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ABSTRACT

r

This thesis deals with the study of some demodulator
lead-lag networks. Specifically the problem has involved
analysis and design, accompanied by experimental verification
of a new approach to the realization of phase-lead and phase-

lag networks for application in ac serVomechanismS°

Analysis has been made of several circuits, different
in physical layout but operating on the same basic principle.
By.computing the parameters which describe the step response
othhe particular network, an equivalent transfer function is
obtained. This trénsfer function is the describing function
for the limiting case of infinite carrier-to-signal-frequency

ratio.-

Experimental work was done with an electro-mechanical
network, capable of generating low-frequency sinusoidal-modu-
lated signals. Phase and amplitude characteristics of an ac
lead network, centred at a frequency of 400 cycles per second,
were obtained. ©Since only in the limit ﬁi£”¢°OCan the network
be represented exactly by a describing_fﬁigtion, experimental

and analytic results for the network were compared to check

the‘limiting describing function as a practical representation.
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1.0 Introduction

In servomechanism design, compensation is often
necessary to meet system specifications. In open-loop sys-
tems, problems may arise in gchieving a desired transient
response., In closed-loop systems, stabillity margins may
require gain-phase compensation. The compensating networks

commonly used are lead-lag networks.

In servomechanisms, information may be transmitted
by a dc voltage level or with a modulated carrier signal.
For dc lead networks, analytic results are well known. De-
éign specification may inclu@e, from the point of view of
a transient response to a unit-step input, the value of the
output for t = 0, the value of the output for t = oo, the
decay time constant; or, from sfability considerations, the
maximum amount of availabk.pﬁase shift; and the frequency ét
which this maximum occurs. Depending on the particular net-
work, one has two or three independent choices of design
parameters. Conventionally, compensation in ac systems has
been achieved by either of two methods. The first of these
is the passive system, with éompensation being achieved by
the R~L-C elements. The realization of the ac network is
obtained by the usual 1ow—pass-to¥band-pass transformations.
Similar characteristics may be obtained by employing parallel-
T and bridge-T networks. These networks are‘tuned to the
carrier frequency and hence these characteristics are quite
sensitive to any variation in thils carrier frequency. Gen-

erally for these networks, the attenuation at the carrier



frequency i1s severe and the phase characteristics are effec-
tive over a very limited bandwidth. The second method of
achieving ac compensation requires a demodulator, a dc net-
work, and a modulator. Here the‘envelope is peak detected,
the filtered signal is applied to the dc network and then
chopped to reintroduce the carrier frequency. The merits of
a network of this type are the independence of carrier freq-
uency and the large amount of phase shift available. The
main disadvantage of this network is the presence of a fil-
ter which limits the amount of available phase lead and the

circuit complexity involved.

This thesis concerns itself with the detailed
study of some demodulator lead-lag networks. These networks
have a resemblance to the démodulatdf—dc-network»modulator«
type systems. However they operate on a different'principle
in that the demodulation operation is not completely}carried
out and there is no modulator. An analytic technique has
been developed based on the study of the transient response
to a step input. Parameters descfibing the transient res-
ponse have been found and these a;e used to obtain an equi-
valent circuit which is valid only for infinite carrier-to-
signal-frequency ratio. Previous analytic treatment of
various demodulator networks has been superficial because of
‘the difficulty in obtaining equivalent circuits. Using limi-
ting functions, the author has obtained equivélent de networks.
Experimental work was directed to&ards determining the ade-

quacy of these networks,



2.0 Methods of Analysis

For a non-linear system it is impossible to give a
general definition of a transfer function. For certain types
of networks, it is convenient to define an equivalent transfer
function or describing funection of the system. The descri-
bing function method uses the fundamental component of the
output response to a sinusoidal input signal, to define a
transfer function. As the describing function plays the role
Qf'the transfer function'for the fundamental frequency, a

suitable equivalent linear circuit can be obtained.

For demodulator-type networks it is not possible to
obtain a describing function which is valid except in the 1i-
mit as.the ratio':;’%__,},_oo° The subsequent analysis of these
networks relies upon the quasi-stationary nature of the sig-
nals. That is, the amplitude of the signals is slowly time-
varying but may be assumed constant for a short period of
time without appreciable error. In order to estimate the
behavior of a particular signal, quasi-stationary Fourier
analysis has been applied. Since the theory of these ac
lead networks is developed from a transient response view-
point, consider briefly fhe transient response of a dec lead
network to unit-step input. If a unit-step voltage is ap-
plied at the‘input, the output will suddeniy rise to an ini-
tial value, followed by a decay to a steady state value as
the condenser charges. For an ac lead network, if the input
is a suddenly applied unit amplitude sine wave, the envelope
of the output will suddenly rise to an initial value follow-

ed by decay to steady state value. This is illustrated in



Fig. 2.1,

Input

Output

a. DC Network | ) b. AC Network
Fig. 2.1 Lead Network Response to a Unit-Step
Input
Referring to Fig. 2.1, the following parameters are
defined which characterize the limiting describing function.

These are:

1
a = Vp(0) 2.1
viioo)
1
¢ = %09 g 2.2
v%(O)

T, the time constant assocliated with the response
to a step input. vl(t) represents the envelope of the sig-
nal v(t). Then "a" and "T" may be used to define an equi-
valent dc lead network (see Appendix I). The schematic may

be written for the signal fundamental as shown in Fig. 2.2

Y(s) | '
o, T b v, (t)

V) —> ¢ >

Fig, 2.2 Complete Equivalent Circuit for
an AC Lead Network




To account for half or full wave operation and the 5
possible use of transformers, the Transformation Ratio "G"

- has been introduced.

In order to determine "a" and "T", consider Fig. 2.3,
which shows a typical voltagé output appearing across a load

resistor Tye The terminals of the condenser are synchronously

reversed by a diode bridge so that the current entering C is

unidirectional. Both Vo and Vc are taken to be quasi-station-
> @ Ve
0 T ' +1 |-
Vo | , tﬂ\\yj +‘*‘““°"+ Ff”o‘_“‘ +
v, N4

- v
\'s : 1 ©

O-

(e

C

Fig. 2.3 Typical Output Voltage

ary signals. One may write the Quasi-stationary average cur-

rent into the condenser as,

T m _
I(t) ?~1j’i ag = 12[ -Vc(t)+51“¢)d¢ =1[Me+2 | 2.3

T Tq T\ To To

1T "0 T ©
If the change in vé;per cycle is small, then

Ao = ilt : (see Fig. 2.4 below) 2.4
C
with At = 27
We ' v »
Rewriting thus: vac,= I 2.5
th c
It can be seen that ‘
lim [&vc = dvg and 1im I = “VYe + 2/T 2.6
W
gg__>oozxt dt wg Soo - O o

vc(t)

- Fig. 2.4 Approximation of Condenser Voltage



The approximate waveform used in the analysis is shown in
solid lines, while the actual waveform is shown in dotted

lines. The preceeding equations may be solved for v, giving

an exponential function with time constant T. In order to
obtain the other two parameters a and G, consider a quasi-
stationary Fourier analysis of the output voltage. From

Fig. 2.3, it is seen that
21

-v . +sin@

c sin@ ag .

V%(t) = _lfznx;osinﬂ ag = 1 f
JTZo T™°

From the definitions of "a" and "G", these parameters are

easily obtained. With reference to Fig. 2.2, the complete
equivalent circuit has been determined with the aid of the

limiting deseribing function.

For design purposes, it is convenient to have an
equivaleﬁt dc network resembling as closely as possible the
actual circuit. Consider Fig. 2.5. For this circuit one

obtains a time constant of

Cl
[ |
LJ\;wi;_J <E T' = RC' with L =1 + 1 , and
roﬁ/ Re Ts To
Ts N

r r

s + To

e

& the factor a =

Fig. 2.5 DC Lead Network

The procedure for determining an equivalent circuit is:
(1) Equate load resistors. |
(11)  Shunt the condenser with a resistor rg to
account for the attenuation effects.
(1ii1) With rg included compute an equivalent re-
sistance Rg through which C' might discharge
with time constant T'. To find C', equate T’

with the time constant of the ac network.



3.0 Circuit 1.

The first demodulator-lead network to be discussed
is the 6-diode gate. A complete description may be found in
Appendix II, Reference 1. Briefly, with reference to Fig. 3.2,
the control voltage VR blocks the diodes D1 and D2 so that’cufé
rent is passed through the ﬁetwork. The input voltége will
then appear at the output. For a better ﬁnderstanding of t@e
operation, the input, output and control waveforms afe showﬁ

in Fig. 3.1

/ - Py PR
/ “\_ \ j

Input \£ /_1=h\é.a,u - m\m.,./ﬁu“ .

Output vy Z__ m_m/_ \mw_bz/ \\* e

Control VR |

Fig. 3.1 . Voltage Waveforms

Consider the circuit shown in Fig. 3.2. The fol-
lowing equations, valid only during the period that D1 and
D2 are blocked, may be written for Fig, 3.2:

, - +V
VR jj}gr i, = V-v, 3.1
._,..K‘\ ~ r 1

b

D1 | v
1l+ £ S i, = YoV 3.2
+ <= r
b=, 1
Yo I'O i + s = 34 ,
i;,L 'ﬂ‘ ‘i/ 3 12 et ll i3 “ i)‘l' 303
0 12L4 ry ‘Subtracting 3.1 from 3.2 ylelds
I
¥ T = 2V,
| +VR #1_w_ -V i2 - il = rl 39’-"
Fig. 3.2
Schematic for the Definition
of the Quantities to be used cont'd.

in the Analysis.



Substituting 3.4 into 3.3 gives ' -8

- 2V
i3 - i)++}__o. 305
R ¥ .
. ~V
Also i), = 2 3.6
To

Substituting 3.6 into 3.5 yields

i, =v (1 +2) = val 3.7

3 0F, F, %R 3
with 1=1+2 3.8

R I'o rl . |
Then Vo =-Ve + V3 | 3.9

The problem is to determine v, as a function of
time with the condition v,(0) = O and a unit step applied

at the input. Consider the circuit shown in Fig. 3.3

(o)

. Ve
/ﬁ\\,/ o +| = o
R + = = Vgot+vy conduction
+ c :
L = 0 non-conduction
O <7 -

Fig. 3.3 Circuit Opefétion
The output voltage waveform Vo‘;f.any time t is shown in

Fig. 3.4

>¢ .

0 : 2
VO, VL_[/-\ ,
&4

4\

Fig. 3.4 Output Voltage Waveform.

Then according to section 2.0, one may write the quasi-sta-

tionary average current into the condenser as 3.10
A 2’ 27y - : Ft )+ s~ g -V (t)
1(t) =~1—f 1,40 = 1 [P™Vg ag = 1 [[=Vc(t)+sing jar= e+ 1
e 3 >t/ R 2% JLT R - 2R TR
[}



The differential equation for the condenser voltage is

,i % (-Vét)+2) 3,11
The solution of 3.1l, with the condition v,(%=0)=0, is

Vo ilg'(l-exp(iéc)) 3.12

T .
In order to obtain the parameters "a" and "G" mentioned in
section 2.0, consider the fundamental of the output voltage
by applying Fourier analysis to the quasi-stationary signal.
217
vi(t) = l«L vosing df = __j’ (-vc+51n¢)51n¢ ag = -2Vc + 1 3 13
T T T 2

Then one obtains,

vi(0) v'(0)
a= o ‘= ﬁl~=,5p3 and G = o =4 =1
V5 (o) 2 o Vi(05 1 2

The time constant of the lead network is T = 2RC, which is

apparent from 3.12.

For design purposes, it is convenient tofhavevas
similar a:network configuration as possible to the ac net-
work. From the procedure outlined in section 2.0, the'cif-
cuit of Fig. 3.5 may be used. For this circuit the-time

constant is T' = R,C' with

g "
| § ,
» 1=1+1and the parameter
R Re R RS , .
o a.is R + Rg . B
RS H

Fig. 3.5 DC Lead Network

Equating parameters, one obtains _R _ =1 - 8
R+Rg e

or Rg = 4.3 R

Equating time constants it is found that C' = C g?



Then the following equivalent dc lead network may be drawn

as shown in Fig. 3.6

Y(s) = 1 (Lt als)
a 1+ Ts

[
H

O____Gz'% ﬁic a=503
hE > T = 2RC
R
LAAA~
43R

Fig. 3.6 Equivalent DC
Lead Network

10



4.0 Circuit 2. 11

The first published reference to demodulator-lead
networks is a brief description given by Diprose (Appendix II,

Reference 2)., The network is shown below.

: : n:l
1 c 2

Fig. 4.1 Diprose's Circuit.

The assumptions for network cperation are: the voltage level
of the reference signal (REF) alone determines whether the |
diodes conduct or not; and, ideal transformers and ideal
diodes are employed. If the turns ratios are conveniently
chosen as indicated one may write the following ac equivalent

circuit, Fig. 4.2.

C with r1= 2
o - Is 0 nq\wfwfmo,» r,= 1
+ R 27 R L . o+
2v f ; gj 2e, = Vg4
_ %RL , C
O {;‘t i 'r § - l_:__,_...__.o
C

Fig. 4.2 Transformer Equivalent Circuit.

For ease in analysis consider the unbalanced equivalent cir-
cuit under various operating conditions. The network has two
operating states determined ty whether the diodes are conduc-'
ting or non-conducting. Consider the circuit with the diodes
noh-conducting and an arbitrary voltage ve on the condenser

as shown in Fig. 4.3.
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-

Fig. 4.3 Circuit for Diodes Non-conducting.

As v, 1s slowly varying, the output primary terminals are
essentially a short circuit and hence the current flowing is
given by,

19 = Ve 4.1
R

The inductance of the primary of the output transformer is
assumed to be so large that this current remains unchanged
during this conduction cycle of the diodes. The voltage -v

c
must now appear across the output.

Fig. 4.4 shows the equivalent circuit when the di-

odes are conducting.

C
+ i g - - 13 -+
v
R S c \L‘ RL ig e,
iC )3.
Fig. 4.4 Circuit for Diodes Conducting.
Then clearly, 4
Hence . -y : .
lc =181 ""c¢ Diodes conducting 4.3
Ry, ,
o Diodes non-conducting

Now 1 =1, + i4 ' b b



Then as explained in section 2.0, one may write

4.5

With the averages taken over the appropriate range, i may be

found, _ en e - en
I=1]14d0 = _;_{ i, 4@ + | ig dﬁl. 4.6
210 2n 0 0 i
with @ = wt

Substituting and integrating yields,

i= -Vc(___.l + .]_-) + 1 . o )+,'7
2R, R RI,

4,8

and T = R.C | 4.9
The solution of'H.S, with the initial condition that v, =0 for
t=0, is:

Ve = 1 Rg { 1-exp-t 4,10

7t KL ReC

Writing the output voltage vy as a quasi-stationary Fourier

series and solving for the amplitude of the fundamental'vé,'

one obtains, as Vo = 2eq,
vi(t) = 1-4Ve | B b
’R’ .

A lead network may be described by parameters which
may be obtained from the response to a unit-step input.
These parameters are "a", "T" and "G". Using equation 4.1

and equation 4.2 one obtains:

T = RC
a = vé(t=0)_- 1
Vo[oo) T-4U R &
2 (2R14R)
¢ =v3(t=0) =1 =1

13



Consider the zircuit shown in Fig. 4.5

Fig. 4.5 Equivalent Circuit.

Following the procedures outlined at the end of section 2.0,

one obtains from (ii),

1-4 R = 2Ry,
t=(2R;+R)  Rg + 2RL
Solving for 1 gives: 1 = ik , n2
Rg Rg GRp, LR
From’(iii), it is apparent
1=1.,1
Re Rg 2Rp

Hence equating time constants, yilelds

€ =g
R¢ Ry
c' =cnm
E '
 The equivalent circuit is shown in Fig. 4.6
ke
Tc
O AAAAAAAAA ~
-3
~Jv33vvvvvw— 2Ry,
8 _ Ry !
N2k K4

Fig, 4,6 Equivalent Circuit for Diprose's Network.

14



Then - a = 1
1- 4R .

and T = 2RLR
2Ri+R

with Y(s) =1 (1 + aTs)
a (1 + Ts)

15
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5.0 Circuit 3.

Continuing the study of ac lead networks one finds
in Appendix 11, Reference 3 the following circuit:
f<$K\-
Lgifb
O\
D1 D3 j;
\2;?2 D4 ‘

REF

o- » ”‘ 3

Fig. 5.1 Schematic of Lyons' Network

The sinusoidal input is in synchronism with the re-
ference voltage which  controls the diode bridge. It is assum-
ed that the voltage level of the signal is small compared to

reference voltage.,

In Fig. 5.1, consider the state of network when D1
and D2 are blocked. For an input signal related to the sec-
ondary the folloWing circuit applies:

e £

. b,
Fig. 5.2 Signal Circuit of

the Secondary for State 1.

16



17
Neglecting the source impedance, the circuit of Fig. 5.2 (a)

may be reduced to Fig. 5.2 (b).

Next consider the state of network when D3 and D4
are non-conducting. Then the input signal related to the

secondary sees the following circuit.

iy ,
+ D1 Rs
- D2 ’ -

a. : b,
Fig. 5.3 ©Signal Circuit of the Secondary
for State 2.
Using similar assumptions as before this circuit may be re-
duced as shown. Then for either state of the network the
same circuit is applicable for the input signal. Referring.
circuit components to the primary, one obtains, with the

understanding that the condenser must be switched every half
cycle, the circuit of Fig. S.4:

o

v
Fig. 5.4 Half-Cycle Equivalent Circuit.

The output response to a unit step\ihput is shown
in Fig. 5.5.
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= 09

Fig. 5.5 Output Voltage Waveform.

If there is an arbitrary voltage v, on the conden-
ser,-as shown in Fig. 5.6, whiéh is slowly varying, one may
write: |

1 = ‘v, 2 _ 5.1

Ty
+;L_ ;;;49 %F
-L

Fig. 5.6 DC Discharge Circuit.

Ve

The transformer turns ratio is conveniently chosen’
so that a ratio of 1:1 exists between the primary and one-
half of the secondary. Then the circuit of Fig. 5.7 may be

used in the analysis of ac signals.

r, +vc With reference to Fig. 5.4
L . ;
— A | r. =% : r_ =R,.
nhig, - £ 3 2
o—o le , 12 -
+ _ ' :
' / r. =R 3 C =¢C
v — 3 3 b
1 r r
L i, 2 3
ci

" Fig. 5.7 AC Signal Circuit.

Let vy, v, and v, refer to input, output and condenser vol-
tages, respectively, as indicated. 'The following equations

can be written:



19

Vl = rlic + Vc + (10 +‘ 12) r3 5.2
Vl = r212 + (ic + 12) I‘3 . 593
A (ic +1,) ry 5ol

Eliminating i, from equations 5.2 and 5.3 gives
Vi = Vg = 1C(r1+ I‘2) +_ 3 (Vl - icr3) 5.5

T
T, + Ty

3
According to section 2.0, it is possible to write
the following differential equation,

dve =

dt

5.6

Q=

T

where 1 = 1 j’i d¢ and 1 = 1 - i - To compute i, take a
t 70 c

time average of 5.1 and 5.5, noting that v, = sin @ and v,

i1s slowly varying. Now define the following equivalent re-

sistances,

Ry =ry + 273 5.7

I'2+I‘3
and 1 =1 +1 5.8
R Ry r1
Then I =-VYe+2  Top.. 5.9 -

R n(r, + ry) Ry
Substituting 5.9 into 5.6 gives,

dve =‘;_?[-v¢+ T2 _R ] 5.10
dt = RC é’??;k r3) R1. o

Solving this differential equation gives, with condition v,(0)=0,

I (r;?“?-‘p R [1;"exp(§7t:' )] 5.11

To obtain the network parameters, consider the en-
velope vé(t) of the output v, (t). With 5;2, 5.3 and 5.4, one
may obtain, ‘

vo[l +1+L j=vy(l+1)%e 512



In order to examine the output fundamental, apply Fourier ana-
lysis to 5. 12.

vi(t) = F3{F3 *T) oy orory v,
‘ r1r2 + rlr3 + rér3 7€ lrg + r1r3 + rorjy
Substituting for v, with 5.11 yields, -

Vc')(.t) = r-;(—rl_‘-i— rg)— 1‘21'-,l X
rirp + riry + rér3 | rg + r372 (31)2
l-éxp -t "5;13‘
" RC .

Then according to the definificns ijéectiohuz,o,
one has ' - - .
r (r +I' ) » - 3

: é : .
= 1 o'y R . 5.14%
: r1r2+r1r3j'-r2r3 7(-2 %‘l‘r Rl - - .

omrylym) s
| Trotryratrory | - -

0] (]

To determine an equivalent circuit by the procedure

of section 2.0, consider Fig,.5.8.

Fig. 5.8 Equivalent Circuit for Lyons': Network.

To account fof,theAattenuation effects, the resistor rg is
introduced into network configuration. To find Tgy the fol-

lowing relations are obtained and solved:

20
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21

. 2
rlr2+r1r3+r2r3 n.2 (r2+p3) (R )2 I‘lI‘ +I'l 3+I‘21‘3+I‘ (1‘2 3)

The abovevéquatiOn giiresrS =8 1r . (1 -
. 2 _2"___ - l+ I'21‘3

To- evaluate the equivalent condenser compute the discharge
resistance Rg of Fig. 5.8 and then obtain T, = R,C' = RC.
From this procedure one obtains, ’

C' =C(1L+R)
A rg

For the circuit of Fig. 5.8 one has

Y(s) =G L1 +als
al+ Ts

with T = RC, from 5.13
1, from 5.14
a

G, from 5.15



6.0 Circuit 4.

Fig;'é.l shows the circuit dlagram of a demodulator

lead network mentioned in Appendix II, Reference k.,

gl
T
O . 0O

° — — 2
Fig. 6.1 Weilss and Levenstein's Netwofk;  N
The following aséumptiops are»médg in the analysis:
(1) 1deal dlodes are eﬁployed, (2) transforﬁéré_are ideai;
(3) the reference voltage controls the diode bridgeo_ This
synchronously switches the'terminals cd and ab‘50 that the

current into the condenser is wunidirectional. For a con-

stant amplitude sine input a state of equilibrium is eventuél-}

ly reached whereby the charge added during a cycle is exactly

balanced by discharge of the gdn@gnsér through variqus resis4_;

tors. Hence the following wayeforms, as shown in Fig. 6.2,

occur at the output for this ac step input.

t= 0 t=00
Fig. 6.2 Output Voltage Waveforms.

22
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Then the following circuit in Fig. 6.3 may be con-

sidered for analysis with the understanding that the conden-

ser is to bhe switched every half cycle.

»?"f*-—trf*—"*°

—ANANNAAAAAN,

Fig. 6.3 Half-Cycle Equivalent Circuit.

For analysis consider the circuit shown in Fig. 6.4,

i v '
. c ¢
ety L R hy
+ | + .
v - C o : t 3
i L—aanraaan— S Vo
- -3 "R, . B
% ; 12 Rt -
. Fig. 6.% AC Charge Circuit.
The following equations may be written: |
vy = vt (ic +1,) Ry 6.1
Vi =i2Rt +(ic + 12)R2 . 602
Vo = (1o + 13) Ry | 6.3
Eliminating 1, from 6.1 and 6.2 gives,
| - Ro(Vy -1.R,) '
Vg = v, = 1 Ry + 2' "1 “21eM0/ 6.4
17 Te ™ 7" g |

1

§Rh'

Consider Fig. 6.5 for the circult describing -the

dc discharge. From the description of opératign it is ap-

parent that for a voltage v, on tpe condenser, discharge will

occur through the equivalent resistance R,



2y

o M © 1=1+1 +1_
R, ¢ m R 2R, 2R3 Rj
""\N\/\/\/\N\/\:--“*’\,W\/W\.W"
—-’\I\AI/{\;V\ : R3
A AR AAAAAAAAA ~ 32

v
Fig. 6.5 DC Discharge Circuit.

As v, is slowly varying, one has

SRCH | 6.5

Now according to section 2.0, it is possible to

write the following differential eQuation,

[e])

Ve = 1 6.6
dt c -
_ 2”’&  ‘ -
where I =1/ 1.4 , and 1 = i, + i3 . To caompute i, take
T~ o '

the time average of 6.4 and 6.5, By solving thesq equations

for I, and I4, one obtains,

1= [-2vc + 2 Rt ] 1 6.7
T Ry"Ry J R
Substituting 6.7 into 6.6 yields,
dve = R |
\ C.—'L -2v +?=t ] 608
it Re [ ° & RovE;

Solving this differential equation gives,‘with the initial
condition that v, (0) =

Vc(t) = J. Rt
TR R,

l-exp _g; , 6.9

If vi(t) is the fundamental of the output, then by
applylng Fourier analysls to the output wlith the assumption

that v, 1s slowly varying, one obtains,



e o
tvi(t) = l;v sing 4g = ;_jp(-vc+sin¢) sing d¢ 6.10
. T
£) =1 - "V | | 6.11
Using the definitions of a and G as given in

section 2.0, one finds,

a = vé(o) = . 1 R LS .. . 6 ° 12 ' |
vied) TF Ry SRR R
. . ft= Rg+Ro g ST

¢ =v40)=1 =1 - . 6.13
vi(oS 1 |

In section 2.0, a pro¢edure for determining an .
equivalent circuit has been outlined. Consider the circuit

of Fig. 6.6.

Fig. 6.6 Equivalent Circuit.

To account for attenuation éffects and employlng equatidn

6.12, one obtains,

1-Wt =R __ - 61k
T2(Rg*Rp) TeR2
Solving for 1_~ gives, 1_ = x2_+ M2~ 1)1 6.15
| Ts Ts LRy R

Associate r, with the time constant Te of the equivalent cir-

cuit, i.e., Tg = reC'. By inspection one obtains,

1 =1 +1_ | 6.16
re Trg Rp , -

25



Substituting 6.15 into 6.16 gives,
6.17

L =””2(l_”+ 1)
r. % Ry Rp

Equating time constants yields, with the aid of Fig. 6.6 and
equation 6.9, ,.

c'=¢6 | . » 6,18

R 2re - '
Substituting 6.17 into 6.18, one obtains, .

ct = c%? | 6.}9
Hence it is apparént that an equivalent circuit ié given by

Fig. 6.7. e

LI
[
1

Fig. 6.7 DC Equivalent Lead Network.

Then Y(s) =11+ aTs
al+ Ts
with a=1__
E:Eﬁz——~—'f
7‘(*2(R2+R{)
T = RC '
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9.0  Circuit §.

One finds in Appendix II, Reference 3, the network
of Fig. 7.1. It will be shown that this network is an ac lag

network.

' Fig. 7.1 Schematic of Lyons' Lag Network.

The opération of a similar type network has been

described in section 5.0.

Consider the .state of the network when D1 and D2 are
conducting. .Then the charge circuit for the condenser is
shown in Fig. 7.2.

= ANV~

+ i r.r ‘&v &'i-i
1 °b
‘ — 102 c2

. ' + o)
i _ Ve -T[ZD Ty
, & 3

Fig. 7.2 Condenser Charge Circuit.

The diode bridge synchronously reverses the terminals of the

condenser so that the current entering is unidirectional.
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The following equations may be written:

Vi-Vo = 1 7.1
rl ‘
VO-VC = ic;g rb 702

2
Vo =

(1 - icz) ro ' 7.3

The equations may be solved for 102 in terms of vi and v,

giving,
1.0 = Avy - Bvg | 7.k
with A =272
2ryrp+ (ry+rpry
B = 2(ry+ro)

2r1r2+(r1+r2)rb

‘Next solving equations 7;1, 7.2, and 7.3 for v, in terms of

vy and v, gilves,

Vo =

with  Ap =

Bl =

Aqvy + Byve - 7.5
roty

TTpt 2r1r2 + rorp

2riro

. TqTy, + 2r1r2 + rory

The discharge circuit of the condenser is shaown in Fig. 7.3'

where it is assumed that inductances are negligible for the

quasi-stationary type discharge.

Fig.

 vc+ -l- '1\101, f—b-

C

7.3 Condenser Disgharge Circuit.
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Then

= 2Ve - 7.6
Ty

To obtain v, as a function of time, one may write

acéording to section 2.0,
dvc-I

-

at C
where I 1s the average net charging current.

Now Ic2 may be computed from 7.4'where Ve 1s slowly varying
and vy = sin@, hence
I =24 - By, - 2V
T Ty

The differential equation becomes

dve + 1 v, = 24 7,8
at T nC |
with % = %(B + g_) 749
Ty

Equation‘7.8 may be solved with the condition v,(0) = O, giving
ve(t) = gﬂ,( - ) 7,10
et ~ L-exp (-t)

To obtain the envelope of the output apply Fourier
analysis -to the quasi- stationary output signal in 7. 5.

1 volt) - 1 (Alsin¢ + B1Ve)sing d¢

2
Hence.  vo(t) = Al+ ual ve(t) 7.11
Then from the definitions of a and G one obtains

1 8 AB3T
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Following the procedure outlined in section 2.0,

the circuit shown in Fig. 7.4 is obtained.

Fig. 7.4 DC Equivalent Circuit.

To account for the steady-state attenuation of a

dc step input, one finds, with the aid of 7.11, that

8K , o | .
s ﬁ5:§§ (le%g) 7.12
with R, = I1f2
ri+rp

and 1= 2(1+81)
K T'p

To obtain C' it is necessary to compute the dis-
charge resistance of Fig. 7.4.

__1_=%_+ 1 =1 +B

Rg s ____ib FRT Fg

2
As the time constant is given by 7.9, the following relation
1 = cK (14Fb R 713

Re (B+ CK (12 + ¢

%S) 2rS Ty

holds c' =¢C




8.0 Feedback Methods of Modifying the Circuit Parameters
8.1 Variable Conduction Angle

By varying the conduction'ahgle of the diode
bridge it is possible to vary a, t and G. By suitable
arrangement of the control voltages of Fig. 3.2, the output
voltage will appear aé shown in Fig. 8.1, wheré‘the conduc-

tion angle is - 2.

0 ™ 210

Aq . .. . : :
Vo(t) ) o\ ' ‘ ”""r\'w‘ 4
X - ' . ! v
' o

t =

Fig. 8.1 "Voltage Output for a Variable
‘ Conduction Angle.

During conduction the circuit 1s as shown in Fig. 8.2.

Fig. 8.2 Conduction Circuit.

Then by section 2.0, one may write-

dve = ¢
at = C
Now it is apparent that _
n—
T=1 (=Vet sing) 4 [-v N-2X) + 2cosx|8.1

Substituting into the differential equation and solv1ng yields,
with v,(0) = 0, ’

v (t) = Zco§0< -gtr-éa )t 8.2



Now applying Fourler analysis to the quasi-stationary output,

8 -
vi(t) =1 j v, (t) sing 4¢ =_J;_f, (-vo+sing)singdd
T "o : S (s
=1 l-2vccos(x + (A-2%) +sin2« ] 8.3
o 2 2; |

The parameters a, T and G may be obtained from defi-
‘nitions in section 2.0. From 8.2, the time constant is

T = 2rC K RO 8.

n-2K o :

The factor a 1s obtained from 8.3, with

- v4(0) 1 _

a, - - - 805 )

vifes) T 1-8 | |

@ 8cog?

with = (-2 ) (M-2K +sin2a )

The transformation ratio_is,”theh,

6= =1 e N 8.6
3) TR (F-2a-+sin2a)

To obtain an equivalen circuit for these parameters,

consider Fig. 8.3, and the procedure outlined in section 2.0.
— ¢ —— |

. C'

l--/vvvvvvv--l R

Rg

Fig. 8.3 DC Equivalent Lead Network.

Accordingly, one may write,

R+Rs . 1
R % T1I-p
' C
Hence Rs = R ——

l—Q"
By computing the timg constant of the circuit of Fig. 8.3,
and equating this with 8:%,_one obtains,

cr = 2C T
B(M-2& )

32



This network offers the possibility of varying the
maximum available phase shift @m and the frequency at which it
occurs by controlling the conduction angle. These parameters

as a function of "a" are given in Appendix I by I.1% and I.16 .

8.2 Servo Mixing Network

In Appendix II, Reference 3, a network is shown ca-
pable of employing an ac signal with dc¢. feedback to obtain,
as desired, either a lead or lag effect, The schematic is
given in Fig. 8.4. The diode bridge operation has been des-

cribed in section 7.0.

O-ANAAAAAAA
1 _

2

¢ L

+° DC
V T FEEDBACK

Fig. 8.4 Servo Mixing Network with
AC Input and DC Feedback.

Considering only'the dc feedback voltage, the cir-
cuit in Fig. 8.5 is analysed. |

r -
c 1171
v 4“‘ r
+ by — T b
\'4 . Ve 101 Aﬁ 5
- <1

Fig. 8.5 DC Feedback Circuit.



The following equations may be written.

V+Ve=41Th L 8.7

2
Hence i=2 ' 8.8
VC = (icl"i)r v v 809
Hence i, =1 +_X9 8.10
cl T

Substituting 8.9 into 8. 10 gives

1 =2V +(2 4 l) v,

8.11
Ty T

cl

Consider only'the ac input, the circuit, shown in

Fig. 8.6, is analysed.

- Fig. 8.6 AC Input Circuit.

The following equations may be written.

= (1 - ic2) : . 8.12
§=Y4 " Vo - 8.13
Ty, _ :
Vo - ve = 1 %; = g%l(vi - ve) | 8.1k
Eliminating the currents and solving for v, givés,
= Ve opy + oL b - 8.1%

Vo = ST ST



Then i,, may be obtained in terms of vy and v, from the above

equations.
leo = vy (2r1 + rb) 'VC(QI_‘]; + T _+ "f') 8.16

In order to obtain the net charging current i, of the

- condenser, one has, combining 8.16 and 8.11,

1o = 1ep = Te1 | - 8.17
= Avy - Bvg - 20 | 8.18
r b )
with A =__ 2 | | 8,19
- 2ry + Ty
B =2 (Amdled )y ... .. ' 8,20

.‘rb r'2r1+rb

Now it 1is poséibie to write, according to section 2.0,

dvc‘, ic

dat ~ T
- To computejic, consider 8.18. It is assumed that V and v, are
slowly varying and that vy = V4 sing and.V is a dc step voltage.

Y .
Hence one obtains,

i.=4A2 oy ' - 8,21
c - v - & B
7,(,V‘-j_ . BVe T

Supstitution intovthe differential equation gives,

dv :

agg“+ % Ve T % o | - 8.22
with 1_3B 8.23

T~T
and K=421[28y..2 8.24

B‘(if”i s ,

Solving for ve with vo(0) = O gives

vo(t) = K(1 - éxp -%) - 8,25

Now applying Fourier analysis to quaéi-stationary output gives,



¢
A[Vo(t) sing ag

vl (t) =rl'
T o
_ . Ar '
Vé(t) = _)'t_ rlAVc+ bVi 8°2.6 '
T 2
With the aid of 8.24 and 8.26, one may write 8.26 as
2 .
-y |8A7rL -t ATy |
vé(t) = Vi %5 (l-exp %)+ > 8f27
84Ary. -t | |
-V. _ ad 8.27
#Br, (1-exp )

This network offers the possibility of obtaining opti-
mum response with a controlling feedback voltage as the overall
effect of the network may be either lead- or lag- compensation

depending on the feedback.

From 8.27 one sees that vj(t) is composed of two
parts: a contribution from the ac signal input and a contribu-

tion from the dec signal feedback. This suggests the equivalent

circuit of Fig. 8.7 .

|

\'f

4 o——riNetwork 1

Adder | o v'%

'

o———Network 2

Fig. 8.7 Equivalent Network for
the Servo Mixing Network.

To obtain Network 1 consider that part of v{(t) which
contains V4. Following the procedure for determining equivalent

networks in section 2.0, consider Fig. 8.8.
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Fig. 8.8 Network 1.

0

This network must réSpond to a step input of amplitude Vi as

Ar
-exp )+ —*

8A2r
Vil= L1
B

" To account for attenuation at "g" =00, rg must satisfy’the fol-

lowing equation:

' b, s | |
2 =8 r Al ~ 8.28
T, N2 TRelE

2

Solving this equation gives.

r = 8

=3 5 i )

Computing the time cbnstant of Network 1 ‘and equating

this with 8.23 gives
n2
C'=2¢ =X

Next consider the contribution of vé(t) associated
with the step feedback V. The lag-like response suggest the

Fig. 8.9 as an equivalent circult for Network 2.
()

Fig. 8.9 Network 2.
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This network must respond to a step input of amplitude V as

V 8Ary
TBry (l-exp T) To account for attenuation at t =¢e , the

following relation must hold:

rs _ O8Arp

Ty*rg 1\-Brb

“ Hence rqg =1

L
-
%—bcl o) -1

Computing the time constant of Network 2 and equating with 8.23

gives,

38



9.0  Discussion of the Validity of the Equivalent Circuit.

Consider the network shown in Fig. 9.1l. A.unit amp-
litude sine-~wave input.vi is applied at t = O,

i REp

&

Fig. 9.1 Schematic for Circuit 1.
The operation of the gate G isvsuch that the input to the con-

denser is a half-wave sine signal. During'the non~-conduction

period of the gate, the condenser input terminal is considered

open circuit. During the conduction period of the gate, thé

slgnal is assumed to be generated from a zero impedance source.

During the conduction period the following differen-

tial equation is valid.

dv
ve + CR EEE = sin wt ‘ 9.1 -

The solution of 9.1 is

Ve = Ay exp'(%g) + Psin wt + Qcos wt

where T=R, P=__ 1 =1 o
| ’ T+ (wem?2, . T+ (wm2?

. _- |
C T+ (wem2 T A (wTe s

~and A, is to be determined“for'each conduction interval,

As Ve (0) = 0, then A, = WCR
M e oy +ZuJT52
For wt =1, vc(l) = Ay [1 + exp(*‘T)]
7

Let - a-=- exp(.-ﬂ‘)
‘w T
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During the interval wt{ = 1 to Wt = 2, there is no change in
Ve. Then, matching boundary conditions gives

Ao(1+a) = A, -A

2

Hence Ay = Ay (2+a)
Now for Wt = 3, v,(3) = Apa + A,

ﬂ _ o , o I

Similar matching may be done for other times, and the results

are, relating to A,,

V(1) = &, (1+a)
. Vc(.3) = AO (1+2B+8.2) :

Vc( 5) | = AO (i+2a+2a2+a3)
In general for :iiwAz:(2n+1),

- . _

vc(2n+;) =Aq T*:_iw'l“‘ ™
Let x = _T

wT |

Then Ve(2n+l) = %(l'an+l)[1‘x2(0o01799)+xu(ooooou3u)ooo}.

Due to the nature of thevoperation of the gate G, then -
- vo(2n+l) = v, (2n+2) | |
From the analysis of circult 1 in.section 3 one

obtains, v,(t) =2 (l—exp(%%c)}'“ _
To compare the two results set t =.(2n+2)£% . Using the defi-
nitions of a = exp(;l%) and T,= RC, one obtalns: |

r |
In comparison one has,

:c(in+2) ziml_x2(0.01799)+ x”(03000h3h).;.
c[ ) ' ‘ : :

Y



L
Then it 1s apparent that
lim Yo (2nt2)
x>0 v, (t) 1
That is, the results from either approach are identical in the
limit. Now from the definition of x, |
lin = lim  asx = .

X2 Q0  W-a3=09 w

The 1imiting case for w, the carrier frequency,.approaching
infinity, 1s equivalent to x approaching zero. Sinée the error
term enters quadratically, the limiting equivalent circuit will
be valid for the usual range of operation in servo-systems, i.e.,

w
s d .
Wa < 10



10.0 Measurement of Phase and Gain Characteristics of
Circuit 1.
The theory of the circult 1 shown in Fig. 3.2 has
been developed using Fourier analysis.  Physical results of
Fourier analysis may be obtained by employing the time-average

output of a multiplier, The system used is shown in Fig. 1C.1l.

A
1 v

| koo o

v2

Network

Fig. 10.1 Schematic for Determination of
Multiplier Proportionality Constant
For calibration the following waveforms were employed:
| vy 400 eps voltage of 14.14 peak volts
Vo 400 cps Variable-amplitudé'square—wave.

The actual waveforms are shown in Fig. 10.2.

e [\ [\

a. Input Waveforms b. Output Waveforms

v l : _
2 _AQT L L

Fig, 10.2 Multiplier Waveforms.
The multiplier deflection is proportional to the chlevel of

the output.
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n

Output = ‘[A A sing 4g = A1A2
2n 12 T

Now the multiplier's de output Vo 1s prOpertional to the time
average of the product of the two inputs. Hence the propor-
tionality constant k is defined by

o= E Adp

T
By suitable measurements it was found that

(2 (21*’ ~(379) ml‘:,‘)"i"i”?wé*?-ﬁ“*

The measurement 6f phase~gain characferistics 1s
achieved by the system shown in Fig. 10.,3. A modulated car-
rier is generated by the synchro Tl which is driven by a vari-
-able speed motor at the rate lUs. The modulated signai is ap-
plieqmpo a second synchro T2 whiech is used as a manual phase
.sh;fter to vary the phase of the envelope of the signal. This
phase-shifted modulated signal is applied to the network. The
output of the network is applied to one of the multiplier's
inputs. A known comparison signal generated by a resolver is

applied to the second multiplier input, The time average of
the product of the'inputs is recorded‘by the galvonometer,

=} GATES Network g
\ws. y

=20

Fig. 10.3. Block Diagram of
Measurement System.




by
For Fig. 10.3, the following terms are defined:

Tl Synchre Transformer . M Electronic Multiplier
T2 Synchro Transformer G Galvonometer
R Resolver _ w modulation‘frequency

Consider the following arrangements of multiplier

inputs shown in Fig. 10.4.

G Galvonometef

-
Resolver 1 v c '
» M ; o M Electronic Multiplier

; v = Vocosw,.t sinw,t

System ' 1 V,g = Vlsintust sinw,t

. Vo = Vpsin (UJ't+d)sintuct

Fig. 10.4 Multiplier Schematic for Gain-Phase
Determinations

In the definition of Voy X 1s the combined phase shift intro-
duced by the network and the variable transformer, i.e.,

- o = @ (network) +XTtransformer)

Let Voc = k V,eV2

="k' v cos'w t s’inw t Vv sin(w st v )sinw 1t
1l ¢ 2

=k Vlvz(sino( cos2 t + cos cosw  t sinw t)sin“w t

With sultable sum and difference angle formulae, ore obtains,

Voo = k V]_Vasm«l j&(sin('-d - Wy )t + sin(w + W )t (w t)

]

kK V.V, sinx 1 _ ., 1.2.W = k VVosin
12 syt w —=

Then V,, is made zero by choosing»0(= 0, i.e.; g =~y



L5
Employing Vg9 itimay be shown similarly
Vos = E VyVogosx
4
With & = O, one may solve for Vp, obtaining

V2 = L'.VOS

T Vl
For computation of the gain of the network, the peak

output amplitude V, ﬁust‘be compared with that peak signal Vi

which would pass through the systém in the absence of any com-

pensating network. If the input signal has a peak V, then as

<

G =V%, one has _i = 4., The gain of the system is
v - |
Y = Xg»= 2V ;_Bvos_
N

1 vV kwnyv

The experimental studies involved measurement of the
gain-phase characteristics as a function of signal frequency.
The éalculated network parameters a and T provided the gain-.
phase characteristics of the limiting equivalent circuit. A
comparative plot of results is shown in Fig. 10.5. For Circuit
l, a is fixed at 5.3 so that experimental studies involved
variation of T. The values of T chosen were 7.25 méeéé.énd
h,21 msecs, These correspond to frequencies of maximum phase

- shift of 9.6 cps and 16,7 cps respectively.
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Y(s)

a

T

1

R
Equivalent Clrcuit
- ' : ® o
NOO +1.0 f o N

/o
[
30°7 . .
. , _—
_Qb_ 4 . ‘//'> :
Degrees ' X
o ' x © -~
20" T-5 | | 27
o
o - LEGEND
R ' o :
o . /A
' 9#0'///- Y
10° 1 ;j// = 7.25 ms fm= 9.6cps
=, h921 ms fm=16°7cps
0 $ +
o | . .5 1.0
T Radians |

Fig. 10.5
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11.0 Conclusions.

a
— 00 )
4

By considering the limiting case as ‘Uc
éimplified theory wés developed to obtain networi parameters
from the transient response to a‘step input. With the aid of
tpe paraﬁeters, limiting equivalent circuits have been ob- )
téined whose qualitative understanding is immediate. Study
has been done to determine the range of practical represen-

tation of the limiting equivalent circuit. Analysis predicted

and experiment confirmed that the limiting circuit was adequate
Ys
Wwe

for the usual case in servo-systems where

1

It has been shown that basic lead- or lag-compen-
sation may be achieved with several different systems.
Further study of compensating networks has revealed that, in
specialbcases, network'parameters are controllable by-suitable

feedback.

With the development of suitable equivalent circuits,
carrier-system compensation utilizing demodulator networks can
be realized giving wide application. For nén-linear systems
where adjustable gain-phase characteristics might best achieve
specifications, circuits employing feedback-controlled para-
meters would appeér to introduce a new field of interesting

possibilities.
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Appendix I. DC Lead Network.

Consider the network below.

AAANNAAAA
' r
L
r3 J—V ]\
vl : c 1
3; | T2 g Vo
AN AN ———

Fig. I.1 DC Lead Network.

The transfer function for this network may be written

as ¥(s) = Go 1 + Tys | . , I.1
T+Ts
with Ty = C(rory + ramy) I.2
Iy + Ty + 1y
T, = Slrprom, + rlrarh * Torary) I:3
rl(r2 Ty r47'+ (r3 + T)r,
6, = rl(rg + rq + ru) ' | I.4

Tylry v vy v ) + (ry + o,
Then it is appafent that 3 parameters wili'be sufficient to
specify gain and phase characteristics.

Of special interest in the netwcrk response to a unit-
step 1lnput because of the perticular development of the theory
in the body of the thesis. Then Vl(s) = ¢ o. (1+Tys) 1 , is the
Laplace Transform of the output voltage vl ;(1+T2551;

In the usual manner the transform may be inverted to yield

V% (t) = Gq l—(l-gl)exp-% 1.5
T2
Then for t = 0 in I.5, one has, v%(()) = GOE; I.6
: _ ¥
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and for t == in 1.5, vi(°°) = Gg . 1.7
Combining 1.6 and I.7 yields,
1'0 ‘
vo( ) =-.1,‘.].= -
vilee) T, - ’

For the network it is often necessary to know the
frequency of maximum phase shift and the amount of phase shift

at the maximum. From the definition of "a" in section 2.0 one

has
a=11 1.9
For real frequéncies, I.1 may be written
Y(jw) = 1Y] exp(ify) = Y exp(id) 1,10
exp(3082)
where tan¢1 waly and tan¢2 = u)T2 | I.11
and @=9¢ -0 ' I.12

The frequency of maximum.phase shift is obtained by differen-
tiating I.12, | -
¢ - o= dgl d¢2 I.13

dw dw T dw _
The derivatives of I, 13 may be obtained from I.11, These equa-
tions yield the following result,

aT,co0s ¢1 = T20032¢2

The various c051nes may be obtained from I. ll9 so that one has,

or, o a(w T2)2 O I.b

To obtain the amount of phase shift consider tand = tan(¢1~¢ )



Then for the maximum phase shift, it may be shown that

tang_= %=£§§l) | 1.15
= |

An equivalent form of I.15 is

sing = &3 I1.16

From the transfer function it is apparent that there
are three choices ﬁo be made in order to specify the phase and
amplitude characteristices. These choices may be made in a
variety of Qaysvdepending_upon éircumstanée. For example they
could be chosen on the network's response.to a unit-step inppto

In this case'the parameters might be the output amplitude ini-

tially, the output amplitude finally, and the time constant for

the decay to the steady state. Another basis of choice arises
in stability problems where concern might be the frequency of
maxiﬁum phase shift and the amount of phase shift at that par-

ticular frequency.

It should be noted that in Fig. I.1 that r) may be
eliminated but the circuit would retain its performance charac-
teristiés be appropriate modification of r, and r'3. Then,
essentially, fhere are four elements to be chosen. The concept
of three independent choices has been made previously; while
the extra choice or degree of freedom determines the impedance

levels.

For some of the circuits discussed in the thesis,

‘Fig. I.1 needs modification. The first case is for ry =9,
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Hence Y(s) = 1‘1 + Cs (r2+r3)
[r1+rQW1 + Cs(r3+r1ré_w
. T1+r2

As all the important relatiohs have been derived generally,

nothing significant arises in thié situation.

Of very particular interest is the case of r) =o°

and ry = 0. Then

Y(s) = r1 1l + Csro - '
ritrp, 1 + Cs rirp "wlmW;+aT25
- = a T+ Tas

T1*Tr2 |

Now it is apparent that G, = l_ and T; = aTy, . Then the
parameter a may be checked or determined by measurement. It
is apparent for this case that the network requires only two

parameters for definition of gain-phase characteristics.
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