wiley and Sons. Inc.. 1963). P. 13.

 2
 Wolfgeng von Budienbrock, The Senses (Ann Arbor: The University of Michigan Press, 1964). p. 80.

[^3]: l $_{\text {Robert }}$ H. Burnhem, Rendall M. Henes, and C. Jemes Bartleson, Color: a Guide to Basic Facts and Concepts (New York: Jobn Wiley and Sons, Inc.. 1963). p. 49.

[^4]: 2M. D. Vernon, "The Perception of Colour." The Psychology of Perception, Penguin Books (Grest Britain: C. Nicholls ana Co. Ltd., 1962), pp. 82-83.
 $3_{\text {Ruth }}$ Staples, "The Response of Infents to Colour, " Journal of Exparimentel Reychology, XV (1932), p. 119.

 4Rualf Arnheim, Art and Visual Percention (Berkelay: University of $C_{a l i f o r n i a ~ P r e s s, ~ 1965) . ~ p . ~}^{324}$.
 $5_{\text {Faber }}$ Birren, Nev Horizons in Color (New York: Rinehola Publishing Corporation, 1955), p. 110.
 ${ }^{6}$ Birren, " Pssychology of Color for the Schoolroom, "Nation's Schools, IVII (April, 1956), p. 92.

[^5]: 7Bengt J. Linaberg. Experimental Stuaies of Colour anA Non-Colour Attitude in School Chilaren end Adults (Copenhagen: Levin and Wunisgaard, 1938), p. 146.

 8
 Harland Bopst, Color and Personality (Nen York: Vantege Press, 1962). p.29.

 - ${ }^{9}$ Comnittee on Colorimatry, Optical Society of America. The Science of Color (Vashington, D.C.: Opticel Society of America, 1963), p. 160.

[^6]: ${ }^{10}$ Walter Sargent, Enioyment and Use of Colour, quoted by Robert F. Milson, Colour and Light at Fork (London: Saven Oaks Press, Ltd., 1953). p. 66.

[^7]: 9John E. Gibson, How Color Affects Your Life," Today's Heglth, XL (September. 1962). p. 23.
 ${ }^{10}$ G. M. Hyburn, R. W. Pickford and R. J. Hirst, Humen Senses and Perception (Toronto: University of Toronto Press, 1964). p. 105.
 ${ }^{11_{\text {Kurt }} \text { Goldstein. "Some Experimental Observations Concerning the Influ- }}$ ence of Coloss on the Function of the Organism," Occupational Therapy and Rehabilitation, XXI (1942). p. 149.

[^8]: 23K. Werner Schail, "Scaling the Association between Colors an a MoodTones," American Journal of Psychology, IXXIV (1963), p. 273.

 Also, see "A Q-Sort Stuay of Color-Mooत Association," Journal of Projective Techniques, XXV (1961). pp. 341-346, by the same author.

 24 Harry S. Beck and Ann Dunbar, The Consistency of Cojor Association to Synonymous Foras," Journal of Educational Research, LVIII (Sept.1964). p. 43. ${ }^{25}$ The Science of Color. p. 165. ${ }^{26}$ Art and Visual Perceotion, p. 331.

[^9]: ${ }^{1}$ Committee on Colorimetry, Opticel Society of Americe, The Science of Color (Mashington, D.C.: The Optical Society of Amsrica. 1963). p. 99.

 ZMarion Milner, On Not Being Able to Peint, fwí. Anne Freud (Iondon: milliam Heinemann. Ltd. . 1957), p. 157.
 $3_{\text {Robert }}$ F. Wilson, Colour in Industry Toney (Nem $Y_{0} r k$: The Kacmillan Co.. 1960). p. 35.

[^10]: - . color is a power in the comunication of ideas. It is definitely engaged in our simplest experiences; we use it

[^11]: ${ }^{9}$ Maitlan Graves, The Art of Color and Design (Toronto: McGraw-Hill Book Co.. Inc. . 1951), p. 405.
 ${ }^{10}$ Martin Koblo, Worla of Color, An Introduction to the Theory and Use of Color in Art, trans. Ian F. Finlay (Toronto: NeGraw-Hill Book Co., 1963), p. 19.

[^12]: 13^{13} The Science of Color; p. 166.

[^13]: $16_{\text {Faber Birren, Color Psychology end Color Therapy (Toronto: McGraw-Hill }}$ Book Co.. Inc.. 1950). p. 259.

 17Robert F. घilson, Colour in Iniustry Today, pp. 131-132.
 $18_{\text {The }}$ Science of Color, p. 166.

[^14]: $1_{\text {Faber Birren, "Color and Fiumen Appetite," Food Technology, XVII (Nay. }}$ 1963). p. 45.

[^15]: 2irren, p. 47.

[^16]: 5R. H. Wheeler and T. D. Cutsforth. "Synassthesia in the Development of the Concept." Journsl of Experimentel Psychology, VIII (1925), p. 149. 6 C. S. Myers, "Two Cases of Synaesthasia." British Journal of Psycholozy. VII (1914). p. 112.
 $7_{\text {Quoted by Faber Birren. Color Faychology end Color Therany (Toronto: }}^{\text {E }}$ MeGraw-Hill Book Co., Inc., 1950), p. 163.

 8R. A. Houstoun. Light and Colour (Toronto: Longman's, Green and Co.. 1923). p. 169.

[^17]: 2i. D. Wright, Researches on Normal and Defective Colour Vision (London: Henry Kimpton, 1946). pp. 149-150.

[^18]: 3R. H. Thouless, "Phenomenal Regression to the Real Object. I." British Journal of Psychologv, XXI, p. 359.

[^19]: ${ }^{10}$ Arthur Linksz, Vision--Physiology of the Eye, II (New York: Grune and Stratton. 1952), p. 196.

 1 The Science of Color. p. 117.
 ${ }^{12}$ James Ward, Colour Farmony and Contrast (Lonđon: Chapman and Hall, Ltd.. 1932). p. 54.

[^20]: 14 Josef Albers, Interaction of Color (Nem Haven and London: Yale University Press, 1963). p. 31.

[^21]: ${ }^{20}$ F. Bullough, "On the Apparent Heaviness of Colours," British Journgl of Psychology. II (1906-08), pp. 111-152.

 Also, J. E. DeCamp, "The Influence of Color on Apparent Weight. A Preliminary Stuay," Journal of Experimental Psychology, II (1917), pp. 347-370.

 21 Isay Balinkin, The Color Tree (Ner York: Interchemical Corporation, 1965), p. 11.
 $2_{\text {Professor A. Ames, Jr. of Dartmouth College, quoted by Deane B. Juad. }}$ Color in Business. Science, and Industry (Ner York: John Wiley and Sons, Inc., 1963). p. 23.

[^22]: $1_{\text {See }}$ Vance Oakley Packara, The Hidaen Persueders (New York: McKay, 1957).
 ${ }^{2}$ Committee on Colorimetry, Optical Society of Americe, The Science of Color (Tashington, D.C.: The Optical Society of America, 1963), p. 167.

[^23]: ${ }^{1}$ It is reanily admitted that the fields of history, physics, psychophyo sics, en psychology can provide a mealth of important material for the artist. Before he can use this information, however, he must be able to . manipulate colour.
 ${ }^{2}$ Quotea by Rudolf Arnheim, Art and Visual Perception (Berkeley: University of Celifornia: Press, 1958). p. 354.

[^24]: $3_{\text {Paul Kenner, Color Ordar and Hermony, trans. Alexander Nesbitt (New }}$ Yorkt-Reinhold Publishing Corporation, 1964), p. 42.
 ${ }^{4}$ Josef Albers, Interaction of Color (Naw Haven and Lonaon: Yale University Press. 1963).

