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ABSTRACT

For the case of a lossless medium containing no
free charges and possessing a continuous and sufficiently
differentiable spatially depéndent permeability and
permittivity, two vectorial differential wave equations,
one for the electric and one for fhé magnetic field, are
derived through the use of Maxwell's equations. From these
two equations neceésary.conditidﬁshfar E=. and H-modes .
to exist in a waveguide are established.

The field equations for the case of constant
permeability and z~dependent permittivity as well as the
interchangéd case are investigated. A test is developed
which, if met,Aassures that the solutions afe oscillatory
for the ordinary differential equations containing‘the
z-dependent part of the wave function.

For the dielectric loaded periodic. structure the
theory for inhomogeneous isotropic media is used to
determine the restrictions §n the field components whi@h
are necessary before E-modes can exist and to find the E-
mode wave soiutions for the solid dis; case when thé
dielectric regiohs are matched into the air régions.

An investigation is carried out into the behaviour
of plane waves in a medium with the permeability constant
and the permittivity varyiﬂé in the direction of

propagation.
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WAVES IN INHOMOGENEOUS ISOTROPIC MEDIA

1., INTRODUCTION

The purpose of this thesis is to investigate
theoretically the behaviour of electromagnetic waves in
lossless inhomogeneous isotropic media containing no free
charges.

Throughout this thesis inhomogeneous isotropic
media will be called inhomogeneous media.

Inhomogeneous media are of interest because they
may be used to make slow wave structures which in turn can
be used in linear accelerators, traveling wave tubes,
backward-wave oscillators, and microwave filters. Besides
this, inhomogeneous media may be used in pre-accelerator
designs. |

At Stanford University, G.S. Kino has considered
using a waveguide filled with a plasma of uniform cross-
sectional density and with an axial density variation of
the form ﬂ%(1+a sin 72) for a slow wave structure.® The
axial variation in plasma density is to be achieved by

propagating sound waves down the waveguide. In this case

1. G.S. Kino, A Proposed Millimeter-wave Generator .

Microwave Laboratory, W.W. Hanson Laboratories of Physics,

Stanford University, Stanford,; California.



the plasma forms an inhomogeneous medium.

The topic of this thesis arose during an investi-
gation into the solution for the wave functions in a
dielectric loaded periodic structure. ‘Sugh a structure is

shown in Figure 1.
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Fig. 1. Cross Section of’Diglectric Loaded Periodic Structure

For a periodic gtructure similar to the one shown
in Figure 1, the exact wave functions can be readily deter-
’mined provided the dielectric_discé are solid; These wave
functions are derived in Appendix 1 :for the EOl;mode. If

the periodic structure is used in the usual fashion for



accelerator or traveling wave tube applications, electrons
must pass along the axis of the waveguide. To make this
possible, a hole must exist through the center bf each disc,
With the hole present the problem of finding the wave
functions becomes exceedingly complex. In principle, this
problem can be solved by solving in each homogeneous region
the differential wave equations developed from Maxwell's
equations and by matching the solutions for the different
regions at the boundariesoz' Also, it should be noted that
Floquet's Theorem must be used in the same manper as it is
used in Appendix 1., Due to the excessi?e labour involved
in any numerical work carried outvto establish a match at
all the boundaries, the results have only formal
.significance. Consequently, it has been necessary to use
the solid disc theory and/or the anisotropic theory
approximations in the design of periodic structures having
center holes in the dielectric digcso2
Since previbus techniques used in attempting to
solve the problem in which the dielectrié discs ﬁave center
holes are not entirely sa,tisfactoi‘y9 it was thought that a
different approach might be useful. »Instead of placing the
emphasis on the medium ins?de the waveguide being made up
of homogeneous sections, if was decided that an investiga-

tion should be carried out with the emphasis shifted to the

2. R.B.R.~Shersby-Harvie et al, "A Theoretical and
Experimental Investigation of Anisotropic-Dielectric-
Loaded Linear Electron Accelerator", Proc. of I.E.E.,
vol. 104, Part B, 1957. ' ‘




fact that the medium as a whole is inhomogeneouso In other
words, the permittivity is a function of the spatial
parameters.

Three reasons can be advanced for following this
approach., One reason is that a different approach at times
reveals new information about a problem, and~a second
reason is that oniy one vectorial differential wave equation
has to be solved, as will be shown in section 2.2, to obtain

a field solution which holds throughout the waveguideo
| Also, since the permittivity in the neighbourhood of the
boundaries between the air and dielectric regions as well as
elsevhere is assumed continuous and sufficiently
differentiable, the theoqy developed to attack the problem
ih_which the dielectric discs have center holes can be
~expanded to include inhomogeneous media in gemneral. The
continuity and differ?ntiability assumptions will be .
discussed in section 2020

The one vectorial differential wave equation, which
is valid throughout the waveguide, yields three scalar
partial differential equations. ’These scalar partial
differential equations will hereafter be referred to as the
unified'differential equations. As it turned out, when the
dielectric discs have center holes, n§ technique was devised
to find the é;neral solution for any of the unified
differential equations. Consequently, the original objective

was not achieved. However, this problem initiated the

following work in this thesis.



For the case where both tﬁe permittivity and
permeability are continuous and sufficiently differentiable
functions of the spatial parameters, the electric and
magnetic vectoriai differential wave equations are derived.
Through the use of these equations, nhecessary — - k
conditions for E~ and H-modes to exist in a waveguide are
foundo_ An example of a use of the Eumo&e condition is shdwno

For the case where either the permittivity or
permeability is a function only of the axial parameter z
and the remaining characteristic of the medium is constant;
the pertinent unified differential equations are separated
vhich, if met, assures that the solutions are ostillatory
fof the ordinary differential équatiohs containing the
axial dependent portion of the wave function.

For the E-mode case certain limitations which must
~ be imposed upon the field components in the dielectric
loaded periodic structure are investigated using the theory
for inhomogeneous media. Also, when the dielectric discs
are solid, provided the dielectric regions are matched into
the air regions, for the E-mode case a solution for the
pertinent unified differential equétion is givens

To provide a better physical understanding of the
behaviour of electromagnetic waves in an inhomogeneous
medium, an investigation is carried out into the behaviour

of plane waves in avmedium with the permeability constant



and with the permittivity varying in the direction of
propagation. .

In this thesis the behaviour of E-modes is
investigated far more thoroughly than the behaviour of
H-modes. The reason for this is that the dielectric
loaded periodic structure discussed in this thesis is
primarily used for linear accelerator and traveling wave
tube applications and in these applications E-modes and

not H-modes are excited.



2. GENERAL THEORY

2.1 Introduction

Through the use of Maxwell's equations, the
following wave theory will be developed for the case of a
lossless medium containing no free charges. To begin with,
the situation where the permeability and permittivity of the
medium are gemeral functions of the spatial coordinates
will be considered. PFollowing this, the case with the
permeability constaﬁt and permittivity a function of z will
be treated along with thé interchange of this caseo*

Maxwell's equations in a medium containing no free
g _

charges and with zero conductivity are

VX B = -%%_, (1)
voﬁ = 0, (3)
VOB = 0 (4)

where
= Electric field intensity vector,
= Electric flux density vector,

Magnetic field intensity vector,

)
u

‘ = Magnetic flux density vector.
Also, D and E are related by the equation
n = EE-, ' (S)

* Interchanged case is that of constant perm1tt1v1ty and of
z~dependent permeabllltyo . -



and B and # are related by the équation
B = uH (6)
where € is the permittivity and p is the permeability.
2,2 Permeability and Permittivity, Functions of the Space
’ Coordinates
To obtain an expression for the electromagnetic
field in a homogeneous medium, the differential wave

equation which has to be solved is the standard equation
V?F = ped’g
22

where pe is constant.

WVhen the medium is not homogeneous, the - -
permeability and permittivity being continuous and
sufficieatly differentiable functions of the space
coordinates,”the'differential wvave equations from which the
field expressions can be_obtained are somewhat more complex,
These more complex differential equations can be arrived at
in the following manner.

For the electric field the vectorial differential
vave equation can be derived by first taking the curl of

equation (1).
Vx (x B) = &5 Vx 8,
Since

B = ufl

Vx (& B) = V(V.E)-V2,

and



then

V(V.E) _sz = -» <\7x uﬁ)

or _
V(V.p) - V2 = & (u%,;um + Vux gl

Since it has been assumed that the permeability and

permittivity are not functions of time,

2
V(V.B) - V2 = -pe 82 - Vux &

dt2
XPE 1 OB
= —uE S;E - E‘Vh X Dt

) 2
npe—bb-;g+%VpX(VXE)

ot
= e .ig + L[ Vu.VE - (Vu.V)E]

where in rectangular coordinates
= OF =~ OF - QF
VeVEZ Vi 5§35+ Vi 553+ Vi 5 F
with 1, J and k being the unit vectors in the x,y, and z
directions respectively. From equations (3) and (5)
VO_ﬁ = VoEE = 0,

Consequently,

VEDE + EVoE = 0
and thus

VOE = ’%ve oE

Therefore, the vectorial differential wave equation for the

electric field is

Ve + V(2 Ve,E) [Vp VE - (Vpe. V)E} (7)


http://4Ve.Ec

Similarly, the vectorial differential wave equation

for the magnetic field is

V2 L Ve = e - Ve Ve - (e ]
242 (8)

At this point sufficient theory has been developed
to establish a necessary condition for the existence of an
E~mode in a waveguide and a dual condition for the H-mode

caseo.

2.21 = E-Mode Condition
If the pefméability and permittivity are
continuous and sufficiently differentiable for all

interior points in a waveguide, then for an E-mode to exist

O (1 1 oH
Z ( m vp«oﬁ)"‘ Py VGOE)Z =-.- 0 (9)
where z is the coordinate in the direction of propagation.
Proof: From équation (8) it can be seen that the scalar

equation obtained when the coefficients of the component

vector in the z direction are equated is

-K72H + Heéggﬁ + 2 (VQSV)H = %;(% H)+ lS@obH

vhere H is the z‘component of H,

Since for an E-mode

then

- (2 Vem)+ 2 V82 < o,

O/IO/

10



The dual for this condition is the following one.

2,22 H-Mode Condition
If the permeability and permittivity are
continuoug and sufficiently differentiable for all interior

points in a waveguidé9 then for an H-~mode to exist

%; | £ Ve.E)+ %Vpog—f =0, (10)

Proof: The proof for this condition is the same as for the
previous condition except that equation (7) is used instead

of equation (8), and also,

instead of

where E_ is the z component of E.

2.23 Example of Use of a Mode Condition
The mode conditigns canlbe used to determine

certain restrictions which must be imposed upon the fields
befére E~ and H-modes can exist in a waveguide filled with
an inhomogeneous medium.

| An éxémple which demonstrates this use is the case
where an E-mode exists in a waveguide which is filled with
a medium having a permeability tha? is constant and a
permittivity that is sufficiently well defined and satlsfles

the equation

11



vhere r is the radial parameter. For a waveguide filled
with a medium which bghaves in this manner, from the E=mode

condition

o
VEOSZ = 0
or in cylindrical coordinates
'ngﬁr ;L_E)eéH _aibnz_
T 0z Trof Oz "oz Oz - 0 ' (12)

where Hr is the radial . component and Hﬁ is the angular
component of H. Since the permittivity does not have

angular dependence,

de -
5 = O
Also, for an E-mode
H, = 0, (13)
Hence, from equation (12)
de %r = o,
or Oz
Since
o€
== 0
or Z o,

then for an E-mode to exist in the waveguide
aHr = 0, (14)
z

As a result of identity (14), further restrictions
on the fields éan be found through the use of equations (1)

and (2).

12



.From equations (1) and (2)

OE bE}; OB.

; 62 - az = "é.i: ’ | (15)
OE OE OB
5z~ O% = ai{ , (16)
OE OB
%% (TE") - ':]E‘.' ar = - : ’ (17)
OH OH oD
1 Z r
Ry Rl (18)
OH OH oD
Ss " 5% = b’é ; (19)
and > 5
H D :
% %; (r Hy) - % 7§§;='7§% (20)

where Er is the radial component and E¢ is the angular .
component of E. The substitution of identities (13) and

(14) into equation (19) gives

3E, -
%:o,

jwt

If the field varies in time as pJ s with @ being the

frequency in radians per second, then

Ey = 0. (2})



Now, it can be seen from equations (15), (16), (17), (18),
and (20) that

1 Z>Ez
; ng = -jprr ’ (22)
2 bEz |
—B—Z- - -6—-; b3 -jwp,H" 9 (23)
%?% Zo, (24)
OH
._—b—é = JweEr ’ (25)
and T ' :
%.%;.(rﬂz) - % %?% = jweE . - (26)

'If equation (22) is differentiated with respect to z and
identity (14) is substituted into the resulting equation,
then '

z = 0. (27)

Through the differentiation of equation (25) with respect
to § and the use of identity (24), it is found that

0. | (28)

d OH
5 s

If identity (14) is integrated,

Hr_= fl(r{ﬂ), (29)

14



and if identity (24) is integrated,
EF = gl(rpz)o (30)

Identity (27) can be integrated first with respect to z
to give

2>1§:z 3
7;3 = SZ(fz(rfﬁﬂ

and then with respect to 4 to give

E, = £,(r,6) + g,(r,2). (31)

~Similarly, identity (28) can be integrated to give

Hﬁ = f3(r,¢) + g3(r,z)o (325

Prom the substitution of expressions (29) and (31) into

equation (26)

Of. (r,4)

%-%; (er) = % _—LT;Z—_ + jme(:,z)fz(r,d) + jwe(r,z)gz(r,z),

= Sl(ryd) + Sz(ryﬁpz) + 53(r92) (33)
where 52, (z.4)

r,
s;(r,4) = %: —%7— ,
sz(r,d,Z) = joe(r,z)f,(r,g), (34)‘

and

s3(r,z) ;jwe(r,z)gz(r,z)°

15
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However, from equation (32)

1z ) -2 ot + 2 g
= tl(TQf‘) + tz(roz) (35)

where -

| t(r,8) = 2 & [rt,(r,9)

and - '

% %_ (rg3(r,z” o

tz(r,z) =

Since Hd must behave in the manner described in equation (32),

the functional form given for

190 :
T o7 (rHé)

in equation (33) must be in agreement with equation (35).

Such an agreement is fulfilled only if

s,(r,8,2) = s,(r,z) | (36)

or if

sz(r,ﬁ,z) = sz(r,é)( (37)
Equation (37) cannot be satisfied because

€ = f(rgZ)o
Hence, equation (36) must be satisfied. Therefore, from

equation (34) it can be seen that it is necessary that

£,(r,8) = £,(r).
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With this being the case, from equation (31)
E_ becomes |
z
E, = fz(r) + gz(r,z)o (38)

Therefore,

>E. -
zo, (39)
ry i

and thus from equation (22)

H_ =0, (40)

Furthermore, if equation (23) is differentiated with

respect to g, from identities (24) and (39)

2?% = 0. (41)

It can be concluded from identities (24), (39), and (41)
that the fields have no angular dependence.

A point to note is that the restrictions
imposed upon the field components are initially caused by
the radial dependence of the permittivity. If the
permittivity is only a function of z, no restrictions

result from the E-mode condition because in equation (12)

H =0
Z -
-which forces
de OH,_ = o,
0z Oz

and thus all terms in equation (12) vanish.
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3. WAVE EQUATIONS FOR CASE OF CONSTANT PERMEABILITY
AND OF z-DEPENDENT PERMITTIVITY AND THE INTERCHANGED CASE

3.1 General

At this point the problem where the permittivity
is a function-of z and the permeability is constant will be
considered along with the interchanged case. For these
'problems the unified differential equations, which resﬁlt
from the vectoriai differential wave equations; are
sufficiéntly separabléo

If the permittivity is a function of z only and

the permeability is constant

' de
VE='&;E

and

Kﬂx = 0,

Hence, equation (7) becomes

2
Vg 4L de By peg-;% : (42)

and equation (8) becomes

2 -
V2R = pe O L 1lde R 1 QEK7HZe (43)

—— —— e -

Similarly, if the permeability is a function of
z only and the permittivity is constant,
Vk =0

and

Va

I
93
w1



Hence, equation (7) becomes

25 X 1audk _1ldu
VE=uebt2+“ - u VE«,, (44)

and equation (8) becomes

| . 2=
V2u 'va(-llI dp H| = ue o7f (45)

3,2 Differential Field Equations. for Transverse Waves

For transverse waves

.
V28 = ue -2—;% : (46)
and equation (45) becomes
. 2
Ver = pe —;}—g o (47)

For the case where the permittivity is dependent
on z,vthe field equations can be determined by first.
solving for the two field components in equation (46) and
then by using equations (1) and (2) in the usual manner.
-Hence, if the rectangular components of the field are to
be determined, the partial differential equations

2 °E
E_ = pe

(48)

19



and
sz = UE —
y 342 (49)
have to be solved where Ex and Ey are the components of E
in the x and y directions‘respectivelyo '

Similarly, for the case where the permeability
ié dependent on z, the field equations can be dgtermined
by firs£ solving for the two field components in
equation (47) and then by using equations (1) and (2).
Hence, if the rectangular components of the field are to

be determined, the partial differential equations

2
& H
V2H, = pe —= (50)
X 242 T

and
2 ok
§7-H = pe~——42

(51)
R4 42 /

have to be solved where Hx and Hy are the components of 31
in the x and y directions respectively.

Equations (48), (49), (50),and (51) have the
general form |

2
K7ZG = pe'é—% (52)
ot '

wvhere pe is a function of z. Consequently, equation (52)

will be considered for the remainder of this section,

20
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Equation (52) can, also, be written as
2
2 >%G %G
zG _—2=H€_—"

where ‘lz denotes the part of K72 which operates in the

trénsverse plane of a rectangular coordinate system. If

the fields vary in time as eJ@t, then G can be expressed
as
G =G (xgy,z)eawt,
and thus
%G
EazGo + 5 g = —wzueGoo (53)
2 ‘

The variables can be separated by letting

G, = F(x,y) T(z). (54)

Once equation (54) is substituted into equation (53),

12, 14° , 2 .2

where M is the separation constant. Hence,
\,2F + M°F = 0. (55)

Equation (55) is the ordinary differential equation
confronted when the transyerse dependence of a transverse
wave in & homogeneous medium is investigated. As well as
equation (55), the differential equation

| ar

2+ (0%pe - ¥H)T =0 (56)
dz -



22

has to be solved to obtain the solution for the transverse
waves under consideration.
For plane waves equation (56) is slightly simpler

due to the fact that for plane waves

2 2 2 2 -
VyE, = E = V,°H =\ Ho 20
which forces
M:Oo
Consequently, equation (56) becomes
2
Q_% + wzpeT = 0, (57)
dz

3.3 Differential Field Equations for Waves with
' Longitudinal Components

When the fields have longitudinal components,
the wave solutions can be found by first solving for the
longitudinal field componeﬁts and then by using equations
(1) and (2). This section is concerned with the
differential equations arising in the solution of the
longitudinal field components.

When the permittivity is deﬁendent on z, from
equation (45) the longitudinal component of the magnetic

field must satisfy the differential equation

V2, = pe 0Py (58)
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and from equation (44) the longitudinal component of the
electric field must satisfy the differential equation

2

0% (59)
32 |

2. .0 [1de =
sz+bz(e dz Ez)—“e

Equation (58) is the same type of differential
equation as equation (52), and thus can be treated in a
similar manner. However, the restriction that K&z must
operate in a ;ecfangular coordinate system no longer
applies.
| Equation (59) can be simplified by repiacing

E, by %Dzo' In terms of D equation (59) becomes

%D
2 1_de _ .20
V(D)bz(ZdDz)— 12
or
2 2 :
0“D oD oD
2 z 1de ~ "z _ z
‘é D, + 5 52 T e dz 0z ke 32 : (60)
The ‘variables can be separated by letting
D, = Flx,y)T(z)ed*", (61)

If this expression for D is substituted into equation (60),

the result is

wvhere once again M is the separation constant. The equation

VtzF + M%F = 0 (62)
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is identical to the equation which contains the transverse
dependent part of the longitudinal coﬁpoﬁent of the field in
a homogeneous medium and can be solved for a number of
boundary value problems using well known techniques. The

equation for the z~dependent part of Dz can be written as

2
a®r 1 ge ar 2 a2ym
dzz -t ot (9 pe = M°)T = 0, (63)

When the permeability is dependent on z, from
equation (46) the longitudinal component of the electric

field must satisfy the differential equation

FE

o2

£ . (64)

K72EZ = pe

and from equation (47) the longitudinal component of the
magnetic field must satisfy the differential equation
e EFH

2 o[ 1dp = z
% H, + bz( p dz gz)” ue th ° ,(65)

Equation (64) is the frequently occurring type
of differentigl equation given in equatibn“(SZ), and thus
can be treated accordingly. The only change is that S@zyis
no longer restricted to operate in a rectangular coordinate
system. |

- In the same manner as equation (59) was éimplified
by using D_, equation (65) can 5e simplified by using B .

From equation (65) it can be seen that Bz can be expreséed
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in the form
Bz = F(x,y)T(z)ert

with F(x,y) satisfying equation (62) and T(z) satisfying

2

=¥
3

1awdl , 2. -y o
_pdzz-f-(qpe-‘M):I'-—Oo

N

dz

3.4 Summary of z-Dependent Equations
If by definition
a(z) = pe,
then the differential equations containing the z-dependent
part of the solution for the wave functions considered in

1

sections 3.2 and 3.3 can be summarized by the following
L
three differential equations.

'd-%_*wqu = 0, . (66)
dz
ar (2 2 ’
82 +|e?q - ¥2|T = 0, (67)
dz
and
2
a”T _ 1 dg 4T 2. _ vl -
1.2 -9 dz az J+(w q - M )T = 0. (68)

3.5 Oscillation Theorem Due to Sturm
Equations (66) and (67) can be expressed in the

form | 2 ‘
== + h(z)v = 0, _ (69)
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and equation (68) can be transformed into the form of
equation (69) by the following transformation. If T is

expressed as

1/L da 1
T=e2fqdzdz V= e Ty = v,

then equation (68) becomes

2 2 2 o
a%v (2. 2 .11d% _31 @dfly _
.2 *[‘“1‘” *353.2 4q2(d4;') }W-O (70)

which is of the form of equation (69).

Owing to a theorem by Sturm, it is possible to
show that for a physically realizable situation the solutions
for equation (66) are oscillatory, and the solutions for

equation (67) are oscillatory provided

mzpe - M2>0°

Besides this, the theoreﬁ offers a possible test for
showing whether or not the solutions for equation (68) or
(70) are oscillatory.

Theorem:> The functions u(z) and v(z) are the respective

solutions of the differential equations

dzu
= +g(z)Ju=0 (71)
dz
)
d =0

——% + h(z)v
z

(72)
a ‘

3. L.R. Ford, Differential Equations, McGraw-Hill, Inc.,
" New York, 1955, p. 169. .



in an interval in which the coefficients of the equations
are continuous. If a and b are consecutive roots of u(z)
wvith a<b and if

h(z) >g(z)

h(z)‘z g(z)

in the closed interval[é,b}, then there exists a root of
v(z) between a and b,

Proof: First of all,

. 2 2
d du dv|_  47u av _
dz!¥ dz ~ ¢ dz)_- MY R (b - g)uv
which after integration becomes
z=b b
a dv |
va%—ua—z- =[ (h - g)uv dz. (73)

z=a &

Now, the supposition that v(z) has no root
between é. g.nd b is made. Without loss of generality u(z)
and v(z) may both be considered positive in the interval
a<z<b; either one can be replaced by its nega.t'ivle, if

necessary. Consequently,

oo

and
du(b)
|z 0,
Hence, oo . |z=b _ | . "
du dvy | _ du(b) du(a)
v as ~ Uiz = v(b) i - v(a) iz <0,

z=a

27
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However, the right hand side of equation (73) is positive.
Therefore, a contradiction exists, and thus ﬁhe theorem is
proved.

From this theorem it follows that if the solution
to equation (71) is oscillatory over some interval, then,
provided that‘over this interval g(z) and h(z) are
continuous and

h(z)>=>g(z)

n(z) % elz),

the solution to equation (72) is, also, oscillatory over
the same interval.

For a physically realizable medium

pe =k = Constant >0
whe:e normally
k = Bo€os
and for the non-trivial cases to be considered
pe z ko

Since the solution for

is oscillatory, the solution for equation (66) is, also,

oscillatory,



In a similar manner, when

w?pe - M®>Kk' = Constant>0,

then since the solution for

2
el  kr=o0
dz2

is oscillatory, the solution for equation (67) is

oscillatory.

(74)

29



30

4, FIELD PROBLEM IN A PERIODIC STRUCTURE LOADED WITH
DIELECTRIC DISCS

4.1 General

As mentioned in the introduction, the topic of this
thesis arose frpm the problem of finding the wave functions
for a periodic structure of the type shown in Figure 1.
Section 4 will expand upon this problem through the use of
the fact that inside the waveguide the medium as a whole is
inhomogeneous. The permittivity is a function of the

spatial parameters and the permeability is constant.

4,2 Functionai Behaviour of the Permittivity

Before the ﬁnified differential wave equations
can be dealt with, the functiohal behaviour of the
permittivity must be specified. Since the permittivity
in the interior of the air regions equals €, and in the
interior of the dielectric.regipns equals €y the functional
.fdrm of the permiftivity minus €, approaches the product of
a rectangulér wvave variation in‘the z direction times a
stép~vafiation in the radial direction. Consequently, if
'cylindriéal coordinates are used, the permittivity can be
expreésed as |

| € -€, = h(r)g(z)_
where h(r) and g(z) are sketched in Figure 2. The reasons

that ‘the curves in Figure 2 are shown as continuous and
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smooth are given in the foliowing paragraphs,

Before the theory'so far developed can be applied
to the field problem in a periodic structure loaded with
dielectric discs, it must be assumed that the permittivity
and all its first and second order derivatives are defined
for all interior points in the waveguide. The following

argument is given to justify this assumption.

g(z)
4 ) P = ‘
vel-eo e e e e e e
0 P > 2
h(r)‘
1.l
a b r

Fig. 2. Sketch of Functional Variations of Permittivity

At all points except those in the regions of the
boundaries between the air and the dielecfric medium, there
is no doubt as to the existence of the permittivity and all

its derivatives. If in the neighboﬁrhood of the boundaries
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the point of view of mathematical physics, which is that
matter is continuous, is taken, then the properties of
matter can aiso be regarded as'continuouso4 Therefore, the
permittivity can be considered continuous but'changing very
rapidly through the boundaries. Consequently, a continuous
function can be used to describe the permittivity through
the boundaries which both-approximates the situation as
closely as desirable and satisfies the assumptions made
about the behaviour of the permittivity. It is worth
noting that the step function used to describe the
boundaries in the standard approach for finding the wave
solutions is, also, an approximation, although a'very good
one, of the actual situation. The step function is an |
approximation because at the boundaries there exists not
one big discontinuity, but rather a large number of
discontinuities which arise from the discontinuities
between the atoms and, also, between the’sepafate parts of
the atoms. )

| In the region of a boundary the perm1tt1v1ty could
be represented by the function

€1-€

€, + i (75)
= Y,

e
provided m is small but finite. For equation (75)

= Coordinate in the normal direction to the boundary

4, A.G, Webster, . Partial Differential Equations of Mathema-
tical Physics, Dover Publlcatlons, New York, 1955, p.2.
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and

a = s at the boundary.
As m decreases, for s<a, E—>€ and for s>a, e—=€;o In
the limit as m—0, with an increasing s, the permittivity

changes discontinously through the boundary from €, to €y

4,3 Field Restrictions Due to E-Mode Condition

Now that it has been assumed that the permittivity
behaves sufficiently well to ensure that the theory so far
developed is applicable, the material in section 2 can be
used to find the necessary conditions for the existence of
E-modes in the periodic structure shown in Figure io ¥hen

the dielectric discs have center holes,

e = h(r)g(z) + g, = £(r,z).

Therefore, the restrictions on the field components found
in section 2023 must hold. If these restrictipns are not
met and a hybrid mode results, it is worth noting that the
.hybrid mode may very closelyfapproximate an E-mode provided
the longitudinal component of the magnetic field has only

a secondary effect on the reMaining field componénts; When
no center hole exists, the permitfivity has no radial
dependence, and thus, the E—mode‘condition is satisfied

without imposing any restrictions on the field components.

4.4 Unified Differential Equations

When the discs have center holes, the unified



differential equations for an E-mode can be found from

equations (7) and (8). Since for an E-mode

and since from the E-mode condition

H
T

1t
o

9

and the field components have no angular variation, the

unified differential equations are

2 2
12 %5, 9B > [12e g L2 oL
Lot e L i, 8 n) - e =2
Oz ot
2
XE | 2
> [12 r oy (12 > O°E
8;[ ; S; (rErﬂ + bzz + 5; [;(5% Er + B% Ezﬂ =¥ > 2r
and
3 12 dD°H % 1{ OH H 3 OH
5‘;[;8;(1‘%’]*‘—é= he g“é c 'a_é*"_é*’b%_qbz

As pre&iously mentioned, the techniques applied so far to

these differential equations, as well as the ones arising

in the H-mode case, have not yielded general splutidns,

i
S

However, numerical methods could be devised to calculate
specific solutions for these differential equatiohs. Since
general solutions have not been found, these differential

equations will not be considered further in this thesis.

For thé case where the discs are solid, the

34
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permittivity is a function of z only. Consequently, the
unified differential equations for the longitudinal field
componenﬁs can be-separaied as was seen in section 3.

~ Also, the complete wave solutions for this case can be
readily solved, as done in Appendix 1 for the'EOI-modep
by detefmining the fields in the dielectric regions and
in the air regions éeparately and by mdtching these field
solutions at the boundaries with the help of Floquet's
Theorem.

Consequently, if it could be shown that these
known solutions satisfy the unified differential equations
in the limit as the permittivity approaches a rectangular
waveshape, the viewpoint taken in this thesis would be
verified as applicable for findiﬁg the wave equations to
the solid disc case. ﬁowever; this was not shown in general
because no method was devised to overcbme two difficultiesl
simultaneouslyo_ |

One difficulty is to find an infinite series
expression for the permittivity which converges absolutely
and yet has an nth order term which is manageable. "This
difficulty is discussed by L. Brillouin in "Wave Propa-
gation in Periodic Structures"'o5 Sgcondly, even if such
a series is obtained, since the known wave solutions aie

expressed in terms of infinite series in z, single and

5. L. Brillouin, Wave Propagation in Periodic Structures,
Dover Publications, lnc., New York, 1953, p. 186.
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double infinite series appear in the z-dependenf p#rt

of the unified differential equations., This can readily

be seen from the equations derived in section 3. Consequent-
ly, the problem of establishing that the coefficients of the
z—-dependent series in the known solutions satisfy the

unified differential equations is very awkward.

However, when the dielectric regions are matched
into the air regions, it is possible to find the wave
solution for an E-mode from the unified differential
equations. As will be shown, this solution agrees with

the solution obtained in Appendix 1.

4.5 E-Mode Solution of Unified Differential Equatiohs for
Matched Case

For the case where the dielectric discs are solid
and matched into the air regions, a complete wave solution
for an E-mode can be determined by first solving for the
field component Dz through the use of the pertinent
unified differential equation and then by finding the
other field components from equations (1) and (2).

Since the permittivity is a function of z and the
permeability is constant, the z-dependent portion of Dz can

be found from equation (63),

The cross section of a periodic structure with solid

dielectric discs is shown in Figure 3. Tor such a structure
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the permeability equals Bgo

Cylindrical ~

- — P
WVaveguide | . O <—qa1
L7 77 T 77777 77D
. [ | [
Didlectric |i,' "' o T L “
Disc-- [ ! b e
o AN Y P !
Center| ! (| 4,“
Line [t '] SRR (N N I A —
o Sty I (A z t'f{ -
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i
(1) ,ﬂg. BM_origin 1 |4 (5) 6)1(7)
(0 Cy R
4

7 YA A A A A A A A

€ = Permittivity of dielectric medium

™
il

Permittivity of air

Noté: For simplicity Origin 1 is used in Appendix 1 and
Origin 2 is used in the body of the thesis.

Fig. 3. Cross Section of Solid Disc Periodic Structure

Since the permittivity very closely approximates
a rectangular waveshape in the z direction, it follows that
wzpoe - M2 and kzez, k being a constant, also, very
closely approximate rectangular waveshapes as shown in

Figure 4. For the matched case
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Fig, 4. Diagram of o uGe-M and ke~ Versus z
Consequently, when a match exists, the identity
wzpoe-Mz = k2€2 (77)

holds eicept in the transition region at a boundary between

an air region and a dielectric region. The transition



region is defined by(Sin Figure 4. As(5tends to zero,
identity (77) tends to hold for all values of z.

Consequently,.the differential equation

2
a°T 1 de dT , .2 2, _
dz2 ~tdzdz tkeE T=0 (78)

approximates equation (63) to any required degree of
accuracy for the matched case. The solution for

equation (78) is

T = Ale-jfke. dz Azejjke dz

where Al and A2 are arbitrary constants. Through the use

of identity (77), T becomes
./ 2 2 . 2
T = Ale--[-w poe-M dz AzeJIVw poe-M2 dz. (79)

As(Sapprqacheg"zera, the solution for T given by equation
(79) approaches the solution for the entire waveguide.
In the limit szpbe—Mz appr&aches a rectangular

waveform, and.thus_for the limiting case the integral
_/pwzpoe-Mz dz

can be evaluated graphically by integrating the réctangular
wvaveform as illustrated in Figure 5.
From Figure 5 it can be seen that in the limiting

case

_[-wzpoe-Mz dz = §_z + X(z)

39
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where

Soz = Ramp function
and

X(z) = Periodic function oscillating about the ramp function.

2
{/iw poe-M dz

T

Ramp Function

Periodic :Function

!

Fig. 5. A Diagram o{,szuGe-Mz dz Versus z



The slope So of the ramp can be found in the following manner.

From Figure 5 at z equals E%ﬂ

/.2 2 —q\/ 2 2
-/—w poe-M" dz = REHNQ-”OEOGM
and ‘thus at z equals %

/szpo;sz dz = Réﬂ mszoeo-’M *(% N BEQ)WZ“OEI"M

_ 5P
2

o

Hence,
_ L2 2 L2 2 L2 2
S, = W poeo-M ‘+ %(Q BoEp=M" - w poeo-M )o
When only the incident wave is present,
T = Ale_j(soz +,X(zﬁ ,
and thus

Dz = AlF(r,ﬁ)ej(wt - 8,2 f sz» | (80)

where r is the radial and the ¢ the angular variable,
In the limit as the permittivity approaches a
rectangular waveform, it can be seen from Figure 5 that in

an air region’ ‘
| L2 a2 | .rf—z 2
D, « e’lj’m Bo€oM" dz =V R E - )z

and in a dielectric region

1/Vw2poel-M2 dz =:e-j(vw2“oel—M2’z l

D « e
z



These results coincide with the results obtained by
solving the wave equation in each of the homogeneous
regions separately.

To check that the solution given by equation (80)
has the same phase shift per section as found in Appendix 1,

the expression for T(z+p) should be considered, namely,
T(z+p) = Ale'j(so(z+p) +'XKZ+P”°

Since

X(z+p) =X(z),
then

T(z+p) = Ale-jSOPknj(Soz +‘X1zn

= e~IS,P T(z).

Hence, the phase shift per section @ is given by
: N/ 2
g =8p = (p=q) wzuoso-Mz + qVe uoel-Mz .

This is the same value for @ as is foﬁnd in Appendix 1.

Therefore, since in the limit the field in each
section behaves in the same fashion as it was found to
behave in Appendix 1 and the phase shift per section is
identical to the value found in Appendix 1, the two
approaches are in agreement.

When the limit has not been taken, then DZ has



the form tovwithin any required degree of accuracy
iy ifet-s z - X' (2)
AlF(r,g{)eJ (wthoz - X'z )
wherle'in;the limit
S —=38
) )
X' (z)—=X(z).
The ph@se velocity for Dz can be approkimatély determined by

differentiating

)
ot = So z - X"(z) = Constant.

Hence, the phase velocity VP' is

-

~ @ e

A rd

¢ dz
Consequently, the phase velocity is modulated by the

'periodic‘ term 4 X' o
dz

43
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5. PLANE WAVES IN A MEDIUM WITH PERMITTIVITY A CONTINUOUS
FUNCTION OF z

5.1 Introduction

To obtain a better understanding of the behaviour
of-blebfromagnetict'waves in aﬁ inhomogeneous medium, it
was decided th;t an investigation should be made into the
behaviour of plane waves in a medium with a permittivity
which is & continuous and sufficiently differentiable
function of z. This prob;emntends to bé éimpler than ones
dealing with longitudinal field components. At the same
time, the techniques used in:solving the differential
equation arising from plane wave considerations have only to
be slightly modified for E-~ and H-mode problems in which
equation (67) arises. This can easily be seen by comparing

‘equation (67) with equation (66).

5.2 Problem

In prlnclple a complete solutlon for a plane wave
can readily be obtained for any sufficiently well behaved
z-dependent funetional form of the permittivity. Various.

particular forms were considered, and it was found that the

form _
€ = klzzs'2 + Eg - (81)
2
. z
where
'kl = Constant
k2 =-Constant
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and

2

s =V1 - 40 pk, , 0<s<l, (82)
o 2

yields solutions which are easily interpreted in physical
terms. Consequently, a permittivity satisfying equation (81)
will be used.

A sketch of the permittivity expressed in
equation (81) is given in Figure 6. Also, for thé medium

to be considered the permeability equals Bgo

€

3

Fig. 6. Sketch of Permittivity Versus z

For a plane wave with

E =0
y,—

and



from equation (57), since

2
d°E :
X0 2 2s=2
5t oTu klz +

=

Byo = 0 (83)

-2
dz 22
where Exo is the component of the electric field in the x
direction with time dependence suppressed.

Equation (83) can be solved in the following
mannef° First of all, the transformation

w. /p,okl
s !’

@ P'okl S

u:."'——'é—'—z =pzs,p=

(84)

is made. From this transformation

dExo s=1 dExo
-/)sz

dz - du

and
2 ' 2

_ d“E dE
X0 _/O2822.25=-2 X0 +ps(s_1)zs-2 X0
2 du
dz du

.‘92”Jk1223-2 * k2z-7Exo° (85)

Consequently, by the substitution of expression (84) into

equation (85)

Ey, = 0. (86)
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If E is transformed into

X0
i
. n2S
Exo =1u Y, (87)
then
1 1-2s
dE =
xo . 2sdY 1 _ 2s
- =u S +35zu X (88)
and
a’s a L 52 ey 11 | 1;45
X0 _ s dY 1 s dY .1 (1 _ _ s
*du2 =u du2 tsu du * 32s (25 l)u T. (89)

I1f expressions (87), (88), and (89) are substituted into
equation (86), the result is

2 4°Y aY 21 _
u——é-+udu+(u 4)Y—O

which is Bessel's equation for n ='%° Hence,

Y = ClJ;(u) + CZJ_;(u)
© 2 2

with C1 and 02 being arbitrary constants, and thus

Exo = Vz|

s s

NI{LQDZ )+N2J;1992 )
2 2

where Nl and N2 are arbitrary constants.

-\ /2~ &i
{L(u) =\/7= sin u

2

Since

and

J l(u) =\/%ﬁ cos u,
-2



or

[
i
n

2 2 =J z° J z°
Exo =v%z {Ale p +A2ep ] (90)

where Al and A2 are arbitrary constants., Hence,

l-s
E =g ed0t _[2 2 [, dlwt-02®) |, i(wt+Dz)
e e 2 e
Consequently, the incident electric wave is
1-s ( s)
_ |2 2 jlwt=Dz
Eyi 0 z Ae _=;) ;

and the reflected electric wave is

l=-s
_[2 T2, jlet+z®).
B /10 % A2 K2
Since
oB
VXE_-S;E,
OE OB
X _ ¥ _
Sz = 5t proHyo

Therefore,

48



or

2
By = G VD {[17 oipes? | byt (400

S S
+ [lis' z2+3p5z } Agej(wt"pzs%a (92)

2

Hence, the incident magnetic wave is
s

. - s
(o] .

and the reflected magnetic wave is

Njw

S

8
- —d, /2 _l.[l-*;s 2, g2 i (wt402%)
| _Hyr = by n,O \/Z 3 z +;1,Osz ]Aze “ "ﬂ o

Consequently, the wave impedance seen in the
medium by the incident wave is
. - Exi _ Wy Z
;7 = - - 4
oi Hyi psz_s+j ( 123)

and by the reflected wave is

7 Br Pho? *

or Hyr =pszs-’j(-1—5-§)=

It can be noted that provided z>0 the imaginary part Of'zoi

is negative, implying that the reactance is capactive,
while the imaginary part of Zor is positive, implying that
the reactance is inductive. A
The phase velocity of the incideht field can be
calculated by letting |
ot -[)zs = Conétant. (93)

49
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and by differentiating equation (93). If this is done,

w -=ps;zs”1 d_z_ = 0,

Hence, the phase velocity vp is

~dz o  l-s (94)

Since
O0<s <1,

the phase velocity increases as z inc;ea.ses°

1f an E-mode field can be set up such as to have
a phase velocity increasing with z;, the field may possibly
be'very useful in prewaccele?ator appliéétionso Equation
(94)-fends to point towards the possibility of obtaining
such an E-mode field through the use of an inhomogeneous

medium of this type.

5.3 An Inhomogeneous Slab Between Two Homogeneous Media

An inhomogeneous slab cén be used to effect a
match between two different homogeneous semi-infinitg media.
The.purpose of this section is to demonstrate this use for
the case where the inhomogeneous slab has a perm1tt1v1ty
that is functlonally described in equation (81)

In Figure 7 the field is assumed to originate in .
medium 1, pass through the inhomogeneous medium, and enter
medium 2. Also,.it.is assumed that theAfield in medium 2,

is totally absorbed, none of the energy being reflected



back toward the source,

In medium 1 the field equations are

i - j(wt=-p ., 2) jlwt+p ,2)
E, =Nje : 1%7 + Nye | 1
and
. |E . .
-\ /-1 jlwt-p . 2) jlwt+8 ., 2)
Hyl - Ko [Nle . 1 - N2e P 1
where

By = @VEE

and N1 and N2 are constantso6 The equations representing

Sﬁrface 1 #/l; Surface. \\\

Hopiogengous Inhomogeneous Hogogeneous
Mgdium : N Medium 2
e = kz25™2 4 ;%

\ Z
Fields are
E and H
X Y
‘a)/
o >z
b — >

Fig. 7. An Inhomogeneous Slab Between Two Homogeneous Media

6. 8. Ramo and J.R. Whimnery, Fields and Waves in Modern Radio,
John Wiley & Sons, Inc., New York, 1953, p.281.




the fields Ex and Hy in the inhomogeneous medium are given
by equations (91) and (92). Since only the transmitted wave

is present in medium 2, the field equations are

. _ o Jilet=B ,2)
Ex2 = Cle j 2
and
£ .
_ /22 jlot=B ,2z)
Hy2 = ™ Cle ‘ ~ 2
wvhere

B, =wkE,
a.nd_C1 is & constant,

At z equals a in Figure 7,

and

H =H .,

y1 = B (96)
At z equals b,

E . =E, (97)
and

H =H ., _

v 2 (98)

From equations (95), (96), (97), and (98) the
values for N, and N, can be determined; as done in
Appendix 2, from the parameters of the media, the frequency,
_ahd.the.constant C1° Once N1 and Nz are known, the reflection

coefficient R at surface 1 can be readily found since
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2 ;
R = Nv'- ° (99)

1

In Appendix 2 it is 'shown that

. e*ﬁé Bla{_ N w[
na +\/~_)(nb

TZb +: o J0(b5-a

~ip(b5-a } (100)

o +/-L Jp(b ~a® ,ﬁ; /__) =,/__ o~30(0%-2%)
b Ho
where

S=2
2 8. -2
a = =8

‘na =,wpo [)Sa +J 2 &

nb - b -5 .2

If there is no reflection at surface 1 in
Figure 7, all the energy can be transferred from medium 1
to medium 2. For this situation to occur,
R =0,

‘As shown in Appendix 2, in order that

R=09

two equations must be satisfied. .These equations are
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. k |
l-s (1 /f2 .1 [f1) . “VB%1 s s
> |5 E; + £ F;) sin ——= (b"-a”) (101)

"and

1./51 1-s (bs“l _ as'l)cbs“V”ofl (b5-a)
oVp 2 ‘a b s ‘

" 2 L efuk oo
= - kl(aan,b)s"“1 + 21 (l;s} - Ve &, sin——gg—l (b°-a%).
. ©“p ab '

(102)

This means that two of the paraméters must be determined by
equation§ (101) and (102). Due to the periodicity of
equations (101) and (102), these two parameters,
excluding € and €59 have an infinite number of discrete
values. Since'équations (101) and (102) are not periodic
with respect to g and €59 slvand €, have one solution each
if they are determined by these equations.

If for a particular‘frequency two of the remaining
parameters are evaluated by equations (101) and (102) and
the others are assigned convenient values, the matched
condition at surface 1 is established.

If the permittivity of the inhomogeneous medium is
specified, the field solutions obtained for the inhomogeneous
region only hold for one particular frequency. The re;son,is

that once the permittivity is specified,_kl, kz, and s have
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fixed values, and thus from the equation

s = Vi-40%p k,

the frequency is determined. Therefore, when the permittivity

is specified, the frequency cannot be evaluated from
equations (101) and (102).

However, field solutions for an inhomogeneous

region which hold for any frequency after the permittivity

is specified can be obtained quite readily. TFor example,

the medium with a permittivity behaving as

where

k1 = Constant

andﬁ

/]
it
B

(n=1‘,3950 060009 2n"='1)

has such field solutions.



6., MANUFACTURING OF INHOMOGENEOUS DIELECTRIC MEDIA

Although not too much thought has been given to
the possible ways of manufacturing a medium which has a
permittivity that is a continuous function of z,; three
possible methods have been considered.

The first method is to construct the medium by
using thin sheets of homogeneous dielectric material. If
thin sheets having different values of permittivity are
cemented together in some desired order, the resulting
laminated dielectric medium varies functionally with z.
.Provide@ the thickness of the sheets is small compared to
the wavelength of the field being propagafed in the
medium and provided the change in dielectric constant
between adjace@t sheets is small, it is believed that the
medium as seen by the field effectively varies in the

desired continuous maenner with z.

Another possible method for manufacturing a medium

with a permittivity which is a continﬁqus function of z is

by varying the density of the medium in the z direction.

For example, the porosity of the medium could be varied in

the z difection.as in the case of some types of foam rubber.

It might be possible to use a centrifugal process while
the dielectric material is solidifying to establish a

variable density.
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Through the use of plasmas, a xhediﬁm can be
obtained with a permittivity which vafies continuously in
the z direction. For example, #s already mentioned,; at
Stanford it has been proposed that soﬁhd waves be propagated
down a waveguide filled with plasma to vary in a periodic
fashion the density of the medium and thus the effective

permittivity.

57



7. CONCLUSION

For the case of a lossless medium containing no
free charges and possessing a continuous and sufficiently
differentiable spatially  dependent. permeability and
permittivity, two vectorial differential wave equations,

Ve WEVeE] = e £ - YUTE - @97

and

VR R en) = e £ - VA - D),

were derived from Maxwell'’s equations. The magnetic
vectorial differential wave equation was used to find the

necessary condition,
Qo 1y 1Y QH_
dz (p “°H),+ e €3z = 0,

for an E-mode to exist in a waveguide, and the electric
vectorial differential wave equation was used to find the

necessary condition,
2 (1 \ . 1Ly, QE _
dz ( € VeoE) + p.vP‘°5z" 0,

for an H-mode to exist in a waveguide. Through the use of
the E-mode condition, an investigation was carried out to
determine certain restrictions which must be imposed upon

the fields before E-modes can exist in a waveguide filled
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with a medium whose permeability is constant and

permittivity is

= f(r,Z)o

The restrictions were found to be that

H_ o,

E¢:09

and the fields have no angular variation. Also, it was
noted that the E-mode condition did not impose any
restriction upon the field components when the
permittivity is a function of z only.,

Through the use of the E-mode condition, an
investigation into the reetrictions imposed upon the fields
when the permittivity has other functional variations is
suggested for future study along with a complimentary
investigation using the H-mode condition. It is worth
pointing out that these restricfions are the duals to the
restrictions on the fields for the 1nterchanged cases,
namely, the cases having the permeability spatlally dependent
and the permittivity constant. An investigation ipto the
field restrictions,using the mo&e conditions is recommended
for cases where both the permeability and permittivity have
various functional forms.

The field equations were investigated for the case
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where the permeability is constant and the permittivity
varies with z and for the case where the interchanged
situation is true. In particularglthe field equations for
transverse waves and waves with longitudinal components
were considered., After the variables of the pertinent
unified differential field equations were separated, the
differential equations containing the transverse
dependenf part of the field components were found to be
the same as the corresponding equations found for
homogeneous media. For the different cases considered,
the z-dependent part of the field components were found
to satisfy one of the following differential equations:

2

i) Q_% + wqu = 0,
dz
a®r 2 2
ii) £ + (WP - ¥H)T = 0,
dz :
iii) a°r _1dgar, (02q=M?)T = 0
ig2 4dz dz a =

where M is a separation constant and

q = peo

Owing to a theorem by Sturm, it was possible to show that
for a physically realizable situation the solutions for the
first of these equations in T is oscillatory, and the
solutions for the second one is oscillatory provided

wzp,s - M2 >0,
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Besides this, the theorem offered a possible test for
showing whether or not the solutions for the third equation
are oscillatory.

The fields in a dielectric loaded periodic
structure were considered from the viewpoint that the
medium as a whole is inhomogeneous iﬁside the waveguide,
The assumption that the permittivity and all its first and
second order derivatives are defined for all interior
points in the waveguide was discussed from the point of
view taken in mathematical physics, which is that all
matter is continuous. After this assumption was made, an
investigation into the restrictions,on the fields when E=
modes are present was carried out. For the case where the
dielectric discs have center holes, since there is a radial
variation in the permittivity as well as a longitudinal
variation, the restrictions were recognized to be the same

as those discovered for the example where

e = f(r,z).

When the discs are solid, it was noted that'ihe E-mode
condition is satisfied without imposing any restrictions
on the fields,

For a periodic structure with solid dieléctric
discs the theory developed for inhomogeneous dielectric
media was used to find the E-mode field expressions when

the dielectric regions are matched into the air regions.
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In the 1imit as the permittivity approaches a rectangular
waveshape, these field expressions were shown to be in
-agreement with the expressions derived by solving fof the
fields in each of the homogeneous regions and by matching
the fields at the boundaries. |

It is felt that further effogt should be made to
use the theory for inhomogonoous media to find the field
equations for the solid dielectric disc case when a match
does not exist. In that the behaviour of the field as the
permittivity approaches its limit is knbwng there should
be some method for showing that this known solution satisfies
in the limit thevdifferential wave equations resulting from
the theory for inhomogeneous media. If this problem could
‘be solved, it may shed some light on how to solve the field
problem using the theory for inhomogeneous media when the
dielectric discs have,oentér holes. Furthermore, a second
approach for fiﬁdingothe'field solutions would be
established, which is at leost of academic interest.

VAlso; it is felt that a further attempt should be
made to find accurafe and magageable field solutions for the
case where the-dieleotric discs have center holes. It has
not yet been possible to attempt a thorough,investigation
of this problem.

An investigation was carried out into the behaviour

of plane waves in a medium whose permittivity is
2s-2 |, Kk,

2
z

e =kz - (103)
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where k1 and k2 are constants and

s =\/1'- 4‘“2901‘29 0<s<l.

The electric and magnetic fields were calculated to be

l=3

E =\v/%b z 2 [Alej (‘i)‘t“pzs) + Azej (f)t-lpzs)}

and

The wave impedance seen in the medium by the incident wave

was shown to be

Z = onz

- Toi -
o pet

1

and the wave impedance seen in the medium by the reflected

wvave was shown to be

z “Ho” z*
or ~ 5 . [L=s|' = “oi
o Psz -3 (fz—)

[*]

The phase velocity was calculated to be

-

l=s

-‘9—2
ps®

v
P
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Also, a slab of dielectric material having a
permittivity satisfying equation (103) was placed between
two different homogeneous semininfinite regions and used
to effect a match between these two regions.

A brief discussion is made on the possible
methods of manufacturing inhomogeneous media with a
constant permeability and a permittivity varying in the

direction of propagation.



APPENDIX 1%

For a circular waveguide loaded with solid
dielectric discs as shown in Figure 3,'page_37, the field
patterns for an EOlamode can be determined by matching at
the boundaries the fields found in each homogeneous region,

Through the use of Maxwell's equations, the field

components for an EOl-mode are found to be

, =§$1z jﬂlz} iwt
— ; Jw
E, = [Ale + Aje JO(Mr)e s (1)
. =jB,z iB,z ‘ot
= 49 1~ 1 } y . jot
E, = MYI[Ale A,e Jl(Mr)e Ve (2)
and
jwel[ =iB,z jBlz} jot (3)
Hé = 3 Ale + Aje Jl(Mr)e |

_in the dielectric region (2), and

~3jB 2
[c e ° +¢C

E 1 -+ 6

2

eJBOZ}JO(Mr)eth , (4)

: =3B,z JB 2z :
E, = ﬁ%o[cle ° -cChe ° ]Jl(Mr)eaft, (5)
and
jweo[ ~3B,2 jBoz] jot
Hd =5 Cle f Cze Jl(Mr)e : _ (6)

* The treatment in this Appendix is based on the paper
presented by G.B. Walker and C.G. Englefield, "Some
Properties of Dielectric Loaded Slow Wave Structures”,
PGMTT Symposium, San Diego, May, 1960.
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in the air region (3), where

Bf = wzuoel=M2 ’ (7)
Bg = wzpoeomMz . (8)
v, = %I = Phase velocity in dielectric region,
vy = g: = Phase velocity in air region,
5 = First root of JO(Qb) =0,

and A ,A 7

1 2,C1,and_02 are related constants,
The field in region (4) can be determined by

using Floquet's Theorem which states that in a given mode
of oscillation of a periodic structure, at a specifié
frequency, the wave function is multiplied by a given
complex phase constant when the field is observed a distance
of one period down the structureo8 Consequently, the field
components in region (4) are given by the multiplication of

ig

the field components in equations (1),(2), and (3) by e 7,

7. G. Ramo and J.R. Whinnery, Fields and Waves in Modermn Radio,
John Wiley & Sons; Inc., New York, 1953, p. 375.

8, J.C. Slater, Microwave Electronics, D. van Nostrand Co.;
Inc.; Princeton, New Jersey, Toronto, London, New York,: .




where @ is the phase change per section.

- If the fields are matched at z equals O:and p=q,

the equations obtained are

(9)

[
A

Vohy = Vohy = V0 + 0y

e A, + e, A

141 *ehy - g0y - gLy =0, (10)

and

- j(20,-9) ~j (20, +) —j20
L7, + 1, —ce C, —ee ©°.=0
€@ s B A 2~ % 1~ % 2=

where the phase change in thé air region is

26, = B,(p-q)

and the phase change in the dielectric fegion is
291=ﬁ1q_°

Equations (9),(10),(11), and (12) have unique solutions
for three of the constants Al’AZ’Cl’ a,nd_.C2 in terms of

the remaining constant only if
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vo ~v0 ~v1 ) vl
€1 € €, &
i(20,-9) ~j (20, +8) ~j29, i2e, = 0,
v e -V e -y e v. e
0 o 1 1
j (291-¢) ~-j(20,+§) -j26, j2e, :
€@ € e ) -€ e -c e (13)

From the expansion of equation (13) an expression for @ can

be determined. This expression is

: , 2 ’ 2
zl Zo Z1 0
4 cos @= 7= +\z-| cos (291+200) - W7 /7. cos(291-290)
o) - 7Y o 1

or

vhere Zo is the wave impedance for an EOl-mode in the air

region,

and Z1 is the wave impedance for an EOl-mode in the

dielectric region,

Through the use of any three of the equations
(9),(10),(11), and (12), the constants AysA,, and C, can

bevevaluated in terms of C2° If this is done, the



relationships obtained are

’ 20 ‘Zo 20 -j(291+¢)
A cos 20 + j=— sin - e '
M % i °_h °
C, ~ g +j(p-20 ) » %y !
L e - cos 291 - jzz sin 291
C - % -
cos - j— sin - e oo
Vfg _‘Eg'ej¢ - ° 2 °
€ &~ 31P-28,) - A g
: 1 e~ ‘ - COS 201 —'ng sin 201
and j(¢+296) zyzA .
Cl, e + 32; sin 201 = COS 201
T, = 73(p=28) _ Z o
2 el ° - cos- 291 - le' Sin 2 1 -
o

Now that the field components have been

determined over one period p, expressions for the field

components can be found which hold throughout the waveguide.

For example, for Ez such an expression can be found by
taking the following steps: The first step is to define

the function

F(z) = & —~ 0 (14)
o J (Mr)eawt
From equation (14) 7@2
‘ E (r, z+p, t)e P oi?
Z
‘_F(z"'P) = = 9

JO(Mr)ejwt>

69



70

and from Floquet's Theorem

Ez(r,iz+y9 t) Ez(r,z,t)ed3¢ 8

il

Hence,
F(z+p) = F(z) ,
and thus F(z)Ais a periodic function in z with a period p.

.Consequently,.F(z) can be expressed as the Fourier sum

29, =j2nnz
F(z) =Zane p
N==00
P-q
where : Snnz
R § P
ey =3 F(z)e o dz .
=q
Therefore, Jove) _
, r Q+2nn
E =J (Mr)ed®® ae NP )2
'z o0 : n
T N==O0

o = dz .
™ n E p .

where P=q
. J(Ez(r,z,t) . j(Q%gﬂg)z
: - - e

1
JO(Mr)eJmt
—q- .

When the dielectric regions are matched into the

air regions,

Consequently, equations (1), (2), (3), (4), (5), and (6)



become respectively

E, = 4,J5(Mr)e ,
!
L j(wt-g, z)
1) ‘ 71
E = = A J,(Mr)e ,
jwe j(ot=B, 2z)
H" = M—l' A9, (Mr)e 1 ’
, j(ot=B_z)
E, = C;iy(Mr)e  °
. jlwt-B_z)
— 49 . .0
Er = MYO ClJl(Mr)e o ’
and ( )
joe_ jlot-p_z
Hd = -bi—-g- ClJl(Mr)e ° °
Since for the matched case
Zo = Z1 ’

the phase shift per section is given by
cos § = cos 26 cos 26; - sin 20  sin 20,.

Therefore,

(p-q)B, + aB,

V2T 2. T
(p-a) VoTpoe,M" + q Volpoe, M .
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APPENDIX 2

The_fields for the different regions shown in
Figure 7, page 51, are:

i) in medium 1

"’j'Blz jBIZ 2
_ jot
Exl = [Nle + Nze e ;
and
€ -jBy 2z iB.z] .
H =\/—l[N e 1T N e 1 }ert
yl B 2" "

ol1

ii) in the inhomogeneous medium

.
-5 - T agomi05 4 et

;::51;1_\/:[)\/' {[l—zs-apszs]llt omipz” +[L§§-_z%+jpsz ] JQZ} jot

iii) in medium 2

_ Cle’jﬁzz ot

[€ =iByz
/2 29 jut
Hy_2 =\/% acle e g

and

where
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2

s =V1 - 4w p,ok2 y O<s<l1l ,

By = @it s

andvAl,Az,Nl,Nz,_and Cl‘are related constants.

At z equals a the boundary conditions are

Exl = Ex

and
H — H o
yl y

Therefore;

e . l-s »
=3B, 8 e B T3 jDa® ] s]
_ |2 =jpa ifa
Nye + Npe =\/2p Aje oa” A2elo (1)
and

€ -jBya iB a}
A 1 12| _
m [Nle - Nye =

S S S S
. -2 = ALS -= s o8l
i 2 1{[—15%2 - jpsaz]Ale‘Jpa + [—algs 2 jpsaz]AzeJD“} 5

At z eéuals b

and



Consequently,
l-s
== s s jB,b
\/%b 2 [A,le b7 4 erb} e 2 (3)
and
-8 s _s S s
iy [1_? b2 jDsb }Ale':]iob + [l_g.é b2+3psb }A e J0P

€ =jB,b
- /-2 2
=7 Cle o (4)

At surface 1 the reflection coefficient R is

defined as

R=g=. (5)

One approach to finding R is to express both N1 and N2 in

terms of 01. To do this, Al and Az must be found in terms

of Clo ‘
From equations (3) and (4),
3(Op5-Bob) (x5
A = ée (sz X B, Cy (6)
and QD s )
=3 Ob"+B,b 5\ .
A2 = 'gbe ( b o= ;:;‘ Cl (7)

where

é:w—p"——s\/%z (8)

%Dsbz
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and -2
2

'Ub = b

[psbs + 3[—13—’5):] (9)

From equations (1) and (2) both N; and N, are solved

for in terms of Al and.A2 The results are

-j(Da"~B;a) +8,a)
N=€ 3{0a"-py0 7’(\/;_) Jwa 1# T?a\/'o A, (10
and ) s 3 ) 8 )
- a +8.a € =P. &
N2=_g: J@ 1 \/——A +§ J(pa 1 1‘ A, (11)
where
. [Rap .
= —1-5,/“;2° ‘ (12)
* 2&5 !
and gég s s
Pl B
a o) :

Now, the values for Al and A2 found respectively in equations

(6) and (7) are substituted into equations (10) and (11) to

i(B,a-B,b) 3
£;§;Hg 1 2 {:n;+

2%

_uo)

give

2|, 3p(p%-a®)

_%)e-jp(bs-as) (14)
0



and

N, = 5a€bcle'j(ﬁla+52b){ (T(& )‘T?ﬁ) J,O(b -8 ) |

2 )e-a:ipm‘ﬂ}o 15)
o j

If expressions (14) and (15) are substituted into
equation (5), it is found that

R = ‘3231{ Ta. “"f T?b +\/:_) iP(b5-a®
R (7?: iy )(nb,@)e-a’pwsnﬂ}

(16)

(o)

Mo +\/-X

(Ub +

J,D(b ~aS (na -ﬂnb ) -=:1p(b -a5

If there is no reflection at surface 1,

R'—-Oo

Therefore, from equation (16)

Mo o2 )(sz Te /22 )(sz [E2)omipte=e?
Ornan: + /-2 779, \/c‘ TZb r ) o JO(b%-a®

[ /2T T, pz

(o)

qﬂﬂb -a®

omip(®%=a%) (17)
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Now, if the following definitions are made:
i) T =pb%=a®),
ii) T?a:: Wa + jva,
iii) 7& = W A+ jvb,‘

€ € €€
i - ; -2 -/ S S
iv) G— LA S ™ Vo by vy ) 5
o
2 1 £1%2
v)|—‘ VoW + V.V j/:t—w [== W, = .
ab o & Vi, b 902
€ €
vi) \yl= VoW = VpW, aﬁva +/“—1 vy 0

Q

©

v11)\y =V Wy VW +‘/

the substitution of these newly defined quantities into

%]

‘b 4

equation (17) yields
([{ + j\ifl)e:rr = ([, + j\lfz)e“j’r o (18)

Once the real parts of equation (18) are equated, the

resulting equation is

([7 =[L)eosT = (¥ +)sinT . (19)
1l 2 1 2
Similarly, from the imaginary parts of equation (18)

(\-{{l --\_Vz)cos'f = -==(G +|_£)sinT . (20)
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In terms of the original parameters, equations (19) and

(20) are respectively

o /B K
mJEi(JEE aS™1 ~v€i bsnl)cos T_EQ_L (bS-a®)

= 1=s[1ff2, 1f1), S (b5-a%)
2 |a Ko b Bo s

and

1 .]f_l_ 1-s bsnl - s-1 o vaokl (bsw S)

wdpo 2 a b |%%° T s

ey 2 wy/p k
== (ki(“b')s v - 52 '\/5_15—2) sin == (b°
0 a

-a®) .
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