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ABSTRACT

In the first section of this thesis the simple
Pierce Theory for the travelling wave tube is discussed
and developed. The result of this analysis is a number
of equations which produce information about gain and ,
bandwidth. /
The next section of the thesis is devoted to
a discussion of periodic structures with particular emphasis
on dielectric loaded periodic structures. :
Finally the Pierce Theory is applied to the
dielectric slow wave st?ucture. Results are presented of
a study performed to find a correlation between the physical
dimensions af the dielectric structure and the gain-bandwidth—.__,
propertieg of a travelling wave tube employing the structure.
These results, which are in graphical form, can be used to
eliminate the initial exploratory design work for travelling
wave tubes of this type. A sample use is made of the design
curves and the,resu1£s are compared to a computational check

to show both the usefulness and the limitations of the curves.
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A STUDY ON THE USE OF DIELECTRIC LOADED
SLOW WAVE STRUCTURES IN TRAVELLING WAVE TUBES

1, INTRODUCTION

The travelling wave tube amplifier has received
considerable study in recent years because it is a wide
band microwave amplifier with a poten@ially low noise figureo!
The device consists of a slow wave structure (waveguid in
which the phase velocity is less than the velocity of light)
with appropriate coupling mechanisms for the input and outpuf
of a signal. An electron beam'is made to flow in the struc-
ture where it can interact with an électromagnetic wave
propagating therein, The wave, introduced at the input
coupler, travels along the slow wave structure where inter-
action with the electron beam results in an energy transfer
between the beam and the wave.

The number of signal channels which can be trans-—
mitted in a given percentage bandwidth increases as the band
center frequency is increased. .Thus if the percentage band-
width of an amplifier can be maintained, it is desirable to
increase the operating frequency. However the radius and
pitch length of the helix slow wave structure; the circuit
wﬁich has been most commonly used in medium and low power
tubes, diminishes as the operating frequency increases. As
the size of the helix decreases, the maximum power flow that
it can support also decreases and the helix itself becomes

increasingly more difficult to construct. The power flow is



limited by the heating of the helix metal due to 12R losses
and to electron bombardment from the beam. At operating
frequencies above X=band, the problem of finding a more
suitable slow wave structure has become important. One
possibility is the dielectric loaded structure which is
easier to build than the helix and which holds promise of

a satisfactory power capacity. This thesis is concerned
with determining the suitability of the dielectric structure
for use in travelling wave tubes,

The simple Pierce Theory for the travelling wave
tube is used throughout this investigation. Although the
theory is not rigorous, it does produce a concise solutiono
Such a solution is very desirable if it is to‘be used for
numerical design, Although more rigorous theoretical
developments can be made, they yield results which are much
more complicated., The increased numerical labor detracts
from the increased accuracy which the refined solutiomns
produce.

The simplicity of the simple Pierce Theory is
achieved by neglecting the effects of distributed loss and
space charge as well as by restricting the treatment to small
signals in order to avoid non-linear equations., Ideal coﬁpu
ling devices are also assumed. A section of the thesis is
devoted to a development of the simple Pierce Theory.

A field analysis of the dielectric loaded structure

containing discs with a center hole is possible but the



solution is only of formal significance because of its
complexity. The structure is shown in Figure 1. The hole
in the discs is necessary to allow passage of the electron

beam,
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Figure 1. The dielectric structure with a center hole in
the discs.

Since much of the work of this study is numerical, a theory
which produces a cmcise result is very desirable. As the
field solution for the dielectric structure with solid discs
is sufficiently concise, it is used throughout as an approx-
imation to the field solution for the holed disc structure.
The results of this study are presentea in a set
of design curves relating the gain-bandwidth properties of
the dielectric structure when used in a travelling wave tube
to the dimensional parameters of the structure. The signif-
icance of the errors due to the approximations used are

discussed so as to clarify the usefulness of the design curves,



2. THE PIERCE THEORY (1)»(2)

2,1 Simplifving Assumptions and Restrictions

In order to reduce the complexity of the problem,
a uniformly distributed LC delay line is used to represent
the slow wave structure. The shunt susceptance and series
reactance of the delay line are chosen so that the phase
velocity and the longitudinal E field, -%% s acting on the
electrons for unit power flow are the same as those for
any given structure. It should be noted that this procedure
gives results which compare quite reasonably with those of
more complex analyses,

Even with the above simplification, the problem
becomes rather complex if, for instance, non-linear electron
current flow equations are used. Hence the analysis is
restricted to small signals which allows linearization éf
the electron flow equations. The assumptions that all of
the electrons are acted upon by a known field (excluding the
field due to local space charge) and that they are displaced
only in thg longitudinal direction by the ac field are also
made to simplify the treatment. The latter assumption can
be made sufficiently valid in practice if a strong magnetic
focusing field is used., Also, the electrons are assumed to
be uniformly distributed in any cross-section which is normal
to the direction of beam flow. The force on the electrons

due to the magnetic field produced by the displacement current



is sufficiently small to neglect for non-relativistic elec~
tron velocities to which fhis work is res%ric¥ede Some of
the effects deleted by the above assumptioné and restrictions
can be incorporated into more complex analyses, But the
developments in this thesis do not demand these more

refined results. As yet a completely satisfactory theory

of the travelling wave tube has not been produced; hence,

one of the approximate theoretical developﬁents must be
resorted to.

With the above assumptions and restrictions, the
problem becomes quite manageable. It is easily seen that
there are two physical processes ocqurring in a travelling
wave tube: +the effect of the circuit voltages on the beanm
current and the effect of the beam current onvthe circuit.
The latterAprocess can be considered as a perturbation by
the electron beam of a wave propagating in the slow wave
structure.

2,2 Excitation of Circuit Field by Beam Current

Consider the circuit shown in Figure 2 which is
a distributed LC transmission line in close proximity to
aﬁ electron beam. The circuit will be assumed to be either
of infinite length or of finite length with a non—réflective
termination.

It will be noted here that three separate currents
will be referred to. They are the electron beém current,
denoted as the cqnyection current; the circuit current,

denoted as the coﬁductidn current; and the displacement



current.
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Figure 2 -~ Equivalent circuit of travelling wave tube

To determine the nature of the coupling of the
electron beam to the circuit, consider a small volume of
space, such as shown in Figure 3, through which all the
convection current flows. The sum of the currents flowing
into the volume must be zero to preserve continuity of
charge. However, since the convection current variés with
distance, there must exist a displacement current to
satisfy the above condition. It will be assumedqthat all
the displacement current flows into the circuit, i.e. that
unity coupling exists. Since the convection'current has
been assumed to flow very close to thg circuit, the
displacement current, J amperes per meter, has only a
negligible component in the direction of propagation
compared to that which flows directly to the slow wave
circuit. Note that the definition of displacement current
differs dimensionally from that usually made. The defini%ion

used here is more useful since, for a small distance 6z,



the pertinent current is the total displacement current

coupled to the slow wave circuit. The displacement current

—pzp

I
~
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J v

Figure 3 -~ Volume through which the electron beam passes

is related to the convection current in the following

manner:
i, + J 6z =iy = 0 (1)
where
lt = —Io + 1
~ total electron convection (beam) current
Io - average or dc electron convection current
i = ac component of electron convection current
J -~ displacement current (amperes/meter)
But
S di
I S v Oz (2)
i

Hence Jd = = e (3)



If the slow wave circuit is. .considered, the
ordinary transmission line equations result with the

exception that the displacement current is taken into

account.
%—i = =3BV + J (4)
%Zf = =jXI (5)
where

V = V(z,t) =~ line voltage

I =1I(z,t) - line or conduction current
B = shunt susceptance per unit length
X - series reactance per unit length

Differentiation of equation (5) with respect to z and
the subsequent substitution of equations (3) and (4)

yields the following differential equation:

2%y 24 (6)

62+BXV=+JX6—
Z

The time variation of interest for the beam and circuit
variables is eamt° It is logical to expect V to vary as

e_r‘Z since the effect of the electron beam is to perturb

the wave solution for the undisturbed slow wave system. Thus

Jjot- r;

substitution of e into equation (6) yields

(M2 +BX)V = - jx[s (7)



It is now evident that in the absence of the electron beam
the propagation constant reduces to r;,the natural prop-

agation constant of the slow wave structure, where

[ = 3/BX (8)

The definition of characteristic impedance in

transmission line theory is of use and is given by

K = % (9)

Equations (8) and (9) can be used to elimiate X and B
from equation (7) to produce an expression in terms of

more common pa,ra,meterse
- | I Ki
o

Ve-—o (10)
(M2 -12)

2.3 Excitation of Beam Current by the Current Field

Now consider the effect of a circuit wave E
field on the electron beam. The two basic equations to be
used are the equation of motion of an electron in an E
field (11), and the continuity of charge equation (13).

d(uo + v)

F=m—gg = -°F

T-n% (1)

where

dV
E:-B—E

= longitudinal electric field
intensity
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u_ - average or dc velocity of the electrons
v = ac component of electron velocity

m = electron mass

e ~ charge of the electron (e =o)

n - charge to mass ratio of the electron

F ~ force

The continuity of charge equation for variations

in one direction is

_E_)___f_ﬁ_mb (Qo'f'p (12)
oz | aj ~ 2t I e
where
L =~ average or dc charge per unit length of electron
° beam
P - ac component of linear charge density of electron
beam

2 = cross-—sectional area of electron beam

Simplification of equation (12) yields
i o)
u__ 3 (13)

First of all consider the left hand side of

equation (11):
v

v _dv dz
at = ot dz d
::%‘_z‘ + (u0+‘v)?r§'

The small signal restriction allows the above equation to

be linearized, i.e. to reduce (uO + v) to u . Since the

. e . . . jot . .
time variation for the variables is eY , differentiation



with respect to t is equivalent to multiplication by jw.

Thus equation (11) becomes

5154
IO/

‘; (14)

/|

+ju—mv=1111-
(0] o

The term m/uo is of the same form as the phase factor in
transmission line or waveguide analyses and in this
development may be considered to be the phase factor of

some disturbance travelling at the electron velocity. Hence

the following definition:
®
B, =2 (15)

Equation (16) is a basic relation which will be

of use in finding an expression relating v and 1i:

(-1, +1) = ( ,OO +P)(u, + v) (16)
Again, the second order terms in the ac variables are deleted.
to yield

(—I0 + i) = Q)uo +puo + ,Oov
But

-1, = ;%uo
Therefore
i= ,Ouo + pov

or

vV o= -——72;'* (17)



The continuity of charge equation can be used to eliminate
L in equation (17) producing equation (18) which can then

be used in equation (14) to yield equation (19):

i+ o0 O
v = 0 . Oz . (18)
o
>4 e T [ P
252 + 2 JBg oz Be 1= 02 2z
o
But
s, =V,

where Vo is the voltage through which the electrons are

accelerated to give them velocity u e

Hence

— (19)

[z

with distance, then the particular solution for i must also,

It can now be seen that if V varies as e

In this case the natural propagation constant , r;, is

perturbed slightly to| where

SR (20

Direct substitution of e~ into equation (19) yields

12
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B IV
1= ) 2
2v (3B ~[")

(21)

Hence a voltage which varies as ert_[ﬁz

gives rise to an
ac convection current in the beam thch Yaries likewise,

Thus each physical process yields a relation
between circuit voltage and ac convection current. These
relations (equations (10) and (21) ) must hold simultaneously,
and forcing. them to do so yields four solutions for fﬂo It
is worth noting that equations (6) and (19) are two simul=-
taneous differential equations for which there are no
driving functions, Hence the solution must be given entirely

in terms of the four linearly independent functions which

result.

2.4 Natural Modes and Their Properties

Equations (10) and (21) can be combined to
produce an equation in rﬁwhich defines the allowable values

of[ﬁin terms of the given system parameters:

KT 2
1 = 32 0692 FOF 5 (22)
v (.2 -1 (8, -1

Since equation (22) is of fourth degree in Fﬂ, there are
four solutions for r1and hence, in general, there must be
four boundary conditions to completely specify the wave
solution., That the problem requires two more boundary
conditions than the usual waveguide problem is not

surprising since beam conditions must be specified also.
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It is to be expected that coupling between the
beam and the circuit will occur only if the velocities of
the disturbances in each are about equal. If the velocities
differ considerably, a segment of the electron beam will
alternately see accelerating and decelerating voltages
in such rapid succession that the net effect of the
voltage wave on it is very small. Thus setting the electron
velocity equal to the phase velocity of the slow wave
strucfufe in the absence of beam current is quite

reasonable. Hence

r

B, (23)

The phase velocity of a wave in the slow wave structure is
perturbed slightly when the electron beam is introduced.

Hence rﬁcan be expressed in the following form:

"= 8, - € (24)
Note that this expression for r‘yields only forward waves
and since at least one backward wave is to be expected,
substitution of equation (24) into equation (22) should
produce an equation in (S of 1less than the fourth order.

In fact, direct substitution with the deletion of small

order term yields

53 = niBe ZVQ (25)



It is now useful to introduce several new

parameters. Thus define

3 KIo
C’ = W (26)
o .
£ = 8,00 (27)

Now only 6 remains to be determined to complete the

solution of equation (25) vhere

§ = (-)1/3 (28)
which has the solutions
0, = 3 (29)
O, =1 /=300
= 0.866-j 0.5

I

1 /-150°

= ‘“00866°‘j 005
Therefore the forward waves have the following z variation:

—r; -jBez 6CBez

e = e e (30)
I+ can be seen that 61 corresponds to a constant amplitude
wave which travels slightly faster than the electromns, 62
corresponds to an amplified wave whose phase velocify is
slightly less than the beam velocity, and 63 corresponds to

an attenuated wave whose phase velocity is also slightly

less than the beam velocity.,

15
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The propagation constant for the backward wave

follows naturally from the following substitution:
M= =B - ¢ (31)

The final solution for r‘ih this case 1is

[-—\ s o BeC3
4 ="I8, + 3

3
-3 (1 - &) (32)

Since C is a small number, it is obvious that f; is only
very slightly perturbed.

Equations (8) and (9) <can be combined to give
K = 4% :

o (33)

Since the propagation constant of the slow wave structure

has been pefturbed, the characteristic impedance is also

perturbed. Hence each of the forward waves has an impedance

associated with it which is given by

K =
n

515

K
=1+55n0 n

=x(1 - j O.0)

1,2,3 (34)

1l

The parameter C, as will be shown later, is very
important and it is convenient to find a new expression for
it which is more useful in applications to slow wave

structures. Since the magnitude of the E field, Eo’ usually
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has much more meaning than the voltage V, the variable V

will be transformed to Eoo The two are related as follows:
E = ]f“vl (35)

Also, for the equivalent circuit used, the power flow is

given by
|v |2
P =" (36)
Hence we have
B 2
2K = 02 (37)
B, P

Thus the new relation for C is given by
E21
s 0

O -}
8pV_P (38)

Since the B for each of the forward waves is very nearly
B,s the subscript has been dropped. If VO'/Io is called

the beam impedance, then 03 is one quarter of the structure
impedance divided by the beam impedance. Itemight be noted
that C is often called the‘gain parameter and K is often

called the beam coupling impedance.

2,5 Gain and Bandwidth Expressions

It has now been shown that the linearized
differential equations &escribing the system have the

following form of solution:



N X e(ﬁcsez

The solutions for 6 for the case in which circuit loss
and srace charge effects are ignored have been found.

In general 6 will have other values but the solution
type remains, to a first approximation, unchanged. Thus
if the amplitude of the growing wave 1is considered at

points zq and Zss the following results:

lM(zz)‘ xCBe(zz-zl)

m = e (39)

where
6 = X + Jy
But (z2-zl) can be written aS
(25-2,) = 2N 2,2, (40)
e

where N is the number of wavelengths corresponding to

lz2~zl)q Hence

M(z,)| _ 2mxCN

M(2,)]

(41)

. Thus the logarithmic gain due to this wave can be written

as

G = 20 loglO 92RXCN

54 ,6xCN (42)

il

If the value of x determined in the previous analysis is
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substituted into equation (42), it reduces to
G = 47.3 CN (43)

Expression (43) does not give the exact gain of
the travelling wave tube, however, since thereiare three
waves to be considered (the structure is assumed to be
perfectly terminated). To ascertain the initial amplitudes
of the three waves, a boundary value problem must be
solved. Two of the conditions to be applied herelare that

the curreﬁt and velocity modulations are zero at the input:

L Yy =0
nn
n=1,2,3 (44)
Zi’:O
nn

Equations (18) and (21) after appropriate manipulation yield

I INA
n =~ u, 5nBeC

n=1,2,3 (45)

Equations (44) and (45) combine to give

+V2+V3=O (46)
o 02 O3
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§§+§%+C?=O (46)

Obviously the following relation must hold at the input:

v+, f vV, =V (47)

Equations (29), (46), and (47) yield

V. V. =V, = % (48)

where V is the input voltage (z = 0). Hence the voltage

at z, denoted by 'Vé"‘ is :seen to be

~-jB Cx=
v _jBeZ‘:—?e_"'/g BeC2z
V == e e ,
z 3
-jp Cz 5
e V3 . :
v 2 T2 B0m | 3BCm J (49)
v -iB,z 38,0z | 92857 ] 4 ez
=—3-e 1+.?.cosh——-2—-—-‘e 2 e
Expression (50) follows directly:
2
A S R LE K
v -9 | 2

+ 4 cos (-3—‘3—%2-2-) cosh (/?—E%EE) } (50) :
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To see how JVZ/V|2 varies as a function of z,
consider a plot of 10 log 4, 'Vz/Vlz’versus CN as shown
in Figure 4. Note that the signal does not begin to
experience a gain until it-has t;a&elled some distance
down the tube. This is to be expected since the electron
beam requires a finite time to become modulated; and until
such time as it does, the beam will nét act upon the circuit,

i.e, the wave,

20
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Figure 4, Signal gain as a function of distance

It can be seen from Figure 4 that a straight
line approximation to the signal gain function is reasonably
accurate ‘for"CN=>062° The stfaighf liﬁe is the gain function
for the growing wave and hence, from equation (43), has slope

i

47.3. It is not surprising that this approximation is
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reasonably valid since the growing wave will eventually
dominate the other two. The exact equation for the straight

line approximation is

G =A+ 47,3 CN

where A is given by the value of V

5 at the input:

I
i
O

°

Ui
A
ol
o

Hence

G = =9,54 + 47,3 CN (51)

The effect of variations in the mean electron
velocity must be considered in oraer to determine the
bandwidth. Using this more general approach, equation
(23) must be changed to the following since, in general,
the electron speed is to be slightly different from the
unberturbed phase velocity. “

—_ . [}

It follows through the use of equation (15) that

vph (1 + Cb) = u, (53)

In practice with tubes of high overall gain, the gain is
reduced by several db. when b is changed by ila For this

limited range of b, equation (53) can be written

Von = (1 - Cpb) u



since C<<1l., Hence the bandwidth is approximately defined
by the frequency range for which the phase velocity of
the undisturbed wave differs from the electron velocity

by less than the fraction iy C. Thus

+
Avon = = Cu, (54)

where Avph denotes the difference from the phase velocity

at the operating point.

23
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3. DIELECTRIC LOADED SLOW WAVE STRUCTURES

(3)

3,1 General Theory of Periodic Structures
Beforé investigafing the properties of the
dielectric loaded slow wave structure, it is desirable
to develop some of the basic theory of pefiodic structures,
i.e. those structures which are physically periodic in
space. The basis of this theory is the following theorem
by Floquet: for a given mode of the system at a given
frequency, the wave function varies from one point in the
structure to another point one period away by only a
complex constant. Since the exponential function provides
a very general way of expressiné such a éonstant, the

following will be used:

-/z (55)

e

where 7/ is a complex number. Note that this function
satisfies the requirement of Floquet's theorem at all the
points in the structure. However this simple relationship
will not allow the boundary conditions in any given
structure to be met. This difficulty is overcome by
multiplying (55) by factors which are periodic with period
L or whole fractions thereof whefe L is the periodic length
of the structure. Thus (55) becomes
IERE ST

L

e

(56)

wvhere n is an integer.
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Since a propagating wave solution is desired, let
‘7; i W/L vhere V may be real or complex., The obvious pro-
cedure from here is to expand the wave function in terms of
all the periodic functions above. The component functions
in the resulting expansion have the common factor e'jmt -'75,
If this common factor is removed from the summation, the
resulting series is the Qell known Fourier series whose

(4)

component functions form a complete set. Hence any
reasonably well behaved field pattern can be approximated
to an arbitrary degree of accuracy by a finite portion of

the series. Thus

oQ . - )
U(z,t) = 2{: ane':,‘(‘f)‘t ¢nz ‘ (57)
n =-0c0 '
where
gn = Lt2mn (58)

The function U(z,t) gives the z and t variations
for either a fixed point or a fixed curve in the transverse
plane. In general +the latter applies and the complete
wave solution requires the matching of an infinite set of
three dimensional wave functions to the boundary conditions.
The matching process includes forcing the complete wave
solution to become U(z,t) at the aforementioned curve in
the transverse plane. Hence the complete wave solution

has the form
E: N(x,y,n) G(z,t,n)

n
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The dielectric slow wave structure to be discussed later
only requires a match to U(z,t) at one point in the
transverse plane, and it will be seen that the complete

wave solution, which is given below, is slightly simpler:
N(X9Y) Z G(Z’t)n)
n

Before discussing some of the properties of
W/, it is useful to determine the phase velocity of a wave
in the structure. Examination of equations (57) and (58)
shows that there does not exist a unique phase velocity but
rather that each component in equation (57) has its own

phase velocity. Hence

T Zm (59)

"Pzﬂe() L

Since the components of equation (57) are distinguished from
one another by their phase velocities and not by their
frequencies (the frequency being fixed in any given case),
they are often called space harmonics. Note, however, that
the harmonics exist only as a part of the wave and not as
entities unto themselves., Fortunately it is possible to
have an interaction between one of the component waves and
an electron beam. Consequently equation (59) is of
considerable importance.

V is a function of frequency, but not in an
arbitrary manner, For the purposes of this discussion

consider a lossless structure for which W must be purely
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real or purely imaginary corresponding to propagating

and non-propagating waves respectively. The following
heuristic argument can be made to show that the two conditions
are possible, The periodic nature of these sytems is such

as to cause reflections of the wave. At certain frequencies
these reflections will add out of phase and propagation

will occur whereas at others they will reinforce to

result in reflection of the power. The propagation or pass
bands lie between the attenuation or stop bands.

If w is considered to be a function of qj, it can
be shown that the function is even and periodic with period
21 provided that the structure is'symmetric (A symmetric
structure is one for which a reversal in the direction
of the central axis produces no physical change). It
follows from equation (58) that if VW is increased by 2m,
the set of ¢n's is unchanged. Only the denumeration of
the members of the set is altered - each member having its
subscript decreased by one. This change in denumeration
will have no effect on the outcome of the determination of
the constants in the series expansion of the field function
with the exception that the original a will now be
associated with ¢n_lo In other words, the series solution
remains invariant under the stated transformation of the
¢;'s which proves that the function is periodic.

That @ is an even function of ¥ can be seen by

noting the consequences of reversing the flow of power



28

in the structure. If at the same time the definition of the
positive z direction is not reversed, then the exponential
function in the series has the form

jlot + ¢ z)
e

Hence it can be seen that the change in direction of power
flov can be accounted for in the original solution by
changing the sign of the ¢n'so Thus, since = ¢n are both
associated with the same frequency, the function must be
even,

As a result of these basic properties of periodic
structures,it follows that a typical plot of w versus WV
is that of Pigure 5, where ©w is normalized by /;Tl
These plots are often referred to as dispersion curves.

It shoulq be noted that some periodic structures have
dispersion curves which are the inverse of those shown in
Figure 5. In other words, the curvature is the reverse
of that shown., However, the dispersion curves of the
dielectric slow wave structure, which is the periodic
structure used in this study, are of the same shape as
those shown in Figure 5.

Inspection of this plot shows that L times the
slope of the line from the origin to any given point on one
6f the curves is given by @ fpe L/\W which is the normalized
phase velocity, vph/c° The normalized group velocity is

given by L times the slope of the curve since vg = dw/dg

where ¢ =V/L.
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Figure 5. Plot of @ as a function of WV

3.2 The Dielectric Structure(S)

For any‘given structure, the remaining problem
is to find the functional relationship between ® and V.
This is usually a rather difficult problem resulting in
only an approximate answer. On exception, however, is
the case of the dielectric loaded slow wave structure for
which a closed solution is relatively easy to obtain. This
structure'consists of a cylindrical metal waveguide loaded
periodically with solid dielectric discs as shown in Figure
6. The dielectric discs are denoted by the shaded areas
and the intervening areas denote air spaces. It should be
noted that the theory to be developed is also valid for
the case where the air region is filled with a dielectric

different from that of the shaded region.

29
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Pigure 6, The dielectric structure

The solution of Maxwell's equations for an EO1
mode in cylindrical waveguide yields the following for the

dielectric and air regions respeétively:

=B,z iB,z
E, = Jo(kr) [Ale + Ae
. -iB,z iB,z
) 2 2
E, = kYg Jl(kr) [Ale - Aje } (60)
jmsz -jBZZ JBZZ
Hﬁ = 5 Jl(kr) [Ale + Aye
and
—jBlz JBIZ
EZ = Jo(kr) {Ble | + B2e
-iB2 B,z
N 1 1l
Lr = le Jl(kr) [Ble B2e } (61)
- -iB,z jB Z}
jwe 1 1
Hf = - 1 Jl(kr) [Ble + B,e
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where

82 = w2ue - K2

k = Sl/a, vhere S, is the first root

1
of Jo(x) =0 (62)

v = % , the phase velocity

and A A Bl’ and B, are amplitude constants.

17 A2 2

Now according to Floquet's theorem, the field
solutions for region (4) are given by those for region (2),
vhich are expressed by equations (60), multiplied by e—jqj,
The solutions for region (3) are related to those for
region (1) in the same way. To have a valid solution, the
sets of equations for regions (2) and (3) must satisfy the
required boundary conditions at z = 0, and the sets for
regions (3) and (4) must satisfy the same boundary

conditions at z = p. This process results in the following

set of equations:

v_A =~ v_,A. L -v.B, +v.B, =0

(63)
€2A1 + 52A2 - elBl - 81B2 =0
3 (292—\V) ~j(26,+V) -j26, j2e,
lele - V1A2e - v2B1e + szze =0
j(zgz-\V) —j(2@2+\P) ~j26, j26,
€2Ale + 82A2e. —elBle - elee =0



32

where

For a unique solution of these equations to exist, it is
necessary and sufficient that the following determinant

equal zero:

A -y -V, Vs
€2 €2 &1 “€1
o =0
v 93(292—\V) —3(292+\P) -v e-JZGl v ergl
1 -vi,¢€ 2 2
j(2e,-V¥) -j(20,+\) ~-j26 j2e
€,€ 2 €.e 2 ~-g, € 1 -€. € 1
2 2 1 1 (64)
Expansion and simplification of equation (64) yields
Zl z2
cos V = cos 20, cos 20, - 1/2 z; ZI sin 26, sin 20,
(65)
where
A
EV

This equation is exactly the one sought since'it gives a
functional relationship between w and V¥ and can be used in
any specific case to yield a dispersion curve. It is often
convenient to plot\V‘versus a/A rather than o, where A is

the free space wavelength., Since @ and A are inversely



related, the new dispersion curves have the same form as
those shown in Figure 5.

a/A is due to the fact that it is a dimensionless factor.

The convenience of the use of
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A dispersion curve with a/A as the dependent variable becomes

frequency dependent only when the radius of the structure

is chosen,

It is also useful to have relations between the

amplitude coefficients; hence they will now be derived.

find expressions relating Al’ A
three equations of the set (63) are rearranged so that B

is expressed in terms of the other constants.

59 and Bl to B2,

each equation by BZ yields

vy -V -V, él -V
B2
€2 €2 —€1 i N R
B2
v.e -v_e -V.e 1 -V
1 1 2 5.
2
- J L °d L
The solution of these equations is
Zq -j(20, +¥)
cos 20, + js— sin 20, - e
1 Z 1
A € . 2
1 _ 1 V¥
By " & i - 26,) 2y
e - cos 292 - Js— sin 20,
1
Z, i(26, -W¥)
cos 28, - jsz— sin 28, - e
A € . 1 2 1
2 _ 71 .y
B, =%, F(P=26)) z,
= “ - 20, - jz* sin 20
e cOS 5 Z 5

To

the first

Division of

(68)
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Y +291) Z,
e -+ jz— sin 20, - cos 20

5 1

2
L - —
B, eg(\lf -26;)

(69)

NIN
V'

- cos 28, -~ j sin 20

2 2

1

Other relations such as Al/AZ’ Al/Bl, etc., could be obtained
but those above are sufficient for this thesis.

Another important expression concerning dielectric
structures is that relating power flow to field strengths.
It might be thought that the total power flow could be
computed by addiﬁg together the contributions due to each
space harmonic, but this procedure is not valid since
the space harmonics do not have power flow associated with
them. To establish the truth of this statement, assume that
the opposite is valid and investigate the consequences of
the assumption. To form the Poynting vector the infinite
series representing the transverse E and H fields must be
multiplied together. For the assumption to be true, the
cross terms arising from this multiplication must be of
no consequence when the power flow integral is evaluated.
However the cross terms do contribute to the power flow.
This is not surprising since all the spare harmonics have
the same frequency. Thus the assumption is invalid and
the original statement is valid. The power calculation
using the infinite series leads to a double sum which is
laborious to evaluate,

Again the problem is simplified in the dielectric

case because the exact field solution is known. As a



result of Poynting's theorem, the following integral gives

the power flow across any specified cross-sectional area

27 a
P = J I %Re

If the cross-section is in the air region, equations (61)

in the structure:

Eer* r dr d¢ (70)

must be used, With the use of a general property of
Bessel functions given by (71), the power flow given by

(70) reduces to relation (72):

a
J. 2 (kr)r dr = QE J. % (ka) (71)
1 r)jr dr = 3 1 a
2 2 2 2 2
£ ¢“ J,%(ka) S
P = om 0 12 a’ (%)2 Z, 1- 5% %
(ka)
2 2
x ‘Bll 'le‘ (72)
where
a -~ radius of structure

A - free space wavelength

¢ - velocity of light in vacuo
= 3(108) m/sec.

\ . "o

Z - free space wave impedance = |—
o

0

=

Sl= 2.4048

Before the Pierce theory can be applied to the

dielectric structure, the an's in equation (57) must be

35
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known. In this case the variation of importance is that

of the central EZ field., Hence define

U(z,t) = EZ(O,O,z,t)

(73)

where U(z,t) is ,given by equation (57). Therefore,

equations (73) and (61) yield

2
. Vg . .
s Rl -iB,z iB,z
= e p+q (A e 2 + A e 2 )
1 2
= F(Z)

wvhere
Wy

b
F(z) = E_(0,0,z,0)e p+q

27Nz

for the air region

(74)

for +the dielectric
region

J
Note that the functions e ptq form a complete orthogonal

(4)

set;

hence F(z) is expressed exactly by the series in

equation (74). Thus EZ (0,0,z,0) must be expressed exactly

by
_y Ve

F(z)e ptq

It

EZ (0,0,2,0)

n -—_co

qj+2nn

N
= Z a_e P+q
n




37

. w/+2ﬂn
I [Tprq | Z
which means that the functions e

form a complete

set, Since the radius of the structure is constant, the
functional dependence of the longituéinal E field of the
space harmonics on the transverse coordinates is given by
one of the Bessel functions - in this case, the zeroth

order Bessel function. Hence

o —j +2n7
' ‘ ¥
E, (r,d,z,t) = Jo(kr)eamt Ez:ane L

n =-c0

VA

It follows directly from equation (74) that the
an's are given by the standard coefficient integral for

the Fourier series:
P+q

« jgﬂﬁé
a, = E%a J[-F(z)e Pt g, (75)
0
The solution of~equation (75) can be simplified somewhat
since the contribution to the integral from the dielectric

region is negligible compared to that from the air region

provided Sr:>:>]J

.2Tnz

~ 1 I p+q
a = B F(z)e dz (76)



4. APPLICATION OF THE PIERCE THEORY TO THE DIELECTRIC
LOADED SLOW WAVE: STRUCTURE

It can now be seen that given p/a, q/a, a/A,

\V, and e€_ as data, equations (69) and (72) yield
r

| 2 S:12 [,12 | 2
2 (a _1 A 2
Y T
where
: on ¢ 2 02 J.%(xa) 2
N = o 1 0
(ka)?
= 7,68 (10’3) ohms™1
j-20,) " Z,
e - cos 292 njz— sin 20
1 2
1 =|—
S (T30 B P
e + Jz— sin 202 - CcOS 292

1

Equations (61), (69), and (76) yield Ian|2 in terms of
2
By [ %

(ej [W/+ 2nm -Bl(p+q)]§£a

&n:—jB

ILW/+ 2ot - B; (p+q)

: \V + 2 + e ~_.p__
j [ nn + B, (p q)]p+q N
+ M-E

WV + 2nm + Bl (p+q)

(78)

These results can then be wused in conjunction with equation
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(37) which reduces to the féllowing in this application:

. 2 2
K \anf ‘anﬁ (E‘fﬂ) - (79)
262 P 2V s onm)?P

where the electron beam  couples to the nth harmonic. In

practice the harmonic of interest is the fundamental

forward‘waveo Since ¢0, the phase constant of the

fundameﬁtal,‘is related directly to w/, the numerical

evaluation of K is straight forward. Direct‘application

of equations (26) and (43) furnishes the straight line

approximation to the gain. Note that the field solution

for the solid disc structure is being used as an approximation

to the field solution for the holed disc structure. This

approximation is necessary since the field solution for

the latter structure is far too complicated for repeated

numerical useo(6)
A program to perform the calculation of the beam

coupling impedance, K, was written for use with the ALWAC

IIT electronic computer. However, before the program could

be used intelligently, a useful correlation between the gain-

bandwidth prope;ties and the design parameters had to be found.

The design parameters which can be varied are €.» p/a, q/a, gnd

A, The first of these variables to be figed vas € wvhich was

done with the aid of the computational results shown in the

graphs below. The first .curves show how the beam coupling

impedance and the required beam velocity vary with €. when



K
.(ohms)

p/q and Egﬂ are fixed. The value of a/A used in the
calculations is that defined on page 44 . The scatter of
the points defining the K curve is due to the error in the
human judgement required to choose the values of a/A used.
It can be seen that both K and vph/c vary so as
to produce greater gain at high values of €. since the
gain parameter variesvdirectly with K and inversely with
Vph for a fixed beam current. Figure 8, which gives the

variation in the gain per section as a function of e€_,

r
confirms the above prediction. This plot (Figure 8)

_0.50
4 |
31 | 0.40

v

2 ph

 0.30
1

T ] 7 T T T 7 T T 0.20
0 20 40 60 80 100
€
r

Figure 7. Beam coupling impedance and velocity as
a function of €. for fixed p/q and p+q
a
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Figure 8, The linear gain per section as a function
of €. for fixed p/q and p+q
a

shows that the number of discs required for any desired
overall gain decreases as €. for the discs increases.
Note that the gain per section referred to here and in
the succeeding development is the linear approximation
for an assumed beam current of 14 milliamperes. Since
the cost of the discs is a significant fraction of the
complete manufacturing cost of this type of travelling
wave tube, it is obviously desirable that a dielectric
with large permittivity be used. Fortunately, a low
loss dielectric (titania) with a relative permittivity
of approximately 93.5 is available and hence this value
is used in the work to follow.

Further correlation between the remaining design

41
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parameters and the travelling wave tube properties arose
from a set of curves derived by Mfo Englefield which are
shown in Figures 9 and 10. To arrive at these curves it
is necessary to place a specific condition on the value of
a/A used, since, for any dispersion curve, an infinite

number of points can be chosen,

[

a/A

_

Figure 11. Typical dispersion curve showing
the useful value of a/A

The condition wused for this investigation is
shown graphically in Figure 11, where a/ko, the point in
question,denotes the value of a/A corresponding to the
center of the linear section of the dispersion curve for
the fundamental wave of the first passband. This is the
point of greatest slope of the dispersion curve. Inspection
of a set of such curves shows that this is also the point
where the difference between the phase and group velocities

is a minimum, since
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2ncl (80)

a
_ 2nck alA | ’
Ve =8 %WJ (81)

It is desirable to pick the point where the above

difference is a minimum because, as a result of equation
(54), this requirement yields a good bandwidth condition.
This fact is most easily seen graphically and is illustrated
in Figure 12, where, for a given Avph’ the bandwidth
depends directly upon the extent to which the dispersion
curve and the constant phase velocity line are coincident.
Figures 9 and 10 yield, upon specification of
a/ho, W, andip/q, sufficient information to fix the
dimensions of a structure and to enable, given the beam
current, the gain-bandwidth properties to be calculated.
To be specific, €. is fixed; a/Ao, w, and p/q are
specified; Eﬁﬂ and XEQ are read from the graphs; and\v is
calculated using equation (80). This procedure was used to
provide data for calculations of the gain parameter and the
linear gain per section for a set a/ho values., A number of
calculations corresponding to specific values of p/q were
performed for each choice of a/KOa Attempts were then made
to find correlation between results obtained and various
combinations of design parameters with the result that
useful curves were obtained using q and q/a as independent
variables. If the variable is g/a, the curves are valid

for any frequency; whereas if the variable is q, the curves
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a/A
‘ l v = const,
/1) ph
&/ upper— — T T — iv . =3 cu
. ph o
a/lo ______
a'/A)lower—— —_— =

-\

Figure 12. Graph which shows that the bandwidth is increased
if, for constant C, vg—vPhlls minimized

are valid for the given frequency only. The reason for

this frequency dependence is that the choice of an operating
frequency only becomes necessary when a is being computed
from a/loo Although a2 appears twice in the calculation
previously described, it does in such a way that it cancels
out when K is evaluated. Thus to transform the independent
variable from gq/a to g, an operating frequency must be
chosen. The frequency used for this work is 35 Kmec,

The results are shown in Figures 13 to 17. Note
that the points do not define a definite set of curves. The
error which gives rise to this indeterminancy is due to the
difficulty in correctly choosing a/lo for any given dispersion
curve. In a number of cases, comparative choices made by

several people of a/')n0 for a given dispersion curve led to
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5-10% discrepancies. Although the curves are somevhat inexact,
the information contained in them is sufficiently precise to
enable one to rapidly choose a set of parameters that produce
results which lie within a preselected range. Thus with all
of the initial trial and error design attempts eliminated,
one can proceed to more accurate and useful calculations with
parameters which are'known to give reasonably desirable
results.,

To illustrate the accuracy which can be expected
from the design curves, a specific application will be given.
If a structure is to be characterized by q = 0.008 inches and
p/q = 1.33, Figures 13,14, and 15 give a/ko = 0.44 and the
information listed in Table 1. Since €. A, and Io are fixed and
p/a, q/a, and VW can be calculated from the data available
from the curves, a computation can be made to check the informa~-
tion given by the design curves. This has been done and the

results are given in Table 1.

Design %

Property Curve Computation Discrepancy
Results Check

Vo 11.5 kv 11.5 kv

K 5 ohms 5.63 ohms 11.2

c 11.8 (107°) 11.98 (1072) 1.5

G db »

I 0.145 P 0.15 db 3.3

Table 1. Approximate computation check of
a typical design curve result
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Objections to the validity of the above comparison
may be put forth since the data used for the computational
check may not be exactly consistent with reality, i.e. the

value of a/ho used may not be compatible with the values of

Design Exact %
Property Curve Computation Discrepancy
Results Check
a/A 0.44 0.44 0
Vo 11.5 kv 11.3 kv 1.8
K 5 ohms 5.552 ohms 9.9
c 11.8 (1072) 11.98 (1073) 1.5
& 0.145 b 0.152 &b 4.6
L ° sec ° sec °
Table 2. IExact computation check of a

p/a and q/a used.
inherent inaccuracies of the curves and to error in reading
data from the curves.
sufficient data is chosen from the initial set, given on

page 47, to produce a unique dispersion curve.

typical design curve result

Such an incompatibility is due to the

A more valid comparison results if

Thus the

data for the numerical check is fully consistent with

reality.

Such a process has been carried out for a
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dispersion curve fixed hy g = 0,072, g = 0,054, and €. = 93.5.

The results are shown in Table 2.

The inaccuracies in the results due to the errors
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in choosing a/ho are not as disturbing as they might appear.
Even if perfect judgement were possible and the points
perfect1y4defined a set of Curﬁeg, the curves would still
be in error due tq the approximations used in producing
expressions for the coupling impedance, the gain parameter,
and the gain. For instance, the circuit loss and space
charge effects were ignored. A more serious approximation
was the use of the field solution for a solid disc structure.
An approximation solution for the holed disc
structure was proposed by R.=Shersby-Harvis et alg(6)
Their approach was to replace the actual structure by the
rough equivalent shown in Figure 18. The central cylinder
(0<r<a) is filled with air and represents the effect of
the holes. The outer cylindrical region (a<r=<b) is filled
with a solid anisotropic dielectric whose permittivities are
chosen so as to approximate the actual structure. Analysis
of this structure yields, for phase velocities less than c,

an Io(kr) field variation in the central cylinder where Io(kr)

is the zeroth order Besgsel function for an

\\\\\\\\\\\\\ / a

\\\ \\\\\\\\\\\\

L L7

Figure 18. Anisotropic structure of
R.=Shersby-Harvie et al
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imaginary argument. This type of EZ field dependence upon

r is undesirable for solid beam travelling wave tubes since,

for maximum gain, the magnitude of the EZ field should be
maximum at the center of the structure. This condition is

not produced by an Io(kr) function which increases monotonically
with r. These comments again accentuate the main purpose of

the results herein: +to eliminate the initial exploratory

work in the design of travelling wave tubes using dielectric

loaded slow wave structures.
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5. CONCLUSIONS

An investigation has been carried out to determine
the properties of dielectric loaded slow wave structures
pertinent to their use in a travelling wave tube. The
result of the study was the evolution of a set of design
curves which relate to structure dimensions such properties
as the coupling impedance, the gain parameter, and the
linear gain per section for small signals.

The simple Pierce Theory fér the travelling wave
tube was used to perform the investigation. This theory
is somewhat inaccurate due to the assumptions made in its
development. Possibly the most important omission was that
of neglecting the effects of the space charge of the beam.
It can be shown that the theoretical results produced wheﬁ
space charge effects are included do not differ in form from

(1),(2)

those obtained in this thesis. However the actual
numerical results for a given slow wave structure and beam
current are different. The effects of circuit loss were
also neglected.

The use of the wave solution for the solid disc
structure gave rise to another source of error since, in
practice, holes must be placed in the discs to permit
electron flow, Finally the fallibility of human judgement

led to errors in the choice of a/Koe However,the aggregate

of these errors does not damage the usefulness of the design
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curves as instruments for initial design.

If further work were to be conducted, it would
be useful to find what conditions exist to minimize the
difference between the phase and group velocities at the
operating point. In this way, one of the conditions for
large bandwidths would be satisfied., The effect of the
holes in the discs is also worthy of further study. The
latter problem which is of great interest is also a
difficult one if a concise and manageable solution

(6),(7)

is desired.
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