Accepted as the Thesis requirement
for the M. A. Degree.

A PRELIMINARY STUDY OF THE GENUS PROSOPIUM, WITH

 SPECIAL REFERENCE TO PROSOPIUA WILLIAMSONI (GIRARD)by
J. Laurence MeHugh

A thesis submitted for the degres of MASTER OF ARTS
in the

DEPARTMUNT OF ZOOLOGY

INDEX
Index I
Acknowl edgments III
Introduction 1
Distribution 3
Variability 4
Systematic discussion 8
P. cylindraceus 9
P. eylindraceus quadrilaterale 9
P. cylindraceus stanleyi 10
${ }_{P}$. cylindraceus minor 11
P. williamsoni 11
P. Williamsoni cismontanus 12
P. Williamsoni couesi 12
P. oregonium 13
P. coulteri 15
P. snyderi 16
P. spilonotus 16
P. abyssicola 17
Economic importance 18
Material examined 20
Variation in I, W2lliamsoni 21
Rate of growth 22
Body proportions 26
Length of head 27
Snout length 31
Maxillary 31
Eye 32
Depth of head 33
Distance from snout tip to occiput 33
Length of dorsal fin base 33
Length of anal fin base 34
Height of dorsal fin 34
Height of anal fin 34
Length pectoral fin 35
Length pelvic fin 35
Adipose fin 35
Pectoral inin raye 37
Scales in the lateral line 38
Tables I to XI 39
Tables XII to KX 62
Table XXI 73
Tables XXII to XXXVIII 74
Food 91
Tables XXXIX to LIX 95
Summary 110
Waterton lake 111
Bowman lake 111
Lake MoDonald 112
Logging lake 112
Lake Minnewanka 112
Third lake 113
Maskinonge lake 113
Cultus lake 113
Tolt rituer 114
Hooksack river 114
Bow lake 114
Lake Loulse 115
Ele river 115
Conclusions 117
Bibliography 119

ACKNOWLFDCMENTS

The work was carried out at the University of British Columbia under the direction of Dr. C. McLean Fraser, to whom the author is greatly indebted for his generous adrice and criticism.

The various members of the staff of the Department of Zoology at the University of British Columbia have assisted materially in many ways. Dr. G. M. Watney has contributed valuable advice, and has been most generous in loaning literature. Prof. G. J. Spencer and Mr.J. K. Jacob have assisted in the identification of many of the insects, and have loanea their literature freely at all times. The assistance of Mr. D. B. Quayle and Mr. W. M. Cameron, with whom the writer has been in close contact during the course of the work, hes been greatly appreciated.

Thanks are due to Dr. W. A. Olemens of the Pacific Biological Station. Nanaimo, B. C. and Dr. D. S. Rawson of the Department of Biology at the University of Saskatchewan for the opportunity of examining the Bow river and Waterton lake material.

Dr. R. F. Foerster and Dr. W. E. Ricker of the Biological Board of Canade very kindly gave permission to examine their collections of Prosopium from Cultus lake. Both have helped in many other ways too numerous to mention. Mr. Wm. Barter of Cultus lake has been most
obliging in securing specimens from that locality.

Dr. J. L. Hart of the Pacific Biological Station has given freely of his time in discussing the various phases of the problem. This has proved doubly valuable due to his experience with eastern whitefish. Dr. A. L. Pritchard of the same Station has also given important suggestions as to procedure in the systematic part of the worl.

The author is indebted to Dr. Leonard P. Schultz of the United states Hational Museum for the loan of specimens from the collections of that institution, and particularly for information regarding the relation ships of the various species of Prosopiume

During the course of the work the author has had occasion to correspond with several ichthyologists, particularly in regard to the relationships and distribution of the varlous species. In all cases the response hes been most helpful and a considerable anount of paluable information has been gained in this way. Besides Dr. Schultz, the following may be mentioned: Dr. Carl L. Hubbs of the Museum of Zoology at the University of Michigan, Dr. George S. Myers of the Natural History Huseum at stan ford University, Dr. J. R. Dymond of the Royal ontario Museum of zoology, and Mr. W. J.K. Harlaess of the Department of Biology at the University of Toronto.

- V $=$

The Elk river material was collected during the winter of $1937-38$ by Mr. Wh. Stevenson of Michel, B. C. Thanks are due to Mr Stevenson for his cooperation in securing these specimens.

The difficult task of typing the final copy has boen most ably carried out by Miss Eileen Smallwood, to whom great credit is due for her care ful and accurate work.

A preliminary study of the genus Prosopium, with special reference to Prosopium williamsoni (Girard)

IHTRODUCTION

The suborder salmonoidea, or the family Salmonidae in 1 ts broader sense. Is a group of fishes characterized by the presence of an adipose fin. This character is also found in several other groups, but these have 11ttle 1 ikelihood of being confused with the salmon and their allies, since their affinity to this family is at the best very romote. The Salmonidae are found only in the north ternperate zone and in the Aretic regions, but within this range are abundant wherever conditions are suitable to their existence. Most of the species are fresh water forms. IIving either in lakes or in rivers, or at times moving Irom one environment to the othes as the occasion warrants. Some are anadromous, spending a part of their 11 fo $1 n$ fresh water and a part in the sea, the migrations taking placs at quite definite periods. The stream dwellers may enter the sea or lakes occasionally, but not as a general habit, While the lake forms generally spend the greater part of their ife in the deeper weters, approaching the shore or running up streams at the spawming season.

As originally described, the family salmonidae was made up of two subfamilies, the Coregoninae and tho Salmoninas. However, it has been suggested that the differences are great enough to justify the formation of separate families, the basis of separation being the relation between the parietal and supreoccipital bones of the head. Thus the
family Coregonidae includes those forms in which the parietals are united, and the family Salmonidae embraces those in which the pariatals are separated by the supraoccipital (Koelz 1927). This follows current American usage:

In their reoognition of the varioue species of the family Coregonidae the Buropeans and Americans also differ. In the European senge of the word, Coregomus includes all the known species of whitefish and lake herrings. The Anericans have divided these forms into various groups, giving them generic or subganeric designations in vartous waye, but in the present paper the olassifioation of $K 0 e l z$ will be followede Koel, (1927) regards Loucichthys, Coregonus, and Prosonium as distinot genera and does not recognize the subgenere of Jordan and Evermann (1911).

DISTRIBUTION

The European genus Coregonus, which is approximately the same as the American fanily Coregonidae, is distributed almost completely around the world in the northern latitudes. Nowhere in America does its southern limit exceed the fortieth parallel, while in Europe this southern limit approximates the fiftieth degree of latitude. This distribution may also be applied with a fair degree of accuracy to the genus Prosopium, since it is represented by one or another of its species in practically all waters where coregonus is found.

WARIABILITY

It has been demonstrated by Koelz (1929 and 1951) that the Coregonids are an extremely variable group. At the same time, many of the species are separated by comparatively small differences, so that the range of variation within a species may be greater than the difference between two apparently distinct forms. This last statement applies particularly to the genus Leuciohthys, but it may be referred to Prosopium with almost equal emphasis.

The original concept of a species was much more definitely limited than is our present day view. It is now recognized that a species may be composed of a heterogeneous group, the extreme variants at oither end of which may be very difierent in appearance. Al though a group may have a wide distribution, the individuals of the group and their progeny are generally restricted to a comparatively 1 im ited locality. Thus environment is given the opportunity to work its effect, and variants having oharacteristics which fit them best for survival in any particular region will eventually become the dominant forms there. In a large lake, therefore, several taristies of a single species may be found. Since in such a case the range of the species in the lake is probably more or less continuous, intergrading forms will be found to exist, and this is idealIy the criterion of a subspecies. On the other hand, it is likely to happen that a species may be found scattered in more or less
isolated lakes or streans, or separated by natural barriers so that no intermingling is possible. In such a case, where the effects of latitude are at a minimum, it is quite possible to find two bodies of water which are closely situated geographically, differing greatIy in physical oharacteristics such as depth, chemical composition of the water, temperature, and the like. In the same way, widely separated lakes or rivers may be almost exactly similar in physical characters. Since in a species the same mutation tends to recur with a fairly definite frequency, it will eventually supersede its parent if conditions are such that it is nore adaptable to its surroundings. Thus, it is more likely to find varieties of a fish species distributed according to habitat than according to geographical location.

A definite tendency is evident in the work which has been done on the systematics of the Prosopium group to give names to types which have originated as a direct consequence of environraent. It is quite evident to anyone who has any acquaintance with systematic work that a limit must be drawn somewhere in giving names to animals of any kind. In mayy cases this dividing line between species must be arbitrery if the species are not to be needlessly multiplied, otherwise in the extreme case we would have each individual a separate species.

The influence of environnent on body form in fish has beon demonstrated by several workers. Dymond and Hart (1927) refer to the work of Hubbs on the influence of temperature in determining the number of vertebrae, fin rays, and scales. It is found that these characters have a higher average count in fish which have developed at lower temperatures. Other factors, such as muscular developnent, may materially effect various body proportions, producing an apparently distinct race.

I belleve also that confusion may have arisen in some cases as a re8u1t of the practlce followed by some investigators of picking a single individual as the type specimen, and of drawing their desoription of the species from this one fish. An exemple of thid procedure may be found in the work of Jordan and Snyder (1909) in their description of Coregonus oregoniue. The description is given from the type specimen, which is described as the largest specinen known. The authors also include a table showing proportional measurements of five other Individuals, and $1 t$ is seen that the hoad and also the snout are relatively much shorter in the smaller fish. It is a characteristic of Prosopium williamsoni thet in the breeding season the snout, and consequently the head, becomes much elongated in many cases, and it 1s quite likely that such is the case with Jordan and Snyderis epecies. This will be discussed further under the descriptions of the various species.

If it is necessary that a type specimen be selected for deposition in a museum, then it seems more reasonable that a considerable series , should be examined, and an individual chosen which approximates most closely the average values of each of the characters studied.

SYSTEMATIC DISOUSSION

The recognition of Prosopium as a distinct genus is attributed to Koolz (1927) by Hubbs (Letter), but this first appeared in print in Hubbs check list of the fishes of the Great lakes (1926). The chief difference between Prosopium and the other two species of Coregonidae Is the presonce of a single flap betwoen the nostrils, as opposed to two flaps in Leveichthys and Coregonus. Another important feature which was not emphesized by Koelz, but which is stressed by Dr. Hubbs is the presence in the young of Prosopium of parr markings suoh as ere developed in the young of the Pacific salmon. These are never present in the other two genera. other distinguishing features of Prosoplum are the small mouth, the absence of teeth, and the presence of a comparatively small mumber of chort, thlck gill rakers.

The oldest species name given to this group is selmo cylindraceus Pallas, 1784. In a recent paper, Berg (1936), refers thispspeciea to the genus Prosopium, and, finding the American species Prosopium quadrilaterale to be only slightly different from the furopean species. regards it as a subspecies of the latter. Although considerable mork has yet to be done before the relationships between the various species of this group are clear, $1 t$ seems reasonable at present to alvide them into three main groups. These groups are characterized by their general resemblance to the three definite species of Prosopium, namely cylinaraceus, williamsoni, and coulteri. The
three groups, with the synonymy of their included species, and the reasons for so grouping them, are as follows below.

FIRST GROUP
Prosopium oylindraceus (Pallas)
Salmo cylindraceus Pallas, in Pennent, Arctic Zoology, 1, 1784: oIII
(in part: Lena, Indigirka, Kolymal.
Salmo microstomus Pallas, Zoographia Rosso-asiatica, 3, 1811; 405
(in part: Lena, Indigirka, Kolyma).
 1900: 424, pl. 13, fig. 2 (basin of upper Yenisel river).
Coregonus cylindraceus Berg, Poissons des eaux douces de 1 URSS, 1 , 1932: 219 (Kolyma, Lena, Khatanga, Taimyr, Piassina, right tributarles of Yenisei), figs. 166a-c on p. 208 (Kolyma r.); ibid., 2, 1933. 846. Awerinzew, Intem. Rev.ges. Hydrob.und Hydrogr., 32, 1935: 60 and 73 (Lower course of Lena r_{0}).
Coregonus 1avaretus pidschian natio mongolicus Berg, 1bia., 1, 1933: 257, fig. 204.

Scales 8-11, 89-106, 7-9, average in lateral 1ne 97. Gill rakers usually 18 to 20 . From the right tributaries of the Yenisel to kolyma. Synonymy and description from Berg (1936).

Prosopium cylindraceus quadrilatoralis (Richardson)

Salno cylindraceus Pallas, in Pemnant, Aretio Zoology, 1, 1784: CxxVII (in part: "Kamchatka").
Salmo microstomus Pallas, Zoographia Rosso-asiatice, 3, 1011: 405
(in part: Anadyr, Olichota, Kukhtui, "Kamchatka").
Goregonus quadrilateralis Richardson, in Franillin, Narrative of a jour-
ney to the polar sea, 1823. 714, pl.25, fig. 2 (amall rivers about
Fort Enterprise and in the Arotic seal.
Corggonus novae-angliae Prescott, Aner.Journ.Sci.Arts, XI, 1851, 342
(lake Wimiplseogee, $\mathbb{N}_{*} \mathrm{H}_{\bullet}$).
Prosoplum quadrilaterale Koelz, Bull.U.S.Bur.Fish., 43 (2), 1927 (1929):
544 (Great lakes ercept Erie; lake Nipigon), Iige 30 (lake Huron).
Coregonus exlindraceus Kaganowsky, Fishes of the Anadyr river, in press
(Anadyr and southward to the Vivenskaya river at 60 NoLat, near
Korí bay: Penshina river at Penshinol. Berge Poissons des eaux douces de 1 URSS, 1, 1932: 219 (in part: drainage of the Pacific in Asial.

Basing his statements on Koelz (1927), Berg finds that this species differs slightly from cylindraceus in having fewer lateral line scales and fewer gill rakers. In nunerous specinens from the Great lakes and lake Nipigon the lateral 1 ine scales were (74) 84-95 (100), and the number of gill rakers usually 16 to 18. Synonymy from Berg (1936) and Evermann and Smith (1894).

Prosopium cylindraceus stanleyi (Kendall)

Coregonus stanleyt Kendall, Bull.U.S. Fish Comn., XXII, 1902 (1904). 366 (thoroughfare between Mud and Oross lakes, Maine). Prosopium quadrilaterale minor Koolz, Pap.Mich.Acad.Scl. Arts and Letters, XIII, 1930, 382 (in part: Cross lake thoroughfare, Me.). Kendall states that his species has the general appearance of Coregonus quadrilateralis, but differs in the lese slender body, shape of head, Less curved profile, less compressed snout, and larger mouth. It has also possibly somewhat fewer lateral line scales, the number in eight specimens ranging from 82 to 90 with an average of 85 . These differences soem hardly sufficient for specific rank and this is confirned by a letter from Dr. Hubbs (1937) in which he states that Berg's arrangement would throw the form stanleyi as a subspecies of cylindraceus. Koelz refers the Cross lake thoroughfare whitefish to his subspecies minor of guadrilaterale, and it is presumed that he means the form stanleyi, al though he does not definitely mention this species. If these two are to be included under the same subspecific heading, the name stanleyi should stand, and minor should be included in the synonymy.

Prosopium cylindraceus minor (Koelz)

Prosopium quadrilaterale minor Koelz, Pap.Mich.Acad.Sci.Arts and Letters, XIII, 1930 (1931), 382 (lake Chazy, New York).

This species is described by Koelz as differing from quadrilaterale in having fewer lateral Ine scales, fever gillrakers on the first branchial arch, and a relatively larger head and paired fins. The lateral line scales vary from 79 to 90 in twenty specimens, with an average of 83. The gill rakers on the firet arch range from 14 to 18 With an average of 16. Koelz states that probably none of the inland lake forms of Prosopiun will be found to be exactly like those which occur in the Great laires. He finds that the Cross thoroughiare and the Chazy lake specimens differ in somewhat the same way from the typical quadrilaterale of lake Michigan, al though there are also slight differences between these varieties. If the two are considered as identical, then staniey has the priority, and the form minor should not be recognized.

SECOID GROUP

Prosopium williamsoni (Girard)

Coregonus williamsoni Girard, Proc.Acad.Nat.Sci. Phila., 1856, 136
(Des Ohutes river, Oregon).
Coregonus couesii Milner, Rep.U.S.Fish.Comm.for 1872-73 (1874), 88
(Chief mountain lake, Montana).
This species has a wide distribution. According to Jordan and Evermann (1909) it inhabits the rivers of the Sierra Nevada and the west slope of the Rockies, from the Fraser and the columbia to the Truckee and other streams of the Lehontan basin of Nevada, being especially abrun
dant in the lakes of northern Idaho, western Montana, and Washington. Evermann (1891) also reports it from Wyoming, and Bajrov (1927) from the Athabasca river. Jordan (1905) mentions Vancouver island as the western limit of the species, but as far as is known, there is no re cord in the literature of its capture in this locality. According to Dr. Hubbs it is a very real problem whether the type williamsoni is not of the oregonius sort. Judging from the type locality, this may well be so. If such is the case, the name williamsoni should replace oregonius, and a new name should be resurrected from the synonymy for the form which we now know as williamsoni.

Prosopium villiamsoni cismontanus (Jordan)

Coregonus Williamsoni oismontanue Jordan, Bull.U.S.Fish.Conm., IX, 1889, 49, pl.9, figs, 8,9 (Horsethief Springe creek, a tributary of the Madison river, Montanal.

It is doubtful as to the real existence of this variety, in view of the great variability of the whole group. It differs from willamsoni proper by the more slender body and shorter fins. Body depth is a poor character on which to base specific differences, and fin lengths are hardly more sui table unless very significantly different from the type. Evermann and Smith (1894) and Eigenmann (1894) say that the differences from williamsoni are very slight. Dr. Schultz tells me it le at best only a subspecies or race.

Prosopium williamsoni couesi (Milner)

Goregonus couesii Milner, Rep.U.S.Flsh.Comm. for 1872-73 (1874), 88 (Chief Mountain lare, Montane).

This species or variety is included by Evermann and Smith (1894) in
the synonymy of Prosopium williamsoni. There seems to be considerable difference among the various authors as to the status of this form, however. Jordan and Snyder (1909) say it is doubtless the same as cismontanus, and that the two represent at the most a subspecies of Wi111amsoni. On the other hand, Jordan and Evermann (1909) refer to couesi as "a strongly marked species, allied to oregonius, and improperly confounded with Coregonus williamsoni". Dr. Schultz (Letter 1937) says it is probably a subspecies or race of williansoni, while Dr. Dymond (Letter 1937) states that he examined the type in Washington, and that if it is a typical representative of the population, it is distinct from williamsoni. It is found in the headwaters of the saskatchewan river.

Prosopium orogonium (Jordan and Suyder)

Coregonus williamsoni Girard, in Jordan and Evermann, Fishes of north and middle America (in pari). Smithson.Inst., U.S.NatoMus., Bull. 47. 1896.

Coregonus oregonius Jordan and Snyder, Proc.U.S.Nat.Mus., XXXVI, 1909, 425 (Mackenzie river, Oregon).
Irillion oregonius Jordan, Proc.Acad.Nat.Sci.Phila., 1918 (1919), 342. In the original description the authors refer to oregonius as a well marked species agreeing with 0 . couesi in the long snout, and further distinguished by a high adipose. Jordan (1918) erected a new genus Irillion for this species, but there seems to be no justification for this action. Myers (1932) says the species is closely relatec to williamsoni, and that according to Hubbs it should be known as Prosopium oregonium. Later, in a letter (1937) Myers states that schultz thinks oroponium is a synonym of willamsoni. This statement is probably
hardly correct, because Dr. Schultz (Letter 1937) apparently atill believes there is some distinction between the two, al though he says that he and his assistants had great difficulty in distinguishing one from the other. Dr. Dymond (Lotter) says he examined the type in Weshington, and that if a typical example of the race, it is definitely distinct from williansoni. It has a very large head, with long snout and maxillary, and long fins, particularly the adipose, which is nearly twice as large as the typical williamsoni. He admits the possibility, howe over, that the specimen is abnormal. In connection with this it is necessary to refer back to page of the introduction, and the statement that the type specimen selected in this case hardly seems to be representative of the group described. The long snout and maxillary can be attributed to the characteristic lengthening of these features Which takes place in the older fish, especially at the breeding season. It is true that the adipose in these specimens of oregonium is larger than in williamsoni, but in view of schultz' preliminary work on the two species in the Columbia river, it is possible that a stuay of a considerable series of specimens from this river would show that intergrading foms exist. Dre Hubbs (Letter 1937) thinks that the one is only a subspecies of the other, with the further reservation that it may be necessary to interchange the names, as discussed under williamsoni. Crawford (1925) gives the distribution of this form as the Columbia watershed, al though he says $1 t$ may occur rarely in other places. According to Schultz (Letter 1937) it occus only in the columbia, being found in the main stream and the larger tributaries, while williamsoni
occurs in the smaller tributaries and in the lakes.

THIRD GROUP

Prosopium ooulteri (Eigenmann and Eigenmann)

Coregonus coulterii Eigenmann and Eigennanns Amer.Nat., Nov. 1892, 961 (Kicking Horse river, Field, B.C.)

There is not much doubt that coulteri is a distinct spocies. According to Evermann and Smith (1894) it is most closely related to williamsoni, but the differences are numerous. In its smaller size and generally more slender appearance it 18 distinct, and added to these differences in appearance are differences in discrete characters such as scale number and gill rakers. The scales in the lateral line vary from 60 to 64 in seven specimens with an average of 61 , and the gill rakers are also less In number. The authors also mention the lack of parr marks in the specimens examined by them, saying that in specimens of williamsoni the same size these markings are distinct. However, the examples of coulteri are older than those of whlliemsoni of equal size, and it is po possible that they have lost their juvenile characters. This species was described from the Kicking Horse river at Field, British Columbia, and has since been reported from Dienond lake, Washington, and from southwestern Alaska, Chignik river and lake Aleknagik. Dr. Schultz (Letter 1937) is convinced that this is a good species. He hag taken it in lake McDonald, in Glacier National Park, Montana, Dro-Dymond (Letter1937) examined the type in the British Museum, and found 14 distinct from williamsoni, quadrilaterale, or oregonium.

Prosopium snyderi Mifers
Prosopium snyderi Myers, Copeia, 1932, 2, 62 (Crescent lake, Washington). The chief fault with this spegiss is that it is based on a single specimen. This differs from coulteri in heving a longer head, higher dorsel and anal fins, longer pectorals and pelvics, large adipose, more compressed body, and lower scale count. Dr. Schulta (Letter 1937) conveye the impression that there is some doubt as to the validity of the species. The distinguishing characters, such as the longer head, larger eye, longer fins, and so on, may possibly be the features of a younger fish, and since Myers makes no mention of age in his description, this poseibility must be entertained.

As well as the species which fit in these three groups, two other species of western whitefishes exist which will require further study before their relationships are clear. These were described by Sayder (1917) from Bear lake, in Idaho and Utah, a part of the drainage system of Great Salt lake. Although both of these fish were described as species of Coregonus, the locality in which they were taken and their general appearance as illustrated, suggest that they belong to the genus Prosopium.

Prosopium spilonotus (snyder)

Coregonus spilonotus Snyder, Bull.U.S.Bur.Fish., XXXVI, 1917-18 (1921), 3, (Bear lake, Idaho and Utahl.

Differing from williamsoni in having smaller and more nunerous pigment spots, larger scales, longer heads, and deeper and heavier bodies. The
lateral line scales range from 74 to 81 and average 78 for twenty-two specimens.

Prosopium abyssicola (Snyder)

Coregonus abyssicola Snyder, Bull,U.S.Bur. Fish., XXXVI, 1917-18 (1921), 3 (Bear lake, Idaho and Utah).范
The snaller specimens differ from the young of the previous species in having no pigment spots. The older specinens of spilonotus lose the Characteristic marings but develop a longer maxillary and snout and deeper body, so that at this stage the structure of the head serves to distinguish the two. The males of abyssicola develop pearl organs on the scales in the breeding season. These occur on the females occasion. ally, but are never so prominent or numerous.

Another species which has been sometimes referred to prosopium is Coregonus kennicotti Milner. Dr. Dymond has also examined the type of this species, and concludes (Letter 1937) that it properly belongs to to the genus Coregonus. Dr. Hubbs (Lotter 1937) also agrees with this View.

ECONOMIC IMPORTANOE

None of the species of the genus Prosopium is of any particular value as a commercial food fish. This is probably due in the main to their small size, and to the fact that they never occur in particularly large numbers in lakes, where their capture by means of gill nets would be possible. In various parts of Alberta and British columbia williamsoni is caught in considerable numbers by angling in lakes, mouths of streams, and up the streams. In British Columbia at least this occurs in the cold weather, evidently on the spawning migration. In the vicinity of Michel the residente fish for this species through the ice, using hooks baited with hellgramites, a larval form of the Dobson fly, of the Neuropteran family Cordalinae. In the Vedder river, in the vioinity of the Cultus lake outlet, the hoor is baited with a single salmon egg. Considerable numbers are oaught in this way, and are of ten peddled from door to door at this time of year.

In quality of flesh this fish has been compared favourably to the commercial Coregonias of the Great lakes. The flesh is fairly rich in oil, and for this reason is suitable for frying. Opinion is not unanimous in this respect, however, and some consider the flesh to be coarse.

Prosopium may be of some value as an article in the diet of other fishes. Dr. Rawson found two specimens in the stomach of a six pound Lake trout from Waterton lake in 1937. Such a species might profe to be of great importance as a food for trout and other game fishes.

According to the present view, however, the ohief economic importance of the genus is a negative one, and concerns the predatory habits of these fish with respect to the Pacific salmon. Snyder (1918) reports that williamsoni seems to be particularly fond of the eges of spawning fishes, even to the extent of devouring the eggs of its own kind. Foorster (1925) finds that the species destroys the eggs of spawning sockeye salmon. He says: "Rocky mountain whitefish (ㅇ. williamsoni) are shown to have subsisted during spawning time on sookeye egge, and in a river system where they are abundant, their activities might prove Very disastrous to the continuance of a satisfactory socireye yield." He ranks the whitefish together with the trout and suckers as being probably the most serious marauders at the spawning beds of the sockeys salmon (Oncorhynchus nerka). That this whitefish extends its destructive habits to a later phase in the life history of the sockeye is shown further on in the present paper by the presence of seversi newly emerged sockeye fry in the stomach of an individual from cultus lake.

MATERI AL EXAMINED

The specimens actually examined in the course of this work form a fairly general collection from various localities in western canada and the northwestern United States, The first lot were collected by Dre Rawson in the sumer of 1936 from certain lakes of the Bow river drainage system in western Alberta. These were examined for stomach contents and rate of growth, and were neasured in detail for body proportions and meristic characters such as scales, fin rays, and so on. In 1937 Dr. Rawson made collections in Waterton lakes park in southwestern Alberta, and this materlal was treated in the same way. The Cultus lake whitefish were collected over a period of several yeare incidental to the study of the life history of the sockeye salmon being made by the Biological Board of Canada. These were examined for food, growth, and body proportions. The Elk river specimens were collected near Michel, B. C. In 1938. This sample was examined for systematic oharacters and rate of growth. The remainder of the material was obtained from the collections of the United Stetes National Museum. This was subjected to detailed measurements and counte, and the rate of growth was determined for each lake.

VARIAMION IN PROSOPITM WILLIAMSONI

Introduction

To illustrate the amount of variation between the various races of a single speoies of Prosopium, and also to show the range of variation Within a race or population, detailed measurenents and counts were made of all characters which might be expected to show significant differences. A total of 230 individuals from 13 localities were examined in this way. Measurements of the various body proportions were made to the nearest millimetre, and were then calculated as percentages of the standard length. The resulte are tabulated in detail as percentages in tables I to XI .

Approximately 30 different characters were recorded for each fish examined. Of these, some showed a considerable degree of variation within the pop ulation, and exhibited significant differences between populations, while others varied within a smaller range, and were not of value in distinguishing racial characters. Those which proved useful for the recognit ion of populations included the dimensions of the head, the proportions of the various fins, the number of scales in the lateral line, and particularly the rate of growth. In most cases, in fact, difforences in body proportions from the typical Williamsoni can be correlated to a considerable degree with the growth rate.

A problem which caused some difficulty in the comparison of the various populations examined is the lack of data descriptive of the typical
williansoni. Since spocimens from the type locality are not available, it is necessary to accept the next best alternative, and therefore for purposes of comparison the Waterton lake specimens are selected as representative of the nomal form.

Rate of growth

Scales were examined from 419 specimens and the standard lengths at the end of each vear of life were calculated by a method similar to that used by Van oosten (1923). The results of these calculations are given in tables XII to XX.

Al though the growth rate varies somewhat from lake to lake, the material can be divided into four main groups. The first, which contains those populations having a rate of growth similar to that of the typical williamsoni, includes the samples from lake Minnewanke and Third lake in Banff park, Waterton and Maskinonge lakes in the Waterton lakes park, Bowman lake, Logging lake and lake MoDonald in Glacier National park, Montana, and possibly the Nooksack and Tolt rivers in Washington. The second division is represented by the Cultus lake fish, which have a considerably faster growth in their first three or four years, al though they do not appear to attain a greater size at maturity. The third group is distinguished by a very slow growth, the rate being only about half as great as in the Waterton leke fish. Fourthly, the Elk river fish must be placed by themselves because of their very emall growth in the first year.

The Cascade river population may also fall in this group. Table XXI presents the average calculated standard length at the end of each year of lire for each of the populations studied.

GROUP 1

Waterton lake

As shown in the table, these fish attain a greater age than those from any of the other localities. It will be noticed, however, that they do not exceed the others in size to any great extent. It is a recognized fact that in a population of fish a limit exists in regard to the maximum size attainable, and therefore the more rapidly growing individuals mature earlier and die younger. Thus, if other factors do not influence the result, the slower growing races should reach a greater age, as is well illustrated in this case.

Bownan 1ake, Loggine 1ake, and 1ake McDonald
In this case, conditions in the three lakes are evidently very similar, if the growth rate is to be considered as an indication. This might be expected from the fact that all three are closely situated and drain into the same river system. The slight differences in rate of growth, if significant, can probably be explained by the effect of altitude.

Lake Minnewanka

Al though this lake is at a higher al titude than any other in the group, the growth rate is relatively rapid, and the maximum age attained is probably not muoh greatec than ten years. The growth in the early years
is much the sane as for the Waterton lake fish, and for this reason the whitefish population is placed in the same group.

Third lake
The growth of these fish very closely parallels that of the previous lot, and there is little doubt that both belong in the same oategory.

Maskinonge lake

Two individuals in their second year made up the sample from this lake. The average size at the end of the first year cannot therefore be considored significant. However the close connection between Waterton and Maskinonge lakes leaves little doubt as to the relation between the two samples.

Tolt and Nooksack rivers
Here again the small size of the samples causes the figures to be of little sigmificance. In view of the locality, it seems more likely that these races should be similar to the cultus lake fish. The figures obtained agree more closely with the average values for the first group, however, and for this reason the two samples are included provisionally with the Waterton lake type.

GROUP 2
Cultus lake
At first sight, the reason for soparating the cultus lake race may appear
obscure. In size attained and maximum age the similarity to the Minnewanke and third lake fish is maried. It will be observed, hovever, that the growth rate in the first three years is considerably greater than in any other case. This might be explained in part by the low altitude of the lake. 4s will be seen in a later section, the separation of the cultus lake fish is further justified by differences in body proportions.

GROUP 3
Bow lake
The greater altitude and rather unusual physical characteristice of Bow lake are reflected to a marked degree in the rate of growth of the whitefish population. This is particularly noticeable in the first three or four years, when the rate is only about half as great as in the waterton lake group, and only one-third as much as in cultus lake. The greatest age attainable seene to be closely comparable to the other groups, but the naximum size is considerably less. This is caused probably to a great extent by the combined action of lower temperatures and the presence of silt in the water, which must have a great effect on the available food supply and the penetration of light.

Lake Louise

The growth rate appears to be somewhat greater in the early years, al though the maximum size and age are probably much the same. ConditLons in Bow lake and lake Louise are similar, and the effects of the physical characteristics produce parallel variations in the whitefish populations.

GROUP 4

Elk river

The type here shows a combination of the characters of groups three and one. In the first year the growth is poor, being comparable to the first year's growth in lake Louise. After the first winter, however, the rate of growth becomes as rapid as in the Waterton lake groupe The small Growth of the first year may be an effect of a later spawning, producing fry which do not develop scales until relatively late in the sumer.

Cascade river

The sample consists of a single specimen in ite second sumner. Uniess the specimen is abnormal, the effect produced here is greatly similar to that occurring in the Elk river. The first yeares growth is small, but the growth in the second summer is considerable, oven though the second summer's development is not complete. Tentatively, this specimen is placed With the Elk river fish.

BODY PROPORTIONS

In considering the proportions of the verious body characters, it must be rept in mind that while some vary directly as the length, others do not. In other words, all parts of the fish do not grow at the same rate. The head for instance as a general rule grows less rapidly than the body, so that in the younger fish the heads are proportionately longer. The snout and maxillary correspond very closely in growth rate With the head. The body itself grows relatively deeper and wider as
the fish increases in age。

It is necessary, therefore, that the data be divided into groups which , will be comparable with each other. This may be done either according to the size or the age of the fish. In view of the great variation in rate of growth of the different races of fish, it can be seen that a grouping according to size is unsatisfactory, and the selection of age in years as a unit on which to base the separation seems more reasonable.

Taking the growth of the head as an example, it will be observed that the rate changes in relation to the growth of the body as the fish grows older, and past a certain point the two increase in size proportionately. This point at which the two rates approxinately coincide comes somewhere towards the end of the second year, and it therefore sems reasonable to conclude that in fish two years of age or older this character is oom parable. This conclusion is fairly well supported by the deta presented in this paper.

In the other characters studied, there is less evidence of a difference between younger and older fish, but in order to ensure that the effect of any difference will not be allowed to influence the results, the yearling fish and the fry are not included in drawing averages for a population.

Length of head

The percentage head lengths of the various races are presented in table
XXII. To render more intelligible the meaning of the average values, the individual head lengths are listed in the form of frequency distributions. This helps to give a pictorial idea of the deviation from the average value, and the significance of any average differences which may occur.

An examination of the first section of table XXII will show that in spite of the elimination of the younger fish from the calculations, there is still a definite correlation between size and proportional head length. Thus the differences in average values for this character in fish fron different localities can be explained with reference to environneatal factors. For this reason it must be emphasized that relative head length should not be allowed much weight as a systematic character in this genus.

Cultus 1ake

This race has the shortest head of any population examined. In Leucich thys, short-neadedness is in general a southern trait (Kool 2 1931) and must therefore be associated with higher temperatures or other factors characteristic of southern locations. It is Iikely that the same may be true of Prosopium. In this case we are dealing with differences in elevation, rather than latitude, but if temperature or some related factor which is a direct consequence of low al titude is the governing one, the Cultus lake fish should certainly have shorter heads than any of the others here studied.

Lake Minnewanka
That these fish should have heads as short as the Oultus lake population is rather difficult to explain in terms of altitude. Conditions of temperature in lake Minnewanka are quite moderate, however, and the physical characters of the two lakes are evidently not as diverse as the great spread in altitude would lead one to believe.

Tolt river

The locality of capture of this simgle specimen would suggest that it should resemble the cultus lake fish. Insofar as head leagth $1 s$ concerne ed, it is likely that there is a close relation between the two foms. although the data can hardly be considered significant.

Waterton 1 ake

In head length the Waterton lake specimens vary over a comparatively wide range, but the average value approximates closely that of the typleal WILliansoni. An interesting feature which appears here in a more marked degree than in any of the other samples is the increase in growth rate of the head with increasing age. This is undoubtedly due to the length ening of the snout or rostrum which so of ten occurs in this species with approaching maturity.

Third 1ake
As might be expected from its proximity and similarity to Waterton lake, the Third lake population appears to be very similar as regards average head length. This is true even though the fish in the sample average considerably greater in standard Iength.

Logging 1 ake

This race also agrees closely in head length with the fish from Waterton lake.

Bow lake

The Bow lake population shows a significant increase in avorage length of head over the preceding samples. That the cause is largely due to the effects of environment is not to be doubted, al though the effect seems to be somewhat out of proportion to the average length of the fish when compared to the Logging lake sample for instance, The yearling fish also have heads which are exceptionally large for their age.

Elk river

The long heads of the Elk river fish cannot be explained so well on the basis of the average length of the sample. It would be expected that the proportion of head to body would be less, if the rate of growth is the chief factor controlding head length. This seems therefore to etrengthen the theory that the Elk river fish belong to a distinct race.

Bowman lake

The sample in this case consisted wholly of young fish, and this has almost certainly exaggerated the relative size of the head. For the purpose of determining the relationships of the Bowman lake population, the head lengths of the jearling fish are undoubtedly more comparable, as reference to the second section of table XIII will show.

Nooksack river

Nooksack river

Here also the data, although of small significance, supports the idea that locality should determine the relations of the population. the head lengths of the yearling fish in tho Nooksack are closely allied with those of the Cultus lake race.

SNOUT LENGTH

As a general rule, snout length and head length are closely correlated. although there is considerably less variation in the former character. This correlation can be judged from table XXIII, in which the longmeaded races eppear to have somewhat longer snouts. This Iengthening of the snout is usually accompanied by the peculiar modification of this feature Which reaches its greatest developnent in oregonium, and alters the appearance of the head considerably. The Cultus lake fish show litile evidence of this phenomenon, except in the mature fish. on the other hand, the Waterton lake specimens are nearly all modifiod in this way to some extent. The Blk river race is distinct in having the longest snout of any and yet there is no external ovidence of the bulging rostrun characteristic of the Waterton fish.

MAXILILARX

The relation of snout to maxillary varies considerably in the different races. In most cases the maxillary is exceeded in length by the snout, but this is not the rule in Bow lake or in Bownan lake, where the maxill-
ary slightly exceeds the snout. A comparison of the data for the yearling fish in tables XXIII and XXIV will provide a reasonable explanation. In the younger fish, snout and maxillary compere very closely in size, as shown by the tables, but with increasing size the snout grows more rapidly, so that in the largest fish the difference between these two characters is greatest. The Bow and Bownan lake fish are slow growing races, and it is reasonable to suppose that the older fish in these cases will be more likely to retain the characteristics of younger fish.

No great correlation exists between snout and maxillary in any of the populations examined, with the exception of the Elk river series. Here the maxillary agrees with the snout in being relatively longer then in any other race.

EYE

An examination of tables I to XI will show that the eye grows less rapidly than the individual, and continues to do so throughout the life of the fish. The rate of decrease in relative eye diameter is correlated more closely with size than with age, but in fish of equal size there is little variation in the average size of this organ. For this reason, eye diameter is of $1 i t t l e$ value as a systematic character in this group.

Table XXV gives the distribution of relative eye diameters for several localities. It will be noticed that the races having the largest eye, for example the Bownan and Bow lake populations, are those with the
slowest growth rate. This is in accord with the previous observations.

DEPTH OF HEAD

As might be expected, the long-headed forms also have the deepest heads, and vice versa. In comparing tables XXII and XXVI it will be noticed that this correlation is not absolute, but this is probably due to unavoidable errors in sampling rather than to any departure from the genoral rule. Any differences noted with regard to this point are not slgnificant. The figures contained in table XXVI again show that up to a cortain point the head grows less rapidly than the body.

DISTANCE FROM SNOUT TIF TO OCCIPUT

Here the sane correlation with the other head dimensions is demonstrated. Table XXVII gives the distribution and average values of this character for the various lakes and rivers. The conclusions to be drawn from these data are similar to those discussed in the previous section.

LENGTH OF DORSAL FIN BASE

The differences between the average values for this character are not marked, as shown by table XXVIII. Differences which do appear are probably not highly significant, but it is interesting to note that the long headed foms are at the two extremes with regard to dorsal fin base. The Bow lake fish, and the other long-headed races with the exception of the EIk river population, have the shortest bases on this fin. The latter
group (Fik river), however, have a relatively long base to the dorsal, and agree closely with the Cultus lake type in this respect. This relation does not show so well in comparing the yearling fish, but the discrepanoy .can be traced to insufficient samples.

LENGIH OF ANAL FIN BASE

The results for this character as presented in teble XXIX confirm the conclusions drawn for the base of the dorsal fin. Minor differences will be noted if the two tables are compared, but these are not significant, and do not detract from the value of the general statements made.

HEIGHT OF DORSAL FIN

The dorsal fin varies in height over a fairly wide range, as will be observed from table XXX. In general, the slover growing races seem to have higher dorsal fins, as 111 ustrated by the data from Bow and Bownan lakes. The Dlk river fish are characterized by a relatively high dorsal and are equalled in this respect only by the Bownan lake population.

HEIGHT OF ANAL FIN

The relations between the various lakes with respect to this character are almost exactly the same as for the dorsal height. The Ele river population is an exception for the reason that the anal is relatively much higher than in any of the others. This is due to the peculiar structural modification of this fin in which the anterior portion is
produced ventrally into a distinct lobe. In the older fish this is accompanied by a similar enlargement of the ventral lobe of the caudal fin. Table XXXI gives the data concerning this character.

LENGTH PECTORAL FIN

In the older fish, this character seems to be correlated inversely with size, and thus inversely with the growth rate. It is doubtful whether this is a result of the effect of juvenile characters produced by the low rate of growth, since an examination of the second part of table XXXII will show that no significant differences exist between the pectoral fin lengths of the yearling fish. The Cultus lake fish and the other fast growing forms have the shortest pectorals, while the Bow lake specimens have distinctly the longest. The Elk river race is internediate with respect to this feature.

LENGTH PELVIC FIN

Table XXXIII shows that the slow growing fish from Bow lake and the Elk river posses the longest pelvic fins. The Cultus and Waterton lake forms agree in being intermediate with respect to this character, while the remainder of the races examined are relatively short-finned. The pelvics in the yearling fish do not differ significantly.

ADIPOSE FIN

Koelz (1927) in his study of Great lakes Coregonidae, found that the
adipose was extremely variable and had little value as a systematic character. In Prosopium, however, the size of this fin has been used to separate one of the western forms fram the rest of the species found in the same general locality. Pratt (1923) in his manual of the Vertebrates of the United States seperates the western species as follows:

Adipose fin with a much shorter base than the anal
C. coulteri
C. williamsoni

Adipose fin with as long a base as the anal

C. oregonus

In this study of a number of races of P . Williamsoni, however, it has been found that the adipose, as stated by Koelz, is highly varlable, and no such definite relation as the one on which the above key is based seems to exist.

Leneth adipose
In table XXXIV the values for this character are listed. The range of veriation within each race is relatively great, so that no sigmificant differences between populations are shown, except in the case of the Cultus lake fish, and undoubtedly also in those from the Nooksack and Tolt rivers in the state of Washington. This incidentally constitutes further evidence for the placing of the Nooksack and Tolt fish in a group with the Cultus lake population.

Base adipose
The same holds true in a general way for this character. Distinctive
features of table XXXV are the relatively short base for the adipose of the Blk river fish, and the long base on this fin in the cultus lake race.

Helght adipose

This character varies to some extent, but in no case could the adipose be described as "banner-like", which is the description applied to the adipose of oregonium.

Ratio of adipose base to anal base
This ratio was calculated for comparison with Pratt's key. The differences between races are of doubtful significance, but the important feature of table XXXVI is the fact that the adipose not only equals the anal, but eren exceeds it in some cases. It must be admitted, of course, that the average value for any population shows the anal base to exceed the adipose. The Ele river population has the shortost adipose base, and the Cultus lake fish have the longest in relation to the base of the anal. The relation of the adipose length to the anal base was also calculated for each group, but no new conclusions can be drawn fron this ratio.

PECHORAL FIN RAYS

Table XXXVII gives the variation in number of rays in the pectoral fin. This variation is so great in comparison to any differences observed, that this feature is of little use systematically. The difference in the Cultus lake fish is worthy of note, however.

SCALES IN THE LATERAL LINE

Again no significant differences are to be observed. It may prove, however, that the Cultus lake and Elk river fish have slightly more scales in the lateral line than the other races. The averages and dispersions are illustrated in table XXXVIII。

Table I - Systematic characters of Prosopium from lake Minnewanka. Body proportions in percentages of standard length.

Age	$7+$	$6+$	$6+$	$5+$	$5+$	4.	$3+$	$3+$	$2+$	$2+$	$2+$
Standard length	335	315	310	285	260	230	225	210	185	175	155
Length head	20.3	19.9	20.4	20.4	19.1	19.7	19.7	20.7	21.3	21.5	22.0
Depth head	13.5	13.7	14.1	13.2	12.7	12.4	12.7	13.6	13.0	13.5	13.2
Greatest depth body	21.3	24.2	20.2	21.8	19.2	20,0	19.6	20.5	19.7	20.5	18.4
Width body	13.6	15.5	12.3	13.2	12.7	12.6	12.6	11.6	12.5	12.5	12.1
Least depth caudal peduncle	6.6	6.9	6.4	6.4	6.2	6.0	6.2	6.4	6.3	6.3	6.3
Snout	5.5	5.8	6.4	5.7	4.8	5.5	5.4	5.8	5.7	5.6	6.0
Maxillary	4.5	4.6	5.0	5.0	4.5	5.4	4.8	5.3	5.2	5.3	5.6
Diameter eye	3.9	4.4	4.2	3.9	3.9	4.6	4.0	5.1	4.7	4.8	5.5
Interorbital width	6.2	6.5	6.3	6.6	6.3	6.1	6.2	6.6	6.7	6.5	6.2
Snout tip to occiput	15.2	15.4	15.6	14.7	14.7	15.7	14.7	16.4	16.2	16.4	17.0
Snout tip to dorsal	44.5	44.5	44.5	45.0	43.1	42.6	40.6	42.6	42.7	42.8	44.3
Snout tip to pelvic	50.5	51.2	52.3	52.0	50.0	50.0	49.6	50.3	51.0	53.1	52.8
Length dorsal fin base	11.6	13.0	12.0	11.6	11.4	11.9	11.9	12.2	12.0	12.2	11.9
Length anal fin base	9.4	8.4	8.4	8.6	7.9	8.3	8.9	8.7	8.1	8.7	8.8
Height dorsal fin	12.4	12.4	13.2	13.1	13.0	14.5	13.9	14.1	14.3	14.7	14.5
Height anal fin	11.9	10.4			11.3	11.1	11.3	10.8		11.5	11.0
Length pectoral	15.0	15.7	15.9	16.2	15.8	16.9	16.3	17.0	15.7	17.4	17.8
Length pelvic	12.7	12.3	13.2	13.2	13.3	13.8	13.7	12.7	13.7	14.0	14.4
Height adipose	2.3	2.5	2.7	2.2	2.5	2.6	2.3	3.5	3.1	3.0	2.3
Base adipose	6.9	7.2	7.1	6.3	6.8	6.6	6.8	6.7	7.4	7.3	7.2
Length adipose	8.3	9.1	7.7	7.5	7.8	8.3	7.9	8.6	9.6	8.9	8.2
Ratio $\frac{\text { adipose }}{\text { anal base }}$	0.88	1.08	0.92	0.87	0.99	1.0	0.89	0.98	1.18	1.02	0.93
$\text { Ratio adipose base } \frac{\text { anal base }}{\text { bal }}$	0.73	0.86	0.85	0.73	0.86	0.80	0.76	0.77	0.91	. 84	0.82
Dorsal rays	12	12	12	12	12	12	13	13	12	12	12
Anal rays	11	11	11	10	10	11	11	11	11	11	10
Pectoral rays	18	17	17	17	16	16	16	17	17	17	18
Pelvic rays	11.	11	11	11	11	11	10	11	11	11	11
Scales in lateral	82	84	81	82	87	79	80	83	88	80	84
Lateral to dorsal	9	9	10	9	10	9	9	9	9	9	9
Lateral to pelvic Gill rakers	8	9	8	8	8	8	8	8	8	8	8
- short arm	9	9	8	9	8	9	9	9	9	9	9
- long arm	13	14	12	13	12	12	14	14	13	13	12
Branchiostegels	9	8	8	8	8	8	8	9	8		8

Table II - Systematic characters of Prosopium from Bow lake.

Age	$9+$	$8+$	8%	$7+$	74	$7+$	$6+$	$6+$	$6+$	$5+$	3
Standard length	220	215	177	207	190	189	161	158	154	144	133
Length head	21.6	21.7	21.6	22.5	22.6	21.4	23.1	23.0	22.1	22.7	22.8
Depth head	15.5	14.3	15.2	14.9	14.9	14.9	15.3	15.5	14.5	14.9	15.0
Greatest depth body	19.4	19.9	20.9	22.0	21.0	19.6	21.5	23.2	20.6	20.2	21.1
Vidth body	13.0	12.4	12.9	12.9	11.9	12.2	13.4	13.5	12.4	11.2	11.2
Least depth caudal peduncls	6.2	6.4	6.1	6.4	6.5	6.1	6.7	6.7	6.3	6.2	. 2
Snout	5.6	5.6	6.2	6.0	5.8	5.6	5.5	5.6	6.2	5.6	5.9
Maxillary	5.5	5.9	5.8	6.1	5.6	5.5	6.0	5.6	5.8	6.0	
Diameter oye	5.5	5.5	5.1	5.4	5.7	5.3	6.3	6.4	5.9	6.0	5.6
Interorbital width	6.8	6.2	6.1	6.5	6.2	6.2	6.7	6.8	5.9	6.4	6.2
Snout tip to occiput	16.3	17.3	16.3	16.9	16.8	16.4		17.9	17.8	17.6	16.4
Snout tip to dorsal	42.1	40.6	43.2	44.0	43.4	41.5		44.0	42.8	43.0	42.6
Snout tip to pelvic	52.3	51.1	51.7	54.2	52.9	51.1		52.2	52.5	50.6	50.9
Leng't dorsal fin base	11.3	11.8	10.9	11. 2	11.6	11.5	12.2	11.8	11.0	12.6	11.6
Length anal fin base	8.7	9.8	10.3	8.8	8.4	8.5	10.2	9.1	8.8	8.7	9.9
Height dorsal fin	16.8	14.9	14.4	14.6	16.4	14.7	16.1	16.1	14.9	15.6	14.0
Height anal fin	13.3	13.2	13.3	11.6	13.6	11.3	12.3	12.2	11.9	11.7	11.7
Length pectoral	20.3	18.6	17.9	18.2	20.3	17.8	19.9	20.0	19.2	17.9	17.1
Length pelvic	15.8	15.2	15.1	14.5	15.3	13.6	14.6	16.0	14.4	14.6	13.8
Height adipose	3.4	2.8	3.0	2.9	3.0	2.7	3.4	3.5	2.5	2.6	2.8
Base adipose	6.4	7.5	6.6	6.8	6.8	7.7		7.0	7.5	6.5	7.4
length adipose	9.6	9.0	8.2	8.5	8.1	9.3		8.9	8.8	8.3	9.0
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	1.1	0.92	0.80	0.97	0.96	1.09		0.98	1.0	0.95	0.91
Ratio $\frac{\text { adipose base }}{\text { anel base }}$	0.74	0.77	0.64	0.77	0.81	0.91		0.77	0.85	0.75	0.75
Dorsal rays	12	12	12	12	13	13	13	13	11	12	12
Anal rays	11	11	12	11	11	11	12	11	11	11	11
Pectoral rays	17	17	16	16	17	16	17	17	16	17	17
Pelvic rays	11	11	11	11	11	11	12	11	11	11	11
Scales in lateral	78	84	85	80	78	80	83	78	79	81	78
Lateral to dorsal	9	9	,	9	8	8	9	9	9	9	7
Lateral to pelvic Gill rakers	8	8	8	9	8	8	-	8	8	8	8
- short arm	8	8	9	9	8	9)	9	9	8	9
- long arm	12	12	12	12	11	12	13	13	13	11	12
Branchiostegals	8	8	8	9	9	7	,	8	-	8	8

Table II - Bow lake (Concluded)

Scales in lateral 79

Table IV - Systematic characters of Prosopium from Watertoz lake.

Age	$14+$	$12+$	$9+$	$7+$	$5+$	$4+$	3	$2+$	$2+$	$1+$	$1+$
Standard length	378	325	355	290	255	235	230	175	165	140	135
Length head	23.1	23.7	22.0	20.5	21.4	20.7	20.4	19.1	20.2	22.1	22.4
Depth head	15.2	15.9	13.8	13.3	14.1	14.3	13.0	12.7	13.2	14.7	14.6
Greatest depth body	20.9	23.2	21.3	21.0	22.1	20.6	21.5	19.	19.5	20.1	20.3
Wiath body	12.0	12.6	11.8	13.2	12. 1	11.9	12.3	11.9	13.3	11.7	13.9
Least depth caudal peduncle	7.0	7.0	6.7	6.6	7.1	6.6	6.7	6.5	6.2	6.6	6.6
Snout	7.1	7.6	6.7	6.1	6.0	5.7	5.7	5.4	5.6	6.1	6.2
Maxillary	6.5	6.9	6.1	5.8	5.3	5.4	5.4	4.8	5.1	5.7	5.9
Diameter eye	4.3	4.6	4.2	4.0	4.4	4.4	4.4	4.7	5.0	5.3	5.3
Interorbital wiath	6.7	7.2	6.4	5.9	6.6	6.0	6.0	5.5	5.8	6.1	5.7
Snout tip to occiput	16.7	18.4	15.6	15.5	16.5	16.3	15.9	15.5	15.4	16.8	17.4
Snout tip to dorsal	46.8	46.8	44.5	44.5	46.3	42.9	41.6	41.5	42.4	43.3	44.3
Snout tip to pelvic	54.8	53.3	52.4	52.1	52.2	50.9	50.8	49.2	49.3	52.1	51.1
Length dorsal fin base	12.6	13.0	13.1	11.5	12.9	12.5	12.3	11.4	11.4	13.1	12.0
Length anal fin base	9.8	10.3	9.6	8.5	10.2	9.4	9.6	10.0	9.4	10.2	9.4
Height dorsal fin	13.1	15.5	14.4	13.4	15.1	15.2	13.8	14.6	13.1	14.5	15.6
Height anal fin	11.2	13.4	12.1	10.7		12.5	12.7	12.1	10.5	12.6	11.9
Length pectoral	16.6	18.5	16.3	16.3	17.7	17.0	17.3	15.5	14.3	15.6	15.7
Length pelvic	13.7	16.0	14.9	13.9	15.1	14.5	14.2	13.8	13.0	13.9	14.6
Height adipose	2.9	3.3	2.6	2.6	2.7	2.8	2.7	2.5	2.1	2.6	
Base adipose	7.3	7.5	7.1	7.5	8.2	7.7	7.0	6.9	6.9	8.2	7.5
Length adipose	8.7	10.2	9.0	9.7	9.7	8.4	8.5	8.3	7.7	9.8	9.3
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.89	0.99	0.94	1.14	0.95	0.89	0.88	0.83	0.82	0.96	0.99
Ratio $\frac{\text { adipose base }}{\text { anal base }}$	0.74	0.73	0.74	0.88	0.80	0.82	0.73	0.69	0.73	0.80	0.81
Dorsal rays	13	11	12	11	12	12	12	11	12	11	13
Anal rays	11	11	11	11	9	11	11	11	11	11	11
Pectoral rays	17	17	17	17	18	18	16	16	16	17	17
Pelvic rays	11	11	11	11	11	12	11	11	11	11	11
Scales in lateral	80	81	81	83	75	81	81	83	86	82	82
Lateral to dorsal		9	9	9	9	9	9	,	9	9	9
Lateral to pelvic	8	8	.	8	8	8	8	8	8	8	8
Gill rakers - short arm	9	10	9	10	9	10	10	9	11	10	10
- long am	13	13	13	13	12	14	13	13	13	13	12
Branchiostegals	9	9	8	8	9	9	\bigcirc	8	9	9	8

$$
-43-
$$

Table IV - Waterton lake (Concluded)

Table V - Third lake.

Age	3	3	$3 *$	$2+$	$2+$	$1+$	84	$7+$	4
Standard length	218	198	215	188	162	123	355	340	245
Length head	21.1	20.7	20.6	21.4	21.6	22.6	21.0	20.5	21.5
Depth head	13.4	13.5	13.1	13.5	13.7	14.1	14.3	14.7	14.3
Greatest depth body							23.0	22.0	19.8
Width body							14.3	14.2	11.8
Least depth caudal peduncle	6.9	6.6	6.6	6.9	6.2				11.8
Snout	6.1	5.7	5.5	6.1	6.2	5.5	6.6	5.9	6.0
Maxillary	5.8	5.4	5.2	5.5	5.9	5.4	5.7	4.5	5.2
Diameter eye	4.4	4.3	4.4	4.8	5.2	5.4	3.7	4.1	4.9
Interorbital width	6.4	6.3	6.1	6.4	5.9	5.9	6.8	6.5	6.7
Snout tip to occiput	16.2	16.0	15.4	16.6	17.1	17.1	15.8	15.1	16.5
Snout tip to dorsal	46.3	43.6	43.5	45.0	44.6	45.1	45.1	43.5	44.1
Snout tip to pelvic Length dorsal		49.6	50.3	48.9	49.6	47.6	53.0	53.3	52.3
fin base,	13.5	12.8	12.5	13.7	12.7	12.7	11.0	12.5	11.1
Length anal fin base	9.6	9.8	10.0	9.3	9.6	10.5	8.5	9.0	11.1 9.0
Height dorsal fin	15.5	15.6	16.0	16.3	15.4	15.0	13.2	13.9	14.2
Height anal fin	13.1	12.7	13.0	12.3	12.1	12.8	10.8	11.6	11.4
Length pectoral	16.9	17.3	17.8	17.8	16.8	15.9	15.3	15.5	17.6
Length pelvic	14.3	14.8	14.4	14.9	13.8	14.3	¢ 13.4	13.1	13.8
Height adipose	3.0	3.2	2.9	3.2	2.3		2.6	2.8	2.2
Base adipose	7.3	6.6	7.3	7.3	6.5		7.1	7.1	7.3
Length adipose	9.2	8.1	8.5	9.2	7.3		9.5	9.4	8.7
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.96	0.83	0.85	0.99	0.76		1.12	1.04	0.97
Ratio $\frac{\text { adipose base }}{\text { anal base }}$	0.76	0.67	0.73	0.79	0.68		0.84	0.79	0.81
Doreal rays	13	12	12	12	13	12			
Anal rays	11	12	12	11	11	11	11	11	11
Pectoral rays	17	17	16	18	18	16	17	18	16
Pelvic rays	11	11	11	11	11	11	11	11	10
Scales in lateral	83	83	82	85	92	80	84	81	77
Lateral to dorsal	O	10	10	10	9	10	9	9	9
Lateral to polvic Gill rakers	O	,	10	8	8	8	8	8	8
- short arm	9	9	9	9	9	10	7	8	8
- long arm	13	14	13	12	12	13	13	13	13
Branchiostegals	9	,	8	8	1	8	$\stackrel{13}{ } 8$	8	13 7

Table VI - Systematic characters of prosopium from Cultus lake.

Age	$5+$	$4+$	$3+$	$3+$	24	$2+$	$2+$	2	24	24
Standard length	298	259	283	252	248	241	231	230	228	210
Length head	19.5	20.2	21.2	20.1	20.4	20.5	19.7	19.0	20.6	19.3
Depth head	13.4	13.4	12.6	13.9	12.3	14.8	13.5	13.4	13.8	13.
Greatest depth body	21.4	20.6	19.1	22.7	19.6	21.1	21.2	19.4	21. 4	
Width body		12.6	12.5	14.9	13.1	14.7	14.9	12.0	14.3	
Least depth caudal peduncle	6.0	6.4	6.2	6.6	6.5	6.8	6.4	6.1	6.4	6.2
Snout	5.5	6.0	6, 4	6.2	5.9	5.4	5.8	5.2	6.0	5.
Maxillary	5.5	5.8	6.3	5.8	5.7	5.6	5.7	5.1	5.6	5.
Dlameter eye	3.8	4.1	4.0	3.9	4.1	4.2	4.1	4.4	4.6	4.1
Interorbital width	5.6	5.6	5.8	5.9	5.5	6.2	5.6	5.1	5.7	5.
Snout tip to occiput	14.6	15.4	15.1	15.3	15.3	15.6	14.8	16.0	15.9	15.0
Snout tip to dorsal	42.3	41.5	42.8	44.0	40. 8	42.3	41.1	42.4	42.8	42.3
Snout tip to pelvic	52.0	51.0	53.7	52.2	51.2	51.0	51.8	50.9	50.0	52.4
Length dorsal fin base	11.5	13.3	12.5	12.9	12.5	13.2	13.3	11.2	12.7	12.9
Length anal fin base	9.3	10.9	10.1	10.3	10.0	10.9	10.7	9.7	10.0	10.5
Height dorsal fin	13.5	14.4	14.5	13.7	15.0	14.4	14.2	12.8	14.5	15.
Height anal fin	11.6	12.3	13.0	13.1	12.5	12.9	12.	12.3	11.7	13.
Length pectoral	15.0	16.1	15.9	16.5	16.3	16.6	16.6	14.0	15.5	15.
Length pelvic	13.8	14.7	14.3	14.9	14.2	14.4	14.0	13.5	14.1	12.9
Height adipose	3.7	4.2	3.6	4.0	2.9	3.2	3.4	3.6	3.2	3.2
Base adipose	7.0	9.7	7.4	9.5	8.5	8.6	8.2	9.1	8.8	8.
Length adipose	10.0	11.2	9.9	12.0	10.1	10.8	10.3	10.6	11.0	10.0
Ratio $\frac{\text { adipose }}{\text { anal base }}$	1.08	1.03	0.98	1.16	1.01	0.99	0.96	1.09	1.	0.95
Ratio $\frac{\text { adioose base }}{\text { anal base }}$	0.75	0.89	0.73	0.92	0.85	0.79	0.77	0.94	0.88	0.80
Dorsal rays	13	13	13	13	13	13	14	14	13	14
Anal rays	12	12	13	12	11	12	12	12	11	12
Pectoral rays	17	17	15	17	16	16	16	18	15	15
Pelvic rays	11	11	11	11	11	11	11	11	11	11
Scales in lateral	85	82	85	88	83	81	84	87	85	82
Lateral to dorsal	10	9	9	10	9	10	9	9	10	9
Lateral to pelvio Gill rakers	8	-	8	8		8	8	7	8	8
- short arm	-	8	9	9	-	,	,	8	9	9
- long arm	13	13	13	14	13	11	11	14	11	13
Branchiostegals	9	8		8	7	8		9	8	8
Sox	운	¢	\%	\%	¢	\bigcirc	\%	¢	\bigcirc	$\%$

```
Table VI - Cultus lake (Continued)
```

Age	24	$2+$	$2+$	$2+$	$2+$	$1+$	14	$1+$	$1+$	$1+$
Standard length	205	202	200	193	187	135	134	132	128	124
Length head	21.1	19.9	20.7	21.1	20.5	19.9	21.5	22.0	21.5	21.6
Depth head	14.3	13.7	13.9	14.4	13.3	12.9	14.5	12.9	13.7	13.9
Greatest depth body				19.6	18.2					
Width body				15.2	14.2					
Least depth caudal peduncle	6.7	6.3	6.5	6.6	6.4					
caudal peduncle Snout	6.0	5.3 5.6	6.8 5.8	6.6 5.0	6.4 5.0	5.3	6.0	6.1	6.4 5.6	6.3 6.4
Maxillary	5,5	5.3	5.0	4.7	4.9	5.3	5.2	6.1	5.9	6.0
Dlameter eye	4.4	4.2	4.3	4.6	4.5	4.8	5.1	5.3	5.4	5.8
Interorbital width	5.8	5.5	5.9	6.4	5.9		6.5	6.8	6.6	7.1
Snout tip to occiput	16.2	15.2	15.6	15.9	15.4	15.8	16.6	27.1	16.8	17.1
Snout tip to dorsal	43.8	42.7	44.2	41.2	42.9	41.8	41.4	43.2	43.0	43.1
Snout tip to pelvio	52,3	50.3	52.0	49.2	50.8	51.0	51.5	51.1	50.8	50.8
Length dorsal fin base	12.2	12.8	13.1	12.4	12.6	13.3	12.7	12.0	12.5	12.7
Length anal fin base	9.8	10.9	10.0	10.6	10.5	9.9	10.8	9.7	10.6	10.5
Helght dorsal fin	16.2	14.8	15.6	15.3	13.6	14.8	14.9	15.1	16.4	14.5
Height anal fin	13.5	13.2	12.6	12.5	12.3	12.4	12.3	12.1	13.9	11.7
Length pectoral	17.3	15.6	16.2	17.2	15.8	15.5	15.2	14.5	15.8	15.7
Iength pelvic	14.5	13.3	13.8	14.5		12.9	12.3	12.5	12.1	12.5
Helght adjpose	3.1	3.1	3.1	3.2	3.4					
Base adipose	7.8	7.5	8.3	9.4	9.6	8.9	9.0	7.6	8.2	9.3
Iength edipose	9.8	9.5	10.1	11.4	11.2	10.4	10.4	10.2	10.5	10.5
Ratio $\frac{\text { adipose }}{\text { anal base }}$	1.0	0.87	1.01	1.07	1.07	1.05	0.96	1.05	1.0	1.0
Ratio $\frac{\text { adipose base }}{\text { anal base }}$	0.80	0.69	0.83	0.89	0.91	0.90	0.83	0.78	0.78	0.89
Dorsal rays	13	14	13	14	14					
Anal rays	11	12	12	12	12					
Pectoral rays	16	16	15	16	15					
Pelvic rays	11	11	11	11						
Scales in lateral	85	87	81	81	84	84	85	88	78	83
Lateral to dorsal	9	10	10	10	9					
Lateral to pelvic	8	8	8	8	8					
Gill rakers										
- chort amn	9	9	9	10	10					
- long arm	12	12	13	13	13					
Branchiostegals	8	8	8	8	8					
Sex	9	ㅇ	0	0	?	\%	0	¢	0	0

[^0]| Agg | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | + | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard length | 120 | 119 | 119 | 118 | 118 | 117 | 116 | 114 | 114 | 11 |
| Length head | 22.5 | 20.6 | 21.8 | 22.4 | 21.2 | 21.8 | 21.7 | 22.8 | 22.3 | 20.8 |
| Depth head | 13.3 | 12.8 | 13.4 | 13.1 | 14.8 | 13.7 | 14.0 | 14.0 | 14.5 | 12.4 |
| Greatest depth body | | | | | | | | | | |
| Wiath body | | | | | | | | | | |
| Least depth | | | | | | | | | | |
| caudal peduncle | 5.8 | 6.7 | 5.9 | 6.1 | | 6.7 | 6.3 | 6.1 | | 6.0 |
| Snout | 6.2 | 5.2 | 5.5 | 5.7 | 5.8 | 6.0 | 5.5 | 6.0 | 6.0 | 5.3 |
| Maxillary | 6.0 | 5.7 | 5.7 | 5.7 | 5.6 | 6.0 | 5.5 | 6.1 | 5.9 | 5.3 |
| Diameter eye | 5.6 | 5.2 | 5.5 | 5.9 | 5.2 | 5.3 | 5.6 | 5.7 | 5.7 | 5.3 |
| Interorbital width | 6.7 | 6.5 | 6.7 | 6.4 | | 6.8 | | 6.4 | | 5.8 |
| Snout tip to occiput | 17.5 | 16.0 | 17.2 | 17.4 | 16.9 | 16.9 | 16.8 | 17.5 | 17.9 | 15.9 |
| Snout tip to dorsal | 43.3 | 43.0 | 42.8 | 43.2 | 42.3 | 43.6 | 43.2 | 43.1 | 43.8 | 41.5 |
| Snout tip to pelvic | 50.0 | 48.8 | 51.2 | 50.0 | 51.7 | 49.6 | 50.8 | 49.5 | 51.6 | 49.5 |
| Length dorsal fin base | 12.5 | 12.2 | 22.8 | 12.3 | 12.9 | 12. 4 | 12.9 | 13.6 | 13.1 | 12.4 |
| Length anal fin base | 10.0 | 9.2 | 8.4 | 10.3 | 9.5 | 10.3 | 10.1 | 9.7 | 10.3 | 10. |
| Height dorsal fin | 15.8 | 15.1 | 15.3 | 16.1 | 15.5 | 15.8 | 15.9 | 15.8 | 15.5 | 14.2 |
| Height anal fin | 12.5 | 11.8 | 12.6 | 12.7 | 13.5 | 13.5 | 12.9 | 12.7 | 12.5 | 12.2 |
| Length pectoral | 15.0 | 15.5 | 15.1 | 16.1 | 15.6 | 16.2 | 15.6 | 15.3 | 15.7 | 14.6 |
| Length pelvic | 12.5 | 12.6 | 12.2 | 13.6 | 12.3 | 13.8 | 12.7 | 13.2 | 13.0 | 11.9 |
| Base adiposo | 8.5 | 7.1 | 8.8 | 8.5 | 8.6 | 8.6 | 8.4 | 8.3 | 8.4 | 8.9 |
| Length adipose | 29.9 | 9.0 | 10.1 | 10.6 | 10.7 | 10.7 | 9.7 | 9.2 | 2.4 | 10.2 |
| $\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$ | 0.99 | 0.98 | 1.2 | 1.03 | 1.13 | 1.04 | 0.96 | 0.95 | . 2 | 1.0 |
| Ratio $\frac{\text { adipose base }}{\text { anal base }}$ | 0.85 | 0.77 | 1.05 | 0.83 | 0.91 | . 84 | 0.83 | 0.86 | . 81 | 0.87 |
| Scales in lateral | 83 | 85 | 86 | 85 | 89 | 85 | 88 | 88 | 89 | 87 |
| Sox | 0 | 아 | \bigcirc | 우 | \bigcirc | 0 | 0 | σ | 0 | ㅇ |

Table VI - Oultus lake (Continued)

Age	1*	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	1.	$1+$
Standard length	113	113	111	111	111	110	108	106	105	105
Length head	22.1	21.4	22.1	22.5	21.2	21.6	21.0	23.1	21.9	22.4
Depth head	13.4	13.4	13.5	13.5	12.6	13.2	13.4	14.1	13.4	13.8
Least depth caudal mpeduncle	6.2	6.4	6.1	6.3	6.3	5.9	6.5	6.4	6.2	6.5
Snout	5.7	6.0	5.9	5.9	5.4	5.0	5.8	5.7	5.7	6.2
Maxillary	5.7	5.7	6.1	5.9	5.6	5.5	5.7	5.7	6.2	6.2
Diameter eye	5.5	5.3	5.6	5.6	5.4	5.7	5.6	5.7	5.7	5.9
Interorbital width	6.6	6.9	6.7	7.2	6.3	6.5	6.5	6.6	6.7	6.7
Snout tip to occiput	17.7	16.6	17.7	17.1	17.6	16.8	17.1	17.0	17.6	17.1
Snout tip to dorsal	42.9	42.8	43.2	44.1	42.3	42.5	42.6	42.4	42.8	43.6
Snout tip to pelvic	49.1	49.5	49.1	51.4	47.3	50.0	49.1	50.0	50.3	49.3
Length dorsal fin base	12.4	12.4	12.6	13.5	12.2	11.8	12.0	12.3	12.4	12.4
Length anal fin base	10.3	10.2	10.4	9.9	9.9	9.5	9.7	9.4	9.5	9.5
Hejight dorsal fin	15.5	15.7	14.4	15.8	14.9	15.0	14.8	16.0	16.2	15.7
Hoight anal fin	13.1	13.1	12.6	13.1	12.6	12.3	12.8	13.2	12.4	12.4
Length pectoral	16.3	15.5	15.3	16.2	15.5	15.6	15.7	16.0	15.9	17.1
Length pelvie	13.3	12.4	12.2	13.2	12.6	12.5	12.2	13.7	12.4	12.6
Base adipose	9.3	8.7	9.7	8.3	8.8	8.2	7.9	8.5	9.3	8.6
	1.08	0.95	1.09	0.91	1605	1.12	1.0	1.05	1.2	1.0
$\text { Rati } \frac{\text { adipose base }}{\text { anal base }}$	0.90	0.85	0.93	0.84	0.89	0.86	0.81	0.90	0.98	0.91
Scales in lateral	82	86	83	79	83	85	82	77	81	88
Sex	σ	앙	0^{2}	앙	0	9	σ	\%	9	0
Length edipose	11.1	9.7	11.3	9.0	10.4	10.6	9.7	9.9	11.4	9.5

```
Table VI - Cul tus Lake (Concluded)
```


Table VII - Systematic characters of Prosopium from Logging lake.

Age	34	$3+$	$3+$	3.	$3+$	$2+$	$2+$	$2+$	24.	$2+$
Standard length	190	184	178	178	174	177	173	172	170	169
Length head	21.0	20.4	20.8	21.0	21.2	21.4	21.4	20.9	20.6	22.5
Depth head	13.7	13.6	14.3	14.0	14.4	13.8	15.0	14.5	14.7	15.4
Greatest depth body										
Width body										
Least depth										
caudal peduncle	6.3	6.5	6.7	6.7	6.6	6.8	6.9	6.4	6.5	7.
Snout	5.3	5.4	5.6	5.6	5.5	5.1	5.5	5.8	5.9	5.9
Hexillary	5.3	5.2	5.3	5.6	5.2	5.1	5.2	5.5	5.6	5.9
Diameter eye	4.7	4.9	4.5	5.1	4.6	5.1	5.2	4.6	5.3	5.0
Interorbital width	6.8	6.5	6.2	6.2	6.6	7.4	6.7	6.4	5.9	6.8
Snout tip to occiput	15.2	15.2	16.3	15.2	14.9	15.2	16.2	16.3	15.9	17.1
Snout tip to dorsal	41.6	42.6	43.2	42.1	44.2	43.5	42.8	43.0	42.3	43.5
Snout tip to pelvic	50.0	50.5	52.5	51.1	49.7	50.3	51.4	51.2	52.3	48.8
Length dorsal fin base	11.6	12.2	11.5	11.2	11.2	11.9	11.3	11.6	11.8	11.5
Length anal fin base	10.0	9.8	9.3	9.3	7.8	9.9	9.8	8.7	9.1	10.1
Height dorsal fin	13.7	15.2	14.0	14.0	14.1	14.7	13.9	14.2	14.1	16.0
Height anal fin	10.8	12.0	11.2	10.7	11.3	10.6	11.8	11.0	11.2	12.4
Length pectoral	16.3	15.5	15.4	15.7	15.2	16.4	15.9	16.3	15.9	17.1
Length pelvie	13.4	13.0	12.9	12.4	12.9	13.6	13.3	12.8	13.2	13.9
Helght adipose	2.6	2.7	2.8	2.5	2.6	2.5	2.6	2.6	2.9	3.0
Base adipese	7.6	8.2	7.3	7.9	8.0	7.9	7.5		7.6	7.1
Length adipose	9.2	9.5	9.3	9.3	9.2	9.3	8.7	8.7	8.5	8.9
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.92	0.97	1.0	1.0	1.18	0.94	0.89	1.0	0.93	0.88
$\text { Ratio } \frac{\text { adipose base }}{\text { anal base }}$	0.76	0.84	0.79	0.85	1.02	0.80	0.77		0.84	0.70
Dorsal rays	13	12	13	12	12	12	12	12	12	12
Anal rays.	12	11	11.	11	11	11	11	11	11	12
Pectoral rays	17	18	18	17	17	19	17	17	16	17
Pelvic rays	11	11	11	11	11	12	11	11	11	11
Scales in lateral.	78	83	79	85	77	82	78	80	87	77
Lateral to dorsal	9	10	9	9	9	,	9	9	9	9
Lateral to pelvic	8	8	8	8	8	8	8	8	8	8
Gil1 rakers										
- short arm	8	9	,	9	10	9	10	10	9	9
- long arm	14	13	13	13	14	15	13	14	13	15
Branchiostegals	9	9	9	9	8	8	8	9	8	8

Table VII- Logging lake (Continued)

Age
Standard length
Length head
Depth head
Greatest depth body
Width body
Least depth
caudal peduncle
Snout
Maxillary
Diameter eye
Interorbital width
Snout tip to occiput
Snout tip to dorsal
Snout tip to pelvic
Length dorsal
fin base
Length anel fin base
Height dorsal fin
Height anal fin
length pectoral
Length pelvic
Height adipose
Base adipose
Length adipose
Ratio $\frac{\text { adipose }}{\text { anal base }}$
Ratio adipose base anal base
$2+\quad 1+\quad 2 t \quad 2+\quad 2+\quad 2 t \quad 2 t \quad 2+\quad 2 t \quad 2+$ $\begin{array}{llllllllll}163 & 162 & 162 & 161 & 158 & 158 & 157 & 157 & 157 & 156\end{array}$ 21.521 .321 .620 .621 .520 .921 .021 .320 .720 .5 14.713 .913 .614 .914 .513 .313 .414 .614 .014 .7

6.7	6.5	6.5	6.2	7.0	6.3	6.4	6.7	6.7	6.7
5.2	5.6	6.0	5.3	5.4	5.1	5.4	5.4	5.1	4.8
4.6	5.2	5.6	5.0	5.4	5.1	5.4	5.1	5.1	4.8
4.9	4.6	4.8	4.8	5.1	5.1	4.8	4.9	4.8	4.5
6.7	7.1	5.9	6.2	7.0	6.2	6.7	6.4	7.0	6.7

$44.441 .943 .242 .8 \quad 43.041 .444 .342 .342 .743 .6$
50.649 .351 .250 .950 .649 .649 .048 .452 .250 .6
$11.012 .011 .110 .612 .011 .711 .1 \quad 12.710 .811 .2$
$\begin{array}{llllllllllllll}8.9 & 9.6 & 8.6 & 9.9 & 10.8 & 10.1 & 8.3 & 9.6 & 9.6 & 9.0\end{array}$
$14.7 \quad 13.9 \quad 14.5 \quad 13.0 \quad 13.314 .5 \quad 12.714 .6 \quad 13.714 .1$
11.610 .512 .010 .612 .011 .410 .812 .111 .510 .6
16.615 .415 .715 .515 .814 .913 .715 .915 .316 .0
12.913 .013 .512 .413 .012 .013 .013 .713 .412 .8
$\begin{array}{llllllll}2.6 & 3.1 & 2.8 & 2.2 & 2.5 & 2.5 & 2.9 & 2.6\end{array}$
$\begin{array}{lllllllllllll}7.4 & 8.0 & 8.0 & 7.5 & 7.9 & 7.7 & 6.7 & 7.6 & 6.7 & 7.1\end{array}$
$\begin{array}{llllllllllllllllll}8.6 & 9.3 & 9.3 & 8.7 & 9.5 & 8.9 & 8.3 & 9.9 & 8.6 & 8.3\end{array}$
$0.97 \quad 0.971 .08 \quad 0.88 \quad 0.88 \quad 0.88 \quad 1.0 \quad 1.03 \quad 0.90 \quad 0.92$
$0.830 .830 .930 .760 .730 .760 .810 .790 .70 \quad 0.79$

Dorsal rays	12	12	12	12	11	12	12
Anal rays	11	11	11	11	11	11	11
Pectoral rays	18	18	17	18	17	17	18
Pelvic rays	11	11	11	12	11	11	11
Scales in lateral	83	78	82	87	79	85	84
Lateral to dorsal	9	9	9	9	9	9	82
Lateral to pelvic	8	8	8	8	8	8	9
Gill rakers		9	9	9	8	9	9
- short arm	9	13	14	13	14	13	10
Branchiostegals long arm	13	8	9	9	8	9	8
Sex					8		

Table VII - Logging lake (Continued)

Age	$2+$	$2+$	$2+$	$2+$	$2+$	$2+$	$2+$	$2+$	24	+
Standard length	155	150	149	148	145	145	144	144	141	137
Length head	19.7	20.7	20.6	22.6	22.1	22.1	21.5	22.2	22.0	21.5
Depth head	13.5	14.3	14.1	14.9	14.8	14.1	13.7	14.6	14.2	14.6
Least depth caudal peduncle	7.1	6.7	6.7	6.8	6.8	6.5	6.2	6.7	6.4	6.6
Snout	4.8	4.3	5.0	6.1	5.2	5.9	5.2	6.2	5.8	5.1
Maxillary	4.8	4.3	5.0	5.7	5.5	5.9	5.2	5.6	5.7	5.1
Diameter eye	4.5	4.7	5.0	5.4	5.2	5.5	5.0	5.6	5.5	5.1
Interorbital width	6.4	6.7	6.4	6.4	7.2	6.7	6.6	6.6	7.1	6.6
Snout tip to occiput	15.5	15.7	16.8	17.9	16.2	17.2	16.7	17.0	17.7	16.8
Snout tip to dorsal	43.8	42.0	43.6	43.5	43.4	45.5	43.0	43.8	43.9	44.8
Snout tip to pelvic	47.7	50.6	50.0	50.0	51.0	49.7	49.3	50.0	49.6	51.1
Length dorsal sin base	11.6	12.0	11.7	12.2	12.4	12.4	11.4	13.2	11.3	11.3
Length anal in base	9.4	10.0	9.7	10.1	10.0	9.5	9.7	9.4	8.9	9.5
Helight dorsal fin	14.2	13.0	15.4	14.2	15.2	15.6	14.6	15.9	14.2	13.9
Hoight anal fin	11.0	10.0	21.7	12.5	11.7	12.7	12.2	12.8	11.7	10.2
Length peetoral	16.8	15.3	16.4	16.9	15.8	16.5	16.0	17.3	15.7	15.3
Leng th pelvic	13.5	12.3	12.7	13.5	12.4	13.4	12.5	13.9	13.1	12.4
Height adipose	2.9	2.7	2.3	3.4	2.4			2.6		2.6
Base adipose	7.7	$8 \% 0$	8.1	8.0	7.9	8.1	8.2	7.4		6.2
Length adipose	9.0	10.0	9.4	9.1	9.7	9.5	9.4	9.0	8.5	7.3
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.96	1.0	0.97	0.90	0.97	1.0	0.97	0.96	0.96	0.77
Ratio adipose base $\frac{\text { anal base }}{\text { and }}$	0.82	0.80	0.84	0.79	0.79	0.85	0.85	0.79		0.65
Dorsal rays	12	12	13	12	12		12			12
Anal rays	12	12	12	11	12		11			11
Pectoral rays	18	16	19	18	17		17			17
Pelvic rays	12	11	11	12	11		11			11
Scales in lateral	76	79	80	80	84	85	75	74	80	77
Lateral to dorsal	9	9	9	9	9					9
Lateral to pelvic	8	8	8	8	8					8
G111 rakers - short arm	10	9	9	8	8		8			8
- long am	13	13	15	14	12		13			13.
Branchiostegals	-	0	O	8	O		8			0

```
Table VII - Logging lake (Continued)
```

Age	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$
Standard length	130	127	124	124	123	121	120	119	118	117	115
Length head	23.1	22.4	22.2	23.0	21.5	23.1	22.1	21.4	21.2	21.4	22.6
Depth head	14.4	14.2	13.5	14.5	14.2	14.9	14.2	13.4	13.5	13.5	13.0
Least depth caudal peduncle	6.0	6.9	6.0	6.92	6.1	6.4	6.7	6.3	6.4	13.5	13.0
Snout	5.2	5.7	5.6	6.4	5.3	5.1	5.6	5.3	5.3	5.6	5.4
Maxillary	5.4	5.9	5.6	6.0	5.3	5.4	5.9	5.5	5.6	5.6	5.6
Diameter eye	5.4	5.5	5.2	5.6	5.3	5.8	5.8	5.5	5.3	5.6	5.6
Interorbital width	7.1	6.8	6.4	6.4	6.5	6.6	6.2	6.3	7.2	6.4	6.1
Snout tip to occiput	16.5	17.3	16.5	18.1	16.7	17.8	17.5	16.4	16.9	16.7	16.5
Snout tip to dorsal	44.6	44.8	43.9	44.3	44.3	45.3	44.2	42.8	44.0	44.8	44.3
Snout tip to pelvic	50.3	50.3	50.0	49.6	50.3	49,6	49.2	50.3	50.0	50.0	52.2
Length dorsal fin base	11.5	13.0	10.9	11.7	11.4	11.4	11.2	12.2	11.4	11.4	10.2
Length anal fin base	9.2	10.4	10.1	10.1	8.9	9.3	9.2	8.8	8.5	8.5	10.4
Height dorsal in	14.6	16.5	15.3	15.7	13.8	15.3	14.2	14.3	13.1		13.7
Holght anal fin	12.3	13.4	13.3	13.7	11.4	13.2	10.8	10.9	10.6	10.7	11.7
Length pectoral	15.4	17.3	16.1	17.7	15.0	16.5	16.7	14.3	15.0	15.4	14.8
Length pelvic	12.7	13.4	13.3	14.1	11.8	13.2	14.6	12.6	12.3	12.0	12.2
Height adipose		3.1					2.2	2.3			
Base adipose	7.7	8.3	7.3	7.3	7.1	9.1	7.5	8.4	6.1	7.3	8.3
Length adipose	9.2	9.4	8.1	8.1	8.9	9.9	9.2	9.2	7.6	7.7	9.1
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	1.0	0.90	0.80	0.80	1.0	1.06	1.0	1.04	0.89	0.91	0.87
$\text { Ratlo } \frac{\text { adipose base }}{\text { anal }} \frac{\text { base }}{}$	0.84	0.79	0.72	0.72	0.80	0.98	0.82	0.95	0.72	0.86	0.80
Dorsal rays		12					12	12			
Anal rays		12					11				
Pectoral rays		17					17				
Pelvic rays		11					11				
Soales in lateral	81	78	82	86	83	76	83	79	82	84	79
Lateral to dorsal		9					,				
Lateral to pelvic		8					8				
Gill rakers											
- short arm		9					9				
- long arm		14					13				

```
Table VII - Logging lake (Concluded)
```

$A g e$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	14	$1+$	1+
Standard length	114	114	113	113	113	113	108	108	105	103	99
Length head	22.8	22.4	22.5	22.5	22.2	22.5	23.7	23.7	21.9	23.3	24.3
Depth head	14.7	14.9	14.1	14.0	13.7	13.7	13.9	13.9	14.3	14.6	. 2
Least depth caudal peduncle	6.6	6.1	6.2	6.2	6.2	6.2	6.5	6.5	14.5 6.5	14.6 6.6	7.1
Snout	5.7	5.7	5.3	5.3	5.7	5.3	6.0	5.6	5.5	5.8	6.6
Maxillary	6.1	5.3	5.3	5.3	5.5	5.3	5.6	6.0	5.7	5.8	1
Diameter eye	5.7	5.7	6.2	5.5	5.5	5.3	5.7	5.6	5.7	5.8	6.6
Interorbital width	6.1	6.8	6.6	5.9	7.1	6.2	6.5	6.3	6.5	7.3	7.9
Snout tip to occiput	17.5	18.4	16.8	17.2	17.7	17.7	17.6	16.8	17.1	18.9	21.2
Snout tip to dorsal	43.8	44.7	43.3	43.3	43.3	44.2	43.0	44.8	43.3	46.6	46.0
Snout tip to polvic	49.1	48.7	49.1	50.4	51.3	48.6	48.6	50.9	50.5	51.5	51.5
Length dorsal fin base	11.8	11.8	11.1	10.6	11.5	12.4	11.6	11.1	11.0	10.2	$\begin{array}{r}11.8 \\ \hline\end{array}$
Length anal fin base	8.8	9.6	8.2	9.0	9.3	9.7	9.3	12.3	8.6	10.5	11.8 9.3
Height dorsal fin	14.9	17.1	15.0	13.7	14.1	15.0	14.8	14.3	14.5	15.7	16.2
Height anal fin	12.3	13.1	11.1	11.0	11.5	11.5	21.1	13.0	11.4	14.1	13.2
Length pectoral	16.2	1.7 .5	15.0	15.9	15.9	15.9	15.7	14.8	16.7	17.5	18.2
Length pelvic	12.7	14.0	12.4	12.5	12.8	12.8	12.5	13.0	12.4	15.5	14.7
Height adipose	2.5										
Base adipose	7.0	7.0	7.5	7.1	8.4	8.0	7.1	8.3	8.6	7.3	8.6
Length adipose	8.3	8.3	8.8	8.8	9.3	9.7	8.8	10.2	9.5	8.7	9.6
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.94	0.86	1.07	0.98	2.0	1.0	0.95	1.20	1.10	0.92	2.03
$\text { Ratio } \frac{\text { adipose base }}{\text { anal base }}$	0.80	0.73	0.92	0.79	0.90	0.82	0.76	0.89	1.0	0.77	0.93
Scales In lateral	79	83	81	82	83	87	78	70	84	82	75

Table VIII - Systematic characters of Prosopium from lake MoDonald.
Age
Standard length
Length head
Depth head
Least depth caudal peduncle
Snout
Maxillary
Diameter eye
Snout tip to oociput
Snout tip to dorsal
Snout tip to pelvic
Length dorsel fin base
Length anal fin base
Height dorsal fin
Height anal fin
Length pectoral
Length pelvic
Base adipose
Length adipose
Ratio adipose
Ratio adipose base
anal base

Scales in lateral line

| $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ | $1+$ |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 124 | 123 | 114 | 112 | 111 | 109 | 97 |
| 22.6 | 22.3 | 22.1 | 22.8 | 22.2 | 23.6 | 24.2 |
| 14.3 | 14.4 | 14.6 | 15.2 | 14.0 | 14.9 | 15.2 |
| 6.1 | | | | 6.6 | 6.7 | 6.5 |
| 5.8 | 5.2 | 5.4 | 5.5 | 5.8 | 6.2 | 6.2 |
| 5.3 | 5.2 | 5.4 | 5.5 | 5.7 | 6.1 | 6.3 |
| 5.0 | 5.2 | 5.4 | 5.5 | 5.8 | 5.5 | 6.1 |
| 16.8 | 17.1 | 17.3 | 17.8 | 16.8 | 18.4 | 19.6 |
| 42.7 | 44.6 | 43.4 | 45.0 | 42.9 | 44.5 | 45.9 |
| 48.9 | 49.6 | 50.7 | 51.5 | 51.3 | 50.4 | 51.6 |
| 11.8 | 12.4 | 11.3 | 12.1 | 12.3 | 13.6 | 12.0 |
| 9.0 | 8.9 | 7.7 | 9.1 | 9.5 | 9.9 | 9.6 |
| 14.5 | 14.9 | 14.6 | 14.3 | 13.9 | 17.0 | 16.9 |
| 11.9 | 11.2 | 10.5 | 12.5 | 11.2 | 13.9 | 13.7 |
| 16.2 | 15.4 | 14.3 | 15.9 | 14.9 | 17.4 | 18.3 |
| 12.6 | 12.4 | 11.7 | 13.1 | 11.5 | 13.9 | 14.4 |
| 7.1 | 7.2 | 8.8 | 7.1 | 7.7 | 8.9 | 7.2 |
| 8.9 | 8.2 | 9.8 | 8.9 | 9.0 | 9.7 | 9.3 |
| 0.99 | 0.92 | 1.27 | 0.98 | 0.95 | 0.98 | 0.97 |
| 0.79 | 0.81 | 1.14 | 0.78 | 0.81 | 0.90 | 0.75 |

$\begin{array}{lllllll}81 & 85 & 81 & 86 & 83 & 79 & 86\end{array}$

```
Table VIII - Lake MaDonald (Concluded)
```

Age	0	$0+$	$0+$	0	04	$0+$	$0+$	$0+$	$0+$	Ot	0
Standard length	68.5	62.0	61.0	60.5	59.0	58.5	57.0	54.0	53.5	52.5	52.0
Length head.	23.8	25.4	25.2	25.0	26.6	26.4	25.3	25.3	26.8	26.0	. 1
Snout tip to occiput	17.7	20.2	19.3	18.7	20.3	19.3	20.5	19.9	20.8	19.0	20.4
Snout tip to dorsal	44.8	45.5	44.5	45.4	45.3	45.7	44.7	46.8	46.9	43.3	44.3
Snout tip to pelvic	51.7	52.4	50.8	50.7	52.9	52.8	52.8	53.7	53.4	53.3	52.4

Age	0	04	$0+$	$0+$	$0+$	$0+$	0	$0+$	0	
Standard leagth	52.0	51.0	51.0	50.0	49.5	49.0	45.0	38.0	36.0	33.5
Length head	25.1	25.9	27.3	25.8	25.4	25.7	28.	27.8	27	28.8
Snout tip to occiput	20.1	20.8	21.4	20. 2	19.7	20.4	22.9			
Snout tip to dorsel	45.8	45.1	46.1	46.2	46.1	46.5	46.6			
Snout tip to pelvic	52.2	53.3	53.6	52.4	54.8	55.2	53.5			

Table IX - Systematic characters of Proeopium from Bowman lake.

Age	$2+$	24	24	$2+$	24	$2+$	$2+$	2	$2+$	2
Standard length	133	123	123	111	110	106	101	100	96	94
Length head	21.3	22.7	21.9	22.7	23.1	23.5	23.8	22.1	22.9	24.5
Depth head	13.4	14.2	13.6	14.2	14.2	14.0	13.9	14.3	14.6	14.9
Least depth caudal peduncle	6.5	6.7	6.3	6.5	6.3	6.4	6.2	6.7		
Snout	5.8	5.8	5.7	5.4	5.6	5.8	5.8	5.7		5.9
Maxillary	5.7	5.8	5.7	5.9	5.9	5.8	6.0	5.8		6.1
Diameter eye	4.7	5.5	5.5	5.7	5.6	5.8	5.9	5.9		6.4
Interorbital width										
Snout tip to occiput	16.5	17.1	16.7	17.8	17.7	18.9	18.3	17.8	18.4	19.4
Snout tip to dorsal	43.0	44.7	44.6	43.8	44.3	44.5	44.0	44.0	45.2	44.8
Snout tip to pelvio.	48.8	50.7	49.0	49.7	49.9	50.4	51.3	49.6	50.5	51.2
Length dorsel fin base	11.4	11.5	11.4	12.6	10.7	12.1	11.6	11.7	12.2	12.3
Length anal fin base	9.4	9.7	9.5	8.4	9.1	9.6	9.7	9.2	9.1	9.6
Height dorsal fin	15.6	15.8	16.1	17.4	15.7	16.6	16.0	17.2	17.5	17.2
Height anal fin	11.8	12.4	12.8	12.3	12.4	13.0	12.9	12.7	12.7	13.0
Length pectoral	16.5	16.6	17.3	17.7	16.4	17.6	17.8	17.9	17.5	17.8
Length pelvic	12.9	13.0	13.5	12.7	13.3	12.6	13.2	13.2	13.1	13.1
Height adipose										
Base adipose	8.3	7.3	6.8	7.2	7.5	7.8	7.9	7.4	7.7	7.2
Length adipose	9.6	9.0	8.8	8.7	9.5	9.5	9.6	9.0	9.2	8.7
Ratio adipose	1.02	0.93	0.77	0.69	0.89	0.99	0.99	0.98	1.01	0.91
$\text { Ratio } \frac{\text { adipose base }}{\text { anal base }}$	0.88	0.75	0.72	0.86	0.82	0.81	0.81	0.80	0.85	0.75
Scales in lateral	83	75	86	82	79	81	84	82	81	81
Sex	0	ㅇ	σ	0	0	0	\bigcirc	우	0	0

Table IX - Bowman lake (Concluded)

Age	$1+$	14	$1+$	$1+$	$1+$	$1+$	$1+$	$1+$	14
Standard length	104	89	86	86.	83	81	80	80	80
Length head	21.4	23.5	23.3	23.0	23.9	24.6	24.6	23.8	24.6
Depth head	13.2	14.2	14.0	14.3	14.1	14.0	13.4	14	14.1
Least depth caudal peduncle	6.6	6.4			3				
Snout	5.9	5.6			5.7		6.3		
Maxillary	6.0	6.1			6.4		6.5		
Diameter eye	5.2	6.3			6.0		6.4		
Snout tip to occiput	16.9	18.1	18.1	18.8	19.0	19.0	19.0	19.4	17.4
Snout tip to dorsal	44.2	45.0	44.6	44.3	43.6	44.7	44.5	44.1	45.1
Snout tip to pelvic	51.9	50.7	50.0	50.2	51.0	50.8	51.5	50.8	50.0
Length dorsal fin base	9.4	10.9	11.9	11.4	12.2	12.0	12.1	12.5	11.2
Length anal fin base	8.6	9.2	9.3	9.6	9.4	10.8	9.6	9.0	9.1
Height dorsal fin	15.5	15.7	16.5	16.6	16.6	16.1	16.3	16.0	15.4
Height anal fin	12.0	12.0	12.6	11.9	12.9	13.0	12.8	12.5	13.5
Length pectoral	16.0	15.5	17.1	16.0	16.5	16.4	16.6	16.3	17.0
Length pelvic	12.8	11.8	13.6	12.9	13.4	13.0	13.4	12.8	12.5
Base adiposo	6.7	7.1	7.8		7.6		6.6	6.9	8.9
Length adipose	7.7	7.9	9.1		9.0		8.1	8.9	10.0
$\text { Retio } \frac{\text { adipose }}{\text { anal base }}$	0.90	0.86	0.98		0.96		0.84	0.99	1.10
$\text { Ratio } \frac{\text { adipose base }}{\text { anal base }}$	0.78	0.77	0.84		0,81		0.69	0.77	0.98
Scales in lateral	81	82	80		80		81	86	82

Table $\frac{X}{X}$ - Systematic characters of Prosopium from Maskinonge lake, Nooksack river, and Tolt river.

Table XI - Systematic characters of Prosopium from the Elk river.

Age		$4+$	33	$3+$	$3+$	3	$2+$	$2+$	2
Standard length	254	231	210	206	200	195	201	184	183
Length head	22.0	22.2	22.4	22.3	22.2	22.0	22.5	23.1	22.
Depth head	15.5	14.3	15.9	14.7	14.9	15.1	15.2	,	14.
Least depth caudal									
snout	7.1	6.8	6.7	6.8	6.9	6.2	6.5	6.5	6.6
Haxillary	6.7	6.5	6.2	6.6	6.3	6.2	6.1	6.8	6.3
Diameter eye	4.4	4.3	4.5	4.2	4.5	4.6	4.2	4.8	4.5
Interorbital width	6.5	6.2	6.7	6.0	6.4	6.4	6.2	6.4	6.3
Snout tip to occiput	17.4	17.0	16.6	17.0	17.3	17.2	17.0	17.4	16.9
Snout tip to dorsal	44.3	44.3	43.8	43.7	43.8	43,0	43.8	42.3	43.1
Snout tip to pelvic	54.8	52.4	52.6	52.0	50.0	52.6	52.1	53.3	52.1
Length dorsal									
Length anal fin base	9.8	9.5	10.0	10.6	10.0	10.3	10.3	9.8	9.3
Height doreal fin	15.4	17.3	15.7	16.4	15.8	17.4	16.9	16.3	16.0
Height anal Pin	14.8	15.6	13.8	14.6	14.0	15.9	14.4	14.1	13.8
Length pectoral	17.2	18.5	17.1	17.9	17.6	18.	16.9	16.7	17.7
Length pelvic	15.5	16.2	15.0	15.1	15.0	15.9	14.5	14.7	15.3
Height adipose	3.5	3.5	3.9	3.7	3.2	3.1	3.6	3.4	3.6
Base adipose	6.5	6.9	7.1	6.7	7.5	7.2	7.3	6.3	7.5
Length adipose	8.5	8.7	9.0	9.1	9.5	9.1	9.5	8.7	9.6
$\text { Ratio } \frac{\text { adipose }}{\text { anal base }}$	0.87	0.91	0.90	0.86	0.95	0.88	0.92	0.89	1.03
Ratio adipose base $\frac{\text { amal base }}{\text { al }}$	0.66	0.72	0.71	0.63	0.75	0.70	0.71	0.64	. 81
Dorsal rays	12	11	12	12	12	12	13	12	13
Anal rays	11	11	11	11	11	11	11	11	11
Pectoral rays	17	17	16	16	15	17	16	17	16
Polvic rays	11	11	11	11	11	21	10	11	11
Scales in lateral	87	84	87	79	82	78	89	84	81.
Lateral to dorsal	9	9	9	9	9	9	9	9	9
Lateral to pelvio	7	8	9	7		8	8	8	9
G111 rakers									
- shott am	10	10	11	9	9	10	10	10	9
- long arm	14	13	15	13	14	13	15	15	13
Branchiostegals	9	8	8	9	8	8	15	15	13
Sex	\%	9	앙	\bigcirc	${ }^{\circ}$	${ }^{\circ}$	9	\bigcirc	${ }^{\circ}$

[^1]| Age | 24 | $2+$ | 24 | $2+$ | $2+$ | $2+$ | $2+$ | 24 | $2+$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Standard length | 182 | 182 | 181 | 180 | 180 | 178 | 178 | 178 | 178 |
| Length head | 22.8 | 22.0 | 22.5 | 22.3 | 24.3 | 23.0 | 22.6 | 22.2 | 21.9 |
| Depth head | 13.8 | 14.0 | 14.5 | 14.0 | 15.6 | 15.0 | 14.3 | 15. | 14.2 |
| Least depth caudal peduncle | 6.7 | 6.6 | 7.2 | 6.9 | 6.9 | 7.3 | . 0 | | |
| Snout | 6.5 | 6.1 | 6.4 | 6.7 | 6.9 | 7.0 | 6.5 | 5.9 | 5.9 |
| Maxillary | 6.2 | 6.0 | 6.1 | 6.1 | 6.9 | 6.4 | 6.5 | 6.2 | 5.9 |
| Dlametor eye | 4.9 | 4.6 | 4.7 | 4.7 | 5.3 | 4.9 | 4.8 | 4.6 | 4.6 |
| Interorbital width | 6.0 | 6.3 | 6.1 | 6.1 | 6.1 | 7.1 | 6.2 | 6.5 | 6.2 |
| Snout tip to occiput | 17.3 | 16.8 | 17.4 | 17.2 | 17.8 | 17.7 | 17.1 | 16.7 | 16.0 |
| Snout tip to dorsal | 43.4 | 44.5 | 43.9 | 43.8 | 43.7 | 45.0 | 44.0 | 44.0 | 43.2 |
| Snout tip to pelvic | 51.1 | 50.6 | 53.5 | 51.6 | 51.6 | 50.0 | 52.7 | 51.2 | 52.8 |
| Length dorsal fin base | 14.2 | 12.0 | 13.3 | 12.9 | 11.2 | 12.8 | 12.9 | 13.0 | 13.1 |
| Length anal fin base | 9.9 | 9.3 | 9.5 | 9.7 | 9.4 | 9.8 | 10.1 | 9.8 | 9.6 |
| Height dorsal fin | 14.9 | 15.6 | 17.1 | 16.1 | 17.2 | 17.4 | 17. 4 | 16.9 | 16.3 |
| Height anal fin | 13.5 | 13.2 | 14.1 | 13.8 | 14.4 | 14.9 | 15.3 | 14. | 14.3 |
| Length pectoral | 17.0 | 17.0 | 18.2 | 17.6 | 18.3 | 17.7 | 17.5 | 17.7 | 18.0 |
| length pelvic | 14.8 | 15.3 | 15.5 | 14.5 | 16.1 | 15.3 | 15.3 | 15.2 | 15.2 |
| Height adiposo | 3.8 | 3.1 | 3.3 | 3.4 | 3.4 | 3.5 | 2.9 | 3.5 | 3.5 |
| Base adipose | 7.3 | 6.2 | 6.0 | 6.8 | 7.1 | 6.7 | 6.3 | 6.8 | 6.4 |
| Length adipose | 9.6 | 8.7 | 8.8 | 8.9 | 9.2 | 9.0 | 7.9 | 9.3 | 8.4 |
| Ratio $\frac{\text { adipose }}{\text { anal base }}$ | 0.97 | 0.94 | 0.93 | 92 | 0.98 | 0.9 | . 78 | 0.95 | 0.88 |
| $\text { Ratlo } \frac{\text { adipose base }}{\text { anal base }}$ | 0.74 | 0.67 | 0.63 | 0.70 | 0.76 | 0\%68 | 0.62 | 0.69 | 0.67 |
| Dorsal rays | 13 | 12 | 12 | 12 | 12 | 12 | 13 | 12 | 12 |
| Anal rays | 11 | 11 | 11 | 11 | 11 | 11 | 11 | 12 | 11 |
| Pectoral rays | 17 | 16 | 18 | 17 | 16 | 17 | 16 | 16 | 15 |
| Polvic rays | 11 | 10 | 11 | 11 | 11 | 11 | 11 | 11 | 10 |
| Scales in lateral | 87 | 86 | 79 | 88 | 84 | 81 | 87 | 80 | 90 |
| Lateral to dorsal | 9 | 9 | 9 | 9 | 9 | 1 | 8 | 8 | 9 |
| Lateral to pelvic Gi11 rakers | 7 | 8 | 8 | 8 | 8 | 7 | 8 | 7 | 8 |
| - short arm | 10 | ρ | 10 | 9 | 10 | 10 | 9 | 9 | 10 |
| - long arm | 14 | 14 | 13 | 14 | 13 | 13 | 14 | 13 | 14 |
| Branchiostegals | 9 | 8 | 18 | 1 | 13 | 13 | | 13 | 14 |
| Sox | σ | ¢ | 안 | \% | 0 | 6 | 0 | 0 | σ |

Table XI - Elk river (Concluaed)

Age	$2+$	$2+$	$2+$	$2+$	24	2.	$1+$	$1+$
Standard length	178	177	175	172	170	167	127	12
Length head	23.0	22.9	23.7	22.4	23.2	23.4	22.8	22.
Depth head	15.3	14.9	15.1	14.1	15.4	15.6	14.3	.
Least depth								
Snout	7.0	6.2	6.7	6.5	6.5	6.6	6.3	6.1
Naxillary	6.5	6.2	6.9	6.4	6.7	6.5	6.1	6.2
Diameter eye	4.6	5.1	4.6	4.6	5.2	5.0	5.5	5.4
Interorbital width	6.2	6.2	6.3	5.6	6.1	6.5	6.5	6.3
Snout tip to occiput	17.2	17.1	17.7	17.4	17.1	17.7	17.6	17.5
Snout tip to dorsal	44.5	43.5	44.5	43.6	44.0	44.3	43.3	43.
Snout tip to pelvic	52.5	51.1	50.8	52.0	53.3	54.1	50.8	50.3
Length dorsal fin base	13.5	12.2	12.5	12.7	12.1	12.2	11.8	11.1
Length anal fin base	10.0	9.9	8.6	9.8	9.7	9.6	9.4	8.9
Height dorsal fin	16.3	16.7	16.6	15.1	16.0	17.2	15.7	14.9
Height anal fin	13.4	14.1	15.4	13.7	12.6	13.9	13.3	13.6
Length pectoral	17.3	17.5	18.7	17.6	16.6	18.0	16.9	16.
Length pelvic	15.3	14.7	15.4	14.4	14.7	15.6	14.4	14.3
Height adipose	2.9	3.5	3. 8	3.0	3.3	3.0		
Base adipose	6.7	7.5	7.3	6.5	7.1	6.5	6.6	6.9
Length adipose	9.0	9.7	9.3	8.7	9.3	8.7	8.7	8.4
$\text { Ratio } \frac{a d i p o s e}{\operatorname{anal} \text { base }}$	0.90	0.98	1.08	0.89	0.96	0.91	0.92	. 24
Ratio $\frac{\text { adipose base }}{\text { anal base }}$	0.67	0.76	0.85	0.66	0.73	0.68	0.70	0.77
Dorsal rays	13	12	11	12	11	12	12	11
Anal rays	11	12	10	10	11	10	11	1
Pectoral rays	18	17	17	17	16	16	17	16
Pelvic rays	11	12	11	11	10	11	11	11
Sceles in lateral	82	83	84	94	87	84	89	87
Lateral to dorsal	9	9	9	9	9	A	9	9
Lateral to pelvic	7	8	8	8	7	8	8	7
Gill rakers								
- short arm	10	9	9	10	9	10	8	10
- long arm	15	13	13	14	12	14	12	14
Branchios tegals	8	8	8	9	,	.	2	1
Sox	${ }^{\circ}$	앙	¢	앙	d	0	¢	σ

Table XII - Standard length attained by the Bownan lake whiterish at the end of each year of life.

No.	Sta	$\begin{gathered} \text { andard } \\ 2 \end{gathered}$	$\underset{3}{2} \underset{4}{\text { length }}$	end of jear:	$\begin{gathered} \text { Scal } \\ 1 \end{gathered}$	$\begin{aligned} & \text { e } r \\ & 2 \end{aligned}$	$\begin{aligned} & \text { rings: } \\ & 2 \end{aligned}$
- 2	28						
1	30						
3	32						
5	41	63			9	4	
4	47	63			10	3	
7	46	66			12	4	
6	51	71			11	3	
12	52	72			13	3	
11	53	72			13	3	
9	54	74			14	3	
8	58	76			11	3	
14	50	77			11	5	
13	58	78			16	5	
10	59	78			15	3	
16	61	80			14	3	
24	64	80			17	3	
32	68	80			17	2	
31	59	81			16	4	
33	61	80			18	4	
15	62	82			15	4	
18	64	82			15	3	
19	64	83			16	4	
25	65	84			18	5	
21	65	84			15	4	
22	69	84			12	3	
20	62	85			17	5	
17	60	86			15	5	
34	72	86			15	3	
30	63	87			. 14	4	
28	67	89			17	4	
23	69	92			16	4	
27	60	104			16	9	
26	44	82	95		14	16	4
37	42	81	97		12	12	5
36	44	94	100		12	16	1
35	41	91	101		12	13	2
29	41	91	106		12	16	3
38	42	88	111		15	16	4
39	43	89	112		14	14	5
40	60	95	123		17	15	2
41	45	100	124		19	18	4
42	53	115	134		18	23	4

Table XIII - Standard length attained by the Lake McDonald whitefish at the end of each year of life.

No. Standard length at end of yoar: Scale rings:
$328 \quad 34$
$327 \quad 36$
$326 \quad 38$
$325 \quad 46$
$309 \quad 50$
$311 \quad 50$
$324 \quad 50$
313 51
$320 \quad 51$
$312 \quad 52$
$322 \quad 52$
321 53
$316 \quad 55$
323
319
315
317
318
310
314
308
306
307
305
303
304
301
302

55
58
60
60
61
62
63
69 11
$64 \quad 98$
41109
44112
$57 \quad 112$
57115
$73 \quad 124$
$74 \quad 124$
$14-7$
1316
1216
1410
$13 \quad 13$
$17 \quad 11$
$21 \quad 13$
Table XIV - Standard length attained by the Waterton lake whitefish at the end of each year of life. year of liso

Number	1	2	3	4	-	6	$\frac{\mathrm{ml}}{7}$		9	$\begin{gathered} \text { attail } \\ 10 \end{gathered}$	11	$\begin{array}{r} t \text { end } \\ 12 \end{array}$		$a r:$ 14	15
U.S. 414	63														
U.S. 409	74														
U.S. 411	74														
U.S. 412	77														
U.S. 408	79														
U.S. 413	79														
U.S. 410	82														
U.S. 407	50	115													
U.S. 406	53	125													
W. 141	82	138													
W. 142	88	145													
U.S. 405	53	123	161												
W. 143	51	111	165												
W. 144	60	124	175												
U.S. 404	53	133	185												
U.S. 403	61	111	156	201											
U.S. 401	61	123	179	215											
U.S. 402	64	148	187	222											
W. 117	48	116	199	230											
W. 18	48	109	191	221	225										
W. 148	66	139	196	233	248	260									
W. 153	68	116	154	194	229	260	279	290							
W. 154	59	121	184	228	267	295	321	336	348	355					
W. 151	54	122	172	215	230	249	271	284	298	308	317	326	330		
W. 155	68	132	187	228	260	286	309	327	343	353	359	369	377	385	390

Table XV - Standard length attained by the Logging lake whitefish at the end of each year of life.

Individuals in their first rear Standard length Frequency Standard length Frequency

27	1	54	5
30	1	55	7
36	1	56	4
38	1	57	5
41	2	58	4
43	1	59	3
44	3	60	3
45	7	61	3
46	8	62	2
47	2	63	2
48	2	64	2
49	10	65	1
50	13	68	1
51	8	69	2
52	7	70	2
53	8	75	1
			1

	Standard length at end of year:				
No.	1	2	3	4	5
145	59	88			
144	64	98			
143	63	99			
141	58	100			
142	59	102			
114	52	103			
140	55	103			
138	53	106			
137	65	108			
128	47	109			
136	57	112			
139	62	112			
134	75	113			
126	54	114			
113	56	114			
131	64	115			
132	69	115			
133	73	117			
127	54	118			
112	69	118			
135	56	120			
278	79	120			

Scale rings:
$1 \begin{array}{lllll}1 & 2 & 3 & 4 & 5\end{array}$
137
199
1510
1011
$18 \quad 13$
1716
1515
1517
1610
1719
$15 \quad 14$
$16 \quad 14$
168
$15 \quad 16$
1411
1812
$18 \quad 10$
1811
$17 \quad 17$
$24 \quad 17$
$20 \quad 18$
1811

```
Table XV - (Concluded ) - Logging lake whitefish.
```



```
Table XVI - Standard length attained by Prosopium williamsoni at the end of each year of life.
```

Lake Minnewanka
No. Calculated standard length attained at end of year:
$14 \quad 81 \quad 124 \quad 155$
$15 \quad 78 \quad 125 \quad 165$

16	66	129	179

$17 \quad 71 \quad 133185$

18	54	124	182	210

$19 \quad 54 \quad 141 \quad 196 \quad 225$

60	153	220	275

 \(\begin{array}{lllll}60 & 112 & 156 & 202 & 230\end{array}\)
 \(\begin{array}{lllll}53 & 118 & 167 & 209 & 240\end{array}\)
 \(\begin{array}{lllll}48 & 136 & 199 & 243 & 275\end{array}\)
 \(\begin{array}{lllll}75 & 156 & 208 & 251 & 280\end{array}\)
 \(\begin{array}{llllll}49 & 99 & 156 & 207 & 232 & 240\end{array}\)
 \(\begin{array}{llllll}50 & 109 & 152 & 189 & 233 & 255\end{array}\)
 \(\begin{array}{llllll}68 & 138 & 193 & 233 & 261 & 275\end{array}\)
 \(\begin{array}{llllll}53 & 116 & 187 & 231 & 262 & 275\end{array}\)
 \(\begin{array}{llllll}61 & 113 & 179 & 228 & 264 & 280\end{array}\)
 \(\begin{array}{llllll}62 & 129 & 185 & 235 & 267 & 285\end{array}\)
 \(\begin{array}{llllll}54 & 138 & 220 & 254 & 286 & 305\end{array}\)
 \(\begin{array}{lllllll}55 & 115 & 182 & 222 & 258 & 279 & 295\end{array}\)
 \(\begin{array}{lllllll}69 & 136 & 201 & 241 & 272 & 298 & 315\end{array}\)
 \(\begin{array}{lllllll}68 & 125 & 187 & 222 & 269 & 298 & 310\end{array}\)
 \(\begin{array}{lllllll}58 & 136 & 197 & 240 & 274 & 298 & 310\end{array}\)
 \(\begin{array}{llllllll}69 & 141 & 188 & 239 & 265 & 296 & 322 & 335\end{array}\)
 \(\begin{array}{llllllll}65 & 150 & 201 & 236 & 279 & 306 & 328 & 345\end{array}\)
 \(\begin{array}{lllllllll}69 & 154 & 228 & 283 & 308 & 338 & 356 & 368 & 375\end{array}\)
 Third lake

27	82	133	181	207					
28	90	184	220	237					
29	64	122	166	222	245				
30	57	136	203	241	273	296	316	325	
31	72	153	205	262	288	312	328	340	
32	73	143	203	237	263	290	321	340	355

Cascade river

$55 \quad 43 \quad 106$

Table XVII - Standard length attained by Prosopium williamsoni at the ond of each year of life.
$\begin{array}{cccccccc} & \text { Standard length at end of year: } & \text { Scale rings: } \\ \text { No. } & 1 & 2 & 3 & 4 & 1 & 2 & 3\end{array}$
Maskinonge lake
D $\quad 86 \quad 110$
E 82103
Nooksack river
451
452
$76 \quad 116$
219
80116
219

Tolt river
461
$74 \quad 129 \quad 181200$
20141315

```
Table XVIII - Standard length attained by the Cultus lake whitefish
                                    at the end of each year of life.
No. Length at end of year: Scale rings:
\begin{tabular}{lllll}
59 & 76 & 94 & 14 & 3 \\
67 & 84 & 96 & 16 & 2
\end{tabular}
60 91 98 17 0
90 88 99 17 1
89 92 100 15 1
8% 92 101 18 1
88 91 101 17 1
55 102 102 2% 0
96 98 102
19 0
17 2
17 6
95 104 104
20 0
23 2
19 1
20 1
18 2
22 3
20 2
20 2
84 -78 107
18 8
    81 108
21 7
25 0
18 5
21 2
18 3
16 1
24 4
16 1
20 3
17 6
22 3
24 3
23 1
84 113 18 6
86 114 18 6
    106 114 18 1
        85 115 19 6
        87 115 18 6
74 101 115
65 87 116
24 2
17 6
42 97 118
20 3
45 76 118
19 8
47 101 118
22 5
71 91 118
20 5
```

Table XVIII - (Concluded) - Cultus lake whitefish.
Length at end of year: Scale rings:

NO. $\begin{array}{llllllllllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9\end{array}$


```
Table XIX - Standard length attained by Prosopium williamsoni
    at the end of each year of life.
```

Bow lake
Calculated standard length attained at end of year:
No. $\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

54	28								
53	28								
52	36								
51	35								
50	35								
49	31	61							
47	41	71							
48	40	75							
46	35	65	87						
45	34	66	98						
69	33	91	121						
72	29	56	83	100					
71	35	60	88	110					
70	34	63	91	113					
68	29	65	99	124					
67	36	63	99	136					
66	25	53	85	107	131	144			
65	26	47	79	102	129	150	161		
64	23	42	70	90	113	138	154		
63	27	62	83	109	137	152	158		
61	31	51	72	96	119	146	175	190	
60	33	57	86	122	146	168	181	189	
59	32	60	89	119	141	162	187	194	
62	24	49	80	99	122	141	157	170	177
58	26	55	80	103	127	152	179	197	203
56	31	63	87	105	130	163	186	204	215
57	22	45	63	95	124	151	178	199	214

Lake Louise

Table XX - Standard length attained by the Elk river whiterish at the end of each year of life.

No.	Sta 1	ndard	$\begin{gathered} \text { length } \\ 3 \end{gathered}$	$\begin{gathered} \text { ond of year: } \\ 5 \end{gathered}$	S	ale	$\frac{\text { ring }}{3}$	s:	5
26	54	126			14	17			
25	55	127			12	15			
24	35	102	167		10	21	18		
23	54	126	170		13	20	12		
19	59	123	172		13	18	15		
12	40	115	175		10	21	15		
18	60	126	177		14	21	15		
22	37	109	178		10	21	19		
15	42	116	178		12	21	27		
10	42	111	178		13	21	18		
9	48	116	178		14	20	19		
7	45	120	178		13	23	17		
17	46	126	180		15	24	18		
16	53	122	180		13	21.	17		
14	52	115	181		13	19	17		
21	56	119	182		15	18	18		
20	59	129	182		17	23	16		
13.	36	116	183		9	23	18		
11	52	132	184		12	24	16		
8	64	135	201		16	19	18		
6	40	110	175195		10	21.	20	7	
5	59	112	161200		17	16	17	12	
3	39	107	171206		12	19	18	9	
2	47	108	169210		16	20	20	14	
4	42	111	169209	231	11	22	19	14	8

Table XXI - Average calculated standard length at the end of each year of life for the
various populations of Prosopium williamsoni.

Av 1	rage	calcu 3	4	5 sta	dard	leng	in 8	mill	$\begin{array}{r} \text { metr } \\ 10 \end{array}$	$\begin{aligned} & \text { s at } \\ & 11 \end{aligned}$	and 12	$\begin{aligned} & f \text { ye } \\ & 13 \end{aligned}$	14
56	93												
59	113												
60	123	180	220	247	273	295	316	330	330	338	348	377	385
61	115	157											
62	130	190	231	266	302	335	368						
73	145	197	240	274	299	322	340						
74	129	181											
78	116												
84	106												
92	174	221	257	290	319	339	353						
31	59	84	104	129	152	178	192	215					
42	77	113	146	165	180	190	197						

 Bowman lake
 Lake McDonald
Waterton lake
Logging lake
Lake Minnewanka
Third lake
Tolt river
Nooksack river
Maskinonge lake Maskinonge lake
Group 2
Cultus lake
Group 3
Bow lake
Lake Louise Group 4
Cascade river
Elk river
Locality
Lake MoDonald
Table XXIII - Frequency distribution of percentage snout lengths in fish two years of age and older. .

older.

$$
\begin{aligned}
& 5.0 \\
& 5.1 \\
& 5.3 \\
& 5.4 \\
& 5.6 \\
& 5.8 \\
& 5.9 \\
& 6.0 \\
& 6.4
\end{aligned}
$$

- Frequency distribution of percentage maxillary lengths in fish in their second year.

$$
9^{\circ} \mathrm{g}
$$

Locality

Lake McDonald Nooksack river

Logging lake
Waterton lake
culus lake Haskinonge lake Bowman lake

Locality

Lake Minnewanika

Third lake
Logging lake
re
vozrearn
lake
Tolt river
Elk river
Elif river

$$
\begin{gathered}
\text { Length of maxillary in percentage of standard length. } \\
5.0 \quad 5.5 \quad 6.0 \quad 6.5 \\
\text { Average }
\end{gathered}
$$

0

2

15

$$
\begin{aligned}
& 5.6 \\
& 5.6
\end{aligned}
$$

$$
\begin{aligned}
& 5.7 \\
& 5.8
\end{aligned}
$$

$\stackrel{O}{0}$
5.8
6.2
Table XXV - Frequency distribution of percentage eye diameters in fish two years of age and older.

$$
+
$$

d

 in fush two years of age

- Frequency distribution of percentage eye diameters in fish in their second year.

Diameter of eye in percentage of standard length. Avarage

HR
$\sim \infty \notin N H-$ NONO
6
9
3
14
8
1
3
2
7
17
17
1
9
7
9
1
1
Diameter of eye in percen
Locality
Third lake
Oultus lake
Waterton lake
Lake Minnewanka
Elk river
Tolt river
Logging lake
Bowman lake
Bow lake
Table XXVI－Frequency distribution of percentage head depths in fish two years of age and older．
Depth of head in percentage of standard length．
$12.513 .013 .514 .014 .515 .015 .516 .0 \quad$ Average
13.2
13.6
13.8
14.1
14.2
14.3
14.4
14.9
15.0
－Frequency distribution of percentage head depths in fish in their second year．

$$
\begin{aligned}
& \text { Average } \\
& \text { Depth of head in percentage of standard length. } \\
& \begin{array}{l}
13.6 \\
14.0 \\
14.2 \\
14.2 \\
14.3 \\
14.5 \\
14.7 \\
15.4
\end{array} \\
& 1 \\
& 12.513 .013 .514 .014 .515 .015 .516 .016 .517 .0 \\
& \text { जットननN凶 } \\
& \text { แก2 } 5 \mathrm{HHMr} \\
& \begin{array}{r}
15 \\
1 \\
6
\end{array} \\
& 10 \mathrm{ma} \\
& \text { 。 } \\
& \text { Locality } \\
& \text { Cultus lake } \\
& \text { Bownan lake } \\
& \text { Logging late } \\
& \text { Elk river } \\
& \text { Nooksack river } \\
& \text { Waterton lake } \\
& \text { Lake Modonald }
\end{aligned}
$$

Table XXVII - Frequency distribution of the percentage distance from snout tip to occiput in fish two years of age and older.
Snout tip to occiput in percentage of standard length: $14.515 .015 .516 .016 .517,017.518 .018 .519 .019 .5$ Average 15.4
15.6
15.8
15.9
16.0
16.2
17.1
17.2
17.9
occiput in
snout tip to
fish in their second year.

Locality

ul tus lake

 Lake Minnewanka Third lake colt rifexLogging Lake Waterton lake Bow lake

Elk river Bowman lake

Snout tip to occiput in percentage of standard length: $0^{\circ} 6\left[9^{\circ} 810^{\circ} 81 g^{\circ} \mathrm{LI} 0^{\circ}\right.$ LI $9^{\circ} 910^{\circ} 91$
 +
N 17.6
17.6 17.7
17.8 $\stackrel{+}{\infty}$ $\stackrel{\circ}{\circ}$ 웅 - Frequency distribution of the percentage distance from snout tip to occiput in fish in their first year.
Snout tip to occiput in percentage of standara length; Snout tip to occiput in percentage of standard lengths $\begin{array}{cccccccccccc}17.5 & 18.0 & 18.5 & 19.0 & 19.5 & 20.0 & 20.5 & 21.0 & 21.5 & 22.0 & 22.5 & 23.0 \\ 1 & 1 & 1 & 3 & 4 & 4 & 2 & 1 & 1 & 20.1\end{array}$ 1

Lake MoDonald
Table XXVIII－Frequency distribution of the length of the dorsal fin base in fish two years
of age and older．
of age and older．

[^2]Length dorsal fin base in percentage of standerd length：

すみすめ0
$\infty \quad \mathrm{mmo}$
10 n
1
2
Locality
Logging lake Logging lake
Flk river
Bowman lake．
Lake Mclonald
Cul tus lake
Waterton lake
Maskinonge lake
Mooksack river m

Locality

Third lake Logging lake
Bownan lake
Tolt rivar
Cultus lake
Waterton lake
Elk river
Locality
Table XXIX - Frequency distribution of the percentage length of the anal fin base in fish two yoars of age and older.

Height dorsal fin in percentage of standard length:

Locality	12.513 .013 .514 .014 .515 .015 .516 .016 .517 .017 .5											Avorage
Lake Minnewanica	2	3		2	4							13.6
Third lake		1		2								13.8
Logging lake	1	2	3	12	6	2	2	2				14.3
Cul tus lake		1	3	1	4	2	3	1				14.5
Waterton lake		2	1	1	2	2	4	1	1			14.8
Tolt river						1						15.2
Bow lake				1	3	2	1	2	2	1		15.4
Elk river						2	3	4	6	5	4	16.4
Bowman lake							2	3	1	2	2	16.5

- Frequency distribution of the percentage height of the dorsal fin in fish in

Table XXXI - Frequency distribution of the percentage height of the anal fin in fish two years of age and older.
Height anal fin in percentage of standard length:

second year.
Height anal fin in percentage of standard langth:
10.511 .011 .512 .012 .513 .013 .514 .014 .515 .015 .516 .0

स $x+1 x-1$

$H-H F 10$ เง $\omega \sim$ NO
S_{71} TROOI Logsing lake Lake MeDonald. Waterton laike Bownan lake Cultys lake,

Maskinonge lake
Elk river
Table XXXI - Frequency distribution of the percentage length of the pectoral fin in fish two
Jears of age and older.

[^3]Table XXXIII - Frequency distribution of the percentage length of the pelvic fin in fish two years of age and older.

Table XXXV - Frequency distribution of the percentage length of the adipose fin base in fish two years of age and older.
Length adipose fin base in percentage of standard length:

$\begin{array}{lllllllll}6.0 & 6.5 & 7.0 & 7.5 & 8.0 & 8.5 & 9.0 & 9.5 & 10.0\end{array} \quad$ Average
6.8
7.1
7.2
7.2
7.4
7.5
8.5
9.8

- Frequency distribution of the percentage longth of the adipose fin base in fish in
Length adipose lin base in percentage of standard length:
$\begin{array}{lllll}7.5 & 8.0 & 8.5 \quad 9.0 \quad 9.5 \quad \text { Average }\end{array}$

4
$\overline{7}$
6
$\frac{1}{4}$
1
MOO
$061 \times \infty \rightarrow 0$
their second year.
$0 \quad 1$
$5!$
HO
$-\infty 5-\infty \infty$
6.0

$$
-\infty
$$

2
$\because 1$

Locality

Elk river
Lake Minnewanka
Bow lake
Waterton lake
Third lake
Logging lake
Bowman lake
Toltus river

Locality

E1k river
Elk river
Maskinonge lake
Logging lake
Lake ICDonald
Waterton lake
cultus lake
Table XXXVI - Frequency distribution of the ratio adipose base in fish two years of age and older.
Table XXXVII - Frequency distribution of the number of rays in the pectoral fin.

∞
Ho 『NMC

${ }^{\circ} \mathrm{A} \boldsymbol{A}$ ${ }_{\circ}^{\circ}$

Table XXXVII - Frequency distribution of the number of acales in the lateŕl line.
1

H

$$
\stackrel{\theta}{9}
$$

$$
\sim 0 \quad \mathrm{H}-\mathrm{H} \quad \sim \infty
$$

ne:

$$
+10 \quad \mathrm{rr}
$$

$$
\mathrm{Hr}
$$

Nooksack river
Locality

FOOD

Stomach contents were examined from a total of 120 specimens of Prosopium williamsoni and 11 of Coregonus clupeafonis. The results of this work are given in tables XXXIX to LVIII. In comection with these tables it must be noted that the figures represent percentages of the total stomach contents, while the symbol X is used to denote the presence of an organism in small quantities. In many of the specimens examined, the stomachs were found to be empty, and in such cases an attempt was made to analyse the contents of the intestine. Where this was done, the relative amounts of the various organisms present wers not estimated, it being thought more suitable to merely indicate the food in a qualitative way.

The results of the food studies show that the larvae and pupee of aquatic insects form the principal food of prosopium williemsoni. This is true particularly of the older fish. Other organisms are taken quite frequently however, and their selection is undoubtedly mainiy a matter of relative availability. It will be seen that the proportional amounts of these secondary food organisms vary considerably in the different lakes. Those found to be of importance are the Gastropods and Pelecypods, Ostracoda, Amphipoda, and small fish.

Lake Minnewanka

All the individuals examined were mature fish. These were captured during the months of July and August and at that season were feeding almost entirely on insects. The only other items of importance were the Amphipoc Gammarus and a small unidentified Gastropod. Table XXXIX
presents the cetailed analysis of the stomachs, and the data are summare ized in table XIIV.

Bow lake

In Bow lake during August the various aquatic insects were found to form the bulk of the food. This was true of the very young fish, as well as the older individuals, as demonstrated by tables XLVII, XLIX, and I. However, it will be noted that the importance of Cladocera is consider able, and several of the stomachs contained large quantities of these organisms. The detail of the individual stonachs is given in table KL and the proportions of the various constituents in table KLVII.

Lake Louise

The fish in this semple were all immature specimens. These were taken at approximately the same time of year as the Bow lake fish, but it is interesting to note that here the chief food evidently consisted of Entomostraca, and the insect forms were only of secondary importance. The comparison can readily be made by reference to tables XIVIII and XIIX. It would be unwise to make any general statements on the strength of these data, since it is quite probable that the food taken varies accordIng to the time of day, as well as from season to season. It is sufficient here to remark that differences do exist. Tables XII and XLV are included for individual and average distribution of the food organisme.

Third 1ake
Since only three specimens were available from this lake for stomach analyses, the averages obtained are not of great significance. However, it
is worthy of note that the only evidence of bottom feeding was the prese ence of traces of Gastropoda in the digestive tract of one individual. Planiton Cladocera had been gaten by two, and the third had devoured small fish. See tables XLII and xLVI for detailed analysis.

Cascade river

A single specimen in its second summer was feeding exclusively on mayfly nymphs at the time of capture.

Waterton lake

The specimens obtained from this locality were shipped to the writer labelled as Prosopium williamsoni. On examination, however, the sample proved to consist of two species - P. williamsoni and coregonus clupeafomis. This in itself offered no difficulty, bat led to confusion as to the identity of 32 specimens whose stomachs were removed in the field. For this reason, the analysis of the doubtrul material has been kept separate from that in which the species was definitely known, and is presented in table II. The details of the individual stomachs of prosopium are given in table LIII, and a summary of the data appears in table LVI. For comparison, the food of Coregonus is 1 isted in a similar way in table LVII.

In Waterton lake the food of Prosopium is shown to be chiefly insect material. The only other item of importance is the snall physa. Coregonus also feeds extensively on insects, but the addition of planiton forms in considerable quantities is probably a differentiating feature.

Knights lake

It is not known definitely that Prosopium is to be found in this lake, al though stomachs were received which were labelled as this species. The actual specimens received all proved to belong to the genus coregonus, hence the reason for not accepting the identification of the others as reliable. The food organisms of the indeterminate species are listed in table II, and the analysis of the coregonus stomachs is given in table LVII.

Maskinonge 1ake
Two specimens in their second sumer had been feeding principally on mayfly nymphs. For details, reference may be made to tables LIV and LVI.

Pass creek

One individual in its fifth year, captured in July, was feoding mainly on insects. The analysis of this stomach is presented in table LV.

Cultus 1ake

A considerable percentage of the stomachs of these fish were found to be empty of food. The older specimens were found to have subsisted to a great extent on various aquatic insects, and in three cases snails were found to have been eaten. of great importance in this particular lake was the discovery of twelve newly-amerged sockeye fry in one stomach. The younger fish probably feed on plankton to some oxtent, although insufficient stomachs have been examined for an accurate report of the food of these forms. In table LVIII, spocimens 42,43 , and 91 are yearling fish. The remainder are in their third year or older. In table LIX the data for these older fish are averaged.
Table XXXIX - Stomach contents of 14 whitefish (Prosopiun williansoni) from lake Minnewanka.

No.	45	46	47	48	49	50	51	52	53	54	56	57	58	59	60	61
Alona rectangula			40			10										
Daphnia pulex		40														
Unidentified Amphipoda																X
Hydrachnidas																
Spider																25
Chironomid larrae	70	20	40		X		50	50	100	50		85	80	80	90	X
Chironomid pupae		40				90						10		10	5	
Ceratopogonid larvae			10								X					X
Unidentified Diptera								50								
Caddis larvae																X
Mayfly mymphs				70	95											25
Stonerly nymphs	10		10				50			20	15					15
Lygaeidaa											70					
Terrestrial Coleoptera				30												
Formicidae																
Formicinae																30
Unidentified Hymenoptera											15					
Psocidae										30						
Unidentified Insecta	10															
Gastropoda				X							X					
Sphaerijdas	10											5	It	10	5	
Stones and gravel											X					
Unidentified organic material													15			

Table XL - (Conoluded) - Bow lake whitefish.덩$\mathrm{B4}$
0 아 8

8		$8{ }^{\circ}$	$\stackrel{1}{2}$		4
$\%$	\cdots	A		\cdots	P4

,
.$108 \quad x_{1} 8$

8	N

No.
$\frac{\text { Alona }}{\text { Daphnia } \frac{\text { pulangula }}{}}$
Ostracoda
Hydrachnidae
Chironomid larvae
Chironomid pupae
Ceratopogonid larvae
Leptidae?
Unidentified Diptera
Mayfly nymphs
Stonefly nymphe
tera
Mymicinae
Gastropod eggs
Seeds
Organic debris
Stones
Unidentified organic material
Table XLI - Stomach contents of 12 whitefish (Prosopion williamsoni) from lake Louise.
No.
$\frac{\text { Alona }}{\text { Scapholebengula }}$ cheris mucronata
Cyclopg Viridis
Chironomid larvae
Chironomia pupae
Unidentified Diptera
Mayfly nymphs
Stonefly nymphs
Coleoptera
Gastropoda
Table XIII - Stomach contents of 3 whitesish (Prosonium williamsoni) from Third late.

Prosopium
55
100

Table XLIV - Food organisns of whitefish (Prosopium williansoni).
A - Wumber of stomachs containing the organism
B - Greatest percentage in any one stomach
C - Average percentage in all stomachs
Lake Minnewanka - 14 individuals

	A	B	0
Eurycercus sp.	1	55	X
Ostracoda	1	X	X
Gammarus sp.	2	70	8
Hyalella sp.	1	X	X
Pontoporeia sp.	1	X	X
Unidentified Amphipoda	2	10	X
Caddis larvae	5	99	21
Gaddis pupae	4	80	17
Chironomid larvae	8	100	20
Ohi ronomid pupae	7	100	17
Mayfly nymphs	1	50	4
Formicidae	1	25	2
Gastropoda	1	100	7
Sphaeriidae	2	5	X
Plant material	1	15	X
Unidentified	3	30	2
Organic debris	B	X	X

Table XLV - Food organisms of 12 whitefish (Prosopium williamsoni) from lake Louise.

Alona rectaneula $\quad 8 \quad 100 \quad 35$
Scapholeberis mucronata $\quad 3 \quad 30 \quad 11$
Qyclops viridis $\quad 8 \quad 70 \quad 18$
$\begin{array}{lllll}\text { Ohironomid larvae } & 7 & 98 & 26\end{array}$
Chironomid pupae $\quad \begin{array}{llll}3 & 20 & 2\end{array}$
Unidenticied Diptera $\quad 1 \quad 15 \quad$ X

Mayfly nymphs $\quad 1$	15	X

Stonefly nymphe $\quad 2 \quad 40 \quad 5$
Coleoptera
$1 \quad 15$
Gastropoda
2 X X

Table XLVI - Food organisms of 3 whitefish (Prosopium williamsomi)
from Third lake.
Daphnia longispina $\quad 1 \quad 100 \quad 33$

Daphnia sp. $1 \begin{array}{llll}100 & 33\end{array}$
Aastropoda
1 X X
Gastorosteus sp. (Sticklebacks)
$1 \quad 100 \quad 33$

```
    :
Table XLVII - Food organisms of 27 whitefish (Prosopium williamsoni)
    from Bow laks.
```

Alona rectangula	3	100	
Daphnia pulex	2	90	5
Unidentified Amphipoda	1	X	X
Unidentified Ostracoda	2	X	X
Hydrachnidae	7	20	X
Spider	1	25	X
Chironomid larvae	20	100	33
Chironomid pupae	10	90	9
Ceratopogonid larvae	5	10	X
Leptidae?	1	X	X
Unidentified Diptera	3	50	4
Caddis larvae	1	X	X
Mayfly nymphs	8	100	20
Stonefly nymphs	8	75	10
Lygaeidae	1	70	X
Saldidae	1	10	X
Terrestrial Ooleoptera	2	30	X
Formicidae	1	20	X
Formicinae	1	30	X
Myrmicinae	1	25	X
Unidentified Hymenoptera	1	15	X
Psocidas	1	30	X
Unidentified Insecta	1	10	X
Gastropoda	2	X	X
Gastropod eggs	1	X	X
Sphaeriidae	5	10	X
Seeds	1	X	x
Organic debris	2	X	X
Stones and gravel	3	X	X
Unidentified organic material	4	15	\bar{X}

Table XIVIII - Food of Prosopium williamsoni in the first year.

Bow lake Lake Louise

Alona sp.	2	5
Scapholeberis sp.		32.5
Cyclops sp.	X	12.5
Hydrachnidae	50	40
Chironomid larvas	18	X
Chironomid pupae	10	
Unidentified Diptora	14	10
Stonefly nymphs	6	

Table XLIX - Food of Prosopium Williamsoni in the seoond year.

	Bow lake	Lake Louise
Alona sp.		
Gyclops sp.	13	50.5
Chironomid laryae	13	20
Chironomid pupae		18.5
Ceratopogonid larvae	3	2.5
Unidentified Diptera		
Plecoptera nymphs	3	2
Mayfly nymphs	55	2
Unidentified Coleoptera	10	2
Gastropoda	X	2
		X

Table L- Food of Prosopium williamsoni from the third year inclusive.
Alona sp. 4
Daphnia longispina
Daphnia pulex
Daphnia sp.
Eurycorcus sp.
3

 0
 Gammarus sp. 8
Hyalella sp. X
Pontoporeia sp.? X
Unidentified Amphipoda X X
Hydrachnidae
SpiderChironomid larvae1.51Chironomid pupae32
Ceratopogonid larvae X8Leptidae?Unidentified DipteraX2.5Caddis larvae$X \quad 21$
Cadis pupae 17
19
Mayfly nymphs
10
Stonafly mymphs
4
4
Iygaeidae
Iygaeidae X
Terrestrial Coleoptera X
Formicidae 1
Formicinae 1.5
Hyrmicinae1
Unidentified Hymenoptera X
Unidentified Insecta Jnidentilied Insecta X
Gas tropoda X
Gastropod aggs X
Sphaeriidae1.5
$\mathrm{x} \quad \mathrm{x}$
Unidentified OstracodaXGasterosteus sp.Unidentified plant remainsOrganic debrisX
Stones and gravel X
Unidentified organic material. 24
20 17
.
Bow lake Lake Minnewanke Third lake
5
5 33 33 7 7
7

33 X X

. 33
Table LI - Stomach contents of 32 whitefish (Species doubtful) from Waterton lake.
Average percentagein all stomachs
Leeches 6
Daphnia sp. 14
Alona sp. X
Candona sp X
Cyclops sp. X
Garmarus sp. X
Unidentified Amphipoda X
Mysis relleta X
Hydrachnidae X
Chironomid larvae and pupae 33.5
Caddis larvae and pupae 20
Mayfly nymphs X
Grasshopper X
Cercopidae X
Asilidae X
Coccinellidae X
Neuroptera X
Formicidae 16
Unidentified Insecta X
Sphaerium sp. 12
Unidentified Pelecypoda X
Unidentified Gestropoda X
Feathers X
Bottom ooze X
Conifer needles X
Chickweed X
Stones X
Bits of wood X
Unidentified X
Table IIT-Stomach contents of 3 whitefish (Species doubtiul) from Knights lake.
Chironomid larvae and pupas 70
Sphaerium sp. 25
Unidentified Gastropoda X
Candond sp.? 5
Table LIII Stomach contents of 9 whitefish (Prosopium williamsoni) from Waterton Iake
No.

No.	141	142	143	144	147	148	151	153	154
Gammarus sp.						10			
Hydrachnidae	\%		X	X	X				
Chironomid larvae	60	25	20	X		X			25
Chironomid pupae	X	25	50	95	75	X	5	X	25
Tipulid larvae									25
Tipulid pupae								5	
Caddis larvae	X					90	20	95	25
Caddis pupae		25	20						
Dytiscidae					5				
Psocidae	25								
Formicidae					20				25
Hymonoptera remains		25							
Physa sp.							75		
Unidentified Gastropoda					X				
Diatoms			X						
Miscallaneous algae			20						
Bits of wood			X						

[^4]
Table LV - Stomach contents of I whitefish (Prosopium williemsoni) from Pass creek.

OrganismCaddis larvaePercentage
40
Taris larrae
Mayfly nymphe 20
Stonefly rymphs 10
Unidentified Oladocera 10
Chironomid larvae 10
Unidentiried insect remains 10
Beetile elytron X
Caddis pupa π

```
Table LVI - Food organisms of Prosopium from Waterton and Maskinonge
    lakes.
    A - Number of stomachs containing the organism
    B - Greatest percentage in any one stomach
    0 - Average percentage in all the stomachs
Waterton lake - 9 individuals
```

	A B	0
Gammarus sp.	$1 \quad 10$	1
Hydrachnidae	3 X	X
Chironomid larvas and pupae	$9 \quad 95$	43
Tipulid larvae and pupae	$2 \quad 25$	3
Caddis larvae and pupae	$7 \quad 95$	31
Dytiscidae	1 5	X
Psocidae	125	3
Formicidae	225	5
Hymenoptera remains	$2 \quad 25$	3
Physa sp.	175	9
Unidentified Gastropoda	1 X	X
Diatoms	1 X	स
Miscellaneous algae	$1 \quad 10$	स
Bits of wood	1 X	X

Maskinonge lake - 2 individuals

Mayfly nymphs			
planorbis sp.	2	100	99
(1	X	X

$\begin{aligned} & \text { Table LVII - Food orgenisms of Coregonus from Waterton and Knights } \\ & \text { lakes. }\end{aligned}$

Watexton lake - 7 individuals

Daphnia sp.
Unidentified Ostracoda
Epischura sp.
Unidentified Copepoda
Pontoporela sp .
Ohironomid larvae and pupas
Ceratopogonia larvae
Phalacrocera sp. (pupae)
Heptagenia sp.?
Sphaerium sp.
Planorbis sp.
Mougrotia or Zygnema sp.
Conifer needles

Knights lake - 4 individuals
Candona sp.?
Unidentified Ostracoda
Cyolops sp.
Hydrachnidae
Chironomid larvao
Tipulid larvae
Caddis larvae
Mayfly mymphs
Sphaerium sp.

A

4
1
1
1
1
6
2
1
1
2
1
1
1
100
X
25
30
X
75
\bar{X}
80
10
40
10
X
X
X

Candona sp. ?			
Unidentified ostracoda	1	5	1
Cyolops sp.	1	X	X
Hydrachnidae	1	X	X
Ohironomid larvas	1	X	X
Tipulid larvae	4	95	75
Caddis larvae	1	X	X
Mayfly nymphs	1	5	1
Sphaerium sp.	1	X	X

Table IIX - Food organisms of Prosopium williamsoni from cultus 1ake. (13 specimens)
A - Mumber of stonachs containing the organism
B - Greatest percentage in any one stanach
C-Average pereentage in all the stomachs
Chironomid larrae
Iimnephilid larvas
Mystacides larvae
Unidentified caddis larvae
Burrowing mayily nymph
Unidentified Insecta
Gyraulus sp.
Plenorbis sp.
Sockeye salmon
Mostoc, colonies
Miscollaneous plant material
Chunks of wood

$\frac{A}{1}$	$\frac{B}{X}$	$\frac{C}{X}$
2	100	12
2	100	22
2	100	22
1	10	1
4	10	2
2	100	11
1	100	11
1	10	
1	90	10
1	80	9

SUMAARY

It may be said that each of the populations studied exhibits individual differences which are characteristic of the locality, or rather the particular body of water from which it comes. Some of these differences are small and can hardly be said to have any real significance, while others appear to be abrupt and cause the particular race to stand out from the others.

In general it can be shown for any one character that intermediate stages exist which seem to bridge the gap between the two extreme values. At the same time, the material examined seems to fall naturally into four broad groups. These are correlated with environment to a considerable extent, and thus they are actually ecological divisions, for it seems that similar habitats produce similar variante, as might be expected.

For each of these four groups, a single population hae been selected which seems to be characteristic of that group. Representative of the first is the Waterton lake sample, which hes been more or less arbitrarily chosen as being close to the typical williamsoni. These races are all lake fish and live at an al titude of somewhere between four and five thousand feet. The second group, typified by the cultus lake fish, has a more rapid growth rate, particularly in the first few years, and is apparently more typically a river-dwelling race found at an altitude not much above sea level. Cultus lake itself has an altitude of less then five hundred feet. Group three has for its type race the Bow lake
population. This is distinct because of its slow growth rate and small size at maturity. Bow lake and lake Louise are both very cold and heavily silted, being fed by extensive glaciers which lie close to their margins. The elevations are 6500 and 5680 feet respectively. The habo itat of this group, then, is quite distinct. The fourth and last group is characterized by the Elk Piver fish. These probably spend their Whole life in the strean and never enter a lake. The chief distinction in the rate of growth in this case is the small growth of the first year.

Waterton lake

This race appears to be intermediate for every character studied, and is thus a good choice for the type of the species. No outstanding features are present to be worthy of comment. Waterton lake lies at an altitude of 4193 feet and drains by means of the Weterton river and Oldman river into the South Saskatchewan.

Bownan lake

The Bowmen lake fish are intermediate in a good percentage of their characters, but in others they approach or reach one extreme. This may be due to the age composition of the sample, for they are all young fish, the average length for the specimens examined being the least of any race. The features which do appear extreme are the ones which are characteristic of smaller fish, such as head longth, large eye, high dorsal fin and fairly high anal. The most important features of this population are therefore the long pectoral fins and the short pelvics. Bowman lake
is situated at an elevation of approzimately 4100 feet and drains through the Flathead river into the Columbia.

Lake McDonald

No older fish were available for examination, and the characteristics of the race must therefore be inferred from the data concerning the yeare 1ings. Comparing these with the yearling fish from other lakes, it is found that in most respects this population is intermediate, thus agreeing with the Waterton lake fish. Points of difference are the fairly deep head, short pelvic rins, and the relatively small anal. Lake MeDonald is similar in altitude to Bowman lake and also drains into the Flathead.

Logging 1ake

The Bowman lake, lake 保conald, and Logging lake fish are similar in most respects, and agree quite closely with the Waterton lake population. Minor differences do occur, however, and the Logging lake race is no oxception in this particular. These fish are characterized by a some what shorter snout and short pectoral fins, and agree with the last race described in having short pelvice. Logging lake lies a short distance from Bownan lake and drains into the same river system.

Lake Minnawanka
These fish exhibit a number of characteristics peculiar to the population, and the race may be said to be more distinct from the type than any other In this group. Distinguishing features are the small head and relatively small fins. The small size of the head is reflected in all its dimensions.
in Iength, depth, distance from snout tip to occiput, length of snout and maxillary, and diameter of eye. Of the fins the dorsal is short, the anal is short and has a short base, the polvics are fairly short. and the adipose is smaller than in any other population. The elevation of lake Minnewanke is 4769 feet. It drains into the Bow river, which in turn empties into the South Saskatchewan.

Third 1 ake

This race resembles the Minnewanka fish to some extent. The head is intemediate in length, but has a small eyos The fins are all small with the exception of the adipose, which attains a considerable size, although its base is small in comparison. A distinctive feature found only in this sample is the small size of the maxillary in relation to the snout. Third lake is not far from lake Minnewanke and ompties into the Bow riper. It has an eleration of 4500 feet.

Maskinoned 1ake

Again only yearling fish were available, and the sample was small in size. The fish examined were distinguished by a large eye and deep head, and by a large growth in the first year. By virtue of locality this race is placed in the first group. Maskinonge lake drains into the Waterton river just below Waterton lake at an elevation of approxinately 4185 feet.

Gultus lake

This population is the type of group two. Besides the rapid growth, to which reference has already been made, this race possesses a relatively
small head and eye, long bases on dorsal and anal fins, fairly short pectorals, and a large adipose fin. The adipose base is not only large in relation to that of the other races, but also with respect to the base of the anal, so that the ratio of adipose base to anal base is comparatively high. Added to these features are a difference of one in the 2verage count of pectoral fin rays and possibly a slightly higher scale count. Cultus lake empties into the Vedder river, which flows into the Fraser. Its elevation is not greatiy above sea level.

Molt river

The single specimen from this locality agrees very closely with the average characters of the Gultus lake population. In particular the large adipose may be noted. The Tolt river is in the state of Washington and flows into Puget sound.

Nooksack river

A sample consisting of two yearling fish was examined. It may be of significance that the Tolt and Nooksack specimens have deoper heads then the Cultus lake fish Added to this in the Nooksack are the large dorsal and anal fins, long pectorals and pelvics, and large adipose. All these fins are larger in these fish than in any other sample of yearlings. The Nooksack also runs into Puget sound.

Bow lake

The type of the third group was at once considered distinct because of its slow rate of growth. This has produced a large-headed race, which rather surprisingly has a relatively short snout. In contrast with the

Third lake fish the snout in this case averages slightly shorter than the maxillary. The dorsal fin has a short base but is comparatively high, and therefore the ratio of dorsal height to dorsal base is great. The pectorals are very long, the pelvics fairly so, and the adipose is relatively small. Bow lake is rather high in the mountains, being at an elevation of 6500 feet. As mentioned previously, the water is very cold and heavily silted. The lake draine by means of the Bow river into the South Saskatchewan.

Lake Louise
All but one of the specimens in this sample were yearling fish. The fige ures for rate of growth in table XXI therefore were obtained from this single sample, except for the first year's growth. This may account for the apparent difference in growth between Bow lake and lake Louise. The characters of the young fish appear to be similar to those of the Bow lake population, as would be expected if physical similarity of enviroment is to be accepted as a criterion. The elevation of lake Louise is 5680 feet.

B1k rivar

Environment has produced a fairly large-headed race as the type of the fourth group. Even taking the large head into consideration, the snout and maxillary are found to be extremely long, and this is not accompanied by the characteristic bulging rostrum of the Waterton lake fish. The median and paired fins are all large with the exception of the adipose, which is very small. The ratio of adipose base to anal base is
the least of any population studied. The average scale count is also even slightly higher than for the Oultus lake fish. One specimen had 94 scales in the lateral line, which is high for this species. The Elu river is in southeastern British Columbia, and flows into the Kootenay river, which is a tributary of the Columbia. The town of Michel. close to which these specimens were captured, is approximately 3800 feet above sea level.

CONCLUSIONS

The meterial presented in the preceding pages represents the foundation of a revision of the genus Prosopium. All the preliminary spade work" necessary to a problem of this kind has been completed. The literature on the subject has been gone over as thoroughly as possible, and to ensure that no important details have been missed, various authorities in the systematic field have been consulted.

It has been stated on various occasions that the genue prosopium is an extremely variable group. Opinion is unanimous in this respoct, but up to the present time no measure of the extent of this variation has been forthcoming. There is some disagreoment among fchthyologists as to the status of the various species, but it seoms that this must be due to a lack of sufficient knowledge concerning the characteristics of these species rather than to any definite convictions supported by facts. It is the view of this writer that specific names have been applied to severel forms in this genus which are only of subspecific rank, and that in ell likelihood only about four or five decinite species exist.

Specimens of Prosopium williamsoni have been studied from a representative series of localities covering to a great extent the known range of the species. These samples ceme from 1 akes and rivers tributary to three of our great river systems, namely the Fraser, the Saskatchewan, and the Columbia. It is regrettable that it was not possible also to examine
specimens from the Athabasca river, but unfortunately an attempt to secure a series from this locality was unsuccessful. The fish examined show a relatively wide range of variation in most of the thirty-odd characters which were subjected to measurement. It was found possible to correlate most of these variations quite definitely with the type of habitat, and in this way four main races were found to exist, each characterized by a special type of environment which apparently showed its effect on growth rate and body proportions. Individual differences in food were also found to occur, and these also are undoubtedly caused by a difference in the relative availability of the various organisms prese ent in a body of water.

It is hoped that the work will not cease here, and that some day a come plete revision of the whole group will be possible. At the present time this is out of the question, for it is probable that a great amount of Widespread and rather difficult field work must be carried out to bridge the wide gaps in present collections.

BIBLIOGRAPHY

```
Bajrov, A. 1927
    Reports of the Jasper park lakes investigations 1925-26:
    I - The fishes.
    Contr,Oan.Bi01., N.S., 3, 16:579-403.
Bean, B. A. 1894
    Notes on Williarson's whitefish in breeding colours, from Iittle
    Spokane river, Washington, and remarks on the distribution of the
    spocies.
    Bull.U.S.Fish.Commo, 14:205-206.
Bean, T. H. 1885
    Rocky mountain whitefish.
    Forest and stream, 25: 390.
Berg, L. S. }193
    Note on Coregonus (Prosopium) cylindraceus (Pallas).
    Copeia. 1936. 1 : 57-58.
Crawford, D. R. }192
    Field characters identlfying young salmonoid fishes in fresh waters
    of Washington.
    UnivoWash.Pub.Fisho, 1, 2:64s76.
Dymond, J. R. and Hart, J. I., 1927
    The fishes of lake Abitibi (Ontario) and adjacent waters.
    Univ.Toronto Stud.Biol., Pub,Ont.Fish.Res.Lah,, 28:3-19.
Eigenmann, C. H. }189
    Results of explorations in westem Canada and the northwestern
    United States.
    Bull.U.S.Fish.Comm., 14 : 101-132.
Eigenmann, C. H. and Eigenmann, R. So }189
    New fishes from western Canada.
    Amer.Nat,, 26: 961-964.
Evermanm, B. We 1892
    Report on the establishment of fish-cultural stations in the Rocky
    mountain region and gele states.
    Bull.U.S.Fish.Corm., 1891(1892), XI : 1-90.
Evermann, B. W. and Smith, H. M. 1896
    The whitefishes of North America.
    Rep.U.S.Fish.Comm, 1894(1896): 283-324.
Foerster, R. E. 1925
    Studies in the ecology of the sockeye salmon, (Oncorhymchus nerka).
    Contr.Can.Biol., N.S., 2, 16 : 337-422.
Girard,C.
                    1856
    Contributions to the ichthyology of the westerm coast of the United
    States, from specimens in the museum of the Smithsonian Institution.
    Proc.Acad.Nat.Sci.Phila,, VIII: 117-122.
Hubbs, O. I. }192
    A check list of the fishes of the Great lakes and tributary waters,
    with nomenclatorial notes and analytical keys.
    Uni४,Mich.Mus.Z001.Misc.Publ., 15 : 1-77.
```

Jordan, D. S. 1889
Report of explorations in Colorado and Utah in the summer of 1889 with an account of the fishes found in each of the river basins examined.
Bull.U.S.Bur.Fish., IX: 1-40.
Jordan, D. S. 1891
A reconneissance of the streams and lakes of Yellows tone National Park, Wroming, in the interest of the United States Fish commission. Bull.U.S.Fish.Comm., IX : 41-63.
Jordan, D. S. 1905
A guide to the study of fishes.
Two volunes. Henry Holt and Co., New York.
Jordan, D. S. 1919
Now genera of fishes.
Proc.Acad.Nat.Sci.Phila., LXX, 1918(1919): 341-344.
Jordan, D. S. and Evermann, B. W. 1896
The fishes of North and Middle America.
Smi thson.Insto, U.S.Net.Mus., Bull. 47.
Jordan, D. S. and Evermann, B. W. 1909
A review of the salmonoid fishes of the Great lakes with notea on
the whitefishes of other regions.
Bull.U.S.Bur. Fish., XXIX : 1-42.
Jordan, D. S. and Evermann, B. We 1922
American Food and Game Fishes.
Doubleday, Page and Co., New York.
Jordan, D. S. and Snyder, J. O. 1909
Description of a new whiteflsh (Coregonus oregonus) from Mckenzio river, Oregon.
Proc.U.S.Nat.Mus., $36: 425-430$.
Kendall, W. C. 1903
Notes on some fresh water fishes from Mains. with descriptions of
thrse new species.
Bull. U.S.Fish,Comm, XIII 353-368.
Kendall, W. O. 1917
A second record for the Coulter's whitefish.
Copela 45 : $54-56$.
Kendall, W. C. 1921
Further observations on Coulter's whitefish.
Copeia $90: 1-4$.
Kendal1, W. O. 1923
Contr.Can. Biol., 1, 23.
Koelz, W. 1927
Coregonid fishes of the great lakes.
Bull. U.S.Bur. Fish., XLII, part 2: $297=643$.
Koelz, W. 1931
The Coregonid fishes of northeastern America.
Pap.Mich.Acad.Sci.Arts and Letters, XIII, 1930(1931) ; 303-432.
Milner, J.W. 1874
New species of Argyrosomus and Coregonus.
Rep.U.S.Comm. Fisho, 1872 and 1873 (1874)

Myers, G.S. 1932
A now whitefish, Prosopium snyderi, from Crescent lake, Washington. Copeia, 1932, 2.
Pratt, His. 1923
Vertebrate animals of the United States.
Schultz, L. P. 1929
Check list of the freeh water fishes of Oregon and Washington.
Univ.Wash.Pub. Fish. U.Wash.Press, 1929.
Snyder, J. $0_{0} 1917$
Coulter whitefishe
Copeia 50: 93m94.
Snyder, J. O. 1917
Three new whitefishes from Bear lake, Idaho and Utah. Bull. U,S.Bure Fisho, $36: 1-9$.
Snyder, J. O. 1918
The fishes of the Lahontan system of Hevada and northeastern California.
Bull.U.S.Bur. Fish., XXXV : $33-86$.
Van Coster, J. 1923
A stuady of the scales of whitefishes of mowa ages.
Zoologica: N.Y.Zool.Soc. 2, 17: 381-412.
Van oosten, J. 1929
Life history of the lake herring of lake Huron as revealed by its scales, with a oritique of the scale method.
Bull.U.S.Bur.Fish., XIIV*

[^0]: Table VI - Cultus lake (Continued)

[^1]: Table XI - Elk river (Continued)

[^2]: Length dorsal fin base in percentage of standard length：
 Average
 11.5
 11.6
 11.7
 11.8
 12.0
 12.4
 －Frequency distribution of the length of the dorsal fin base in fish in their anka

[^3]: Length pectoral fin in percentage of standard length:
 $14.515 .015 .516 .016 .517 .017 .518 .018 .5 \quad$ Average
 15.7
 15.7
 16.0
 16.1
 16.1
 16.4
 16.8
 17.2

 0

 N
 $O N-\infty N$
 $\underset{\mathrm{NHHNHM}}{\mathrm{H}}$

 ナ
 10

 Hr

 ## Locality

 Cultus lake
 Waterton lake Maskinongs lake

 Logeing Iate
 Lake MeDonald
 Bowman lake
 Nooksack river

[^4]: Irom Maskinonge 1ako.

 ㅇ 8 100

 201
 X
 X
 Table IIV - Stomach contents of 2 whiterish
 (Prosopium
 .

