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ABSTRACT

A general approach to the treatment of electrical machine
systems is developed. Tensor concepts are adopted; however,
metrical ideés are avoided in favour of Hamilton's Principle-.

Using Lie derivatives and choosing a holonomic reference system,
the equations fesulting are general, and thus‘apply to any physical
system of machines. These eqﬁations are Faraday's Law for the
electrical portion and a gradient eéuation for the mechqnical
portion,

Transformation characteristics, which are found to be of two
independent types, called the v-type and the i-type,are investi-
gated., This leads to tensor character and invariénce properties
associated with the transformations.:

The equations of small oscillation, which Qre baéed on the
general equations of motion obtained in the thes;é, are derived for
any physical system.

In the final chapter two examples of applidation are given;

the power selsyn system, and the synchronous machine. -
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THE APPLICATION OF LIE DERIVATIVES IN LAGRANGIAN MECHANICS FOR

THE DEVELOPMENT OF A GENERAL HOLONOMIC THEORY OF ELECTRIC MACHINES

1. INTRODUCTION

There still remain . many important unsolved problems in
‘'the theory of electric machines and power systems; the analysis
of machine and power system stability, the optimal control
criteria, and especially those analyses involving non-linear
effects due to saturation in the magnetic circuits or due to
crosé—product terms of currents or of current and speed.

An extension of static‘ciiéuit“theofy to rotating
machinery by G. Kronﬁnemployiné matri;‘and tensor analysis,
provides a means for a general analysis approach, This
extension deals principally with the addition of the rotating
coil as a generalized inductive éircﬁit element. However,

the inclusion of mechanical motion in an electrical circuit

.94
\4.

introduces an ﬁnpreportional ambgnt“of difficulty; mainly
becauée of the non-linearity resulting.

Kron's adoption of tensors helped because of the
generalization and unification achie#ed thereby. Even though
his method of attack was complicated by the introduction of
ﬁon%holonomiticity, it allowed him to deal with a genefal class
of problems in a set manner, It appeared as though an extension
to power system dynamics would readily follow as well aé an
inclusion of non-linearities caused by saturation and‘hysteresiso
This, however, did not occur, |

The main barrier to further development lies in the .



concept of non-holonomiticity and its implications. According
to Kron, Faraday's Law is applicable solely to slip ring
machines£6)For commutator machines an additional term enters

" because of the independence of the reference frame and coil
velocities. This also implies that Lagrange's equations are
applicable only for these special cases (slip-ring frames), the
more general Boltzmann-Hamel equations being needed for
commutator machines. This is a very limiting restriction for
it means that neither Lagrangian nor Hamiltonian mechanics

can be applied directly to stability or optimization problems
involving other than slip ring machines.

In the following chapter, Kron's equations are initially
employed to obtain the equations of motion in a slip-ring
frame. By defining a transformation from this frame to any
general physical frame, it is shown that the equations of
motion in the latter remain of the holonomic form. This is
followed by a derivation of the general equations of motion
using Hamilton's Principle. The generalized coordinates
selected are readily seen to be independent proving that any
physical machine is a holonomic electro-mechanical system.

In the succeeding chapters, loop equations in machine
analysis, Lie derivative concepts of transformation theory, the
concept of tensors, and the hunting equations are considered.

Examples of application are included in the final chapter.



2. THE BASIC MACHINE EQUATIONS FOR ANY PHYSICAL COORDINATE
' SYSTEM ’

2.1 The Transformation of the Machine Equations From a Slip-
Ring Coordinate System to Any General Physical Coordinate

System

*

In the general case Kron obtained as the equations of
motion for an electrical machine, a variation of the Boltzmann-

(9)

Hamel equation,
. di o+
ey =Ry, i +a,r°(ﬁ + rxg,‘« i%*i® (2-1)
where

Ryx 1is the resistance and inertial damping tensor

8 ye 1s the inductance and inertia tensor

oc B' o
n-up;t: C o C g 2 ow a[ﬁ'C«.‘]

. is the Christofel Symbol in a non-Riemannian space
and C :' , the coordinate transformation matrix
from a holonomic frame to a general frame of

reference.

The last term of (2-1) takes into consideration such effects as
the rotation of conductors and coordinate reference frames.

The mechanical equations are-included in (2-1).

Consider the case of a coil in which a voltage is induced
by the influence of an excitation applied to the "excitation™

coil as shown in Fig. 2A. Let m be the induction coil (coil in



which a voltage is induced) and n the excitation coil. Also
let po™, po", and po, respectively be, the speed of the m-coil
commutator axis, the speed of the n-coil commutator aXis, and
the speed of the rotor, all being independent. It is proposed
to determine the voltage in the m—coil by a transformation from

the a—f system, which is fixed to the roﬁor.

Fig., 2A The Determination of the Voltage in an m-Coil by a
Transformation From a Fixed a—B System, Fixed on the
Rotor

The instantanepus.excitation effect in the m-coil due to
the n—coil is independent of the coordina@e frame to which the
n—-coil is referred. It‘depends only on %ﬁe angular position and
angular speed of the excitation axis (n-coil commutator axis).
This implies that the excitation coil can be assumed to be

situated in an instantaneous holonomic reference frame.



The equations of motion in

holonomic.) are

P di*
ex = R‘gl“ + a‘qa

the o-B frame, which is

+ @B, ixi® (2-2)

From this the voltage equations in the « and B axes are

.t di
eS:RStl +L5’°dt +
in
=R$h1 +LS“H +
(s

since the voltage in either axis is

. oL .
56 P 1"+ kBT,

= arﬁ) o (2-3)

due to the exéitat.ion of
(1)

the n-coil. Applying Yu's general inductance formula for

sinusoidal flux variation, that is

Lig = If; , cos Of’cos o' + Lajgsin 0% sin 0% (2-4)

gives

LOC-V'I

L&  _cos O cos 8" + Lignsin © sin "
o« [

‘Lpn = Lign cos(6+90%)cos 0" + L‘lgnsin(9+900)sin ",

Assuming = Ddqpn= Ldpn= Ly4 and IAqn= IAapn= Lgq, from (2-4)

. N
o= Bl

+ (=Lg sin
+ (<L g cos
eg = Rpni” + (-L g sin

+ (=L Jcos

+ (Lg cos 6 cos 6” + Lq sin 6 sin 6")

ain
dt

9 cos 8" + Lgq cos 0 sin 6")p6 i"

0 sin 8" + Lq sin 6 cos 6")pe"i"
n . ndi”
© cos ©™+ Lgq cos © sin © )_—dt

6 cos ©" - Lgq sin 6 sin 6")pe i"

+ (Lasin © sin 6"+ Lg cos © cos 6™)peni™

(2-5)



The voltage in the m-coil can be obtained from the

transformation

= [cos(6™- 8), sin (8™~ 0)] "e =
{ .Lé B
Using (2=5), this gives |

Cm = (Rcu: + R)ﬁ)im*’ (Ld cos o" cos Q“.m“‘- L‘ sin OMSin 0")3:

+ (-Lg sin @™ cos 8™ + Lq cos 6" sin 0" )po i"

+ (-Lg cos 8™ sin 8" + Lq sin @ Mcos 87)po"i" .
This is simply

Al
em=Bmni” + Lmngi 36——'“9 mni " po + g‘;'“"l" o".

If ©™is considered as the angle of the induction coil,
pé™  the speed of the space”in which thié coii is tmmersed this
becomes the holonomic equation. of motion.
dtv -

em= RMni" +

This result suggests the possibility of associating two
mechanical variables with each coily: thereby reducing the
genefal machine eQuations to e holonomic form. The consequence
of this would be a simplification of the tedious work,that was
previously carried out in the form of transformations from‘
primitive machines. Indeed, the basic primitive machines could
be discarded or replaced by a more useful model as pointed out
by Dr. Yu.

A similar transformation of the torque eQuation‘to general



coordinates will now be carried out. First, consider the

torque,équation in the a-f frame of Fig. 2A. From (2-3)

[0B,¥]1i%i® = [aB,u] i*iP

where o and B refer to electrical coordinates and u refers to
a mechanical coordinate. Signifying this term by -t,, the

negative of the electromagnetic torque along the u axis;

aLoLp S )

iTi¥ .
x Y

tuz

ol
Q/

In most cases it is desired to find the torque associated with

the rotor. Thus xY= 0 in any reference frame and

"D—l aL"‘P“’
—2 ae o

Expanding the two summations in t for Fig. 2A

_ l awa og cx a[-n zx =3 B'L. B
= E ( + 2 :5——’ i® + ?;fl i®)
(2-6)
since
_ s p( O L aLpu. _ pOLlixp
L“B_Lp“a'nd'll(ae 5 )'—2116_6 .
Resolving both i™and i™ (Fig. 24) into a—p components
gives
i a'"cos(g"‘_- 8) , cos(e” - 9) im |
=’ o (2-7)°
[i P Lsin(@"‘- 8) , sin(e" - 9) in




The inductances and their derivatives are

L= Lg cos™ 0 + Lq_ sin®0
Lxp = ~Lq cos © sin © + Lq sin O cos O

Lpp = La sin®6 + Lqcos®s
Olap _ ~Lg(cos® @ — sin®0) + L‘L(cos.'O - sin® Q)

a—‘:?".:r-.z(L,, sin © cos © = Lq cos © sin 9)
Seo = 2(-La cos 8 sin 8 + Lq sin © cos ©)

The torque t in the a-—f frame is

t = (-Lg cos © sin & + L sin © cos @) i®i%
+(-Lg cos 20 + Lq cos 20) i*iP?

+(Lg sin 26 ~ Lgq sin 20) iPiP

Using the tr#nsformation equations (2-7)

i*i%= cos® (9 - 8™)i™i"+ 2 cos(8 - 6™ cos(O"- 0)i™i"
+ cos® (8 - 6") i"i®
i*if = cos(@v - 8™ sin(6™ - 6)i™i™ + (cos(0™ - 6)sin(6"- 8)
+ cos(0™ = @)sin(6™ - 0) ) i™i" +
+ cos(8" - @)sin(e” - @) i™i"
iPi*= sin®* (0™ - 8)i™i™ + 2‘,sin(0"'-— 8)sin(0™ - 8)i™i"

+ sin®*(e" - @)irit

Hence



t = Lal sin O cos © — Lgq sin © cos ©)( i?i®- i~i*)
+ (cos®0 - 'sin%0) (Lg - Lq‘) i*i®
But
iPiP- i%*i* = (sin®(@™ - B8) = cos®(6™ - 0))i™i™

—-2(cos(26 - 8™ - 6"))i™i" + (sin®(6" - 6) - cos?®(0" - 9))itin
Thus

t = (Lag - Lq) (31828 (3#3P _ jxj®) _ oo 20(i%i®))

2.

= (L - Lg) anﬁ (=cos2(6™ = 0)i™i™ — 2cos(20-6™-g")imin

- cos 2(0" - 9)i"i") - 9°S—229 (sin 2(6™- é) imim 4
2 sin (6™ + 0" - 26)i™i" + sin 2(0" - 6) i"i")
Expanding the double anglei’ arguments and collecting tell'ms resuifs
in
t = (Lq - Lq) [ sin6 ™cos6™i™i" + (sin@™cosO” + cos0™ sin6™)
x i™i" + sinO"™ cosO " inin]

o : oL ' :
= Gpyp iMi" wherg Gmn = s-em"',‘ (2-8)

Two important results are observed: 1) The Christofel
transformation used by Kron was no more than a mafher’natical
tooi for selectihg 6™ for differentiation, 2) Gmn 1is simply
the coefficient of coil angular speed mein the inductive

impedance matrix.
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2.2 The Excitation and Induction Angles of a Coil Winding

A coil is an array of interconnected wires wound in
some space, which can be rotating with respect to a‘chosén-
“inertial frame. A coil winding consists of the coil and the
commutator brushes from which effects are observed or
introduced. A slip ring machine can be regarded as a special case
Qccurring when the angular speed of the commutator brushes is
equal to the angular speed of the rotor.

Consider a rotor with excitations applied directly to
its!coils (i.e., applied through slip rings). This sets ué a .
flux pattern and in particular a fhandy*}threading the i-th
coil winding, the rotor being at standstill. y* is the
angular position of the i-th coil winding commutator axes with
respect to a fixed reference. yi is allowed to rotate over the
entire rotor (Fig. 2B). Oi is the reference angle of the rotor

~ and an the rotor speed.

REFERENCE REEERENCE;>\

(a) Rotor at Standstill (b) Virtual Rotation

Fig. 2B Incremental Flux Changes
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Let a virtual »rotation be given to the rotor due to a
virtual angular velocity acting for dt seconds. Since the
excitations are connected directly to the rotor, the flux
pattern rotates by péo 4t and the flux vector found at y"' for
the still rotor will now be.found at (y‘i' + qépgidt); q“; =1,
Moreover, the flux measured at the latter point tr‘anh’s'formed tb the

coordinate system given by

SJ.

651(s* = nypetdt) © (2-9)

l

where st = y++ qipgidt (2-10)

3
will be equai ‘to the flux at y in the still machine since

sToglyt (2-11)

REFERENCE FRAME

REFERENCE FRAME FOR X SYSTEM !

FOR \X BYSTEM = —

\ -7 Y

s*=gly*

Fig. 2C Virtual Rotation

Denoting (33_ as the flux in the moving machine

BLy* + (nipet)at) = @iy} ot (2-12)



12

From (2-9), the coordinate transformation,

- z T ‘-. ' i
A =%‘}Ss“x-= bilay - gagz (N3 peMat
i, 4 L. I
= 8L Ay = 5i87= 57} (2-13)
and thus-
gyt + (q‘;‘po‘)dt} = O4y™} ‘ | (2-14)

Taking a linear approximation to the Taylor expansion of the

left hand side

B4y + 3tinire e = 0,1y ) (2-15)

The incremental change in the observed flux due to rotor

rotation is thus

M

F Q™ - 0D = - 22t pehiat (2-16)

which is the Lie differential of E&ﬁy%} over rr%POs.(ll’l2)

The coordinate system{f is dragged along by the commutator

system i under the point transformation

st=yd4 (nipetat (2-17)

By writing (2-12) as
M . - . o s
Qiiy*l = Qv*- (r\’g pe°)dt}

8

this is also equal to

8y “}- oty ™D) = - §Tulq}potat
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the negative of the Lie differential of ®;over vlipgﬁo
The flux will similarly be caused to rotate if the
rotor is stationary and the axes of gxéifétion are allowed to
rotate. Using standard notation this"contribution is
Mk K
" , Qiv*} - Ofy“}
:I.@j,{y } = lim ( dt )
pY*

dt =0

- - %%L oy b
00
)

§
y‘-: py * - o (2918)
Besides angles the flux is a function of current. As a

consequence ,the sum of the time and Lie variations must be

balanced by current variations. That is

i&{yu9in} +':£a;{yk’il} _,_:Lai{yu?ial, _

dt py* s per '
"M . ‘_ .
=§)ifgi . _' (2-19)
Thus N | | |
gty ;
a8: : ait  d®iayd i niao
B-(3%| )43 dhig ew
e : ykygk .
R dnl ‘ ;. d s H dgq‘ _
- SR g?f*di * %%i Wi o (e2)
This can also be written as
0  O@sdit . . |
dt = 9itav + <§§§°~ *f,%,e?*) ° ‘ (2-22)

The last term,; due to the speed of the space in which
the i-th coil is wound, involves differentiation with respect -

to the i=-th commutator axis angle only and is independent of all
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commutator axes speeds. It has the characteristics of an

inductive type of volj;a’éec The commutator axisvangle yi‘used
i
in this sense will be referred to as the induction angle of the

i-=th coil winding and will be relabelled x* in any equations

in which it occurs. The contribution - gf, ‘a,;, can then be
n;ee
written

o3

a

0Q.: A Bx* A i
3

L+ axj_px"', where px“'”; T = N (2-23)

d

The second term on the right hand side of (2-22) involves
differentiation over all.commutater axes angles and depends on
commutator axes angular speeds. It is independent of all coil
speeds. "y*" used in this sense will be referred to as the
excitation angle of the i-th coil winding since differentiation
with respect to it gives rise to the angular speed of the
excitation aPplied to the i'th coil winding, "yi" will not be
relabeiled under these conditions,

Using (2-23), equation (2-22) can be written in a chain

rule form

dd: 90:di  d@idyd | O0;6x ;
at - ditat T dyddc T Sxiat (2-24)

We shall now apply the above results to Yu's formula,(l7’18)

which is of basic importance in machine analysis. In Fig. 2D
let the m-coil be wound in a space with angular speed pO°° If
the n coil is excited the flux in the m-coil is given by

Orn= Lepni” = (Idmncos yM™cos y" + Limpsin y™sin yM")i®

(2-25)
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REIERENCE

m-coIL

AN n-CoOIL

Fig. 2D Two General Machine Coil Windings

where y™and y " are the commutator axis angles of the m and n-

coils respectively. From (2-21)

d Qs o
== (l&,,.cos y"cos y" + La,,sin y "sin y") 4di
at , y y "M | y Yy it

+ (-L&,.cos y"sin y" + LYy,sin yMcos y") %%T i”

+ (f-L&mnSin yrr'°COS yn + mmncos ym‘Sin~yn)('\g‘g_i )iﬁ

(2-26)

By the previous discussion, y "is the excitation angle of the
n-coil and y ™ the induction angle of the m-coil, which is

denoted by x Mrather than y™, (2-25) and (2-26) then become

- Il o) m - . n B
@.= Linpi" = (Lﬁﬁncos xTcos y" + La,,,sin x Msin y")i"

(2-27)
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a0, - 90.,.4i aCD iy" . 9@ mdo‘
dt alndi +3_y""‘21yt_+ 5 X\ gg ) (2-28)

As a special case the nﬁéoil can coincide with the m-coil, y"
becoming y ™which is numerically equal to x™ However, the

m
operators Z%T %%;mand gi é?—hare equal only for a slip ring

machine.
From (2-23) for a number of coil windings

fxm m d0%
xT= gr T 1l a (2-29)

a.

m
Here %ﬁ; is the speed of the coil comprising the m-th coil

{ .
winding and %%f that of the j-th space. The quantity

connecting these two speeds will be called the induction angle

incidence matrix. For the example of Fig., 2E it is given by

I px®] 1 o] [pe® 1 o
pxs. 1 ol |po” ’ (q) B 1 0
px°© B 10 1 0 1

%_pr_ K 1] ?p 1

oh o]
(g = | 1 (n)y =0
0 1
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\REFERENCE

Fig. 2E The Induction Angle

2.3 The Lagrangian Function and The Equations of Motion

The Lagrangian for any electrical machine 1is given by
L =T = (Kinetic Energy Function) - (2-30)

omitfing capacitive effects within the machine. The kinetic
energy is the sum of the mechanical energy and the stored
magﬁetic energy.
- In all subsequent‘equations the following notation will
be used:
@) Greek letters refer to mechanical quantities

J,

wes the inertia of the a'th space

Dyes the damping coefficient of the o'th space

pQ“, the angular speed of the a'th space
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b) Roman letters refer to electrical quantities

L the mutual inductance from the n-coil to

mn?
the m-coil
Rpmmy the resistance of the m-coil
i™, the current in the m-coil
c) x and y angles, which arise in both mechanical

and electrical equations, will be indexed with i,

js or k unless they take specific indices,

In order to determine the stored magnetic energy the
coil currents are raised in succession, the resulting energy
contributions are calculated and the individual contributions
summed. The order of the currents can be chosen arbitrarily

2

and enumerated as (i', i® ... i")s The total stored energy

is then

Ee :li (AEeL) =

Y

o

fgz
C R
ol
Q—

+
oo
R
—
-
K
o)
o
K
13

* o+ S(Dh(i' cos 1M, a™da”
[e]

A
A ™M

= &@i(i- seoi ¥V at)dat  (2-31)
o]

2 as the dummy variable

using the summation convention and «
of integration.

The mechanical energy in the system is

E

m

= 3 Jew O™ DO (2-32)
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and hence the Lagranglan is

Sc'f) 1‘ byoa)dat %Jx“pg po ™ (2-33)

The state of any physically realizable machige is
completely described by (g% Qi} yi): qj'being the total charge
passing a reference point on the i'th coil winding lead; Gj; the
angular position of the i'th space with respect to a chosen
refere#ce; and yi} the angular position of the i'th coil winding with
respect to a chosen referenceo Moreover any "displacement"
(Aqi, A@i} AyL) is,;a possible "displacement" of the state and
i

hence the deScription is holonomic and (q*, e yL) is a true

"ecoerdinate" system(14)o

Consequently, any physically realizable
machine is a true electro-mechanical system and Hamilton's
Principle applies without subsidiary conditions,. |

Since Ee = Be{i' 600 i™ yv"' co0o y¥% x' oo x%} ana
E,nv-E,n{pQ }, the variation in the act10n9 A = S(L)dt due. to

o]

the 1ndependent variations (Aq‘y re 9 Ay*) is

(Q&Aq"+al pif + B + UE, + aa%g' ro®
4 A& Ay *

aEm B
+858%  A(po! ))dt
@E& :n OE B
( — Ai +A3E, +2£E;e + —Pm- LA pO )dt (2-34)
The two Lie variations enter through the flux function
(Eqno (2-31)) and hence from Eqn. (2-16) and (2-18) are equal +o

J E. ==g—§—i T 00 | (2-35)

r‘( AB™

OEe H
. zE e = Ay
AN A ay
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Substituting these into (2=34) and integrating the first and

- last terms by parts maintaining fixed end points these results:

B p OEe , i
)08 - 5y% =% AyT)dt

Ln -1

|F3-l
d.

2
s (& ey g+ (- 4
dt
o
(2-36)
By Hamilton's Principle this is zero. Since Aq"™, A6% and Ayi‘
are indépendent the equations of motion including driving forces

and dissipation are:

= -g—g # Rppi™ (2-37)
Sp = gt a—-'ﬂg + Dgp po® +g—f{—:i rt’.; (2-38)
ry :%—g—& | (2-39)

The torque r; arising from the dependence of Eg on the
reference axis angle y *acts on the i'th coil and hence on the
space B if rli does not equal zero., t, the externally applied

torque on the PB-=space is
tﬁ = S‘ + I'L rt'; . (2'—40)

" Since in (2-31) the n-coil can be chosen as last

referred to in the summation

OFE ) ,* . . -l. .
SEru 5_8 &1 .oe i ada”
= O 2e0 i™ (2-41)

The three equations (2-34), (2-38) and (2-39) are thus
reduced to a system of voltage equations and a system of

torque equations. (

(2-42)
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ts=D,, p0% + I, p(p0”) + 22 + 290} (2-43)

The torque ‘equation, (2-43), can be simplified as follows,

a) ‘Before Rotation f-b) Rotor Virtual ¢) Excitation
. ' Rotation Virtual
Rotation

Fig, 2F Virtual Rotations

Referring to section 2,2, if the rotor is given a virtual
rotation A@ from the steady state value the Lie variation
of flux threading the m coil winding axis 1is
b= 20, Q&AQ —'ﬁmq (2-44)
ax*
Q“Ae*
the flux having rotated by an additional A8%. If on the other
hand the rotor excitation axes alone are given a virtual

rotation, the i'th axis being rotated by Ayi, the flux change 1is

y

2 P - g@‘“Ay"‘ = - aa,—}f'%c"myL (2-45)
AY* '
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By making ij‘= —ruiAQ“, that is, rotating all rotor excitation

coordinates by —A6~ this change is + ggg{‘fli A, From

Fig. 4F(c) the sum of these two flux changes is zero and thus

L L TR A (2-46)

Since the derivatives of (2-43) pass.under the integrals (2-33)

for suitable conditions,

Q

isgEne (2-47)

b

The final equations of motion are then

em= Bemmi™ + 33 dt

: . aa} din a(Dm'éx a(D,..Qz_
= Bmmi™ + 377745 * ox% at * oy* dt

(2-48)

tg=Dgy PO + Jpp P(PO®) + 2%1%% ny  (2-49)

2.4 Pertinent Equations, Definitiong, and Notations

The following pertinent equations, definitions, and
notations will be used in subsequent chapters.
a) Voltage equations:

Q0mdi" | dDu §x* . OO dy b
= Rmni” + SRS 555 at T oyt at

s N

For the linear case ® =1L, 1" and

- n
€m= Bmnl

+L"‘“dt LT oy "

+ QL X ym +aLmn%XEiﬁ
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b) Torque

~

1)

2)

3)

23

aa—;lz-%‘ = Gpmn = Induction Coefficient

%%%?Dsz}nnn = Excitation Coefficient

-Sx pQ = Induction Angle Incident

f\“ ’ r\“ Matrix

gLiz Qy = Induction Angle Gradient (1‘th
X +  Component)

Q ;= 7. = Excitation Angle Gradlent (i*th

oy* Vi

Component)-

Vit V.=

equations:

V; =

Angular Gradient

tp= Dyppe® + Jpp p(pe®) + 2y

Eg) o ('\)g

For the linear case

tp = D,p po? + Jpp p(pO ) + (Qy L) e (q)$ imin

( W Lmn) . (r\)p =

aaLxm rIF

n
G mm n‘b‘_‘

Tmnp

Torque ‘Tensor forl the B

space

te =+ 2(F E)dy

= Electromagnetic Energy Cohversion
Torque on the B space

The doflproduct as an example, for FigJIZE'is
| OE, OE, OEq OEe| 17
bs = +2 [axu ot &xr a7 [

1

0
_OJ .

. O0Ee QE¢ ©Ee 9Ee | n7

ir= 2 [ax*-’ oxt’ ox¢’ oxs | |©

» 0

1

—1-
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where Es_is the electromagnetic energy conversion torque on the
stator and Ef is the electromagnetic energy conversion torque

on the rotor.
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3., THE EQUATIONS OF MOTION IN MACHINE SYSTEM ANALYSIS

3.1 Loop Equations in True Coordinate Systems

It has béen proven that Faraday's Induction Law is
valid for any electrical machine referred to ; true coordinate
system. Consequently methods of static circuit analysis
- can be extended to include a system containing electrical

machines. For an unsaturated system including capacitive

elements, the general loop équations are

em= Bmni" + P(Lpni"™) + C"‘" gi"dt

. . oL , .n , OL .
= Rmni™ + Lp,pi" +$E'.i;“q'§p051 +a—37—§-° pynln +

N TLI (3-1)

where

S 1
Zmn(P) = Rpant Lmn P + ay Pyn + c™np

(3-2) .

-afe thé impedance matrix elementse Nodal equatlons could also.
be uséd; héwever, 51nce an electrlcal machlne is an 1nduct1ve
system, and since fhe driving forces are voltages, loop
analysis is more haturalo' |

The torque tensor element T,nn? gi"“ r\p is thé
coe’ff_i_ciepf' of pOpln zmn(p)‘g‘ Therefore once the loop équationé

have been_determined, the torque equations can be obtained by

inspections

tp = Dgﬁ_pg + J,,p(p@b) + ax F\ﬁ im™ - (3-3)
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Using Yu's formula a standard polarity convention
can be adopted to determine the signs of all terms in the
equations of motion. The coil curfents are‘arbitrarily chosen
to flow towards the centei of the machine if positive, whereas
~the M.M.F is referenced in an outward directiéﬁ, as is the
flux. Since the voltage is a driving force the current £1ows
into the coiliat its plus reference. From Yu's formula the x
and y angles are measured positively in a clockwise direction
from the d-axis. Positive torgue.acts in the direction of
increasing 67 sincé»it is a driving fércea. The positive
reference sense for ngcan be ¢hosen‘arbitrarily,Tsinpe the
signs occurring in'the equations are given by q% o These

refefences are shown in Fig. 3A(a) for three coils.

A <1—~axis_'

|

|

F=~_ _

1 e

T3t N\

| \

]\

/z__\,__“___
/
/ 7’5
P

a) Positive polarity b) Standard Polarity Con-
: o vention

Fig. 3A Polarity ConVention
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If the MMiFdirection. in the n-coil is opposite tp the

chosen reference direction a negative sign appears in front of
all Ly, Since in Yu's formula Lép,= Ny, N, Pg, this is
equivalent to setting N, negatives. Polérity can thus be
interpreted as the presenée of a positive or negative number
of fufns in a winding. This will be noted by placing a dot

at the pluslend of the n-coil if N, is positive and at the

) _negatiVe end if N, is_négative, This gives the standard

polarity convention of Figs. 3B(b) .

Be2 Transformation Theory

a

Many transformations used in machine analysis are
hypothetical; that.is, they are manipulative inventions which
ease the task of dealing with complicated‘algebré or cumbersome
differential equations. Since theyvare hypothetical, they
can be défined in an‘arbitréry-manﬁer; For ihstance, a current
transformation, i" =VC; fi; can involve the x-angles, y-angles,
or any oﬂher parameters, z'Lsay. The voltage trénsformation
er =.-€;“'eh can-be-defined independently of the current tréns—
formatidn,:involving an entirely different set of parameters.
Theée transformations'can'also involve complex numbers. |

If the trgnsfprmations are from one true coofdinate'

' System to a new true cbordinate system, the equations of
motion <in this new systém'are derivable directly from
Hamilton‘s Principle. The transformed equationé must then be
reducible to Lagrange's equations, which restricts the trans-
fdrmations, To obtain £hése regtfictions let the current and

voltage transformations from the old (unbarred) to the newv
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(barred) system be respectively

> 3l
>3

; | | (3-4)
~ (3-5)

T _ g
=€

313

Dealing with the voltage equations

(35

Under the above transformations these become

. d
em=€m Rancn it + 4 G5 o)

|\6E )

= €2 R, CR i"+€Q dt (Cem (3-6)

In order for the new system to be a true system (physical system)

we must have

€l & (en3E) - g—t<¥—> - (3=7)

where E is the energy function in the new system. This can be
"satisfied only if €;; or C:, or both can be moved through the
differentiation and then combined to give a Kronecker delta.

The following conditions must be satisfied.

1) €@ Cn = 5@ - (3-8)
m il \
2) %—Qr—n = 0 and/or %—Cm= 0 (3-9)

The first condition restricts the transformations to those

which maintain the power (energy) invariant since

. _ w N - ™
n 1 _Sneml_eml

ge;ﬁi"“dt - E

V.The.Kronecker delta obtained in (3-8) is not strictly a

g/\n
il
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conStaht even though it is a unit matrix since the time

derivative, which is Lie;, is not zero generally.

dCm _ 0 a1lows Cm to be taken in front of

The condition at = |

dt

It is then combined with'ﬁgg to give (3-8). 8Since no differept—

iation of (3-8) occurs, the voltage equations remain essentially

unchanged and - therefore these transformatlons are of little

interest. We are left with gi = 0; dt £0 and € 1 Chh = 5-—

- to be satisfied by transformations from one true system to another

true system. These allow €@ to be taken inside % in (3-6)

and then combined with Ch to give Bmo In this case, since
82‘ lsrunder the differentiation, its Lie derivatives enter™

p0551b1y changing the voltage equation quite radically.
R

4Cp # 0, the L1e derivative occurring must be

Since 3t

over a non-zero speed. Moreover not all the partial derivatives

m

ac - 9Cm - .
55 T amd.é—l. can vanish. By (3—8) € _ must be the inverse of

C::‘ ‘'with a possible 1ntercha,nge of ex01tat10n and induction

~m .
angles occurring. However, since %%W‘ O and not all s—f

and g—g—f need be zero, the Lie derivative must be over a zero
speed. This implies that the Lie derivative reduces to one
over the difference between coil velocities in the new system
and the old system since these are the only invariant speeds.
Consequently'e;; is a function of the difference between new
and eld induction angles referring to coils in the same space.
‘J§ince there are no preferred angles and E¥":¢ o, C,, must be
'a function of the difference between new and old excitation
angles. |

Examples of some such transformations are given on the

following page.



a) mn-dq Transformation.

(y4, x*) = (0,0)
(py?, px%) = (0¢p9r)

(py™spx™) = (p6*, po%)

All coordinates are referred to the rotor space since the

transformation is on the rotor.

_.":T —.-. . —wﬁ‘d
i cos(y™-y*) , sin(y™-y*) || i

i"J ~sin(y™ - y% , ‘cos(y"'f yi)J it
'é“: [ cos(x™ - xd) s  +sin(x™ - xdy ( ed
e f=sin(x™ - x9) ., cos(x™ - x9) eq
- 5 ' 4L

In these
» %%ﬁ‘ ~Xch+o ; € el = o0

b) Synchronous Machine Transformations.

(py™, px™ = (p6", p0°)
(py?, px¢) = (s, p0°)
(y%, x*) = (0,0)

) S
(py?d, px*) = (0, po”)
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All coordinates are tied to the stator for stator trans-

formations. ~(Note that px™ = p@?), s is the synchronous speed.

id 1 cos(yd - y™ sin(y9-y™ | [ i™

-

i1 —sin(yd -y™ n

-

: cOs(yd— y™ i

) sin(xd - x™) €m

-

eql 'COS(.X‘,& - x

d _ x™) cos(xd - x™) en

-

eq. B f—s.{n(x

cos(ya - y™), cos(120 + ya' -y™, ‘cos(240 + ya' -y

= J—-? sin(y® - ym); sin(120 + ya‘b— y™, sin(240 + y* - y™)

1
= 1
J? J? ,I 2"

ea cos(x® - x™) s‘in(xa - x™

1

eyl = l:; cqs(120 + x% - x™) - sin(120 + x% - x™) J%‘ en
1
Z

| e cos(240 + x® = x™  sin(240 + x® — x™)

e
iaw cos(y? - y&), cos(120 + y2& - y9), cos(240 + y? - yHI 11
it = ,% sin(ya' - yai) sin (120 +,ya’ - ya) sin(240 + -ya‘— ya) i®
i° 1 . 1

| B
z 27 02

L -

€a 'COS(Xa - Xd) Y s'in(xa‘ - xJ) J_lf' eq
eyl = ’§ cos(120 + x® - x%), sin(120 + x® = x9%) é‘ eq
ce]  |cos(240 +x® - x¥), sin(240 + x® - x¥) L | eo

In all of these the Lie derivative of the voltage trans-—

~ formation is équ;valent to zero whereas that of thé current
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m m™m -
transformation is not. That is %%m = 0 dlwm # 0.

dt
¢c) fb-dq Transformations.
e€1‘>- :' 1 =il enf
S
Z |
b 1 J €n
’_ m _d ™ |
- _ —j(x T - x
S ), —Je 3 ) €d
= 1
m_ . d (x™ - <9
7 od (XM= x%) je'](x x9) eq

Once again

The torque equation introduces no additional Conditions
on transformations from one true system to another true system,

since for E = E, the torque equation retains its holonomic form.

¢ -

tp=DppP0 + Jppp(pe®) + 2%, EN  (3-10)
ts = Dzj P9§+J)‘aj§ p(po® + ZWIE"\“;" o (3-11)
whére ’
Dsg= 6385055 (3-12)
Jsa= 6 $37p (3-13)
pod= 3 po? | - (3-14)
tp= 88ty L (3-15)

- .

E=E iﬁ.thé~héw systmn,QZ‘: g%i , X~ being the i'th induction
L

angle in the new system and q§ =Ny the incidence matrix in the

new system.



- 33

3.3 TensorsAIn the Equatiqns of Mofion

A tensor index can transform by the voltage transfbrmation
matrix €, in which case it will be called a v-index, or it can
transform by the current-transformafion matrix C, in which. case
it will be called an i—indexeT Any tensor quantity can have; ali
i—indice$ (i;tensor), all v—iﬁaicies (v-tensor) or a combination
of v and i.i,n-dices (x};i tens}pvr)», If (3-8) is satisfied, so €/
is tlie inverse of Ci except for a possible interchange of induction
and excitation angles, all tensor indices transform in the same
ﬁanner,except for a bossible interchange of induction and excitation
angles, If it is necessary‘fo show explicitly how an index trans-—
'fééms a'v or an'i"will be pléced either above or below it,
| Tensor quantities occurring in the equations.bf motion
"can be determined from the expansion of (3~6), and from (3-10)
through (3~15)g They are listed in Table 1 on the foliowing
Page. Since ﬁhé excitatibq and induction angles are not tensor
quantitiés neither are the induction or excitation coefficients,
Crmmn20d Tmn =

"FﬁIt.can be seen from the table that in general the torque
teﬁsér elements transform as a v-i tensor in the voltage equation
whereas they‘transform’asban i~i tensor in the tofque equation,

The detailed ténsor notation used above is useful for
checking tensor character or for investigationg details, however,
for coﬁputational purposes matrix notation is better. In this

form the voltage equation in a true reference frame are

= (®+p @) (), =% (3-16)
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Transformation Properties

'a) Voltage Equation

e

<3

I,

~F s
=C;¢\l

aim $W\= C:; &m
%%’m = ot °45={‘;o¢m
L-l'hb . "—'C C Lmn
o = m n
n
aé){n(ﬁ—“‘? )= o ymn= C“ Yon
b) Torgue Equation
O3z D33 = 63 55 Dps
Jpp Jp3= 63 %3 Jps
Pep Pei:%gfeg
tp ta= 834
p= Pp VP
= E
‘a\?x i tp= 83ts
aa - 90m -
5o ax™ )Qﬁ Troe Tpzs= CnCr o Ty

Table 1

Tensor Quantities in the Equations of Motion

A matrix multiplication .occurs for each B in the calculation of

the elebtromagnetic torgque since T,“"Pis a triad.

this -

Retaining

index for clarity the torgue equations in a true frame are

(t3) = (Dpp) (20®) + (Jppp) (p0%) + 2((FE)+(n)p)

For the unsaturated case this is

(3-17)
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(tg) = (Dy,) (pOF) + (J,50) (pO®) + 2((i) (T)4(1))  (3-18)
The transformatidn equations (3-4) and (3?5) are

(¢) (1) (3-19)
©)" (e) (3-20)

—
e

N’
Il

il

: ()
For these transformations (3-16) and (3-18) becdﬁé
(3) = (©)* () (0) (5) + E WO (1)
(tg)= (Dy,) (po®) +'<J,,p>(p9‘> + (()7(0) (15 (0) (3))

i

 (3-22)

If p@fsdoes not equél zero and (3~8) holds so that (C) is
replaceable by{é)except for an interchange of induction and
excitation angles, the transformed torque tensor (C)t(T)B(C)
is thé matrix of coefficients ofpéfsiﬁ K3f%}) béfore possible‘
(€§t(L)‘§é%l5(i)_contribﬁti@ns'éré added., In this case tﬁen,
once the voltage equations have been transformed, thé-transformed
torque equations can be obtained by inspection aftef'a’possible
iﬁterchange of induction and excitation coordinateso 
'Invafiance9~a property usually associated with the con-—
vection of twd tensors of opposite types9 is no longer a.general

result. As an example under (3=4) and (3-5)

o
B

iP . elcRe, i . (3-23)

(3-23) is understandable if.it is realized that power and energy
can be defined only in a true system for which e and i™ are
physically measurable. For a transformation from one true system

to anvther (3_8) is'safisfied and the invariance property follows.
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For an untrue system eﬁiﬁ;and S(eﬁim)dt are abstract
quantities;vthey aré not the true power and energy. Power

in the (W) system is 'eiC:;eﬁi'_" referenced to the real (m)
system. The eﬁérgy is likewise S(szcg‘eﬁiﬁ)dt referenced

to the (m) syétéma In this sense‘both power and energy are
iﬁvariants'of any'transformationa ”

Another form of inVvVariance occurs in the torque eciu_ationo
ThefterUe tpis a covariantvtenéor; hdwevefg its transformation
maﬁfix is always the Kronecker delta and it is thus actually
invarianto Méc@ahical angles are transformed similarly and‘
hence the entire torque egquation is essentially invariant. This
applies in particular to the‘electromagnetic ehergy conversion

torque which is covariant in the mechanical coordinates.

3,4 Extension of the Equations of Motion to a Machine With
Rotating Saliency . '

Saliency in the équations of motion is expressed by a
depéndénce of the flux upon anguiar displacemenf9 Qeg of the
machine spaéeso Iﬁ the equations of motion (2-48) and (2-49)
any saliency was assuﬁed fixed with resPect tc the chosen
referénce and hence QE'dependencies werevirrelevént‘and could
be neglected- |

In generai then the flux and thus the stored'electroa
magnetic.energy are»influeﬁced by mechanical rotations astwell
as the mechaniéal energy.- Thése a&dedgvariafions are Lie, the

generalizations of (2~22) and (2=34) being

d Qi _
dt —

t,
{
f.

)

L& it ‘
T oy + {I).L.'i' @ : -
Tav gy ELe | - (3-24)

®!

,_édei? D0 dy* L 90:30% L 3@ 3d0f
=21 38 tTaY X Taw agﬁ t t3x% @dt

(3-25)

pu
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AA = (3—?,%» 2i" + L Ee + L E, *%%5? Apg“_)dt

AN =0s Hy™

d QEe¢ , . n _OFEe i, B _©OEg , i QFEg peof
(- 3% oin 84" - 5cknpee” - 55t oyt - Seh ae

g;!aE Noe P -
= at opeF APeT)At (3-26)
Proceeding as in 2.3, the equations of mqtion'are easily

found to be

™M

(3-27)
- P P i aE

tp=DppP” + Jpa p(p07) + 2¥7, Ee 5+ §gF

' | (3-28)

As a special case to be used later, consider Yu's

formula for a rotating d-axis. It can be written in the form

Lmn= L¢,,cos XMcos TN + La,,,sin X,msin "
(3-29)
where
X"~ xm- st | (3-30)
A - (3-31)

x™ and y™ are the induction and excitation angles of the m and
n coiIS'respectivély. S'L, which will be called the salieﬁcy
angle of the i-th coil, is defined by
as* 9s*dae® g+ ac? '
Tdt T d6F dt ~ S» d% , - (3-32)
mgtn the saliency. angle incidence matrix, has in this case,
elements which are ones if B refers to the space in which the

d-axis is located. Otherwise the:elements are zeroes. - (3—27)
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and (3-28) are then :

' in . n
em= Bpai” + Lmnd_;ﬂ +aaLXm1 pX +%§m”1 pY

(3-33)j

ts = Dep p0® + Jpp P(pOP) + 27 ;Een; - 2 ;Eef
(3-34)
= Dpp PO¥ + Jpp (p0®) + 2§ ;Ee 0

Here

pX™ = B (x™-s™ = (nGpe® - gLpe®) = o fpe®  (3-35)

pI" = S (y" -s") = (py" -~ &5pe¥) (3-36)
S dt )

The form of these equations is identical to (2-48) and (2'-49)
with»d_;as the generalized induction angle incidence matrix.
The torque ten‘s»or' for the B space, as before; is the array of

coefficients of p@’3 excluding those from _tho
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4, THE EQUATIONS OF SMALL OSCILLATIONS

To derive the hunting eguations, the general network
loop equations and the torque equations in the following form

will be used,

. ODm_di" | dDmEx*
mnl” * 518 at T 8x< dt

E eﬁ,: R +

. t
ammdy'&_‘_ 1 S .
Oy*~ 4t © c™

0

ty = Dgp PO® + Jgp p(p6%) + 2(WE).(n)p (4-2)

4.1 The Voltage Equations

IfAsmdll variations in voltage are applied to a’
system of machines several conditions change slightly, éll of
which contribute to the "hunting" of the system.

a) The angular positions of the coil spaces and/or of
the reference angles can be changed slightly from the steady
staté\valueS'(ioeog the instantaneous non-oscillating values).
These Variétions are analogous to flux variations with Qajand

y * and hence are Lie variations given by

1) 2F e ae'“ ngoe®  (4-3)
n}ae’ P | | |

) o= gt (4-4)
Ayiw‘ ay ) R

The:applied voltage ey can only be a funcﬁion of the reference
angle of the coil winding to which it is applied. Therefore

Dem _ ¢mde 1 dem _%

dy= = LSE;; ay_ 3 - The above variation is as a result
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ge"‘ (n% ro® + Ay™) o (4-5)

b) The éteady state velocities of the coil spaces
and/or of the 0011 w1nd1ng commutator axes can change slightly.

The resulting’ varlatlons are obtainable from (4-=1)

S5a% 00" + 30rn 6 oyt
- 28 q Sapo® +§}${“Apy3“ - (4-6)

¢) The currents can be oscillating about their steady

state values giving a variation

‘ O m d .
= (R"'“a f_capfv"" p +a'a' RxX 332 T a?eaq;r& gt) bid

(4-7)

d) The rates of change of currents can be oscillating

aBout their steady state values to give

.'h .
E)( ai” oi
RN

 e)'~From*the‘presence of -capacitance, the integral of

the current can be oscillating

‘.E>‘3m
o (§itat)

1") = g 01" (4-9)

t
a( (S) i"dt) = g 0(3

In analogy with (2=22) the first approximation of the

voltage oscillation equations is
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+ :f € +:£em (4-10)
'1 aoP Ay*- .

Aeyy is the voltage variation in the m'th loop, empmebeing the
steady state value and e,, the actual value.

Substituting (4-2) through (4-9) into (4-10),

Aepy = (Rmn + aad)m]? + alaha?ir . dl a?n amm) Sx"“ . F( ’d
4 g ) 01"+ S ape g“’"’Apy" + §2R(nF 0" + 1y™)
(4-11)

i

There are Johree dlstlnct contributions in the ‘above equatlon., ‘

a) (R""“+§?M p +a?2“§)_l.m dl alh(amm)s

Q a q)m) dy +

cm )A

é B (P)AL" 2 & variation ari'si/ng from the effect of
the oscil.’l‘a;timn.i.mpedance (Bywp) acting oh"bécillating

currents. Here émh(p) = Zmn(D) +a—-aa-d—.>:'r" dét o The

last term vanishes for unsaturated systems.

L]

b) (ao"" ae'" 155! Ay™: voltages arising from
oscillating reference axes.

c) (ae"‘ 20, )I'(';Apgp g

+Sxm P voltages arising:due to

oscillating coll spaces,
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For the unsaturated case @p= Lmni", (4=10) becomes

+ Grmni" qp Ap@" +g—e—"" 71';‘ ro® (4=12)

where

Zmn (p) = (R"m* Lpmpp + GMM,,VGPQP + Vnn Dy "+ c™p

‘As an exdmple consider the induction'mopor of Fig. 44A
with fixed commutator axes. pyi'm'o andé??f = 0 since the
applied voltages are a function of time only. The general

equation reduces to

Bew = (Bymn+ LimnP + Gmmn AP POP)0L" + G pnmni "q3(2p0%) |
‘ (4-13)

4.2 The|Mechanical Equations of Oscillation

For the voltage osc¢illation equétions9 e variation of
) the loop equations Waé taken; eguations containing relafionships
between different machines. Torque variatidns, in contraéf,'
must deal with individuel machine spaces and in this sense
the equations are separated. This separation ariseé comfutationaily
when one calcﬁlates the torque tensor for the component spaces
SE",V1; for the B%th space). Since for each B, a matrix
results, the toerque tensor is a triadic. Operatibns (trdnsp@se,
inverse,:etc,) on the torquebtensor applyﬂf £o; each B
individually. |

Proceeding as in the derivation of the voltage oscillation

equations contributions t& torque oscillations arise from
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a) Variations due to oscillating mechanical angles,

st mechanical angular speeds, ngy and mechanical angular

aceelerations, p (p@s)° From (4--2) the sum of these contri-

butions is

Otp Agﬁ 9t . ?) ot ( gﬁ) atﬁ A B )

557 +51739257 A(p(pe )+a—i)j9&§Ap = 558 407 + Dpphpe
+ Jpphp(po®) o (4-14)

b) ‘A variation due to osecillating currents given by

f

Otg
it scr 22 st - 2R et

I

2( % Bo) - (N)pti® (4-15)

c) A variation due to oscillating reference axes

(5% Jort=(8z |+ 5| 5
' 0%, it x* : > e, ib

=2 Z.((WE). ()p)oy ™ (4-16)

To a first approximation the sum of these variations is

equal to the applied torque variation Aty = tp - tpoo The

mechanical oscillation equations are thus

o

Aty :alp £6% + (Dgp + Jggp)2pe® + 2vj§(ﬁw E);(rk)“p)Ay‘"

+ 20 @) (e ALS o (4'\-17)'

ot
~ S22 0% 4 (Dpp + Jpp p)Ap@’B

+ V. (VE Ay * + Qbi )q (4-18)
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=

For unsaturated systems @;= S“-l and E = 3 sz_if‘,ii'°
This gives

2 w.l( WE)o(r()g)Ay" = Vite py *
-—(E;—v Ay $ +-a = )S—Aﬂ $i%i"  (4-19)

D) o)
V,L(ng*A 5 ('c)—x_: +ay-&.)Lbll y‘tﬁ

QLsa 2.6 ,:¢ , OLag -8 % ,.8
=( 3xt L neLi +gx—_ﬁ- itnp bl )
(4-20)
In matrix notation retaining the mechanical index thesé
. . . ©,. © .
contributions are (‘72;)(Ay) and ((T)p(l ) + (T)»(l)) (a1)
where t is the transpose operater. As an example consider-

Fig. 4A, the two phase induction motor. (t) the electromagnetic

r
a 1 OW

i b 1 0

) ox® QS - c 0 1
d 0 1

Fig. 4A Two Phase Induction Motor

energy conversion torque vector is 'ES where Es is that acting

Ty
' e
on the stator and g,; that acting on the rotor.
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Tte] [y T]

(Vi) = ||,

| Vi |4 e

| oy 4
9 ) B
= _B—J_EU-W ks o+ 3x®b +5F ks 0 ' 0 Ay
R o sy
i 0 , 0 ) 3% + a?,c L 5%‘#3%123 Ay ©
Ay ¢

The Zeroes are present since gs‘is indepenaenf of ¢ or d angles
(vl;: 0 for p-=%and i = ¢c,d) and similarly fof fr- For the
»secgpd contribﬁtion, denote (T)s as the toréue tensor for the
stator; (T),, fhéltorque tensor the rotdr; and (i) as the

column vector

((T)ﬁ(i) +‘(T)§(ijjb(Ai) is then equal to

t

(1)g] (1) [(mF] )| (a1)
o+ © '
(1), (T),

The torque oscillation equation in matrix form for the

unsaturated case is

(0tg) =(558 867) + (T + T)(1)*)(81) + (D + Ip) (4p0)

+ (79 (by) | (4-21)
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The system equations

(R * PLpp) i
(ng + ‘jg,BP)Pes + ViE erl‘; , .
Bran(P) 01" +(aa®mp +ae"‘)q,e,A9’B (a%%" ae"‘%':)/l n

g ‘ .
Zan(p)Ape™ +—§A9 +v*cpsq*m + VLsEer‘(;Ay*'

 (4;22)'

vhere Zgo = (Dpa + 'J‘.-B._-«lp) and vfsz(é%(: +5%)(ais 6y5) form

a set of coupled matrix differential equations which]determine

the steady state and huntlng state of a machine system once

the initial condltlons are known.

The oscillation equations can be conveniently combined

to give a single matrix equation of oscillation

(ae)

(at) |

(sme2)), (S5 + §281)

s
v.i.mknyl.;! ZB&(P)v + g‘%%%; (APO”)‘

+ g;m + qu"‘p (ay™

- (4-23)
“iE M

When §aturation-is absent this simplifies to
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)| | e (Bmeiry (%D 3| [@im

et)| (vt o+ + 33 -11; (spe™)
(2em) +(Bemnin)p | oy

(4-24)

33

In the general hunting equations (Ay) and (Apy) refer

to commutator axes and hence are constrained externally.,
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5. APPLICATIONS TO THE DERIVATION OF MACHINE SYSTEM EQUATIONS

5.1 The Power Selsyn sttem(6)
Two induction motors interconnected as shown in Fig. 5A
form a selsyn system. The transmitter is driven exteﬁnally,

The reciever runs'at the same speed with an angle of lag §.

RECE1VER : TRANSMITTER

Fig., 5A Selsyn System

The loop equations for a single phase connection are

€m Rom + Pt‘mm 0 o -P Lmk. i.mq
enl = . 0 R + PLnnr ) P:L’hr in
0o | —ptmg ’ ptyn Ry, + phg | |i®

(5-1)



The inductances are obtained from

Phipme= Lima(cos yip = sin y'py*)
pLan= Lms(cos x*p =~ sin xlpxﬁ)
pty= L, (cos y'p - sin y"py")
-p£”n= L,,(cos x"p ~ sin x"px")

plyi= pPLi = L;;p (i = myl,n,r)

Plias= pllyy* Lier)
The incidence matrix is given by

| px™= 0] 1 0 0 0 | [pe™=0]
px*t 0O 1L 0 O po*
px' = 0 0 1.0 S’

| px"= 0 | I 0 0 0 1 | __p@“ =0 |

$ubstitutiﬁg (S;Q}'ani (5—7) into (5-1),

sL,,o(cos yip
| -"Sin.y4py1)
en| =| 0 sy Ry + PLnn ’,—Lnrgcosfyrg
0| |“Lmslcos x* Ly, (cos x' R AL
“Hme p o _ay? Hnelcos X'p o gfas T Plas
I J B : - s81n X Pee) —='sin X Pe)
| (5-8)
The torque tensor for the two rotor spaces is '
q
[0 , o, d
V) R O, 0
T = (T)y = |[L..sin x%, 0, O (5-9)
(T, T T T 7
O, &g 0 ’O
0, -L,, sin x",0

Yu's formula (2-27)

.(5—2)
(5=3)"
(5-4)

(5-5)

;(5—6)

| (5-7)

49
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The corresponding torque equatioms fer the system are
tg = (Joup + Dgy) PO’ + L, ,sin x¥imi?

(5-10)
ty = (Jprp + Dyyp) PO° = L, sin x¥i"i®

Assuming that ali angles are measured in terms of electrical
anglesy; and that the machine operatien 'is balanced; an analogous
set of equations for a system opefation on a greater number of
phases can be obtained.as follows:

For a two phase ‘arrangement, the currents in the second

phase lag those of the first by an angle of (n/2). In matrix

form |
i (1) 1 ] )
im(2) -3 in(1)
in (1) 1 i3 (1) (5-11)
)| -
i3(1) 1
11°(2)] ] -1

where the bracketed numbers refer te the phase number. Similarly

fer a polyphase machine, adding the factor jé one obtains
p

r.]‘(o) ] w1 ] _ii(oy
12(0) 1 i% (o)
e 1 a 'y .
i"(o) |T = 1 i”(bﬂ . (5-12)
1 vP -320 -

it (1) e ”F

i"(1) T
1i% (p-1) oI

N/ o ~ampoa
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, 5-13
7 o O (m13)
where A " _
¢ is the phase number, the lowest being zero
p is the number of phases present.
n.refers to the n'th coil.
Note thatAa two phase system is actually a seml—quarter phase
system (p=4).

Taking a tensor approach; this matrix equation can be thought
of as a transformation of the form
- onmite (5-14)
in which the unbracketed indic@€¥ refer to the coil number and
the bracketed indiceds (dead) to the phase number. Herex = O:
and |
ney e = e
Cr‘\(oc)“ om € P
Jp

Since the transformation is assumed to be from one true multi-

LIS -~ (5-15)

phase representation to a true single phase representation

new ) -
€ra = Cre Gnen (5-16)

The transformed impedance tensgr is then

_ (o) N R ] . ~1
Zr’n‘ﬁ(&yt’y‘a)_ (2153 Z v (C 18- N oTY-) ( 5. 1 7) )
Lo owm  +oRO n - R2LB
Zmrap™ 2Q@Bm ¢ TP Zmenpiae T F Beio (5-18)
P : : .

Dropping the (o) indicesu

e = Z‘mp(q‘a"i) S F P ' ‘ (5-18)
Or in terms of inductances 

LW\F\ = LE(EQES)’ﬂ) GJ%I(OL—&) (5—19)

p



In matrix form this is

5
Il
® N

Be

RN

Tﬁese results will now be used to reduce the equations

1

1

[1...n 7]
1% O 1
0,252+ *4p~1 °.
-] )
A
2 o
F-1 6-5%9- 1
° .
o
] \
~Jau
e P
-]
° %”WP'
e AL
L4 .
o
~J2m g
e
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(5-20)
of

a twa phase‘syétém to an equivaleéent single phase systemo The

impedance tensor of a single two-phase machine is obtained from

Yuts formulas “s"denotes stator coils, v, rotor coils and the

bracketed index, phase numbér (fig. 5¢)

15(1)

1"(2)

egla)

Fig. 5B Two—Phase Selsyn Unit

TIYBUTCOTTLE
K
n}i%a)
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(Zmn)’:S(l) R55+'PL55> ’ 0 9 LsrP(COS.yr)r —LsrP(Sin YY)
- s(2)] o » Bgg#PLes 15 Lgyp(sin y"), Lg,plcos y")
Cr(1)| Ly pcos x") 4 Lg,p(sin x"), Ry, +pLyy y - o
r{2)| -L¢, p(sin x"), Lg, p(cos x"), 0 ’ Frr+Per
(5-21
The balanced s1ng1e phase equlvalent is thus
' _ s(1) r(1)
i [rioo 1 0]  s{1) | Rgs +pLes » Lgrpe sy
Vir[é 01 J} ° (?mn)J§’ j 0| = r(1) LLSYPG Yr Rpr+p Lr;](5—22)
’ 01 | '
10 j

Raving obtained the equivalent impedance matrix of a single

machine, 1oob equations for the syStem can once again be obtainedy

These are given by (5—1) with the mutual impedance elements ob-

tained in (5-22).

e, Rt Pl
n| = 0 9
-ix?t

0 —Lmﬂpe s

These equatlons are

the l=coil 1nto the

Using - the notation of Fig. (54)
o oy - o
o, _Lmn_Pe 7 : im
r
R,nn + pPLpy L y-Pe &y 'g _ in (5—23)
; —,S.Xr -3
L,z pe ’ Raa + PLas 1

best, handled byvrdtating'the reference axis of

n—axisxﬁy

im 1 0 N ' i : )
- ‘ . ) o
ifl=10 1 0 Vo in (5-24)
i3 o 0 euylfyi)_ i3
L ¢
e '1°0 O e,
ew = 0 1 0] a €pn
Legzo 0O O e—s(x -x") e3=0
This gives, using)igf incidence matrix of (5-7),
en| [ BrmetPLimnt, 5 0 +=LingP - B
ex 0 ‘\,th+ann yLppe*dyi-v ’(p+3(py—Py‘) i

0 Lm,Q(P—jPQ )».z}lnre

(p ~3P9") yRas +L 35 (p- prl) . i
. (5-25)
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where x*-x® = y*=y® = 6. These equations are in a true system
since g% O for both (5-24) and (5-16).

The possibility of commutafdr‘;otation is inCludéd in
these equations through py* and px® .
As an example assume a steady state condition: py"= py!=0;

po° = po' and p=jw. Letting w-po = w(lfv) = w(s) and WL;S=/X3$

. - e
the reactance, one obtains ' _//
Em Rmm+jer;m9 0 14 —ij_Q Im )
Eh = : O . ’v' R JXhh, %’an X I? (5—26)
0 | |-y o+ Xe’® ,FRoedga |10
[0 0o 0]
: 0 O 0
(Ty = L0 0 (5-27)
o 0 0 0
0 O 0
| 0 =jL,,e'®0 |
and the torque equations are
ty = Dppp®" + Jp ( pOr) + ,]Lm,_l"‘l5 v (5-28)
t, = DIQPQI.* Jaap (po') - jLppe’®ifii® :

The stability of the selsyn system caﬁ be studied using the
equations of small oscillation, which apply directly since the

. . . . e
machine is in a true reference system. Since Q—m = 0Oy

oym™

g%%ﬁ = O(B%??l)’the dscillations equations are

(ae)) (Z"‘"(P) | '%%m“i“ﬂz (rim) +.a—m§yn "o | (ay)
@) [T T @)Y, (0 +Ip) o™ (<Vigs) (5-29)

In this set of equations z,,(p) is given by (5-25). Direétly-u'

from these
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1 T
L srpm = & o 0
% o 0 (5-30)
3 | jLpmgd™y =jLpee®®
y - . ,
n | jLnee® A(pyT-py*) (5-31)
o i 3 ".].I-'rr'APYjl
. t .
((r+19EN" = @V (r+1Y) _
' ' = (l s lﬁ, ii.-s) [0 sy O 3 JLmy ]
0 y O, O
_ij£9 _O'_9_ Q_ ______
(i™, i", i®) o, o , 0
0Oy O y —jL,, e°8
0 ? 'JLhreJ ’ 0 _u
_ . .3' ] g A
= +JLmL‘1 ¥ 0 ’3—5 . .'i'.'JLmj_l ) (5_32)
0 y=jLnee 17, —JLnreJS "
N T . cfns3 N
VJZEBAYL =Vi JLip,imi3 LAy *
| ~jLnye’®it i’
= | 0
|=dLariti®e?® (jAy ' =joyT) (5-33)
:
.The.huntlng equatlons for the single phase equivalent of the

two-phase selsyn,system are thus

Aeg Rmm+pL"m,, 0 ,ﬁLmkp s, 0 0
ey 0 , Rnn%l-ann sLoe e ® (pip(y? -y) 0o , ©
0 |=| ~Lpn (P30, Ly € (p=3007 ), Ry +L,, (p- FPY) s fLngi™ s~iLppe®®
M| [+Lnei® 5 R0 4L, yDa: +J51 Dy O
Létl i 0. —threjsié yﬁjLnreJGiﬁ , 0 ’Drr+dir?y
’ 0 | i
+ jLnre‘jS A(Pyr"*PYl)
=jLypp APy
| I
_fjnhri“isejs(jAy”_jAy’{J (5-34)

wil .3
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The brush axis angles and their‘speeds as well as their variations
are constrained externally and are thus‘knoﬁn\in all equationse_
This examplé illustrates a general procedure for setting up
the equations of motion for any system, transforming them, and
&eriving the hunting equations. To solve these equations and
study their general behavior is complicated by the non-linearity

involved,

. (1-6510413,15,16)
532 Synchroncus Machines .

I the ébnventional analysis of synghronous machines the d—yg
axes are connected to the rotating salient poles, which are viewed
as stationary. This is convenient for handling single machine
proklems; however, when multi-machine problems are attempted,
complicated interconnection matrices arise,

This can be avoided by cﬁnsidering_a common d-axis for the
complete system and applying the eguations of mqtion with rotating
saliency +to individual machines. Morebver, each machine can be
viewed with its’ stator stationary, rather than from an arrange-

ment in which the stator rotates.

Fig, 5C Synchroncus Machine




E‘ Theﬁnew géference scheme is illustrated in Fig. 5C. The
o —B system is tied io the rotar.. Tﬁe d-q system‘is rotéting at
the synchronous speed. Fof a system of interconnected machinesj
the d-q systems are parallely displaced, each fbtating at %he syn-
chronous speed. anséguently,interconnection can be made:di;ectl§
along thévd—q axis and loop analysis used to obtain the.sgstem
equations. |

The genera} impe@ance matrix‘for a siﬁgle machine will now
be derived using Yuis.géneral formula (3-29) and (3-33). ?he
conventional theory will be considered as a special case obtained
whén the (d—q) axes are constrained to mo%e with the rotor. The

standard polarity of . Fig. 5D will be used.

« T+
Fig., 5D (d-q) = —B) Reference Configuration

S 1in this case is x , using®¢. for cosine and s for sine,
the impedance elements are therefore:

1, = (L& cX"cY¥" + La_, sX™sY")p
Pty mn mn .
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* (_Lam"sx"'cY" + L&mncX"'sY") E
+ (-LgmpxmsY“ + LynsXcY") 5 (5-35)

From Fig. 5D

Plin= (LénncmeYn ”'+ I-‘q-mv\S'X:'mSYh) P
+(-L3psK"cT" + LipeX"sI") px

-g(—,L‘ImncX"‘sY“ +»Le%._;é'X""_cY") (py"= py™) (5—36)

b = (L%ch"bY" + La,,sX"sY") P
—(-14,,sX"cY" + La,cX"sY") px* (5-37)

(m=d,q; n:f,g,h)‘
Phy.= (LE cX"cY™ + Lq, sX"sY" ) p

n m oohy :
+(-ngcxmsY + In_sXMeI") (py" = py™) (5-38)
(m=f;g,h; n=q,d)

PLmn= L&mnp v (m,n,-i:f,‘g)'
Phen= 18, D . (myn=h) (5-39)
Phgh = PLhf = PLhg= PLn= o (5-40)

In all these elements py“sz*gpgr
These could also be obtained by using the synchronous ma-—

chine transformations of 232 b). - However, the procedureais1

A
4
4

more tedious,
The zero sequence*equation is omitted in the preseht analysis
“since it is uncoupled from the remaining set of equations.,
From”sécfion 3:5 the torque ténsor elements are the coefficients
of p8® excluding contfibutions from pY" . For the rotor space they
are | | | |

—(-13,,sX™cY" + Ia,cX™sY" ) |
. : o (m=d,q,i,n=d,q,f,gsh)
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The above procedure can be extended to mult-machine systems
using loop-analysis. .

Thé conventional synchronous machine equations are obtained
by réstriqting (x4 ¢ y¢) such that; X°= 0, pX= —px*= -péf,ij=O;
Physically the d-q axis .is tied to the« —B, axis in the stator
épacea ASSﬁming Ng = Nq and using Lé,,= If..; D%m= Ia,,, the im-

pedance matrix in standard notation is

|Re+pLgy Meqp 0 : Meggp 9 O
Mfsp s Rqt+Lgp 0 i Mqap » 0
0 s _ _O_ _sBaxpLn_t_ _ O _ sMaqp _ (5-41)
MegP 5 Mgap sMpqp@ : Rg+LgpsMqpe
|-Mgg PO ,-Mgap® »Mp, P : ~Mgpo* #Rqtlqep

In the literature, for a generator (alternator), the polarity
references of i™, po¥, and t, are opposite to those shown in Fig. 5D
'Adopting this reference séheme and paftitioning, the equations for

an alternator are

R I A
B L

(z .) = F‘Rf‘“"ﬁtf ’ “Mfa P o 0 1 5 (Za) =[ _Mfdp s O ]
“'Mfg' P s -Rg —Lg 1) 0 ' -Mgap 5 O ,

-Mqap thPQ (24) =1-Rq-Lgp » MQPQT -1 (5=41)
_Mgdpg ? ?MhGLP

-
-e

-

-Mgp* , ~Rq-Lqp)
L =

(e;) is then the d and q axis generated voltage
The first matrix equation in the partitioned set can be used '
to eliminate i' from the Second set gi%ing

.

o= (2,) (207 (1) - (z5) (2,) " (25) (%) + (z4) i*  (5-42)
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. Written in full this is

Q;- 'G(P)PE | i_rd:Ld(P)P ’ LQ(P)pOr id (5#43)
e{ = G(p)pgrE + ;Ld(P)PQr , —rd_Ld(P)P i ;

assuming rd=rQ

2 ,

Lg(p) = M, Da(Lg(Maﬂa’*ZMdenga;+ Le(Mea) 4+ P(Rf(Msif" +Ra (Mea )
o p(LeLg- (Mgg)®)  + p(RyLo+ ReLy) +BqRg

Mo (Moa) p

o Rh‘+ th ; , v(5i44)

fesd

Lq(p)

G(P) = p(LaMsg — Meo Mg + RgMil‘a.. _
p?(LLg~ (Mg, )®) + p(RqLe+ RgLg) + RgRg

I'4

Writing these equations in the form

eq = G(p)pE _ fr-La(p)p - 5 Lo(p) CHERES (5-45)

eq - G(p)po"E ~La(p)pe® 5 -r-Lo(p) p| [i% .
it is seen that for the armature axes, the impedance tensor has
exactly the same form as previdusly, (z*), the only difference being
that-'all open circuit quéntities are replaced'by short circuit
quantities. In per unit notation; adding the zero sequence equation
(i°=J%:(ia+iB+ i°)9 where i%, i®, i®are thejphasé quantities)
which'remains unchanged throughouty Parks equations are obtainedo(6)

eq= G(P)PE = z4(p) 1 + xq(p) i%

eq= G(p)p8'E - x4(p)poTi*~ zq (p)it (5-46)

o]

e .= =7_1

(o] =]

The torque equation (3-34) i.e.

- QLmn o s
ty= Dppp0” + Jppp(p0”) *-5§%%-0‘?f71"
The electromagnetic energy conversion torque Er is the tb;que to

be overcome by the prime mover.
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by = SERR ORI = ()% (1), (4)
(

= (i€, i) {' o5 0 , Mh%: 0 Mq} [ i€ ]
~M¢g s ~Mga s O =Mg O id
| .
id.
it
= (1) (=Mgg if -Mqai®=Mgi®) + 1% (Mpqin+ Mqit) (5-47)

Using once again the first partition of (5-41) to eliminate (i')

e = i%i%(xq(p) - xg(p)) + i%G(p) eg (5-48)
in’Park’s“per—unit systems
A different form of the equations (5«46) and (5;4&) can be
obtained as follows, For the unsaturated case, once the impédance

. "\ H .
'matrig?%ﬁs been obtained its coefficients no longer display any

\ [

. i ) -
angular dependence. We can write for the alternator

() = —(R)(1) - & (L)(3) +(),(i)po* (5-49)
where ~
Mg L O  Mgqq 0
tMeg  Mga 0 Lg. 0
| _ 0 0 Mpqg 0 Lgj | (5-50)
(1), =] O 0 0 0 0 :
0 o 0 0 0
0 0 0 0 0
0 0 Mpg 0 Mg
Meg  Mgd O -Ma O |

(L)(i), gives the flux in each coil due to excitation of all
coils in the same axis., '(T)r(i)’ gives the flux in each coil

due to excitation of all coils at right angles to it and hence
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is a eross—flux,

After elimination of (i'), the rotor currents, (5=49) can be

\
In this form the torque equatiohs (5-48) 1is

written with the zero sequence added(é)
eq = -rid+py& —¥q PO
eq = -rit+py, +¥;p0 » (5-51)
e; =,—fi°+pyb
Here
Yo = =xq(p) i%
va = G(p)E =xa(p) it ~ -~ (5-52)

_ a9 _osdy ' _
gr = it wa - i%¢q (5-53)

For_an“alternatbr at steady state p=0 and p8f=1 in the per

. ' M
unit syste@ Also»xd(p) = Xgq and xq(p) = Xgq5 G(p) = ﬁfi— .
If E =“E£gﬁﬂ'where E, is the "internal generated voltage", then
£ .

G(p)E = E¢. Assuming the alternator is connected to an infinite

bus whose field angle lags fh&@¢of the generator by & so that

ef' E
eq| = . e sin g :
eq e cos & (5=54)

the equations of motion become

e sin ¢ 1 =l-r Xq id ' (5-55)

e ¢os 5= Eg| [-xg -r it ‘

‘ EI‘: idlq- (Xq-—;.Xd) + EficL } (5-56)

The hunting equations for a synchronous machine can be obtained

from (4-23) by the following changes (c.f. 3 =33; 3-=34),
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yh———LYn
xn—~ X"
rl/—hd—m
In the representation used here the reference axes remain tied
to the fieid axes and thus osciliatg (AY" =0)s The hunting equ—
ations become ] -
: Y 2 17 s
{(ee)l | (zmalp)) 5 (5%R T8) (5—%140‘2)3 (41)
(A1) +Q0n03) ¢ (Zog(p)) , (Apo)

L . (5-57)
For these equations the references of Fig. 5D will be used.
Prom (5%54) .
Qem 1 o
oY : .
. . 0
e cosb o5
ox" L .
¢ sihS 25
R} A (5-58)

For a machine connected to an infinite “bus

&

6 = y¥- y®= y*- yi- (y*Puy®)
where y*Pis the rotor angle of the bus with respect to the

chosen referencey Using this

ox” =~ 1
Hence 0
Qg% 8
oY e cosb : R v ’
e sing ’ ' - (5-59)

The voltage variation Ae is

Ne = A[ep - 1T = 1 o0 1 , rAef ]
0 ] 0
| o | "o Do+ (5-60)
€ sin 6 o e cdsé : ' Ae sind »
le cos & L =e sin g | Ae cos B
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where ‘A% is the variation of & other than Lie, the latter having

already been included in the eguations of motion. Here
A6 = A(y*= y%) = A(yP—y™) = Ly™= 00T (5-61)
The generalized incidence matrix is given by
Pk’ 0 (pe’)
pX? 0
h
2 (5-62)
pX -1
XY -1
PR
Therefore the remaining termscf (5-57) are
dem 40 _Q8mqgn _ |0 0] 0
ox" B Toyn T T 0 ol | o
: ' 0 o171 O o
—=e c0sH - =1 e cos®| (5-63)
e sin® -1 [ e sing -
SIrap = (Thi” [ 0 @ o o o | [if]
| . 0 0 O o0 © id (5-64)
| oo o o o© ih SRR
0 0 My, O Mg id
Mea Mgz 0 Mg O ]| 4%
‘l'.ﬁ ’_ ’ O . ) ] .
0 _
0
Mpgih+ Mgit
| -Meq i - Mgai? — Mgid| (5-65)
ek g '
UiPnl = (1) (T + (1), )
= Fqud_i"L 1 ¢
=HMS({]"_‘:L
Mho_id"_ o
C Mpqit+ (Mg-Mg) 1% (5-66)
- (Megif+ Mggi?) + (My-Mg) id
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Substituting these in (5-54) the oscillations equations with
the polarity of Fig., 5D are on the following page;
Although this derivation is for a single machine, the ap=

proach can be extended to a multi-machine system;



Aef
0]
0

Ae sin §

A e cosd

At

P
R£ +PL£ 9

=’M£&P9r g

.MgdP 9

Mggp
R9+pLS s C

Ry, +pLy,

=‘-Mgdpgr,, thp
Mggi% , Mpqi®

MHQPQr._

—Mgpe

MggP

mMgdP

My, i"
+ t‘ﬁQf*M&) i% » ’

0 ; O
0 0
14
MpqP | ; 0
Mqpo¥ s Mg 1" +Mq it

v , ~-Mgid
=(M¢qi +Mqgi?), Dp +Jp°
+ (qu?Md) 1d

(5-91)
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6. CONCLUSIONS

By selecting a set of independent coordinates, i.e., a
holonomic systeﬁy and applying Hamilton's Principle, the voltage
vand tarque equatidné applicable to any -physical machine Wefe
deriveds Contributions a;ising from interactions between me—
chanical rotations and magnetic fluxes were shown to be due to
Lie variationéo |

Onceﬂthe basic equations were derived; the hqnting equations
and transformation properties folldwed readilys  0f importance is
the indepehdance of the volt@ge transformatiqh matrix, (6); and
the current transformation matrixy'(C), for é.generai transformat-
ion of the system équations. Restrictions arising.ﬁpen thé trans—
formation is from one true system to another legds tg thé inva?iance
properties of power.

The table following compares thénéonventioﬁal ideas,ﬂprincipally
.thoserof:Krong with those presented in the prgsent thesis.

ihe thesis indicates several possible areas of investi~.
gat%on:stability andloptimizafion studiés using the Hamiltonian

f/éggroac@} the realizability of a true system, which may not
necessarily bé a physical system althdughvthe converse is always

true; and the investigation of non-linear problems.




Conventional
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Preseﬁt Thesis

Holonomic system

Lagrange's
equations

Quasi-holonomic.

Non-=holonomic

Direct application

. of loop or Nodal

analysis
Moving saliency

Invariance of

Slip ring machines
only

Slip ring machines
only

Fixed commutator axis
machines

Anything which is not
included in the abovey
hypotheticdl or
physical

Slipnring:machines

Non-holonomic

(ot mm amn

Any physical machine

An&:physical-machine
“taking into account
‘Lie variations

No such system

Any hypotheticdl machine
for which the trans-—
formation matrices

(C) and (€) from a
physical machine

satisfy
ac ; ., d€
 wFO G FO

[Any true system; includes
all physical systems

”t
Holonomic

Follows from (C) and CC)

tensor properties
products
Polarity - No. standard references [Follows from the basic
convention equations ‘
Geﬁeral- General equations System equations obtained
comment derived by Kron are completely general,
apply only to a including non-linearities,
linear systemy is.e.;| and are less compli-
cated in form.
(Dm — Lmn(xmyn)ih
Table 2. Comparison of Conventional Ideas with those of the Present

Thesis
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" APPENDIX I CONDITIONS ON THE FLUX TENSOR TO GUARANTEE AN
' ' . EXTREMUM

The‘existahce of an extremum of the action is guaranteed

by three tests which can be applied to the Lagrangian. These

FI—

extend the results of reality tests for mutual'inductance.in

\
o » E
The three tests will be- dealt with in turn. )

static circuit theory.

a) The Euler Equations are satisfied.

{
i
:
:
i
]

: b
'b) ;The Legendre Test. If S ::SL(t,qﬁé*)dt is an extremum
| (8 . ) .

theiqua@iatic form whose matrix is (a;y3) = (Eé},is) must'bef
positive definite. Thus the matrix
|
f) B

is positive definite. A necessary and sufficient condition.for
~this to be true is that the minor determinants be greater than

or equal to zero. That is
30; » .
5% >0

20, 20"
aiu ? ai&

>0
0@ s 20,
o1’ 0i®

‘Fof the_unéaturated case this is

]



L:SS >0

" ? L|a
P

Lau ] L’aa

¢c) The Jacobi:Tgét: _Ali terms of the form:

2
11‘@1r (615615) (alsalr).

.:.rr
i

(

must be,greaﬁer #han dr~equa1 to zero. That is

i

( a®rM_Jb _ pll)>o

" For no -saturation this is

(Brp) (Lee) (L&Q = 0]

;
f
This is included in the above since Lrs = L.y by energy con-

siderations or ‘as can be proved dlrectly 51nce

1

)
51 = O
FE 00, OB O

Di®diT ~ 0i° ~ Oifdi° = 0ir °

70
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APPENDIX II THE HAMILTONIAN; ENERGY AND CO-ENERGY

The Lagrangian of an electromechanical system is an
implicit function” of time and hence if dissipation is neglected
(chsed system) the Hamiltonian is conserved. If H is thg'

Hzmiltonian for the electrical part of the system and L. the

Lagrangian L
H= 21“‘ - Le
= 'thL - Ee

H is this case is not equal to E , generally ahd henéé the energy
is generally not a constant under free oscillations of the.
machineag4) It will fluctuate so as to maintain H a constant.
An interpretation of the Hamiltonian can be made by

generalizing the case of a single coil, (Figo IIA).

- Fig. IIA Single Coil B H Curve

In this case the energy is SQ)dl which is equal to the shaded area.

The co- energy is defined as

C., =91 -E =Qi-

B

, 0(1)di

[oX SFan TR I



which is the unshaded area of the rectangle, and is the
Hamiltonian.
Thus as a generalization, the co—energy of the system

is defined as

and the Hamiltonian is equal to the generalizeﬁ co—energye.
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