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- ABSTRACT

This thesis offers a review and an analysis of all except
the less important advances of the previously developed methods
and eqﬁétions for optimizing the operation of an electric system
of m thermal and n hydre plants. In this analysis both shq;t—
‘range (twenty-four hours, seven days) and long-range (one year)
periods are inveolved.

The primary objective of this thesis is to derive, using
the Calculus of Variations, general differential equations for
short-range optimization of combined hydro-thermal systems.

The basic criterion for choosing to selve the short-range in-
stead of the long-term problem lies in the theory of forecast-
ing in general, the theory of forecasting of stream flows in
particular, and is based on the aforementieoned analysis.

Tests for establishing the fact that the above generali
equations actually produce the desired minimum cost of operation
are given in the form of three other necessary conditions and
three sufficient conditions. These conditioné are known in
this branch of mathematics as the analogue Qf Legendre's con-
dition, the Weierstrass' analogue of the Jacobi's condition
and the Weierstrass' E-function condition for a minimum. A
well-known example is worked out using these conditions.

In addition to the above, this thesis also proves that all
previously developed methods and equations for short-term opti-
mization are essentially equivalent, and that these:formulas
are merely simplified forms of the general eqqations developed

in this treatise.
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CHAPTER I

INTRODUCTION

For a number of years power system engineers have made
several attempts to so}ve the problem of how te operate an
electric system most economically, i.e., to obtain a set of
extremals of operation. These extremals can be given in
either of the two forms:

(1) as a set of minima, for example, minimization of
cost over a predetermined future interval, minimization of
losses (due to spillage, due to violations of certain limita-
tions, due to unreliability of service which results in loss
of customers), etc., or

(2) as a set of maxima, such as maximization of hydro-
energy over a certain period.

The set of extremals discussed in this thesis is either
that of minimization of.cost or maximization ofvhydro.-energy°

The problem of optimization*‘differs in complexity with
the type of system and with the length of time in which the
optimization is considered. The thermal problem differs from
the excluéivély hydro problem, which is again different from
the problem'df a combined hydro-thermal electric systémo The
latter is more difficult to solve than the second which is in
turn harder than the first. The problem firther increases in

complexity if optimization is desired over a long period due to

*"Optimization of operation" will often be abbreviated as,; simply,
"optimization".
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the very many uncertainties of the future, Probabilistic meth-
ods have been used with the aid of dynamic programming tech- |

niques to cope with the above uncertainties, but none of these

approaches have come close to the desired minimum results.

The short-term problem is therefore relatively simpler than the
long-range one, mainly because it involves less vagueness than
the latter,

Irrespective of the consideration of long-range or short-
range periods the hydro-thermal problem is generally difficult
if the number of plants in the system, especially the hydro
plants, is large, and if the system is spread over a large
geograbhical area. If the storage elevations vary in their
order of magnitudefrom plant to plant, the system usually can-
not be simplified and, therefore, presents extra difficulties.
In addition, in various systems many well-established load
schedules must be drastically altered to accomodate heavy Qes—
sels on the river. The above are some of the problems in a
hydro-thermal case. It is evident that the economic problem
as a whole seems to be massive and, hence, almost unsolvable,
For this reason only part of the}whdle problem will be solved.
In the next paragraph, the purpose and scope of the thesis are
introduced.

This thesis discusses the various types of system prob-
lems involved for both the long-range and short—term periods,
and aﬁaiyzes all previous methods developed by different
authors., The primary objective of this thesis is to derive,

using the Calculus of Variatibns, general differential equa-



tions for the short-range problem, realizing that, based on

the above aﬁalysis, no exact mathematical solution can be ob-
tained for the long-range problem. This treatise also proves
that these general equations can be reduced to the several
short-term equations developed by different authors previous-
ly, when certain simplifying assumptions are applied. At the
same time a set of proofs and reasonings, indicating the equi-
valence of one previously developed equation and another, is
given, In addition, for the first time in this field the
second, third and fourth necessary conditions, and the first,
second and third sufficient conditioens for the minimization:
problem are worked out. For the sake of clarification a simple
system of one hydro and one thermal plant is considered imposing
the above conditions, along with a well-known example prepared

by authorities in the field of economic load-dispatching.



CHAPTER II
REVIEW AND ANALYSIS OF PREVIOUS WORK

2.1 Optimization of a Thermal System

The problem of optimizing the operation of an exclusively
thermal system, i.e., a power system of m thermal plants supply-
ing a given load, is relatively simpler than that of optimizing
a pure hydro system due to various reasons, \It is generally

knownl*

that in the latter preblem many uncertainties, such as
weather conditions, the amount of future inflow to the reser-
voirs and consequently the amount of water available in storage,
are involved. Conversely, in fhe thermal problem the amount
and type of fuel "at hand" and/or "in order”™ is the amount pur-
chased, and therefore, can be defermined more precisely. Fur-
thermore, it is more convenient to assign dollar values to the
amoun£ of oil, gas or coal burned to generate certain megawatts
of thermal power. It is therefore possible to plet a thermal
cost curve, i.e,, fuel cost in dollars per hour versus thermal
power output in megawatts, from which the incremental thermal
cost curve can be derived. On the other hand, it takes a
great deal of guess=work to compute the incremental water wvalue
of "any hydro plant.

The thermal problem may become difficult, however, if the

fuel and its price are unknown. In some systems there is a

choice of o0il and gas carrying a peak escalation charge with

* The superscript numerals refer to the list of References on
PP.-70 to T9 inclusive.



the added complication that either domestic natural gas or
liquid petroleum can be used. In operating the thermal plants
the shape of the fuel cost curve may dictate a uniform load for
the thermal sources, but it is by no means certain that it

will produce the desired optimization, since the possibility

of peaking with oil to assist the domestic peak gas load must
be included. Furthermore, with different cost and heat con=
tent between units within a plant, and between one plant and
another, the incremental rate of one thermal plant dependé on
both the power output of that plant and the anticipated lecading

2 It is

of other thermal plants within the system as well.
also known, that there is that difficulty in determining pre-
cisely what the incremental rate is over a small band of out-

put.3

There is, therefore, a complex interconnection of se~
veral problems affecting the optimum thermal schedule.

If the thermal problem is not as complex as the one men-
tioned in the previous paragraph, then the question of thermal
optimization is that of minimizing the total fuel cost E:Cj
over a certain pre-determined and fixed future time interval T,

. %*
10e°,

m
jgl C; (Pp;) dt = minimum, coo (1=1)

where PTj is the thermal plant output (Mw), when supplying a

certain load demand PD and losses PL:

m
}=: PTJ =P + P voo (1=2)

L D

*For Nomenclature see also pp.80-84
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The solution of this problem is given by the condition that all

plants should be eperated at equal incremental rates when trans-

4-6

mission losses are neglected, =~ and at equal incremental cost

of delivered power when transmission losses are taken into

account.7‘18

In the former case the condition can be proved
when a simple two-plant thermal system is considered. The

total fuel cost CT to be minimized is, then, given by

CT = Cl + 02 ° 0.0 (1_3)
with the subsidiary condition that
Pp = Ppy + Py
or PT2 = PD - PTl' oo (1“4)
The total differential is given by
dPTZ = - dPT19 00 (1-5)
since dPp = 0 ees (1-6)

with a constant load demand at any one time. To minimize
Crp its derivative with respect to the two variables must vanish,

i.e.,
dc
dp

dac
= dp

T
T2

T
Tl

= Oo - . ® 0o (1“7)

Using equation (1-5) one obtains the equal incremental rate
condition mentioned earlier:

dcC dC

1 2
dp

= = constant. ves (1-8)

Tl
When transmission 10sSes are included, the problem becomes

slightly more complex. However, with the development of the

19-30 31-34

various types of computers, both analogue and digital,



35

and network analyzers the thermal problem is solvable.

2.2 Optimization of a Hydro System

The problem of determining the most economical method of
operating a hydro-electric system of n Plants supplying a given

load has been attempted for over forty years?6_44

Several
interpretations were given by many authors to the term "op-
timum" used in this treatise, although very few prove that
their results produce the actual desired minimum cost of opera-
fion. Some of their findings containing thé more important
advances of optimization are discussed below.

In 1929, Strowger45 stated that for best economy the plant
should be operated at maximum efficiency énd in such a manner
that maximum production is realized. Strowger further assumed
that this operating prgcedure is the only way to make the utmost
use of the available resource. Schamberger, in 1935, operated

46 caused

his hydro statiens on the basis of minimization of loss
by inefficient loadings of the units and improper loadings of
the various connected stations. Four fundamental rules of
operation were established, to be fSIiowed in order that losses
at the stations can be minimized.

An attempt to solve one of the more difficult hydro system
problems was made by Burr in 1941, in a Master's thesis at the

Massachusetts Institute of Technology‘}7

The purpose of his
thesis was to develop general principles in determining the
loading of "common-flow"* hydro-electric stations, i.e., sta-
tions situated on the same stream (river). Realizing the com-

plexity of such a problem, no effort was made to solve any

4'(

*Burr's term.



specific case, although Burr did consider a simple illustra-
tive example with two plants on a stream and a number of simpli-
fying assumptions. Ten years later, Johnson of the University
of Washington,48 extended the problem to a three-plant case.
Burr's work was continued for the general case of one-
plant-on-one-stream by two of his colleagues at the same in-
stitute, who in 1950, wrote a joint Master's thesis49 on econo-
my loading of hydro systems. In this thesis Chandler and
Gabrielle established some mathematical criteria for economy
loading and applied them to a simple hydro system in order to
obtain general principles and conclusions. The above criteria
were also applied to a system problem with actual numerical
data. One interésting feature of Chandler's and Gabrielle's
work is the inclusion of a number of major>factors such as
head, flow, storage, plant characteristics (electrical and
hydraulic), time delay of flow between plants and transmission
losses. A more thorqugh study on the effect of the last factor
on optimum plant loading was considered in a Master's Thesis

by Bobo50 51

of the University of Pittsburgh. Johannessen of
M.I.T. wrote a similar thesis to study the relative changes in
costs when tfénsmiSsién losses are included and changes in the
predictéd stféam floﬁ;

Another type of optimization is dealt with in a paper by
McIntyre, quke andeLubbsz in the form of "an efficient sched-
ule for a'daily, #eekly, monthly or seasonal basis" to meet an
estimated load. A general purpose digital computer (Bendix

G-15A) is used for this problem which takes as input data a

set of stream flows and maximum capability limits at all plants,



specifying the initial storage value At each reservoir. The
output for run-qf-river:pléhts consists only of peak and average
capability andlflant diséharge, while for storage plants values
for "change-in-storage-content", "énd storage content" and con-
version factors in MW per thousand second feet are typed out
in addition. 'The'critﬁrion for this type of 6ptimization is
that in the event of an overdraft, overfill,wgr the violation
of a>reservoir outlet restriction resulting f:qm an invalid
operating instruction, the computer will type out an indicator
along with a reservoir identification code and halt. The en-
gineer must then specify some operational procedure which will

allow the computer t6 proceed with a new iteration.

2.3 Optimization of a Hydro-Thermal System .

2.3.1 Introduction
The problem of optimizing the ppe;ation of an elec-
"tric power.systém of m thermal and n hydro plants sup-
plying a given load, is not exactly equivalent to a:com—
bination of a pure thermal problem and an exclusively

hydro p]f.'oblem?sm55

In a hydro-thermal preblem the object
is equivalent to the pure thermal case of minimizing the
total cost of operation of the thermal plants only.

On the other hand, when these thermal plants are ex-
cluded, the problem becomes thai of maximizing hydro
energy at all plants over a future time interval. This
is almost equivalent to Strowger's45 criteria of "making

the utmost use" of the available water resource. All

of the above Statements meanvthat in the case of allo-
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cating load for the different plants, the optimizing
equations can be used both for the restricted “thermal

and the cdﬁbined hydro-thermal system. The reverse is
not always true, however, since the scheduling equations
of a hydro system are not necessarily equal to the sched-

uling equations of & hydro-thermal system with the

- thermal equations obliterated.

In general.the hydro—thermal problem can be divided
into two general groups: (i) short-term or short-range,
and (ii) long-term or long-range, both having entifely
different characteristics and, hence, require completely
different solutions. The first problem is relatively
simple as it deals only with a short future time inter-
val (24 hours, one week) and, hence, can be treated with
certainty. Conversely, the problem of long-range opti-
mization is much more complex since it deals with many
unpredictabieAvariables in a much léngef future time
interval (one year). For this reason the latter case
is more.probleﬁatical than the first one and,€conse—

|
quently, more difficult to assimilate mathematically.

Previous Long-Term Methods

One of the well-known analytical methods for the

long-range problem is that of Cypserss’57

whose approach
is outlined in a doctorate thesis at M. I. T.  Cypser
dealt with large systems having large storages where

plant efficiencies depend on past operations of storage,

and where present operations are based on a whole set
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of predictions of flow and load demand for the whole
future long-range period to be optimized. This method
is objectionablé primarily because, while predicting
stream flow for a short period is still possible, long-
range predictions, pérticularly in the west coast, are
usually not very accurate. The operating scheme ob-
tained for that year‘canﬂ£herefore be grossly misleading.
In addition, the fact that the ratio of maximum to extreme
low iiver flow in this part of North America is very high
(eeg., Bridge\River, British Columbia: 158 to 1) compared
to the ratio in the eastern part of this continent (e.g.,

St. Lawrence River: 2 to 1) almost annihilate any value

69
Cyp-

of forecasting of stream flow in the west'éoas‘bo
ser obtained his results by developing a procedure, using
the "method of steepest descent”, for'successively im-
proving a proposed mode of operation such that the effec-
tive cost can be continuously reduced.

Contrary to Cypser's approach,‘Little?8 in a thesis
submitted for'the degree of Doctor of Philosophy in Phys-
ics at the Massachusetts Institute of Technologyg did not
assume that future river flow is known in detail a year
in advance., Fof this reason probabiiiéﬁicAmethods are
used to minimize the expected cost, but not the cost it~
self° A simple mathematical model comprises one hydro-
electric plant and a reservoir, one thermal plaﬁt, a

given load demand, and a set of stream flows character-

ized by probability densities. In optimizing the opera-
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tion the planning period is divided into N smaller inter-
vals (Little used N = 26; one interval is 2 weeké), At
the beginning of each interval a decision is made about
the use of storage in that interval takingﬂinto consid-
eration today's reservoir level and the river flow pattern
in the immediately preceding interval. Using a thirty-
nine-year record of river flows of £ﬁe'Columbid River for
the probébilify“density function andiaééﬁﬂiﬁé’é constant
10&&”tﬁr6uéﬁ°g£ the year, twent&—six?aéciéion functions
were obtained. Each is represented by.a set of graphs
which tell how much stored water should be used for the
next two weeks as.a function of tﬁe volume of the pre~-
ceding two weeks of flow, with the present volume of water
as parameters. The author of this thesis feels that the
method described sbove is deficient in certain ways.

While this approach may give a true minimum" ever-all cost
for the whole ygar, optimization of several intervals are
uncertain, It is true that even if it is possible to
know what the actual volume of storége is at the beginning
of each inter#al, the volume at any time within the inter~
val is enﬁirely guess-work., This is due to sudden
changes of weather conditions which cause drastic changes
in rainfall and, hence, riverflow during a preceding short
period within the interval itself. If this phenomenon
occurred, the whole pattern of planned-storage-use® in

that interval should be altered considerably, or else a

*Little's term, 20
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certain amount of water must be spilled or flood limita-
tions violated. Consequently, the whole pattern of
storage use of the next interval should be altered, which
in turn ﬁill change all sets of planned-storage-uses of
all succeeding intervals. Little’s comparison of his
method with the well-established rule-curve® operation

is also objectionable, primarily because the rule-curve
used is based on the driest year of the above thirty-nine-
year record. If the flow conditions are not as severe,
the rule-curve operation may give a higher percentage of
savings than the one per cent calculated by Little,
Little's choice of a constant load for a whole year is
not practical, and his claim that changing theiload from
time to time will only add a little complication is not
justified. When the system consists of n hydro plants
(n larger than 1) the problem is difficult to solve since
it will consist of at least n x N decision functions of
two variables each.

59 of the

Little's work was followed by Koopmans'
Cowles Foundation for Research in EconomicSA#t Yale Uni-
versity. Koopmans' paper deals with a simple two-plant
system similar to that of his predecessor, apd its purpose
is to construct a "feasible water storage policy"** which

minimizes the thermal cost over a predetermined planning

period, while meeting a given load demand,” This method

*_. .
**Dlscussed in a later paragraph.
Koopmans' term.
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is unique in that it offers an additional feature of
associating with the‘above.optimal storage policy imputed
"efficiency prices" of the power generated and of the
vater used and in storage, and imputed "efficiency rents"
for the use of the plaﬁt and the reservoir. However,

it has a number of limitations in that certain impracti-
cal simplifying assumptions are made: (i) future load and
flow conditions are known with certainty (ii) variations
in head can be neglected.

One of the most widely used methods for long-range
optimization and which will probably produce the closest
to the desired minimum cost is called the rule-curve
method; Tiis method is extensively covered in a twenty-
page transactions paper by Brudenell and Gilbreath of the

Tennessee Valley Authority.so

This paper deals with the
subject of "economic integration"* of hydro and thermal
plants in delivering the required load to the high volt-
age transmission system. In supplying this load the
basic criterion is that of minimizing the average annuai
production cost under the most adverse conditions of
water. To arrive at the desired'gconomic result several
guides in the form of curves are used: (i) the basic

rule curve is the diagram which shows the expected or
planned reservoir levels or the plot of remaining storage

at any given time, taking into account the most critical

conditions of stream flow; (ii) the "no-spill rule curve"

*TVA's term,
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is the curve of the surplus between the firm load and the

energy available during the maximum flow period. If the

‘storage content is above this curve,the loss due to spill-

ing. should be balanced against the gain in energy from the
use of available flow; (iii) the "economy guide-line" is

a curve below which the value of incremental storage is
greafér than the cost of operating-the thermal power at
any one time, Using this diagram, the:. engineer would
simply shut down or operate the thermal source according
to the position of the storage content; whether below or
above the line; (iv) the "economy guide cufve" is a set

of family curves used in the same manner as the previous-
ly described curve but over a period of time. Thus for
any day and'actual storage content the amount of auxiliary

power to be used is indicated.

Previous Short-Term Methods and Equations

In the field of short-term optimization several meth-
ods and equations have been derived to solve the problem
of scheduling the various generating plants to meet a
given load at one particular time. These ‘equations are
outlined below in three sections according to their simi-
larities.

(i) Ricara*®!

Ricard derived in 1940, a set of operating schedules

for & hydro-thermal system with no losses. - 'His work was

*Ricanduis the first person to derive the type of equa~
tions developed in this section, hence, the name,
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continued by Chandler, Dandeno, Glimmn and Kirchmayer62

(heqceforth abbreviated: CDGK) in 1953, who included
transmission losses but with constant head. The latter
method was improved by Glimn and Kirch_mayer63 (henceforth
abbreviated: GK) who included transmission losses and

63 of the General Electric

variable-head plants. Kron
Company developed equivalent equations.

Their equations are as follows:

Ricard's Equations (September 1940)61

thermal: _dc/dPT = A, eee (2-9)
t
» dQ dt )
hydro: e [ La =2 ] = v -
ydro ]6 xpr 5% + S%E }, (2-10)
where : A = constant, Lagrangian multiplier,

incremental cost of delivered
power ($/Mw-hr),

76 = conversion constant ($/ft3),

Q = hydro plant discharge (cfs),

h = net head (ft),

A = surface area of reservoir (ftz, acre),
h&dro plant output (Mw).

Py

I

CDGK's Equations (October 1953)%2
ac. dP,

il =N j
dPp OPp ’

thermal:

]

n+1’noo,n+m LI (2"'11)

. P
. ; 403 oPy _ - ,
hydro: 71 E%-l;i—+ ‘/\5-13;;— A. i=1, .., n ... (2-12)

GK's Equations (December 1958)63

AP
. c L _
thel‘mal - dP + )\. DPT = )\, ) oo e (2-13)

T
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t
: - OP .
D dt ] d L : - .
hd H f e }\ =Ao. 200 2"14
soror ol ] BB - e

Kron's Equations (December 1958)631

\ ¥y 4 T dP, | dP
waror }[1 - et [t + &5 > [+ - )

fii) M. I. T.

ﬁm

]= 0. ... (2-15)

The personnel of this section have all been members of
the Economy Loadlng Research Group at the Massachusetts In-
stltute_of Teghnqugy. Their work in thls fleld was ini-
tiated by Cypsér?efwho developed a set of scheduling equa-
tions using the assumption that variations in elevations and
plant effidiehéiés'can be neglected. Cypser's equations are
not llnear and, therefore, not solvable by numerlcal itera-
tions or by meansfof an analogue computer of" the network
analyzer type. ~ Carey's th981364 suggested an approach which
will linearizé Cypser's equations.

The equations developed in this section are:
5
) 6

Cypser's Short-Range Equations (February 1953

dC.  dP T
- L .
thermal: 3?%3 - g(t) Sﬁ;f'z -u(t), J % é+l,...,n+é (2-18)

hydro: S—E— - A; - p(b) 5—-— —u(t), i=1,...,n  (2-17)
i - .

where x. and p(t) are Lagrangian multipliers.

Carey's Equations (June 1953)64,65
dC.

thermélz Er%; + B S—__ = —p(t), | j:= n+l,...,n+m  (2-18)
dP. -

L | ,
‘hydro: 3] 813.};: = }\1 - p(t), i=1,...,n (2-'—19)
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where P = average incremental fuel cost ($/Mw—hr).

Cypser's Long?Range* Equations (February 1953)56’5‘7

B(C +C.) (C +C.)
dt[ ST ]

hydro: .»(2-20)

where §, = storage volume at hydro plant i (ft3).'v

(iii) Watchorn (April 1955)%8
Watchorn defined** that maximum economy will be obtained

if the following equations are satisfied:

dP
ac D/dt H| ,
dP, [ dg/dt ~ Ti'Q—] = N, vee (2-21)
with B OFy bP (9-Play/as ¥ ¥p] (2-22)
where y = reservoir or pond elevation (ft),

y;= head loss (£t),
Yp = tailwater elevation (ft),

F = water inflow to reservoir (cfs),

N = incremental water valueu($/hr/1000 cfs).

* Included here for comparison with GK's equations.
**Watchorn did not prove his definition.
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CHAPTER III

THE SHORT-TERM HYDRO-THERMAL PROBLEM AND ITS GENERAL SOLUTION

3.1. Statement of the Problem

0f the various types of extremals 1nvolved (see Chapter I)
in solving the short—range optimization problem, this thesis
is limited to the derivation of the general solution of the
mathematical problem defined in the following paragraphs. The
objective is to determine a set of generating schedules for-an
electric power system of m thermal apd n hydro plants such -
that the total operating cost over §£5redetermined short-term
future interval can be minimized, when it is desired to supply
a given load demand. in this problem the following limita-
tions are imposed:

(1) The operating costs involved are only those costs which
vary directly with the plants' power output due to the fact that
in the process of computations used, only those terms with the
derivative of the cost with respect to-the éowef output will
appear in the equations. Consequently, capital costs on reser-
voir and génerating stations, or labour coStS‘ma& be omitted.
Maintenance costs are purposely omitted since the& are small
and relative1y°indéfinite. The dominating cost will therefore
be the cost of fuel at the thermal plants.

(2) One set of information is assumed to be known, and
that is, the amount of energy available at evefy hydro plant
during the period of optimization, This information can be

obtained from the‘i-ule—curve,60 where the énefgy available is
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computed from the knowledge of (i) reservoir elevation at pres-
ent, called the beginning of the optimizing period, (ii) ‘reser-
voir elevation at the end of the planning period, and (iii) the
total amount of inflow into the reservoir. The last two fac-
tors explain the whole criterion for choosing to solve the
short-term rather than the long-range problem. While it is
practically impossible to determine the expected pattern of
flow for a whole year, it is, however, highly probable "to
guess with exactness" what the total flow is going te be, for
the whole day tbmorrow or the whole week next Week. The above
statement runs parallel with the general theory of forecasting:
long-range forecasting (e.g., weather, businéss condiﬁions,
etc.) is more difficult than forecasting over a short period
of time.

(3) The period considered could vary from one day 6r
24 hours to one week or seven days, depending on the reliability
of forecasting of water resources of the system. It should be
noted, however, that gene:ally a longer optimizing period is
desirable £or the obvious reason that the longer ‘the period the
more economical it is, since less computations are to be per-
formed. On the other hand, the shorter the period the more
accurate are the results.

(4) This thesis is limited also to the consideration of
fixed periods, i.e., a period with fixed end-points. This
means that if the period to be optimized extends from, say,

Friday,* January 1, 1960, at 01.00 a.m. till Friday, January 8,

*Optimizing periods usually start on a Friday for the simple
reason that they will include the week-end's load pattern
which is different from that of any week-day.
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1960, at 01.00 a.m., then it must start and end exactly at the
times indicated. If that is not the case, the problém becomes
much more complicated than the present one, since more difficult
"variable end-point" cases will enter the picture..

(5) Only one hydro plant will be considered on any one
stream. The common-flow problem is more complex due to.addi—
tional restrictions which must be set foi the operation of the
hydre plant and for several reasons of intefdependency: (i) the
amount of water released from any upstream plant will off-set
the operation éf any downstream plaﬁt, and (ii) the operation
of a middle plant is.goferned by both the operdtion of its up-
stream and downﬁtream plants. | |

(6) Various hydro limitations are assumed, given in the
forms of project and ojerating restraints in a subsequent

section.

3.2 Mathematical Formulation of the Problem

The problem previously stated will be formulated in the
following paragrarhs. ‘The object is to .minimize the integral
I of the fuel cost Cj over a fixed future short-time inter-

val T, i.e.,
b ,=T
n+m :
1= 4.2:»10j (PTj,t) dt = minimum, eee (3-1)

where to and te are the two fixed end-points of the interval.

The problem admits two sets of restrictions, for energy and
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for load requirements, i.e.,

T
3y =] Pyy (0p,hy,%) dt = By, eee (3-2.1)
0

Jn =j'
0

or, in general, for: hydro plant i

T

]
td

PHn (Qn,hn,t) dat eee (3-2.n)

n’

T

3, =\L Py; (95 by,t) dt = By, ee. (8-2.1)
and

n . n+m
@=L Py (0;,h,t) + L Py (+) - By (By,Pp,t) = Py(t) = o.

i=1 j=n+1
' ¢ (3"'3)

The above restrictions can be changed into a more suitable form
(see Appendix-A) if the following transformations, using flow

variables Fi and storage variables Si, are performed:
PHi(Qi,hi,t) = PHi(Fi,Si,Si’t), i - 1,...11 v oo (3-4)
where éiz dSi/dt = the rate of change of storage (cfs).*

Since the natural inflows to the reservoirs are "alien" var-

iables, they are uncontrollable and indetermina,ble.67

For
this reason solutions containing these variables would be mean-
ingless. Assuming that they are known they can be eliminated

from the determining equations. The hydro and load restric-

dq
u . . .
, Where g, is a time variable.

*In general, qu =T
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tions can therefore be given in the following forms:

7

3, =_/' P, (8;,8,,t) at = By, ee. (8-5.1)
S0

) T |

g =-£ Py (S8, ,t)dt = B_, ... (3=5.n)

or, in generai, for hydro plant i

T
J; =./' PHi(Si,éi,t)dt = B, i=1,...n eee (3=5.1)
and ‘
n v . n--m :
= P..(S.,8.,t) + Pn.(t
¢ 1‘21 mi (85,8;,%) j:ém 15 (%)
- PL[.PHi(Si,Si),PTj,t] - Pp(t) = 0. oo (3-8)

In addition the following project and operating limitations
for the hydro plants must be observed:

(1) Project Limitations, a function of the design and lo-

cation of the plant, :reservoir, channels, turbines, etc., but
independent of the operation of the system itself; at hydro
plant i, where'i =1, ... , n:*

a. Maximum turbine discharge at maximum gate opening as function

of the net head:°®s°?
. . ¢ . . e - | " :
“f”miM“fm”~in = QiMT (hi)- B (3—7)
b, Minimum storage elevation due to location of intake gate:**zg’
__;;; s
yi = yip'G-. e s (3"8)

* Subscripts M and p stand for maximum and'miﬁimum respectively.

**Storage at'levéls-below the turbine intake gates'is called
"dead storage" (Koopmans' term59). '
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¢. Minimum storage elevation due to limits of storage basin: 26,68
yi = yipB° e 0o (3"9)
"d. Maximum of water flow through conduits:56
-
Qi = QiMC. oo (3—10)
e. Maximum power output at each hydro plant:
-
PHi - PHiM. ') (3-11)

(2) Operating Limitations, restricting factors in the

operation of the system; at hydro plant i, where i = 1,..., ns*
a. Maximum storage elevation due‘to flood prospects:56’68
Yi = Yinpe eeo (3-12)
b. Minimum plant discharge and spillage for the protection
‘ of Pish:°0168
o + Q5 F Qe eos (3-13)

¢. Minimum plant discharge and spillage for navigational
3,56
purposes:

o + 9 = QipN‘ eo. (8-14)

d. Minimum plant discharge and spillage for irrigational

purposes:7o

S

e. Minimum plant discharge to allow the plant to be operated

at minimum load factor during peaking:68

9 = Qi p .. (3-16)

*See corresponding foot-note on page 23,
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f. Maximum storage draft at certain lakes for recreational

purposes:68

i = SR °

1A

S eos (8=17)
Most of the operating restrictions apply only during
certain periods of the year; some are distinctly seasonal in
nature such that the results obtained from the optimizing equa-
tions should be checked against these restraints, So long as
the optimizing period is shorter than thé periods mentioned
above, the results mentioned earlier will be usable. On the

other hand, all of the project limitations apply at all times
of the year.

3.3 .General Solutions of the Problem: The First Necessary

Condition

3.3.1 Introduction

The problem formulated in the preceding section
will be solved using the methed of the Calculus of Varia-
tions as outlined in several textbooks and papers.71_75
A summary of this type of calculus, with special refer-
ence to this problem, is given in Appendix B, The
Calculus of Variations deals with problems of deter-
mining extreme values. However, while in the ordinary
~ theory of maxima and minima, the problem is to deter-
mine those independent variables x, y, 2z, ... which
will maximize or minimize a given function £ = £
(x, ¥, 2, «os), in the Calculus of Variations definite

integrals involving one or more unknowns are considered,

The problem in the latter case is to determine these



26

unknown functions such that the definite integral will take
maximum or minimum values. The problem of this thesis is
more complicated than the one presented above due to the
restrictions given by equations (3-5.1) to (3-5.n) and
(3-6). The first set of restraints indicates an isoperi-
metric case, while the latter is a special case of the
problem of Laérange, These two sets of restraints are
quite different in nature when solutions for the necessary
and sufficient conditions are required, 8o that the prob-
lem can only be solved if certain types of transformations
are considered. These trdhsfdrmatidns will elter the com-
bined problem into either an exclusively isoperimetric oﬁe
or a pure ngrange problem. Due to various practical
reasons given in Appendix B the transformation ihfo the
isoperimetric pfoblem is chosen. This means, that in-
stead of using equation (3-6) itself, the integral of this
equation is-comsidered during the planning period T. -This
in turn implies that, physically, the condition for load
requirements is now replaced by the restraints for energy
requirements.

' 'The projéct and operating limifétibﬂé are given in theu
form of inequalities and, hence, cannot be included in the
variational calculus problem, They will be used, however,
in the following sense: If the results produced by the
- optimizing equations derived below violate any of their
restraints, the extreme values (maxima or minima, whichever
suitable) shogld be inserted instead, and the procedure re-

peated.
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The thesis problem, henceforth called the '"condi-

tioned" problem,*

is exactly equivalent to the following
variational problem. Instead of considering the variation
of the definite intégral given by equation (3-1) with the
auxiliary conditions (3-5.i) and the integral of (3-6),

consider the modified integral

T
1 =-[ Hdt, ... (3-18)
)
where n+m n
H = j;;;lcj + ;;;XiPHi + Ag1 D, / eee (8-19)

with no auxiliary conditions. In equation (3-19) A; and
xn+l’ the Lagrangian multipliers, are to be considered
constants”reiative to the process of,Vafiation.

The geﬁeral solution of the problem'éf minimizing I

is given by the Euler's equations: .

QH 4 OH ' |
m-ﬁ-—q—uzo, u=1,2 o ) (3—20)

with q, as variables and u the type‘of_variable. For

u = 1 one has q) = PTj’ and for u = 2, 9, = Si' Thence,
there are m variables of the first and n variables of the
second type:

1 . 2 _ . . K )
9 = Pp pp13 9y = Pp opyod cee5 9y = Pp o

ceoy q_lsz e s (3""21)\

T,n+m;

*Bolza's”term,zl The unconditioned problem is that with
no restrictions. - e
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1 2 n
q2 = Sl; q_z = Sz; ece 3 qz = S/(,; e ooy qz = Sn;
eos (3-22)
.1 " 02 .Z/ o on »
q2 -"=Sl, q_2 =s2; o.u; q2 = /e‘; .o.; qz =Snn

The above Euler's differential equations are the
first necessary condition for an extremum, and therefore

also for a minimum.

3.3.2 Thermal-Plant Equations

For.qi = PT ntl One solves, using equations (3-6) énd
(3-19)
n+m n
dH }: 0C, .z; 0Py,
s = Sﬁ—l__— + A, <% +
OFpni1 ~ j&m1 OFrna {3y d OPp ni1
N i dbg;  XF dgy  dP ory |
+ + -
M O na1 e OFr,nel bPT nt1 OFf n+1[
a.nd e o e (3-2301)
S ). S *ZMB’P‘ —
Tn+l  j=n+l ~ T,n4+1l 1= T,n+l

n+m
Si bPHl N E: OPy OPp OPp
n+1 . ‘ 0 0
T n+1 J=n+1 bPT,n+1 b'PT,n+l bPT,n.,.l

(3-24.1)

In the above equations, all P,.'s, P,h.'s and P, are func~
Hi ®* "Tj D

tions of time. P! is a function of both P.. and P

L Hi T§°
and hence also a function of time.
Substltutlng equations (3-23.1) and (3—24 1) in the

Euler equatlons (3-20) and combining the summation terms
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wherever possible, one obtains:

b (Fl ar | Sl i( W
+. k + +
. 1
j=D+1 v nF bPT n+l i=l n+l T,n+1
. ‘ n+nm
o . AT ¢,
T, n+1 T, n+l j=n+1| 9°1j :
N n .
OP OP
Fp; T,n+1 . Zl()\ _— Hi - T,n+l
T,n+l T n+l 1= T,n+l PT n+l
| ¥R, dPy | OPp ., | o
- A1 | 5T + 37 =0, - . (3-25.1)
T,n+l T,n+l BPT nel | |
which can be simplified into
oP ' : .
T,n+l
£l(t) - t [f (t) . y,_n_ = 0, ... (8-26.1)
T,p+1 '
wizere _
n-+m bc bP n aP
1 : j T5 Hi
£ (%) = Z ﬁl—+x W—J——-+Z()\.+x ) +
| j-_-n+1( 5 n+1) T,n+l i1 1+ BHLT OFp 49
JP. OP
: L D
A . I eeo (8-27.1)
?+1 (bPT,n+1 ‘DPT,n+1

th

In general, one acquires for the k thermal plant,

where k = 1, 2,..,.,m:

v OP .
1) - & [fk(t) . —L—‘!ﬂ] -0, oo (3-26.k).
bPT
. ,n+k

which can be written as

| k OP | OP |
fk(t) _ lidfd*('t) (bT ,n+k ) . ‘fk(t) . %_{ (b T,n+kﬂ 0,
PP ik Pr,on+k

‘ o 00 (3"'28.1&)



30

where
n+m
oC. OP,,.
T
£k (t) = +;1 5———4—— +
;;Z+1 Py “’) Fr nek
. OPy. OP OP
21(7\ Ap,) F—‘_ Ms1|SP = Y3 > .
i= T,n+k T,n+k T,n+k

(3-27.k)

3.3.3 Hydro-Plant Equations

As before, for qé = S1 and é; = él’ one solves the

 Euler's equations for this varlable.

n+m n n n+m :
OC. . 21 N OPy; . Z OPy; z bBr'+
jmr1 5, " ;i Esl = n+1 5 n+1 Ssl

3 n+l

[dP: P [ ndm Ne dP
) L p| 4 oty OFms
A““(E ¥ &‘Pl—) -‘R—L;+l 08, N 121 1bs

-+

B, p,. BB Np .
H T L
;Z; kn+1f5§2l;+ z: hn+1 Sg_l - An+1:3§; A

dr |
a3 |- O e (8eesd)
1

Realizing the dependence of the cost bn'the thermal
power output, and the hydro plant output on its storage

value, one obtains the following relations:

bc':%(i-l- Wl bPHl (3-30.1)
1 Tj
OPy; OPy;  OPFppy (3-31.1)

0S; T-oPy;  08;
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OPq DPT. bPHl
6§Il = BPH% ¢ 35, v v.e. (8-32.1)
bPL: b-PL bPHl ‘
35, T Wy "S5, .o (8-83.1)
OP, JP, Py,
35, = JPy; © o5, oo (3-34.1)
C. ¥C;  OPn. P d
L= Y '-$f21 - e .. (3-85.1
o8, Tj OFm 05 YN ’ ( | )
OPy; OFy; OPyy <08
58, "y T e (ea0)
OP,. OPn. bP Y]
9y 9 9m 9%
5;;1 - OPpy '5§I“ bél ’ ee. (8-37.1)
ob, 0P, DBy 08,
Fé'l’ = Oy 95 agl ’ ... (3-38.1)

OPp, OPp  OPy ‘ 08,
bsl B bP‘Hl T 05, bSl )

..o (3-39.1)

Using equations (3-30.1) to (8-39.1) in equations

(3-29.1) one obtains similar to the previous case:

bs
g (t) - dt [ () - 557—} = 0, . (3-40.1)
where . | |
, n+m ,bc- DP )
1l : . T
g (t) = [j;;;l( PTj + An+1)5¥§% o= (A +xn+1)

L >, S .
- n+1( Jl ees (3-41.1)

3Py © 3P Jbs )
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- In general, omne obtains for the,zﬁh

where j, =

or
g’(ﬂ)

where

g’z(t)

a_
at

1,2,...n

[%«;)

bs/(i
o "

Lol

n-+m

OC.
PTJ.

bP

bs/@
bs[

[(t)

._]\/]v

P
n+1) H[

bPD) Mrf‘
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hydro plant

(3-40.1)
= 0, (3-42.4)
| OPy;
(A +Kn+l) SP-I;Z +
(3-41.1,)_

“output, i.e., at thermal plant j
1

- Mg (bPH g + P
From equation (3é41.£5.bné observes the similarity between
fk(t) ana gth) which.contains an additional factor
QP (/O8]

Substitution of Loss Factors and Cost Functions in the

General Equations

-9

It can generally be a,ssumed4 that the fuel cost at

any thermal plant is a guadratic funéfiaﬂ;of its power

2
P

where aj, bj and cj are constants. Hence
C., a ac. (
BJ—::a,.P .+ b, = . 3-44.3)
PTj 373 j aPTj

There are several ways of expressing transmission

losses in terms of plant generations for both single76"90
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91-96

and interconnected systems, but only some of the more

important methods and developments are outlined below.

(i) The B-Constant Method, initiated by George'° in

1943, further developed by Eaton, Ward and Hale, '

and
Kirchmayer and Stagg,78 is made possible by four basic
assumptions.78 The loss equation developed using these
assumptions will be referred to as the simplified loss
equation, contrary io the improved and more general for-
aula by Early, Watson and Smith 5% (1955) which ignored
the basic assumptions used préviously. Early and Wat-
sonss,developed in the same year a new methed of determin-
ing constants for the General Transmission Loss Equation
(GTLE).

(ii) The Voltage Phase-Angle Method developed by

Bi‘ownlee-81 in 1955 was used by Ca,hn83

to determine incre-
mental and total loss formulas. The use of;bower trans-
fer equations to derive coordination equations expressed
as functions of voltage phase-angles resulted in the
Miller equations.89
(iii) A general method of calculating incremental
transmission losses and the GTLE was developed by Watson

and StadlinS8

in 1959.
(iv) A new and revolutionary approach to loss mini-
mization in power systems was developed by Calvert and

86_in..1958, and applied to a simple system by Calvert,

. Sze
87 .
Sze and Garnett in 1959,
(v) Another new and fundamentally different method

in determining loss formulas from digital 1load flow~
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studies was developed by George90 in a recent paper.-

Of all the above methods, the most widely used B-Con-
stant approach will be used in this thesis. The simpli-
fied loss equation is given by:77’78

3?? §fn ' .
PL = Brs Pr Ps s ces (3-45)

r=1 S=1

where Brs is the derived loss formula coefficient (con-
stant at one specific load level), and Pr and Ps are

either thermal or hydro plant generations. Differen~

tiating PL with respect to these generations, one obtains

aP A m+n

L
bPT n+k =2 S= Bn+k,s Ps ! ‘ ee..(3-46.k)
’ o=

m+n

OP ; : |
5§§Z.= 2 ;;; B, Py - eer (3-47.4)

Substitutien of equations (3-44.j), (3-46.k) and

(3-47.15 in equations (3-27.k) and (3—41.Ib‘yie1ds for
the k'P thermal plant:

N=In bP
Kg) = ) . | Tj
) = 35EYL "(,a:iPTj+bj+>‘n+1) WTJ_ *

, DK
Zn:l Oy hgy) i | Iil
+ A+ - A 2 B P +
= i "n+l PT,n+k n=1 o n+k,s" s
OP |

+ P ? | - l LI ) (3—48ok)
T,n+k

and feor the l}h hydro plant:
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1% E: P, . OPy:
t) = _n+l(ajPTj+bj+}\n+l) F}{i + L ()\i+7\n+l) W—Hz.*-

- o ( 3?: BY P, + g£§2) %;%f e ee. (3-49.0)

3.3.5 Two Simplified Cases

Two types of simplified cases w111 be considered in
this sectlon- the case where only one hydro and one ther-
mal plant exists and the case where scheduling of genera-
tions is perfo;med at one particular time.

(i) Type A: The Two-Plant Problem

The optimizing equations derived in the preceding
sections become much simpler when fhe load demand is
satisfied by one hydro plant (n = 1) and one thermal.
plant (m = 1). Hence, using equations (3-26.1) and

(3-27.1) one solves for the thermal plént:

£ (t) -

3

dP

p - |
l(v) . OFpg -0, .. (3-50)
T2

with £1(t) taking the special form of

1 3, oF
£7(t) = ﬁ;’i;+)\2 +(?\l+?\)r+

OP OP
L D
- )\ + ” 00 (3—51)
2 (bPTZ OPpg |’
and for the hydro plant, from equations (3-40.1) and
(3-41.1):
08
gl(t) - (_di:Tt- gl(t) ° S_éi = O’ o0 0 (3"52)

=
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where
dC - P,
1 2 ST T2
8() [(3%+ z)gp-}l-l-+(l+2)+
bPL bPD bPH]_
- )\z(aPHl + bPHl )] bsl . % e 0 (3"‘53)

The two equations (3-50) and (3-52) can be combined

into one differential equation as in Appendix B:

. 2 2 .
3 r ). (2 ), 4 (Hr2, 25 P 85)
3P, bél 35; |3, 1| 3% a2 2 at | T
¢ 00 (3"‘54)
where
1 d OH ,
H, = — s o : eoo (3=55,
1 (sl)2 P, (bPTz) | | 2)
1 D |oH
= — | = ... (3-55.b
(B,,)2 95 (331) ( :
= =1 o (a}-I ) (38-55.¢)
(8) (By) 08y | Qbpy [ | U )

and where H can be derived from the general form of equa-

tion (3-19):

H = C2 + )\.l PHl + )\2 (PH]_ + PT2 - PL b PD). ® o0 (3_56)

It can be seen that the differential equation (3-54)
is of the second order. Its general solution contains,
therefore, two arbitrary constants of integration a and

B, two isoperimetric constants Xl and xz. Hence

PT2 = PT2 (a, B, }\.1, Kz, t), oo o0 (3“‘57)
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5, = 8; (a, B, Ay Ay, %) | eo. (3-58)

ds
From equation (3-58), él = Efl can be found which

together ‘with the flow Fl(t) will determine

Py, = Py ga; By Ay Ayy Py, t). vee (3-59)

From the known Bl in

- .
J[ Py, (Fy, S, §;, t) dt = By, vee (3-60)
0

from the auxiliary conditien

and the initial conditions
Sl (t = 0) = SlO’
s e e (3-62)

Po, (£t =0) =P

a, B, Al and Ay, can be found.

(ii) Type B: The Equivalence of this Method with all

Previously Known Methods

In practice, since the curve of load demand does
not follow a pattern which is presentable in the form of
a simple, continuous and differentiable function of time:
Py = PD(t), ees (3-83)
the problem caﬁ be revised as follows: |
Instead of determlnlng what S (t) S (t),...,S[(t),...,

S (t) and PT +1(t),..., T, n+k(t),...,PT nem (t) are,

when Fl(t),...,Eé(t),...,Fn(t) are given to meet PD(t)
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and PL(t), one solves the problem of what contribution
each plant should make in order to meet the load require-

ments at any one time t, where x = 0,1,...,e (to = 0;

ot
l

T).» In other words, at load level Pp(t ) what

the vaiﬁeé of

P (tx), .. (3-64)

o, ne1 () pT,n+k(tx); cevy Py oo
Py (b)) eeeens, PH[gtx), ceveney P (b)), ...(3-65)
should be, and hence )

S1(8)s weeeneey  SL(E), weeiiis,  S_(2), ... (3-66)
combiﬁed with a given set of flows

Fl(tx), ceennony gl(tx); ceseeee, Fn(tx), co. (3-67)

such'that
n n+4-m

}: Py, (1)) +_§: Ppj(ty) = Pplty,) + Pp(t,). ... (3-68)
1=1 Jj=n+1

The elements of sets (3-64) to (3-67) above are no
longer functions of tiﬁe, such that expressions as

aP, (¢ )/%,dP (t,)/d% and aPp(t_ )/dt do not exist.

T,n+k
However,
. d$£
S(ty) = 3 b=t .o (3-69)

does exist, since it is one of the three basic wvariables

P Sl'and %{ (the tx's are henceforth omitted for

T,n+k’
convenience), remembering that each one of them are dif-
ferent independent variables, In addition, basic vari-

ables of any one plant are characteristic of that plant



only. The scheduling equations can
fied using the following relations.

For the thermal plantis:

therefore be
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simpli-

.e. (8=70)

ees (8-71)

eee (3-72)

S, and éi only),

ocC,
T = 0 for j # n+k
T,n+k
=bg;l—=82—c-&t5—,f0r J = n+k
Tj T,n+k
DPT.
T =0 for j # n+k
T,n+k
=l, fOI‘j:IH'k
OP.,. :
EETEE"' =0 for all k = 1,...m
T,n+k
(since Py; is a function of F,,
o2,
bP "_'. O, fOr 8.11 k = l,..om
T,n+k
bPT.
S—.——-l—-—'zo, for all k = 1,.,..m
PT,n+k
bPHl
S-‘—__—_-—=O’ fOI‘ allk:l,ooom
PT,n+k
dP,
-b-—.——-—-——-=0 for allk:l,...m
‘PT,n+k
(since P, is a function of Py. and PTj
of their derivatives),
OP
r——:o. for a:llk=l,o-om
PT,n+k

...'(3—73)

.. (8-74)

.. (3-75)

ee. (3-76)

only, but not

ees (3=77)

Substituting the above equations in equations (3-26.k)
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th

and (3-27.k) one obtains for the k= thermal plant, or

thermal plant j:

oC. oPp,
+ )\ l -~ = 0 . j = 11+1 e o 4Mm
SPTj n+l EPTj} ’ ’

ee. (3-78.3)

Similarly, for the hydro plants:

Py

gﬁ};}:': '0-, for all [: 1,-..11 | eve (3-79) .

DS, ;
Sgi 0 for i £ l

' ;= 1, for i =<£ - ... (3-80)
P . .
'SP‘D_[= 0, for all [; 1,...n eor. (3-81)
- | -
OP,.. ;
bPT = 0, for a:ll [:: l,oo-n 0o (3"82)
H _
DS, |
Sgi =0 for i Aﬂl
=1, for i = f. .o (3-83)

Thus for hydro plant i:

NN - S A
i "n+l Ssi n+l bPHi bsi

_d i ) OPpi ., OFp Py
dt i n+l’ d§. n+l SPHi DS.
1 " 1

= 0,

i = 1,-..11 o0 0 (3"84;]’.)

which by combining the lost terms can be written in a

simpler form:
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CHAPTER IV

OTHER NECESSARY AND SUFFICIENT CONDITIONS FOR A MINIMUM OF THE
ISOPERIMETRIC PROBLEM

4,1 Introduction

In addition to the first necessary condition of minimizing
the conditioned integral 1 given by equation (3-18) of the pre-
vious chapter, there are three other necessary and three suffi-
cient conditions to be satisfied. To avoid complexity of
symbols and notations invelved in the general problem, and to
familiarize the reader with the concept and use of such con-
ditions, the simplified problem of type A, Chapter III, will be
considered. The extension to the general case of a system of

71,72 The notations

m thermal and n hydro plants is obvious.
used in the following sections are identical with the ones used
in Appendix B, where the two variables x and 'y are now replaced

by Pp, and 8§, respectively.

T2

4,2 The Second Necessary Condition

The second necessary condition for a minimum of I is given

by the analogue of the Legendre's condi‘bion:71’72

)

H

L O eee (4-1)

along the extremal C,, expressed in the form of equatlons (3-57)
and (3- 58) H, is given by either equatlop (3—55 a) or
(3-55.b) or (8—55 c) which, using the original Euler equations

for the thermal plant (or hydro plant), can be written as

N R
1= (s;)2 OPp,

P
H £1(4)e ZPTZ ee. (4-2.2)
12
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1 o) 1 1

o 5 1 )e —pm
(Bpg)® 08, [g )% J

1
1 d [.1,. . gy
o= e ry e N f °—-...;.—-.—-

where fl(t) and gl(t) are given by

respectively.

4,3 The Third Necessary Condition

The third necessary condition

analogue of Jacebi's condition

D(t,4g) = [y (8g) ()  wglty)
‘wl(t) wy (t) w3(t)
1ot % %
jledt wazd'b jUdet
t, ty t,
% % %
f Vi, dt f Vu,dt f Vwgdt
*o g o
where
0S;  OPpy  OPp, 08
wy () = >t " da TJF " da !
08; OPp, OPpy 08,
wplt) = = - 37 -3F 55
38, by, OPp, S,
w3t) = s TSV SN
AN A v 3%,

iy

is
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... (4=2.b)

(4-2.c)

o e

equations (3-51) and (3-53)

given by Weierstrass's

w4(t0)

w, (1)
%

f Um4dt

£0, ...(4-3)

veo (4-4)



and
> [dPy > [%Fm ' e ap,, a7, a2P,, . as,
U =3P, 35, | T g, | 05 1{"at dat T g2 " at |’
(4-5)
\
. 1 R (me‘:
with G, = — < eo..(4~6.a)
L(8)2 Ok QPsz
1 d (bPﬂl) (4-6.5)
(pT2)2 asl asl !
1 d PHI) '
= _ (4=6.¢c)
(Ppy) (S;) OBy, (bsl
Similarly:
. 2 2
vo D |20 )_ > e |, 4 {dPTz ° ds%_dPrzz 0 dle
IR R . |37 "% T3 T TR T T T W
. (4=7)
. D 0@
with @, = 1 — ( > ) oo (4-8.a)
L7 (8))2 B, | 0Py,
1 0 b®)
= — eeo (4=8.D)
(PT2)2 asl (bsl :
- —t 0 — jﬁé: (4-8.¢)
() (8]) by, bél) ’
where @ is given by equation (3-61). Computing the derivatives
of @ with respect to Pp,, Sy, Pp, and él, one obtains

V = "‘?"‘ - + 1 = - - 53
bSl T2 bPTZ bPTg . bPTz Hl

P P P | .
H1 L 9Fp d [(1 , gr_r;g‘_z_ N

dp  dPy ) bPHl] [dPTz a2s,  d2p, dsl]
+ @1 ° 9

OPyy - JPy; | 05, dt dt~ ~  gt2 =~ at

voo (4=9)

where

L [[oPm OP;  OPp | OPp, | -
®) = @7 Sy [(bPTz +1 - me Sr; | %, ... (4-10.a)
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° e 0 (4”10.b)

*

1 d | OPp,  JP QP bPHl
T (P 1

)2 o8, |\1 TSPy, TSRy TSPy | S§,

° (4‘-1000)

bPT2 bPL _ bPD bPHl
bél

1 0
- G l -+ -
(Pp5)(8;) OPpy [( OPg;  OFpp  OPp
The third necesséry condition can alse be given as

t

0 voo (4-11)

t =T=+1

wheresté is the conjugate of the point to, the beginning of the
optimizing pefiod, and te the end of this period. The con-

jugate point té is the root'next greater than to of the equa~
tion

D (t, ty) = 0. eoo (4=12)

4.4 The Fourth Necessary Condition

The fourth necessary condition for.a minimum is given by

aWéie}strass* as
PTz,vSl, PTz, S15 Ppos Sy35 Ay A, ) E O, cee (4-13)

E ( ¥

which must be fulfilled along the extremal C, for every direc-

tion éTz and él‘ The E-function is given by
E=H( Pros Sl’ PTZ’ Sl; Xlg Kz )
®  OH | Z OH :
- P ST + S e 9 s 00 (4““14)
with

+ (PHl (51, 5;,4) + Py (4)-B; (1)-Pp(+)], (4-15)

71,72

* . .
Bolza calls it the Weierstrass' condition.
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and 3
dH 1 Pro
e = f (t)' r 9 oo o0 (4"16)
OPqp, Oy
dH 1,,, 95
bél = (t)'bél 9 o600 (4"“17)

with £1(t) and gl(t) given by equations (3-51) and (3-53)

respectively.

4.5 The Three Sufficient Conditions

The three sufficient conditions for a minimum of integral i
are given by the second, third and fourth necessary conditions

with the equality sign omitted, i.e.,

H, >0, - veo (4-18)
!
te<to, .uoo (4""19)
E (PTQ’SI’PTZ’SI’PTZ’SI.; }\19}\2)>09 eoo (4=20)

where Hl and the E-function are given by equations (4-2.a,b,c)

1
and (4-14) respectively,and to defined as previously.
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CHAPTER V

EXAMPLE OF A LOSSLESS TWO-PLANT PROBLEM

5.1 Statement of the Problem

As an illustration of how the four necessary and the three
sufficient conditions can be applied, the two-plant problem,
defined in chapter III as the simplified Type A case, will be
considered. In this illustration it is further assumed that
the transmission losses can be neglected. The problem is
essentially the same as that of Glimn and Kirchmayer (abbre-
viated: GK)Gsbwho assumed the following:

(l)hThe incremental cost of thermal power is constant, or

the cost functioen linear:

2 = .b2 PT2 + C2 ’ o 6 o (5“’1)

bcz/bPT2 =b, = dCz/dPTz. : eoo (5=2)

C

(2) The reservoir is a vertical-sided tank, and the tail-
water elevation independent of flow, such that (if head loss

and spillage are neglected) the net head can be expressed as:
t

F-
h=ho+/ =2 at, oo (5-3)
0

where F, the inflow to the reservoir is constant.
(3) The load is constant, e.g., numerically equal to the

constants a and 12;
PD = X + )\.20 o0 0 (5“"4)
(4) Transmission losses can be neglected:

= Oo o 00 (5_’5)

§

L
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5.2 Solutions of the Problem: The First Necessary Condition

GK's solutions63 are given in the form of a linear rela-
tionship between hydro plant output and time (see Figure 8--
GK's paper) and a linear function of head, and therefore

storage, with time, i.,e., for the storage

Sl‘z xl - Bt, s 00 (5—6)

with constants kl and B consistently chosen with the general
solution given by equation (3-58). Assuming arbitrarily, that
the functional relationship between the hydro plant output and

the storage and the change of storage is given by

PHl = = Sl - Sl’ e e o (5“7)
one obtains by using equation (5-6) that
PHl = - Kl -+ B + Bt, » ooo'(5’8)

which is consistent with both equations (3-59) and Figure 8 of

GK's paper.63

Due to assumption (4) one acquires for the thermal plant -

PT2 = PD - PH]_, 00 (5"9)
which combined with equations (5-4) and (5-8) yields
Pny = (o + Ay + Xl) - B (+ +.1), . eos (5-10)

which satisfies equation (3-57).
Since the plant's output and the storage value are all

positive physical gquantities, the following inequalities hold:

ny

A 0,

1

W

B 0,
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B = A voe (5=11)

1?
a+hy+Aq -B Z 0.
The physical meaning of equations (5-8) and (5-10) are
that.due to the high cost of thermal power, it is desirable to
hold the hydro generation low at the beginning of the period
and the thermal generation high at the beginning, but low at
the end of the period.” |
The next stép is to prove that equations (5-6) and (5-10)
satisfy the Euler's equations. To do this the following deriva-
tives are first computed:

From equations (5-4) and (5-5) one obtains

OP OP _
L L
= - O 600 (5"’12)
OPpy ~ OFy — 7 | o
OP OP
D .9
= = O e o0 (5“13)
T |
from equation (5-9):
OP DP
H1 T2
= =1 o2 = =1 eees (5=14)
OPp, ! oFy ’
from equation (5-10):
. dP
Pr, = —gx= = -B, eeo (5-15)
OP,..
-oTz = t + 1, o e (5_16)
OP
T2

and using equations (5-6) and (5-T7):

: 1 .
Sl =a‘_‘t—'= -B, 500 (5""17)

If 4 is high, Py, is high, and hence C, is high.

T2
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bsl
. - t . o0 0 5"'18
bs ? T ( )
. R
OP
.Hl = - (t + l)y °ee -(5—19).
bsl
and 3
P
H1 t+1 (
- - oe o 5_20)
= TR
since
A, =S
1 71
Py = - (A-B%) + —%
A
t+1 1
= - S o LT _— ce e -
1"y t3 (5-21)

One may now solve fl(t) and gl(t) given by equations (3-51)
and (3-53):

el(t) = (by#h,) = (Ay#hy) = by = Ay, oo (5-22)

gl(t)

i |11 41
—[-(b2+}\2)+()\1+}\2)i, T = (bz"‘)\.l) T ° oo 0 (5-’23)
Substitution of these in equations (3-50) and (3-52) yields
(bo-As) = S | (bo=ry ) (341) | =

2 71 dt 2 "1’ -

(bg=hy) = (by=A;)e1 = 0, oo (5-24)

and

Ll a Sl |
(bo-Ay) « =5 ks’ {(bz“hl) T J =

c+

+1
(by-2;) - == - (by=ry) =

' 1
(bz'—}\l) '__l_: ° o0 o (5"’25)

Equation (5-24) always satisfies Euler's equations while equa-

tion (5-25) will be identically zero if and only if, for t £ O,

b2 = K1°’ ' | eoo (5=26)
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Substitution of this value in equation (5-24) is a trivial
solution. As mentioned earlier, the numerical values are
chosen arbitrarily such that condition (5-26) can be satisfied

if Al’ the initial storage value, is chosen appropriately.

5.3 Tests for Necessary and Sufficient Conditions

The results of the previous part will now be tested against
the three necessary conditions along with the three sufficient
conditions.

(1) The Second Necessary Condition

This condition is given ﬂy equation (4-1) together
with either of the three equations (4-2.a), (4-2.b) or (4-2¢).
Using the simplest equation (4-2.a) and making use of the re-
lations (5-15), (5-18), (5-~17) and (5-22) one obtains

_ 1
17 (-p)?
Equation (5-27) is identically zero due to condition (5-26).

H

5T |(ehy) (1) | coe (5-27)

Hence, the second necessary condition is satisfied.

(2) The Third Necessary Condition

Using equations (4-4), (5-6) and (5-10) the following

functions of time can be calculated:

@y (£) = (-)-1 = (=B) - 0 = —p,

wy(t) = (=B)-=(t+1) = (-B)(~%) = 8,

... (5-28)
wg(t) = (=) - 1 - (-B)+1 = 0, |
wg(t) = (-B) -1- (-B) - 0 = -B.

Since wl(t), w2(t), ws(t) and w4(t) are constant, the first
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and second rows of the determinant D(t,to) are identical and
therefore

D(t’to) = O’ IO (5-29)

and, consequently, the third necessary condition is not satis-
fied.

(3) The Pourth Necessary Condition

Substituting equatiomns (5-1), (5-2), (5-7), (5-16),
(5-18), (5-22) and (5-23) in the Weierstrass's E-function (4-14)

one obtains

E = byPpo+ 2+A (-S 3 )+A [(—S -5 )+PT2—PD] +
- 5’ (by—ny) (44+1) +8. (bo-A ERA (5-30)
T2 1l 2 "1 : v

In this eguation

él = =B = con§tant = ﬁT2’ eeo (5=31)
and therefore

> o . ~ '

S; = 8) = Ppy = Ppy, ces (5-32)

from which, by substituting equations (5-4), (5-8) and (5-10)
in equation (5-30):

E = c2+(b2~h1)(hl+8) + bz(a+x2) + Bt(bz-hl), eos (5-33)

which, due to condition (5-26) reduces to

E=02+b

(a + >\-2), oo e (5—34)
and hence, since the constants are all positive, the fourth
necessary condition is satisfied..

(4) The Three Sufficient Conditions

According to equations (5-27), Hl and D(t,to) respec-

tively al&ays vanish, Therefore, the first and second
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sufficient conditions, which are equivalent to the second and
third necessary conditions without the equality sign, will nev-
er be satisfied. However, the third sufficient condition is

always satisfied since, due to equation (5-34)
E>O. . e 0 (5—35)

5.4 Conclusions

5.4.1 Discussion on the Selutions

For the specific problem stated in part 5.1 only
the first, second, and fourth necessary conditiops, and
the third sufficient condition, are satisfied if equation
(5-26) holds. The solutions of this problem; ﬁé%ever, do
not satisfy Weierst?éSs's third neceésary condition and the
first and second sufficient conditions. These last three
conditions could be easily met, if quadratic or higher
order solutions were used, in the place of equations (5-6)
and (5-10). H, would, then, not have to vanish and the
determinant D(t,tO) would not contain identical rows lead-
ing to a zero solution. Nevertheless, this example was
chosen to enable the reader to compafe the method employed
in this thesis with methods developed by authorities in
this field who obtained linear functiens of time for their
storage and thermal plant values. The example was made
simple enough such that the necessary and sufficienﬁ con-
ditions could be easily calculated.

It is to be noted regretfully, that even if the

seven conditions are satisfied, the conditioned problem
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will only legd to a "semi-strong minimum"* due to the fact
that, with the first and second sufficient conditions
satisfied, no guarantee can be given as to the possibility
of constructing Weierstrass' E-function. The problem
therefore differs from the unconditioned case where the
question of Weierstrass' construction could be answered in
the affirmative. |

In general, the problem is not finished at the end
of part 5.3. If project and operating limitations exist
the results would still have to be compared with these
limitations. | If violations occur, tbeicorresponding ex-—
tremals should be chosen and the whole procedure repeated.
For the same order of magnitude of‘quantities obtained,
i.e.,.for’small violations the tests for necessary and
sufficient conditions would probably still be valid, and
hence; not to Be performed again.

5.4.2 Digital Computer Application

In solving the above two-plant problem, or, in
general, for the solution of a combined hydro—thermal prob-
lem with'm'thermél and n hydre plants, high—spéed digital
computers can be employed most advantageously. These com-
puters can be used in either of the two forms:

(i) directly, by assuming one solution for each
plant (in total m+n solutions) and substituting the solu-

tions in the general equations, or,

*Bolza's ‘berm.71
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(ii) indirectly, by first solving either of the less
complex GK's, Kron's, or Cypser's equations and then sub—‘
stituting them in the general eQuations derived in this
thesis. R |

There are several criteria which could be used in
making the above cheice, although the most logical cri-
terion must be that of the speed, in whiéh the correct
economic solution can be obtained using the same computer.
The direct method would not create difficulties if the
operating engineer, based on his experience, knows how to
make reliable inital estimates of all solutions. However,
the problémvbecomes insurmountable if many plants are pre-
sent in the system. In this case, the indirect method
would produce the results faster,

After the correct results are obtained they are to
be tested against the three other necessary and the three
sufficient cogditions. The computer program should also
contain tests for the various project and operating limi-
tations. In all of the above cases iterative loops should

be used for repeating the procedure,
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CHAPTER VI

THE GENERAL EQUATIONS COMPARED WITH PREVIOQOUSLY DEVELOPED FORMULAS

6.1 Introduction

In this chapter the general equations developed in chap-
ter III will be compared with all known formulas summarized in
section 2.3.3 of chapter II. It ié evident that the methods
given in the above section can only be compared with the simpli-
fied typé B case of the gemeral equations, since only scheduling
of generations or load allocations amoﬁg plants are considered
in these methods, instead of the general case using time-func-
tions derived in this thesis. In order that each one of twelve
equations in the three short-term groups can be judged, the com-
parison will be made using the simplified two-plant model.
Furthermore, the groupings of equations will be ignored when
placing side by side the simplified type B equations (3-78.j)
and (3-85.1) with the previously developed formulas (2-9) to
(2-=22). The comparison will commence with the easiest and fin-

ish with the most difficult equation te compare.

6.2 Comparison with Kron's Equation

63 is not restricted by the first auxiliary

Kron's problem
condition (3-5.i) used in this treatise. For this reason the
Lagrange's multiplier A, will disappear and equatioh (3=85.1)

will reduce to

L _OPL|0Fy 4 OPp, | OPy ‘
7\2(1 -m)-b‘s—-‘ﬁ )\2(1 —B_PE)SE_ = 0, eoo (6-1)

removing all numbered subscripts of the plant variables. The
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problem therefore becomes that of comparing Kron's equation
(2-15) with equation (6-1).

Kron's variables are q and G, or q and Q using notations
of this text, where t. »
g = g{t) = q(0) +f Qdt. coo (6-2)
If leakage and evaporation are ignored the inflow to a

reservoir equals the outflow and the time rate of change of

storage,* i.e.,
F(t) = (%) + o(t) + S(3),

which can be written as

0(t) = F(t) - o(t) - S(%). eos (6=3)
The storage at any time t can be given.as
t :
S(t) = s(0) +f S(t)at. | ee. (6-4)
0

Substituting equation (6-3) in equation (6-2) and sub-

stituting equation (6-4) in the resulting”equation one obtains

1 1t
a(t) = q(0) +fF('l;)dt ...f s(t)at - S(+) + 5(0). ve. (6-5)
6] 0
Let "
fF(t)dt = I'(v) + I'(0), coo (6=8)
6]
; |
fo(t)dt = n(t) + 1(0), - vee (6=7)

*See also Appendix A.
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then Kron's q(t) will be équivalent to the magnitude of the vol-

ume of storage S(t) if
q(0) = = I'(t) - I'(0) + n(t) + n(0) - s(0). e.o (6-8)

Since q(0) is not a function of time, the time functions

should vanish, thus

r'(t)

n(t), ees (6=9)

and hence

1(0) = - 1(0) + =(0) - s8(0). eoo (6-10)

This last equatibﬂ stipulates that the volume of storage at the
beginning of each planning period dépends upon the integrated
f}ow andtspillage during all previous planning periods.
Substituting equations (6-6) to (6~10) in equation (6-5)
gives

q(t) = - s(t), ceo (6-11)

from which the equivalence of equations (6-1) and (2-15) can be
seen With%
7\ = o= )\‘2, e o0 (6"12)

and

o —t—— - —

bPH
== 55 ° _ ceo (6-13)

6.3. Comparison with Ricard's Equation

"The best way to identify the equivalence between Ricard's

equation61 and the simplified general equations (3-85.i) is by

*Quantities or variables of this thesis will henceforth be
written on the right-hand side of the equality sign, whenever
an equivalence is proven.
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comparing the former with Kron's equation (2-15), The link

between the two is provideF by the equation63

7‘='mﬁ s o000 (6—,14)‘

whereé?’as.a function of time can be determined from
| : S

g ‘
| %= bh % . o s (6-15)
If transmission losses are neglected, Kron's equation

reduces to
= 0, e.. (6-16)
with the equivalence in this thesis:

Ay OPy g [ OPy

r'sr'a'{[?‘z Sé_]’O‘ | eeo (6-17)

Substituting equation (6-14) in equation (6-15) and by re-

i
A

arranging one obtains

A 0Q/0h d A
_nggmﬁga.{[m]:o. | ee. (6-18)

Realizing the dependence of the plant discharge ( on the net

head h and the plant output PH, one may write

HW:Q—Q (h, PH):'.O,

and, hence

%:1#0, ceo (6-19)

from.which,one derives63

d9/dh ofy |
88751?&"‘&?‘" ee. (6-20)

and
bPH

1 ‘
/0Py T 3 ¢ -o. (6-21)
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Substituting the last two equations in equation (6-18)

results in Kron's equation (6-16) and its equivalence (6-17).

6.4 Comparison with CDGK's and GK's Equations

CDGK's thermal plant equations62 are exactly equivalent
with those developed by Glimn and Kirchmayerss. Their equa-
tions are also the same with the simplified general equation

(3-78.j) with the obvious identity

A== eos (6-22)

n+l’
which reduces to identiy (6-12) for a single hydro plant prob-
lem (n = 1). ' | A
With the exception of thelioss terms, CDGK's and GK's hydro
plants equations are identical with Ricard's eguations whose
identity with the general equations. has been proven. The loss
terms can be inserted in the form of penalty factors LT and LH
which reduce to uniiy when the losses vanish, i.e.,
eoe (6-23)

Ly = T=0F, /5P,

Instead of equation (6-14) one therefore has*
7_?~_Ii'£
- .
00/70Py Ly
which by substituting the value of A for the lossless thermal

plant system becomes
dC/dPy Ly

7=8Q76—P—H-=L—I;. 00 (6-—24)

¥ . aqs . ‘
A in this case is lossless.
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Integrating equation (6-15) one obtains

| t
=7 exp.£. §§~%3) , ... (8-25)

from which one derives
Ly d * d
dcC H dt
W =.~-I—J- 5%— % expf SIQ]._A_ . s ee (6-26)
T T H 0 .

This last equation is exactly equivalent to the two GK's
scheduling equations (2-13) and (2-14) combined.
If the variations of the net head can be neglected, h is

no longer a variable, thus

%%: O, | o0 0 (6—27)
and, therefore, from equation (6-25)
7’: 76 = constant. ... (6-28)

This is the problem solved by CDGK given by equation (2-12).

6.5 Comparison with Equations of the M. I. T. Group

6.5.1 Introduction

In the short-range case, Cypser sPecifies56 a pre-
determined amount of water at each hydro plant over a short
future time interval., The same specification essentially
applies to the problem discussed in this thesis and to the

model used by Ricard,61 GK63 62

and CDGK. Cypser, however,
distinguishes two cases for his specificafion: (i) with
run~of-river and pondage plants (small storage plants in-
cluded) the amount of water specified for short term use

are the "anticipated availabilities" based om short-range
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predictions of stream flow; (ii) with large storage plants
-where appreciable variations in storage elevations and
efficiencies occur, the spééifications must be the result
of a short-term optimization Séhedulef For the above
réasons, the problem can be solved in two wayss: with power
outputs as variables and with values of storage as vari-
ables. A,brief.outline of the two cases and their simi-
larity with tﬁe general equations of this thesis are given
in the following sections. In this connection Carey's

1inearization64’65”will be mentioened.

6.5.2 Power Outputs:aS'Variables

Theuspecified amount of water will give a specified
amount of energy over a short future time interval and,
therefore, an integrated average power from the hydro
plant. Hence, for the two-plant problem:

T

_j.(PH - PHA) dt = O. co. (6-29)
0

The effective cost to be minimized is composed of
two parts: the thermal fuel cost and the cost of violating
one or more hydro limitations, i.e.,

T T

$ =f CZ(PT)dt +f Cl(PH)dt . .os (6~30)
0 0

Combining the two equations above together with the

¥0f the Ricard section (see chapter II), only Kron®3 did

not use this specification.
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conditions for load requirements, one solves56

dC QP
1 L

== = A, = hrsm = = U oo (6-31)

bPH 1 bPH ! |

o0 OP

S?“z-_- - p PL - o= pa e 00 (6_32)
T2 d H

Using an assumption similar to the one adopted in

this thesis that no violations are allowed, one obtains
oC,
S—PH — O oo o (6"33)
which reveals the exact equivalence between Cypser's equa-
tions (6-31) and (6-32) and CDGK's equations (2-11) and

(2-12), with the following conditions:

Ay = ']%%E . oo (6-34)
and '

-p = }\. = “"‘Az o s 00 (6—'35)

Carey's equations are obtained by using equation
(6-33), and by replacing all —u(t)'s on the left hand side
of the equality sign by B which is equal to the weighted

average value of the incremental fuel cost,64’65

Carey's
equations are, therefore, necessarily the same as those
of Cypser and, hence, equivalent with the general equa-

tions.,

6.5.3 Plant-Storage Values as Variables

Cypser's general problem involves the use of plant
storage as variables and defining error functions such

that the storage at any time t equals the optimum storage
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plus this error function, i.e.,
S(t) = So(t) + Ve(4), .. (6-36)

where ©(t) is a fixed undetermined curve constrained by
the boundary conditions

e(t =0) = 0, | ' : oo (6-37)

C(t:T)

Oe l oo e (6—‘38)

Through the use of the Calculus of Variations it
can be proven that the optimum storage curve will be given

by Euler's equations

0 _a (% =0 (6=39)
oS T d% | 33 ’ A ce
if no hydro violations are allowed. By expansion one
obtains’
DCZ = Qg_ o EE! o bPH = oc (6=40)
S % OPy Py OS5 ~ 08 coc
ac,, . ) . OPy 3¢ (6-41)
08 OPp Py d§ T d§

which, for a lossless system (see equations (3-78.j) and

(5-14)), reduce to

OP
%—g—'—',}\z_'ggﬂ s eoe (6=42)
. JP .
gg = Ay 7;% . . ee. (6-43)

Substituting equations (6-42) and (6-43) in equation

*Only one type of cost is now involved, hence subscript
2 can be omitted.
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(6-39) yields

bP"l' OP !
H d H
My S5 - G [Xz 35_] = 0, soo (6=44)

which is the simplified general equation (6-1) with PL==O.

6.6 Comparison with Watchorn's Equations

Watchorn defines for "maximum economy":ee*
ap
dC T
N =E‘T;— e '&"Q"— ¢ o0 0 (6“45)

T
For a lossless transmission system the power outputs are
related by
Pp = Pp - Py, oo (6=46)

from which one obtains the differentials

dP, = dP, - dP coo (6=4T)

-T D H °
Taking the derivatives of equation (6-47) with respect to

the plant discharge one solves

dPy, dPD/dt dpP
dg T dg/dt " dQ

H

® o0 0 (6"‘48)

Considering a variable-~head plant with twoe variables

Py = Py (0,h) , | voo (6-49)
one derives
Py OPg OPy gy
=S5t S5 a@g seo (6-50)
But the net head is given by (see Appendix A)
h=y=yp=y, - 200 (6=51)

fWatchorn"s term.
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Assuming no spillage, one has

y =y (8), see (6-52)
yT = yT (Q)’ L v (6'—'53)
yp = ¥ (@), oo (6-54)
from which
dy dy
dh d ds T L
3 = Eg W -T - oos (6=55)

Depending on whether or not the inflow exceeds the amount being

discharged, one obtains from equation (6-3)

EACEE B P o

when a positive value of (Q-F) is assumed. Substituting equa-
tion (6-56) in equation (6-~55) and, then, in equation (6-50)
yields

dPy OPy OPy | g p gy dyp dyg
g =% "™ (Hg/dt‘%“ab"“a@“‘

Using equation (6-57) in equation (6~48) and, then, in equatioen

. oo (6-57)

(6-45) one obtains for the Watchorn's economic equation:

e dPD/dt bPH DPH

dyT dyL
Ne=3p, |T7 "% T h

Q-F dy T _°L
d9/at d4s - dg " A7

]» ... (6-58)

66

To prove the similarity between the Watchorn's equations
and those of Glimn and Kirchmayer, and hence of this thesis,

the following manipulations are employed. Writing equation

(6-45) as
d
N%%_=a—%-’ [ o009 (6"“59)
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and using equation (6-48) and Ricard's lossless equation (2-9)

one obtains

1

N (dPD/dt dPH) = A. coo (6=60)
dp/at 40

If the variations of load demand with time can be neglected

or small compared with the variqtioﬁs of the plant discharge,

then

'dPD

Tz Oo oo e (6““61)

This condition can be made possible if blocks of power are con-
sidered during the planning peried, or if individual loads are
considered such as the type B case of chapter III. Combining

equations (6-60) and (6-61) gives

a9 _ -6
== N dPH — ho o0 a (6 62)

With no losses GK's equation can be written as
L]
00 dt | D
70 exp[j 81% r] S%’I:; = k9 ©o 0 0 (6“"63)
_ 0

which reduces to CDGK's

76_%%E =, oo (6-64)

if head variations are ignored.

Assuming that Watchbrn”s claim that N is a constant966
then equations (6-62) and (6m64) are necessarily equivalent
since 76.15 also a constant and both quantities share the same

unit. The connecting equation between the two methods is given

by ' Yo =-N oo (6-65)

from which the sought-for equivalence can be made obvious.
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CHAPTER VII
CONCLUDING REMARKS -- FUTURE WORK

In the preceding chapters, all previeously known methods
and equations for optimizing opération of coembined hydrp—thermal
electric systems, for both shert and long perieds of time, have
been reviewed”and‘analyzed; In conclusion the following com=
ments can be made:

(1) The long-range problem is not amenable to an exact
mathematical solutio& because of the difficulty in stating the
anticipated stream flows.

(2) For the shert-range problem general differential equa-
tions have been derived for optimization of hydro~thermalcﬂectfic
systemé employing the Calculus of Variations.

(3) With regard to the previously developed short-range
methods it has been shown (i) that these methods are equivalent
- providing certain conditions are satisfied, and (ii) that the
equations derived by the authers of thése‘methods'are merely
simplified forms of the aforementioned general equations.

(4) In addition to the general equations, several necessary
and sufficient conditions for short-range optimization problems
have been derived.

(5) The solutions of a standard problem”used bjiwellmknown
authorities in this field have been tested against the various
conditions mentioned above.

(6) The use of high=speed digital computers for solving

the general equations and testing them for the necessary and
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sufficient conditions has been discussed,

In view of the above, it is obvious that much remains to
be done. In the following paragraphs, several of the more
pertinent fields of work requiring further study are listed.

(i) Digital computer application of the method developed
in this thesis; i.e., solutions of general equations, tests of
constraints and tests for necessary and sufficient conditions,

(ii) Possibility of digital computer programming of the
long+range TVA procedure, after being mathematically formulated.
This methed appears to offer probable selutions.

(iii) Further study of several long-range methods with
regard to their deficiencies, e.g., Cypser, Little and others
listed in this thesis.

(iv) Purther study of the effect of neglecting trans-
mission losses in the long-range problem,51

(v) Inclusion of incremental maintenance cost in the
optimizing equations°97mlol

(vi) Development of a set of definite and reliable fore—

casting procedures for predicting stream flows°102”105
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NOMENCLATURE

The following notations are given in an alphabetical order.
Notations using subscripts i or j indicate generalities; these
subscripts may be removed for convenience if simplified two-
plant problems are considered. Units actually used in practice
are the ones indicated between brackets or multiples of ten of

them.

Latin Alphabets

i

surface areaof reservoir at hyaro plant i (acre)
constants of the co st function at thermal plant j
constant of J; (Mw-hr)

constant of ji (Mw-hr)

derived loss formula coefficient (1/(Mw)2)

cost of violating hydro-limitations at hydro plant
i ($/hr)

fuel cost at thermal plant j ($/hr)

determinant used in the third necessary condition
and the second sufficient condition

Weierstrass' function

water inflow to reservoir or pond at hydro plant
i (cfs)

time functions to compute D(t,1tq)
integrand of 1 ($/hr)

second partial derivative used in the second neces-
sary condition and first sufficient condition

net head at hydro plant i (ft)
gross head at hydro plant i (ft)

integral to be minimized with no auxiliary condi-
tion ($)

integral to be minimized with auxiliary conditions

(3)

isoperimetric condition with hi and Qi as variables
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isoperimetric condition with Si and éi as variables
penalty factor at hydro plant i (dimensionless)
penalty factor at thermal plant j (dimensionless)
number of thermal plants )

incremental water value used by Watchorn ($/hr/
1000cfs) '

number of hydro plants

load, demanded or delivered power (Mw)
power output of hydro plant i (Mw)
power transmission losses (Mw)

powver output of thermal plant j (Mw)

dPTj/dt = time’rate of change of P (Mw/hr)

Tj
discharge at hydro plant i (cfs)
Kron's storage variable (ft3)

kth variable of the uth type

dqﬁ/dt = time rate of change of qﬁ
storage volume at hydro plant i (acre-ft)

dSi/dﬁ = time rate of change of Si (cfs)

length of the optimizing period (hrs, days)

time variable (hrs)

beginning of optimizing peried

conjugate of point to

end of optimizing period

reservoir or pond elevation at hydro plant i (£1)

?ea? loss due to friction, etc. at hydro plant i
b

tailwater elevation at hydro plant i (£t)
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Greek Alphabets

r(t),r(0)
e(t)
A

"Xn+1

-p(t)

vV
n(t),n(0)

Wi

wl(t),.o,
w4(t);¢1

Derivatives

]

]

ac./dp,, .
J/ TJ

integration constants for the two-plant problem

weighted average incremental fuel cost used by the
MIT Group ($/Mw-hr)

conversion factor used for the variable-head case

conversion
stant-head
conversion
($/million

constant at hydro
case ($/million ft
constant for the variable-head case
£33)

g%ant i for the con-

time functions of the integrated flow (fts)
error function of S,

Lagrangian multiplier, used by the Ricard Group as

incremental cost of delivered power ($/Mw-hr)

Lagrangian multiplier, used in this thesis as in-
cremental cost at hydro plant i ($/Mw-hr)

Lagrangian multiplier, used by the MIT Group as
part of the incremental cost at hydro plant i

($/Mw=hr) :

Lagrangian multiplier, used in this thesis as in-
cremental cost of delivered power ($/Mw-hr)

Lagrangian multiplier, used by the MIT Group as
incremental cost of delivered power ($/Mw—hr)

parameter of error function e(t)
time functions of the integrated spillage (fts)
spillage at hydro plant i (cfs)
auxiliary conditions for load requirements (Mw)

function of net head h.,

discharge Q- and hydro
plant output PH '

i

time functions to compute D(t,td)

incremental fuel cost at thermal plant j ($/Mw-hr)
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bCi/DPHi = incremental cost at hydro plant i, used by the
MIT Group ($/Mw-hr)
dPH/dQ = incremental hydro equivalent, used by Watchorn
(Mw/1000cfs)
DPL/DPHi = incremental transmission loss of hydro plant i
- (dimensionless)
DPL/GPT. = incremental transmission loss of thermal plant
J j (dimensionless)
d_Qi/dPHi = incremental water rate at hydro plant i, used

by the Ricard Group (£t3/Mw-hr)

Subscripts and Superscripts

The following subscripts and/or superscripts are used in connec~
tion with:

iuﬁ = hydro plants

Jsk,n - thermal plants

r,s - generatiens, either thermal or hydro
X - time variables

u - control wvariables

The following subscripts stand for:

B + = storage basin

C - conduits, channels

D - demand, delivered

e -~ end of time interval

F - flood :

f = fish

G - intake gates or gross head
H - hydro plant

I = irrigation
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B T o 2 F

losses
maximum
minimum
navigation
zerd time
peaking -
recreatioen

thermal plant, total or turbine

84
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APPENDIX A

THE PROOF OF EQUIVALENCE OF Py.(Q.,h.,t) AND P.(F,,S.,S,,t)

It is generally known that for any hydro plant i, consid-
ering one plant on one stream only, there is a definite re-

lationship between the hydro plant output P the net head hi’

Hi’

and the plant discharge Q.. This relationship can be given

i
either a556’68
ai = Py (05,0,1), | ve. (A-1)
or, a563

Q; = Qi(hi,PHi,t), oes (A=2)

Both equations are the Same, and therefore only the equivalence
of equation (A-~1) with

=P

Py

mi(Fi-85,5;,

t) oo (A-3)
will be proven. The reason for using equation (A-3) is purely
mathematical: (1) to conform with the method used the presence
of the factor éi = dSi/dt, the time rate of changg of the stor-
age value Si’ is essential; (2) the flow faqtor Fi is an "alien
variableﬁ which cannot be controlled and indeterminable and,
hence, can be omitted ffom the ovoptimizing gquatipns, i.e., it
is wasteful to determine what the flow should be if it is

known that the result obtained is going to be useless. This
last assumption will greatly simplify a rather complex problem.

The net head is the difference between the reservoir ele-

vation y; and the tailwater elevation yTi and the head loss

Ypis iee, B | ~
b () = y;(8) = yp () =y (4), oo (A=4)
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which can be written as
hi(t) = hGi(t) - yLi(t)Q 9o 00 (A_s)

where
Bay (8) = y; (8) = yqq (4) coe (a-6)
= the gross head at hydro plant i.

To investigate the dependence of the net head and the
plant discharge on the flow and the storage factors, the fol-
lowing relations will be revealed:

(1) There is a definite relationship between the reservoir

elevation and its storage volume?6’68

Ji

=yi(si,t)o o e o (A""T)
(2) The tailwater elevation depends on the discharge of
water through the plant and the amount being spilled through

the spillways>®:68x

Yoy = Yy (Q;,01,4). ve. (A-8)

(3) The head loss is composed of skin friction and eddy
losses, the latter caused by sudden changes in the direction of
flow or by sudden changes in velocity. This head loss is a

functien”of‘the'diséharge through the plant?e

yLi = yLi(Qi’t)' e 0o (A—-Q)

(4).generally, the spillage depends only on one variable,
the elevation of the reservoir:68

Ui = ci(yi,t)’ 000 (A"‘"lo)

*¥A very exceptional case occurs when water discharges, or is.
being spilled, into .a very large river or other very large
drainage areas. Then, the tailwater elevation is independent
of any of these variables,
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which combined with equation (A-7) gives

o; = ci(si,t). ceo (A-11)

In the case of a "free" spill* at plants with no spill-gates

(e.g., at run-of-river plants), the spillage is a continuous

function of elevation, see Fig. l. In the case of a "con-
trolled"
yi yiﬂ

Oi ' - ci

Fig. 1. "Free" spill curve Fig. 2. "Controlled" spill
curve '

spill,* spillage is adjusted manually: when the reservoir
reaches a certain height, a certain aSSUnf of water must be
sp;iied through the spillways; the spill curve is therefore a
step-function of elevation, see Pig. 2.

(5) The relation between the discharge and all other vari-
ables are given by the continuity equation at any hydre plant,
i.e., ignbring leakage and evaporation, the inflow must equal

the outflow plus the time rate of change of storage,** or,
Fi(t) = Qi(t)_+ ci(t) + Si(t), oo (A-12)

which can‘be written as

0, (1) = F(4) - o;(+) - 3,(+), ... (A-13)

* Windsor's term,68
*¥*¥This value can be either positive or negative.
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whoese functional relationship is given by
0, = 9;(F;,0,,5,,t). | oo (A-14)
Substituting equation (A-11) in the last equation yields
Q = Qi(Fi,Si,él,t). ee. (A-15)

(6) Substituting equations (A-11) and (A-15) in equation
(A-8) gives

Ypi = yTi(Fi’Si’Si’t)’ ... (A-18)

which combined with equations (A-4), (A-7), (A-9) and (A-15)

gives the functional character of the net head

hi = hi(Fi,si’si,t). LA ] (A_l7)

To prove the sameness of equation (A-1) and equation (A-3)

one substitutes equations (A-15) and (A-17) in equation (A-1).
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APPENDIX B

AN OUTLINE OF THE VARIATIONAL CALCULUS PROBLEM WITH AUXILIARY
CONDITIONS

1, The Unconditioned Problem and the First Necessary Condition

for an Extremum

The variational problem in which ne auxiliary conditioens
are involved is called the unconditioned problem.71 It is the
case of finding the extreme value (maximum or minimum) of a

definite integral¥

e L]
I =f F(ql’ooo,qp,quooo’qp,t)dt, e 8 @ (B"l)
Yo
with the boundary conditions qu(to) and qu(te) given (u=l,...,p);
thus, their variations at the twe end-points must vanish:

5qu(t)}- = o, 8q, (%) ] - o. ceo (B-2)
t=t, b=t

The variables q,,...,9_ are unknown functions of t, te be de~
1 P '

termined such that the integral I has an extreme value,

hence7l’73

6I = O eos (B=3)
for independent variations of Q0 subject only to the boundary
conditions (B-2).

Consider at this moment one variable (p=1), then equation

(B~1) reduces to %

e
I, =f F (qq,d,,t)dt. ve. (B-4)
Yo

*° .
q, means dqu/dt,
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Suppose that the function q, = f(+) is an extremal of I,, then
‘ 1 : 1

611 = 0. ese (B=5)

In order to obtain the first necessary condition for an extremum,

consider the modified function.

£(t) = £() + el(t), .e. (B-6)

where U(t) is some arbitrary, continuous and differentiable new
function. '™7% One must now prove that the change of the in-
tegral due to ﬁhe change in the function becomes zero. Using
the sma}} variab;g’parameter ¢ one can modify the function f(t)
by arbitrarily small amounts. Comparing the values of the
oiiginal function f(t) with the modified function £(t) at a
certain definife point t by ferming the difference between the

two functious, one obtains

This difference is called the "variatioﬁ" qflf(t),73 see Fig. 3
below, |
eS|
£(t)
\\\f
(t) Fig. 3
8q, Variation of f£(t)
dql
t
t t t+dt 1
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Using equation (B-7), the variation of the integrand F, of the

integral Il’ caused by the variation of 4, can now be-comu
puted:7l"73
6F1(q19qlst) = F (q1+el/,'<'il+ey,t) - Fl(qlsélst)

OF, |

1 OF .
bqu+ bqu , | .e. (B=8)

when the higher order terms of the Taylor series are neglected
since e approaches zero,

Substituting equation (B-8) in equations (B-4) and (B-5)

yields

te te

_ OF OF, ,

5[ F,dt =f oF,dt = ""j [bqu*“s 1 ] .oo (B-9)
to to : tO 1 d3
which through integration by parts becomes

jie e OF, : bFll/ Yo e a [°F;
) F.dt = ¢ dt + el— - e =

1 3——2/ bq ef el v Llvat = o.

4 1 1 Jg 1 4
0 0 0 0

soo (B=10)
Since U(t) vanishes at the tﬁo end-points due to.condition
(B-Z), the second term of‘equation (B=10) drops out. Thu$9 this
equation reduces to

t t

51 e e[ OF OF
1 1 1 d 1 :
T:néféFldt =f {EBTS—“—}Udt oee (B=11)
Y %o
which can be written as
te
f El(t)l/(t)dt = 0. eoo (B=12)
tO

A 71
According to the Fundamental Lemma of the Calculus of Variations,
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if El(t) is contipuous in'(tO,te)9 and if )J(t) vanishes at by

and te and admits a centinuous derivative in (to,te), then

in (tO’te)° This leads teo

OF OF ‘
R S S -
B, (t) = o 4t dg; 0, eos (B-14)

a differential equation discovered by Euler (1744) and will be
referred fo as Euler's (differential) equation.*

The same result may be obtained for the general case of
p (p>1) variables by selecting one definite q, leaving the other
variables unchanged, and repeating the above process. In this
case, ene obtains a system of éimultaneous differential eque-

tions

E(t):———w"—"‘““‘"""“oo u=190009P v @ 0 (B_15)

These equations are the first necessary condition for an ex-
tremum (i.e. minimum or maximum) fer the unconditioned problem.
Since the problem of the thesis is that of minimization, only
the first necessary condition for a minimum will be considered

in the following sections.

2, The Yonditioned Problem and the First Necessary Condition

for a Minimum L

The process of finding, im general, the extreme value,
and in this treatise, the minimum value of the integral I given

by equatien (B-1l), will now be combined with two auxiliary

Lanczos73 calls this equation Euleeragrange s equation,

Kneser and Hilbert call it Lagrange's equation, but Lagrange
himself attributes it to Euler.
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conditions: (i) the conditions of the problem of Lagrange and
(ii) the iseperimetric conditions., The variational proeblem of

this type is called the conditioned pqoblem.7l

2.1 The Problem of Lagrange

The problem of section 1 is now modified such that the
variables ql,..,,qp and él,..a,ép are no longer independent,

but restricted by the conditions

B (ay500450 ,&l,oo,gqp,t)=o, a=1l,...,a(a<p) ... (B-18)

P
If the curves of the family

q‘ll = qu(tyel9°'°9ep) u"-—:l,ooo,P . o0 (B—l7)

pass through the points to and te, satisfy equation (B-~16), and
contain, for the parameter value e, = 0, the minimizing curve
Cos

q_u = qu(tsogoooyo)g u=1,oao,P LI (B"’18)

then the function

e ' .
I(e) i[ F[t,qu(el,eaa,ep), qu(el,...,ep)] dt ooo (B=19)

9

74

must have a minimum for all eu = 0, The arc C0 must be an

extremal, and according to the Euler-Lagrange Multiplier Rulezz

there exists a set of function Xa(t) where a=1,...,a{a<p),

such that if
a

K=F+ Z )\.a¢a, ose (B=20)
a=1

then the derivative 1'(0) is expressible in the form’ 4

+
T, ei OK s OK
I1'(0) fl- L Pu SE: + Fu SE: dt, sos (B=21)

0
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where the functions Pu(t) are the variations of the family

(B-17), defined by the relations

W

Jq (t,e1,00.,€
g Bl =T, (%), ... (B-22)
u

edfO
If the arc CO minimize the integral I, it is necessary that the
first variation I'(0) given by equatioﬁ (B-21) vanishes, from
which the Euler-Lagrange Rule is obtaineds 214175

If CO is 2 minimizing arc there exists a set of multipliers

:’ka(i) such that at every point of CO’ the equations
u=l,ooogp' s 0 0 (B-’23)

are satisfied, with K given by equation (B-20). Equations
(B~23) are the first necessary conditions for a minimum of the
Lagrange problem, and are analogous to equations (B-15) for the

unconditioned problem of sectioen 1.

2.2 The Isoperimetric’Problem

Auxiliary conditions appearing in the form of definite

integrals Ji which must have prescribed constant values Bi

%
e
Iy =f Gl(ql,o,,,qp,al,o..,,ép,t), dt = By,
) e | | | oo (B-24)
° e .
I, =f Gn(ql,...,qp,fil,,,.,qp,t) dt = B_,
9

are called "isoperimetric" conditions.*

*¥This term is derived from the first historically recorded ex-
tremum problem of finding the maximum area bounded by a peri-
_meter of a given length.'’3
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Repeating theJﬁrocess of varying the integral as in the un-

conditioned problem, one obtains

4 .
e[OG dG bG ol
1 d 1 d 1

Jd. = s e i arens ' 00 Tt N:= =
ol 1 f (bql 1% 5% ) éqld_t+ +f (5‘; at g )5qu'b 0,
. tO SN t0 F (B-25)
° Yefoe, , 6, Yo[da, 4 26,
6J fj- 5o, ~ & SEI éqldt+o.°+l]l Sa; - a® 35 5qut = 0.

tO . tO P

Again, multiplying equations (B-25) by some undetermined con-

stant hi and adding the result to 6I, one obtains

t
. _[efoF. a dr_ 0G) 4 06y 06,
61 =/ ’:(S&I - 33 Y )+)\1(8q—i - 3T Sa-]-- +°..+)\n 6-5;-; +

1
to X
G
: d n
o= -aTE '—a-l—-)j] 6q1dt+o oo +oo0e
b ) )
e G G OG
+ %F—' - %—1’: %E—)+ Xl(-b—il - %—t- S‘;“]';)+...+7\n(8(-1-1—1 +
. p 4y, Ip o4y P
' d bGn
— -d—.%‘ —‘(-i‘; 5qut = 09 LI (B 26)

which can be written as
t
‘ erd a o
51' -_:f [b l (F+}\ 1+o ° n+}\nGn)‘=’ .d_._{ B’a“— (F+)\1Gl+' ° o+)\.nGn) ]6q‘1dt+ -
0 .
+l LN 3 +. o o
o ,
+f | [B‘DQ“'(F“‘J.Gl“””‘nGn)" 4. o (F+7\lGl+.,.+)\ G )]@qut:d.
% P : P
0 _ .
LI ] (B—27)

According to the Fundamental Lemma of section 1, the coeffi-

cients of 6qu must vanish, thus

_52— (F+x1Gl+...+x G )== E? bb (F+A1Gl+...+x G,)=0. ufl,.o.,p

u
... (B-28)
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The last two equations show that the isoperimetric problem
can be transformed into a free variational problem with no
auxiliary conditions, by changing the original F inte a new

72,73 n

L=F+;Xi Gi, 0 (B=—29)

where xi is an undetermined constant.

function

2.3 A Combination of the Problem of Lagrange and the Iso-

perimetric Problem

All, exceptithe first, necessary and sufficient conditions
for the Lagrange problem are quite different in nature from the
necessary and sufficient conditions for the isoperimetric prob-
lem. For this,reaSony the combined problem can only Be solved
if, either the isoperimetric problem is transformed iﬁtq a
Lagrange problem, or vice versa.

The first type of transformation is performed as follows;{5
Rewriting, for convenience, the isoperimetrid conditions (B=25)
as te
J4 -_-f Gi(t,q,c'l)d‘b = B, ... (B=30)

1,
where the set (t,ql, oo }qp,ql, .o ,ép) is now represented

by (%,4,4), one introduces new variables
e
2, (%) =] Gi(_t,q,Q),dto ee. (B-31)

¥

The problem is now to find twe sets of extremals

q(t) and : ... (B=32)

n

q

I

Zi(t)’\ i = 1, o e 9n e s e (BQSS)
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satisfying the conditions
E dz,

Gi(t9qu) = 'a"-'t"l = 09
q.(to) = q09 q,(te) = q_e9 oo e (B‘=34)

z;(ty) =0, Z;(%,) = By,

one which minimizes I.
The function L' analogous to that given by equation (B-29),

now has the form

ﬁt az,
[ - o o
L' = F + 4 xi(Gi | - «e. (B-35)

and the differential equations determining the extremals are

oL’ _ 4 OL'
bq ma—{-y(i—- = 0, . oo (B‘=36)

The n equations

dur _a _d N
3% ~ & az,/ax) < aw - =lyeoes

eoo (B=3T)

show that in this case the multipliers ki are all constants.

A second type of transformation is alse possible provided
that\each of the functions ¢h given by equation (B-16) rewritten
as

¢a = ¢a(t9qy(°1) = O azlg'eoo9a(a/<:p) LRI ) (B“"38)

can be integrated. Integrating equation (B-38) yields

t

e
j ?,(t,q,4) 4t = 0, a=l,...,a(a<p) .o (B-39)
Yo
which is a simplified form of the isoperimetric condition.

Several criteria must be observed in making the choice of
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the first or the second type of transformation mentioned pre=
viously: (i):integrability of the funétions ¢h’ (ii) the number
of isoperimetric conditions n compared te the number of Lagrange
conditions_g, and (iii) ease of application with regard to the
various necessary and sufficient conditions. Since in ﬁhe
thesis problem n is generally larger than a, where a = 1, the
second transformation from the Lagrange problem to the’ison
perimetric problem will be used. Furthermore, the functions
for the special problem discussed here are definitely integrable,
as they contain simple summation terms and functions which are
identical to the isoperimetric condiﬁions given by equations
(B-24) or (B-30), Another advantage of the isbperimetric prob-
lem is the fact that it contains constant Lagrangian multipliers
instead of the time-~variable multipliers as in the case of the

problem of Lagrange.

3. Other Necessary and Sufficient Conditions for a Minimum of

the Isoperimetric Problem

3.1 Introduction

In line with the thesis problem conditions for minimiza-
tion of integral I with isoperimetric conditions will be con-
sidered,b For the sake of simplicity, the discussion will be
limited to the two-variable case (p=2). The problem can now
be reformulated as follows:

Minimize the integral¥ .

e
I =f F(x,y,x',y',t) dt eoe (B=40)
Yo

*¥The primes immediately following the variables x and y are
- derivatives with respect to t of those variables.
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with isoperimetric conditions
te
J =I G(xyy9x>'7y"t) dt
0

ee. (B=41)

i
w

Q’ o0 (B"'42)

]

t
e

f ¢(x,y’x7,y"t) dt
Yo

replacing 97 995 él and éz by x, y, x' and y' respectively.
The first necessary conditions for a minimum of I defined
by equation (B-40) with isoperimetric conditions (B-41) and

(B~42) are given by equations

OH 4 OH _

ox.. dt ox' T 77 :
LI (B"‘43)

OH _d_dH__

Oy ~ & dyT T

which are equivalent to the one differential equation¥*

5%7 %% - 3%7 %% + Hl(X'y" - x"y') = 0, eos (B-44)
where
H=F+ MG+ x2¢, «eo (B-45)
and
g -1 O oH
15 (y)2 Ox7 Ox'
-1 O OH
= 357 5x7 5y .eo (B=46)
1 O OH

= (XD)Z b«y' byTo

The general solution of the differential equation (B-44) is

71,72

*¥Analogous to Bolza's "pure" isoperimetric problem.
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given by*

= x(tsa,Bs)\lykz)’

Co:
c s 0 (B“’47)

n

¥ = y(t,a,8,M,1,),

where a and 8 are the two constants of integration,*¥ Equa-

tions (B-47) are the set of extremals for the thesis problem.

3.2 Necessary Conditions

(1) The second necessary condition for a minimum is that*

H, Z0 oos (B=48)

1
along the extremal CO, defined by equation (B-47), which satis-
fies the boundary and auxiliary conditions, and where H1 is
given by equation (B-46). This is the analogue of Legendre's
condition for tﬁe unconditioned problem.

(2) The third necessary condition for a minimum is given

by Weierstrass's analogue of Jacobi's condition¥

t - % % # 0 (B-49)
waldt wanzdt ]Uwsdt wa4dt
9 ¥ ¥ o
1 t t
‘[Vtmldt ijzdt wa3dt wa4dt
Yo Yo Yo Yo
for

tg <t <t

71,72

¥ Analogous to Bolza's "pure"™ isoperimetric problem.
; SN

¥*The general solutions of Euler equations with p variables are
dependent on 2p-2 integration constants.
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or

to' =t ... (B=50)
_where to', called the'conjugate point of to , is the root next
greater than to of the equation

D(t,t,) = O. ... (B-51)

The t-functions are given by the following relations:

A dy O Ox O
w»l('t) = t 5‘2 - '8% '5% 9
dy Ox  Ox O
wz(t) = (.t D_B- = 6'{.; 6% ’
. (B=52)
Oy O Ox O
ws(t) = £ 8%]'? - S«% }\1 ’
dy O ox O
og0) = S-S,

) OG ) oG " T
U(t):va—f—s—x—(y-ﬂ-(}l(xy-xy), ses (B=53)
where

G -1 O o6
1= G2 o &
1 QO _ QG
= - XiyT 5% by'. «.s (B-=54)
_ 1 > oG
= (x')2 by« ayl H
and ,
V(t) = E%T %% - 5%7 %% + @l (x'y" - x"y') , ee. (B=55)
where
B, = 1 O 0P
17 (yr)2 ox" ox!
__ 1 0o o2
- x'y! bx' byl
1 _ o B ... (B-56)

T (x1)2 ' oY
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(3) The fourth necessary conditions for a minimum is given

by Weierstrass' inequality*

B (x, y, x', ¥', X', ¥'5 A, A) T O, ... (B-5T)

of

which must be fulfilled along the extremal CO’ defined by equa-

tion (B-47), for every direction X' and y', where*

Y ;W; A

®1

E (xy Y X', y'9 1° )\2) =
H ( DA AR TR Y A ) - | o) H( v te A A )
Xs Yo X'5 ¥V ' VM Mo X SET Xy ¥y, X'y Y '3 1* Mo +

+3’Ju6‘%—§"H(x9 Y xvy y';)\19 }"2)]' © e (B“58)

3.3 Sufficient Conditions

The extremal CO’ defined by equation (B-47), furnishes a

"semi~strong” minimum for the integral I given by equation

(B-39) with auxiliary conditions (B-40) and (B-41), if the con-

ditions
Hl~> 0 > vos (B=59)
te < to“, ‘ N cos (B=B0)
E..> 0 ses (B=61)
71,72

are fulfilled, The above sufficient conditions are, there-
fore, exactly equivalent to the last three necessary conditions

except for the equality sign.

71,72

*Analogous to Bolza's "pure®™ isoperimetric problem.



