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ABSTRACT 

For the case of a lossless medium containing no 
free charges and possessing a continuous and sufficiently 
differentiable spatially dependent permeability and 
permittivity, two vectorial differential wave equations, 
one for the electric and one for the magnetic f i e l d , are 
derived through the use of Maxwell's equations. From these 
two equations necessary conditions,for E-.ahd H-modes ., 
to exist in a waveguide are established,. 

The f i e l d equations for the case of constant 
permeability and z-dependent permittivity as well as the 
interchanged case are investigated,, A test is developed 
which, i f met, assures that the solutions are oscillatory 
for the ordinary differential equations containing the 
z-dependent part of the wave function. 

For the dielectric loaded periodic structure the 
theory for inhomogeneous isotropic media is used to 
determine the restrictions on the f i e l d components which 
are necessary before E—modes can exist and to find the E-
mode wave solutions for the solid disc case when the 
dielectric regions are matched into the air regions. 

An investigation i s carried out into the behaviour 
of plane waves in a medium with the permeability constant 
and the permittivity varying in the direction of 
propagation. 
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WAVES IN INHOMOGENEOUS ISOTROPIC MEDIA 

lo INTRODUCTION 

The purpose of this thesis is to investigate 
theoretically the behaviour of electromagnetic waves in 
lossless inhomogeneous isotropic media containing no free 
charges. 

Throughout this thesis inhomogeneous isotropic 
media will be called inhomogeneous media. 

Inhomogeneous media are of interest because they 
may be used to make slow wave structures which in turn can 
be used in linear accelerators 9 traveling wave tubes, 
backward-wave oscillators, and microwave f i l t e r s . Besides 
this, inhomogeneous media may be used in pre-accelerator 
designs. 

At Stanford University, G.S. Kino has considered 
using a waveguide f i l l e d with a plasma of uniform cross-
sectional density and with an axial density variation of 
the form /D(l+a sin ^z) for a slow wave structure.^" The 
axial variation in plasma density is to be achieved by 
propagating sound waves down the waveguide. In this case 

1. G.S. Kino, A Proposed Millimeter-wave Generator,, 
Microwave Laboratory, W.W. Hanson Laboratories of Physics, 
Stanford University, Stanford, California. 



the plasma forms an inhomogeneous medium. 
The topic of this thesis arose during an investi

gation into the solution for the wave functions in a 
dielectric loaded periodic structure,. Such a structure is 
shown in Figure 1. 
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= Permittivity of dielectric material 

> Cylindrical 
Coordinates 

tQ = Permittivity of air 
z = Longitudinal Coordinate 
r = Radial coordinate 
/> =Angular coordinate 

Notes Discs are solid when a equals 0 . 

1. Cross Section of Dielectric Loaded Periodic Structure 

For a periodic structure similar to the one shown 
in Figure 1, the exact wave functions can be readily deter
mined provided the dielectric discs are solid. These wave 
functions are derived in Appendix 1 for the Eg^-mode. If 
the periodic structure is used in the usual fashion for 
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accelerator or traveling wave tube applications, electrons 
must pass along the axis of the waveguide0 To make this 
possible, a hole must exist through the center of each disc. 
With the hole present the problem of finding the wave 
functions becomes exceedingly complex. In principle, this 
problem can be solved by solving in each homogeneous region 
the differential wave equations developed from Maxwell's 
equations and by matching the solutions for the different 

2 
regions at the boundaries. Also, i t should be noted that 
Floquet's Theorem must be used in the same manner as i t i s 
used in Appendix 1. Due to the excessive labour involved 
in any numerical work carried out to establish a match at 
a l l the boundaries, the results have only formal 
significance. Consequently, i t has been necessary to use 
the solid disc theory and/or the anisotropic theory 
approximations in the design of periodic structures having 

2 
center holes in the dielectric discs. 

Since previous techniques used in attempting to 
solve the problem in which the dielectric discs have center 
holes are not entirely satisfactory, i t was thought that a 
different approach might be useful. Instead of placing the 
emphasis on the medium inside the waveguide being made up 
of homogeneous sections, i t was decided that an investiga
tion should be carried out with the emphasis shifted to the 
2. B.B.Ro-Shersby-Harvie et a l , "A Theoretical and 

Experimental Investigation of Anisotropic-Dielectrie-
Loaded Linear Electron Accelerator", Proc. of I.E.E., 
vol. 104, Part B, 1957. "~*"~ 
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fact that the medium as a whole is inhomogeneous. In other 
words, the permittivity is a function of the spatial 
parameterso 

Three reasons can be advanced for following this 
approacho One reason is that a different approach at times 
reveals new information about a problem, and a second 
reason is that only one vectorial differential wave equation 
has to be solved, as will be shown in section 2.2, to obtain 
a f i e l d solution which holds throughout the waveguideo 
Also, since the permittivity in the neighbourhood of the 
boundaries between the air and dielectric regions as well as 
elsewhere is assumed continuous and sufficiently 
differentiable, the theory developed to attack the problem 
in which the dielectric discs have center holes can be 
expanded to include inhomogeneous media in general. The 

continuity and differentiability assumptions w i l l be 
i 

discussed in section 4.2. 
The one vectorial differential wave equation, which 

is valid throughout the waveguide, yields three scalar 
partial differential equationso These scalar partial 
differential equations will hereafter be referred to as the 
unified differential equations. As i t turned out, when the 
dielectric discs have center holes, no technique was devised 
to find the general solution for any of the unified 
differential equations. Consequently, the original objective 
was not achieved. However, this problem initiated the 
following work in this thesis. 
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For the case where both the permittivity and 
permeability are continuous and sufficiently differentiable 
functions of the spatial parameters, the electric and 
magnetic vectorial differential wave equations are derived 0 

Through the use of these equations, necessary 
conditions for E- and H-modes to exist in a waveguide are 
f o u n d o An example of a use of the E-mode condition is shown,. 

For the case where either the permittivity or ^ 
permeability is a function only of the axial parameter z 
and the remaining characteristic of the medium is constant, 
the pertinent unified differential equations are separated 
into ordinary differential equations» A test i s developed 
which, i f met, assures that the solutions are oscillatory 
for the ordinary differential equations containing the 
axial dependent portion of the wave function„ 

For the E-mode case certain limitations which must 
be imposed upon the f i e l d components in the dielectric 
loaded periodic structure are investigated using the theory 
for inhomogeneous media* Also, when the dielectric discs 
are solid, provided the dielectric regions are matched into 
the air regions, for the E-mode case a solution for the 
pertinent unified differential equation is given 0 

To provide a better physical understanding of the 
behaviour of electromagnetic waves in an inhomogeneous 
medium, an investigation i s carried out into the behaviour 
of plane waves in a medium with the permeability constant 
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and with the permittivity varying in the direction of 
propagation,. 

In this thesis the behaviour of E-modes i s 
investigated far more thoroughly than the behaviour of 
H-modeso The reason for this i s that the dielectric 
loaded periodic structure discussed in this thesis is 
primarily used for linear accelerator and traveling wave 
tube applications and in these applications E-raodes and 
not H-modes are excited* 
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2. GENERAL THEORY 

2.1 I n t r o d u c t i o n 

Through t h e use o f M a x w e l l ' s e q u a t i o n s , t h e 

f o l l o w i n g wave t h e o r y w i l l be d e v e l o p e d f o r the case o f a 

l o s s l e s s medium c o n t a i n i n g no f r e e c h a r g e s . To b e g i n w i t h , 

the s i t u a t i o n where the p e r m e a b i l i t y and p e r m i t t i v i t y o f the 

medium a r e g e n e r a l f u n c t i o n s of the s p a t i a l c o o r d i n a t e s 

w i l l be c o n s i d e r e d . F o l l o w i n g t h i s , the case w i t h the 

p e r m e a b i l i t y c o n s t a n t and p e r m i t t i v i t y a f u n c t i o n o f z w i l l 

be t r e a t e d a l o n g w i t h the i n t e r c h a n g e o f t h i s c a s e . 

M a x w e l l ' s e q u a t i o n s i n a medium c o n t a i n i n g no f r e e 

c h a r g e s and w i t h z e r o c o n d u c t i v i t y are 

Vx E 

V x s 

V.B 

(1) 

5¥ (2) 

o 

(3) 

(4) 

where 

E = E l e c t r i c f i e l d i n t e n s i t y v e c t o r , 

13 = E l e c t r i c f l u x d e n s i t y v e c t o r , 

5 = M a g n e t i c f i e l d i n t e n s i t y v e c t o r , 

S = M a g n e t i c f l u x d e n s i t y v e c t o r . 

A l s o , 15 and E are r e l a t e d by the e q u a t i o n 

(5) 

* I n t e r c h a n g e d case i s t h a t o f c o n s t a n t p e r m i t t i v i t y and of 
z-dependerit p e r m e a b i l i t y . 
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and B* and S are related by the equation 
S = uB (6) 

vhere e is the permittivity and \i is the permeability. 

2.2 Permeability and Permittivity, Functions of the Space 
Coordinates 

To obtain an expression for the electromagnetic 
f i e l d in a homogeneous medium, the differential wave 
equation which has to be solved is the standard equation 

where u-e i s constant. 
When the medium is not homogeneous, the 

permeability and permittivity being continuous and 
sufficieatly differentiable functions of the space 
coordinates, the differential wave equations from which the 
f i e l d expressions can be obtained are somewhat more complex. 
These more complex differential equations can be arrived at 
in the following manner. 

For the electric f i e l d the vectorial differential 
wave equation can be derived by f i r s t taking the curl of 
equation ( l ) . 

Vx E) = -|rVx B 0 

Since 

and 
Vx (Vx E) = V ( V . E ) - V 2 E , 



9 

then 

V ( V . E ) « V 2 E = (Vx u.H) 
or 

V( V.E) - V 2 E = - | r ( ^ ( e E ) + Vlt X S)0 

Since i t has been assumed that the permeability and 
permittivity are not functions of time, 

V(V .E) - V ^ ^ - i x e ^ f - VnxSf 
bt^ o x 

b 2 E i n T bB 
= " M , E b t 1 ~ ^ ^ 

= - jie & + iVn X (Vx E ) 

b 2 E 

bt^ 
+ ^ [ V R O V E - (VtioVJE 

where in rectangular coordinates 

with I, j and k" being the unit vectors in the x,y, and z 
directions respectively. Prom equations (3) and (5) 

VoD" = V « e E = 0. 

Consequently, 
V e . E + e V»E = 0 

and thus 
V .E = 4 V e . E c 

Therefore, the vectorial differential wave equation for the 
electric f i e l d is 

V 2 E + V l J V e . E l = u e ̂ | - i f o . V E - (Vn-V)*!- (7) 
bt 

http://4Ve.Ec


Similarly, the vectorial differential wave equation 
for the magnetic f i e l d is 

V 2H +V(f Vix.s) = v£% - ifVc.Va - (Ve.V)sl. 
* & t (8) 

At this point sufficient theory has been developed 
to establish a necessary condition for the existence of an 
E-mode in a waveguide and a dual condition for the H-mode 
case. 

2.21 E-Mode Condition 
i 

If the permeability and permittivity are 
continuous and sufficiently differentiable for a l l 
interior points in a waveguide, then for an E-mode to exist 

where z is the coordinate in the direction of propagation. 
Proof: From equation (8) i t can be seen that the scalar 
equation obtained when the coefficients of the component 
vector in the z direction are equated i s 

where H z is the z component of H0 

Since for an E-mode 

)z 

H - 0, z - 9 

then 

dz J V M ] + J V . . g - o . 
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The dual for this condition is the following one. 

2.22 H-Mode Condition 
If the permeability and permittivity are 

continuous and sufficiently differentiable for a l l interior 
points in a waveguides, then for an H-mode to exist 

(10) 

Proof: The proof for this condition is the same as for the 
previous condition except that equation (7) is used instead 
of equation (8), and also. 

instead of 
H - 0 z -

where E z is the z component of E» 

2.23 Example of Use of a Mode Condition 
The mode conditions can be used to determine 

certain restrictions which must be imposed upon the fields 
before E- and H-modes can exist in a waveguide f i l l e d with 
an inhomogeneous medium. 

An example which demonstrates this use is the case 
where an E-mode exists i n a waveguide which is f i l l e d with 
a medium having a permeability tha-J; is constant and a 
permittivity that i s sufficiently well defined and satisfies 
the equation 

e = f(r,z) (11) 



where r is the radial parameter0 For a waveguide f i l l e d 
with a medium which behaves in this manner, from the E-mode 
condition 

U oH A 

Oz = 

or in cylindrical coordinates 

^ e ^ r + 1 $ e ^ + de ^ _ 0 (12) dr dz + r 57 T i + dz T i ~ ° U 2 J 

where is the radial component and i s the angular r 
component of S« Since the permittivity does not have 
angular dependence, 

Also, for an E-mode 

de - n 

37 - 0 < 

H - Oo (13) z — 

Hence, from equation (12) 

de 
dr b z 

> dH - „ de r - 0. 

Since 

d r ~ 

then for an E-mode to exist in the waveguide 

^ H r = Oo (14) 
dz ~ 

As a result of identity (14), further restrictions 
on the fields can be found through the use of equations (l) 
and (2)o 



Prom equations (1) and (2) 

1 dE z dEl_ b ^ 
r ~S7 ' bz ~ " dt ' 

. bH bH/ bD 1. z p _ r 
r I ? " bz ~ bt ' 

and 

(15) 

bE„ bE„ OB/ 

i * I
 0 E v bB^ 

i § ? < * . V - i T f — * f • ( 1 7 ) 

(18) 

bH bH, bD / 

i > , bH bD 
i I? <r V - J -si. - -rf ( 2 0 ) 

where E r is the radial component and E^ is the angular 
component of The substitution of identities (13) and 
(14) into equation (19) gives 

t 

If the f i e l d varies in time as e J W \ with u> being the 
frequency in radians per second, then 

E / - Oo (21) 



Now, i t can be seen from equations (15), (16), (17), (18), 

and (20) that 

i T7 = - ^ E T > < 2 2 ) 

bE bE 

bi-Ti- ' ( 2 3 ) 

b E r I 0 , (24) 
bl ~ 

bK, 

- r f = > e E r ' ( 2 5 ) 

and 
(rHv) - ± M

T = jo>eE . (26) r dr p r J z 

If equation (22) i s differentiated with respect to z and 
identity (14) is substituted into the resulting equation, 
then 

* 6 E z = 0. (27) 
"5z ~£T? 

Through the differentiation of equation (25) with respect 
to p1 and the use of identity (24), i t is found that 

b ^ : o . (28) 

"bp7 b z ~ 

If identity (14) is integrated, 
H r = f^r . t f ) , (29) 



and i f identity (24) is integrated, 

E r = g 1(r,z). (30) 

Identity (27) can be integrated f i r s t with respect to z 
to give 

and then with respect to f£ to give 

E z = f2 ( r'*^ + g 2
( r ? z ) o ^ 3 1 ) 

Similarly, identity (28) can be integrated to give 

= f 3(r,j^) + g3(r,z)» (32) 

Prom the substitution of expressions (29) and (31) into 
equation (26) 

r fe (rV = r + ^ t ( x 9 z ) f 2 ( v f f i ) + j«e(r,z)g2(r,z) 

= s 1(r,^) + s 2(r,p\z) + s 3(r,z) (33) 

where 

S i ( r ^ ) = r — : ' 

s 9(r,jf,z) = otoe(r,z)f 2(r,^) t (34) 

s,j(r,z) = jwe(r,z)g 2(r,z). 
and 



However, from equation (32) 

where 

and 

= t^lj) + t 2 ( r , z ) (35) 

t 2(r,z) = i | j ( r g3 ( r' z )) * 

Since Ĥ  must behave in the manner described in equation (32) 
the functional form given for 

r dr p' 

in equation (33) must be in agreement with equation (35). 
Such an agreement is f u l f i l l e d only i f 

or i f 

s 2(r,^,z) = s 2(r,z) (36) 

s 2(r,0\z) = s 2 ( r , ^ ) 0 (37) 

Equation (37) cannot be satisfied because 

e = f(r,z)o 
Hence, equation (36) must be satisfied. Therefore,.from 
equation (34) i t can be seen that i t is necessary that 

fgU.jrf) = f 2 ( r ) . 



With this being the case, from equation (31) 
E becomes z 

E z = f 2 ( r ) + g 2 ( r , z ) o ( 3 8 ) 

b E z ~ 0, (39) 
Therefore, 

"b7 
and thus from equation (22) 

H Z Oo (40) r -

Furthermore, i f equation (23) is differentiated with 
respect to £ 9 from identities (24) and (39) 

u_^£ - Oo (41) 

It can be concluded from identities (24), (39), and (41) 
that the fields have no angular dependence0 

A point to note is that the restrictions 
imposed upon the f i e l d components are i n i t i a l l y caused by 
the radial dependence of the permittivityo If the 
permittivity i s only a function of z, no restrictions 
result from the E-mode condition because in equation (12) 

H "- 0 z — 
which forces 

be ^ H z - 0. 
bz b z 

and thus a l l terms in equation (12) vanish,, 



3. WAVE EQUATIONS FOR CASE OF CONSTANT PERMEABILITY 
AND OF z-DEPENDENT PERMITTIVITY AND THE INTERCHANGED CASE 

3ol General 
At this point the problem where the permittivity-

is a function of z and the permeability is constant w i l l be 
considered along with the interchanged case. For these 
problems the unified differential equations, which result 
from the vectorial differential wave equations, are 
sufficiently separable. 

If the permittivity i s a function of z only and 
the permeability i s constant 

and 

Vl* = O O 

Hence, equation (7) becomes 

V 2E +V(i ft N = ,egf , (42) 

v-/2n d 2 H A l ' d e oB 1 d e V H . (43) 
V H = ne — + e a i ^ - e a i * 

and equation (8) becomes 

I 
dt 

Similarly, i f the permeability is a function of 
z only and the permittivity is constant, 

Ve = 0 
and 

Vu- = djij £ o 

dz 



Hence, equation (7) becomes 

and equation (8) becomes 

3.2 Differential Field Equations, for Transverse Waves 
For transverse waves 

E = H - 0. z z -

Therefore, equation (42) becomes 

V 2 E = (46) 

and equation (45) becomes 

V 2H = ne ̂ | . (47) 

For the case where the permittivity is dependent 
on z, the f i e l d equations can be determined by f i r s t 
solving for the two f i e l d components in equation (46) and 
then by using equations (l) and (2) in the usual manner. 
Hence, i f the rectangular components of the f i e l d are to 
be determined, the partial differential equations 

b 2E 
V \ = lie — f (48) 

Ot 



and 
d 2E 

V \ = ^ "^2 (49) 

have to be solved where E^ and Ê . are the components of E 
in the x and y directions respectively. 

Similarly, for the case where the permeability 
is dependent on z, the f i e l d equations can be determined 
by f i r s t solving for the two f i e l d components in 
equation (47) and then by using equations (l) and (2). 
Hence, i f the rectangular components of the f i e l d are to 
be determined, the partial differential equations 

x 
^ ~ ^ 7 2 

and 

V^H = |xe 1 (50) 
x dV 

v 2 \ = ^ % ( » ) 

have to be solved where H and H are the components of H 
x y 

in the x and y directions respectively. 
Equations (48), (49), (50), a n d (51) have the 

general form 

V 2 G = u.e (52) 
d t 2 

where is a function of z. Consequently, equation (52) 
wi l l be considered for the remainder of this section. 



Equation (52) can. also, be written as 

V7 2 R . d 2G d 2G 

where \^.2 denotes the part of which operates in the 
transverse plane of a rectangular coordinate system. If 
the fields vary in time as e1* , then G can be expressed 
as 

G = G 0 ( x , y f * ) e J t t t
t 

and thus 

\ Gn + 1 = > G . (53) 

t o ^ Z 2 ** o 

The variables can be separated by letting 

G q = P(x,y) T(z). (54) 

Once equation (54) is substituted into equation (53), 
2„ „ 2 dz 

where M i s i>he separation constant. Hence, 

\^.2F + M2P = 0. (55) 

Equation (55) is the ordinary differential equation 
confronted when the transverse dependence of a transverse 
wave in a homogeneous medium is investigated. As well as 
equation (55), the differential equation 

^ | + (a>2|ie - M2)T = 0 (56) 
dz^ 



has to be solved to obtain the solution for the transverse 
waves under consideration^, 

For plane waves equation (56) is slightly simpler 
due to the fact that for plane waves 

V t
2 E x . V t \ - V t

2H x . \ \ E o • 

which forces 

M = Oo 

Consequently, equation (56) becomes 

2 
^ + «2|icT = Go (57) 
dz 

3 o 3 Differential Field Equations for Waves with 
Longitudinal Components 

When the fields have longitudinal components, 
the wave solutions can be found by f i r s t solving for the 
longitudinal f i e l d components and then by using equations 
(l) and (2)o This section is concerned with the 
differential equations arising in the solution of the 
longitudinal f i e l d componentso 

When the permittivity is dependent on z, from 
equation (45) the longitudinal component of the magnetic 
f i e l d must satisfy the differential equation 

V 2H = |« jffs (58) 
a t 2 
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and from equation (44) the longitudinal component of the 

electric f i e l d must satisfy the differential equation 

v z oz 1 e dz zl r ^ 2 

Equation (58) is the same type of differential 
equation as equation (52), and thus can be treated in a 
similar manner. However, the restriction that \^ must 

i-

operate in a rectangular coordinate system no longer 
applies. 

Equation (59) can be simplified by replacing 
1 > 

E by —D . In terms of D equation (59) becomes e z 

le zl bzle2 dz z> r ,̂2 
b2D 

bV 

or 0 0 

V+
2D + - i f£ 5-£ = u-e . (60) t z £ 22 e dz bz >*. b t2 

The variables can be separated by letting 

D = P ( x , y ) T C » ) e > t . ( 6 1 ) 

If this expression for 0 is substituted into equation (60), 
z 

the result i s 

I v t 2 p = 4 
d"T 1 de dT 
,2 e dz dz 
CLZ 

tu2jxe = -M2 

where once again M i s the separation constant. The equation 

\^.2F + M2F = 0 (62) 



i s identical to the equation which contains the transverse 
dependent part of the longitudinal component of the f i e l d in 
a homogeneous medium and can be solved for a number of 
boundary value problems using well known techniqueso The 
equation for the z-dependent part of can be written as 

g - i f e g + - m 2 » t = »• < « > 

When the permeability is dependent on z, from 
equation (46) the longitudinal component of the electric 
f i e l d must satisfy the differential equation 

d2E S}\ = lie — f . (64) 
ot 

and from equation (47) the longitudinal component of the 
magnetic f i e l d must satisfy the differential equation 

V V ^ & B . h " - ^ . .<«> 

Equation (64) i s the frequently occurring type 
of differential equation given in equation ,(52), and thus 
can be treated accordingly. The only change i s that \ ] 2 i s 
no longer restricted to operate in a rectangular coordinate 

l 

system. 
In the same manner as equation (59) was simplified 

by using D , equation (65) can be simplified by using B . 
Prom equation (65) i t can be seen that B can be expressed 

z 



i n the form 

B7 = F ( x 9 y ) T ( Z ) e J W t 

w i t h F ( x , y ) s a t i s f y i n g e q u a t i o n (62) and T ( z ) s a t i s f y i n g 

dl _ 1 M dT + ( w2 _ M 2 ) T = Q o 

,2 u dz dz r 

dz r 

3o4 Summary o f z-Dependent E q u a t i o n s 

I f by d e f i n i t i o n 

q ( z ) = fie, 

t h e n the d i f f e r e n t i a l e q u a t i o n s c o n t a i n i n g the z - d e p e n d e n t 

p a r t o f the s o l u t i o n f o r the wave f u n c t i o n s c o n s i d e r e d i n 

s e c t i o n s 3.2 and 3.3 can be summarized by the f o l l o w i n g 

'i 
t h r e e d i f f e r e n t i a l e q u a t i o n s . 

2 
+ o>2qT = 0, (66) 

^ | + ( a > 2 q - M 2 ) T = 0, (67) 
dz 

and 

d z2 q dz dz ; 1 u ' 

3.5 O s c i l l a t i o n Theorem Due t o Sturm 

E q u a t i o n s (66) and (67) can be e x p r e s s e d i n the 

form 2 
+ h ( z ) v = 0, (69) 

dz 



and equation (68) can be transformed into the form of 

equation (69) by the following transformation. I f T i s 

expressed as 

T = etfq dt d z W = e * l n 4 V = ^ ¥ , 

then equation (68) becomes 

2 2 - 2-i 

2 + 

dz^ 
2 w2 , 1 1 O . 3 1 fdjgf 
^ ~ 2 q T~2 ~ 4 ~2 Id3 

-̂ dz q 
¥ = 0 (70) 

which i s of the form of equation (69). 

Owing to a theorem by Sturm, i t i s possible to 

show that for a physically r e a l i z a b l e situation the solutions 

for equation (66) are o s c i l l a t o r y , and the solutions for 

equation (67) are o s c i l l a t o r y provided 

w2|xe - M 2>0. 

Besides t h i s , the theorem offers a possible test for 

showing whether or not the solutions for equation (68) or 

(70) are o s c i l l a t o r y . 

Theorem: The functions u(z) and v(z) are the respective 

solutions of the d i f f e r e n t i a l equations 

^ § + g(z)u = 0 (71) 
d z Z 

^ | + h(z)v = 0 (72) 
dz 

3. L.R. Ford, D i f f e r e n t i a l Equations. McGraw-Hill, Inc., 
New l o r k , 1955, p. 169. 



in an interval in which the coefficients of the equations 
are continuouso If a and b are consecutive roots of u(z) 
with a < b and i f 

h(z) >g(z) 

h(z) I g(z) 

in the closed interval ja,b , then there exists a root of 
v(z) between a and b.» 
Proof: First of a l l , 

2 2 d | . du dvl __ d u d v 
d z l v dz " u dzJ - v - u dz' dz' 

= (h - g)uv 

which after integration becomes 
z=b b̂  

du 
dz u dv dz (h - g)uv dz. (73) 

z=a a 
Now, the supposition that v(z) has no root 

between a and b is made. Without loss of generality u(z) 
and v(z) may both be considered positive in the interval 
a^z<b; either one can be replaced by i t s negative, i f 
necessary. Consequently, 

and 

du(a) 
dz 

du(b) 
dz 

> 0 

< 0 , 

Hence, 
du _ dv 
dz dz 

z=b 

z=a 
= v(b) - v( a) ^ a i a l ^ o , 

dz dz 



However, the right hand side of equation (73) i s positive. 
Therefore, a contradiction exists, and thus the theorem is 
proved. 

Prom this theorem i t follows that i f the solution 
to equation (71) is oscillatory over some interval, then, 
provided that over this interval g(z) and h(z) are 
continuous and 

h(z)^g(z) 

h(z) £ g(z), 

the solution to equation (72) i s , also, oscillatory over 
the same interval. 

For a physically realizable medium 

|ie^k = Constant >0 

where normally 
ro o' 

and for the non-trivial cases to be considered 
p,e •£ k. 

Since the solution for 

^ | + u>2kT = 0 

is oscillatory, the solution for equation (66) i s , also, 
oscillatory. 
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In a similar manner, vhen 

w2|Ae - M 2^k' = Constant>0, (74) 

then since the solution for 

d 2T 
+ k'T = 0 

dz^ 

is oscillatory, the solution for equation (67) i s 
oscillatory. 



4. FIELD PROBLEM IN A PERIODIC STRUCTURE LOADED WITH 
DIELECTRIC DISCS 

4.1 General 
As mentioned in the introduction, the topic of this 

thesis arose from the problem of finding the vave functions 
for a periodic structure of the type shown in Figure 1 
Section 4 w i l l expand upon this problem through the use of 
the fact that inside the waveguide the medium as a whole is 
inhomogeneous. The permittivity is a function of the 
spatial parameters and the permeability is constant. 

4.2 Functional Behaviour of the Permittivity 
Before the unified differential wave equations 

can be dealt with, the functional behaviour of the 
permittivity must be specified. Since the permittivity 
in the interior of the air regions equals e Q and in the 
interior of the dielectric regions equals e ^ , the functional 
form of the permittivity minus e Q approaches the product of 
a rectangular wave variation in the z direction times a 
step variation in the radial direction. Consequently, i f 
cylindrical coordinates are used, the permittivity can be 
expressed as 

e - e Q = h(r)g(z) 
where h(r) and g(z) are sketched in Figure 2. The reasons 
that the curves in Figure 2 are shown as continuous and 



smooth are given in the following paragraphs. 
Before the theory so far developed can be applied 

to the f i e l d problem in a periodic structure loaded with 
dielectric discs, i t must be assumed that the permittivity 
and a l l i t s f i r s t and second order derivatives are defined 
for a l l interior points in the waveguide. The following 
argument is given to justify this assumption. 

g U ) 

e l ' e d 

cr 

h(r) 

a 

Fig. 2. Sketch of Functional Variations of Permittivity 

At a l l points except those in the regions of the 
boundaries between the air and the dielectric medium, there 
is no doubt as to the existence of the permittivity and a l l 
its derivatives. If in the neighbourhood of the boundaries 



32 

the point of view of mathematical physics, which is that 
matter is continuous, is taken, then the properties of 

4 
matter can also be regarded as continuous<> Therefore, the 
permittivity can be considered continuous but changing very 
rapidly through the boundaries. Consequently, a continuous 
function can be used to describe the permittivity through 
the boundaries which both approximates the situation as 
closely as desirable and satisfies the assumptions made 
about the behaviour of the permittivity. It is worth 
noting that the step function used to describe the 
boundaries in the standard approach for finding the wave 
solutions i s , also, an approximation, although a very good 
one, of the actual situation. The step function i s an 
approximation because at the boundaries there exists not 
one big discontinuity, but rather a large number of 
discontinuities which arise from the discontinuities 
between the atoms and, also, between the separate parts of 
the atoms. 

In the region of a boundary the permittivity could 
be represented by the function 

i m 11 
provided m is small but f i n i t e . For equation (75) 

s = Coordinate in the normal direction to the boundary 

4. A.G. Webster, Partial Differential Equations of Mathema 
ti c a l Physics, Dover Publications, New York, 1955, p.2. 



and 
a = s at the boundary<> 

As m decreases, for s«=ca, e - > - e 0 , and for s>a, e - * - e ^ . In 
the limit as m-»-0f with an increasing s, the permittivity 
changes discontinously through the boundary from e Q to e ^ . 

4.3 Field Restrictions Due to E-Mode Condition 
Now that i t has been assumed that the permittivity 

behaves sufficiently well to ensure that the theory so far 
developed i s applicable, the material in section 2 can be 
used to find the necessary conditions for the existence of 
E-modes in the periodic structure shown in Figure 1. When 
the dielectric discs have center holes, 

e sr h(r)g(z) + e Q = f( r , z ) . 

Therefore, the restrictions on the f i e l d components found 
in section 2.23 must hold. If these restrictions are not 
met and a hybrid mode results, i t is worth noting that the 
hybrid mode may very closely approximate an E-mode provided 
the longitudinal component of the magnetic f i e l d has only 
a secondary effect on the remaining f i e l d components. When 
no center hole exists, the permittivity has no radial 
dependence, and thus, the E-mode condition is satisfied 
without imposing any restrictions on the f i e l d components. 

4.4 Unified Differential Equations 
When the discs have center holes, the unified 



differential equations for an E-mode can be found from 
equations (7) and (8). Since for an E-mode 

H - 0 z -
and since from the E-mode condition 

^ = 0 

H - 0 , r -

and the f i e l d components have no angular variation, the 
unified differential equations are 

d_ 
dr 

and 
d 
dr 

mS44 
r drt dr I ^2 dz 

d2E 
r d 

dz 

1/dl 

r dr ( r E r 

r dr p' 

, 5 — E + §r E e i dr r oz • z< 

i f e - E + & E ) e I Or r dz zJ 

d 2E z 

d t ^ 

d2H 
I 

d2H 
2 = [ie - ~ 

d z 2 dt 2 e 

d e 

dr d r r/ 

d 2E 3 

d"? 

de ̂ f L 
dz d z . 

As previously mentioned, the techniques applied so far to 
these differential equations, as well as the ones arising 
in the H-mode case, have not yielded general solutions. 
However, numerical methods could be devised to calculate 
specific solutions for these differential equations. S i n c e 

general solutions have not been found, these differential 
equations w i l l not be considered further in this thesis. 

For the case where the discs are solid, the 
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permittivity is a function of z only. Consequently, the 
unified differential equations for the longitudinal f i e l d 
components can be separated as was seen in section 3o 
Also, the complete wave solutions for this case can be 
readily solved, as done in Appendix 1 for the EQ^-mode, 
by determining the fields in the dielectric regions and 
in the air regions separately and by matching these f i e l d 
solutions at the boundaries with the help of Floquet's 
Theorem. 

Consequently, i f i t could be shown that these 
known solutions satisfy the unified differential equations 
in the limit as the permittivity approaches a rectangular 
waveshape, the viewpoint taken in this thesis would be 
verified as applicable for finding the wave equations to 
the solid disc case. However*, this was not shown in general 
because no method was devised to overcome two d i f f i c u l t i e s 
simultaneously. 

One d i f f i c u l t y is to find an infinite series 
expression for the permittivity which converges absolutely 
and yet has an nth order term which is manageable. This 
d i f f i c u l t y is discussed by L. Brillouin in "Wave Propa-

5 

gation in Periodic Structures". Secondly, even i f such 
a series is obtained, since the known wave solutions are 
expressed in terms of infinite series in z, single and 

5. L . Brillouin, Wave Propagation in Periodic Structures, 
Dover Publications, Inc., New York, 1953, p. 186. 
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double infinite series appear in the z-dependent part 
of the unified differential equations. This can readily 
be seen from the equations derived in section 3. Consequent
ly, the problem of establishing that the coefficients of the 
z-dependent series in the known solutions satisfy the 
unified differential equations is very awkward. 

However, when the dielectric regions are matched 
into the air regions, i t is possible to find the wave 
solution for an E-mode from the unified differential 
equations. As w i l l be shown, this solution agrees with 
the solution obtained in Appendix 1. 

4.5 E-Mode Solution of Unified Differential Equations for 
Matched Case 

For the case where the dielectric discs are solid 
and matched into the air regions, a complete wave solution 
for an E-mode can be determined by f i r s t solving for the 
f i e l d component D through the use of the pertinent 

z 
unified differential equation and then by finding the 
other f i e l d components from equations (l) and (2). 

Since the permittivity i s a function of z and the 
permeability is constant, the z-dependent portion of D can 

z 
be found from equation (63), 

d ? r _ i de a r + ( w 2 _ M 2 ) T = O o 

j 2 e dz dz dz 
The cross section of a periodic structure with solid 

dielectric discs is shown in Figure 3. For such a structure 
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the permeability equals u 

Cylindrical 
Waveguide . r 1 

z _ z : Y Z Z Z Z Z Z T 
Didlectri 

Disc 
Center 
Line 

Region 
(1) 

i i i 

' I i TT 
^-Origin g i i 
O r i g i n 1 

i 
I i 

f I 
i i ' 

V , ' . 

y / / / 7-7 

z 

(5) 

" 7 V -7-7-

.V, 

1 1 

2 Z Z 

= Permittivity of dielectric medium 
c Q = Permittivity of air 

Note: For simplicity Origin 1 is used in Appendix 1 and 
Origin 2 is used in the body of the thesis. 

Pig. 3. Cross Section of Solid Disc Periodic Structure 

Since the permittivity very closely approximates 
a rectangular waveshape in the z direction, i t follows that 
2 2 2 2 eo n Qe - M and k e , k being a constant, also, very 

closely approximate rectangular waveshapes as shown in 
Figure 4. For the matched case 
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2 M2 
' O 

w2u e,-M2 

r o- 1 — 

<o2u e -M2 

" O 0 

->- z 

2 2 2 2 
F i g o 4. Diagram of (D u^e-M and k e Versus z 

Consequently, when a match exists, the identity 

u)2u e-M2 •- k 2 e 2  
ro - (77) 

holds except in the transition region at a boundary between 
an air region and a dielectric region., The transition 
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region i s defined by (5 in Figure 4. As (5 tends to zero, 
identity (77) tends to hold for a l l values of z. 
Consequently, the differential equation 

d 2T 1 de dT 2 2 T n , _ R v 

^ 2 " F d 7 d i + k e T = 0 ( 7 8 ) 

approximates equation (63) to any required degree of 
accuracy for the matched case. The solution for 
equation (78) is 

= A i e - j / k e d z+ A 2 e j / k e d ! 

where A^ and A 2 are arbitrary constants. Through the use 
of identity (77), T becomes 

-j/^ 2u, oe-M 2
 d 2 + a ejJ\4>2,xoe-M2 dz. (79) T = A^e ^ . - 2 

As (5approaches zero, the solution for T given by equation 
(79) approaches the solution for the entire waveguide. 

-i/~2 2 
In the limit V(o |xQe-M approaches a rectangular 

waveform, and thus for the limiting case the integral 
/V w

2|i e-M2 dz 

can be evaluated graphically by integrating the rectangular 
waveform as illustrated in Figure 5. 

From Figure 5 i t can be seen that, in the limiting 
case 

j V c A e-M2 dz = S z + X(z) 
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where 
S Qz = Ramp function 

and 

X(z) = Periodic function oscillating about the ramp function, 

>- z 
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The slope S Q of the ramp can be found in the following manner. 

Prom Figure 5 at z equals 

/ V a ^ e-M 2 dz = £=3A/u,2
lioeo-M2 

and thus at z equals \ 

H\0*-*2 dz = ^ 2 , Q e o - M 2 + [* - ^ f f L \ ^ 

S p o^ 

Hence, 

S = \4 2n e -M2 + ^l\L2ti e,-M2 - Vto2u e -M2 |. o ro o pi , 0 1 ' O O / 

¥hen only the incident wave is present, 

T - V - f l S . » + X U > ' • 

and thus 

D r J L P d ^ l * * - ^ " ^ (80) 
Z J. 

where r is the radial and the ^ the angular variable 0 

In the limit as the permittivity approaches a 
rectangular waveform, i t can be seen from Figure 5 that in 
an air region 

z 

and in a dielectric region 
- i / V w

2 L i e,-M2 dz - j ( V t o
2 M e,-M2] z = 

D a e ^ *o 1 = e ° I ro 1 ' 



These results coincide with the results obtained by-
solving the wave equation in each of the homogeneous 
regions separately. 

To check that the solution given by equation (80) 
has the same phase shift per section as found in Appendix 1, 
the expression for T(z+p) should be considered, namely. 

T( Z +p) = A 1 e - j ( S o ( z + P ) +*< Z +P)) 0 

Since 

X(z+p) =*(z), 
then 

T(z+p) = A i e - J S o 4 " 3 ' l S o Z + X i z ) \ 

= e"J So p T(z). 
Hence, the phase shift per section 0 is given by 

0 = S op = (p-q) V w
2
{ i oe o-M 2 + q V ^ u ^ - M 2 . 

This i s the same value for 0 as is found in Appendix 1. 
Therefore, since in the limit the f i e l d in each 

section behaves in the same fashion as i t was found to 
behave in Appendix 1 and the phase shift per section is 
identical to the value found in Appendix 1, the two 
approaches are in agreement. 

When the limit has not been taken, then D has 
z 



the form to within any required degree of accuracy 

V [ r , f l e i K ^ W ] 
where in the limit 

9 

s — s 
o o 

X ' U ) — ~ X { z ) 

The phase velocity for D can be approximately determined by 
z 

differentiating 
9 

cot - S z - XT(z) = C o n s t a n t . 
o ' Hence, the phase velocity v^ is 

dz ~ to 

P " At " s»+-JJC o dz 

Consequently, the phase velocity is modulated by the 
periodic term d ) C ' .' 

dz 



5. PLANE WAVES IN A MEDIUM WITH PERMITTIVITY A CONTINUOUS 
FUNCTION OF z 

5.1 Introduction 

To obtain a better understanding of the behaviour 

of electromagnetic waves i n an inhomogeneous medium, i t 

was decided that an investigation should be made into the 

behaviour of plane waves i n a medium with a perm i t t i v i t y 

which i s a continuous and s u f f i c i e n t l y d i f f e r e n t i a b l e 

function of z. This problem tends to be simpler than ones 

dealing with longitudinal f i e l d components. At the same 

time, the techniques used i n solving the d i f f e r e n t i a l 

equation a r i s i n g from plane wave considerations have only to 

be s l i g h t l y modified for E- and H-mode problems i n which 

equation (67) a r i s e s . This can e a s i l y be seen by comparing 

equation (67) with equation (66). 

5.2 Problem 

In p r i n c i p l e a complete solution for a plane wave 

can readily be obtained for any s u f f i c i e n t l y well behaved 

z-dependent functional form of the p e r m i t t i v i t y . Various 

pa r t i c u l a r forms were considered, and i t was found that the 

form 

e = l ^ z 2 8 " " 2 +^2 (81) 
1 2 z 

where 
= Constant 

k„ = Constant 



and 

s = VI - 4co 2 u Q k 2 , 0< s < c l , (82) 

y i e l d s s o l u t i o n s w h i c h are e a s i l y i n t e r p r e t e d i n p h y s i c a l 

termso C o n s e q u e n t l y , a p e r m i t t i v i t y s a t i s f y i n g e q u a t i o n (81) 

w i l l be u s e d . 

A s k e t c h o f the p e r m i t t i v i t y e x p r e s s e d i n 

e q u a t i o n (81) i s g i v e n i n F i g u r e 6. A l s o , f o r the medium 

t o be c o n s i d e r e d t h e p e r m e a b i l i t y e q u a l s n Q. 

e 
A 

F i g . 6. S k e t c h o f P e r m i t t i v i t y V e r s u s z 

F o r a p l a n e wave w i t h 



from equation (57), since 

E = T, xo ' 

d 2E 
dz 

k 22s-2 + _| 
1 z\ 

E = 0 xo (83) 

where E x q i s the component of the e l e c t r i c f i e l d i n the x 
d i r e c t i o n w i t h time dependence suppressed. 

Equation (83) can be solved i n the f o l l o w i n g 
manner. F i r s t of a l l , the transformation 

u = — z =pz , p = 
a>.yjTk 

(84) 

i s made. From t h i s transformation 

dE xo 
dz -P sz 

, dE s-1 xo 
du 

and 

d 2E o o o o d 2E - dE 
— ^ a ' = p 2 s 2 z 2 s " 2 —Jsa + p s ( s - i ) z s - 2 ^ 
dz du u 

(85) 

Consequently, by the s u b s t i t u t i o n of expression (84) i n t o 
equation (85) 

„ . d 2E dE « 2 2 xo , / ', \ xo . , 2 
du 

k^u 

P 2" 
+ k. E X Q = 0. (86) 



If E x q is transformed into 

E = u 2 s I, xo 1 (87) 

then 

and 

dE xo 
1_ 
2s dY 

l-2s 
du = u " « + J - u 2 s Y du 2s (88) 

d 2E xo u2s d£l + 1 u 2s dY + 1 
d u2 s du 2s I 2s 

l-2s 

du' 

l-4s 
II u 2 s Y, (89) 

If expressions (87), (88), and (89) are substituted into 
equation (86), the result is 

2 d 2 I x dY . , 2 l w n  
u ^2 + u dH + ( u ° 4 ) Y = 0 

which is Bessel's equation for n = 2„ Hence, 

Y = C ^ U ) + C 2J 1(u) 
2 "2 

with and being arbitrary constants, and thus 

Exo = ^ N 1 J 1 ( P Z 8 ) + N 2 J 1 ( p z s y 

2 ~2 
where and N 2 are arbitrary constants, 

Since 

and 

J± (u) 

J x ( u ) 

T I U sin u 

nu cos u, 
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E = \£ xo u N. 
1\ „n s 

s i n P z S + N 2 \ f ^ l c o s P 

or 
1-s 

E z
 2 

xo VTI/O 

A , e ^ P z S + A 0e^P z S l 

1 2 (90) 

where A^ and A 2 are arbitrary constants<> Hence, 

r A i e 3 ( - t ^ z s ) + A 2 j ( ^ z
s ? E = E e ^ * = U , 2 

x xo HP (91) 
Consequentlyo the incident electric wave i s 

1-s 
TT _ /iT 2 . ej(tot-pz S) 
E x i =\f^p z A l e H ' 

and the reflected electric wave is 

xr ~V*P 

Since 

^ E - - |5 , 

bE b B 

"ST = Tt = j^o Hy< 

Therefore 

. e J w t fT [ i-s ^e'P** + A 2 e ^ z S 

+ z 
1-s 
2 gpsz 8" 1 A i e " j P z S + j p s z 8 " 1 A 2 e J P z ! 
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or S S i 

1-s 2 . n 2 
z -jpsz 

s S 1 

1-s 2..~ 2 — z +opsz (92) 

Hence, the incident magnetic wave is 

H = - i - . f l i 
y i to>jxo Vrtp y/z 

_s_ s. 
1-s 2 .~ 2 
-~2~ 2 " O p s z V J < " t ^ " ) 

and the reflected magnetic wave is 

H _ _ i _ . /_2 I 
. yr a)ji o V*p ft 

s 
l^s 12 
2 z " + j p s z 

Consequently, the wave impedance seen in the 
medium by the incident wave is 

Z . = 
E . xi fa>jXoZ 

oi H . ~ s .. I 1-sl ' y i p s z — 

and by the reflected wave is 
E 

Zor ~ ~H xr = z . r, S • f 1 -S \ Oi ° 
yr p s z ' 

It can be noted that provided z>0 the imaginary part of ZQ^ 
is negative, implying that the reactance is capactive, 
while the imaginary part of Z Q r i s positive, implying that 
the reactance is inductive» 

The phase velocity of the incident f i e l d can be 
calculated by letting 

a>t - p z = Constant (93) 



and by differentiating equation (93)o If this is done. 

P s—1 dz /•» sz a£ = Oo 

Hence, the phase velocity v is 

dz «o 1-s /0/J\ 
v p = d t = / > z ' ( 9 4 ) 

Since 
0<s 

the phase velocity increases as z increases. 
If an E-mode f i e l d can be set up such as to have 

a phase velocity increasing with z, the f i e l d may possibly 
be very useful in pre-accelerator applications. Equation 
(94) tends to point towards the possibility of obtaining 
such an E-mode f i e l d through the use of an inhomogeneous 
medium of this type. 

5.3 An Inhomogeneous Slab Between Two Homogeneous Media 
An inhomogeneous slab can be used to effect a 

match between two different homogeneous semi-infinite media 
The purpose of this section is to demonstrate this use for 
the case where the inhomogeneous slab has a permittivity 
that is functionally described in equation (81). 

In Figure 7 the f i e l d i s assumed to originate in 
medium 1, pass through the inhomogeneous mediufho and enter 
medium 2. Also, i t i s assumed that the f i e l d in medium 29 

i s totally absorbed, none of the energy being reflected 



back toward the source» 
In medium 1 the f i e l d equations are 

E x l = N^^-P.!** + N 2 e J ( w t + P l z ) 

and 

y l V u-

where 

P i = w V v on 
and N^ and Ng are constantso The equations representing 

Surface 1 

Inhomogeneous 
— Medium 

z 

Fields are 
and H 

Fig. 7» An Inhomogeneous Slab Between Two Homogeneous Media 

6. So Bamo and J 0R 0 Whinnery, Fields and Waves in Modern Radio» 
John Wiley & Sons, Inc 0, New York, 1953, p»28lo 



the fields E and H in the inhomogeneous medium are given x y 
by equations (91) and (92). Since only the transmitted wave 
is present in medium 2, the f i e l d equations are 

E x 2 = C leJ ( w t"P2 z ) 

and 

_./!2 n i(«t-e.,*> H _ =J— C^e 
y2 V | i 0 i 

where 

P 2 = W ^ 2 
and is a constant< 

At z equals a in Figure 7S 

and 

At z equals b, 

and 

E , = E (95) xl x 

V - V ( 9 6 ) 

E x - Ex2 ( 9 7 ) 

H y = H y 2 . (98) 

From equations (95), (96), (97), and (98) the 
values for and N 2 can be determined, as done in 
Appendix 2, from the parameters of the media, the frequency, 
and the constant Ĉ <, Once and N 2 are known, the reflection 
coefficient E at surface 1 can be readily found since 



E = • (99.) 

In Appendix 2 i t i s shown that 

If there i s no reflection at surface 1 in 
Figure 79 a l l the energy can be transferred from medium 1 
to medium 20 For this situation to occur, 

R = 0„ 
As shown in Appendix 2, in order that 

R = 0, 

two equations must be satisfied. These equations are 



V^ jV^ a 8 " 1 - V^i b ^ c o s ( b s „ a S ) 

1-s 
a V j i 0 b V | i Q / ( b s - a 8 ) (101) 

and 

l v / ^ l 1-s / b 8 " 1 
s-1 

cos-

k ^ a b ) 
s-1 

2 u 
< o u , a b 

1 - s 
2 

( b s - a s ) 

s i n ( b s - a s ) 

(102) 

T h i s means t h a t two o f the p a r a m e t e r s must be d e t e r m i n e d by-

e q u a t i o n s (101) and (102)o Due to the p e r i o d i c i t y o f 

e q u a t i o n s (101) and (102), t h e s e two p a r a m e t e r s , 

e x c l u d i n g and e 2 , have an i n f i n i t e number of d i s c r e t e 

v a l u e s . S i n c e e q u a t i o n s (101) and (102) are not p e r i o d i c 

w i t h r e s p e c t t o and e^, and e 2 have one s o l u t i o n each 

i f t h e y are d e t e r m i n e d by t h e s e e q u a t i o n s . 

I f f o r a p a r t i c u l a r f r e q u e n c y two o f the r e m a i n i n g 

parame te rs are e v a l u a t e d by e q u a t i o n s ( l O l ) and (102) and 

the o t h e r s are a s s i g n e d c o n v e n i e n t v a l u e s , the matched 

c o n d i t i o n a t s u r f a c e 1 i s e s t a b l i s h e d . 

I f t h e p e r m i t t i v i t y o f t h e inhomogeneous medium i s 

s p e c i f i e d , the f i e l d s o l u t i o n s o b t a i n e d f o r the inhomogeneous 

r e g i o n o n l y h o l d f o r one p a r t i c u l a r f r e q u e n c y . The r e a s o n i s 

t h a t once the p e r m i t t i v i t y i s s p e c i f i e d , k ^ , k 2 , and s have 
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fixed values, and thus from the equation 

= V l~4w 2 u k o"2 

the frequency i s determined. Therefore, when the permittivity 
is specified, the frequency cannot be evaluated from 
equations (lOl) and (102). 

However, f i e l d solutions for an inhomogeneous 
region which hold for any frequency after the permittivity 
is specified can be obtained quite readily. For example, 
the medium with a permittivity behaving as 

e = k^z 

where 

and 

k^ = Constant 

s = ™ (n—X y 3 p 5 o o o o o o Sn^X} 

has such f i e l d solutions. 



6. MANUFACTURING OF INHOMOGENEOUS DIELECTRIC MEDIA 

Although not top much thought has been given to 
the possible ways of manufacturing a medium which has a 
permittivity that is a continuous function of z, three 
possible methods have been considered,, 

The f i r s t method is to construct the medium by 
using thin sheets of homogeneous dielectric material<> If 
thin sheets having different values of permittivity are 
cemented together in some desired order, the resulting 
laminated dielectric medium varies functionally with z<> 
Provided the thickness of the sheets is small compared to 
the wavelength of the f i e l d being propagated in the 
medium and provided the change in dielectric constant 
between adjacent sheets i s small, i t is believed that the 
medium as seen by the f i e l d effectively varies in the 
desired continuous manner with z. 

Another possible method for manufacturing a medium 
with a permittivity which is a continuous function of z is 
by varying the density of the medium in the z direction,. 
For example, the porosity of the medium could be varied in 
the z direction as in the case of some types of foam rubber. 
It might be possible to use a centrifugal process while 
the dielectric material is solidifying to establish a 
variable density. 



Through the use of plasmas, a medium can be 
obtained with a permittivity which varies continuously in 
the z direction. For exampl already mentioned, at 

Stanford i t has been proposed that sound waves be propagated 
down a waveguide f i l l e d with plasma to vary in a periodic 
fashion the density of the medium and thus the effective 
permittivity. 



7c CONCLUSION 

For the case of a lossless medium containing no 
free charges and possessing a continuous and sufficiently 
differentiable spatially' dependent permeability and 
permittivity, two vectorial differential wave equations, 

V 2 E + V £ Ve.E) 

and 

were derived from Maxwell's equations<> The magnetic 
vectorial differential wave equation was used to find the 
necessary condition, 

/ iv^H) + i V e 0 ^ = o, 

dz \ \i r I . e oz 

for an E-mode to exist in a waveguide, and the electric 
vectorial differential wave equation was used to find the 
necessary condition, 

for an H-mode to exist in a waveguide0 Through the use of 
the E-mode condition, an investigation was carried out to 
determine certain restrictions which must be imposed upon 
the fields before E-modes can exist in a waveguide f i l l e d 

^ T § ~ JIViiVE - (Vn-.V)E 
bt 

lie ^ - J ( V e . V H - (Ve.V)H) 
b t ' 



with a medium whose permeability is constant and 
permittivity i s 

e = f(r,z)o 

The restrictions were found to be that 

*V z <>> 

and the fields have no angular variation. Also, i t was 
noted that the E-mode condition did not impose any 
restriction upon the f i e l d components when the 
permittivity i s a function of z only. 

Through the use of the E-mode condition, an 
investigation into the restrictions imposed upon the fields 
when the permittivity has other functional variations is 
suggested for future study along with a complimentary 
investigation using the H-mode condition. It is worth 
pointing out that these restrictions are the duals to the 
restrictions on the fields for the interchanged cases, 
namely, the cases having the permeability spatiallycdependent 
and the permittivity constant. An investigation into the 
f i e l d restrictions using the mode conditions i s recommended 
for cases where both the permeability and permittivity have 
various functional forms. 

The f i e l d equations were investigated for the case 



where the permeability is constant and the permittivity 
varies with z and for the case where the interchanged 
situation is true. In particular, the f i e l d equations for 
transverse waves and waves with longitudinal components 
were considered. After the variables of the pertinent 
unified differential f i e l d equations were separated, the 
differential equations containing the transverse 
dependent part of the f i e l d components were found to be 
the same as the corresponding equations found for 
homogeneous media. For the different cases considered, 
the z-dependent part of the f i e l d components were found 
to satisfy one of the following differential equations; 

i) ^ § + o>2qT = 0, 
dz 

i i ) & + ( t t2 q _ M 2 ) T = Q > 

dz z 

»*> 7§ " \ ft S + <*2*-m2>t - 0 

dz 

where M is a separation constant and 

q = |xe o 

Owing to a theorem by Sturm, i t was possible to show that 
for a physically realizable situation the solutions for the 
f i r s t of these equations in T i s oscillatory, and the 
solutions for the second one is oscillatory provided 

W 2fA6 - M2 >0o 



Besides this, the theorem offered a possible test for 
showing whether or not the solutions for the third equation 
are oscillatory,, 

The fields in a dielectric loaded periodic 
structure were considered from the viewpoint that the 
medium as a whole is inhomogeneous inside the waveguide0 

The assumption that the permittivity and a l l i t s f i r s t and 
second order derivatives are defined for a l l interior 
points in the waveguide was discussed from the point of 
view taken in mathematical physics, which is that a l l 
matter i s continuous„ After this assumption was made, an 
investigation into the restrictions on the fields when E-
modes are present was carried outo For the case where the 
dielectric discs have center holes, since there is a radial 
variation in the permittivity as well as a longitudinal 
variation, the restrictions were recognized to be the same 
as those discovered for the example where 

e = f ( r , z ) o 

When the discs are solid, i t was noted that the E-mode 
condition is satisfied without imposing any restrictions 
on the fieldso 

For a periodic structure with solid dielectric 
discs the theory developed for inhomogeneous dielectric 
media was used to find the E-mode f i e l d expressions when 
the dielectric regions are matched into the air regions 0 



In the limit as the permittivity approaches a rectangular 
waveshape, these f i e l d expressions were shown to be in 
agreement with the expressions derived by solving for the 
fields in each of the homogeneous regions and by matching 
the fields at the boundaries» 

It i s f e l t that further effort should be made to 
use the theory for inhomogeneous media to find the f i e l d 
equations for the solid dielectric disc case when a match 
does not exists In that the behaviour of the f i e l d as the 
permittivity approaches i t s limit is known, there should 
be some method for showing that this known solution satisfies 
in the limit the differential wave equations resulting from 
the theory for inhomogeneous media. If this problem could 
be solved, i t may shed some light on how to solve the f i e l d 
problem using the theory for inhomogeneous media when the 
dielectric discs have center holes. Furthermore, a second 
approach for finding the f i e l d solutions would be 
established, which i s at least of academic interest. 

Also, i t is f e l t that a further attempt should be 
made to find accurate and manageable f i e l d solutions for the 
case where the dielectric discs have center holes. It has 
not yet been possible to attempt a thorough investigation 
of this problem. 

An investigation was carried out into the behaviour 
of plane waves in a medium whose permittivity is 

e = k , z 2 s ~ 2 + ^2 (103) 
1 2 z 



where and kg are c o n s t a n t s and 

s s Vx - - 4a> 2 u ok 2. 0 < s < X 

The e X e c t r i c and magnetic f i e X d s were caXcuXated t o be 

X - s 

and 

H - i - X i 
_S S i 

1-s ~2 .~ 2 — z -opsz 

_s 
X^s _2 

I 2 
z" + apsz A 2 e J ( w t H P z S > 

where 

; s 

The wave impedance seen i n t h e medium by the i n c i d e n t wave 

was shown t o be 

z , = toty 01 

and the wave impedance seen i n the medium by the r e f l e c t e d 

wave was shown t o be 

Z 
o r 

^ o z
 = z * 

s . | l - s \ ' o i 

The phase v e l o c i t y was caXcuXated t o be 



Also, a slab of dielectric material having a 
permittivity satisfying equation (103) was placed between 
two different homogeneous semi-infinite regions and used 
to effect a match between these two regions 0 

A brief discussion i s made on the possible 
methods of manufacturing inhomogeneous media with a 
constant permeability and a permittivity varying in the 
direction of propagation., 



APPENDIX 1* 

For a circular waveguide loaded with solid 
dielectric discs as shown in Figure 3 , page 37, the f i e l d 
patterns for an Eg^-mode can be determined by matching at 
the boundaries the fields found in each homogeneous region 0 

Through the use of Maxwell's equations, the f i e l d 
components for an Eg^-mode are found to be 

E = z 
-JP-.Z dP-. z 

A l e + A 2 6 J 0(Mr)eJ w t, (1) 

E = ^ r Mv, 
-OP-jZ jp, z 

Aĵ e 1 - A2e l J^Mr)^?*, (2) 

and 

3^1  
Hjrf = ~M~ 

-OPiZ OP, z 
A l e + A 2 e J ^ M r J e ^ (3) 

in the dielectric region (2), and 

E = z 
- j p z dp z 

• C^e 0 + C2e 0 J J 0 ( M r ) e > t 
(4) 

and 

E - 22-r ~ Mv L 1 o 
- D P 0 Z dp Z 

C,e 0 - C2e 0 J, (Mr)^"*, 

H 
3<»>e, 

p1 ~ M 
-dP0z dP0z 

C i e
 0 + C2e 0 

(5) 

(6) 

* The treatment in this Appendix is based on the paper 
presented by G.B= Walker and C.G. Englefield, "Some 
Properties of Dielectric Loaded Slow Wave Structures", 
PGMTT Symposium. San Diego, May, I960. 



in the air region (3), where 

2 2 2 
P i = w ^ o e l " M ' (7) 

Po = » Vo"^ » ( 8 ) 

v.. = ^— = Phase velocity in dielectric region, 
1 Pi 

v = ^— = Phase velocity in air region, 
0 Po 

s l 
^ = K » 

s 1 = First root of JQ(Mb) =0 , 

7 
and A^,Ag»C^fand Cg are related constants 0 

The f i e l d in region (4) can be determined by 
using Floquet's Theorem which states that in a given mode 
of oscillation of a periodic structure, at a specific 
frequency, the wave function i s multiplied by a given 
complex phase constant when the f i e l d is observed a distance 

g 
of one period down the structure. Consequently, the f i e l d 
components in region (4) are given by the multiplication of 

• A 

the f i e l d components in equations (l),(2), and (3) by e""*. 
7. Go Ramo and J.R. Vhinnery, Fields and Waves in Modern Radio 

John Wiley & Sons, Inc., New York, 1953, p. 375» 
8o J.C. Slater, Microwave Electronics. D0 van Nostrand Co., 

Inc., Princeton, New Jersey,' Toronto, London, New^York, 
1950, p. 170. 



where 0 i s the phase change per section,, 

If the f i e l d s are matched at z equals 0::and^p-q, 

the equations obtained are 

V l - V o A 2 ~ V1 C1 + V1 C2 = °> ( 9 ) 

e 1A 1 + e xA 2 - e oC 1 - e QC 2 = 0, (10) 

j(2O 1-0) -j(2©,+0) -J29 j2© 
A l " v o e A 2 ~ v l e C l + V l e C2 = °» 

(11) 
and 

••3(20,-0) -0(2©,-^) - j 20 j2© 
e l e h + t l * A2 " e o e C l " e o e C 2 = ° 

(12) 

where the phase change in the air region is 

2© Q ^ 80(p-q) 

and the phase change in the dielectric region i s 

261 =8^ q o 

Equations (4), (10), (.11), and (12) have unique solutions 
for three of the constants A^,A2,C^0 and C 2 in terms of 
the remaining constant only i f 
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- V , 

-e. 

v e o 
j(2© 1 - 0 ) 

-v e o 
.3(20^+0) •320, 3 20f 

" v l e v l e 

e l e 

jUOj-0) -3'(2©1+0) -J2© 320, 
-eoe 

= Oo 

(13) 

Prom the expansion of equation (13) an expression for 0 can 
be determined. This expression is 

4 cos 0= + 
0 1 

cos (2© 1+2© Q) -
Z 1 ITT 
z~ "vzT, 
o 1 ' 

cos(2©,-2© ) 1 o 

or 

cos 0 = cos 2© cos 29, o l 
Z Z, 
- ° 4 ~ 1 .Z,*Z^ ' 1 o' 

sin 2© sin 2©, o I 

where Zrt is the wave impedance for an E^-mode in the air 

region, 
Z = v e o o 

and Ẑ  is the wave impedance for an E^-mode in the 
dielectric region, 

Z, = 1 v, e 1"! 

Through the use of any three of the equations 
(9),(lO),(ll), and (12), the constants A^.Ag* and C^ can 
be evaluated in terms of Cgo If this is done, the 
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r e l a t i o n s h i p s o b t a i n e d are 

A, e c o s 2 6 o + 3'z7 S i n 2®o " e JL _ f o J0 " " "~° VZ1  
G 2 " e, e +j(0-2© ) • z7 

e - cos 2©̂ ^ - j^rr s i n 2© 1 

Z 0 j (20 ,-0)-

Ag ^ C O S 2 Q o - J f r - s i n

 2 V 6 

c 2 " e i 6 " T ^ o T ~"~ 
cos 29, - j — s i n 2©, 

1 Z~ 1 

a n d j(0+2© o ) Z, 
c e + j - ^ s i n 2© 1 - cos 2© x 

CT = 3*(0-2©ft) " "zl ° 
- c o * 2 6 l - ^ s i n 2 9 i 

Nov t h a t the f i e l d components have been 

d e t e r m i n e d over one p e r i o d p , e x p r e s s i o n s f o r t h e f i e l d 

components can be found which h o l d t h r o u g h o u t the waveguide. 

F o r example, f o r E such an e x p r e s s i o n can be f o u n d by 
z 

t a k i n g the f o l l o w i n g s t e p s . The f i r s t s t e p i s t o d e f i n e 

t h e f u n c t i o n 

•i0z 
E ( r , z , t ) e p 

F ( z ) = -r-i . (14) 
J ( M r j e ^ 

o 

From e q u a t i o n (14) 

E ( r , z+p, t ) e P e ^ 
F(z+p) = z 

J ( M r ) e J t t t 



and from Floquefs Theorem 

E (r, zip, t) = E(r,z,t)e" JJ0 

Hence, 

F(z+p) = F(z) , 

and thus F(z) is a periodic function in z with a period p< 
Consequently, F(z) can be expressed as the Fourier sum 

o o -I -.i2nnz 
P 

where 

F(z) = / a ne 
n— - o o 

p-q 
.j 2rcnz 

a n = i-/F(z)e p dz 

Therefore, o o ., 0+ 2 7m 
_ .1 0+27tn \ , 

E = J (Mr)eJ t t t ^ =- 1 * J 

z o 
n=—oo 

where P-1 //7<, 
1 fVr,»,t) • 

a = i / e * dz . 
f 1 1 P J J n(Mr)e3 w t 

-q u 

¥hen the dielectric regions are matched into the 
air regions, 1 

A 2 = C 2 = 0. 

Consequently, equations ( l ) , (2), (3), (4), (5), and (6) 
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become respectively 

j(o)t-p,z) 
E = A1Jr.(Mr)e 1 

z 1 0 

E r =M? 1 V l < f c > * 

jwe, j(tot-8,z) 

3(«t-p z) 
E z = C ^ M r J e 0 , 

i(wt—8 z) 
- o 

and 
, v j(»t-p z) 

Since for the matched case 

Z . = Z, , o 1 

the phase shift per section i s given by 

cos 0 = cos 26 cos 2©, - sin 2© sin 2©,• 
0 1 O 1 

Therefore, 
0 = 2© Q + 2© x , 

= (p-t)P0 + qB x 

= (p-q) Va,2noco-M2 + q V ? ^ I ? 



APPENDIX 2 

The fields for the different regions shown in 
Figure 7, page 51, are: 

i) in medium 1 
E 

and 
x l 

y i v |i 

-JB,z 30,z 
Nje x + N2e L 

-J0 - .Z 0*01 z 
N l e ~ N 2 e 

Jut 

i i ) in the inhomogeneous medium 

1-s 
E z 2 

x V^P 
V - * > » + A 2 e ^ 

and 
H _J_ G T i y"*«n0vipyz | 

r S S" 

»>"• + 
_ s sr 

»>"• + 1-s 2,.n 2 -jjpa +opsz A.e3Pz' 1 
i i i ) in medium 2 

x2 1 
and 

y2 Vp I 

where 



s = Vl - 4 u ) 2 j i ok 2 , 0<s<l , 

*2 = W#o*2 » 

and A^BAg.N^.Ng, and are related constants. 
At z equals a the boundary conditions are 

and 

E , = E xl x 

H , = H 
y i y 

Therefore, 

- J P - i a O K I 
N l e + N 2 e 

and 

•o 1-s 
= V * p a 

A,e"JPAS + A^P*' 

N l e ~ N 2 e 

J3 £[1 

1-s 2 . n e Q2 
S S i 

l-s_2 pa*' A, 

At z equals b 

and 

E = E 0 x x2 

H = H _, 
y y2 



Consequently, 

1-s 
/ 2 ' v 2 

A le-JP B S .+ A^P*' = C l e (3) 

and 
_ s s_- _s s_-

^ b 2-jpsb 2 ^ b 2+ 3Y>b 2 

!2 R - J P 2
B 

— O, e 
1 

(4) 

At surface 1 the reflection coefficient R is 

defined as 
N 2 

R = | j - (5) 

One approach to finding R i s to express both and Ng in 
terms of C^. To do this, A^ and Ag must be found in terms 
of C, o 

Prom equations (3) and ( 4 ) , 

j(pb s - f i 2b)| , ft 
h = 

and 
A = £e 
^ >b 

g^b s-rB 2b), /e 
* V | * o / 

(6) 

Cj (7) 

where 

* 2 p s b 2 

(8) 
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and s-2 
2 

\ = / > * > 2 + * ( ¥ ) » > (9) 

From equations (l) and (2) both N^ and are solved 

for in terms of A^ and Ago The results are 

-3 (pf-Pi*) A 2 (10) 

and 
-j(pa s+p i a) ^ jOQa^S.a) / * /eTIl 

A 2 (11) 

where 

and 

i / ^ V 
sVuDe, a o ^ 1 2ai^ 

s-2 

a r o ^ ^ L P s a 2 + 3 | ¥ ) a 2 J 

(12) 

(13) 

Now, the values for A^ and A 2 found respectively i n equations 
(6) and (7) are substituted into equations (10) and ( l l ) to 
gxve 

K 1 = 

j(B i a-8 2b) 

-dp(b s-a 3) e (14) 



and 
N 2 = C4°i6 

=j(p1a+p2b) S _ S ) —a 

a w **o / I (15) 

If expressions (14) and (15) are substituted into 
equation (5). i t i s found that 

(16) 

If there i s no reflection at surface 1, 

R = 0< 

Therefore, from equation (16) 

b s-a s) 

or * , S S \ 

b -a ; 

• jp(b S-a s) (17) 



Now, i f the following definitions are made: 

i) T =p(b s-a s), 
i i ) 7 ^ = v a + j v a , 

the substitution of these newly defined quantities into 
equation (17) yields 

( r i + i%u*r = <r 2 + w 2 ) * ~ * r o ( i s ) 

Once the real parts of equation (18) are equated, the 
resulting equation i s 

(1^ - f ^ c o s T = (% +%)sinT . (19) 

Similarly, from the imaginary parts of equation (18) 

(\ -%)COBT = - ( [ ^ + Q ) s i n T o ( 2 0 ) 
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In terms of the original parameters, equations (19) and 
(20) are respectively 

W k ^ ^ a 8 " 1 b ^ j c o s - 9 ^ 1 ( b s - a s ) 1 / i S _ S ' 

1 r o *o/ 
and 

1 k l 1-s I b 8 " 1 a 8 ' 1 

HQ 2 \ a b 
^ v / ^ ^ i cos (b s«a s) 
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