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ABSTRACT 

In the f i r s t section of thi s thesis the simple 

Pierce Theory for the t r a v e l l i n g wave tube i s discussed 

and developed. The re s u l t of th i s analysis i s a number 

of equations which produce information about gain and > 
I 

bandwidth. / 

The next section of the thesis i s devoted to 

a discussion of periodic structures with p a r t i c u l a r emphasis 

on d i e l e c t r i c loaded periodic structures. i 

F i n a l l y the Pierce Theory i s applied to the 

d i e l e c t r i c slow wave structure. Results are presented of 

a study performed to f i n d a correlation between the physical 

dimensions of the d i e l e c t r i c structure and the gain-bandwidth 

properties of a t r a v e l l i n g wave tube employing the structure. 

These r e s u l t s , which are i n graphical form, can be used to 

eliminate the i n i t i a l exploratory design work for t r a v e l l i n g 

wave tubes of thi s type. A sample use i s made of the design 

curves and the results are compared to a computational check 

to show both the usefulness and the limi t a t i o n s of the curves 
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A STUDY ON THE USE OP DIELECTRIC LOADED 
SLOW WAVE STRUCTURES IN TRAVELLING WAVE TUBES 

1. INTRODUCTION 

The travelling "wave tube amplifier has received 
considerable study in recent years because i t is a wide 
band microwave amplifier with a potentially low noise figure. 
The device consists of a slow wave structure (waveguide in 
which the phase velocity is less than the velocity of light) 
with appropriate coupling mechanisms for the input and output 
of a signalo An electron beam is made to flow in the struc­
ture where i t can interact with an electromagnetic wave 
propagating therein. The wave, introduced at the input 
coupler, travels along the slow wave structure where inter­
action with the electron beam results in an energy transfer 
between the beam and the wave. 

The number of signal channels which can be trans­
mitted in a given percentage bandwidth increases as the band 
center frequency is increased. Thus i f the percentage band­
width of an amplifier can be maintained, i t is desirable to 
increase the operating frequency. However the radius and 
pitch length of the helix slow wave structure, the circuit 
which has been most commonly used in medium and low power 
tubes, diminishes as the operating frequency increases. As 
the size of the helix decreases,, the maximum power flow that 
i t can support also decreases and the helix i t s e l f becomes 
increasingly more d i f f i c u l t to construct. The power flow is 
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l i m i t e d by the heating of the helix metal due to I E losses 

and to electron bombardment from the beam. At operating 

frequencies above X-band, the problem of finding a more 

suitable slow wave structure has become important,, One 

p o s s i b i l i t y i s the d i e l e c t r i c loaded structure which i s 

easier to b u i l d than the he l i x and which holds promise of 

a sa t i s f a c t o r y power capacity. This thesis i s concerned 

with determining the s u i t a b i l i t y of the d i e l e c t r i c structure 

for use i n t r a v e l l i n g wave tubes. 

The simple Pierce Theory for the t r a v e l l i n g wave 

tube i s used throughout t h i s investigation. Although the 

theory i s not rigorous, i t does produce a concise solution. 

Such a solution i s very desirable i f i t i s to be used for 

numerical design. Although more rigorous theoretical 

developments can be made, they yield results which are much 

more complicated. The increased numerical labor detracts 

from the increased accuracy which the refined solutions 

produce. 

The s i m p l i c i t y o f the simple Pierce Theory i s 

achieved by neglecting the effects of distributed loss and 

space charge as well as by r e s t r i c t i n g the treatment to small 

signals i n order to avoid non-dinear equations. Ideal coup­

l i n g devices are also assumed. A section of the thesis i s 

devoted to a development of the simple Pierce Theory. 

A f i e l d analysis of the d i e l e c t r i c loaded structure 

containing discs with a center hole i s possible but the 
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solution i s only of formal significance because of i t s 

complexityo The structure i s shown i n Figure 1, The hole 

i n the discs i s necessary to allow passage of the electron 

beanie 

Figure 1. The d i e l e c t r i c structure with a center hole i n 
the discs. 

Since much of the work of t h i s study i s numerical, a theory 

which produces a concise r e s u l t i s very desirable. As the 

f i e l d solution for the d i e l e c t r i c structure with s o l i d discs 

i s s u f f i c i e n t l y concise, i t i s used throughout as an approx­

imation to the f i e l d solution for the holed disc structure. 

The results of t h i s study are presented i n a set 

of design curves r e l a t i n g the gain-bandwidth properties of 

the d i e l e c t r i c structure when used i n a t r a v e l l i n g wave tube 

to the dimensional parameters of the structure. The s i g n i f ­

icance of the errors due to the approximations used are 

discussed so as to c l a r i f y the usefulness of the design curves. 



4 

2c THE PIERCE THEORY 

2 d Simplifying Assumptions and Restrictions 

In order to reduce the complexity of the problem, 

a uniformly distributed LC delay l i n e i s used to represent 

the slow wave structure,, The shunt susceptance and series 

reactance of the delay l i n e are chosen so that the phase 
bv 

v e l o c i t y and the longitudinal E f i e l d , --^ , acting on the 

electrons for unit power flow are the same as those for 

any given structure,. I t should be noted that t h i s procedure 

gives results which compare quite reasonably with those of 

more complex analyses. 

Even with the above s i m p l i f i c a t i o n , the problem 

becomes rather complex i f , for instance, non-linear electron 

current flow equations are used. Hence the analysis i s 

r e s t r i c t e d to small signals which allows l i n e a r i z a t i o n of 

the electron flow equations. The assumptions that a l l of 

the electrons are acted upon by a known f i e l d (excluding the 

f i e l d due to l o c a l space charge) and that they are displaced 

only i n the longitudinal d i r e c t i o n by the ac f i e l d are also 

made to simplify the treatment. The l a t t e r assumption can 

be made s u f f i c i e n t l y v a l i d i n practice i f a strong magnetic 

focusing f i e l d i s used. Also, the electrons are assumed to 

be uniformly distributed i n any cross-section which i s normal 

to the d i r e c t i o n of beam flow. The force on the electrons 

due to the magnetic f i e l d produced by the displacement current 
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i s s u f f i c i e n t l y small to neglect for n o n - r e l a t i v i s t i c elec­

tron v e l o c i t i e s to which this work i s restricted,, Some of 

the effects deleted by the above assumptions and r e s t r i c t i o n s 

can be incorporated into more complex analyses, but the 

developments i n t h i s thesis do not demand these more 

refined r e s u l t s . As yet a completely satisfactory theory 

of the t r a v e l l i n g wave tube has not been produced; hence, 

one of the approximate theoretical developments must be 

resorted to. 

With the above assumptions and r e s t r i c t i o n s , the 

problem becomes quite manageable. It i s ea s i l y seen that 

there are two physical processes occurring i n a t r a v e l l i n g 

wave tube: the effect of the c i r c u i t voltages on the beam 

current and the effect of the beam current on the c i r c u i t . 

The l a t t e r process can be considered as a perturbation by 

the electron beam of a wave propagating i n the slow wave 

structure. 

2.2 Excitation of C i r c u i t F i e l d by Beam Current 

Consider the c i r c u i t shown i n Figure 2 which i s 

a distributed LC transmission l i n e i n close proximity to 

an electron beam. The c i r c u i t w i l l be assumed to be either 

of i n f i n i t e length or of f i n i t e length with a non-reflective 

termination. 

It w i l l be noted here that three separate currents 

w i l l be referred to. They are the electron beam current, 

denoted as the convection current; the c i r c u i t current, 

denoted as the conduction current; and the displacement 
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current. 

J= -
I I 1 I I 1 I 1 ! I 1 

-o 
+ 
V 

oz 

Figure 2 - Equivalent c i r c u i t of t r a v e l l i n g wave tube 

To determine the nature of the coupling of the 

electron beam to the c i r c u i t , consider a small volume of 

space, such as shown i n Figure 3, through which a l l the 

convection current flows. The sum of the currents flowing 

into the volume must be zero to preserve continuity of 

charge. However, since the convection current varies with 

distance, there must exist a displacement current to 
t 

s a t i s f y the above condition. It w i l l be assumed that a l l 

the displacement current flows into the c i r c u i t , i . e . that 

unity coupling e x i s t s . Since the convection current has 

been assumed to flow very close to the c i r c u i t , the 

displacement current, J amperes per meter, has only a 

negligible component i n the d i r e c t i o n of propagation 

compared to that which flows d i r e c t l y to the slow wave 

c i r c u i t . Note that the d e f i n i t i o n of displacement current 

d i f f e r s dimensionally from that usually made. The d e f i n i t i o n 

used here i s more useful since, for a small distance 5 z , 



t h e p e r t i n e n t c u r r e n t i s t h e t o t a l d i s p l a c e m e n t c u r r e n t 

c o u p l e d t o t h e slow wave c i r c u i t . The d i s p l a c e m e n t c u r r e n t 

F i g u r e 3 - Volume t h r o u g h w h i c h the e l e c t r o n beam p a s s e s 

i s r e l a t e d t o t h e c o n v e c t i o n c u r r e n t i n t h e f o l l o w i n g 

manner: 

i t 2 + J 6z - i u = 0 (1) 

where 

B u t 

i , = - I + i t o 

- t o t a l e l e c t r o n c o n v e c t i o n (beam) c u r r e n t 

I - a v e r a g e o r dc e l e c t r o n c o n v e c t i o n c u r r e n t 

i - ac component o f e l e c t r o n c o n v e c t i o n c u r r e n t 

J - d i s p l a c e m e n t c u r r e n t (amperes/meter) 

x t 2 = H i + | ^ z (2) 

Hence J = (3) 
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If the slow wave c i r c u i t i s considered, the 

ordinary transmission l i n e equations result with the 

exception that the displacement current i s taken into 

account. 

| | = -.jBV + J (4) 

g . -jXI (5) 

where 

V = V(z,t) — l i n e voltage 

I = l ( z , t ) - l i n e or conduction current 

B - shunt susceptance per unit length 

X - series reactance per unit length 

D i f f e r e n t i a t i o n of equation (5) with respect to z and 

the subsequent substitution of equations (3) and (4) 

yield s the folloA^ing d i f f e r e n t i a l equation? 

| & + m - +ix £ (6) 

The time v a r i a t i o n of interest for the beam and c i r c u i t 

variables i s e^4"*. It i s l o g i c a l to expect V to vary as 

e since the effect of the electron beam i s to perturb 

the wave solution for the undisturbed slow wave system. Thus 

substitution of e^w^°" ^ z into equation ( 6 ) y i e l d s 

( T 2 + BX)V = - j x T i (7) 
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It i s now evident that i n the absence of the electron beam 
the propagation constant reduces to f~^,the natural prop­
agation constant of the slow wave structure, where 

£ = j / 5 x (8) 

The d e f i n i t i o n of characteristic impedance i n 
transmission l i n e theory i s of use and i s given by 

K . / § (9) 

Equations (8) and (9) can be used to elimiate X and B 
from equation (7) to produce an expression i n terms of 
more common parameters? 

- r r ^ i 
(r 2 -r2) 

2.3 Excitation of Beam Current by the Current F i e l d 
Now consider the effect of a c i r c u i t wave E 

f i e l d on the electron beam. The two basic equations to be 
used are the equation of motion of an electron i n an E 
f i e l d ( l l ) , and the continuity of charge equation (13). 

d(u + v) 
F = m — — — = -eE 

dt 

where 
E = - g l 

Oz 

longitudinal e l e c t r i c f i e l d 
i n t e n s i t y 
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u Q - average or dc v e l o c i t y of the electrons 

v - ac component of electron v e l o c i t y 

m - electron mass 

e - charge of the electron (e=*o) 

7| - charge to mass r a t i o of the electron 

F - force 

The continuity of charge equation for variations 

i n one d i r e c t i o n i s 

bz \ a 
b \H b / Po + P 

T t \ a (12) 

where 

P - average or dc charge per unit length of electron 
0 beam 

P — ac component of l i n e a r charge density of electron 
beam 

a - cross-sectional area of electron beam 

Sim p l i f i c a t i o n of equation (12) yiel d s 

•Si - -42 (i3) 
bz ~ dt U 3 ; 

F i r s t of a l l consider the l e f t hand side of 

equation ( l l ) : 

dv _ bv bv dz 
dt ~ St c5z dt 

bv , / > \ bv 
= bt + ( u o + v ) ^ 

The small signal r e s t r i c t i o n allows the above equation to 

be l i n e a r i z e d , i 0 e 0 to reduce (u + v) to u „ Since the y o o 
time v a r i a t i o n for the variables i s e*'40^, d i f f e r e n t i a t i o n 
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with respect to t i s equivalent to mu l t i p l i c a t i o n by j<o0 

Thus equation (11) becomes 

^ + 3 ^ v = 3 - ^ (14) dz 0 u u dz o o 

The term w/u i s of the same form as the phase factor i n o 
transmission l i n e or waveguide analyses and i n thi s 

development may be considered to be the phase factor of 

some disturbance t r a v e l l i n g at the electron velocity., Hence 

the following d e f i n i t i o n : 

U e = ^ ( 1 5 ) 

o 

Equation (16) i s a basic r e l a t i o n which w i l l be 

of use i n finding an expression r e l a t i n g v and i : 

(-Io + i ) = ( Po +P)(Uq + v) (16) 

Again, the second order terms i n the ac variables are deleted 

to y i e l d 

(-1 + i ) = O u +Pu + Ov 

o "o o ~ o ' o 
But 

Therefore 

-I = O u o >o o 

i = O u + O v ^ o r0 

or 
i - P u v = a 

Po 
(17) 



The continuity of charge equation can be used to eliminate 

P i n equation (17) producing equation (18) which can then 

be used i n equation (14) to y i e l d equation (l9)s 

i b i 
v = .jco • 02 (18) 

A 

£ i + 2 „ Si . a 2 i - ' ^ ^ o | I 

o 

But 

u = i/2 7]V 
0

 v ( o 

where V^ i s the voltage through which the electrons are 

accelerated to give them v e l o c i t y u 
o 

Hence 

£?i + bi 2 P e I o bV f v 2 + 2 j Pebz - Pe 1 - ~J 2V ^ ( 1 9 ) 

Oz o 

I t can now be seen that i f V varies as e 

with distance, then the p a r t i c u l a r solution for i must also, 

In t h i s case the natural propagation constant , P , i s 

perturbed s l i g h t l y to Hwhere 

r- r0 - *; (20) 

- r 
Direct substitution of e~ z into equation (19) yi e l d s 
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i = £ £ i ! L ^ ( 2 1 ) 

2v o(jP e-D 2 

Hence a voltage which varies as e^ w^~ z gives r i s e to an 

ac convection current i n the beam which varies likewise 0 

Thus each physical process yields a r e l a t i o n 

between c i r c u i t voltage and ac convection current„ These 

relations (equations (10) and (21) ) must hold simultaneously, 

and forcing them to do so y i e l d s four solutions for P. It 

i s worth noting that equations (6) and (19) are two simul­

taneous d i f f e r e n t i a l equations for which there are no 

driving functions 0 Hence the solution must be given e n t i r e l y 

i n terms of the four l i n e a r l y independent functions which 

r e s u l t . 

2.4 Natural Modes and Their Properties 

Equations (10) and (21) can be combined to 

produce an equation i n P which defines the allowable values 

of F i n terms of the given system parameters: 

3-Ki op e r Q r 2 , , 
1 = ~ ° * — 2 — ( 2 2 ) 

2v 0 ( r 0
2 -r 2 ) ( ^ e - n 2 

Since equation (22) i s of fourth degree i n P, there are 

four solutions for P and hence, i n general, there must be 

four boundary conditions to completely specify the wave 

solution. That the problem requires two more boundary 

conditions than the usual waveguide problem i s not 

surprising since beam conditions must be specified also. 
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It i s to be expected that coupling between the 

beam and the c i r c u i t w i l l occur only i f the v e l o c i t i e s of 

the disturbances i n each are about equal. If the v e l o c i t i e s 

d i f f e r considerably, a segment of the electron beam w i l l 

alternately see accelerating and decelerating voltages 

i n such rapid succession that the net effect of the 

voltage wave on i t i s very small. Thus setting the electron 

v e l o c i t y equal to the phase v e l o c i t y of the slow wave 

structure i n the absence of beam current i s quite 

reasonable. Hence 

r0 = jf» e (23) 

The phase v e l o c i t y of a wave i n the slow wave structure i s 

perturbed s l i g h t l y when the electron beam i s introduced. 

Hence P can be expressed i n the following form: 

r = j P e - £ (24) 

Note that t h i s expression for P y i e l d s only forward waves 

and since at least one backward wave i s to be expected, 

substitution of equation (24) into equation (22) should 

produce an equation i n £ of les s than the fourth order. 

In f a c t , d i r e c t substitution with the deletion of small 

order term yie l d s 

- 3 KI 
e3--w. 4 ^ («) 

1 0 



It i s now useful to introduce several new 

parameters. Thus define 
, KI 
C 3 = iv 2" (26) 

o 

£ = Pec6 (27) 

Now only (5 remains to be determined to complete the 

solution of equation (25) where 

6 = ( ~ j ) l / 3 (28) 

which has the solutions 

61 = j (29) 

62 = 1 /-30° 

= 0.866-j 0.5 
63 = 1 /-150° 

= -0.866-j 0.5 

Therefore the forward waves have the following z v a r i a t i o n 

- H z -jp z Sep z 
e = e e e e (30) 

I t can be seen that (5̂  corresponds to a constant amplitud 

wave which travels s l i g h t l y faster than the electrons, () 

corresponds to an amplified wave whose phase v e l o c i t y i s 

s l i g h t l y less than the beam ve l o c i t y , and (5-j corresponds t 

an attenuated wave whose phase v e l o c i t y i s also s l i g h t l y 

less than the beam v e l o c i t y . 
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The propagation constant for the backward wave 

follows naturally,from the following substitution: 

r = - 3 ? e - e oi) 
The f i n a l solution for P i n t h i s case i s 

p C 3 

P = -JP. + 3 6 '4 ~ ' J 4 
P3 

= -3P a(l - J") (32) 

Since C i s a small number, i t i s obvious that i s only 

very s l i g h t l y perturbedo 

Equations (8) and (9) -can be combined to give 

K - 4 * 
To (33) 

Since the propagation constant of the slow wave structure 

has been perturbed, the characteristic impedance i s also 

perturbed. Hence each of the forward waves has an impedance 

associated with i t which i s given by 

K - « 
n 

l n 
- K 
~ 1 + j 6 n

C n = 1 , 2 , 3 ( 3 4 ) 

= K(l - j 6nC) 
The parameter C, as w i l l be shown l a t e r , i s very 

important and i t i s convenient to fi n d a new expression for 

i t which i s more useful i n applications to slow wave 

structures. Since the magnitude of the E f i e l d , E , usually 
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has much more meaning than the voltage V, the variable V 

w i l l be transformed to E , The two are related as follows: 
o 
E = o r> (35) 

Also, for the equivalent c i r c u i t used, the power flow i s 

given by 

p = l v i 2 

Hence we have 

2K (36) 

E 2 

2K = - V " (37) 

Thus the new r e l a t i o n for C i s given by 

- E 2 I Q3 _ o o 
T (38) 

Since the |3 for each of the forward waves i s very nearly 

P e , the subscript has been dropped. If V^/l i s called 
3 

the beam impedance, then C i s one quarter of the structure 

impedance divided by the beam impedance. It might be noted 

that C i s often call e d the gain parameter and K i s often 

c a l l e d the beam,coupling impedance. 

2.5 Gain and Bandwidth Expressions 

It has now been shown that the l i n e a r i z e d 

d i f f e r e n t i a l equations describing the system have the 

following form of solutions 



-j0 z <5c0 z 
M(z) = e e e e 

The solutions for 6 for the case i n which c i r c u i t loss 

and space charge effects are ignored have been found. 

In general (5 w i l l have other values but the solution 

type remains, to a f i r s t approximation, unchanged. Thus 

i f the amplitude of the growing wave i s considered at 

points z^ and z 2 , the following r e s u l t s : 

M(z 2) 
|M( Z ] L) = e 

xCP e(z 2-z 1) 
(39) 

where 

(5 = x + jy 
But ( z 2 - Z j ) can be written as 

Kz2 1' ~ 0 r 
e 

Z 2 > 2 1 (40) 

where N i s the number of wavelengths corresponding to 

z 2—z^ . Hence 

M(z ) _ 27txCN 
|M(21)| 

(41) 

Thus the logarithmic gain due to thi s wave can be written 

as 
G = 20 l o g l 0 e 

= 54o6xCW 

2TCXCN 

(42) 

If the value of x determined i n the previous analysis i s 
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substituted into equation (42), i t reduces to 

G = 47.3 CN (43) 

Expression (43) does not give the exact gain of 

the t r a v e l l i n g -wave tube, however, since there are three 

waves to be considered (the structure i s assumed to be 

perf e c t l y terminated). To ascertain the i n i t i a l amplitudes 

of the three waves, a boundary value problem must be 

solved. Two of the conditions to be applied here are that 

the current and v e l o c i t y modulations are zero at the input: 

y v = o 
n n 

£ 1 = 0 
n n 

n = 1,2,3 (44) 

Equations (18) and (21) after appropriate manipulation y i e l d 

_ ( 1 o n 
n ~ ~ u A p C o U n e 

l = 
j(3 I P V 
J r e o 1o n 

n= 1,2,3 (45) 

n 2Y 6 2 p 2 C 2 

o n re 

Equations (44) and (45) combine to give 

V V V 1 , 2 , 3 n 

1 & 63 
(46) 



(46) 

Obviously the following r e l a t i o n must hold at the input: 

V1 + Y2 + V 3 = V (47) 

Equations (29), (46), and (47) y i e l d 

where V i s the input voltage (z = 0 ) o Hence the voltage 

at z, denoted by .V'•> i s seen to be 

V = 
3 e 

" 3 P e C z E 

+ e 2 2 ? e C z 

+ e (49) 

V 1 + 2 cosh 
Efi Cz \ - j3P eCz JP 

/ 

Expression (50) follows d i r e c t l y : 

1 
9 1 + 4 cosh' 

/ I p Cz\ 

+ 4 cos 
3p Cz \ e cosh 

1/3 p Cz' (50) 
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To see how IV /V I varies as a function of z, 
J z' 1 

i 2' 
consider a plot of 10 log 1 Q

 v
z / v | versus ON as shown 

i n Figure 4. Note that the signal does not begin to 

experience a gain u n t i l i t has tra v e l l e d some distance 

down the tube. This i s to be expected since the electron 

beam requires a f i n i t e time to become modulated; and u n t i l 

such time as i t does, the beam w i l l not act upon the c i r c u i t , 

i . e . the wave. 

CM 

O 
o 
O 

20 

15 

> 10 

, / 

// 
/ 

/. / 

g* owi ng wav e '/ 

ap pro xim a t i on / / 

I 
0 0.1 0.2 0.3 0.4 0.5 0.6 

CN 

Figure 4. Signal gain as a function of distance 

It can be seen from Figure 4 that a straight 

l i n e approximation to the, signal gain function i s reasonably 

accurate for CN>0.2. The straight l i n e i s the gain function 

for the growing wave and hence, from equation (43), has slope 

47.3. I t i s not surprising that this approximation i s 



reasonably v a l i d since the growing wave w i l l eventually 

dominate the other two. The exact equation for the straight 

l i n e approximation i s 

G = A + 47.3 CN 

where A i s given by the value of a t the input: 

A = 20 log1() ̂  
= -9.54 db. 

Hence 

G = -9.54 + 47.3 CN (51) 

The effect of variations i n the mean electron 

v e l o c i t y must be considered i n order to determine the 

bandwidth. Using this more general approach, equation 

(23) must be changed to the following since, i n general, 

the electron speed i s to be s l i g h t l y d i f f e r e n t from the 

unperturbed phase v e l o c i t y . 

T0 = j p e (1 + Cb) = 3 (52) 
ph 

It follows through the use of equation (15) that 

v p h (1 + Cb) = u Q (53) 

In practice with tubes of high overall gain, the gain i s 

reduced by several db. when b i s changed by ^1. For this 

limited range of b, equation (53) can be written 

v , = (1 - Cb) u ph o 



since C«l„ Hence the bandwidth i s approximately defined 

by the frequency range for which the phase v e l o c i t y of 

the undisturbed wave d i f f e r s from the electron v e l o c i t y 

by less than the f r a c t i o n i C 0 Thus 

% h = 1 C u o <54> 

where Av ^ denotes the difference from the phase v e l o c i t y 

at the operating point. 



3. DIELECTRIC LOADED SLOW YAVE STRUCTURES 

(3) 
3*1 General Theory of Periodic Structures 

Before investigating the properties of the 
dielectric loaded slow wave structure, i t is desirable 
to develop some of the basic theory of periodic structures, 
i.e. those structures which are physically periodic in 
space. The basis of this theory is the following theorem 
by Floquet: for a given mode of the system at a given 
frequency, the wave function varies from one point in the 
structure to another point one period away by only a 
complex constant. Since the exponential function provides 
a very general way of expressing such a constant, the 
following w i l l be used: 

satisfies the requirement of Floquet*s theorem at a l l the 
points in the structure. However this simple relationship 
w i l l not allow the boundary conditions in any given 
structure to be met. This d i f f i c u l t y is overcome by 
multiplying (55) by factors which are periodic with period 
L or whole fractions thereof where L is the periodic length 
of the structure. Thus (55) becomes 

(55) 

where number. Note that this function 

z 
(56) 

where n i s an integer. 



Since a propagating wave solution i s desired, l e t 

Y= j where may be real or complex. The obvious pro­

cedure from here i s to expand the wave function i n terms of 

a l l the periodic functions above. The component functions 

i n the res u l t i n g expansion have the common factor e^10^ ~ ̂ z 

I f this common factor i s removed from the summation, the 

resu l t i n g series i s the well known Fourier series whose 

component functions form a complete se t . ^ 4 ^ Hence any 

reasonably well behaved f i e l d pattern can be approximated 

to an arb i t r a r y degree of accuracy by a f i n i t e portion of 

the series. Thus 

^ j(<ot-0 z) 
U(z,t) = \ a ne' n (57) 

n =-oo 
where 

0 n = H^ijxn ( 5 8 ) 

The function U(z,t) gives the z and t variations 

for either a fixed point or a fixed curve i n the transverse 

plane. In general the l a t t e r applies and the complete 

wave solution requires the matching of an i n f i n i t e set of 

three dimensional wave functions to the boundary conditions 

The matching process includes forcing the complete wave 

solution to become U(z,t) at the aforementioned curve i n 

the transverse plane. Hence the complete wave solution 

has the form ^ 
2^ N(x,y,n) G(z,t,n) 
n 
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The dielectric slow wave structure to be discussed later 
only requires a match to U(z,t) at one point in the 
transverse plane, and i t w i l l be seen that the complete 
wave solution, which is given below, is slightly simpler: 

N(x,y) £ G(z,t,n) 
n 

Before discussing some of the properties of 
, i t is useful to determine the phase velocity of a wave 

in the structure. Examination of equations (57) and (58) 
shows that there does not exist a unique phase velocity but 
rather that each component in equation (57) has its own 
phase velocity. Hence 

CO O) f c n \ 

V . = A 1 = TTT7T (59) P h wr?n - R e m + 2m 
L | ' L 

Since the components of equation (57) are distinguished from 
one another by their phase velocities and not by their 
frequencies (the frequency being fixed in any given case), 
they are often called space harmonics. Note, however, that 
the harmonics exist only as a part of the wave and not as 
entities unto themselves. Fortunately i t is possible to 
have an interaction between one of the component waves and 
an electron beam. Consequently equation (59) is of 
considerable importance. 

y is a function of frequency, but not in an 
arbitrary manner. For the purposes of this discussion 
consider a lossless structure for which must be purely 
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real or purely imaginary corresponding to propagating 

and non-propagating waves respectively. The following 

h e u r i s t i c argument can be made to show that the two conditions 

are possible. The periodic nature of these sytems i s such 

as to cause re f l e c t i o n s of the wave. At certain frequencies 

these r e f l e c t i o n s w i l l add out of phase and propagation 

w i l l occur whereas at others they w i l l reinforce to 

r e s u l t i n r e f l e c t i o n of the power. The propagation or pass 

bands l i e between the attenuation or stop bands. 

If to i s considered to be a function of H^, i t can 

be shown that the function i s even and periodic with period 

2% provided that the structure i s symmetric (A symmetric 

structure i s one for which a reversal i n the d i r e c t i o n 

of the central axis produces no physical change). It 

follows from equation (58) that i f i s increased by 2%, 

the set of 0n's i s unchanged. Only the denumeration of 

the members of the set i s altered - each member having i t s 

subscript decreased by one. This change i n denumeration 

w i l l have no effect on the outcome of the determination of 

the constants i n the series expansion of the f i e l d function 

with the exception that the o r i g i n a l a n w i l l now be 

associated with 0 ,, In other words, the series solution 
n-1 

remains invariant under the stated transformation of the 

0n's which proves that the function i s periodic. 

That to i s an even function of can be seen by 

noting the consequences of reversing the flow of power 
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i n the structure„ If at the same time the d e f i n i t i o n of the 

positive z d i r e c t i o n i s not reversed, then the exponential 

function i n the series has the form 

j (<ot + 0 nz) 
e 

Hence i t can be seen that the change i n d i r e c t i o n of power 

flow can be accounted for i n the o r i g i n a l solution by-

changing the sign of the 0 n's. Thus, since - 0 n are both 

associated with the same frequency, the function must be 

even. 

As a result of these basic properties of periodic 

structures, i t follows that a t y p i c a l plot of (»> versus 

i s that of Figure 5, where &> i s normalized by /u-e. 

These plots are often referred to as dispersion curves. 

I t should be noted that some periodic structures have 

dispersion curves which are the inverse of those shown i n 

Figure 5. In other words, the curvature i s the reverse 

of that shown. However, the dispersion curves of the 

d i e l e c t r i c slow wave structure, which i s the periodic 

structure used i n t h i s study, are of the same shape as 

those shown i n Figure 5. 

Inspection of t h i s plot shows that L times the 

slope of the l i n e from the o r i g i n to any given point on one 

of the curves i s given by to J)xz L/ty which i s the normalized 

phase v e l o c i t y , V p ^ / 0 " The normalized group v e l o c i t y i s 

given by L times the slope of the curve since v = dw/d0 
where 0 ^'/L. 



Figure 5. Plot of w as a function of 

3,2 The D i e l e c t r i c S t r u c t u r e ^ 

For any given structure, the remaining problem 

i s to f i n d the functional relationship between to and M .̂ 

This i s usually a rather d i f f i c u l t problem resulting i n 

only an approximate answer. On exception, however, i s 

the case of the d i e l e c t r i c loaded slow wave structure for 

which a closed solution i s r e l a t i v e l y easy to obtain. This 

structure consists of a c y l i n d r i c a l metal waveguide loaded 

p e r i o d i c a l l y with s o l i d d i e l e c t r i c discs as shown i n Figure 

6. The d i e l e c t r i c discs are denoted by the shaded areas 

and the intervening areas denote a i r spaces. I t should be 

noted that the theory to be developed i s also v a l i d for 

the case where the a i r region i s f i l l e d with a d i e l e c t r i c 

d i f f e r e n t from that of the shaded region. 
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r=a 

< X / 
XX~X 

w 
1 

' / , k X / 

3 I f 5 

W/, 

z=0 note e~ = e e, 2 r 1 
e, = BQ for a i r 

section 
Figure 6. The d i e l e c t r i c structure 

The solution of Maxwell's equations for an 

mode i n c y l i n d r i c a l waveguide y i e l d s the following for the 

d i e l e c t r i c and a i r regions respectively: 

E z = J Q ( k r ) Â < + A 2e 

E = 29. j ( k r) r k v 2 l v A l e " A 2 e 

A xe * + A 2e * 

> (60) 

and 

E = 

E = 

Hp7 = 

J Q ( k r ) V 1 +B 2e 1 

^ J l ^ > 

j t o e l J (kr) i 

JP^z 

-30-, z j0,z 
> (61) 

-3P\z jp\z 
B l e + B 2 e 
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where 
fl2 ,2 ,2 

k = S^/a, where i s the f i r s t root 

of J Q ( x ) = 0 ( 6 2 ) 

v = — , the phase v e l o c i t y 

and A^, k^t , and are amplitude constants. 

Now according to Floquet's theorem, the f i e l d 

solutions for region (4) are given by those for region (2), 

which are expressed by equations (60), multiplied by e~^^„ 

The solutions for region (3) are related to those for 

region (l) i n the same way. To have a v a l i d solution, the 

sets of equations for regions (2) and (3) must s a t i s f y the 

required boundary conditions at z = 0, and the sets for 

regions (3) and (4) must s a t i s f y the same boundary 

conditions at z = p. This process results i n the following 

set of equations: 

V 1 A 1 " V 1 A 2 " V2 B1 + V2 B2 = 0 

e 2 A l + E2 A2 " e l B l ~ e l B 2 = 0 

(63) 

;j(2© -H 7) -3(2©^+^) -J2©, j2© 
V l e - V l A 2 e " V 2 B l e + V 2 B 2 e = 0 

j(2Q -V|/) -j(2© +y) -j2© j'2© 
e 2A 1e ^ .+ e 2

A 2 e ~ e l B l e ~ e l B 2 e 0 
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where 

20 x = 0 i P 

2© 2 = P 2 q 

F o r a u n i q u e s o l u t i o n o f t h e s e e q u a t i o n s t o e x i s t , i t i s 

n e c e s s a r y and s u f f i c i e n t t h a t t h e f o l l o w i n g d e t e r m i n a n t 

e q u a l z e r o : 

v-i e 

e 2 e 

j(202-V|/) 

j ( 2 9 2 - M ^ ) 

—v, 

—e -

-0(20.+ ^) 
~ v l e 

-j(20, + v(y) -J'20, 
£ 2 6 -e^e 

-e-

-j2© J20 
- v 2 e v 2 e 

3 20. 

E x p a n s i o n and s i m p l i f i c a t i o n o f e q u a t i o n (64) y i e l d s 

cos y = cos 29 1 cos 2© 2 - l/2 _ L + -2 
z 2 z x 

= 0 

(64) 

s i n 2©^ s i n 2© 2 

(65) 

where 
Z = i -

ev 

T h i s e q u a t i o n i s e x a c t l y t h e one sought s i n c e i t g i v e s a 

f u n c t i o n a l r e l a t i o n s h i p between o> and and c a n be u s e d i n 

any s p e c i f i c case t o y i e l d a d i s p e r s i o n c u r v e . I t i s o f t e n 

c o n v e n i e n t t o p l o t V v e r s u s a/A- r a t h e r t h a n a>, where X i s 

t h e f r e e space w a v e l e n g t h . S i n c e co and A a r e i n v e r s e l y 
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related, the new dispersion curves have the same form as 

those shown i n Figure 5. The convenience of the use of 

a/A i s due to the fact that i t i s a dimensionless factor. 

A dispersion curve with a/A as the dependent variable becomes 

frequency dependent only when the radius of the structure 

i s chosen. 

It i s also useful to have relations between the 

amplitude c o e f f i c i e n t s ; hence they w i l l now be derived. To 

f i n d expressions r e l a t i n g A-̂ , A 2, and to B 2 , the f i r s t 

three equations of the set (63) are rearranged so that 

i s expressed in terms of the other constants. Division of 

each equation by B 2 yields 

-v. 

-e 

j(2© - V ) -3(2© + VK) -j2© 
v l e " v l e - v 2 e 

The solution of these equations i s 

cos 2©, + 2T~ s i n 2©, 
A F 1 O L 

_ i _ i i 
B 2 = e 2 j-lVf/- 2 © ^ " ! 

e - cos ^©~ - 2; 

- e 

B, 

B, 

3 , 

-j(2© 2 + V|/) 

J20, 
-v2e 

(66) 

(67) 

sin 2©, 

B, 

Z l J' ( 2 02 - V ( y ) 

cos 29, - j-z— s i n 2©, - e 
e 2 1 

!l e3V|/. 
2 

- cos 2Q0 - 2~rT~ s i n 29, 

(68) 
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j ( y+2Q 1) Z 2 

g e + j j j — s i n 2©2 _ c o s 20^ 

= 0(^-2©,) 1 Z l ( 6 9 ) 

e - cos 2©^ - sin 2© 0 

Other relations such as k^/k^, A^/B^, e t c , could be obtained 

but those above are s u f f i c i e n t for this t h e s i s . 

Another important expression concerning d i e l e c t r i c 

structures i s that r e l a t i n g power flow to f i e l d strengths. 

I t might be thought that the t o t a l power flow could be 

computed by adding together the contributions due to each 

space harmonic, but th i s procedure i s not v a l i d since 

the space harmonics do not have power flow associated with 

them. To establish the truth of this statement, assume that 

the opposite i s v a l i d and investigate the consequences of 

the assumption. To form the Poynting vector the i n f i n i t e 

series representing the transverse E and H f i e l d s must be 

multiplied together. For the assumption to be true, the 

cross terms a r i s i n g from th i s m u l t i p l i c a t i o n must be of 

no consequence when the power flow integral i s evaluated. 

However the cross terms do contribute to the power flow. 

This i s not surprising since a l l the spare harmonics have 

the same frequency. Thus the assumption i s i n v a l i d and 

the o r i g i n a l statement i s v a l i d . The power calculation 

using the i n f i n i t e series leads to a double sum which i s 

laborious to evaluate. 

Again the problem i s simplified i n the d i e l e c t r i c 

case because the exact f i e l d solution i s known. As a 



r e s u l t of Poynting's theorem, the following integral gives 

the power flow across any specified cross-sectional area 

i n the structure: 

2TC a 

P = E H i r p r dr d^ (70) 

If the cross-section i s i n the a i r region, equations (61) 

must be used. With the use of a general property of 

Bessel functions given by ( 7 l ) , the power flow given by 

(70) reduces to r e l a t i o n (72): 
a 

J 1
2 ( k r ) r dr = ~ J ^ k a ) (71) 

P = 2TI 
- e 2 c 2 J 2(ka) 0 ^ 0 

(ka) 2 X 
1-

s l 
2 

X 
\2nj 

a , 

2 
B 1 2 (72) 

where 

a - radius of structure 

A - free space wavelength 

c - v e l o c i t y of l i g h t i n vacuo 
= 3(10°) m/ sec , 

Z - free space wave impedance =/— 
0 \/eo 

S 1= 2,4048 

Before the Pierce theory can be applied to the 

d i e l e c t r i c structure, the &n's i n equation (57) must be 



known. In th i s case the v a r i a t i o n of importance i s that 

of the central E f i e l d . Hence define 

U(z,t) = E (0,0,z,t) 
z 

where U(z,t) i s .given by equation (57). Therefore, 

equations (73) and (61) y i e l d 

(73) 

CO 

n =-oo 
a e n 

• 2itnz 
1 p+q. 

e P + q - [ B e + B 2e l 

— e 
H^z 
p+q A i e A 2e 

for the a i r region 

(74) 

for the d i e l e c t r i c 
/ region 

where 

= P(z) 

Vj^z 
F(z) = E (0,0,z,0)e P + C 1 

_j2fi:nz 
Note that the functions e P + Q t form a complete orthogonal 

set; hence F(z) i s expressed exactly by the series i n 

equation (74). Thus E (0,0,z,0) must be expressed exactly 
z 

-3 E (0,0,z,0) = F(z)e p + q 

z 

GO 
-3 a e n 

p+q 

n =-00 



- a 
form a complete which means that the functions e \ $+<l 

s e t 0 Since the radius of the structure i s constant, the 

functional dependence of the longitudinal E f i e l d of the 

space harmonics on the transverse coordinates i s given by-

one of the Bessel functions - i n this case, the z e r o ^ 

order Bessel function,, Hence 

+2mx 

E z (r,^,z,t) = J o ( k r ) e J a ) t anc- p+q 

n --oo 

It follows d i r e c t l y from equation (74) that the 

a n's are given by the standard c o e f f i c i e n t integral for 
the Fourier series: 

P+<1 .2Ttnz 

a = —;— n p+q F(z)e P + ( l ds (75) 
'0 

The solution of equation (75) can be simplified somewhat 

since, the contribution to the integral from the d i e l e c t r i c 

region i s negligible compared to that from the a i r region 

provided e 1: 

37 

. 2rcnz 

a = —;— n p+q F(z)e P + < 1 d 5 (76) 
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4. APPLICATION OP THE PIERCE THEORY TO THE DIELECTRIC 
LOADED SLO¥ ¥AVE STRUCTURE 

It can now be seen that given p/a, q/a, a/A, 

Ĥ , and as data, equations (69) and (72) y i e l d 

2 2 1* 2 B, B, a 1 N (l-M 2| (77) 

where 

N = 
2%3 e 2 c 2 J 2(ka) Z o 1 o_ 

(ka) 2 

M = 

=7.68 (lO~ 3) ohms 1 

j ) Z 
> - cos 2© 2 -j-jp sin 2© 2 

j (V|/ + 2© ) Z7 
• + ^ Z ~ s i n 2 € >2 " C 0 S 2 ° ' 

Equations (61), (69), and (76) y i e l d |a Q| i n terms of 

a = - j B , 
n J j 

e 
v[/ + 2nit ~Px(p+q) p+q. 

-1 
_V 4 2n7t - Q1 (p+q) 

j + 2nix + P1(p+q) 
+ M-

- J l _ 

p+q _± 

+ 2nn + B (p+q) 
(78) 

These results can then be used i n conjunction with equation 
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(37) which reduces to the following i n this application: 

K = — 5 — = U l
 a 5 (79) 

20^ P 2( y + 2nii) P 

where the electron beam couples to the n^*1 harmonic. In 

practice the harmonic of interest i s the fundamental 

forward wave. Since 0 Q, the phase constant of the 

fundamental, i s related d i r e c t l y to , the numerical 

evaluation of K i s straight forward. Direct application 

of equations (26) and (43) furnishes the straight l i n e 

approximation to the gain. Note that the f i e l d solution 

for the s o l i d disc structure i s being used as an approximation 

to the f i e l d solution for the holed disc structure. This 

approximation i s necessary since the f i e l d solution for 

the l a t t e r structure i s f a r too complicated for repeated 
• -, (6) numerical use. 

A program to perform the calculation of the beam 

coupling impedance, K, was written for use with the ALWAC 

III electronic computer. However, before the program could 

be used i n t e l l i g e n t l y , a useful correlation between the gain-

bandwidth properties and the design parameters had to be found. 

The design parameters which can be varied are p/a, q/a, and 

A„ The f i r s t of these variables to be fixed was e which was 
r 

done with the aid of the computational results shown i n the 

graphs below. The f i r s t curves show how the beam coupling 

impedance and the required beam v e l o c i t y vary with when 
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p/q and ̂ —^- are f i x e d o The value of a/A, used i n the a 
calculations i s that defined on page 44 . The scatter of 

the points defining the K curve i s due to the error i n the 

human judgement required to choose the values of a/A. used. 

It can be seen that both K and v p n / c vary so as 

to produce greater gain at high values of since the 

gain parameter varies d i r e c t l y with K and inversely with 

v ^ for a fixed beam current. Figure 8, which gives the 

va r i a t i o n i n the gain per section as a function of 

confirms the above prediction. This plot (Figure 8) 
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Figure 8. The l i n e a r gain per section as a function 
of e for fixed p/q and p+q 

a 

shows that the number of discs required for any desired 

overall gain decreases as e r for the discs increases. 

Note that the gain per section referred to here and i n 

the succeeding development i s the linear approximation 

for an assumed beam current of 14 milliamperes. Since 

the cost of the discs i s a s i g n i f i c a n t f r a c t i o n of the 

complete manufacturing cost of this type of t r a v e l l i n g 

wave tube, i t i s obviously desirable that a d i e l e c t r i c 

with large p e r m i t t i v i t y be used. Fortunately, a low 

loss d i e l e c t r i c ( t i t a n i a ) with a r e l a t i v e p e r m i t t i v i t y 

of approximately 93.5 i s available and hence this value 

i s used i n the work to follow. 

Further correlation between the remaining design 





f i x e d v a l u e s o f p/q 
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parameters and the t r a v e l l i n g -wave tube properties arose 

from a set of curves derived by Mr. Englefield which are 

shown i n Figures 9 and 10. To arrive at these curves i t 

i s necessary to place a sp e c i f i c condition on the value of 

a/A. used, since, for any dispersion curve, an i n f i n i t e 

number of points can be chosen. 

Figure 11. Typical dispersion curve showing 
the useful value of a/A 

The condition used for this investigation i s 

shown graphically i n Figure 11, where a/AQ, the point i n 

question,denotes the value of a/A corresponding to the 

center of the l i n e a r section of the dispersion curve for 

the fundamental wave of the f i r s t passband. This i s the 

point of greatest slope of the dispersion curve. Inspection 

of a set of such curves shows that this i s also the point 

where the difference between the phase and group v e l o c i t i e s 

i s a minimum, since 
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2TCCL (80) v ph a 

v 2ncL d(A (81) g a dt{7 

It, i s desirable to pick the point where the above 

difference i s a minimum because, as a result of equation 

(54), t h i s requirement yi e l d s a good bandwidth condition,, 

This fact i s most e a s i l y seen graphically and i s i l l u s t r a t e d 

i n Figure 12, where, for a given Av the bandwidth 

depends d i r e c t l y upon the extent to which the dispersion 

curve and the constant phase v e l o c i t y l i n e are coincident. 

Figures 9 and 10 y i e l d , upon s p e c i f i c a t i o n of 

a/AQ, to, and) p/q, s u f f i c i e n t information to f i x the 

dimensions of a structure and to enable, given the beam 

current, the gain-bandwidth properties to be calculated,, 

To be s p e c i f i c , e i s fixed; a/A , fa>, and p/q are 
v ° specified; p+-^- and p ^ are read from the graphs; and i s a c 

calculated using equation (80)„ This procedure was used to 

provide data for calculations of the gain parameter and the 

l i n e a r gain per section for a set a/A^ values. A number of 

calculations corresponding to s p e c i f i c values of p/q were 

performed for each choice of aA Q. Attempts were then made 

to f i n d correlation between results obtained and various 

combinations of design parameters with the result that 

useful curves were obtained using q and q/a as independent 

variables. If the variable i s q/a, the curves are v a l i d 

for any frequency; whereas i f the variable i s q, the curves 
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a/X 

are v a l i d for the given frequency only. The reason for 

this frequency dependence i s that the choice of an operating 

frequency only becomes necessary when a i s being computed 

from a/A.̂ ,, Although a appears twice i n the calculation 

previously described, i t does i n such a way that i t cancels 

out when K i s evaluated. Thus to transform the independent 

variable from q/a to q, an operating frequency must be 

chosen. The frequency used for this work i s 35 Kmc. 

The results are shown i n Figures 13 to 17. Note 

that the points do not define a d e f i n i t e set of curves. The 

error which gives r i s e to t h i s indeterminancy i s due to the 

d i f f i c u l t y i n cor r e c t l y choosing a/AQ for any given dispersion 

curve. In a number of cases, comparative choices made by 

several people of a/A. for a given dispersion curve led to 
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5-10% discrepancies. Although the curves are somewhat inexact, 

the information contained i n them i s s u f f i c i e n t l y precise to 

enable one to rapidly choose a set of parameters that produce 

results which l i e within a preselected range. Thus with a l l 

of the i n i t i a l t r i a l and error design attempts eliminated, 

one can proceed to more accurate and useful calculations with 

parameters which are known to give reasonably desirable 

r e s u l t s . 

To i l l u s t r a t e the accuracy which can be expected 

from the design curves, a s p e c i f i c application w i l l be given. 

If a structure i s to be characterized by q = 0.008 inches and 

p/q = 1.33, Figures 13,14, and 15 give a/AQ = 0.44 and the 

information l i s t e d i n Table 1. Since e , A, and I are fixed and 
r o 

p/a, q/a, and can be calculated from the data available 

from the curves, a computation can be made to check the informa­

t i o n given by the design curves. This has been done and the 
results are given i n Table 1. 

Property 
Design 
Curve 
Results 

Computation 
Check 

% 
Discrepancy 

. V 
o 

11.5 kv 11.5 kv 

K 5 ohms 5.63 ohms 11.2 

C 11.8 (10~ 3) 11.98 (10" 3) 1.5 

G 
L 0.145 d b 

sec 0.15 db 3.3 

Table 1. Approximate computation check of 
a t y p i c a l design curve r e s u l t 
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e
r = 93.5 

I = 14 ma o 
A = 0857 cm 

q (thousandths of an inch) 

Figure 14. Graph showing C as a function of q for fixed values 
of a/A and V ' o o 
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q (thousandths , of an inch) 
Figure 15. Graph showing G/L as a function of 

q for fixed values of a/AQ and p/q 
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Objections to the validity, of the above comparison 

may be put forth since the data used for the computatipnal 

check may not be exactly consistent with r e a l i t y , i . e , the 

value of a/A. used may not be compatible with the values of 

Property 
Design 
Curve 
Results 

Exact 
Computation 

Check 
% 

Discrepancy 

a/A. 
o 

0.44 0.44 0 
V 
0 

11.5 kv 11.3 kv 1.8 

K 5 ohms 5.552 ohms 9.9 

C 11.8 (10~ 3) 11.98 (10~ 3) 1.5 

G 
L 0.145 d b 

sec 0.152 d b 

sec 4.6 

Table 2, Exact computation check of a 
ty p i c a l design curve result 

p/a and q/a used. Such an incompatibility i s due to the 

inherent inaccuracies of the curves and to error i n reading 

data from the curves. A more v a l i d comparison results i f 

s u f f i c i e n t data i s chosen from the i n i t i a l set, given on 

page 47, to produce a unique dispersion curve. Thus the 

data for the numerical check i s f u l l y consistent with 

r e a l i t y . Such a process has been carried out for a 

dispersion curve fixed by ̂  = 0.072, -̂ = 0.054, and e = 93.5 
CJ[ ct X* 

The results are shown i n Table 2. 

The inaccuracies i n the results due to the errors 
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i n choosing a/A^ are not as disturbing as they might appear. 

Even i f perfect judgement were possible and the points 

p e r f e c t l y defined a set of Curves, the curves would s t i l l 

be i n error due to the approximations used i n producing 

expressions for the coupling impedance, the gain parameter, 

and the gain. For instance, the c i r c u i t loss and space 

charge effects were ignored, A more serious approximation 

was the use of the f i e l d solution for a s o l i d disc structure. 

An approximation solution for the holed disc 
(6) 

structure was proposed by R.-Shersby-Harvis et a l . 

Their approach was to replace the actual structure by the 

rough equivalent shown i n Figure 18, The central cylinder 

(0= r«= a) i s f i l l e d with a i r and represents the effect of 

the holes. The outer c y l i n d r i c a l region (a<r-=b) i s f i l l e d 

with a s o l i d anisotropic d i e l e c t r i c whose p e r m i t t i v i t i e s are 

chosen so as to approximate the actual structure. Analysis 

of t h i s structure y i e l d s , for phase v e l o c i t i e s less than c, 
an I Q ( k r ) f i e l d v a r i a t i o n i n the central cylinder where I Q ( k r ) 

th 
i s the zero order Bessel function for an 

zzzzz z z z z z z z : z z z z z z z z z z z 

Figure 18. Anisotropic structure of 
R.-Shersby-Harvie et a l 
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imaginary argument0 This type of E f i e l d dependence upon 
z 

r i s undesirable for s o l i d beam t r a v e l l i n g wave tubes since, 

for maximum gain, the magnitude of the E f i e l d should be 
z 

maximum at the center of the structure. This condition i s 

not produced by an I o ( k r ) function which increases monotonically 

with r. These comments again accentuate the main purpose of 

the results herein: to eliminate the i n i t i a l exploratory 

work i n the design of t r a v e l l i n g wave tubes using d i e l e c t r i c 

loaded slow wave structures. 
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5. CONCLUSIONS 

An investigation has been carried out to determine 

the properties of d i e l e c t r i c loaded slow wave structures 

pertinent to t h e i r use i n a t r a v e l l i n g wave tube 0 The 

r e s u l t of the study was the evolution of a set of design 

curves which relate to structure dimensions such properties 

as the coupling impedance, the gain parameter, and the 

l i n e a r gain per section for small signals. 

The simple Pierce Theory for the t r a v e l l i n g wave 

tube was used to perform the investigation. This theory 

i s somewhat inaccurate due to the assumptions made i n i t s 

development. Possibly the most important omission was that 

of neglecting the effects of the space charge of the beam. 

It can be shown that the theoretical results produced when 

space charge effects are included do not d i f f e r i n form from 

those obtained i n t h i s thesis. However actual 

numerical results for a given slow wave structure and beam 

current are d i f f e r e n t . The effects of c i r c u i t loss were 

also neglected. 

The use of the wave solution for the s o l i d disc 

structure gave r i s e to another source of error since, i n 

practice, holes must be placed i n the discs to permit 

electron flow. F i n a l l y the f a l l i b i l i t y of human judgement 

led to errors i n the choice of a /A .^ . However,the aggregate 

of these errors does not damage the usefulness of the design 



curves as instruments for i n i t i a l design. 

If further work were to be conducted, i t would 

be useful to f i n d what conditions exist to minimize the 

difference between the phase and group v e l o c i t i e s at the 

operating point. In t h i s way, one of the conditions for 

large bandwidths would be s a t i s f i e d . The effect of the 

holes i n the discs i s also worthy of further study. The 

l a t t e r problem which i s of great interest i s also a 

d i f f i c u l t one i f a concise and manageable solution 

i s d e s i r e d / 6 ) ' ^ 
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