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Abstract

This thesis describes the design of a device for
generating a reproduceable noise signal. The noise signal
is generated by adding three periodic waveforms having non-
multiple periods,  Pulse techniques are used in the
generation of the member functions so that the output may

be reproduced exactly.

Theoretical and experimental determinations of
the amplitude probability distribution and of the auto-
correlation function of the signal were made. On the
bagis 6f tests and observations made, it is concluded that
the signal generated may be consid;red a noise §ignal having
a near-Gaussian amplitude ﬁrobability distribution, very

little correlation for time~shifts greater than 30 seconds,

and a bandwidth of about 60 cps.
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VA REFRODUCEABLE NOISE GENERATOR.

1. Introduction.

Noise generators:are finding extensive applications in ana-
logue computer systems 7’m‘and in servomechanism analysis.s’la’22
In most applications, the signal is derived from conventional noise

2,3,23, '
sources for instance, the fluctuating component of the plate
voltage of a thyratron kept in a condition of constant discharge, or
the fluctuating component of the current in a conducting diode. The
most importaﬁi”characteristic of these signals and of any noise sig-
nal is that the signal is random - that is, it should be impossible
for Qll T to specify thé value of the function at a time T + t ,
knowing completely the behaviour of the function from time 0 to T.
The noise signal is usually described in terms of its probability
distribution functions. The most important of these are the first
:probability function which determines the distribution of signal
é;plitudes and the spcond probability dist?ibution vhich determines
the autocorrelation functionuof the signal. In physical systems
subject to statistical fluctuations, the first probability distri-

bution of the fluctuations is usually Gaussian and the autocorre-

lation function #§ (T ) decreases rapidly to 0 as T increases.

In digital computers random numbers can be generated by
0,11
various methods ~  and this would be the equivalent of the noise
. 24 :
generator in an analogue computer . Since the digital computer

has only a finite number of states the sequence of random numbers



must have a finite period and therefore cannot be truly random. This
pseudo-random séquence is reproduceable since it is generated by a pre-
Aetermined programme, This reproduceability has certain &ttractive
features associated with it which the physical noise generator does

not possess, For certain analogue computer studies it would be desir-
able to have a reproduceable pseudo-noise signal similar to the pseudo-

random number sequence generated by a digital computer.

This thesis is concerned with the design and development of
an electronic device for gemerating a reproduceable noise signal,
The applications of this noise generator and conventional noise gener-

ators in servomechanism design are discussed in the following paragraphs.

The design of a control system depends upon the nature of
the input functions, random disturbances, (such as uncontrolled load

disturbance or noise in amplifiers) and the nature of the desired
5,13,15,22
response. Usually these functions can only be described

statistically, and hence the mechanism is designed according to
4,5,13,15,22
statistical design theory, This requires a deter-

mig?tion of the average characteristics of the signal, the choice of
tﬁgﬁmeasure of the error, and the design of the system in accordance
with the conditions of error minimization. Unfortunately; a general
mathematical analysis of control systéms seems limited to linear
systems, ﬁnd to minimization of the mean%squaré error. Thus, if
another criterion for minimum error is chosen, or if a nonlinear
5,14

system is analyzed, the recourse is to experimental methods.
e d [ [ A



As an example, consider the quasi-linearization of a nonlinear
servomechanism, The nonlinear element is approximated by a quasi-linear
element., The linearized system is then designed so that the response

of the linear system to an input ﬁii('t) is ﬂio(‘r) where ﬂii(’c) =

yi(t) yi(t+1 ), gio( T) = yi(t) yo(t+1 ), and-yo(t) is the output
of the nonlinear system to an input yi(t)° The‘process is shown

diagrammatically in Figure 1-1.

——

¥, (¢

Yi(ﬁlgn>Nonlinear Y ‘t) /Kyo(t)

System

’J\“VJ ; wﬁ“"f e A

“Tﬂa) Nonlinear System.

A as

b) Quasi~linearized System.
4

Figure 1-1. (Quasi-linearization of a Servomechanism.

The equivalent system can then be analyzed for behaviour with respect

to changes in system parameters or changes in input signal character-
istics, and hence a better understanding of the nonlinear system may
result, In order to design the equivalent linear system, the input'

autocorrelation function ¢ii( T) and the input-output cross—correlation



. : 4
. function ﬂio( T) must be determined. With a-conventional noise generator

‘ . 1,21,22
as the signal source, complex autocorrelators

or variable delay
lines would have to be used in order to be able to calculate the functions
¢ii( T) and ¢io( T)o With two of the reproduceable noise generators,
howevever, only simple multiplying and averaging devices would be needed
to determine these functions, since yi(t) and yi(t+1 ) could be gener-

ated simply by turning one of the generators on a time T before the other

one, (See Figure 1-2) x

fio(®

Generator . Nonlinear
enerat online Averag

One © System

Generator yi(t) S >_///X\\\,Y.(t)vi(t+f)

Two \\\ x *

N\

Figure 1-2, Correlation of Signals.
Also, if the input signal were obtained from a conventional noise gener-
ator, the effect of varying a parameter in the linear system would have
to be evaluated statistically whereas if a reproduceable noise generator
were used a fast comparison of the responses of the altered and unaltered
system to the same random signal would be possible. Thus the design of
both linear and nonlinear servomeéh&nisms subject to minimization of
variops error criteria could be facilitated using the reproduceable

noise generator,



2, Generation of &{Noise Signal Using Periodic Functions
2-1. Introduction.

Since a noiée”signal is specifiéd only by its probability
distribution functipns?’gsthere is no definite approach to the problem
of generating a feproduceable noise signal, For the probable appli-
cations of this generator it is more important to have the signal ampli-
tude fluctuate according to a definite probability distribution than it
is ?p have an autocorrelation function which falls off rapidiy with

>increasing T . The signal output will therefore be required to have
a first probability distribution which is approximately Gaussiaq, and
an autocorrelation function which falls off as rapidly.as péséiblé -
with increasing T , due consideration beiné given to achieving this

result with simple circuitry.
2-2, Theory of Generation of the Noise Signal,

Tg meet these requifements it was proposed that the signal be
éenerated as the sum of a number of periodic functions, under the
assumption that the signal so produced would fluctuate in a haphazard
manner, Because periodic member functions are used, the composite
" function is also periodic., If the noise signal is to be random in a
time interval, however, the signal must not repeat in that intervalj;
hence, the composite function must have a long period. There is also
a time of recurrence of near-period associated with a composite function
of this form which may be very much shorter than the period of the
function. Consequently, a further restriction is made on the functiop;-

that is, the near-period should be as long as possible,



2-2=1., The Period of a Composite Function.

A function F(t) composed of a number of periodic functions
m
£.(t) (i =1,2, ooo 4, m), such that F(t) = f; f.(t), has a period
i : i
1= N
which is dependent upon the periods of the component functions. To

determine the relationship between the period of F(t) and the periods

of fi(t) consider the function

m L K , .
F(t) = :§5f£1t) = fi(t) + f2(t) + eoo + fm(t)

i=1
wvhere F(t) = F(t + 1 ),
» — .
and gi(t) = fi(t + 'ri)o

That is, T is the period of F(t) and T, is the period of fi(t).

Then F(t) = fl(t) + fg(t) + oees + fm(t) =Ft + 1)
and so F(t +i')=f1‘(t +T) + £(6 + T ) + .o +fm(t+'l:)
Since fi(t) = fi(t + 'ci) = fl(t +n ‘ti) where n is an integer, then

we must ha&e n; Ty =1, 1:2 S oo =m T = T.

(nl, By oeo y M integers)
If we let the largest common divisor*;:f i’tl, Té, eco 5 T be T, then we
may write T, n}\l T, T, -—-7\2 Ty coo »T = Xm T , where 7_‘1, )\2, soesh
are dimensionless integral multipliers whose largest common divisor is 1.
That is, T defines a unit period and the periods of the functions are

multiples of this unit period. Then, writing T = AT =n1)\1T = n, )»2‘l‘a veo

=n_ ?\mT we have A = nl }\1 = n2)~2 2 o,.e = nm)\m . In the general case A

*  The largest common divisor of the numbers a b,c, ... k, is the largest

positive integer which divides a;b;cy; .00 ks



*

equals the least common multiple of 7\1, 7\2, soo o )\m « In the
R

special case where Xl, 7\2, eoe g M q are all coprime , the least

common multiple of )\1, )\2, soe ’)‘m is simply the product 7\1’ K2°‘» °v°° AN

The period in this case is T = AT = )\1")\2“';133'5 }\m T.
Thus it is seen that if the periods of the member functions are chosen
so that the i's are coprime, the composite function will have & very .

long period.
PR o
R N Yot

2-2-2, The Nea.r-periqél of a Composite Function.

“m

A fanction thaihe& by summing two or more périddic functions
may exhibit what sha.ll.fbé’itermed near—periodi;':ityo To illustrate t;he
phenomena of near-perié&iéi‘fy and to establish a criterion for deter-
mining the near—period"df’_’g function, consider the function

F(tffé £)(t) + £,(t),
where fl(t)= fl(t +Xy T),
| fg(t)z £,(t +A, T),
and 2\1, }‘2? and T are h._svi'j‘{i;fined in the preceding sectivcv-m;
The multipliers )\1 and 842;."_',1.‘6 necessarily coprime and the period of
F(t) is AT = }‘1 }\2 T. %Ppose, however, that there aré i;itegers

nl( < }?\2) and n, (K )\1) ‘such that n, )\1,::’/:- n, Age

i3
4

¥ The least common multiple of the numbers a,b,c, ... , k is the

least positive number which is divisible by a,b,c, .00 , k. 12

..... [

¥%* Two integers a and b are said to be coprime if the largest integer

which divides both B":»E‘tx{éq.b is 1. The numbers azb,c, ... k, are said

to be coprime if every two of them are coprime. 12



That is Ay o= kg + G ( |62| <K\ or Ao)
(8,2 0)
Then, ‘ _ _ ' _
F(t + n, }\IT) = fl(t +n, }\IT) + £y (t + nlth) =

= fl(,t +ny }‘IT) + f2 (t + n2}\2T +6 2T) =

~ fl(t +m; XIT) + £ (¢t + nz}\2'1‘) = (neglectingd oT
Wersto A ,T)

= £,(t) + £,(¢t).
or, F(t +n A ,T) ~ F(t).
We see that the 'functioﬁ{‘a.lmost. repeats in the time n, A 1T.
We shall call this timg{‘l‘&,»- the near-period of the ft;nétion F(t). of
course, the value of Tn is dependent upon § , the maximum allowed value
of & ge If the value of & is chosen to be 0, then T is simply the

period of the function, A, AT =AT,
172 m

In the general case where F(t) = E\fi(t) and
i=1
fi(t) = fi(t +hiT)

we shall define the near-period Tn of F(t) to be the value n, Xl'l‘.

The n, (i = 1,2, ..., m) are integers which satisfy the conditions

|5..
1]

<8 where .5ij = (ni)\i - 1y )\j)
i,:‘]‘ = 1,2, «.., m
and where & is small compared toA ,, 7\2, cee }\!-n.
2-3. Des;igning the Noise Generator.
The design of the noise generator consisted of a éhoice of the
form of the member functions and the determination of the number and

periods of the member functions so as to produce a long near-period.



The form of the member functions was first decided upon from considgr—
ations of ease and reliability of generation with electronic circuitry.
Because reproduceability was a prime cbnsideration, a combination of
pulse and digital teﬁhniques was used. Once the form of the member
functions had been adopted, computations were made to determine the
number and the periods of these functions so as to yield a long near-
period of the composite function., The form of the member functions is
best described by considering the manner in which the member functions

are generated and the results of this method of generation.
2-3-1. Generation of a Member Function.

Each member function is generated as the result of the con-
tinuous cycling of a multivibrator chain by a precision-timed pulse
train. A 100 Kc crystal oscillator serﬁes as the source'frpm which

are derived the actuating pulses for the multivibrator chains,

COnSféer thetgeneration of one of these member functions.
The output of the crystal oscillator is used to initiate a continuous
pulse output wiﬁh a pulse-recurrence-frequency (PRF) of 100,000 pulses
per second (pps). This output PRF is divided down successively by

three phantastron divider units whose division ratios - that is the

ratios of the input PRF's to the output PRF's - are dl’ dg, and d3.
The PRF of the outputfof the last phantastron is then .%3%*%99 pps.
17273

This output is used to actuate a multivibrator chain consisting of
k bistable multivibrators in series. The multivibrator chain is

designed so that one cycle of the chain is equivalent to N pulses,

N d1d2d3

k . Lo
where N = (2°-1). The period of the chain is then 100,000 seconds,



Each multivibrator of the chain actuates a gate so that a voltage

Vj GG = 1,2, ..o k) is transmitted to the output of the generator when
the multivibrator is in one state and a voltage 0 when the multivibrator
is in the other state. The voltages Vj are either positive or negative.
The output voltage at any instant is the sum of the voltages transmitted

to the output of the generator,

To illustrate the waveform obtained at the output of the
generatorbfrom one of the multivibrator chains, consider the output of
a chain consigtipg of three multivibrators connected so that
V1 = + 3V, Vé = - 2V, and V3 = = V, and the chain is connected 8o that
it recycles after (23 ~1) = 7 pulses. The initial configuration is
such that the output vbltage Vo is 0, After one pulse, Vo= V1=.......+3V
two pulses, V°=V1+V2+V3= .o +HOV
three pulses, V =V,= PR
four pulses, V0=V1¥V3

five pulses, V0=V2= eocesece=2V

= ‘Olcao+2v

§1x pulses, VO=V1+V2= cessotlV
~-seven pulses, V = 04040 =.,. =0V
The cycle repeats after the seventh puise; L%hé sequence of operation

depends entirely upon the initial configuration of the multivibrators,

The output waveform is shown in Figure 2-1,

10
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A feedback pulse to recycle chain.
Input :
pulses >
- r-r r r T T«
Oﬁtput from )
first +3V1_
multivi-
brator 0 5
t
Output - from \
second /
mltivibrator
B _
.—2V-“' t
Output from
third
Multivibraton
-0 >
v T .
Output from
- Chain
+3V
I ,,.
2 t

Figure 2-1. ‘Ekpmpie‘Qﬁtput‘WaVeform from Multivibrator Chain.

The waveform described above illustrates the form of the

member function adopted for use in the noise generator. The remaining

step in the design was to obtain & long near-period for the composite

function,

11
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2-3-2, Determination of the Periods of the Member Functions.

The final step‘in the design was to determine the qumber ofm
member functions and the periods of the member functions so as to obtain
a long near-period of the output signal. (At this point, no idea of what
constituted a "long" near-period had been formulated;) The éimplest form
of the compoéite function was tried, namely F(t) = fl(t)'+”fé(t) where

the member functions were of the form deécribed in the preceding section,

. N.'d, .d,.d
g . . -1 "11712°13
The period of fl(t) ist, = 100, 000 secs, and that of fg(t)
N, d,,d,,d :
. 2 2122723 . '
is Ty = 100, 000 secss The problem was to determine values of the

N's and d's which would give a long near-period. Because phantastron
dividers were to be used, the d's were constrained to lie in the range

7 to 20 to ensure stable operation. Also, the product dldzd3 was to be

about 1000 so that the input PRF to the multivibrator chains would be
about 100 pps, The N's were chosen to be of the form (2k-1) so the
factors N1 and Né would be coprime., The k!svwere kept small so as to
minimize the biasing effect inherent in the binary scaling action of the
multivibrator chains. (vii, the last multivibrator in a chain is "off"

k . k
for ( %-'-‘1) successive pulses and "on" for 2 successive pulses:

2
this merely produces a shift in the output dc level every half cycle,
and hence if the k's are too large this may be considered a sort of

"biasing" action as opposed to the "switching" action of the first

multivibrators.)

In order to determine values of the d's and k's for the two-
function case, a programme was written for the Alwac III E computer to

solve the problem: Given § , K and M Compute integers x and z so that



13

the difference § 1= (xE-zM) in absolute value is less than or equal to § .

(i.e.‘ﬁ J S; 8 ) Various values of K = (2kll)d

11912913 82d
k
M= (2 2-1‘)(121d22d23 were tried, but the length of the near-periods ob-
d, .d,.d
tained (as determined for § = —llé%g—lg)fwere all only of the order of

a few seconds. This was considered too short.,

The next simplest form of the composite functions was tried,
that of F(t) equal to the<sum of three mem?p;_functions. Again, a pro-
gramme was written for the Alwac IIT E coméﬁ%ér to solve the problem:
Given 6, K, L, and M Compute integers é;-&, and z, so that the diff-
erences §,= (xK-zM) and § = (yL-zM) are, in absolute value, less than
k1

~1)d;1d)0dyq,

ko g k3 . .
L= (2 -1)d21d22d23 and g‘n (2 —1)d31d32d33 were tried, Near periods

or equal to & . Various values of K = (2

ranging from a few seconds to six minutes were obtained. The values
which gave & near-period of six minutes are the values used in the

noise generator,

They are: _
dy; =10 dgy =10 day- = 10
di, =13 dgy =11 dgo =12
4, = 8 dg3 = 9 dgq = 8
k k S Kk
(211) = 1 (22-1) =15 (2 %-1) =31

In this case, the values of the A 's are

A = 728 = 17(13)8

1
xg = 1485 = 15(11)9
ha = 2976 = 31(12)8

' 10 114
and that of T, T = 100,000 secondsl= 0.1 milliseconds,

The period of the function, given by T times the least common multiple



- 14
of Al’ )\2 and )xa iss

T = 728§%§§5)2976(0‘1) milliseconds = 13,405,392.0 msecs.,
which is approximately 223 minutes. The near-period, Tn, as determined
for 8 = Ellglgglg iss |

- 20 ’

T, =n MT= 5069(728)(0.1) msecs = 369,023.2 msecs.,
which is approximately six minutes. (The value of 8 chosen is such
that 8T is about one-~half the time béfween pulses into the chains.)

The programme for the three-function case is described in Appendix A,
2-3-~3. Summing of the Member Functions.,

Addition of the three member functions is effected through
an operational amplifier circuit using a Philbrick K2-X operational
amplifier unitzo. The member functions are summed an& passedbthrough
a8 smoothing network simultaneously and in this way the ouﬁput is

smoothed into a continuous signal.
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3. Pr&éfi@al“Design”CoﬁSiderafiohs

3~1, Introduction.

This section presents the circuits used in the noise gener-
ator and a discussion of the manner in which the member function wave-

form voltages and the output network parameters were decided upon.
3-2, Electronic Circuitry.

A1l the circuits used in the noise geﬁerator are of standard
design. For this féason, no descriptions of the circuit actions are
given and instead the reader is referred to standard texts and:ﬁourn&lse
(References 6, 17, 18, and 19.) A block diagram of the noise geﬁer&ﬁér
and diagrams of the circuits used in the noise genmerator are given in
Figures 3-1:“to 8-4 - inclusive. Component values are included in

the circuit diagrams as well as some of the pertinent waveforms,
3-3. Scaling and Addition of Component Waveforms.

The form of the member functions having been decided, the
next step was to choose values of the output waveform voltages. In
order to %urther minimize the biasing effects of the binary scaling
ar.ct.ion> of'the-multivibra.tor chains (Section 2-3-2.) it was decided to
weightthe'output voltages gated by the multivibrators. For example,

for a chain of k multivibrators, the weighting factors are such that

1 lvy 1
v, = T-V, vy = E;XP eee s Vi = V. Also, the voltages were chosen so

that the sum of the positive voltages gated by the chain was equal to

the sum of the negative voltages gated by the chain. (i.e.,
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v1+v2+...+vk=o).

A schematic of the output stage is shown in Figure 3-5.
The response of this network at time t

to a step input of Vi volts at time 0

— 1
ise (t) ==V, == (1-¢ : ) where R
o i Ri %o J&A/y

= . . N R- .
T RoC Similarly, thelresponse at i {
time t to a step input of i Vi volts \A eo(t)

_V. R gt
at time 0 is eo(t) = il ( ﬁg)(lme %) Figure 3-5, Output Network,
i
Regrouping gives, -t
- —9) (1ea Yo
0o®) ==V, () (e *0)

i

That is, by choosing values for Vi’ Ri’ Ro’ and To 9 then the input
resistor value for an output scaled down (weighted) by a factor '% is
just k times the unit resistor value Ri' In the noise generator, the

Vi's were chosen to be - 45 volts, and the Ri's were chosen to give

output voltages weighted as described in the preceding paragraph.

The time-~constant T, ¥as chosen to be approximately equal to
the duration of the voltage steps from the multivibrator chains. ° The
value of the resistor Ro was chosen so that the maximum excursions of the

smoothed waveform are ¥ 100 volts.

The values of the components are tabulated below with the

steady-state output voltages and the output voltages at time T

16 -



Resistance Steady-state voltage Voltage at T

Ry, = 60K - 51,0 - 32.5
R, = 90K + 34,0 + 21,7
JByg = 180K + 17.0 + 10,8
Ry = 75K + 40,8 + 26,0
Ry, = 100K - 30,6 - 19,5
Rys = 150K - 20.4 ~ 13.0
Ryg = 300K + 10,2 | + 6,5
Ryy = 84K + 36,5 + 23,2
Ry, = 120K - 25,5 ~ 16,3
R33 = 160K ‘ “’I'_lgo:v]. - 1202
R34 = 210K ) ~:_ + 1406 + 903
Rgy = 480K = 6.4 ‘ - 4.1
Ro = 68K C = 0,15 ‘p,':f. T, 10.2 msecs.



4, Analysis of the Noise Signal.

4-1, Introduction.

The analysis of the noise signal consisted of a theoretical
and an experimental determination of the probability distribution of
amplitudes and of the autocorrelation function of the signal. The

methods of determination and the results so obtained are discussed in

the following sections, as well as.a comparison of the experimental and

theoretical results.
4-2, Theoretical Analysis

The theoretical analysis was not of the actual output sigqgl,
but rather of the unsmoothed output signal, Consequently, only a
rough agreement with the experimental results was expected. The un-
Smootﬁed waveform was used as an approximation to the actual signal
because it is composed of truly periodic functions and heﬁce lends
itself more readily to theoretical analysis thanidoes the actual sig-

nal which is composed of aperiodic functions.
4-2-1. Theoretical Amplitude Probability Distribution,

The probability distribution of amplitudes was detérmiﬁed-by
considering the distribution obtained by sampling the waveform over a
long time interval, To deterﬁine this distribution it is necessary to

dissociate the unsmoothed signal into its component parts.

Consider first the waveform obtained from the first multi--

vibrator chain. (Figure 4-1 (a)) If this waveform were sampled ran-
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domly over a large number of cycles of the waveform, the probability
distribution of amplitudes would be as in Figure 4-1 (b). Similarlj,
for the second and third chains, the probability distributions of
amplitudes would be as in Figure 4-1 (c) and Figure 4-1 (d) respect-
ively. Thus, there is an average probaﬂility pl(RIV) that a voltage
kIV is delivered by chain 1 at a time t, an average probability p2(k2V)
that a voltage k2V is delivered by chain 2 at a time t, and an average
probability p3(k3V) that a voltage k3V is delivered by chain 3 at a
time t. Because the waveforms have ‘non-multiple periods, in the aver-
age the cross—-correlation between any two of the member functions is

zero, and hence the average probabilities associated with the wave-

forms are independent. That is, the probability of occurrence of
vV, = (kl +ky + k3)V is just the product of the individual probabili-

ties. (ioeo p(Vo) = pl(RIV)pg(k2V)p3(ksV).)

If we associate with each member function a generating
function Gi(s), we may easily determine the probability of occurrence
of a certain output amplitude., For member function 1 we have

N kj '
Gy (s) = | zpl(kl\f)s

-9 ~56 -
'y 580 4280 o .,:._,'zso 1 560 B 840
= ?s +;{-s .t 8 + 78 + 8 _1-';,"8

7 - T
The coefficient of sk is the probability bf the voltage kV occufring.
There are similar generating functions Gé(s) q#d G3(s) for member
functions 2 and 3 respectively. (The powers of s are high because

the unit voltage V was chosen so that all the k's would be integers.)

Because the average probabilities associated with the member functions

19
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are independent, the generating function for the sum of the waveforms is

equal to the product of the generating functions of the individual
waveforms, i.e. Go(s) = Gl(s)Gz(s)G3(s), The product of the generating
functions consists of about 3000 terms, and so a programme was written
for the Alwac III E computer, (See Appendix B), to group the terms
according to the values of the exponents and to count the number of
terms whose exponents lie in the range (n)168 to (n+1)168. (i.ea

(n)168 Lk < (n+1)168, n = =15, =14, ... , O, oo, }B.) Dividipg the
count for each range by 7(15)31 gives the average probabiiity that the
output gmplitunde lies in the range (n)168 and (n+1)168, since the frac—

(n)168

tion so formed is the coefficient of the term s . (The range 168V

corresponds to an increment of %%Q volts = 6,45 v.) A plot of the
normalized theoretical dmplitude probability distribution is shown in

Figure 4-2,
4-2-2, Theoretical Autocorrelation Function.

The autocorrelation function ¢ (7) of a function F(t) = fl(t) +
fg(t) + fé(t)’ whereufl(t), fg(t), and fa(t) are periodic functions
with copfime periods, is merely the sum of the autocorrelation functions
of the individual functions?2 This is because the multiplication of
components of different frequencies results in a zero average value.

In the case of a periodic waveform, the basic form of the autocorrelation
+T

g(7) “:M.E% £(t) £t + t) dt
. T2 T

function

may be replaced by the expresg}on

g (n) a1 /;i p(t) £t + 1) db

J
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where f(t) is periodic of period 'tj.

Consider a function f(t) of period Nt , such that:

1
£(t) = £, ot <7,
=% T, <t <27y
= fk Tl<t<(k+1)‘t
= -1)T
f_N__1 - (N-1) 1.§t<N11
where fo, fl’ ced y fk e fN—l are ?onstdnts. ( ng:Figure 4#??.
f(tt_
[
£
N=T ¢ ]
£
£, —
0 . 3 " ( s n S~
1y, 2g 3ty .(N—2)1:1. NNy :

£ s _, : |

Figure 4-3.,Samp1ethnction. h

The autocorrelation function g(n T ). 1s then,

Nt
1
g(nt 1) = N_Tl/ f(t) f(t+n'r ) dt = NT (/ f(t) £(t+ nt ) dt +
o, N'l:l
+/[ £(t) f(t+n't1) dt + ... + / £(t) f(t+n'rl) dt) = .
i (N-1)7, -
0 o
1 - .
N (fo/ f(t+n1:1) dt + ¢.0 + fN_l/ 'f(t_,f m:l) dt )
(] - (N--1)11
= (2,8 LTINS S dt)=
l ::.”\';, .

(N-l) T 1
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. Similarly we may write _

H = + o e v Ty
‘¢<(n+1)'-11) | ( 0 n+1 + £ i'n_!_2 e +fN-1 fN+n )
Suppose, however, the t1me-sh1ft is not an integral number times T 1

- buty sa,y (n+a) L where 0 o,

The“,’";’ ((’”“)" ) - N—l‘“ / "1(0) £(tr(ara) ) dt'="
0

1
1 (k+1)"7
f(t+(n+a)fl:1) dt + oe0 + £ f(t.+(n+a)'c ) db + ..o
' le
N’El
;
+ f(N-l) f(t+(n+a)11) at ) . )
(¥-1)7) (k+1)r,
Consider the general term in the bracket, fk/ _ f(t+(n+a)1;l) dt.
' /k T

Now, f(t+(n-fa)1: ) assunm two values in the range kT < <(k+1)\7

For k 3t kt, + (1-a) T, we have f(t+(n+§)1:1) = £, and for

kT, + (1a)T t K (k+1)v, we have f(t+(n+a)'cl) = £, - There-

- (k+1)v |
fore, the integral / £ (t+(nw )’tl) dt equals

k‘cl

(k+{(1-a)f | /() g
/ ‘ fﬂm_&: dt’ '+ £ dt = (1-a)1:1+f

k+n+1 kn+l &9

"k‘;‘?l L __ (k+(1-a))51

v

and so the function g ( (n+x) Tl) becomes

g (wa) ) =5 l(ff(l ~9T + £t (9 T+ ..
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fk k+n (l-a)Tl + k k+n+1 (a) T + see + fN 1 N+n -1 (1 a)'ﬂl L 3

i fN+; () 5 ).

1

Regroup1ng and . cance111ng glves.

ﬂ((n+°‘)71) =-(ff +f1f 7+...+f 1£N+n-1) +

n - A - - ’ - B - -
+ N (fOfn+1 flfn+2 toeee t fN 1 fN+n fOfn fOfn-l-l °ee

-ty fN+n_1 ¢ (n'cl) +a (¢( (n+1)1:1) - ﬂ (n ﬁ) )

Thus;pthe autoqqrrel&tion function of this rectangular-shaped
wavef;rm is a triangular-shaped function having the same period
as the original function, The autocorrelatlon functlon ¢(¢)

is an even function and hence g(t) = ¢(—T )e But, ﬂ('r)=¢(N1i+ T)
and also ¢(~t) = ¢(NT1-'r). Therefore, §( 1) = # (N1ﬁ ~-T).

That is, the autocorrelation functxon is symmetric about the half-
N7
perlod p01nt ——l-. A plot of the normhllzed theoretical auto-

2 g1(7)  Fopl(T) $a5(T)
correlation functions ¢11(0) ¢22(0) ’ and - .?;;zay for the

member functlons fl f2, and f3 are shown in Figures 4-4 (a),

(b) and (c) respectively. (#}programme was written to determine

the cardinal points ﬂ(nti). This programme is described in

Appendix C.)

Because the individual waveforms have independent proba-
bility functions (i.e. are uncorrelated) the autocorrelation func-

tion of the sum of the waveforms is equal to the sum of the auto-

correlation functions of the individual waveforms - that is,

F(T) = f1307) + foo(T) + Pgg(7) , where F(t) = £, (6)+2,(t)+25(t)
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ﬁ§@~g(ff) is the autocorrelation function oqu(t)i The normalized
autocorrelation function of the composite vaveform is

; ”ﬁii(7f)”+“¢éé(f“)”+"¢33(i1)' -

8 (0) +P55(0) + gag(0)

AAplot-Of the gormalized:a§£5¢6§relation function g{i&% is

‘shown .in Figure 4—4 (d).

4-3, Experimental Analysis,

A laboratory depermingtfﬁn was made of the amplitude proba-
.biliyy digtribution and of:the;autocqrreletion fungtiop;of the ac@ual
output signal. The probability distribution of amplitudesty38~de-
termined using sampling techniques and the- autocorrelation function was
dgterqined uging two of the noise generators and a multiplying..and
averaging device. These methods are described in thé féllowing
sections,

4-3-1. Experimental Amplitude‘Probability Distribution.

The method by which the amplitude probability distribu-
tion was obtained was to sample the waveform 500 times per second
for a time_Tn minutes, and to count the number of times the ampli-
tu&e of the pulse so formed Qas in the range v to v + Zl.v.
Dividihg this number by the total number of pulses then gives the
probability of the amplitude of the waveform lying in the range
v to f + Zl*v. The time Tn was chosen because this is the near-
period of the signal and heﬁce should give an accurate probability

distribution for all time intervals. The sampling frequency

24



(500 times per second) was chosen to be very much higher than the half-
power bandwidth of the noise signal (approximétely 16 cps as determined
by Tb , the smoothing-network time-constant) so that, in effect, the
waveform was sampled continually and consequently the count for a par-
ticular amplitude is a very accurate measure of the time the waveform
vas at that amplitude during the time Tn' A block diagram of the
sampling system is shown in Figure 4-5 (a), and the waveforms at
various-points in the sampling process are shown in Figure 4-5 (v).

The chopper system consisted of a gating circuit Qctiv&ted by a bi-
stable multivibrator, The differentiator and inverter system con-
sisted of a Philbrick K2-X unit 20 vhich inverted the chopped wave-
form, followed by a simple RC differentiating network. The K2-X

unit was used so as to provide a high-impedance resistive load for

the gating circuit and to allow a gain adjustment to offset the

slight attenuation introduced by the differentiating network. Thus,
the amplitude of the pulse delivered at time t by the differentiating
network may be made exactly equal to the instantaneous amplitude

of the noise signal at the time t, The circuit diagrams for the

chopper and differentiator units are shown in Figure 4-6,

The pulse~height discriminators (kicksorters) used were
Marconi type 115-935, and were the property of the Van de Graaff
section of the U,B.C, Physics Department., Thirty kicksorters were
available and so it was possible to divide the noise signal into 30
discrete amplitude ranges, 0 to Vl, V1 to V2, coe V29 to Vao* and

so determine the number of counts for each range, The maximum
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pulse amplitude accepted by the kicksorters was 40 volts (negative—
going) and the maximum counting rate per channel was 50 pps for sus-
tained counting, For this reason,.tﬁe ﬁoise signal was scaled down
and biased so that the ﬁaximum signal excursions were from +5 to +45
volts. - The pulses delivered from the inverter and differentiator
system thus had an amplitude of from -5 to -45 volts. The noise
signal was made to vary from +5 to +45 volts so that the minimum
pulse amplitude due to the signal (i.e. 5 volts) was greater than

the maximumbpulse amplitude caused by sﬁitching transients in the
chopper system, (approximately 2 folts). Because the maximum allowed
counting rate was only 50 pps, it was necessary to make the voltage
rangesﬂyi = Vi - Vi+1 (i =1, 2, seo , 30) of different magnitudes

in order to obtain an accurate count of the number of pulses of each
amplitude, Using the theoretical probability distribution of ampli-
tudes as a guide, a set of values was determined for the Vi's S0 as
to ensure the counting of all the pulses. The normalized probabil-

ity distribution obtained from the kicksorter data is shown in--

Figure 4-T.
4~-3-2, Experimental Autocorrelation Function.

The experimental autocorrelation function was obtained by
using two of the noise generators and a multiplier and an integrator,
Generator one was turned on & time T before generator two, and the
signals N(t) and N(t+ T) were multiplied and integrated for a period
of éix minutes and fifteen seconds (almost the ﬁearfperiod duratiqﬂ).

Dividing the value of the integrator count obtained for the time
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shift T by the value of the integrator count obtained for the time
shift of 0 seconds gives the normalized autocorrelation function for
that particular value of f o Shifts of 30 seconds were made for the
range T =0 to T = six minutes, and the resulting values of the auto-

correlation function are shown plotted in Figure 4-8.
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Figure 4-8. Experimental Normalized Autocorrelation Function.
The multiplier used was a Philbrick Model MU/DV Duplex
Multiplier/Divider. The output from each generator was scaled down

so that the maximum signal excursions at the input and output of the
multiplier were in the allowed range of I 50 volts, The outbut of
the multiplier was then scaled down and fed into an ac tachometer-
feedback servo motor. The speed of the motor was proportional ;o
the voltage in and hence the count of the number éf revolutions of

the motor for a giveg.time Tﬁ represents the integral of the speed



for that time (i.e., the count is proportional to the value of the

integral of the input veltage for the time Tn.). Since a normalized
autocorrelation function was desired, it was only necessary to ascer—
tain over what range of input voltages the integrator was linear; and
then keep within that range. The constant of proportionality cancels
out in the normalization procedure. A block diagram of the correla-
tor is shown in Figure 4-9 and the circuit diagram for the integrator

is shown in Figure 4-10.

Generator | N(t)

28

Generator | N(t+T)
Two

Figure 4-9, Block Diagram of Correlator.

4-4, ' Comparison of Theoretical and Experimental Reéhltso

The theoretical and experimental amplitude probability
distributions And & computed Gaussian distribution are shown together
in Figure 4-11. The Gaussian curve was computed using the mean and
”W“mean-square“valueS“ﬁalculated{ffam the experimental distribution,

A very'good fit was obtained. The theoretical distribution was
shifted to the right'(1395 - 2,1) volts = 11,4 volts so as to make
the theoretical and experimental means coincide. As was expected,
the experimental distribution was more peaked near zero amplitude

than was the theoretieal distribution., This is due to the action

One ' ‘ /N(t)N(i.',M:) ﬂt
' ::kwultipl.ier N(tIN(t+7) }J_Lj> -

k.
>



phe odL]
PIOUIY—=8U3A31Y
aaddoypy H)

4

M(QQ.HOO.. O
.MSRO“OW.oo MO
Fdooog*°*° °o

001088

019091y omwuvFusg
Jd090[f W
Hiﬁacoooo H%U

‘uow 0T °°°° c~ﬂ>
wou YOS °°°° ¢

99948 yoorecee Oy

Sweadey([ 3INOIT) J09wvIF2qUT .mulv sandty

001088
9119091 owulusg

Janswoyow], VI

w T 0Lg°*°°*
uou JOLP?°*° H
u u JOST°°°
Gﬂdhm.aﬁ . %800 q

T6SST °dLy
TosIBPIOY]
Jomxogsuwny] gnding

woa DANI®*°°
u o dg°geeee
w u JAGET°°°**
 13BAE yor3°°

17

[

€

o

—
-]




p(v)

10,018

Amplitude Probability

Experimental Cyrve
Fitted Curve

Theoretical Curve

Figure 4-11. Normalized
Probability Distributions.




of the smoothing network in the
output stage of the generator,

The good Gaussian fit may be just-
ified by viewing the generation
process of the noise signal in &
slightly different manner - viz.,
consider the néise sisnal as’
being generated by adding many
short pulses of various ampli-
tudes and of various dur~tions,
(S;éhfigure 4-12.). The

Central Limit Theorem of
statiétics 3 provides the means
for justification., This theorgm
states that the distribution of
the sum of an indefinitely large
number of other indépendeptly
distributed quantities must |
approach the Gaussian distribu-
tion, no matter vhat the

individual distributions may be.
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0“ _m],“ﬁ,
l-—;;;‘pulse 4 Lil
pulse 3
'Figure 4-12, Alternate

Form of Dissociation of
Noise Signale

-+ The theoretical and experimental‘9utocorfelation functidﬁs

‘t

for the noise signal are shown in Figure 4w1§@ Poor apgreement between.

thg two results was expected because no account was taken of the

sﬁoothing network effects in the theoretical determination, and also



the accuracy of the integrator is questionable. (It is proposed to
build a precision dc tachometer-feedback servo integrator in order
to more anurately determine the autocorrelation function,) The
experimental and theoretical results agree very well, however, under

‘the circumstances,
0
1.0-9
098 —1&\
o\.aﬂg\
0,‘0.4— i‘. \
)\

0.2+

Experimental Curve \\\\ﬁh

7
d

30

RS .
0 R: c 20 31\8 9\02’9\@’ 300/
AT AR

—0.2:' < ' | Theoretlcal Curve

\ J

o

Figure 4-13, Theoretical and Experimental Autocorrelation Functiens.
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5. Cbgblusions.

Examination of the data obtained fails to reveal a precise
relationship between the theoretical and experimental probability
distributions, The general good agreement between tﬁe theoretical
and experimental results does, however, attest to the validity of the
theoretical analyses of the waveforms. On this basis, it is suggested
that the noise signal produced using the initial configurations of the
multivibrators as described in Case 2, Appendix B; would have a more
nearly Gaussian probability distribution of amplitudes. This is
because the signal 56 generated would be composed of member funcﬁions
which are balanced (i.e. have equél positivé and negative voltage

steps.

A detefmination of the power spectrum of the signal would be
of help in aécertaining if the signal is a true noise signal (or
nearly so) and also would specify the bandwidth of-the noise signal,
The signal probably has a bandwidth of 0 to 60 cps (approximately).
This figure was arrived at from visual examination of the output of
the sampling system when the sampling frequency was varied from 500
cps down to 20 cps, .At a sampling frequency of 100 cps there were
very abrupt changes in the output of the sampling system. This indi-
cates that considerable change in the noise signal had taken place
in the time between samples, This would occur if the noise signal

had a frequency component of around 50 cps.

On the basis of tests and observations made, it is con-



cluded that the signal generated may be considered a noise signal having
a near—-Gaussian amplitude probability distribution, very little corre-

lation for time-shifts greater than 30 seconds, and a bandwidth of

about 60 cps,

32
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Appendix A.

A-1. Programme for Determining the Near-periods of a Function.

As developed in the text (Section 2-3-2 ) the problem
involved in determining the near—periods of a composite function may
be stated mathematically as: Given integers 0, K, L, and M, deter-
mine integers x, y, and z so that |zM-xKl<; 5, !zMnyLIQ; 8, and
lszyL lS;, 6, 4 brief explanation of the programme used to deter-
mine the integers x, y, and z for a given set of K, L, and M is pre-

sented in the next paragraph.

An augmenting procedure is used in this programme., The com-

puter takes a value of z (say zn) and calculates the two integers
z_ M
%, (below) and X5 (above) nearest to the value x =g The

machine then tests to see if |anexn1K| S;B or if |an-xn2K|<; )

If neither of X q BOT X o satisfy the inequalities above, the cycle

is repeated with z, increased by 1, vThe initial value of L is 1

and so all values of z from 1 up are tried. . This procedure continues
until values of x and z are found (say x' and z') éuch that |z'M—fol<;5
The machine then takes this value of z and computes the two integers

7' (velow) and Yo' (above) nearest to y' = E{g-. The machine then
tests to see if either llz'M-yl'L.lS; & or lz'M—yz'IJ L6, If

neither yl' nor y2' satisfy thesevinequalities, the computer returns

to the beginning of the programme andbstarts to determine nev values

of x and z, this time with the initial value of z, = z'+l,

This series of calculations and decisions is continued: until

. A
values of x, y, and z are found which satisfy le—xﬂf|<;6 and
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‘zM«yL‘Sgé o The machine then outputs (zM-3K), fM-yL), (xK-yL), x, y,
and z and then returns to the beginning of the programme where it starts
to determine new values of x and z, this time with the initial value of

z, = z+l. The programme continues until the operator stops the machine.

A copy of the programme tape is given below.

a0k

83215717 2¢006720 1d967926 112¢0000
2800f1c6 1d84791f 67224926 T934r781
482141107 611bU9lf 2c006720 1704110c
411 fe723 110¢T7928 14121185 00000000
eb21lc528 611bk928 7929611b 00000000
49256720 bllfe723 4929791f 000LOO0O
14157925 eb22¢529 492a7926 00000001
67214925 49266720 67254927 00000001

alohk

00000000 00000000 00000000 00000000
00000000 00000000 00000000 00000000
00000000 O0C00000 00000000 00000000
T934£781 17341185 58000000 00000000
5732871f 00000000 00060000 00000000
5b36782b 00000000 050000b8 00000000
11607922 00000000 00000000 00000000
£7811124 00000000 00000000 00000000
2822

a0 61750ec2

al a8b99365

A-2, Computer Results

A partial list of the results for the case &= 600, K = 14850,

L = 7280, and M = 29760 is presented below.
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FRCT

(zM—xK) (zM=yL) (xK=yL) x oy z
-570 ~560 010 477 973 238
-510 080 1590 479 9717 239
150 -160 =310 501 1022 250
210 480 270 - 503 1026 251
-360 -080 280 980 1999 489
360 320 - -040 1004 2048 501
-210 -240 =030 1481 3021 739
-150 400 550 1483 3025 740
510 160 -350 - 1505 3070 751
~060 -400 =340 1982 4043 989
000 240 240 1984 4047 990
-570 -320 250 2461 5020 1228

150 080 -070 2485 5069 1240

The value ofjb used in this case corresponds téﬁg;time,of
8T = 6.0 msecs. Theétime between pulses into the chaiéézis approxi-
mately the same for allithe chains and is about 10 msecs.g’;Thus, the
value of § T correspondé to about half the time between pq!éés into tﬁe
chains, All the values of the differences were felt to Hé}great enough
to cause sufficient change in the composite waveform up to the value of
X = 2485. At this poi#t, the maximum shift of any one of the member
functions with respect to the others is only 1.5 msecs whiéh was con—
sidered too small to cause sufficient change in the composite waveform.

' Thus, this value of x determines the near-period of the waveform. The

. . (14850)2485 . . .
near-period is T = 100,000 sec¢s = 369,0225 secs ewhlch is

approximately six minutes,
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Appendix B

B=1, Programme for Determining the Theoretical Probability

Distribution of Amplitudes.

To determine the theoretical probability distribution of
amplitudes, it was necessary to find the product of the generating
functions of the individual waveforms, Each generating function is
a polynomial in s and is of the gemeral form G(s) = :Egp(kv)sk ,

where p(ﬁV) is the probability of the amplitude kV occurring. For

example, the geﬁératlng function G (8) for waveform 1 is:

i = 580 580 2 0 1 280 ~560 1 =840 )
GI(B.)—,Zf?.;:Sgﬁ’T:%‘ 78 +58 +'Zs +x 8 , which

consists of 6 terms. This may be.written as 7 terms, each having the
coefficient %-5 which may be factored out. This gives;

G, (s) = %" (8700 4 4280 4 0, 0, 280 560 -840y

Similarly, Gg(s) and G3(s) may be written: Gg(s) =L 20010 terms in

15 (
sko.,) and Gs(s) = 5%—( 00031 terms in skooo)o If now the product of

these polynomials is formed, the result would be of the form G(s) = 71T3%5T_
' (+07(15)31 terms in s%..). The values of the exponents in this ex—
pression are obtained by taking the sum of all possible combinations of
the 7 exponents from G (s) plus the 15 exponents from G (s) plus the

31 exponents from G (s), a total of 7(15)31 3255 sums. -The generating
function so formed is of the same form as the modified version of Gl(s)

(above). Multiplying each term by the common factor and grouping

1 _
3255
together the terms having the same value of the exponent'restores the

generating function to the original form. (i.e. G(s) = :ES p(kV)sk ).
k '
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The coefficient of sk (some multiple of 5%33“ ) is then p(kV), the prgb—

ability of the amplitude kV occurring. Thus, when the number of times

the exponent k occurs is known, the probability p(kV) for the amplitude LV

1
3255 °

probability distribution was desired, it was sufficient to determine the

occurring is simply this number multiplied by ‘Because a quantized
number of times (say ni) the exponent k was in the range ki to ki+1 to

get the probability that the amplitude was in the range kiV to ki+1V°

-A programme was written which calculated the sums of all
possible combinations of 7 plus 15 plus 31 numberé and counted ;he
total number of times the sums lay in each of 31 equal ranges. The
7, 15, and 31 numbers to be summed were all positive. (This merely
means removing the factor 55840 from the generating functions and
"hence increasing the exponents in the brackets by 840.) The range of
kV from -100 to +100 volts in the physical system corresponds to the
range of k from 0 to 5040 in thé computer, This range was divided
into 31 equal increments of 168 units each, (which corresponds to
dividing the range ~100 to +100 v into 6.45 volt increments)o The
count for the range (n(168)) to (n(168) + 167 ) n=0, 1, cco , 30
was stored in word location n %n the computer. Thus, it-was only
necessary to divide the sum for a particular combination by 168 to

determine the location of the count which should be increased by 1.

A copy of the programme tape is given on the following page.



200k

573£2800
£lclh8hT
17a0573b
2800fLch
4856172¢
57372800
£lelh87r
LTok793f

alok

81228320
11200000
00000000
00000000
00000000
00000000
7926129
49291189

820k

00000000
000CO000
00000000
00000000
00000000
00000000
00000000
00000000

2822

25104927 Laab67900
793ba510 612f4900
LOLf7947 LTbl791f
61h0k9T7f 672fUOLF
5737797f 19587927
607£3000 67254927
2800eb33 19565737
30004da2 871f5b2b

00000000
00000000
00000000
00000000
GO000000
00000000
79551781
17bell20

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

a0 d516584d9
al d3e3licf
a2 00000000

00000000
00000000
00000000
00000000
00000000
7922710
612dk92d
6dah1ls5T

00000000
00000000
00000000
00000000
00000000
00000000
00000000
00000000

781£1160
00000000
0k000059
00000001
000000a8
001£0000
000£0000
00070000

0000C000
00000000
00000000
00000000
00000000
Ldn9l125
00000000
58000000

00000000
00000000
00000000
00000000
000060000
00000000
00000000
0000000

38



B-2,

one corresponding to a different set of member functions.

39

Computer Results.

Two determinations of probability distributions were made, each

(Which in turn

corresponds to a different initial configurations of the multivibrators

in the multivibrator ch&inso)

are tabulated for

step from

output vo
Waveform
V(nTi)z

n

Waveform

V(n 172)::

n

V(n 72)3

n

Waveform

V (n 1:3)= +180V =420V

n

=

V(n 173)=

n

the i‘B

Case 1,
ltage is
1.

=840V

+168V

~336V

3.

1

+315V

9

The waveform voltages for the two cases
each member function set, where V(n‘ti) is the voltage

chain after n pulses,

(A11 multivibrators initially in the state where the

initially 0,) This was the case used in the generator,

000V  +280V =560V  +560V =280V 000V
2 3 4 5 6 7
=504V  +336V =336V ~168V =840V  +168V  +336V
2 3 4 5 6 7 8
+504V 168V 000V =672V +672V 000V
10 11 12 13 14 15
+285V =315V =135V =735V  +735V  +135V
2 3 4 5 6 7 8
=285V  +420V =180V 000V =600V  +495V =105V
10 11 12 13 14 15 16



Waveform 3, (Continued)

V(n 13) = 4075V =525V
n = 17 18
V(n 13) = =180V  +525V
n = 25 26

Case 2,

multivibrators gating negative voltages in 1 state,

+180V =420V

19 20
=075V  +105V
27 28

a symmetric waveform from each chain.)

WVaveform 1.

V (n '5) = =840V  +560V
n = 1 2
Waveform 2,

V(n 1@) = +672V =504V
n = 1 2
V(n 12) = +840V =336V
n = 9 10

Waveform 3,

V(n 1%) =  +600V =420V
n = 1 2
V(n mé) =  +840V =180V
n = 9 10

=280V  +280V
3 4
+168V =336V
3 4
+336V =168V
11 12
+180V =315V
3 4
+420V =075V
11 12

=240V

21

=495V

29

=560V

5

+336V

5

+504V

13

+285V

5

+525V

13

40

+420V

=840V  +240V

22 23 24
+600V 000V

30 31

(Multivibrators gating positive voltages in 0 state,

This results in

+840V 000V
6 7
-840V  -168V +168V
6 7 8
872V 000V
14 15
~735V =135V +240V
6 7 8
-495V  +105V =105V
14 15 16
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Waveform 3. (Continued)

]

V(n 13)

+495V 525V +075V =420V  +180V =840V  -240V  +135V

n

!

17 18 19 20 21 22 23 - 24

V(n 13) = +735V =285V  +315V- =180V  +420V =600V 000V

n

25 26 27 28 a9 30 31

A plot of the probability distributions obtained for each case
is shown in Figure B-1. The shift in the mean values results because
the member functions for the first case do not have equal numbers of
positive and negative voltage steps whereas in the second case they do.
This is also the reason why the curve for the second case is symmetric
and that for the first case is not,

The relationship between the normalized prob@i&lity distribution

Cx

and the number of counts per range is given by the formula p(kV) = E—EEV :
. N T :

where p(kV) is the probability that the amplitude lies in the range k/W
to (k+1)AV, C, is the number of counts for the range (k(168) to (k+1)168-1),

and CT is the total number of counts~(ioe. CT = E.Ck)'

The counts for each range are tabulated below for each case.

Casq X,
Cn = 2 5 9 21 32 53 79 107 149 176 220
n= 0 1 2 3 4 5 6 1 8 9 10

Cn = 244 275 286 282 278 242 220 178 142 101 69

n= 11 12 18 " 14 15 16 17 18 19 20 21

n= 22 23 24 25 26 a7 28 29 30



p(v)

A Amplitude Probability

+0,014

=] [T T
-100 -80 =60 -40 =20 100

Figure B=1l, Theoretical Normalized Amplitude
Probability Distributions for two Member Function Sets,
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200
11
96

22

220
12

71

23

235
13
49

24

21

242

14

33

25

32

241
15
21

26

48

235

16

10

27

71

221

17

28

95

200

18

29

119

177

19

30

149

150

20

176

10

119

21
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Appendix C.

C-1. Programme for Determining the Cardinal Points of the

Theoretical Autocorrelation Functions,

Because of the simple straight-line relationship between
ﬂ(nri ) and ﬂ((n+ 1) Ti) of the member function autocorrelation
functions, it was sufficient to determine the values of the cardi-

. ' N :
nal points ¢(nxi) sy =0, 1, 000 T where the period of the
function is equal to NT it The value of ﬁ(n‘ti) is given by the
formula:

o 5) =5 (V(01,) 7 (2r,) + V(AT )V ((@e1)T )+ oo

+ V((N-1) 7 JV((N-1+0) T ) ) .
The equivalent computer problem is: Given N integers, 815 8oy coe 4y By,
compute the values of: (al)2 + (52)2 + see + (aN)2> = §(0),

818y + By8g + seo + AyE, = g(1 1&)

8185 + 858, + .00 + a8, = ¢(2 1&)

L] o L]
Bjay + aay *entae = f ()
1 2 oo 2 i

2 gtl z

where a, corresponds to V(0 Ti)

1
ag corresponds to V(1 Ti) etc,

A programme was written which did exactly this. A copy of

the programme tape is given on the following page.

43



a0o0k

871e5b43 11604800 6751kddl 001000ck
11604akT 17de5TUT TO4efT701 00000000
615fkako 78004820 8717953 000000cl
43512110 17495TUT 5b5e1160 00010000
Lhdellddl LO00e600 28004953 00000000
L1l odlf bd53¢553 175a1bk0 00000002
ef57¢55b 1751575b ¢35blled 00000000
5T475bkb T94fa510 05000052 00200000
2822

a0 2e57f0db

c-2, Computer Results.

Two determinations}of the autocorrelation function were made,
corresponding to the two sets of member functions mentioned in Appendix
B. Plots of the individual autocorrelation functions for each member
function are shown in Figures C-1, (a), (b), and (c). The results of
both determinations for the same member function are shown on the same

graph,

The computer results for the two determinations are tabulated
below, In all cases, the waveform voltage values fed into the computer
were made a8 low as possible by removing common factors., For instance,
Case 1., Waveform 1. would be represented as:

V(n‘tl) = -3 0 +1 =2 42 ~1 0
where the factor 280V has been removed. Similarly the common factors

168V and 15V were removed from waveforms 2 and 3 respectively.
Waveform 1 n = 0 1 2 3

-Case 1. #(n 11) = 19 -8 4 -1

Case 2. g(n )= 28 -7 1 2
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~0,5T \ // Case 1. \\/

"'lcOJ-

a) Normalized Theoretical Autocorrelation Functions for
Waveform One, Case 1 and Case 2.

¢22(T)
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Case 2,
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/
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_005-
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b) Normalized. Theoretical Autocorrelation Functions for
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1.01733

10,5" /\ /\

Case 2.

—'0.5'1
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c) Normalized Theoretical Autocorrelation Functions for
Waveform Three, Case 1 and Case 2,

Figure C~l., Theoretical Normalized Autocorrelation Functions.



Waveform
Case

Case

Waveform
Case

Case

Case

Case

Case

Case

2. n=

0

1 2

1, ¢(n'52) = 95 -38 19

2. f(nty) =120 -53 14

3. ns=
1. §(n )=

2. ﬂ(n Ts)n

10¢(n 1'3)=

2§¢(n T 3)=

ns=

l. #(n 13)=
2. f(n1,)=

0

21904

25040

2762

410

12
4173

4509

~7813

-9157

-5203

4195
13
4752

~5536

3 4
-34 38

-31 43

6246

6246

10799

12143

14

251

=757

-31 00

-34 -25

-9967

-9967

-6374

-9510

15
4830

7182

11

26

10972

11756

10
-371

~571

5
~10497

-10833

11
-4240

~4240
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