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ABSTRACT

: - An investigation has been made into the possibility 6f
observing optical transitions (in the 100-micron region)
between the ground state of a donor impurity in silicon and
thécremaining five states of the {ISA set introduced by
kohh and Luttinger. While such tranéitions-are forbidden in
the usual effective mass*approximatidn,‘it is found that -
application of corrections to the effective-mass wave
functions leads to an enhanced transition probability;

| Under- the assumption of a simple cubic lattice of
impurities, the calculated absorption coefficient is of the
order of 10 cm~l at an impurity concentration of 1 x 1018 cm"3,
and fglls off exponentially with decreasing impurity concen-
tration. An upper 1limit is placed on the region in which the
transition should be observable by the broadening of the 2s~2p
impurity band. It is estimated that{for concentrations greater
~than 5 é 1918 cm™3 the transition of interest will be obscured.

The calculated values of the absorption coefficient are
p:obably only accurate to within one, or even two, orders of
magnitude, because of the approximations involved. However,
thefe would appear to be no firm theoretical reason why the

1s(°lf+ls(5) transition should:not be observed.
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Introduction

Thé-quantumwmechanical theory of crystalline solids depends,
to a large exteﬁt, upon the consequences of the periodic arrange-
ment of atoms in a crystal. It is the purpose of this thesis to
disc?ss some of the effects of deviations from this periodicity.

To a first approximation, an electron in a puré elemental
solid may be considered to move independently of other electrons
through a rigid lattice of identical nuclei. In this adiabatic,
one-electron approximation (Reitz, 1955), the only forces
influencing the electron motion are those due to Coulomb inter-
action with thevnuclei. The corresponding one-electron

Schroedinger equation is:

Hoo= -39+ %)@ = eo (1:1)

where vp(g) is a potential function with thé same periodicity
as the crystal lattice, h is Planck's constant divided by 2w,
and m is the mass of an electron. The Bloch theorem (Bloch,
1928; Wilson, 1953, p. 21) extended to three dimensions shows

that the eigensolutions of equation (1) have the form:

P (£) = €7 Uny (o) (1:2)

where upy(r) has the same periodicity as V,(r). From this it
may be shown (Wannier, 1959, Chapter 5) that the eigenvalue ¢

is a many-valued function &,(k) of the electron wave~vector Kk,
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éach subscript n labelling a different branch, or "energy
band", of the funcfion.* For uniqueness, the allowed values
of k are confined to a region of momentum space known as the
first Brillouin zone (Jones, 1960, p. 37).

The foregoing remarks apply to a completely periodic
array of atoms. 1If this periodicity is disturbed slightly in

some way, equation (1) must be replaced by:

ﬁ“" = {“°+U}+ = E“P (1:3)

where U represents a perturbing potential due to the departure
from strict periodicity.** Equation (3) has been studied with
the aid of Wannier functions by several authors (Wannier, 1937;
Koster and S8later, 1954 a and b; Slater, 1956). For the
particular application to be studied in this thesis, however,

a technique will be used which involves only the Bloch
functions (Pnk(g) of the unperturbed lattice (Luttinger and
Kohn, 1955, A;pendix A; Kohn, 1957).

The specific problem to be considered is that in which
one (or more) of the atoms in the lattice is replaced by an
atom of a different type, referred to as a "substitutional
impurity"”. Insofar as 1its atomic number permits, the impurity
atom will take over the electronic bonds left unfilled by the

removal of the original atom., Consequently, if the impurity

* Note that the branches may be degenerate for some values
of k. (Wannier, 1959, p. 145.)

** It should be noted that for complete accuracy U must
satisfy self-consistent field requirements.



nucleus has a smaller charge than the original nucleus, there
will be.a deficiency of electrons in the lattice due to a
number of unfilled bonds; while if the impurity nucleus has

a greater charge, there will be an electron excess. Impurities
of the first type are known as "aceeptors", while those of the
second type are known as "donors".

For definiteness, consider the case of a donor impurity,
such as phosphorus in silicon*, whose atomic number is one
greater than that of the lattice atoms. (An impurity of this
type is said to be "monovalent".) The nature of the inter~
action of the impurity nucleus with;the extra electron will
depend on whether or not it is energetically favourable for
the electron to occupy an orbit close to the nucleus. If such
an orbit is favoured, what is known as a "deep" impurity state
is produced, and the electron-nucleus interaction is highly
complicated. However, in the case of a "shallow" impurity
state, characterized by an- orbit of large dimensions, only the
excess charge on the impurity nucleus will be of importance in
the interaction, and the impurity system will resemble a
hydrogen-like atom imbedded in the lattice.

If it is assumed that the impurity in question is in a
shallow state, the hydrogen~atom analogy mentioned in the last
paragraph may be used to give a particular form to the

perturbation'U:

U(E)= - }?r- | - (1:4)

* All numerical results in the present thesis will apply to this
particular case,



-4

(e is the electronic charge, and K is the static dielectric
constant of the host lattice). The use of the static
dielectric Qonstant is Jjustified by the fact that the orbital
frequency of the extra electron about the impurity nucleus is
sufficiently low to be neglected with respect to the orbital
frequencies of other electrons in the crystal. The concept
of polarization of the host material by means of relative
displacements of nuclei and electron shells will therefore
still be valid. It is this polarization which gives rise to
the static dielectric constant.

There is a major assumption implicit in the foregoing
argument = that of a spherically symmetric perturbing
potential. The true hamiltonian governing the motion of the
extra electron will have a symmetry determined by the physical
arrangement of the atoms surrounding the impurity nucleus; In
the case of phosphorus in silicon, for example, U(r) must have
tetrahedral symmetry (denoted by T.S.), so that equation (3)

becones:

{#.+ U]y = By

(1:5)

Group theory (Heine, 1960, Section 6) then shows thét the wave
functions ¥ belonging to each value of E in (5) must generate
an irreducible representation of the tetrahedral group Tq
(Eyring et al., 1944).

If the wave functions ¥ are expanded in terms of the Bloch

*
functions of the unperturbed lattice as follows:

* See Chapter II for details of this derivation in the
approximation of a spherically symmetric perturbing potential.




¥e) = T [dk DXK) Qg (x) - (1:6)
(5) may.bé réplaced by the equation:
{em()-E]D™(K) + X [ou: D (K'Y <mk | Uys (e} m'k'> (1:7)

m’
= 0O
The Fourier transform of equation (7) is then:

{EmGe2) - E} FMU(R)

+ Z [di’ [dk D) <mkUp (e)lmk> = 0 (1:8)

where F“)r) is the Fourier transform of D(k).

Equation (8) may be simplified by neglecting interband
terms, and by using a suitable approxiﬁation with regard to
the "gentleness" (but not the symmetry) of Up g (r). The
result of this s%mplification is:

{Em(-1Z) + Urs (0) } F™(r) = E F™(r) (1:9)

Heré again the wave functions corresponding to each E must
generate an irreducible representation of the group Td. It
is obviously to be expected that replacing UT.S.(E) by a
potential of higher symmetry would introduce additiomnal
degeneracies into the energy level scheme of (9).

After the solutions of (9) have been obtained, they may
be Fourier transformed to give the D‘“’(k), and hence the
solutions of (5). Clearly any extra degeneracies caused by
the use of an incorrect potential would be carried over into

this case as well.
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Unfortunately, because the exact form of UT.S.(E) is
not known, the above method of solving equation (3) is not
"practicable. It is necessary to solve the problem using the
spherically symmetric potential (4) as a first approximation.
Corrections to this approximation may then be studied by the
introduction of a tetrahedrally symmetric perturbation, or
by some other less exact procedure.

It has been shown (Koster and Slater, 1954 b; Slater,
1952) that the energy eigenvalues of equation (3) are similar
to those of equation (1), with the exception that allowed
energy levels may now occur in the "forbidden" regions between
the bands. For a shallow impurity state, these "split-off"
levels are élose to the parent band; hence it is to be
expected that the wave functions corresponding to these levels
are closely related to the Bloch functions at the band edge.
If it is assumed that the band in question is of standard form
(Wilson, 1953, p. 42), with its minimum in k-space at k = 0,

then it may be shown (Kohn, 1957, Section 5a) that the equation:
{#.- g1+ = EV (1:10)
has solutions:
YUY = FU() Pmo(r) (1:11)

where F‘”(E) is again the Fourier transform of the coefficient

D“’(k) defined by (6). F ‘™(xr) is a solution of the equation:

{emC-te) = E1F™) = EF( (1:12)
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and the form of €.(-iv) is, to second order:

. . 2 .
Eml-iv) = gM-R L 2

2
2 Lm, ax* _'_Iﬂ_:‘_._
= y 2y

2 A
m

. 5{3} (1:13)

( € is the energy at the bottom of the band, and my, my,

and m, are constants with the dimension of mass). Equation (13)
may be solved approximately by setting m, = my = m, = m*. In
this case the functions F““(x) are simply modified hydrogen
wave-functions, and the allowed values of (E - €3) form a
hydrogen-like spectrum.

In the consideration of energy levels split off from the
conduction band of silicon, allowance must be made for the-
fact that the band is not of standard form, but has six
equivalent minima, at (Xk ,0,0), (0,%k,,0), and (0,03k,) in the
first Brillouin zone (Herman, 1954 and 1955). A tentative
estimate of k, has been made by Kohn (1957, Section 7c¢), who
gives a value of 0.7 kmax‘ (kmax is the magnitude of k at the
zone boundary in one of the six axial directions). Also, the

conduction=band energy near one of these minima is given by

an expression like: (EKohn and Luttinger, 1955a)

(k) = &+ —:‘—;tck.—k.)‘ + f‘,{l(k%ki) (1:14)

using the minimum at (k,,0,0) as an example. The effective

masses mj and m, are given by (R.N. Dexter, et al., 1954):

m1= 0-98"!

my < 0.19m (1:15)

In the approximation of a spherically symmetric perturbing



potential, the solution of the many-minimum problem follows
along roughly the same lines as that for a single minimum. *
The problem'is first solved for a single minimum at one of
the six equivalent positiqns listed above. Then it is argued
that by virtue of the spherical symmetry of the perturbing
potential, a similar solution would have been obtained if any
one of the other five minima had been used. It therefore
follows that if all six minima are present at the same time,

the single-minimum hydrogen-like levels will each acquire a
six-fold degenerécy in addition to its spin degeneracy.

If now a tetrahedrally symmetric perturbation is applied
to the hamiltonian of equation (10), in the case of many minima,
stationary perturbation theory (Schiff, 1955, p. 155) shows
that the zero—-order wave functions for the six degenerate
states belonging to a particular energy level are given by
linear combinations of the six corresponding individual-minimum
wave functions. Group theory (Heine, 1960, p. 107) then
indicates what the correct linear combinations are. The purpose
of forming these combinations is to eliminate all non-zero
elements of the perturbation between degenerate states.

For the case of the conduction-band impurity levels of
phosphorus in silicon, it may be shown (Kohn, 1957, Section 5b)
that a tetrahedrally symmetric perturbation can only partially
remove the ground-state degeneracy caused by the spherical-
potential approximation -~ the maximum possible splitting is

‘into a non~-degenerate level, a two-fold degenerate level, and

* See Chapter I1I.



a three~fold degenerate level. Experimental studies of the
hyperfine structure of the ground state (Fletcher et al.,
1954 a and b) indicate conclusively that the lowest of these
three levels is the one which is non-degenerate. As splitting
may occur, then, it should be profitable to examine the
possibility of radiation-induced transitions between the
ground state and the remaining five ls states.

It will be shown that if the effective-mass wave functions
derived on the basis of a spherically symmetric perturbation
are used, the optical matrix elements for 1ls-1ls transitions
are very small compared with those for transitions between
other pairs of levels. Furthermdre, they remain small even
after a correction has been applied to the non-degenerate ground
state wave function. Consequently, in the case of an isolated
phosphorus impurity in silicon, it should not be feasible to
observe the fine structure of the {1s} states experimentally.

If the impurity concentration is increésed, however, the
selection rule governing the transitions of interest breaks
down. It may now be possible for an electron in the non-
degenerate ground state on one impurity atom to make the
transition to an excited ls state on another such atom.
Unfortunately, treatment of this many-impurity problem:is
complicated by the random distribution of impurities. It is
possible to approximate the actual situation, however, by
assuming that the impurity atoms form a regular lattice which
is superimpesed on the lattice of the host crystal. In this
approximation the problem reduces to that of "solid hydrogen"
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imbedded in a dielectric medium.*

The optical matrix elements for the many-impurity case
also turn out to be very small if the spherical-potential
effective-mass wave functions are used. However, using
corrections to the effective mass theory based on those
introduced by Kohn and Luttinger (1955 a), it will be shown
that the matrix elements may be of a size which will permit
observation of the transitions. The actual state of affairs
depends upon the appropriateness of the corrected wave
functiomsused. It is probable that the Kohn-Luttinger
approach leads to results which are only good to within a
factor of two or three. However, there would appear to be
no firm theoretical reason why the fine structure of the

{ls] states should not be observed.

* See Chapter III.
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CHAPTER 11

The Theory of an Isolated Donor Impurity in Silicon.

A. Effective Mass Theorem for an Isolated Impurity.

Consider the problem of an isolated monovalent donor
impurity in a crystal of silicon. Let the Schroedinger

equation for the pure silicon lattice be:

WPy (1) = Eall) Pu(x) (11:1)
where:
H#H, = -%% vt 4+ V() (11:2)

and Vp(g) is the periodic crystal potential. By the Bloch

Theorem, the eigensolutions of (1) have the form:

P (£) = € EF Uy (0) | (11:3)
where:

Ui (£) = Ume (£ + Ry) (11:4)

for any vector Rg of the pure silicon lattice. If the umk(z)

satisfy the normalization:

2 a
m dr = —
i ()1 de (2n)? (I1:5)

unit cell

where Q1 is the volume of a unit cell of the silicon lattice,

then the Bloch functions ‘Pmk(ﬁ) may be shown to form a complete
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orthonormal set normalized over the whole crystal.

If the effect of introducing an impurity atom into the
pure crystal is considered as a small perturbation, the
Schroedinger equation for the isolated-impurity problem may

be written:

H ()

~ M

E ¥(x) B (I1:6)

where:

phd

%, + Ulx) (11:7)

and U(r) is the perturbing potential due to the extra charge
on the impurity nucleus.* If the extra electron is assumed
to move in a spherically symmetric potential, then at large

distances from the impurity nucleus:

Ule) =2 - & (11:8)

where e is the electronic charge, and X is the static dielectric
constant of silicon.**
Since the c?mk(g) form a complete set, the solutions of

equation (6) may be written:

¥ = T (di D(K) P (r) (11:9)

”m

where the summation 1s over all the energy bands of equation (1)

* For the purposes of this derivation, it will be assumed that
shallow-state theory is applicable.

** See Chapter 1 for a more detailed discussion.



and the integration is over the first Brillouin zone of the
silicon lattice. For simplicity it will be assumed that the
wave functions belonging to energy levels split off from the
conduction band of the unperturbed lattice, under a small
perturbation U(r), may be written in terms of conduction-band

Bloch functions alone. Hence:

W) 2 [die DK Qele) (11:10)

where the integration is again over the first Brillouin zone,
and the subscript ¢ refers to the conduction band.

Substituting (10) into (6)*; multiplying by the complex
conjugate of <?ck.(£), and integrating over the entire crystal
leads to the eqﬁ;tion:

{e (0 -EJD) + fa Uk, kID) = o© (11:11)
where:

Uk k) = fdr Qi V) @oly) = <eklutmlek>  (11:12)

Now the conduction band of silicon has six equivalent minima in
the first Brillouin zone, at ((k,,0,0), (03k,,0), and (0,03k,).
If it is assumed that the coefficients D(k) corresponding to k
near different minima are very weakly coupled, the solutions

of (11) may be written approximately:

D) = T &;D;lk) (11:13)

J=!

where the{aj}are numerical coefficients determined by the

* The following argument is taken, in the main, from Luttinger
and Kohn, 1955, Appendix A.



symmetry of the unperturbed lattice, and the summation is over
the six conduction~band minima., 8tationary perturbation theory
(Bchiff, 1955, p. 155) shows that there are six allowed linear
combinations of the form (13); they will be distinguished by

a superscript i:
D) = ¥ et Dylk) (X1:14)
J

Following Kohn and Luttinger (1955 c) the coefficients required
for the {Is} set of solutions are:

(o)

&7 = =L, 0,0
“?: %(hhﬂ;hop)
o = -%(lJ.o,o,ﬂ,-O
otjm= T'i.—(l,-l,o,o, 0,0) (11:15)
o = #f(qo,u-l,o,o)
o> = —J!f(O,O,O,O,I,-I)

In the spherical-potential approximation, these six states all
haée the same energy. | |

For the {is} set, the coefficients D;y(k) of (14) may be
taken to satisfy:

{el)-EI D0 + fdW Uk WD) = o (11:16)

where e{(g) is a second-order expansion aboutlgj of the

conduction-band energy €,(k):

; j
€k =t + :L; Map (6= kX = k;)) (11:17)
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Here: : _ 2
j 9" £k)

T ok Ak,
] "l’[‘.j
€, = energy at the conduction-band minimum.

Luttinger and Kohn (1955, Appendix A) show that provided

U(r) is a "gentle" potential,

Ul k) 2 (—1'-1;‘,{@ Ule) e 6-8e o Y (o) (11:18)

so that (18) becomes:

{e20 - e} D) + far’ U-¥) D) = o (11:19)

Then, multiplying (19) by el®=K3)'T an4q integrating over the
first Brillouin zone:

e+ L qif({v, T9) - E} S‘“i D;(k) ett¥-4)e
1 /

a‘:\’ Sol\_( gila-til s Idk' Dj(k") jd:'U(v_") gite-khe’ (11:20)

Hence to the approximation* that:

Sdh etttk L ranYd §le-r))

First Beitlown
Zone

it follows that:

{g Uap (£ HXEG) + UE) | File) (B- &) Ficr) (11:21)
In this case, the function Fj(g) must be defined as:
File) = f L (Y (11:22)
457 Brillown
Zone

* For complete accuracy, this integration should be taken over
all k-space.



 =16-

The required normalization of the FJ(E) is:

‘dg‘Fj(f_‘\lz = () V(II:ZVZ')

where the integration is taken over the entire crystal.

This follows from the requirement that the V¥ (r) defined by

(10) be normalized to unity over the entire crystal, since:

[ae 1eol® = fai [de DYDY [de Qefce) gepr (o
= (di 1D
while:
[de lr)l" = (i [de DAY D [dp @ H0HD= gt 068

(de am? [DUOI* = 2n)® [dn W) |*

Substitution of (14) into (10) leads to the equation:

4’;_(!1\ Z 0(; fd‘i Dj,(@ Qew (r) (11:23)

J

n

E;. o Fip (0) Q). (11:23")

where the subscript £ labels the eigenvalues of equation (21).
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B. Optical Matrix Elements.

In the dipole approximation, the matrix elements of

interest are:¥

il lpel V2>

where:

12> = $,(r)

It may be shown that:

Po= O-component of momentum = -'—"{ [x,)f{]
i -

where: | # ., + Ulx)

Hence the matrix elements (24) become:

<iglp 2’y T <l D=, #11VL>

-.:—";‘- (E;, -£y) ikl x VLD
Now by equation (10):

<illxli'e>

§, o a Sdh f di’ Djj (1) Dy (i) ekl x I ck’>

{eklxlek’> (d-!‘ Ag et(!s'-b\-r U.:l_\(r) Uer(¥)

= + |2 iK'-k).x * ,
= T I 3K, ie } Uck (£) Uew (Y dr

() N oA i(-k)r * Ju.y
+ 3o Leklek> - 3 fac e e Gk

(I1:24)

(I1:25)

(11:26)

(11:27)

(11:28)

(11:29)

* See Chapter IV.
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= 9ke
so that:
¥ ek tm  ciKme?r
m———— = e -
Yk S Z‘ Buve (11:30)

where the summation 1s over the entire unperturbed reciprocal

lattice, and:

(m) - ] igg -r - au‘k'
ke = o Idg e Wek m (X1:31)
=

Substituting (30) into (29):
' (o)
ck|xelek’> = —._-'5—‘;‘_ §(k'~k) - "'{,‘ Bywe

1t

' 3 (m) ’ "
’{‘38“ 8('-k) -~ Emv Z Byo 80k-k-Km)  (I1:32)

Now k and k' both lie in the first Brillouin zone, by equation
(10). Their difference can therefore never become as great as
a non-zero vector of the reciprocal lattice. Hence the only

non-zero contribution of the summation in (32) is for K= 0,

s0 that:
: 3
ekl xelek'> = —': -53;-,’5“5.' k) - g‘-—“) B(\_:!,- d(k'-k) (11:33)
Now:
Bikr = Z'i‘j‘*f Wy 2 (11:34)
o unit cell oke

Adams (1952) shows that if the phases of the u,, (r) are properly
chosen, the integral in (34) vanishes. It will be assumed that


http://ckla.Uk'
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this choice of phase has been made. Hence:

B® = o (11:35)
Thus (33) becomes:
Ceklxdeky = L2 8-
- A 1(&'—5)-:
- T% iczm }
= A i(k'-k).x |
o (x,e dr (11:36)
=
e CklxelkD
where
lky = ells (11:37)
Substituting (36) into (28):
{ellx gy = 2«“‘ i [ faw Djg () Dy () -y <kl i’
= Z;:;‘,Z 3.“; <j£l1¢|Jl> (11:38)
wheré:
i = () etkr
The matrix elements <jtl x,1j2’> may be written:
Gzl > =[x I Fyple) e 78 gy (11:40)

For the transition to be considered, from the ls ground state
(characterized by ay 5 to another 1s state, the spherical~
potential approximations to both FJIQE) and Fj.l.(g) are even

functions of x, y, and z. In this case (40) reduces to:
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Citlxal iy = i % FifiCe) Fysgle) sin(igj-k) e de (11:41)
the real part of thé expression having vanished because its
integrand is an odd function of x. Clearly if j = j', the
matrix element (41) is identically zero, If J ¥ j', the matrix
element is not zero, but as the an(g) are slowly~varying
compared to the lattice spacing (Luttinger and Kohn, 1955,
Section III), it is reasonable to assume that the presencé of
an oscillating term in the integrand will tend to make the
integral very small.

A more quantitative estimate of the non-zero matrix

elements may be obtained from consideration of the integrals:

Idg %e Fi3,(2) Fjig (1) sin ko cos kyrop . (11:42)
and
Kd_v_* %o F{re(8) Fpe(£) sin kjrr cos ky.r (11:43)

If J = j', both integrals are of the order of 5 x 10'4a*,
where o* is the approximate "Bohr radius" for the Fig(z). It
is to be expected that when j ¥ j' these integrals will have

*

even smaller values. (41), which is: equal to the difference

of (42) and (43), should therefore be négligible compared with
1.9 x 1020*, which is the value of the matrix element
{jtlxs1j2'> for the 1s — 2p, transition when spherical=-

potential wave functions are used.

* See (111:37) for examples which bear out this contention.
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In Chapter I1I, corrections to the spherical-potential
approximation will be considered. Anticipating the results,
it may be stated here that, replacing the ground state wave
function by its corrected value and using the estimation
procedure of the last paragraph, values of less than 1 x 10~3a*
are obtained for (41). As the 1ls —2p, matrix element is
decreased by only a factor of two when the corrected functions
are used, the ls — 1s matrix elements are again negligible by
comparison. It is therefore unlikely that the fine structure

of the {lsl states will be experimentally observable when

the impurities are too far apart to interact.



' CHAPTER I1II

The Theory of Donor Impurities in Silicon

for Finite Impurity Concentrations.

A. Introduction.

The case in which there are many impurities present in
a crystal lattice is difficult to treat because of the random
nature of the impurify distribution.* If, however, the
impurities are assumed to lie on a regular lattice within the
crystal, the problem of their interaction may be attacked by
mneans of the usual approximations of solid state physics. For
simplicity, therefore, it will be assumed that the impurities
lie on a simple cubic lattice, so that the problem of impurity-

level broadening may be treated in the Bloch scheme.**

B. Tight-Binding (LCAO) Approximation.

1. The secular equation: Derivation.

The Schroedinger equation for the many~-impurity problem
is:

HT.(r) = E(IE,(r) (111:1)

* For the treatment of a one-dimensional lattice containing

random impurities, see Lax and Phillips (19538).

** Conwell (1956) discusses the implications of the assumption
of a regular impurity lattice. See also Baltensperger (1953).



where: -
A= Hot Wele) (111:2)
and 1(9(5) is ﬁ-periodic potential with the periodicity of the
impurity lattice. Following Slater and Koster (1954);:

Welr) = 2, Ulr-ay) (I11:3)

n

where the summation is over all sites a  of the impurity
lattice. -
In the LCAO approximation, the wave functions TK(E) may
be written: -
¥, (r) = —\J"N: Z,:i diy %, eif2%1 yi(r-a,) (I11:4)
where N is the number of impurities present, and the summation

over { and i includes contributions from all eigenstates of the

isolated-impurity problem. The energy:

<l
E(k) = PS (1II:5)
where:
iKY = ‘I'k(’_')
- (I11:5')

must then be minimized by the proper choice of the coefficients

dil o Hence:

BE . 1 Y2 (xIfflk> - E(K) 22— <Kk =
ddin ZKIKY> {Bdi’a’<_ K> - ada’g'<’\’> © (111:6)

Now by equation (4) the matrix elements in (6) are:

_ 11 ( “—Qn) o
<ele> = ¢ ;;.Z oy dige Z;,"e L8 T8 G anlit e (111:7)
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and:
, o dl dioge et ¥-(@n-an) . 10" g
where:
lidan?y = ¢;(r-gn3 (111:9)
Thus:
_a_" <‘$l'_<_> = A d; ei!-(Q!'-QE) <ilgn\ilﬂ'gg'>
9d:y’ o N 2, nn -
= d:g Z 'etE-g! <lﬂ.|l'2'g..,_n)
N g m,n
- * LK-Q" . Ty
= dy 2 e Liglifamd
£, m
(111:10)
(shifting the origin to %5 and defining QE = gﬂ.-gn).
Similarly:
a—ad_ <lIK> = z d:: Y, et it 2'amd> (I1I:11)
i’ 2% m -

Substituting (10) and (11) into (6) leads to the equation:

Zdd 1 Z et Ctiflilany - Ew T e %= Citland)  (111:12)
= O
for each pair of values (i', ¢ '). Hence the secular determinant
must vanish, giving:
det iK.Qm - iK- '
it {Ze‘*‘-‘—<aumm'g=>, - E(ﬁ)ze‘9”<12|\'192>} = O
= (I11:13)

el o

Now by (2) and (3):

G ey = <1 + Wole) | i'L'am>



t

Lt ftitam> <it L H, + Ue-am)| i2'am >

+ 2 <ulule-anli®am>

ntm

i." 2112 avm L1 Ule-anli'f'am
ELCitli%and + EZMM' modaltf8m> (111.14)

Then, substituting (14) into (13):

“tize Z <iglu(r-an)lif'an >

'\#M

- (B - E5] Lot Lm,‘,g!)} _ o ((I11:15)

' 4
Using the expression (X1I:23) for lilaw: :

itli'tam? = ?:‘,“ii‘“}:.fd!ﬂsdg D,‘:(!s\ Dy (k) <cklek'am>
i
- jZ,,«E’«E (s [ D (8 Dy 1) €727 50y
- Y, o el [k Ak Dy () D () &1E7RT <tk
ﬂ' 34
- (?l.ﬂ\’ Za;"dl dsjdk Dll(k)bu’(k) <klk'am>
. (X11:16)
where: \&g;“) = etk (r-2m)
) (111:17)
Similarly:

il U(e-amli'f'am>

IE IR

= Z LHCH Sdsfds’ Dj; (k) Dy (k) €522 Lckluce-annick'> (111:18)

Now Luttinger and Kohn (1955, Appendix A) have shown that

under the assumption that U(r) is a "gentle' potential,

ekl Ul ek'> 2 g LkIU 1K™, (111:19)
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Clearly U(r -~ a,) also satisfies the requirement of gentleness,

so that (19) may be extended to give:
' ~ | '
LckiU(r-ap)l ck'> 2 e <k lule-an) k!> (111:20)
Hence, substituting (20) into (18):
il uz-an) li'f'am >

I WP Sag[u D2 (k) Dy (k") <K 1UCL-an) 1 Kk'Gm>
J

\
(Zﬂ\s Y (111221)
Then, making the substitution:
(k~kj).e
F(r) = [dk Dyy () e (I111:22)

in (16) and (21), the following expressions are obtained:

. crp » t ) .
Citlilam> = %0‘4 oG <2l j''am> (I11:23)
iRl Ulr-g)li%am> = oy ZJ o <2 IVe-anl i L'am> (I11:24)
where:

‘ - kg (e-am)
Ijlam» = Fy (c-am) e'%(e2m (111:25)

Finally, substituting (23) and (24) into (15), the secular

equation becomes:

{
Geny

‘?ff { Z et 3altap <itl T Ule-anl sy

o (111:26)

- el - €)] %e‘“‘m 'jz}aj‘a} <jllj'£'$g>} )

For the sake of simplicity, the range of £ in (26) is
normally restricted to a small number of values, under the
assumption that wave functions belonging to widely separated

energy levels do not interact appreciably. For the problem
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under consideration, £ will be taken as 1ls only. The five~
fold degenerate* and the non-degenerate ls bands will then be
considered separately in the light of equation (26).

For the five-fold degenerate 1s band, the secular

equation (26) is:

dﬁt ! {K.Qm \ i _if ‘
s -~ e = X: K/ 1 U(:—a.. 1sam
1< i,i“ 5 (1“\; zm %1 4 J <J s‘ nzilg -—)l ~| 3 —_>

| s {K-Qum e (111:27)
- ’('zf“'\![E"Eis]g,e = == Jz“',aJ a‘i, <.‘)15‘:)’1$Q~m> = o

while for the non-degenerate ls band:

é;)l é ei"_s-gm ?;a}‘a}: <J is| Z;.-U(:-gn)l‘jris AmD
(I11:28)
\ (o) iK.Qm o ° . ,
pirpey) LE-E$'] T, etk om 2. o ’otj/ {j1sl j'1s am?
= i7"
= O

Equations (27) and (28) must now be solved.

2. Integrals involved in the secular equation.

It may be shown™ that the coefficients Dy, (k) in (I1:23)

¥
have the property that: *

Dk} = Dy x) ‘ (111:29)

In considering the exact solutions of the isolated-impurity
problem, Kohn and Luttinger (1955 ¢) note that all ls states
other than the non-degenerate ground state will have roughly
the same energy. Thus, in spite of the fact that the exact
solution will involve separate two-fold and three-fold
degeneracies, the situation may be approximated by a single
five-fold degeneracy. (See also Chapter I of this thesis).

** See Appendix A.

**% The subscript "-3j" in (29) denotes the coefficient associated
with the conduction-band minimum at -ﬁ;j.
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Substitution of (29) into (22) leads immediately to the result
that Fjugg) is the complex conjugate of FLjiéE" Hence if the
phases of the sz(f) are so chosen that FJL(O) is real and

positive for all j, it follows that F

(r) and F (r) are

Jis -Jjis

equal. Therefore:

th(r) ettt 4 Fiis(0) e T 1j1s> + 1-318> = 2Fj4(e) cos kj-r
(I11:30)

Fm(r)e s “j1s (v) el 1j1sd> = 1-J 1> = uFj(e) sim kj.x
Then, defining:
lteny = g T ljtsamd, (111:31)
and using the values of a§ given in (I1:15), it follows that:

-m = (Z“)S/,.F {F COSk (V—Qn) + F oS k (““Qg‘ -+ F5COs k‘ ("Qh)}

= - - -
1,8m? P {F. cos k,.(r-am) f cos ky.(r 5!)}

12,8m> = (tu\’/t {_F cos Kk, -(r-am) — Fscos ks.(r-am)
. (I11:32)
13,am? = '(-2—;)—;/2‘]-15. F.sin k (r- Q-_-_J}
14,am> = (mu:{"{ Fysin ks (-]
ls»_q2> -

(;,nu; B i Fs sin Bs’-(!‘.—.‘}:‘)}

where the argument of F,j is (r —g_m) in each case.

The integrals involved in evaluating <ili‘am) are:
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Zz'_{)’ XFJ'@ Fir(e-am) Coskj.r cos kij(£-8m) dr
= ’ o [y
= &m Lyjjim + Pim Ljjm

(ar )3[': (r\F'(r-a...) cos k;.x sin kj'-(c-am) dr

= Kjm Ij.\".'.‘ p.i’ﬂ J.\'ﬂ

(lﬂ\‘ SF’({) Fir(e-am) sinkj.r cos kj'.(c-am d4r

= ﬁmldb*‘mmluz

(-1‘_;)'3 XFJ.(Y_‘) FJ'(!’,‘—_O_..!._\ Sin B“! Sin hi'(c'g'_'ﬂ d:

’ ‘ ! .
= m Tiim = Bim Im (111:33)
where:
Xj'm = COSKJ'.Q.._.,
(I11:34)
Ri'm = sin K.am
and: o ' .
I.i.i"_'.' = ’(;;)3 gFj (e) Fj/(e-am) Cos kj .» coskj’.r dr
ﬂ .
1 ijm. = (-ér—)',gﬁ*(c\ Fi/(r-am) Cos kj.r sinkj'.¢ dr
Iﬁ’g = ———S ) Fy(r-am) swm kjr cos ky'r dy (111:35)
Y . . H .
i = -5 [FI00 Fitean) sin ki sin byr de

Similarly, the integrals involved in evaluating <ilU(r-an|i’

am>>
are combinations of inte % ’ -: ¥
grals Usi'mns Ujji'mn s Uj5'm n> Ujj'mn
of the form:
Uﬁ"!n-: (1 pr gF €) F,(r-g,..) UCr-a,) cos k;.r coskj.r dr
(I11:36)
ete.
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3. Evaluation of integrals,

The integrals of (35) and (36) may be shown to have the
following approximate values (using the spherically symmetric
potential (I:4) as an approximation to U(r)):

B S 1
Lie = 2+ 3 v wen
I“jj'o = .__1__..__ - ¢ .t
a2 J J
) (1 +2k2 8% [ ] (t11:37)
* -Am/B
e = 3 i3+
[ « Id .
L I.WQ Jim by m\osy with the m= 0 case.
r a B' . 1Y}
Lijo= Tjo = o© Lan ]
B ’
< Liim = I?fl'.'.‘ = 0
' (111:38)
L IJn.i'.".'.g I.?;'.'.' = O by analogy with the «-integruls.
¥ o
1130 = 1 Ijjo
Y
Lijm= ©  Ljey, al m1,
(X11:39)
Y o
I.I.iu 2 Ium
o
Ujio = xa‘iz z————-—“”:B,)}
o
1 Ui = -5 {5vier ) Li«y]
« = Am
Viie = - (6" 14 2=2]) (111:40)
U.i:": « Ufm by andegy with the m= 0 case.
\
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[ (18 '
Ujj'o = Uﬁ-:o = 0 Lall J’,j']
. \
8 - 1 . 2 _am/ ’
s Ui, 2 v ¥ +& l(5x10°3)(22)e B ain KoGm
8 ~ a.' B 1 \
U”.m o U“,E 4 U“... by analogy with the cz-mfesrals.
¥ ) 2 o
( Jio = -~ ':—a'o - UJJ°
U-Yq 3 U-r-l = o [ i * "]
{ Uijo ji'm I*J (111:42)
2 § ~ o
{ Ujim ® Ujjm

Integrals UJ-J- ‘m n s for which g_,l is neither equal to gl". nor zero,
are difficult‘:o evaluate, However, it is to be expected that
they will be smaller than the two~centre integrals of (40, (41),
and (42).* Consequently a two-centre approximation, in which
these integrals are ignored, will be used.

In (37) to (42), the notation is as follows:

Qpm = the magnitude of ap.
Kg = the magnitude of kj.

(111:43)
e = the electronic charge.

X = the static dielectric constant of silicon.

A = the transverse "Bohr radius" for Fjis(i)
in silicon.

B = the longitudinal *"Bohr radius" for Fjis(g)
in silicon.

x (1I1:44)
# an appropriate average of A and B.

The functional form °f»Fjis(£) used is that given by Kohn (1957,

* See Slater and Koster, 1954, Section III.
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equation 6.4):
F- (am* xp iyt = (111:45)
(m A2 3)"1 A B?
where the z-~axis is taken in the direction oflgj. For silicon,
Kohn gives the values;

A= 250zx 108 cm

(111:46)
B=14.2 x 108 cm.

The necessity of using o? arises from the occurrence of the
term 1/r in the integrands of (40) to (42). Simplification of
the exponential terms in these integrands leads to a complicated
expression for the remaining r-dependence unless an average
Bohr radius is used.' From (46) it may be seen that the value

of o will be approximately 20 x 10~° cm. (Kohn, 1957,

equation 5.10). Use of this value leads to:
€ . 6.0 x 10°% ev. [for silicon] (111:47)

By Chapter I*, ko >

E%, where d is the silicon lattice
spacing 5.42 x 10~8 cm.; and by (46) B is approximately equal
to 2.5 d. Thus the value of k B is approximately 12, so that:

1 e 1 . 6o9x 10?

1 + k2 B? 145

To a reasonable approximation, therefore, the integrals (37) to

(42) may be taken as:

* Jones (1960, p. 121) shows that the value of kyax is %F
Chapter I gives ko= Knaxe
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o - b4 . )
{Iuo = 1= ¥

all other I-\n’fecjro.ls = O (111:48)
o ¥ e*

Ulie = Vjie = -3,a0
o v 3 -Qn/

Ujim = Ujjm = - S, {1+ aaje ™™

all other U-integrals = o (1II:49)

If it is further assumed that:

' -
jim = UYime = ©

(I111:50)

unless a, is one of (£a,0,0), (0,*a,0), (0,0,%a), or zero
(where a is the impurity lattice spacing), then the secular
equation (27) may be easily solved. (This assumption

constitutes a nearest-neighbour approximation.)

4, Bvaluation of matrix elements.

Using the results of (47), (48), and (49), the matrix

elements of interest reduce to:

{olo)> = 1

1> = 1

112> = <211 = +

Ci1l13> = (1l4d> = (115> = o (III:51)
{(zlz) = 1

(€213 = 214> = (215) = ©

[
—

{<3|3> (414> = (515>
{314> = (315> = (4l5> = ©
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<°‘U|°Q!> % Ujd)miz.-*COSkoa}

<1iul1lan> = 'Uzl‘v_-_- {eim + “3!‘}

<1|Ul29-_~> = <2l V| 1a. = UJ?.:, Ay
<1iVliam) = o Ci= 3.4,5)

{(zwl 2am> = Uim{ om + agm }
{21U] 1aw) = o Ci= 3,4,57].

({31U13an) = 2Ufjn %y | (111:52)
‘i {41V | 4am> = 2U§jm Xym
51U l5amny a 2 Ufj, otsm

h.(’:‘|U|4¢_l.;\> = 31V i5anm) = {41ViSamnd =z o .

Then, multiplying the matrix elements (52) by e'®8m  and
summing over nearest neighbours:
2 e'¥22 (ojul Oamd = %U 2+ coskea J{cos ke + cosKya + cos K}

Teikemca1v1 1am) = 2U §(1+ coskaa X €05 Kxa + cos K,a) + 2c¢os Kqa)

"

Zc‘5'9='<2w| 2am) 2V { (14¢cos koaX Cos Kxa + cos Ked) + 2 Cos K,a}
ZéﬂS-Sg {i1i1Vi2am) = (3Y i cosk.d ¢os Kxd + cos Kya + cos K.a}

Tet¥eal3iyi3and

4U {cos k. cos Kxd + Cos Kya 4 cos Kaa}

ze‘5'5=<4ll)l4g!) = 4U {cos Kxa + cosk.acosKya + cosKeal (111:53)

Ze‘K'QE(SlUISQ-_-_.) 4U {cos Kxa + cos Kja + cosk.acosKpal



all others = 0.

wherg: U= Ugj_".‘ evaluated at 0m = (a2,0,0).

5. The secular eguation: Solution.

For brevity denote:

L = cos k,a cos Kza + cos Kya + cos Kga.
M = cos K.a + cos k,a cos Kya + cos K,a.

N = cos K;a + cos Eya + cos k,a cos Kga.

™M
8

‘ -2-16 {E® - Ei5 |

(111354)0

(III:55)

(II1:56)

Then, making use of the results of (51) and (53), equation (27)

becomes
(L+Mm)- € L- &/ o o ()
L- Sz (L&NY-E o o o
[~} o 2L-¢ (=3 (]
o o (=] 2M~€ (o}
[+) (] o ([~ 2ZN-€
(Lea™M)-¢ L-E/y

(2L-€Y 2M-eY AN-E)
L-€/a (L+NY-€

= O

The roots of equation (57) are:

{E‘-.' %i(u-rurn+(L.‘+n‘+u‘-u4-l.u—r1ﬂ}
Ey= .’s;i(ur'\ul)—FLun*+N'-Ln-|_u-HM}
ES:' 2L
€g= AN

Then, making use of these results in conjunction with the

(111:57)

(I11:58)
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requirement that ¥ g(r) be normalized over the entire crystal,
the corresponding d-~coefficients may be obtained from equation
(12):

€,: d,d,+ o. All others = 0.
(111:59)
€' di,dat 0. All others = 0.
E.: dg‘ 1. All Others = 00 )
€,: daq=1.  All others = 0. (I11:60)

€52 ds=1. All others = 0.

In the isolated-impurity problem, as noted in Section B.1
of this chapter, group-theoretical considerations show that
the five-~fold degeneracy of the upper ls state is only
approximate. There are actually two sets of degenerate states:
one ( +*, v» ) corresponding to the group E, and the other
(¢, 4@ 0 ) corresponding to the group T3 (Kohn and
Luttinger, 1955 ¢). In the present approximation, therefore,
the results of (59 and (60) indicate that the states
corresponding to T3 form bands independently of each other,
while the states corresponding to E mix.

Substitution of (51) and (53) into equation (28) gives
" the energy for the non-~degenerate 1ls state in the spherical-

potential effective-mass approximation as:

E-—E(:’; = %U imycosk.&'&i(os Kxd + Cos Kya + cos Kta} (111:61)

For a simple comparison of the line broadenings described by

(58) and (61), consider the case when cos k,a = 1. 1In this
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instance, all the energies reduce to:

"E-By4y = 4U {cos Kya + cos Kya + cos Kga § (111:62)

The implication of (62) is that the degenerate and non-
degenerate l1ls levels broaden at approximately the same rate.
Clearly this behaviour is due to the fact that spherical-
potential wave functions were used throughout the calculation.
However, it was assumed in the derivation of (27) and (28)
that the non-degenerate and five~fold degenerate levels were
sufficiently far apart to broaden independently. For this
asaumption to be valid, corrections to the spherical-~potential
approximation should have been taken into account.

As the corrected degenerate 1ls levels are displaced
relatively little from their spherical-potential values
(Rohn and Luttinger, 1955 c), the results of (58) will be
taken to apply in this case without alteration. The non-
degenerate 1ls level, on the other hand, is considerably lower
in the exact formulation of the problem than it is in‘the
spherical-potential approximation (Kohn and Luttinger, 1955 a
and ¢). In this case, therefore, a corrected wave-function
should have been used.* It is expected that if the correction
were carried out in detail, the broadening of the non-degenerate
level Qould be négligible for the impurity lattice spacings

considered. This contention is based on the fact that the

* See Section C.3 of this chapter.
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correct ls(e) wave function would be much less extensive

than its spherical-potential counterpart, so that ls(o)

functions centered on neighbouring donor atoms would over-

lap much less than the corresponding 18(5) functions.

6. Energy-band broadening.

Baltensperger (1953) has calculated the broadening of
the 1s and 2s-~2p bands of equation (1) assuming a sinéle—
minimum conduction band and using purely hydrogenic effective-
mass wave functions. He finds thaf the lower edge of the 2p

band is depressed:

AE® = ous €
2 xa®

ne

Sx 1073 ev. (I11:63)
below the isolated-impurity level when rg = 3a0*, Since:
rs = an (111:64)

the corfesponding value of the impurity lattice spacing is
a = 5a. This spacing gives an impurity concentration, in
silicon, of 1 x 1018/cm3.

At a = 5d%, the results of (58) indicate that the upper
edge of the five-fold degénerate 1s band is raised above the

isolated-impurity level by at most:

AED M = -2V 2 13 x 107 ev. (111:65)

and at least:

Aag¥, = ~ 4V 0.3 x 10}ev. 1 | (111:66)

n
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-Using the values of the isolated~impurity level energies
listed by Kohn and Luttinger (1955 ¢, Table VII), the

separation of the 15(5) and Zpo(a) levels is:

8E|‘°|°f¢d = ‘(3.1xlo"'-- I..I x,l.o")gv, = 2.1 x 10 ev. ‘ (111:67)

By (63), (65), and (67), the separation at a = 50* is at
least: |

8€ ¢ = (21 x100'-05x10" —0.1x10") ev.

(111:68)

= 1-§ x 107 ev.

Hence at a = Saf, the sep@ration has dropped to about two=-
thirdsof its value in the isolated-impurity case.

Since Baltensperger's results are based on the cellular
method, they are more applicable at small values of a than
are the tight-binding results of (58). Using Baltensperger's
figures as & rough guide, it is found that the 1ls and 2s-2p
bands overlap near a = 3°f (impurity concentration
4 x 108/cm3), Hence any investigation of the 13(92—+ls(5)
transition must be carried out for an impurity lattice

spacing greater than 30?, so that the line will not be

obscured by that for the ls—2p, transition.

C. Optical Matrix Elements.

l. Simplification of the matrix elements.

In the electric-dipole approximation, the optical matrix

elements of interest are:*

7‘ See Chapter 1IV.



<5KIplok> = [ p ¥Y dr

S, e MK A )
z, di -?’n gferglkan 04 anlp-lO1s ag?

m L3 a4 ip.an k-2
— i e
= N {,M ¢

{itsan'l [xe, K] | 015 g,)l
(111:69)

making use of (I1:26). Under the assumption that all
‘impurities are substitutional, so that each vector of the

impurity lattice is also a vector of the unperturbed lattice,
Vp (2} = Vplr- .a_ﬂ\

so-that:

Hlian > = Ef lidaa> | (111:70)

It then follows from (69) and (70) that:

<sklpeloky = - B{ENKI-EQWL (111:71)
x 2l T, e tEen otk0n (g5 g el 015 an>
fet nn' ‘ -

Now by a simple extension of the result of (II:36),

itsapglxolots and> = <ianlx,loend (111:72)

Hence (71) may be written:
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<sK'lplog> = -5 TER Y -ERQY &

x T d¥ T eibedeixar <ian'l 2,10 2n>"
1 n'n i
), ., (
& (e - ER00T &
< Zd: Ze&—'g-'-!-' <1.."X¢\°§'_'_l>
1 ™
L(B-r).an
. §e (111:73)

(shifting the origin to 52' , and defining QE = 32 - Q_Bv).

By (73), therefore:

<SKNPelOKY = = B Egol) S, T, a® T ¥ il xcloamY (117:74)
i L )
where: *
KY = Eqa(K) = EfT(K)
Eso (K) 13 15 (111:75)
and
Sue = oy LetEe (111:75')

, *
8K,K' is a Kronecker & in three dimensions. Its value is

one whenever K = K', and zero whenever X # K'.

2, Evaluation of integrals in the spherical-potential

approximation.

The integrals involved in evaluating CilxelOam?
(for 1 = 1,2,3,4,5) are similar to those defined in (35) and
of 1
(36), and will be denoted by xj;'-_n_,, x{jfﬂ, xj"J".E, and x}j’.g.

For example:

oo .
XS = o | %o Fie) Fir(e-ga) cos bz coskyox de (111:76)

* See Appendix B.



1f spherical-potential effective-mass wave functions
are used for the evaluation of the integrals (76), it is
found that X;;'m and Xj??ﬂ vanish identically in almost all
cases of interé;t. Furthermore, the only non-zero integrals
of this type (certain of the xgjlm for which j # j' and
m # 0), as well as the 1ntegrals‘;§§EE and xjﬁ?g, are
extremely small, being of the order of 1 x 10~® B. Con-
sequently the matrix elements are very much smaller.than
those for 1s—»2p transitions.

As was poihted out in Chapter I, however, the assumption
of a spherically symmetric perturbing potential is incorrect.
It is therefore not a valid approximation to make use of the
procedure outlined in the last paragraph. Corrections to

the spherical-potential approximation must be considered.

3. Corrections to the spherical-potential approximation.

In Chapter I it was pointed out that the most appropriate
method of correcting the spherical-potential shallow-impurity
approximation would be to apply a tetrahedrally symmetric
perturbation to the hamiltonian of equation (I1:7). This
perturbation would have to account for:

i, _Deviations from the approximation of large
impurity-electron orbits.
ii. Departures from spherical symmetry in general.
Unfortunately, the form of the required perturbing potential

is not known; it therefore becomes necessary to make use

*"See Chaptér 1I, Section B.



of less exact techniques of correction.

Kohn and Luttinger (19535 a) have proposed such a
technique. They argue that except in the immediate vicinity
of the impurity nucleus, the spherical-potential approximation
will be very nearly valid. Consequently, if the spherical-
potential effective-mass equation is solved in an “exterior"
region which excludes a small volume surrounding the donor
atom, and the resulting wave function is joined to an exact
solution of (I1:6) in the "interior™" region to determine the
energy, an improved theory should result. In order to avoid
the difficulties inherent in the second step of this
procedure, Kohn and Luttinger have made use of the experiment-
ally observed grouhd state ionization energy to determine the
exterior wave function, and then have made a rough estimate of
the solution for the interior region. They have found that
their results are approximately consistent with the require~
ment that the two solutions join smoeothly.

The experimental ionization of a phosphorus donor in
silicon is (Morin et al., 1954)

E- € = -0.044 ev. (1X1:77)

Kohn and Luttinger (1955 a) show that if this value of (E - €.)
'is substituted into the effective mass equation (1X1:27), the

solution'of the equation is:

F(x) = ¢ ii& vgv*(§§)} , (111:78)
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where:
X = rﬁa*
n= 0.81
(I11:79)
C = normalization constant
W = the Whittaker function.
The function (78) has the limiting behaviour:
F(x) = Ce"/" i_%‘- - (1-")Ln 2x + 1} as x ¢ O.
(111:80)
n-l
F(xX) = Ce""‘{z“;’:-} as x ? .

Thus F(x) diverges near the origin. (This behaviour is due
to the inapplicability of the potential-—fg close to the
donor nucleus.) Kohn and Luttinger therefore round off the
solution within the Wigner-~Seitz unit sphere of radius
0.080" enclosing the impurity atom.
The following procedure was used to obtain a usable
approximation to the function F(x):
i. The approximations (80), divided by the
normalization constant C, were plotted,
and were found to be close together near
x = 4,5, Accordingly, the two functioms
were joined'at this value to give F(x)/C
approximately for all x.
ii. For large values of x the approximation to
F(x)/C given by (i) was found to be fitted

very closely by the expression:
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iv.

vi.
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0.65 exp (-1.25 x) (I11:81)

For small values of x, F(x)/C was assumed

to be approximately of the form:
0.65 exp (~1.25 x) + p exp (~-qx) (III:82)

where q is greater than 1.25, so that the
second exponential decays more rapidly

than the first.

The value of p was determined by requiring
the expression (82) to go to 2.30 at x = O.
According to (i), this value is slightly
greater than the value of F(x)/C at the
VWigner-8eitz sphere boundary.)

The value of q was determined by requiring
that (82) have the same normalization as the

function plotted in (i). The result was:

F(x)/C = 0.65 exp (-1.25 x) (X11:83)
+ 1.65 exp (~3.00 x)

(83) is compared graphically with the result
of (i) in Figure 1.

The value of C was determined by integrating
the curve of (i) numerically, and requiring

that:

IF P de = (am)

all gpace

(111:84)
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The result was:

2 3
Ici* = (o.s9)(2m) (111:85)

vii. (85) was substituted into (83) to give for
the corrected ground state effective-nmass

wave function the expression:

° 3, . -1.28 */a® -
Fiey = am™ {{gﬁ‘_%)”t e B, J%%me 37} (111:86)

viii. As a very rough check on the accuracy of (86)
with respect to energy, the radius for which
the radial probability distribution (Pauling
and Wilson, 1935) has its maximum was plotted
‘as a function of energy for the 1ls, 2s, and 3s
states of a hydrogen~like atom (Figure 2).

The probability distribution maximum of (86)
was found to be consistent with an energy of

=0.044 ev. in this scheme.

If the requirements of tetrahedral symmetry are to be
satisfied*, the effective mass ﬁave functions used in
connection with the five~fold degenerate ls states must be
different from those used with the non~degenerate ground state.
As the energy of the five-fold degenerate level is not known
accurately, ﬁowever, the corrections to be used in this case

are difficult to determine. Kohn and Luttinger (1955 c¢) have

* See Chapter I.
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estimated that the level corresponds to an energy of about
=0.032 ev. Using this value, and applying the procedure

used above for the ground staté, an approximate wave function
similar to (86) should be obtained. As the energy used is

so close to the effective-mass value (~0.029 ev.), it will

be assumed that the correction is small enough for the
effective-mass functions to be used without alteration. An
estimate of the error introduced by this assumption will be
made in conjunction with the evaluation of optical matrix

*
elements.

4, Evaluation of integrals in the corrected spherical-

potential approximation.

Using the corrected wave functions introduced in the
lagt section, the integrals (76) may be evaluated
approximately.

-3 4 ' o
X_,-J-,E = ?!’;n! fxr FJ(!) FJ' (:'5’3) COS"BJ'_'_‘ d!
Hence, if m = 0; or if m ¥ 0, but a  is perpendicular to

the oc-axis,

- {
Jim ©

(111:87)

since the integrand is an odd function. 1If a, is parallel

to the o-axis, on the other hand,

ar _ _V_ 1 o |
Xim = o & | (X Fite) Fite-am) dr (111:88)

+ {2 File) Filz-am) cos 2kj.x dr |

* See Section C.4 of this chapter.
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The second integral in (88) cannot be evaluated analytically.
By the arguments of Chapter II, Section C, however, this

integral should be small. Numerically, for|a |= 4a H

(z'r'r_)! fz F(e)F(r-a.) dr ¥ (257 % 16y o (111:89)
o
@ [z O Folo-am) cos 2z d = ~C288 x16%) o (111:90)

Hence at this value of FE} the second integral is smaller
than the first by approximately a factor of tem, and has the
same sign.

It is alsb to be expected that integrals of the form:

a';;’; f‘xr' Fi(e)Fi(e-am) cos*ksj.r dr (111:91)

will differ in value from (88). However, this difference is
clearly small; it vanishes altogether when the Bohr radii

A and B are replaced by their average, q*. Consequently,

it will be assumed that all non-zero integrals of the form

(21) are approximately equal to:

Xz = -

et gz F (g) F°(c-am) dr (am = Lo.0.a1)

[}

_%’ (%)4 {0.81 [A;(us )8 (03 dy - A (32 8,(o.|3§\]

+2.24 [ Ay(23) 8.(2) - A(23)8,(2)] } (I11:92)
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where:

R

As (Y)Y

n

¥
. |
Be () ( e dn (111:93)

Values of these functions have been tabulated by Rosen (1931)
for arguments greater than 1.5. For the values used here,
see Figures 3a and 3b. x: is plotted as a function of a in
Figure 4.

Other integrals of interest are:

x?:g = X?Yg er Fi(e) Fj (r-gm) cos kj-r sin kj.v dr

L
am®
\ ‘ o ) (II1:94)

- et [ %R Fte-am) sin 2150 ar

For m ¥ 0 the integrals (94) would be expected to have values

of the same order of magnitude as those in (90). 1In any case,

8 o
ngé is less than or equal to ijo. The latter integral is

non-zero and easy to evaluate. It is found that:
B -3 *

x.iJO g +(I-5X o ) a (111295)

o

Jim
at least a factor of ten less than X,, though the two

Comparing this value with (89), it is seen that X will be

integrals will not necessarily have the same sign.

Finally,
Xiim = =y (2, Fie) F2le-a ) sintkjr dr
HE T gy | Te et itETEe o

= (2:0, L i S-x, Fi(e)Fi(r-am)dr - jx. F(eYF;°(c-am) cos 2k - ¢ de }
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is perpendicular to the ¢ -axis,

)=

Clearly, 1f m = 0; or ifa

Yo '
. . = O
Xjjm | (111:96)

If m # 0 and [ is parallel to the -axis,

Xim 2 Xiim X g | (111:97)

—

R

As in the development leading to (47) and (48), all
integrals involving two different conduction-band minima
(i.e. J # 3') will be neglected. By analogy with (36), it is
expected that these integrals will be considerably smaller
tha; those listed above. ‘

As was pointed out in 8S8ection C.3, corrections should
be applied to the effective-mass functions associated with
the five-fold degenerate 1ls level as well as to those
associated with the ground state. Approximately, the

corrected functions should have the same form as (86), namely:

am™" - Qv/o® ~Tr/as
e { Pe + Se }
where the values of P,Q,S, and T are determined by the energy
of the five-fold degenerate level. If these functions are
used, corresponding corrections must be applied to the
integrals in (87) to (97), 2all of which may be expressed in
terns of xg. The dependence of this quantity on the five-fold
degenerate level energy is shown in Figure 5. Clearly the
difference between values for Eﬁ?-»e.ﬂ -0.029 ev. and

ES) - € = -0.032 ev. is sufficiently small for the use of
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the 0,029 ev. energy to be a reasonable approximation.

5. Bvaluation of the matrix elements.

The integrals in (87) to (97) may now be used to
evaluate the matrix elements <ilxsloaw?» , which may

then be éubstituted into (75).

)

{<ilxrlo_m)
{21 %10 am>

<{31%l0oam?

n

V73 (aim = o3 ) X
J23 (v - ds.) Xqn (111:98)

ne

4

- % '3"2 ng
<4 ‘ xrl (o] Qg)

fie

- % P’ﬁ Xgm
{512 10am?

n

_% FS_H_- am

(11X:99)

Substituting (98) and (99) into (75), restricting the

summation to nearest neighbours, and noting that:

qum = -(—'—‘s %y Fr) Flr+am) dr
- 2w
. _L_ 0 -] a F° _
Py Ld.x [ :b/ L:iz xr Flr) F(r+am)
= - (—‘—9 fadxj dy f dz x, Hr) F°(r-am) (111:100)
aw - 0 - 0D -QD
= - X;Q

it is found that:



{ik'lpelor> = —{-’;—‘ Ego(K) Sy

x ild"‘{g [(cos koa-1X sinikxalxy - sfniKyalxg\]

+ 201:&[(:“ koa-1X sim{Kxa} X7 - S'hiKza’SX?]

- d} 4‘ sin kea cos{K,al X (I11:101)
- d:% sinkea cos {Ksa} X3

- ds 2 \,_.sm kod cos {Kzad Xy }

For simplicity, consider:

<i5l|P;|°5> = _-;_Q‘t: Es,o(‘i‘ 855' X§
% iu{{-z;-‘ (1~ cosikod) $tn Kad (I11:102)

- d" 3;_, snkod cosKgza .3

By (59) and (60), d, and d; are mutuaily exclusive. Hence
only one of the bracketted terms in (102) will be non-zero.
Expressions similar to (102) will arise for other choices of
o, the main difference being that dz* will be replaced by
dl*, or by -(dl* + dz*). Since d; and dg both depend on K,
and thus lead to cumbersome expressions, it will be assumed
for simplicity that each of the coefficients involving these
terms has a magnitude equal to one.

Hence, in the calculation of the absorption coefficient,

two matrix elements are of importance:

<2K'lpelok> 2 -2 2T (1-cos kea) E(K) Sy X3 sin Kq2 (111:103)
<sKlprlok> & 2 & sinka EfQ(K) Sgp X2 cos Ked. (111:104)
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Both of these matrix elements vanish when cos kja = 1 ,

but their sum is large when cos k,a = 0 or -1. Consequently
the combined effecf of these matrix elements will be
relatively important, except in the'neighbourhood of impurity
lattice spacings for which k,a is an even integral multiple
of r. (Clearly this behaviour will not be observable, since
in reality the impurity lattice spacing has only the
significance of an average distance between impufities —
~‘the randomness of the impurity distribution: removes effects

which are dependent upon the assumption of regularity.)
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CHAPTER IV

Optical Absorption by Transitions between Impurity
Bands in Phosphorus-doped Silicon.

A. Derivation of the Absorption Coefficient.

l. Transition probabilities.

In treating the phenomena of absorption and induced
emission of electromagnetic radiation by atomic systems, the
most commonly used approach is the semi-classical approximation.
This approximation, in which the radiation field is treated
classically and the atomic system is treated quantum-mechanically,
leads to essentially correct results, and has the great advantage
of simplicity over more accurate treatments involving quanti-
zation df the field. Cpnsequenﬁly the semiclassical theory will
be used in this thesis in obtaining an expression for the
coefficient of absorption.

Consider an atomic system in state [2> upon ‘which is
incident a polarized beam of photons, of intensity I(w)d< in the
angular frequency range (w, w+ dw). Using first-order time-
dependent perturbation theory, Schiff (1955, Chapter X, Section
35) has shown that the probability per unit time of a transition
from i£> to another state |u> , due to absorption of a photon

from. the incident beam, is:

1
- gw Bre.  I(w) My (no |
- M‘CQ" {wu‘ - w}z t

sin? §4 (Wug -t

P

g (Iv:1)
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where:
e = electronic charge
m = electron mass
¢ = velocity of light
Qe = photon wave-number vector, of magnitude 2 .
By - E '
q_a'EE————~ (where E, and E, are the (Iv:2)
+t energies of lw and 12>
respectively)
My(no) = <ule'*fg gy (1V:3)

Ve = component of grad in the direction of
polarization.

Since the function

Sl'n‘ i -',-_(wu,—w\*'i

fog-wi’t

is sharply peaked at w=W. , and:

]

fdo sin? {4 (Wug-w)t] .o
- {w‘w‘f—’v{ 2

equation (1) may be written approximately as:

® 411181 2
P = [ 40 22 160 1Moy * 8o -
© (Iv:4)
E de Por;ug
so that: '
2,12
‘Pw;% = Ane T€) My (ng Y1 8wy - W)
mic w? S22 * (IVv:5)

If I(w) is approximately constant at the frequencies
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considered, it may be replaced in (5) by 1., , its average
over unit freduency range at w. Thnu¢ then becomes the
probability per unit time of a transition between 2> and
iw> due to the absorption of a photon of frequency « from
a beam of intensity I, per unit frequency range.

The intensity may also be written:

I(w\ dw .= nw) ho dw- . (IVZG)

where n(w) dw is the number of photons in (v, «+ d«) crossing
unit area per unit time. In terms of averages over unit
frequency range:

L, = Wohw (1V:7)

where n, is the number of photons crossing unit aréa per unit
time per unit frequency range about w. Then, substituting

(7) into (5), the probability per unit time of a transition
between 12> and |«) due to the absorption of a photon of
frequency « from an incident beam of n, particles per unit area

per unit time per unit frequency range about <« is found to be:

FPo,ug = 4niel Foh 1My (e )P 8Cwuy - ), (IV:8)

milcw

2. Specialization to a rigid lattice.

If the results of section 1 are applied to a crystalline
array of atoms, the wave-vectors ‘> and ' will depend upon

both the coordinates of the electrons within the individual



atoms, and the coordinates of the atoms themselves within

the lattice. 1In this form solution of the problem presents
formidable difficulties, since the lattice coordinates change
as the atoms vibrate about their equilibrium positions. These
difficulties may be reduced (D.L. Dexter, 1958, Chapter II,
Section 5) by using the adiabatic approximation to partially
separate the two types of coordinate dependence, and the
Condon approximation to average over the dependence on the
coordinates of the lattice. However, further simplification
is to be desired.

Such simplification may be achieved by assuming that the
lattice in question consists of a completely rigid array of
atoms.” 1In this case, |4> and W refer sdlely to electronic
states which may be denoted by %> Qnd \wk'>, The probability

(8) then beconmes:

Fopg (o 6,6 = 202 20T M (S kimap) | (1v:9)
écwi"ﬁ. "'Q)

where now:

Cukr'lettere? g 1ok

Mug (K K leog) (1V:10)

|
and:

(Iv:11)

(2
u‘
%
1]

-%\- Eu(x) - E.(K)

* In effect this approximation involves consideration of the

crystal at the absolute zero of temperature, with all zero-
point energies of vibrational states being ignored.
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3. The coefficient of absorption.

In a cubic crystal of volume V, the number of electronic
states whese K~vector lies in the range (K, K + dK) 1s

(Dekker, 1957, p. 256):

VdK
(ar)?

considering one spin oiientation only. Thus if £,(K') denotes
the Fermi distribution function for the energy band labelled
by u, the total number of empty states of each spin in the
range (K', K' + dK') in this band 1s: |

- Nl VdK’
[1- fuxn] oy (1v:12)

It then follows from (9) and (12) that the probability per
unit time of a transition from the state IZK> into band u, due
to the absorption of a photon of frequency « from an incident
beam of m., particles per unit time per unit area per unit

frequency range about « is:

pw'.uﬂ e, K) = g ?wwﬂ(v'“" k\k) [1-#u(xD] %: (1v:13)

where the integration is over the first Brillouin zone. It is
unnecessary to include both spin orientations, since the spin
remains unaltered by the transition.

Consider a small cylindrical volume of the crystal, of
cross~-section A and length dx parallel to the incident photon
beam. By an argument similar to that given above, the number

of filled band~-{ states of each spin in the range (K, K + dK)



in this small volume is: -

Adx dK
K —————
f() BeES

Each of these states may act as an "absorbing unit". Then,
multiplying by two to account for both spin orientationmns,
the total number of absorbing units in (K, K + dK) in the
volume Adx is:

Adx dx
2H00 (IV:14)

Thus the probability per unit time of a transition from band £
into band « due to the absorption in volume Adx of a phofon
of angular frequency « from-an. incident beam of m., particles per
unit time per unit area per unit frequency range about w is:

Posiuy (F) Adx = Ip“’"“‘ (Fw, k) 28(k) 28 A gx (IV:15)
. (2

where the integration is again over the first Brillouin zone.
Equation (15) effectively gives the decrease per unit time

of the number of photons in the beam due to absorption in Adx

at the frequency of interest. The corresponding change in the

mean energy flux W, ( = Nw Ahw) is:

dwd = —Uo.wp (ﬁu) Adi ) YA (IV:IG)

Now the absorption coefficient ”wx(“° is defined by the
differential equation: ‘ |

dWw _
ol - Pu W) Wo (1v:17)
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Hence, by (16) and (17):
T ug () b

Mug €)=
’ -C “ Ta ! -
= gagldk (zz\:ne ‘(53[; Fut6) Pl g (R €61 (1v:18)
v et w

Sdg (A’ 606 [1- Fle1] I Mg (KK R |

. é(wﬁ’ﬁ - W)

@m)* mic W
where both integrations are over the first Brillouin zone,

4. Specialization to centres in a dielectric medium.

The result (18) applies to the interaction of radiation
with a crystailine array of atoms imbedded in free space. If
the array is now considered to be imbedded in a dielectric
medium, several corrections must be applied (D.L. Dexter,
1958, Sections 2 and 4).

The first correction is concerned with modification of
the magnitude of the radiation field. Schiff (1955, equations
35.11 and 35.14) shews that ;. .,(fu,xx'), and bence also the
absorption coefficient, depends on sz s Where €. is the
magnitude of the field which acts at the atoms of the crystal.
It was first pointed out by Lax (1952) that €« is not in
general equal to the average macroscopic field € in the
surrounding medium. Consequently, (18) must be multiplied by
a factor 1¢%/¢ i

The effective field ratio €¢/¢ 1is difficult to evaluate
accurately. For a very tight-binding approximation, in which

overlap, exchange effects, and multipole interactions higher



than dipole~dipole may be neglected, D.L. Dexter (1956)

derives the expression:

€eff ~ n?y 2
e 3 ‘ (1IV:19)

where n is the refractive index of the surrounding medium.
However, for the case of diffuse centres such as impurities
:in germanium, Lax (1954) has shown that the effective field
ratio must be taken as 1.

The second correction to be applied to (18) involves
modiiication of photon energies and velocities by the dielectric
medium. Essentially, (18) was derived by dividing the tran-
sition probability [u,u, (Fw) by the energy flux W, . In
a dielectric medium (D.L. Dexter, 1956), W. is given by its
free-~space value multiplied by 531, where X is the static
dielectric constant of the medium, and & is the energy velocity
¢/n. For photon energles at &hich the medium is effectively
transparent, K is approximately equal to n2. Thus in these
regions the multiplying factor may be replaced by 1/n. (Dexter,
1958, Section 2 points out that multiplication by 1/n is still
correct when the medium is not transparent. 1In this case n is
the real part of the index of refraction.) /

On applying the above corrections to (18), the absorption
coefficient of interést for a rigid crystalline array imbedded

in a dielectric medium of refraetive index n is found to be:

}‘uﬂ(w) -4 Sty 2V (e \21545 (d-x-' lMu}(E"S.st'g\‘l

nc \ € an* \im/) w (1v:20)

O [1- k"] Sy - w)
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B. Evaluation of the Absorption Coefficient.

1. Simplifications and approximations.

As they stand, the integrations in (20) are intractable.
Consequently, several approximations must be introduced, as
follows:

i. Since the absorption process is to be considered only
in the neighbourhood of the absolute zero of
temperature, the Fermi functions £, (X) and f,(K')
assume a simple form. It is to be expected that
when T is near 0, all the electrons will be in the

ground-state band, labelled by £. Hence:
fu(k) = © (Iv:21)

The form of ngE) when T is exactly zero must
involve a discontinuity at the mid-point of the
2 -band. This behaviour results from the fact that
while there are as many impurity electrons in the
crystal as there are impurity nuclei, spin-degeneracy
ensures that there will be twice this number of
electronic states available in the lowest impurity
bénd. Thus when T = 0, only the lower half of band
2 will be occupied.

As T increases slightly from zero, however, the
discontinuity in the Fermi function £, (K) acquires
a finite spread. For a very narrow band, such as

the AL -band is expected to bef this spread will

* See Chapter III, Section 5.
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probably equal or exceed the band width, so that

.the electrons will be distributed throughout the

band. For simplification, it will therefore be

assumed that in this case;'»
fuey = 7 (1v:22)
By (3), the matrix elements Mu(X'knw.,) are:

Mug (KK Roge) = <uk'| e3¢ g | ok
= __;-‘- dux'| e'39un'E g | LK (1¥:23)
In the electric dipole approximation, it is assumed
that the photon wave~number vector is of negligible
magnitude, so that the exponential in (23) may be

approximated by the first term in its expansion:

e llwx'x - L

e
-

(1Iv:24)

Thus, in the cases of interest, the matrix elements

are:
Mso(K'K) = ';“" {iK'lpsl 0K'D> (XIv:25)

The expressions (25) may then be evaluated with the
aid of equations (IYI1:103) and (III:104).

In order that the integrations in (20) may be carried
out, the three-dimensional Kronecker §, 6K,K' ,

defined in (III:75') must be replaced by a Dirac
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delta-function (Dirac, 1958, p. 58). It is shown

in Appendix B that with the correct normalization:
3
(65501 = duw = L%;l- d(x-x"). (IV:26)

where V is the volume of the impurity-lattice

Yerystal",

iv. By (), the function wWg g+ is defined to be:
w!s\_(' = '%" ' E“(E')" Eg(s)l

Thus, in the cases of interest, the tight-binding
expressions (I11:58) may be used for the energies
E,(K'). As stated in the discussion of (I11:62),
the broadening of the lower band is expected to be
negligible, so that E,(K) may be set equal to the
isolated-impurity value of the ground-state energy.
Examination of (I1I:58) shows that the

expressions for the energy bands associated with
the group E are rather cumbersome. Consequently,
only the simpler expressions for the energies

associated with the group T, will be used in

3
explicit calculations.

(o) %)

2. The absoggtion coefficient for the 1s — 1ls° transition.

Using the approximations ocutlined in the last sectipn,
substitution of (II1:104) into (25) leads to an expression

for the matrix element associated with the transition between



the ground state and the ds band.

Mag,o (K'E Rowe) 2 ‘-:;:'; % sin koa Xa Eifoli) cosKaa 8w (IV:27)
Hence:
| Mage (ko) | 2 20 18 sintkoa (X3 1Y {ES, (0} ot Kaa Sy

(1v:28)

= mtv-l% ‘k.d (Xa,) {E“) (K)}l

. cos'Kza (am) d(k-K").

Then, substituting (28) into (20) and using the delta-

function &(K' - K) to carry out the integration over K':

ll2

Mdg o0 () ,:c {em} 3(9.10 (——) (X2)" sin'hea (1v:29)

L fak {EQ(0O} cos™kaa S{EF, 01-heo]

Clearly the absorption coefficient (29) vanishes whenever
sinzkoa = 0 and has its maximum value when coskga = 0. For
simplicity, intermediate cases will be ignored. Then, under
the condition that cos kga = 0, (IIX:55), (I1X:56), and
(I11:58) show that: |

ED (k) = - 4lul {eos Kua + s Kyal + A Esp
o tK) ! > (1V:30)
denoting:

akso = [ EF - EN Jicuta

impurites. ' (1v:31)

Hence, substituting (30) into (29) and taking {E% (i}’ out-

side the integral sign as W', by virtue of the delta-
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function:
Ta Wa a
v 1 fEelt 1e I W
pose () 2 LY 35 (o 2 e ] s o
bic‘os Kxd +cosKya - L%ﬁ—rl“’—)s
- 1 §f€gelr 8 (eXE)? T )
= nc{; } = m-)r w L dedta Sicos:u»cos\a (IV:32)

- AESQ "f\@
4\V}

One of the integrations in (32) may be carried out
immediately (EKahn, 1955, equations 3 and 4), by setting:

dacdu = AL d(cosn + cosy) _ aL dleos x +cot y)

| ¥ (cosx +cosy) | sint Sintu
= 3 Vsintx v sinty (IV:33)

where d{ is a line element of constant (cos x + cos y).

Hence, defining:

g - AEC)O —‘hw
41Ul (1IV:34)

the absorption coefficient (32) becomes:

1y axL
dg,0 () = cecs]? 8 (eXa)
Mds S. } ariul f m cos x +cosy (IV:35)
osa.35v=

for § between +2 and -2,
In Appendix C the integration in (35) is carried out.

The results are shown in Pigure 6, where the integral:

S '8 d
Jsintx + sinty (IV:386)

os x +cosy = §
osx,%s'rr
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is plotted as a function of § . As may be seen from the graph,
use of (36) leads to an expression for the absorption co-~
efficient which is divergent at the centre of the band. How~
ever, it may be shown® that the divergence is sufficiently
mild for the area under the absorption-coefficient curve to

| remain finite.

The divergent behaviour of (36) is a direct consequence
of the tight~binding approximation, and may be modified by
correcting the energy surfaces. (The tight-binding surfaces
are shown schematically in Figure 7.) Jones. (1960, pp. 44-46)
shows that for a simple cubic lattice, such as that considered
here, the surfaces of constant energy must intersect the
planes K, = O, Ky = 0, Kz = 0, and the faces of the first
Brillouin zone, at right angles. Clearly this requirement is
not satisfied by the surfaces of Figure 7. The corrected
surfaces are shown by Wilson (1953, p. 42, Figure I1.10). In
this case, the mid-point of the band will correspond to a
surface whose cross~section is shown schematically in Figure
8, and the corresponding absorption coefficient will lie
between infinity and the free-~electron value obtained by

approximating this surface by a right circular cylinder.**

* See Appendix C.

*% Free-electron energy surfaces are described by Dekker
(1957, p. 262, Figure 10-10b). The free-electron
-absorption coefficient may be determined by setting
(36) equal to its value at § = 0 for all values of ¥

considered.
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As the electrons in question should be described much
more accurately by the tight-binding approximation than by
the free-electron approximation, it is probable that the
correct maximum of the absorption-coefficient curve may be
obtained By rounding off the curve of Figure 6. If this is
done, the maximum absorption coefficient may be written as

a function of the impurity lattice spacing as follows:

x1 / .)1 ea/a- s
many (2) = L {218 gy (X8/a max ok .
M ds,0 (max) ncig } 3 Cala) (14 %] Ws,0 (1v:37)

on substituting the expression (I111:49) for U in (353).
(anx denotes the round-off value from Figure 6, while
co§; denotes the frequency corresponding to the isolated-

“ and 1<% 1levels.)

impurity energy gap between the 1is
In order to be able to make use of (37) to calculate

the absorption coefficient, values must be determined for

the index of refraction, n, and for the effective field ratio,’

e“ﬁ% . 8Since at the wave lengths of interest (about 100

nmicrons), silicon is effectively transparent (Bichard and

E
Giles), it should be a good approximation to write:
n= {K (1v:38)

where K is the dielectric constant quoted by Kohn (1957,
equation 5.8). To this approximation, the value of n is 3.46.

Also, since centres in silicon are fairly diffuse, having a

* See Section A.4 of this chapter.
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Bohr radius of about half that in germanium (Kohn, 1957,
equation 5.10), the effective field ratio should be
approximately 1, according to the arguments of Lax (1952).*

The rounding-off of the tight-binding absorption co-
efficient carried out in (37) is a somewhat arbitrary
procedure. - While consistency might be obtained by cutting
off the curve of Figure 6 at the resolution of the spectro~
meter used, such a method offers no guarantee of accuracy.
In the calculations performed in this thesis, the cut-off
value Smax- will be taken as five.

Substituting the approximations of the last two para-
graphs into (37), the expression for the absorption co-
efficient becomes:

2 cl/ at

271 /K w'de Kxi/a‘)
¢ (3 {1s 3] (17:39)
(7.2 x 10%) (Xifat)" e om™!
(2/a*)* {14+ 34¢}
values of this function are plotted in Figure 9.

Mds.0 (max) ()

n

C. Discussion of Results.

1. 1s — 2p, transition.

In Appendix D, the method used for the ls(Ql_.ls(s)
transition is extended to give an approximate expression for
the ls(Ql_.Zpo(e) absorption coefficient. As the latter
transition has been observed experimentally (Bichard and Giles),

it should be possible to use the results of this calculation as

* See Section A.4 of this chapter.



a rough check on the method in general. 1In the Appendix

it is shown that at concentrations for which the assumption

of tight-binding should be a good approximation, the

calculated absorption coefficient is in quite reasonable
agreement with experiment. From this it would appear that
there are no gross errors in the calculation, and that the
method used might be expected to give a reasonable description<

of the 15(92_‘15(5) transition.

2. 18(02—»18(5) transition,.

‘The results plotted in Figure 9 indicate that at
impurity concentrations of about 1018 per cm3, the 1s(oz-+ls(5)
absorption coefficient is of the order of 10 cn~l, As tran-
sitions with absorption coefficients in this range are ob~
servable by existing techniques (Bichard and Giles), the
theory would appear to indicate that the fine structure of the
1s states will be identifiable. There are, however, several
sources of error in the calculation which might tend to in-
validate the results obtained.

The first possibility of major error lies in the choice
of wéve functions for the two ls-states of interest. The Kohn-
Luttinger approximation uséd in this part of the calculation
may only be good to within a factor of two or three, for the
matrix element. Also, as indicated in Figure 5, if the 1s(5)
level is depressed below its uncorrected effective-mass
position, the matrix element for the transition will be reduced.

A second ‘source of uncertainty in the calculation is the
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assumption of a regular lattice of impurities. Clearly the
random. nature of the. actual distribution will remove de-
pendence on such quantities as cos koa.* It is to be expected
that this "smoothing-out" effect will be accompanied by.an
overall decrease in the magnitude of the absorption coefficient.
This correction may be partially compensated, however, by the
fact that more than one of the five degenerate ls states are
available for optical transitions in any given instance.
Comparison of (I11:103) and (I11:104) indicates, for example,
that the absorption coefficient (39) should be multiplied by a
factor of three or four if the effect of transitions to the
dy = dg bands is to be included.

There are several other points in the derivation at
which corrections might be applied. 1In most cases the possible
errors have already been discussed. One further alteration
should be noted here, however: if the incident radiation is
unpolarized, the absorption coefficient should be reduced to
one-third of its value for a completely pélarized beam,
(D.L. Dexter, 1958).

There 1s no guarantee, therefore, that the reéults of
Figure 9 are accurate to within less than one or two orders
of magnitude. However, in view of the fact that results of
the order of 10 cm."1 can be obtained, there would appear to
be no firm theoretical reason for the 15(92—.18(5) transition

to be unobservable.

* See, for example, equations (III1:103) and (III:104).
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APPENDIX A

Properties of the Coefficients Dj (E).

By equation (II:16) the coefficients Dj (k) and

D_j (k) satisfy:

{ela - ey D) + UKD Dy k) aw' = © (A:1)

and:

{edao-ETD; ) + Uk Doy ley it = o (A:2)

respectively, where the subscript "-j" denotes the conduction

band minimum associated with ij' Now by (11:17):

~J = -3
(k) = £+ )2)1 Mo (Rt i X e+ K, (A:3)

where:
-5 *Ee(k)
bt ok,

k= -k{

Ve (k)
3(-16,33(-kp)

(A:4)

k= kj

- 2%Ee(k) _
R = M

ks AKp

K=Ky

Hence:

-§ ‘ r J
€7 = € + 6N (-®a-KjaXku-Kjp) = Eg(-K)
(k) , z O G Sel ST & AL ST (A:5)

Also, by (11:12):

@
k ! = J(e ek’ r
U,k = [0 Qo) Py () dr (4:6)
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The periodic parts, uck(s) , of the conduction~band
Bloch functions may be shown (Jones, 1960, equation 2,25)
to satisfy:

Viuek(e) + 20k ¥ ule) + -2—,:',- i&(\g)-%"f‘: —Vp(!\} uck(r) = o (A:7)

Taking the complex conjugate of (7):

. ¥ . ’ » ) «
ViUek - 2ik-¥ uck 4+ %{ggg-%ﬂ-%(:\'ﬁkk = o (A:8)

By the symmetry of the crystal, E(k) = t.(-k), so that (8)

may be written:

Uek (BY = Ucoyg () (A:10)
and:
(A:11)

Therefore, substituting (11) into (6):

Uk k")

[ Ute) Qex(e) Pet (o) de

UCEY Pt (r) Peoye () dr
J Pe-k (A:12)

U(-k,-k")
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From (2) it follows that:

feicw-elp,n + Utk D (1 dk' = © (A:13)
Then, applying the results of (5) and (12) to (13):
(el ~E] D) & [UCK ) Dy d = O
{edtor-eY Dy ) + Wk Dy Y Ak = o
(A:14)

(el -E} D6 + Ut I DY ey &K = 0o

Thus, provided that the th energy level of equation (1) is

non-degenerate:
DJ'R(‘S\ = D—j‘g ("!5\ » (A:].S)

In the case of the 1s level the non-degeneracy condition is

clearly satisfied, so that:

Ditelk) = Dy -K) (A:16)



APPENDIX B

|
Properties of the Three-Dimensional Kronecker §.

a. Equation (II11:75') defines a function 6k k' Such
- —,—
that:

Sew = - {lk-¥Y-an
ok N j; ¢ (B:1)

where N is the number of atoms in a simple cubic "crystal",
and the summation is over all lattice sites of this crystal.
Expanding the scalar product occurring in the exponential

term of (1), and making use of the cubic symmetry of the

crystal being considered:

6k,5' - LN z eii(k’-u)a"**. (k"k"‘qna + (kﬂ-k"\anl}

i
N
z.|_
-3
™M

{ Clen- Kk . , (B:2)
Me (k- Kx)an, .ﬁNL"! ‘é,‘e““z"‘z‘“"s'ﬁ .

[} l(k,—ky\-an!
. {TJT’& g,'e ‘s

Now the allowed values of Qp, are na, where a is the lattice

spacing and n runs from O to N> 1. Hence:

. V.
._L Z e‘(k!'ki')“ng N

i . wl! .
N‘/g 2. = _I:_‘_./‘ Z [ec.(k: \‘x)&]"

neO
N"-1

n
-;;-7’ Z¢.'o At
ns

. o En"'_i (B:3)
\ N A -1

[}

(simdarly  for 4 and z.)
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by the usual rules for summing a geometric series.

Now by the periodic boundary condition used to determine
the allowed values of K in the first Brillouin zone (Jones,
1960, p. 36),

oK N g

=1 (B:4)

for each allowed vector K. By definition, (k - k') is such

a vector. Hence:

Y ~ky! 'I‘
Adr = et lknrkedNBE (B:5)
Thus if k # k':
6 P I i-1 1-4 1-1 -
ke N iAm;'ix Axyky-1 }{ Ak,k;‘l.i © (B:6)

If, on the other hand, k = k', then by (1):

Z“ei(b)-ee = N g (B:7)

Sk = 5

S
N

Hence, by (6) and (7):
6\55' = (B:8)

- This behaviour is analogous to that of the usual one-

dimensional Kronecker

b. The function §, .+ may easily be approximated by
Y32

a Dirac delta function, as follows:



Z e~i(‘.‘.’\.§ \-Sg
4]

7T

A T e tEKYea g
NQ n B

e

A\

entire
crystal

(B:9)

= @ g
N S(k-k")

where V is the volume of the crystal.

Clearly:
(Sip)

Hence:

[8Ck-x11

(B:10)

(B:11)

The result (11) is used in Chapter IV in the calculation of

absorption coefficients.
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APPENDIX C

Evaluation of the Integral (IV:36).

In Chapter IV, the integral:

J al
(sin’x &+ sinty Cosx 4cosy = § (C:1)

o&x,g&ﬂ

occurred in connection with the calculation of the 140 .12
absorption coefficient in the tight-binding approximation.
Lines typical of those over which the integration must be
taken are sketched in Figure 7.

Now, by elementary calculus,

AL = VTETI (c:2)

Along the line (cos x + cos y) = § , dx and dy are related

by:
dy = - 302 gy
3 S y
- sinx dx
- (§-cosx)? (¢:3)
Therefore, by (2) and (3):
dx dx { Sintx +sinty }'/2.
1- (§-cosx) (c:4)



iy £ > P

Hence the integrand in (1) becomes:

aX = dx
VSintx 4 sinty V= (¥-cos)t (C:5)

with x varying between 0 and cos'l(i -1) whenever ¥ is
greater than zero, and between cos"1(§-+ 1) and 7 whenever
X 1is less than zero. By (5), the integral in (1) may thus

be written:

fCOS. (E-‘) dx [os i s 2]
A V12 (§- s 2 ' (C:6)
™
dx {-2¢% < o)
o' (o) V1 (§-cosx T (C:8')

Changing the variable in (8) to:
x= Ssx-toy (c:7
and defining:

2%
(1_~§\1 | (0:8)

the integral (6) becomes:

2 Kﬁ ax
2-% ), [x(-00% + x(-x)7T (C:9)
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Similarly, (6') becomes:

2 [% dx , '
24% L Y xO-x 0874 x(1-%Y) (C:9"')
where: _
’ - _2§
(248’ (C:10)

Clearly, taking into account the allowed values of ¥ in each
case, integration of (9) and (9') will lead to a function
which is symmetric about ¥ = 0. Hence only (9) need be
considered in detail.

In the limit as § approaches 2, § becomes large, and
(9) may be approximated by:

|,2

\{I __4x__ - _ar
ooy Ey (C:11)

Comparison of the values of §x(1-X) and [xG(-x)]* in the
range of X considered indicates that (11) will be a valid
approximation for all § greater than 0.5.

When % = 0, (9) becomes:

{"1 dx . _ [zn _|_:_1 '/a.
L X (=% x ], (C:12)

As this integral diverges, the limiting behaviour of (9) as
§ goes to zero must be examined in more detail,

The integral (9) may be rewritten as:
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2 f"‘ dx
2-% o x(-x)J 14+ B/x0-%x) (C:13)

Clearly, for values of X much less than § , the expression
under the square root in (13) will be dominated by its
second term, while for values of X much greater than § ,
‘the first term will dominate. Thus in the limit of small

¥ , which corresponds to the limit of small § , (13) may be

approximated by:

.—-2_{ (r_——d-x———— . I"‘ olX.
2-% L, V3 JX0=-%Y g xQ-0{1 s $axu-n) }

2 1 -1 . 2 -+ {-2%
e St 1 - tonh  ————
{Jf'cos (1-28) + Ji+2% © J1+ag }
(C:14)

f1- A4S 1 o+ = e -8+ 4
(2-¢» Jasy— - A+ Y

1]
=
§

M

-1 - - 2%)
J’%‘ cos 11—_(%_3_‘7.1 4+ 2 tonh %i__

Neglecting the first term, which goes to two as goes to

zero, (14) is seen to go to infinity as:

b 2 tanh™ 20-2y%) ~ lim 2 tanh™ (|_ %g)
¥—+©° 2-% f»o0

R

wn In 2
l 4 3% (C:15)
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As the natural logarithm of 2/3% goes to infinity more
slowly than any power of 2/3% , it is clear from (15) that
the area under the absorption-coefficient curve will remain
finite in spite of the divergence of (12).

Values of the integral (1) are plotted against ¥ in

Figure 6.
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APPENDIX D

The Absorption Coefficient for the 1ls—— 2p, Transition,

By a method completely analogous to that used for the
ls(ol—a 15(5) transition, an approximate expression may be
derived for the absorption coefficient associated with the
ls(ol—-;Zpo(s) transition.

Rather than carry out a complicated energy-band cal-
culation for the broadening of the 2s8-2p impurity band, a
tight-binding expression will be assumed for the 2po energy,
nixing with the other n = 2 states being ignored. The
parameters in this tight-binding expression will then be
determined from the results of Kohn and Luttinger (1955 c),

and of Baltensperger (1953). The function so obtained is:

Ezf,(}j) = Eizn, - v icos Kxd 4+ cos Kya + cCos K.a]
(D:1)
where:
E;p = the isolated-impurity 2p, energy, -1.1 x 10'2 ev,
0 .
U' = 1/6 of the 2p band-width given by
Baltensperger . (D:2)
In the case of high concentration, E;p must be modified
o -

according to Baltensperger's calculations.
Corrections to the effective mass theory will be ignored

for the 2p, wave functions, so that:
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Fap () = A% 1 2 &t
2P~ \/? m (a.)S/z (D:S)

Using (3) and the corrected ground-state wave function (III1:86),

the integral:

X [ Fap (o) 2 Bl (e-am) dr (D:4)
' {a= laml}

may be calculated. Rough values for this integral are shown

)
@)y

in Figure 10.
By (1), (4), and (II1:74), the optical matrix element of
interest is, under the assumption that the six degenerate Zpo

levels broaden independently:

<;1?°(.K_'\ ‘ Pc‘ ;:;(‘S\) = - t'% 8_!’ ElPo.“ (_K_\

20, (D:5)
. ix?’ + 2)(: (cos Kxa + Cos Kya + cos K;a\?

where:

E?.R».ls (E\ = ElPo(K) - E(I:)(&) (D:G)

By (5), (1Iv:20), and (IV:23), the absorption coefficient

for the lsggl»-Zpo(e)transition is:

€elt lYe\r V ' .
Mg, @) = S (SN N L [k [dic’ <061 1 pel 2§ ) |}
. 6‘ Eap,, 15 (K) 'h“’}

= m iRV A o (KR}t (D:7)

fﬂdxdg de 3(cosx +coty + cosz -0

o
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where:

) L °
= o (B EQ -%e] :8)

and a factor 6 is included in (7) to account for the six-fold
degeneracy of the 2p, band. The expression (7) may be simpli-
fied by the procedure which led to equation (IV:23) for the
ls(ol_ois(s) case. The result of this simplification is:

L (Eex? 24 22 2p 7-?.
P = LEEE 0T @)
where:
g - I ds
N sin*x + s-‘n‘\z +sin*z2 Cosx 4+Cosy + Cos 2 = 1 (D:10)

[-X3 %Y%3 T

The integral (10) may be evaluated approximately by the

methods of Appendix C. The element of surface area is:

s$in®* + sn?t stz )"
dS={" “a+"zdxda
| = -cosx - cosy 2 (D:11)
Hence A reduces to:
é fcos':q-z) Icx:s ‘-1~ ca:;
= _ * V1= (q-cosx~casyit (D:12)

Whenever:

~cosx ¥ 2 A
" (D:13)
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the y-integral in (11) may be evaluated by means of (C:11):

cos (-2 1
g = T dx - T S dx 14
o J2(n-tos x) VIG) L VT X {50-x) -(1-%)* (D:14)
where:
2
$= 33 (D:15)

It may easily be seen that (12) corresponds to restriction of
X, y, and 2 to values near the bottom of the band.

If § is assumed large, as it will be near the bottom of
the band, the integral in (14) may be evaluated ﬁpproximately.

The final result is:

1
11 dx -
2 2G-0 L S-02 T @ (37 (D:16)

The result (16) may also be obtained from direct con-
sideration of the integral in (7). At the bottom of the band,
when x, y, and z are near zero, the cosine terms in (7) may

be expanded in a Taylor series about the origin:

Cos X + Cos 4 + Cos 2 3- ';Z"t (D:17)

Hence the integral becomes:

4

w

m §(L -G) dxdyde

L T
2{ /zs.'n edo [W‘ d¢ r r? 8(r'-203-n1) dv.
] ) > o

(D:18)

Tn
I'z.{ VFT §(r2-203-01) dlr®)
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Using the delta function, (18) becomes:

4= }T_T 3-n (D:19)

which is the same as the result obtained in (16).

‘Near the centre of the band, the integral (9) is
difficult to evaluate. Hence, as a first approximation, the
expression obtained for the bottom of the band will be assumed
to hold for all (x,y,z). The expression for the absorption co-

efficient at the centre of the band then becomes:

- ey 1 24¢* 29 P02
Fls.lh(mu) @) = nci ‘rra‘elUl {x, + 2'1Xi } %m
. e iw}z & o (X¥)
nc € al 1u'|
(D:20)

IR

(l ex IO 3°) ,lu | {xifo} (d)l

since = 0 at the band centre, The absorption cross-section

is then found by multiplying (20) by a3 to obtain:

-30 ° 2t
o v (Lexio™®) 2 X0y (p:21)

In Figure 11 the absorption cross-section (21) is
plotted as a function of a/ot. 1t may be seen from the graph
that (21) is approximately constant between a = 8a* and
a = 140*, with a value of about 3 x 10715 cm?. This value
is in quite good agreement with the experimental results of
Bichard and Giles, who obtain an absorption cross-section

value between 2 and 4 x 10°Y° cm2.

The non-constancy of the calculated cross~section beyond
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a= l1l4a is probably due mainly to inaccuracies in the band-
width 6U' as read from Baltensperger's graph. A contribution
from the natural line-width should be included.

The close agreement between the observed and calculated
cross-sections is probably fortuitous, since the use of the
expression (16) for x,y, and z away from the origin is un-
“Justified. It is expected that correction of this error
would increase the absorption coefficient (20). However,
this correction should be at least partially cancelled by

taking into account the random distribution of the impurities.
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