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Abstract 

This thesis describes the design of a device for 

generating a reproduceable noise signals The noise signal 

is generated by adding three periodic waveforms having non-

multiple periods. Pulse techniques are used in the 

generation of the member functions so that the output may 

be reproduced exactly. 

Theoretical and experimental determinations of 

the amplitude probability distr ibution and of the auto­

correlation function of the signal were made. On the 

basis of tests and observations made, i t is concluded that 

the signal generated may be considered a noise signal having 

a near-Gaussian amplitude probability distr ibution, very 

l i t t l e correlation for time-shifts greater than 30 seconds, 

and a bandwidth of about 60 cps. 
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A REPRODUCEABLE NOISE GENERATOR. 

1. Introduction. 

Noise generators are finding extensive applications in ana-
7,19 5,13,22 

logue computer systems and in servomechanism analysis. 

In most applications, the signal is derived from conventional noise 
2,3,23, 

sources for instance, the fluctuating component of the plate 

voltage of a thyratron kept in a condition of constant discharge, or 

the fluctuating component of the current in a conducting diode. The 

most important characteristic of these signals and of any noise s ig­

nal is that the signal is random - that i s , i t should be impossible 

for a l l T to specify the value of the function at a time T + T , 

knowing completely the behaviour of the function from time 0 to T. 

The noise signal i s usually described in terms of i t s probability 

distribution functions. The most important of these are the f i r s t 

probability function which determines the distr ibution of signal 

amplitudes and the second probability distr ibution which determines 

the autocorrelation function of the s ignal . In physical systems 

subject to s t a t i s t i ca l fluctuations, the f i r s t probability d i s t r i ­

bution of the fluctuations is usually Gaussian and the autocorre­

lat ion function ft ( T ) decreases rapidly to 0 as X increases. 

In d ig i ta l computers random numbers can be generated by 
10,11 

various methods and this would be the equivalent of the noise 
24 

generator in an analogue computer . Since the d ig i ta l computer 

has only a f in i te number of states the sequence of random numbers 
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must have a f in i te period and therefore cannot be truly random. This 

pseudo-random sequence is reproduceable since i t is generated by a pre­

determined programme. This reproduceability has certain attractive 

features associated with i t which the physical noise generator does 

not possess. For certain analogue computer studies i t would be desir­

able to have a reproduceable pseudo-noise signal similar to the pseudo­

random number sequence generated by a d ig i t a l computer. 

This thesis is concerned with the design and development of 

an electronic device for generating a reproduceable noise signal . 

The applications of this noise generator and conventional noise gener­

ators in servomechanism design are discussed in the following paragraphs. 

The design of a control system depends upon the nature of 

the input functions, random disturbances, (such as uncontrolled load 

disturbance or noise in amplifiers) and the nature of the desired 
5,13 s15,22 

response. Usually these functions can only be described 

s t a t i s t i ca l ly , and hence the mechanism is designed according to 
4j 5j13p15j 2S 

s t a t i s t i ca l design theory. This requires a deter­

mination of the average characteristics of the signal, the choice of 

the1 measure of the error, and the design of the system in accordance 

with the conditions of error minimization. Unfortunately, a general 

mathematical analysis of control systems seems limited to l inear 
5 • ; 

systems, and to minimization of the mean-square error. Thus, i f 
another cr i ter ion for minimum error is chosen, or i f a nonlinear 

5,14 
system is analyzed, the,.,recourse is to experimental methods. 



As an example, consider the quasi-linearization of a nonlinear 

servomechanism. The nonlinear element is approximated by a quasi-linear 
5 

element. The linearized system is then designed so that the response 

of the linear system to an input ^ ^ ( f ) i s fiiQ( x) where fi^i'1) ° 
y 4 ( t ) y 4(t+T ) , j * i 0 ( = J±M y 0 ( t + T ) > a n d y 0 ( t ) i s t h e output 

of the nonlinear system to an input y . ( t ) . The process is shown 

diagrammatically in Figure 1-1. 

y A ( t k y ^ Nonlinear 
System 

a) Nonlinear System. 

Quasilinear 
System 

Ly 0(t) 

b) Quasi-linearized System. 

Figure 1-1. Quasi-linearization of a Servomechanism. 

t 

The equivalent system can then be analyzed for behaviour with respect 

to changes in system parameters or changes in input signal character­

i s t i c s , and hence a better understanding of the nonlinear system may 

result . In order to design the equivalent linear system, the input 

autocorrelation function t) and the input-output cross-correlation 



function ft. ( l) must be determined. With a-conventional noise generator 

1 21 22 

as the signal source, complex autocorrelators ' ' or variable delay 

lines would have to be used in order to be able to calculate the functions 

p,. ( T) and p. ( T ) O With two of the reproduceable noise generators, 

howevever, only simple multiplying and averaging devices would be needed 

to determine these functions, since J^(t) and y^(t+T ) could be gener­

ated simply by turning one of the generators on a time X before the other 

one. (See Figure 1-2) > 

Generator 
One 

Generator 
Two 

Nonlinear 
System 

v i ( t ) v 0 ( t + x ) > . 

y.(t)y.(t+T) 

Figure 1-2. Correlation of Signals. 

Also, i f the input signal were obtained from a conventional noise gener­

ator, the effect of varying a parameter in the linear system would have 

to be evaluated s t a t i s t i ca l ly whereas i f a reproduceable noise generator 

were used a fast comparison of the responses of the altered and unaltered 

system to the same random signal would be possible. Thus the design of 

both l inear and nonlinear servomechanisms subject to minimization of 

various error c r i t e r i a could be fac i l i ta ted using the reproduceable 

noise generator. 
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2. Generation of a Noise Signal Using Periodic Functions 

2-1. Introduction. 

Since a noise signal i s specified only by i t s probability 

3,23 

distribution functions, there is no definite approach to the problem 

of generating a reproduceable noise s i g n a l „ For the probable appl i ­

cations of this generator i t is more important to have the signal ampli-

tude fluctuate according to a definite probability distr ibution than i t 

i s to have an autocorrelation function which f a l l s off rapidly with 

increasing x . The signal output w i l l therefore be required to have 

a f i r s t probability distr ibution which is approximately Gaussian, and 

an autocorrelation function which fa l l s off as rapidly as possible 

with increasing x , due consideration being given to achieving this 

result with simple circuitry,, 

2—2„ Theory of Generation of the Noise Signal. 

Tg meet these requirements i t was proposed that the signal be 

generated as the sum of a number of periodic functions, under the 

assumption that the signal so produced would fluctuate in a haphazard 

manner. Because periodic member functions are used, the composite 

function is also p e r i o d i c If the noise signal i s to be random in a 

time interval , however, the signal must not repeat in that interval ; 

hence, the composite function must have a long period. There is also 

a time of recurrence or near-period associated with a composite function 

of this form which may be very much shorter than the period of the 

function. Consequently, a further res t r ic t ion is made on the function; 

that i s , the near-period should be as long as possible. 



2-2-1„ The Period of a Composite Function. 

A function F(t) composed of a number of periodic functions 
m 

f . ( t ) ( i = 1,2, . . . , m), such that F(t) = ^> f . ( t ) , has a period 

which is dependent upon the periods of the component functions. To 

determine the relationship between the period of F(t) and the periods 
of f . ( t ) consider the function 

l 

F(t) = ^>* . fo ) » f x ( t ) + f 2 ( t ) + . . . + f m (t) 
i « l 

where F(t) = F(t + T ), 

and ^ i ^ ^ = + T^o 

That i s , x i s the period of F(t) and x^ i s the period of f\,(t). 

Then F(t) =* f.-(t) + f „ ( t ) + . . . + f (t) » F(t + x ) 

and so F(t +x) = f , ( t +X ) + f g ( t + X ) + . . , + f (t + X ) 

Since f-(t) « f . ( t + T.) = f, (t + n T.) where n is an integer, then 
1 1 1 1 3 . 

we must have n. T , a n o T „ t = 0 . . ^ n x =» T . 
l l <s d, . m m 

(n^, n^, o.o , n m integers) 

If we let the largest common divisor of T 1, T_, ... , x be T, then we 
JL ID 

may write T> ^ =^ T, ^ X ^ T, . . . , T f f l » X. T , where . . . , X m 

are dimensionless integral multipliers whose largest common divisor is 1. 

That i s , T defines a unit period and the periods of the functions are 

multiples of this unit period. Then, writing x = XT =n^XjT = XgT** • • • 
= n X T we have X = n 1 l X = n 0 X . = i 0 0 0 = n X . In the general case X m m 1 1 2 2 m m 
* The largest common divisor of the numbers a ,b,c , . . . k, is the largest 

positive integer which divides a.b.c, . . . k. 1 2 
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equals the l e a s t common multiple of ^ ^ , \ , , « . o > ^ m • * n * n e 

s p e c i a l case where X , X , ... , A are a l l coprime , the l e a s t 
X b ID 

common multiple of X p Xg, .00 , X f f l i s simply the product A, ^X^••*?•• X m 

The period in this case is T = XT » X^Xg";"?* X To m 
Thus i t is seen that i f the periods of the member functions are chosen 

so that theX^'s are coprime, the composite function w i l l have a very 

long period. 

2-2-2. The Near-period of a Composite Function. 

A function qbtained by summing two or more periodic functions 

may exhibit what shall be termed near-periodicity. To i l lus t ra te the 

phenomena of near-periodicity and to establish a cr i ter ion for deter­

mining the near-period of a function, consider the function 

F(t) = f x ( t ) + f 2 ( t ) , ' 

where f j ( t ) ' « f x ( t + X l T) , 

f 2 ( t ) - f 2 ( t + X 2 T) , 

and X^, Xg , and T are as defined in the preceding section. 

The multipliers Xj andXg a r © necessarily coprime and the period of 

F(t) i s XT ^ X j X g T. Suppose, however, that there are integers 

n^( < and n^ (< X^) such that n^ XjSrf-iig Xg. 

The least common multiple of the numbers a ,b,c , . . . , k i s the 
12 

least positive number which is d iv i s ib le by a ,b,c , . . . , k. 
Two integers a and b are said to be coprime i f the largest integer 

which divides both a and b is 1. The numbers a ,b,c , . . . k, are said 

to be coprime i f every two of them are coprime. 



That is n l X l = n 2 X 2 + 62 ( | 6 2 l « h o r X 2 > 
(6 2^ 0) 

Then, 

F(t + nx XjT) = f j ( t + n t X ^ ) + f g (t + ̂  X jT) = 

= f ^ t + n t XjT) + f 2 (t + n 2 \ 2 T +6 2 T) = 

S : f x ( t + n J X J T ) + f 2 (t + n 2 \ 2 T ) « (neglecting6 g T 
w . r . t . X gT) 

- f ^ t ) + fg(t) . 

or, F(t + ^ X j T ) 2 5 F ( t ) . 

We see that the function4almost repeats in the time n^ X jT. 

We shal l c a l l this timeiT^, the near-period of the function F ( t ) . Of 

course, the value of is dependent upon 5 , the maximum allowed value 

of <§ g. If the value of 6 is chosen to be 0, then T^ is simply the 

period of the function, X ̂  XgT = XT. 
m 

In the general case where F(t) = f^ (t) and 
i=l 

f . ( t ) = f . ( t +X.T) 

we shall define the near-period T^ of F(t) to be the value n^ X j T . 

The n^ ( i = 1,2, . . . , m) are integers which satisfy the conditions 

6 . . <f<C6 where 6.. = ( n . X . — n . X.) 

i> j = * » 2 » ...,111 

and where 6 i s small compared toX ^, Xg, . . . . X^ 
m 

2-3. Designing the Noise Generator. 

The design of the noise generator consisted of a choice of the 

form of the member functions and the determination of the number and 

periods of the member functions so as to produce a long near-period. 
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The form of the member functions was f i r s t decided upon from consider­

ations of ease and r e l i a b i l i t y of generation with electronic c i rcu i t ry . 

Because reproduceability was a prime consideration, a combination of 

pulse and d ig i ta l techniques was used. Once the form of the member 

functions had been adopted, computations were made to determine the 

number and the periods of these functions so as to y ie ld a long near-

period of the composite function. The form of the member functions is 

best described by considering the manner in which the member functions 

are generated and the results of this method of generation. 

2-3-1. Generation of a Member Function. 

Each member function is generated as the result of the con­

tinuous cycling of a multivibrator chain by a precision-timed pulse 

t r a in . A 1 0 0 Kc crystal osc i l la tor serves as the source from which 

are derived the actuating pulses for the multivibrator chains. 

Consider the generation of one of these member functions. 

The output of the crystal osc i l la tor is used to in i t i a te a continuous 

pulse output with a pulse-recurrence-frequency (PRF) of 1 0 0 , 0 0 0 pulses 

per second (pps). This output PRF is divided down successively by 

three phantastron divider units whose divis ion ratios - that i s the 

ratios of the input PRF's to the output PRF's - are d^, dg, and dg. 

The PRF of the output of the last phantastron is then , 1 " ^ ^ pps. 
a i a 2 3 

This output is used to actuate a multivibrator chain consisting of 

k bistable multivibrators in series. The multivibrator chain is 

designed so that one cycle of the chain is equivalent to N pulses, 
^ N d^dgdg 

where N = (2 — l ) . The period of the chain is then i n n n n n seconds. 



Each multivibrator of the chain actuates a gate so that a voltage 

V. (j = 1,2, . . . , k) i s transmitted to the output of the generator when 
J 

the multivibrator i s in one state and a voltage 0 when the multivibrator 

is in the other state. The voltages V. are either positive or negative. 

The output voltage at any instant i s the sum of the voltages transmitted 

to the output of the generator. 

To i l lus t ra te the waveform obtained at the output of the 

generator from one of the multivibrator chains, consider the output of 

a chain consisting of three multivibrators connected so that 

Vj = + 3V, Vg = — 2V, and Vg = - V, and the chain is connected so that 

i t recycles after (2 - l ) = 7 pulses. The i n i t i a l configuration is 

such that the output voltage V q is 0. After one pulse, V Q = VJ= +3V 

two pulses, v

0

e s V i + V 2 + V 3 = • • + o v 

three pulses, VQ=Vg= -IV 

four pulses, V =V.+V„= +2V 

five pulses, V^V^ -2V 

six pulses, V =V.+V0= .....+1V 

seven pulses, v = 0+0+0 =».*»#-0V 
o 

. •• -4 ' •; • • . 

The cycle repeats after the seventh pulse. The sequence of operation 

depends entirely upon the i n i t i a l configuration of the multivibrators. 

The output waveform is shown in Figure 2-1. 
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Input 
pulses 

feedback pulse to recycle chain. 

I IT~T f r r r r 
Output from 
f i r s t +3V 
mult iv i ­
brator 0 

A Output from 
second 
multivibrator 

6 
-2V 

Output from f 

third 
Mult ivibrator 

0 
-V 

Output from i 
Chain 

+3VI 

-3V-r 

Figure 2-1. Example Output Waveform from Multivibrator Chain. 

The waveform described above i l lustrates the form of the 

member function adopted for use in the noise generator. The remaining 

step in the design was to obtain a long near-period for the composite 

function. 



2-3-2. Determination of the Periods of the Member Functions. 

The f inal step in the design was to determine the number of 

member functions and the periods of the member functions so as to obtain 

a long near-^period of the output s ignal . (At this point, no idea of what 

constituted a "long" near-period had been formulated.) The simplest form 

of the composite function was t r i ed , namely F(t) » f j ( t ) + fg(t) where 

the member functions were of the form described in the preceding section. 

N 'd-jdjgd^g 
The period of f j ( t ) ia x ^ =» —100 000—'— sees, and that of fg(t) 

N2 d21 d22 d23 
is T g «» 100 000— s e c s » The problem was to determine values of the 

N's and d's which would give a long near-period. Because phantastron 

dividers were to be used, the d's were constrained to l i e in the range 

7 to 20 to ensure stable operation. Also, the product djdgdg was to be 

about 1000 so that the input PRF to the multivibrator chains would be 

about 100 pps. The N f s were chosen to be of the form (2 -1) so the 

factors Nj and Ng would be coprime. The k*s were kept small so as to 

minimize the biasing effect inherent in the binary scaling action of the 

multivibrator chains, (v iz . the last multivibrator in a chain is "off" 
2

k • 2
k 

for ( g- — l ) successive pulses and "on" for •g successive pulses: 

this merely produces a shift in the output dc level every half cycle, 

and hence i f the k's are too large this may be considered a sort of 

"biasing" action as opposed to the "switching" action of the f i r s t 

multivibrators.) 

In order to determine values of the d's and k's for the two-

function case, a programme was written for the Alwac III £ computer to 

solve the problem: Given 6 , K and M Compute integers x and z so that 



the difference 6 ^ = (xK-zM) in absolute value is less than or equal to 6 

( i . e . \ o 1 ^ 6 ) Various values of K = ( 2 k i l ) d 1 1 d 1 2 d 1 3 and 

M = (2 2-l)dgjdggdgg were tr ied, but the length of the near-periods ob-
d l l d 1 2 d 1 3 

tained (as determined for 6 = go ) w e r e a * l only of the order of 

a few seconds. This was considered too short. 

The next simplest form of the composite functions was t r i ed , 

that of F(t) equal to the sum of three member functions. Again, a pro­

gramme was written for the Alwac III E computer to solve the problems 

Given 6 , K, L, and M Compute integers x, y, and z, so that the d i f f ­

erences 6^= (xK-zM) and 6 g = (yL-zM) are, in absolute value, less than 

fcl 

or equal to 6 . Various values of K = (2 "*l) dn < ii2 d13' 
/ fc2 \ i k 3 \ 

L » (2 - 1 / d £ i d 2 2 d 2 3 a n d M " ( 2 ~ 1 ' d 3] d 32 d 33 w e r e t r i e d » Near periods 

ranging from a few seconds to six minutes were obtained. The values 

which gave a near-period of six minutes are the values used in the 

noise generator. 

They ares 

d l l a 10 
d21 - 10 

d31 a 10 

d12 = 13 
d22 = 11 

d32 - 12 

d13 m 8 
d23 - 9 

d33 - 8 

( * k l - l ) - 7 ( 2 k 2 - l ) = 15 ( 2 k 3 - D a 31 

case, the values of the \ ' s are 

\ m 728 = 7(13)8 

x » = 1485 a 15(11)9 

\ » 2976 = 31(12)8 

and that of T, T = 1 Q Q 1 O O O — seconds =0.1 milliseconds. 

The period of the function, given by T times the least common multiple 



of Xj,, Xg and Xg iss 

T 728(1485)2976(0.1) . . . . . 1 Q . n _ „ Q O n 

T = 3(8) milliseconds = 13,405,392.0 msecs., 

which is approximately 223 minutes. The near-period, T q , as determined 

c d l l d 1 2 d 1 3 for 6 = - iss 

T n " " l X 1 T = 5 0 6 9 ( 7 2 8 ) ( ° » 1 ) msecs = 369,023.2 msecs., 

which is approximately six minutes. (The value of 6 chosen is such 

that 6T i s about one-half the time between pulses into the chains.) 

The programme for the three-function case is described in Appendix A. 

2-3-3. Summing of the Member Functions. 

Addition of the three member functions is effected through 

an operational amplifier c i rcu i t using a Philbrick K2-X operational 

20 

amplifier unit » The member functions are summed and passed through 

a smoothing network simultaneously and in this way the output i s 

smoothed into a continuous s ignal . 
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3, Practical Design Considerations 

3-1. Introduction. 

This section presents the c ircui t s used i n the noise gener­

ator and a discussion of the manner in which the member function wave­

form voltages and the output network parameters were decided upon. 

3-2. Electronic Circu i t ry . 

A l l the c ircui t s used in the noise generator are of standard 

design. For this reason, no descriptions of the c i rcu i t actions are 

given and instead the reader i s referred to standard texts and ijournals. 

(References 6, 17, 18, and 19.) A block diagram of the noise generator 

and diagrams of the c i rcui t s used in the noise generator are given in 

Figures ( 3-1. to 3-4 inclusive. Component values are included in 

the c i rcu i t diagrams as well as some of the pertinent waveforms. 

3-3. Scaling and Addition of Component Waveforms. 

The form of the member functions having been decided, the 

next step was to choose values of the output waveform voltages. In 
1 

order to further minimize the biasing effects of the binary scaling 

action of the multivibrator chains (Section 2-3-2.) i t was decided to 

weight the output voltages gated by the multivibrators. For example, 

for a chain of k multivibrators, the weighting factors are such that 

Vj « -j- v « Vg 8 5 o . . , V^ = ~ V. Also, the voltages were chosen so 

that the sum of the positive voltages gated by the chain was equal to 

the sum of the negative voltages gated by the chain, ( i . e . , 
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r1 + v2 + . . . + vk = o). 

A schematic of the output stage is shown in Figure 3 - 5 . 

The response of this network at time t 

to a step input of V\ volts at time 0 

R 

is e „ ( t ) = - V. g £ ( l -e x n ) where 

XiQ - R Q C . Similarly, the response at 

time t to a step input of ^ volts 

R 
O 

R 

e 0 (t) 

Figure 3 - 5 . Output Network, " V i R o 
at time 0 is eQ(t) - ~ ( jp) ( l -e ° ) 

i 
Regrouping gives, _ ^ 

•.<*' " " v i < BC> ( > - ~ ° > 
1 

That i s , by choosing values for V^, R ^ , R q , and xQ t then the input 

resistor value for an output scaled down (weighted) by a factor rjr i s 

just k times the unit resistor value R ^ . In the noise generator, the 

V^'s were chosen to be i 4 5 vol ts , and the R ^ ' s were chosen to give 

output voltages weighted as described in the preceding paragraph. 

The time-constant T Q was chosen to be approximately equal to 

the duration of the voltage steps from the multivibrator chains. The 

value of the resistor R was chosen so that the maximum excursions of the 
o 

smoothed waveform are - 100 vol ts . 

The values of the components are tabulated below with the 

steady-state output voltages and the output voltages at time T • 



Resistance Steady-state voltage Voltage at 

R u = 60K - 51.0 - 32.5 

R 1 2 m 90K + 34.0 .+• 21.7 

« 180K +17.0 + 10.8 

R 2 1 - 75K + 40.8 + 26.0 

R22 = 1 0 0 K - 30.6 - 19.5 

R 2 3 « 150K - 20.4 - 13.0 

R g 9 - 300K + 10.2 + 6.5 

R 3 1 = 84K + 36.5 + 23.2 

R o n m 120K - 25.5 - 16.3 

R 3 3 - 160K - 19.1 - 12 .2 

« 210K +'l4.8 + 9.3 

R o c - 480K = 6 . 4 - 4.1 
O O 

R = 68K C « 0.15 lit, T 10.2 msecs. o r o 



4. Analysis of the Noise Signal. 

4-1. Introduction. 

The analysis of the noise signal consisted of a theoretical 

and an experimental determination- of the probability distr ibution of 

amplitudes and of the autocorrelation function of the s ignal . The 

methods of determination and the ^results so obtained are discussed in 

the following sections, as well as,a comparison of the experimental and 

theoretical results . 

4=2. Theoretical Analysis 

The theoretical analysis was not of the actual output signal, 

but rather of the unsmoothed output s ignal . Consequently, only a 

rough agreement with the experimental results was expected. The un­

smoothed waveform was used as an approximation to the actual signal 

because i t is composed of truly periodic functions and hence lends 

i t s e l f more readily to theoretical analysis than does the actual s ig­

nal which is composed of aperiodic functions. 

4—2-1. Theoretical Amplitude Probability Distr ibution. 

The probability distr ibution of amplitudes was determined by 

considering the distr ibution obtained by sampling the waveform over a 

long time interval . To determine this distr ibution i t is necessary to 

dissociate the unsmoothed signal into i t s component parts. 

Consider f i r s t the waveform obtained from the f i r s t mult i­

vibrator chain. (Figure 4-1 (a)) If this waveform were sampled ran-
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domly over a large number of cycles of the waveform, the probability 

distribution of amplitudes would be as in Figure 4-1 (b). Similarly, 

for the second and third chains, the probability distributions of 

amplitudes would be as in Figure 4-1 (c) and Figure 4-1 (d) respect­

ively . Thus, there is an average probability pj(kjV) that a voltage 

kjV is delivered by chain 1 at a time t , an average probability p 2 (k 2 V) 

that a voltage kgV is delivered by chain 2 at a time t , and an average 

probability p3(kgV) that a voltage kgV is delivered by chain 3 at a 

time t . Because the waveforms have non-multiple periods, in the aver­ 

age the cross—correlation between any two of the member functions is 

zero, and hence the average probabilit ies associated with the wave­

forms are independent. That i s , the probability of occurrence of 

V » (kj + kg + kg)V * s 0 U S * * h e product of the individual probabi l i ­

t i e s , ( i . e . p(V o) = P 1 (k 1 V)p 2 (k 2 V)p 3 (k s V) . ) 

If we associate with each member function a generating 

function G.(s), we may easily determine the probability of occurrence 

of a certain output amplitude. For member function 1 we have 

G ^ S ) = ^ p ^ k ^ S * 1 

x 560 j 280 0 j -280 -66© x -840 
a y s "• + j % + ? s + T S +

 7 8 •* 7 8 

k 

The coefficient of s is the probability of the voltage kV occurring. 

There are similar generating functions G 2(s) t̂ rid Gg(s) for member 

functions 2 and 3 respectively. (The powers of s are high because 

the unit voltage V was chosen so that a l l the k's would be integers.) 

Because the average probabilit ies associated with the member functions 
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are independent, the generating function for the sum of the waveforms is 

equal to the product of the generating functions of the individual 

waveforms, i . e . CrQ(s) = Gj^sjGgfsjGj^s),, The product of the generating 

functions consists of about 3000 terms, and so a programme was written 

for the Alwac III E computer, (See Appendix B), to group the terms 

according to the values of the exponents and to count the number of 

terms whose exponents l i e in the range (n)l68 to (n+l)l68. ( i . e . 

(n)l68 <̂  (n+l)l68, n = -15, -14, . . . , 0, . . . , f 5 . ) Dividing the 

count for each range by 7(15)31 gives the average probability that the 

output amplitude l ie s in the range (n)l68 and (n+l)l68, since the frac-

(n)168 t 

t ion so formed is the coefficient of the term s* ' . ( The range 168V 

corresponds to an increment of volts = 6.45 v . ) A plot of the 

normalized theoretical amplitude probability distr ibution is shown in 

Figure 4-2. 

4-2-2. Theoretical Autocorrelation Function, 

The autocorrelation function fi (t) of a function F(t) - f (t) + 

f (t) + f ( t ) , where f^(t) , f 2(t)> a n d ^ f a ) a r e periodic functions 
2 3 

with coprime periods, is merely the sum of the autocorrelation functions 

22 

of the individual functions. This i s because the multipl ication of 

components of different frequencies results in a zero average value. 

In the case of a periodic waveform, the basic form of the autocorrelation 
-+T function 

0 (*) O&ffl̂oijr / f(t) f ( t + x) dt 
may be replaced by the expression 

0 ( T ) O _ A _ / j f ( t ) f ( t + x ) d t i exprea 



where f ( t ) is periodic of period x .. 
J 

Consider a function f(t) of period Nx ^ such that: 

f (t) - fQ 0 < t < T j 

• " f l * 1 < * < 2 T 1 

= f k k T l + i H i 

" f N - l ( N - l ) ^ < t < N T 1 

where f n , f^, . . . . f^ . . . , fjj ^ are constants. ( Se^ Figure 4-3), 

f(t>> 

N-1 f _I 

0 
0 

2 " 
N-2 

l T l 2 1 

t-S/ 1 i ) 3 
r 3Tj ( N - 2 )T 1 (Nj-ljTjN^ t 

Figure 4-3. Sample- Function. " 

The autocorrelation function ^(n x^ ), i s then, 

^((nXj) « ^ I f ( t) f(t+nT x) dt = . j i - ( / f ( t ) f(t+ n x ^ 
1 / r . 1 

dt 

2 T , NT, 

+ / f ( t ) fft+nx^ dt + . . . + / f (t) f(t+nXj) dt) 

! ( N - l h j 

A N X , 

N X T < f o / + + 
1 y 0 ^(N-l)x x 

X X 2T 

Sjj- ( f 0 f n / dt • f j f ^ 

f ( t + nXj) dt ) 

Nx, 

dt + . . . . + f ^ f N _ 1 + n 

(N-l)x 



= i '< f O f n + *1 f n + l + — + f N - l rH-l+n > 

Similarly we may write 

0((n+l) x ^ - i ; ( f 0 f n + 1 + —+*SZi)^ 

Suppose, however, the time-shift is not an integral number times, x ̂  

butj say (n+a) % 1 where O ^ a ^ l . 

Then, ^ ' ((n+tt)^) = F x / fM f (*+(n+a) xx) dt = 

/ X l 1 ° /(k+1)^ 
( f 0 J f(t+(n+a)^) dt + . . . + f k / f(t+(n+a)xi) dt + . . . 

+ f(N t) / tMwjtj) dt) . ) 

/ ( " - l ) T l , & » ! > . . . 

Consider the general term in the bracket, f^ / f(t+(n+a)xj) dt 

Ac Xj 

Now, f (t+(n-ta )x̂ ) assumes'two values in the range k ^ ^ ^ t ^(k+ljt^. 

For k i j ^ t ^ k X j + (l-a) % 1 we have t(t+(n+a)n; ) = f f c + n and for 

kxx + (l-ajxj ^ t ^(k+l)x 1 we have f(t+(n^)xi) s f k + Q + 1 . There-

fore, the integral / f(t+(n-KX)Xj) dt equals 
k T l 

,(k+(l-a)^1 /(k+lJx,̂  
fk+n d t + / W l d t « W^V ' k+n+ l a l 

'k^ /(k+U-a))^ 

and so the function ft ( (n+oc) x̂ ) becomes 

H (n+o) V ( f 0 f n ( l - ^ \ + f 0 f n + 1 ( a) \ + . . . 



+ Vkw + fk fk+n+l (a) + + f N - 1 ( l - a ) ^ .•. 

+ F N - l F N + n <a> 1 } ' 

Regrouping and cancelling givess 

a <(n+a)^) . i < f 0 f n + f l f n + 1 + . . . + ^ W l ) + 

+ N ( f O f n + l + f l f n + 2 + — + F N - l F N + n - f 0 f n f O f n + l " — 

Thus.$-the autocorrelation function of this rectangular-shaped 

waveform is a triangular-shaped function having the same period 

as the original function. The autocorrelation function 

is an even function and hence 0(t) = ). But, fi(l ) = ^ ( N T X + T ) 

and also •= ̂ ( N T J - T ) . Therefore, 0( T ) » 0 ( N ^ - x ) . 

That i s , the autocorrelation function i s symmetric about the half-
NT^ 

period point - r — . A plot of the normalized theoretical auto-
0 n ( x ) * <T) ^ 3 3 ( X ) 

correlation functions ^—rQ-y , jg|—jfoj- ' and ̂  (o) *ne 

member functions f^, fg, and fg are shown in Figures 4—4 (a), 

(b) and (c) respectively. (4. programme was written to determine 

the cardinal points ^ ( n X ) . This programme is described in 

Appendix C.) 

Because the individual waveforms have independent proba­

b i l i t y functions ( i . e . are uncorrelated) the autocorrelation func­

t ion of the sum of the waveforms i s equal to the sum of the auto­

correlation functions of the individual waveforms - that i s , 

0 ( T ) - fiu( + 0 2 2 ( T > + 0 3 3 ( t ) ' v h e r e P ( t ) = f i ( t ) + f 2 ( t ) + f 3 ( t ) 



a) Normalized Theoretical Autocorrelation Function for Waveform One. 
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b) Normalized Theoretical Autocorrelation Function for Waveform Two. 

c) Normalized Theoretical Autocorrelation Function for Waveform Three. 

d) Normalized Theoretical Autocorrelation Function for Composite Waveform. 

Figure 4-4. Theoretical Normalized Autocorrelation Functions. 



and ^ ( T ) is the autocorrelation function of F ( t ) . The normalized 

autocorrelation function of the composite waveform is 

i r n = j n ( o ) + ^ 2 2 (o) + ^ 3 (o) 

A plot of the normalized autocorrelation function ^ | Q | i s 

shown in Figure 4 - 4 (d). 

4-3, Experimental Analysis. 

A laboratory determination was made of the amplitude proba­

b i l i t y distribution and of the autocorrelation function of the actual 

output signal . The probability distr ibution of amplitudes was de­

termined using sampling techniques and the autocorrelation function was 

determined using two of the noise generators and a multiplying and 

averaging device. These methods are described in the following 

sections. 

4 - 3 - 1 . Experimental Amplitude Probability Distribution. 

The method by which the amplitude probability d i s t r ibu­

tion was obtained was to sample the waveform 500 times per second 

for a time T q minutes, and to count the number of times the ampli­

tude of the pulse so formed was in the range v to v + / \ v . 

Dividing this number by the total number of pulses then gives the 

probability of the amplitude of the waveform lying in the range 

v to v + A v . The time T was chosen because this is the near-
n 

period of the signal and hence should give an accurate probability 

distribution for a l l time intervals . The sampling frequency 



(500 times per second) was chosen to be very much higher than the hal f-

power bandwidth of the noise signal (approximately 16 cps as determined 

by ^ , the smoothing-network time-constant) so that, in effect, the 

waveform was sampled continually and consequently the count for a par­

t icu lar amplitude is a very accurate measure of the time the waveform 

was at that amplitude during the time T q . A block diagram of the 

sampling system is shown in Figure 4-5 (a), and the waveforms at 

various points in the sampling process are shown in Figure 4—5 (b). 

The chopper system consisted of a gating c i rcu i t activated by a b i ­

stable multivibrator. The differentiator and inverter system con-

20 

sisted of a Philbrick K2-X unit which inverted the chopped wave­

form, followed by a simple RC differentiating network. The K2-X 

unit was used so as to provide a high-impedance res is t ive load for 

the gating c i rcu i t and to allow a gain adjustment to offset the 

sl ight attenuation introduced by the differentiating network. Thus, 

the amplitude of the pulse delivered at time t by the differentiating 

network may be made exactly equal to the instantaneous amplitude 

of the noise signal at the time t . The c i rcu i t diagrams for the 

chopper and differentiator units are shown in Figure 4-6. 

The pulse-height discriminators (kicksorters) used were 

Marconi type 115-935, and were the property of the Van de Graaff 

section of the U.B.C. Physics Department. Thirty kicksorters were 

available and so i t was possible to divide the noise signal into 3 0 

discrete amplitude ranges, 0 to V^, Vj to Vg, . . . , Vgg to V ^ Q , and 

so determine the number of counts for each range* The maximum 
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pulse amplitude accepted by the kicksorters was 40 volts (negative-

going) and the maximum counting rate per channel was 50 pps for sus-

16 

tained counting. For this reason, the noise signal was scaled down 

and biased so that the maximum signal excursions were from +5 to +45 

volts . The pulses delivered from the inverter and differentiator 

system thus had an amplitude of from -5 to -45 vol t s . The noise 

signal was made to vary from +5 to +45 volts so that the minimum 

pulse amplitude due to the signal ( i . e . 5 volts) was greater than 

the maximum pulse amplitude caused by switching transients in the 

chopper system, (approximately 2 vol t s ) . Because the maximum allowed 

counting rate was only 50 pps, i t was necessary to make the voltage 

rangesAVj => V - V ^ + ^ ( i =1 , 2, . . . , 30) of different magnitudes 

in order to obtain an accurate count of the number of pulses of each 

amplitude. Using the theoretical probability distr ibution of ampli­

tudes as a guide, a set of values was determined for the V \ ' s so as 

to ensure the counting of a l l the pulses. The normalized probabil­

i ty distr ibution obtained from the kicksorter data is shown in 

Figure 4-7. 

4-3-2. Experimental Autocorrelation Function. 

The experimental autocorrelation function was obtained by 

using two of the noise generators and a mult ipl ier and an integrator. 

Generator one was turned on a time T before generator two, and the 

signals N(t) and N(t+ x) were multiplied and integrated for a period 

of six minutes and fifteen seconds (almost the near-period duration). 

Dividing the value of the integrator count obtained for the time 
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shift t by the value of the integrator count obtained for the time 

shift of 0 seconds gives the normalized autocorrelation function for 

that particular value of x , Shifts of 30 seconds were made for the 

range t =0 to t => six minutes, and the resulting values of the auto­

correlation function are shown plotted in Figure 4-8. 
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Figure 4-8. Experimental Normalized Autocorrelation Function. 

The mult ipl ier used was a Phi lbr ick Model MU/DV Duplex 
20 

Mult ipl ier /Divider . The output from each generator was scaled down 

so that the maximum signal excursions at the input and output of the 

multipl ier were in the allowed range of - 50 volts . The output of 

the mult ipl ier was then scaled down and fed into an ac tachometer-

feedback servo motor. The speed of the motor was proportional to 

the voltage in and hence the count of the number of revolutions of 

360 
X 

the motor for a given, time T^ represents the integral of the speed 
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for that time ( i . e . , the count i s proportional to the value of the 

integral of the input voltage for the time T^ . ) . Since a normalized 

autocorrelation function was desired, i t was only necessary to ascer­

tain over what range of input voltages the integrator was l inear , and 

then keep within that range.. The constant of proportionality cancels 

out in the normalization procedure,, A block diagram of the correla­

tor is shown in Figure 4-9 and the c i rcu i t diagram for the integrator 

i s shown in Figure 4-10. 

Generator 
One 

N(t) 

Generator 
Two 

N(t+x) 

Mult ip l ier N(t)N(t+'Q 

/lJ(t)N(t+T) dt 

Figure 4=9. Block Diagram of Correlator 0 

4-4. ' Comparison of Theoretical and Experimental Results, 

->• 

The theoretical and experimental amplitude probability 

distributions and a computed Gaussian distr ibution are shown together 

in Figure 4—11. The Gaussian curve was computed using the mean and 

mean-square values' calculated frpm the experimental d is tr ibut ion. 

A very good f i t was obtained. The theoretical distr ibution was 

shifted to the right (13.5 - 2 . l ) volts = 11.4 volts so as to make 

the theoretical and experimental means coincide. As was expected, 

the experimental distr ibution was more peaked near zero amplitude 

than was the theoretical d is tr ibut ion. This i s due to the action 
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p(v) 
Amplitude Probability 

fO.018 

Figure 4—11„ Normalized 
Probability Distributions 



of the smoothing network in the 

output stage of the generator. 

The good Gaussian f i t may be just­

i f i ed by viewing the generation 

process of the noise signal in a 

s l ight ly different manner - viz<>, 

consider the noise signal as 

being generated by adding many 

short pulses of various ampli­

tudes and of various du' ^tions,, 

(See Figure 4-12 o ) . , The 

Central Limit Theorem of 

g 

s tat i s t ics provides the means 

for jus t i f ica t ion. This theorem 

states that the distribution of 

the sum of an indefinitely large 

number of other independently 

distributed quantities must 

approach the Gaussian dis tr ibu­

t ion, no matter what the 

individual distributions may be0 

f r ( t ) 

f 3 ( t ) 

.... r 

f(t) pul s,e 1 

pulse 2 

^ '•—'pulse 4 

pulse 3 

Figure 4-12„ Alternate 
Form of Dissociation of 

Noise Signal* 

The theoretical and experimental autocorrelation functions 

for the noise signal are shown in Figure 4-13* Poor agreement between 

the two results was expected because no account was taken of the 

smoothing network effects in the theoretical determination, and also 



the accuracy of the integrator is questionable. ( i t is proposed to 

build a precision dc tachometer-feedback servo integrator in order 

to more accurately determine the autocorrelation function.) The 

experimental and theoretical results agree very well , however, under 

the circumstances. 

1.0-O 

0.8-1 

Figure 4-13. Theoretical and Experimental Autocorrelation Functions. 



5. Conclusions. 

Examination of the data obtained f a i l s to reveal a precise 

relationship between the theoretical and experimental probability 

distributions. The general good agreement between the theoretical 

and experimental results does, however, attest to the va l id i ty of the 

theoretical analyses of the waveforms. On this basis, i t is suggested 

that the noise signal produced using the i n i t i a l configurations of the 

multivibrators as described in Case 2, Appendix B, would have a more 

nearly Gaussian probability distribution of amplitudes. This i s 

because the signal so generated would be composed of member functions 

which are balanced ( i . e . have equal positive and negative voltage 

steps. 

A determination of the power spectrum of the signal would be 

of help in ascertaining i f the signal is a true noise signal (or 

nearly so) and also would specify the bandwidth of the noise s ignal . 

The signal probably has a bandwidth of 0 to 60 cps (approximately). 

This figure was arrived at from visual examination of the output of 

the sampling system when the sampling frequency was varied from 500 

cps down to 20 cps. At a sampling frequency of 100 cps there were 

very abrupt changes in the output of the sampling system. This i n d i ­

cates that considerable change in the noise signal had taken place 

in the time between samples. This would occur i f the noise signal 

had a frequency component of around 50 cps. 

On the basis of tests and observations made, i t i s con— 



eluded that the signal generated may be considered a noise signal having 

a near-Gaussian amplitude probability distr ibution, very l i t t l e corre­

lation for time-shifts greater than 30 seconds, and a bandwidth of 

about 60 cps. 



Appendix A. 

A - l . Programme for Determining the Near-periods of a Function. 

As developed in the text (Section 2-3-2 ) the problem 

involved in determining the near-periods of a composite function may 

be stated mathematically ass Given integers 6, K, L, and M, deter­

mine integers x, y , and z so that |zM-xK|^ & 9 | z M - y L | ^ 6, and 

|xK-yL | ^ ^ a A brief explanation of the programme used to deter­

mine the integers x, y, and z for a given set of K, L, and M is pre­

sented in the next paragraph. 

An augmenting procedure is used in this programme. The com­

puter takes a value of z (say z ) and calculates the two integers 

x^j (below) and x^g (above) nearest to the value X q = . The 

machine then tests to see i f | zQM-xnjK j or i f Jz^M-x^gKJ^ 6 

If neither of X Q J nor x&g satisfy the inequalities above, the cycle 

i s repeated with increased by 1. The i n i t i a l value of Z q i s 1 

and so a l l values of z from 1 up are t r i ed . This procedure continues 

u n t i l values of x and z are found (say x' and z') such that | Z ' M - X ' K | ^ 6 

The machine then takes this value of z and computes the two integers 

y^ 1 (below) and yg' (above) nearest to y ' « . The machine then 

tests to see i f either Iz'M-ŷ 'L | ^ 6 or jz'M-yg'LJ ^ 6 . I f 

neither y j ' nor yg* satisfy these inequalit ies, the computer returns 

to the beginning of the programme and starts to determine new values 

of x and z, this time with the i n i t i a l value of z = z '+l . * n 

This series of calculations and decisions i s continued u n t i l 

values of x, y, and z are found which satisfy I zM-xK I ?C 6 and 



zM-yL . The machine then outputs (zM-xK), ^zM-yL), (xK-yL), x, y , 

and z and then returns to the beginning of the programme where i t starts 

to determine new values of x and z, this time with the i n i t i a l value of 

Z q = z+,1. The programme continues unt i l the operator stops the machine. 

A copy of the programme tape is given below. 

aOOh 
83al5717 2c006720 ld967926 112c0000 
28ooflc6 Id8d791f 6722^926 793^f78l 
^82^1107 6llb^91f 2c006720 170lO10c 
tofe723 110c7928 Idl21l85 00000000 
eb21c528 6m>k9ZQ 79296U-b 00000000 
^9256720 lnife723 ^929791f 000*40000 
M157925 eb22c529 !+92a7926 00000001 
6721&925 ^9266720 6725U927 00000001 

elOh 
00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 
00000000 00000000 00000000 00000000 
793^f78l 173^1185 58OOOOOO 00000000 
573287if 00000000 00060000 00000000 
5b36782b 00000000 050000b8 00000000 
1160792e 00000000 00000000 00000000 
f78lll2d 00000000 00000000 00000000 
2822 
aO 6l750ec2 
a l a8b993^5 

A-2. Computer Results 

A part ia l l i s t of the results for the case 6= 600, K = 14850, 

L = 7280, and M = 29760 is presented below. 



(zM-xK) (zM-yL) (xK~yL) X y z 

-570 -560 010 477 973 238 
-510 080 590 479 977 239 

150 -160 -310 501 1022 250 
210 480 270 503 1026 251 

-360 -080 280 980 1999 489 
360 320 -040 1004 2048 501 

-210 -240 -030 1481 3021 739 
-150 400 550 1483 3025 740 

510 160 -350 1505 3070 751 
-060 -400 -340 1982 4043 989 

000 240 240 1984 4047 990 
-570 -320 250 2461 5020 1228 

150 080 -070 2485 5069 1240 

The value of 6 used in this case corresponds to, a time of 

§T a 6.0 msecs. The time between pulses into the chains i s approxi-

mately the same for a l l the chains and is about 10 msecs. Thus, the 

value of 6 T corresponds to about half the time between pulses into the 

chains. A l l the values of the differences were fe l t to be great enough 

to cause sufficient change in the composite waveform up to the value of 

x = 2485. At this point, the maximum shift of any one of the member 

functions with respect to the others is only 1.5 msecs which was con­

sidered too small to cause sufficient change in the composite waveform. 

Thus, this value of x determines the near-period of the waveform. The 

. J • m (14850)2485 „ „ „ . . . . 

near-period is T *» \„:n nAn sees » 369.0225 sees which i s 
n 100,000 

approximately six minutes. 



Appendix B 

B - l . Programme for Determining the Theoretical Probability 

Distribution of Amplitudes. 

To determine the theoretical probability distr ibution of 

amplitudes, i t was necessary to find the product of the generating 

functions of the individual waveforms. Each generating function is 

a polynomial in s and is of the general form G(s) = ^ , p(kV) s^ , 

where p(wV) i s the probability of the amplitude kV occurring. For 

example, the generating, function Gj(s) for waveform 1 iss 

r i \ i V 560 ^ 1 880 2 0 1 -280 ^ 1 -560 ^ 1 -840 . . . 
GjVsj = j , s - + Y § + j s + | S + Y S +| 8 > which 

consists of 6 terms. This may be written as 7 terms, each having the 

J i 

coefficient y ' , which may be factored out. This gives, 

r , \ 1 / 560 , 280 , 0 , 0 , -280 -56© ^ -840x 
G^sJ = y (s + s + S + S + S + s + s ) . 

Similarly, G«,(s) and Gg(s) may be written. Gg(s) a Y5 ( • • •15 terms in 

s and Gg(s) = g-|"~( ..o31 terms in s If now the product of 

these polynomials i s formed, the result would be of the form G(s) • <y(15)31 

(,. 07(l5)31 terms in s^. . . ) . The values of the exponents in this ex­

pression are obtained by taking the sum of a l l possible combinations of 

the 7 exponents from G^(s) plus the 15 exponents from Gg(s) P ^ u a * n e 

31 exponents from Gg(s), a tota l of 7(15)31 = 3255 sums. The generating 

function so formed is of the same form as the modified version of G^(s) 

(above). Multiplying each term by the common factor gggg a n d grouping 

together the terms having the same value of the exponent restores the 

generating function to the original form. ( i . e . G(s) » p(kV)s^ ). 

k 
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The coefficient of s k (some multiple of 3255 ) i s then p(kV), the prob­

a b i l i t y of the amplitude kV occurring. Thus, when the number of times 

the exponent k occurs is known, the probability p(kV) for the amplitude kV 

occurring is simply this number multiplied by 3255 " Because a quantized 

probability distribution was desired, i t was sufficient to determine the 

number of times (say n^) the exponent k was in the range k^ to to 

get the probability that the amplitude was in the range k^V to k ^ + j V » 

A programme was written which calculated the sums of a l l 

possible combinations of 7 plus 15 plus 31 numbers and counted the 

total number of times the sums lay in each of 31 equal ranges. The 

7, 15, and 31 numbers to be summed were a l l posit ive, (This merely 

—840 

means removing the factor s from the generating functions and 

hence increasing the exponents in the brackets by 840.) The range of 

kV from —100 to +100 volts in the physical system corresponds to the 

range of k from 0 to 5040 in the computer. This range was divided 

into 31 equal increments of 168 units each, (which corresponds to 

dividing the range -100 to +100 v into 6.45 volt increments). The 

count for the range (n(l68)) to (n(l68) + 167 ) n= 0, 1, . . . , 30 

was stored in word location n in the computer. Thus, i t was only 

necessary to divide the sum for a particular combination by 168 to 

determine the location of the count which should be increased by 1. 

A copy of the programme tape is given on the following page. 



&OQk 
57if2800 a 5 1 0 J + 9 2 7 ^ 6 7 9 0 0 78lfll6o 
flckk&kl 793^a510 6 l 2 f J + 9 0 0 0 0 0 0 0 0 0 0 
17a0573'b i*91f79k7 17ML791f 0 U 0 0 0 0 5 9 

2 8 0 0 f l c % 6lUoU97f 6 7 2 f U 9 1 f 0 0 0 0 0 0 0 1 

1+856172C 5737797? 1 9 5 8 7 9 2 7 0 0 0 0 Q 0 a 8 

5 7 3 7 2 8 0 0 6 0 7 f 3 0 0 0 672^927 OOlfOOOO 
f l e W ^ f 2 8 0 0 e l b 3 3 I 9 5 6 5 7 3 7 OOOfOOOO 
1 7 b ^ 7 9 3 f 3 0 0 0 l k 3 & 2 871f5b2b 0 0 0 7 0 0 0 0 

alO>4 
8 l a 2 8 3 a 0 0 0 0 0 0 0 0 0 

1 1 2 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 9 2 f 6 l 2 9 7 9 5 f ± 7 8 l 

>492921a9 1 7 b e l l 2 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

7 9 2 f a 7 1 0 U d a 9 H 2 5 

6 l 2 d l f 9 2 d 0 0 0 0 0 0 0 0 

6daUlL57 58OOOOOO 

a20*+ 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 

2822 
aO d5l65'8d9 
a l d3e3Ucf 
a2 0 0 0 0 0 0 0 0 



B-2. Computer Results. 

Two determinations of probability distributions were made, each 

one corresponding to a different set of member functions. (Which i n turn 

corresponds to a different i n i t i a l configurations of the multivibrators 

in the multivibrator chains.) The waveform voltages for the two cases 

are tabulated for each member function set, where V ( n X i ) i s the voltage 

"til 
step from the i chain after n pulses. 

Case 1. (Al l multivibrators i n i t i a l l y in the state where the 

output voltage is i n i t i a l l y 0 o) This was the case used in the generator. 

Waveform 1. 

V(nT 1)= -840V 000V +280V -560V +560V -280V 000V 

n » 1 2 3 4 5 6 7 

Waveform 2. 

V(nx 2 )= +168V -504V +336V -336V -168V -840V +168V +336V 

n = 1 2 3 4 5 6 7 8 

V(n T 2)« -336V +504V -168V 000V -672V +672V 000V 

n - 9 10 11 12 13 14 15 

Waveform 3. 

V (n T 3)= +180V -420V +285V -315V -135V -735V +735V +135V 

n = 1 2 3 4 5 6 7 8 

V(n T;3)= +315V -285V +420V -180V 000V -600V +495V -105V 

n 9 10 11 12 13 14 15 16 



Waveform 3. (Continued) 

V(n Tg) m +075V -525V +180V -420V -240V -840V +240V +420V 

17 18 19 26 21 22 23 24 

V(n x 3) -180V +525V -075V +105V -495V +600V 000V 

25 26 27 28 29 30 31 

Case 2. (Multivibrators gating positive voltages in 0 state, 

multivibrators gating negative voltages in 1 state. This results in 

a symmetric waveform from each chain.) 

Waveform 1, 

V (n Tj) = -840V +560V -280V +280V -560V +840V 

n 

000V 

7 

Waveform 2„ 

V(n Xg) 

n 

+672V -504V +168V -336V +336V -840V -168V +168V 

7 8 

V(n Tg) » +840V -336V +336V -168V +504V -672V 

n 10 11 12 13 14 

000V 

15 

Waveform 3. 

V(n T 3) 

n 

V(n tg) = 

+600V -420V +180V 

1 2 3 

-315V +285V -735V 

4 5 6 

-135V +240V 

7 8 

+840V -180V +420V -075V +525V -495V +105V -105V 

10 11 12 13 14 15 16 



41 
Waveform 3. (Continued) 

V(n T 0 ) = +495V -525V +075V -420V +180V -840V -240V +135V 
o 

n = 17 18 19 20 21 22 23 24 

V(n T g ) = +735V -285V +315VJ -180V +420V -600V 000V 
n 25 26 27 28 29 30 31 

A plot of the probability distributions obtained for each case 

is shown in Figure B - l . The shift in the mean values results because 

the member functions for the f i r s t case do not have equal numbers of 

positive and negative voltage steps whereas in the second case they do. 

This is also the reason why the curve for the second case is symmetric 

and that for the f i r s t case is not. 

The relationship between the normalized probability distr ibution 

and the number of counts per range is given by the formula p(kV) = — T T = T 

where p(kV) is the probability that the amplitude l ie s in the range k / V 

to (k+l)Av, C k i s the number of counts for the range (k(l68) to (k+l)l68-l), 

and Cy is the total number of counts ( i . e . C^ = ^fc)' 

The counts for each range are tabulated below for each case. 

Case 1. 

c -n 2 5 9 21 32 53 79 107 149 176 220 

n = 0 1 2 3 4 5 6 7 8 9 10 

C = n 244 275 286 282 278 242 220 178 142 101 69 

n = 11 12 13 ! 14 15 16 17 18 19 20 21 

C = n 42 25 12 5 1 0 0 0 0 

n = 22 23 24 25 26 27 28 29 30 



P(v) 

A Amplitude Probability 

- - 0 o 0 1 4 

-80 

Figure B - l s Theoretical Normalized Amplitude 
Probability Distributions for two Member Function Sets, 



Case 2. 

n 
n = 

2 

0 

5 

1 

21 32 48 71 95 119 149 176 

3 4 5 6 7 8 9 10 

C = n 

n = 

n 
n = 

200 220 235 242 241 235 221 200 177 150 119 

11 12 13 14 15 16 17 18 19 20 21 

96 71 49 33 21 10 5 2 1 

22 23 24 25 26 27 28 29 30 



Appendix C 

C - l . Programme for Determining the Cardinal Points of the 

Theoretical Autocorrelation Functions. 

Because of the simple straight-l ine relationship between 

0(nx. ) and 0((n+ l ) x.) of the member function autocorrelation 

functions, i t was sufficient to determine the values of the cardi­

nal points 0(nx )̂ , n = 0, 1, . . . , j | , where the period of the 

function is equal to NX ^ . The value of fj(n % /) is given by the 

formula: 

J*(n T.) - | ( V ( O x . ) V (n x.) + t ( l x . )V ((n+l)x )+ . . . 

+ V ( (N- l )T . )v ( (N- l+n)x .) ) . 

The equivalent computer problem i s : Given N integers, a^, ag, . . . , a^ 

compute the values of: (a j ) 2 + (a,,)2 + . . . + (a^)2 = ^(0), 

a l a 2 + a 2 a 3 +••••+ V l " XJ 

a l a 3 + a 2 a 4 + + a N a 2 = V 
. . . 

V M + V K * ' " + V N " * f T i ) 

2 2 + 2 

where a^ corresponds to V(0 x ) 

a^ corresponds to V ( l x^) etc. 

A programme was written which did exactly th i s . A copy of 

the programme tape is given on the following page. 



aOO>4 
871e5bl+3 1X6OJ+800 6751^ddl OOlOOOclt-
U6oHdi+7 17dc57'+7 79^f701 OOOOOOOO 
6l5fUdU9 7800U820 871r7953 OOOOOOcl 
^d51sllO 17,+957I+7 5b5ell6o 00010000 
Udcli^ddl lK)00e600 2800»+953 OOOOOOOO 
laU^d^f bd53c553 175albUo 00000002 
ef57c55b 1751575b c35bl lcd OOOOOOOO 
57k75blrt) 79l+fa510 05000052 00200000 
2822 
aO 2e57fOdb 

Two determinations of the autocorrelation function were made. 

corresponding to the two sets of member functions mentioned in Appendix 

B, Plots of the individual autocorrelation functions for each member 

function are shown in Figures C - l . (a), (b), and (c). The results of 

both determinations for the same member function are shown on the same 

The computer results for the two determinations are tabulated 

below. In a l l cases, the waveform voltage values fed into the computer 

were made as low as possible by removing common factors. For instance, 

Case 1., Waveform 1. would be represented as: 

V(nx ) = -3 0 +1 -2 +2 -1 0 

where the factor 280V has been removed. Similarly the common factors 

168V and 15V were removed from waveforms 2 and 3 respectively. 

C-2. Computer Results. 

graph. 

Waveform 1 n = 0 1 2 3 

Case 2. 

Case 1. 0(n Tj) « 19 -8 

0(n -tj) - 28 -17 

4 

1 

-1 

2 



- l .OJ . 

a) Normalized Theoretical Autocorrelation Functions for 
Waveform One, Case 1 and Case 2. 

Figure C - l . Theoretical Normalized Autocorrelation Functions. 



Waveform 2, n = 0 1 2 3 4 5 6 7 

Case 1. = 95 -•38 19 -34 38 -31 00 11 

Case 2. 120 --53 14 -31 43 -34 -25 26 

Waveform 3. n s 0 1 2 3 4 5 

Case 1. 21904 -7813 6246 -9967 10972 -10497 

Case 2. 0(n T 3 ) « 25040 -9157 6246 -9967 11756 -10833 

n «=> 6 7 8 9 10 11 

Case 1.) *(n Tg)= 2762 -5203 10799 -6374 -571 -4240 

Case 2,^(n T g)= 410 -4195 12143 -9510 -571 -4240 

n = 12 13 14 15 

Case 1. 0(n Tg)= 4173 -4752 251 4830 

Case 2. 0(n T 3 ) = 4509 -5536 -757 7182 
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