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ABSTRACT ..

A critical discussion of various theories of cylindrical
antennas is given, It is shown that the Hallen-King theory
is of a semi-empirical nature. Both the current distribﬁtion
and input impedance derived from this theory depend on a
semi-empirical choice of an expansion parameter, It is also
shown that the Hallen-King "slice generator” cannot be used
t0 represent the effect of the transmission line. 4 theory
which corroctly‘accounts for this effect is developéd and
theoretical formulas are developed for both the current

distribution and input impedance.
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- THE CURRENT DISTRIBUTION AND INPUT IMPEDANCE
| OF CYLINDRICAL ANTENNAS

1. Intro@yction

A considerable»amount of theoretical work has gone into
developing formulas for the current distribution and‘input
imped#nce of cylindrical antennas. The results of these
theories are contained in King's monuméntal work (1).

It is a weillknown fact that the results of these
theoretical works agrée reasonably well with experiments.
,Howeverr despite‘t#is agreement, there are serious theoretical
objéctibnS'to the»@ethods used which‘cohsists of a combination
of circuit and f:'i.e.ldwc'énc'epts° These are discussed in more
detail in'phﬁps. II and IIXI. In Chap. II some of the existing
methods are révieﬁed;with an aim to gife adequate guidance to
© the critical discﬁgﬁﬂnh of the’methods contained in Chap. III. -
The following Chapteﬁ deals“with the development of a correct
theory and a couparison, as far as it is possible, with the |
results obtained by King. '

The impedandé concépt'is reviewed in Séc. 3-1. A formula
for the'ibpu{ impedance in terms of the input power and input
cufrent'in anténnéé‘isvalso developed in this section. This
generalifprmulg is t@en used in Sec. 4-5 to obtain a formula
for theiinpdi.impedﬁnce of cylindrical antennas, Since
analytical e#aluation‘of the ihtegrals (3-11) and (3-12) is
very difficult a ééries expansiohcf‘thé inteérals is introduced.
.The resulting impedance férmula is consequén#ly also in series

form. This is suitable for digital comguter‘work.



2. Review of the Existing Methods

2.1 The Energy Method

In evalﬁdiihg'the input impedance of an antenna, the

energy radiated from it must be known first. The energy

equation can be derived from Maxwell's equations, and this

(2)

can be found in any standard'book on Electromagnetic Waves'™’,

Therefore, only. the result will be given here, .which is

. - 4 w7k . _
P, = 3 :j’Ei' i dv = P, + ju(W - VW)
' v

where Pi = complex input power
L[ H, 8
v

= twice the average stpréd magnetic energy.

W s-gvf”:iz:‘.i* dv

= twice the average stored electric energy.

P =lj‘.(i§xﬂ*).ﬁds

ees(2=1)

v (2-2)

eee(2-3)

eeo(2-4)

.= the average radiated energy per unit time

B
R
e+
P
-4

electric field intensity,
= the current density,

= the magnétic field intensity,

2o e

= outward unit normal

8 = a closed surface enclosing a volume V.

In order that P? as given by Eq. (2-4) represents the total

power radiated from the antenna, the surface S must enclose the

antenna including the source driving it (Fig. 2-1).



Fig. 2-1. Region of Integration for Eq.(2-1)

After evaluating the energy, the input impedance can be
calculated uéing the ordinary definition

P, =313, |Ii|2. eeo(2=5)

where .Zi' = +the input impedance,

Ii = the input current of the antenna,

2.1.1 The Poynting Vector Method

In the Poynfihg vector method the radiated power is
calculated using Eq. (2-4) where the surface of integration
is a large spherical surface with the antenna located at its
centre., Due to the gimﬁiicity of the analysis, only the real
part of the power can be calculated and consequently only the
radiation resistance of the antenna will be obtained. The
current distribution along a thin linear antenna is assumed
sinusoidal and has the form

1(z) = I, sin B(L - |z ) 0o0(2=6)
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ﬁhich is gpproximétély the case for thin antennas(a). L in
Eq. (2-6) is the half length of the antenna and B = w\[i_.

The distant field behaves like a spherical wave emerging
from a point source located gt the origin, which will be taken
as the centre of the surface of integration and‘the centre of

the antenna. The field components can be calculated using the

gelatipns
H.P = % curl}P I 000(2"7)
EG én H(P 000(2-8)
~ , ~-JBR "
A
where 71‘ = 120n, the intrinsic impedance of free
space,

R = +the distance from a current element I(z)dz

t0 the point of observation.

The results ﬁre(4)
| o jI;ne-jBéé | ‘: c‘og‘( g ::ofsv‘- e) 1 .
¥ ank, - 8in &
6o 1_0"IFR, cos( g cos ©)
EG— = j Ro S I: ;in = o coee (2wl@) -

where R is the distance from the origin“to'tﬁg point of
observation. Sinée'from Eq.'(2410) the field components are
in phase, the real phf% of the radiated power can be obtained
ﬁsing‘Eq. (2-4) by substituting the magnitudes of the field
components in the appropriate places. Z; in Eq. (2-5) must

now be replaced by the radiation resistance R.aa°



5
Because Eq., (2-5) gives an infinite value for the input

resistance if sin BL = 0, it is custbmary in this method +to
"calculate the radiation resistance in terms of the maximum
current along the antenna. This value is called the "loop

resistance”.

2.1.2 The Induced-Emf Method

In the indﬁéed—emf'méfhod, the antenna is assumed thin
and the current distribution‘sinuéoidal. This method giveé
the real as well as tﬁe imaginary part of the loop impedance
of theiantenna. Each small section of the antenna is considered
to be a Herztian dipo;e, and each contributes to the total
powef radiated from it by an amount proportional to the current
flowing through the”eleﬁent and the electric field intensity
induced in the element. Since for thin linear antennas the
current distribution is axial, the total power radiated from
the antenna is then

1 R

where Ez is the tanggntial component of the“eléciric'field
intensity on the sﬁfface of the antenna, and A iﬁplies that
" the integration mast be carriéd out over the whole length of
the antenna.

The loop impedance can now be calculated using Eq. (2-5)
with Io and Z° replacing Ii and Zi respectively. The reason
for taking the "loop iﬁfed&nce" instead of the input impedance

is similar to that of the previous method.



2.2 The Hallen-King uefhod(l),(s),(ﬁ),(7)5

The Halien-King,metbod opens a way to a theoreticdl
determination of the current distribution along the antenna,
taking‘the bohhdéfyléoﬁditions into consideration, which is not
attempted in the previous methods, The terminal driving conditim
is replaced by a "slice generator" and the currept distribution
is obtained‘by solvigg thé boundary value problem‘exactly.

To be ablevto foilow the essentiél steps in this method,
consider a cylindiicallaﬁtenna with its axisﬁﬁdincident with
the z-axis of a cylindrical coordinate system and centred at
the'o:igin.l Let the radius of the cylindrical part be a, the
length 2L.a§d the width of the gp 2b (Fig.2-2), The dimensions
are such;théf both ﬁ and b are K L. . - |

;Lz
L

|
|
‘ y P(/”P'Z)
i
' i
u |
|
\_b\\“f i
P
-L

Fig. 2-2. Cylindrical Antenna
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The electric field intensity E at an arbitrary point P(p,p,z)
in space can be expressed in terms of the current and charge

distributions along the antenna as

E = - grad U - jwk ..o (2-12)

where U ; Zi%_ -/-q(u) Y(z,u) du oo (2-13)
° ‘A

. f I(w) W (zu) du.  ...(2-14)

. A .
. 2 - W2 402
\y‘(zpu) = ° J B-\/( u) +/3 000(2-15)

Wz - u)? + p?

I(z) is the current distribution along the

antenna, :
q(z) is the linear charge density distribution

along the antenna,
¢, is the permittivity of freelspace,
.Fo is ﬁhe permeability of free space.

The boundary condition reQuires that the'tangential
component of the electric field Ez vanishes on the surface of
the antenna. Therefore evaluating (2-12) on the surface of
the antenna and taking only the z-component of the msult gives,

after substituting

- 2
div A = =j E‘; v, ve.(2-18)
324, o |
-—g—,b- +B A, =0 eoe(2-17)
z .

where B = 2% with A= the wave length of the signal. In the
above eqnations, circular symmetry of the current and charge

'distributions are assumed,
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The differential equation (2-17) can be easily solved for
A, and substituting Eq. (2~14) into this solution an integral

equation for the current distribution is obtained.

A, = ;% J[-I(u) V(z,u) du = B sin B Izl 4+ C cos Bz ...(2-18)
1 : n . .

The voltage applied by the "slice generator" at the base
of the antenna determines one of the constants of integr@tion
in Eq. (2-18). This is done by equating the scalar potential
différenco acroSs the gap.produced by the charges‘on thé
antenna with that of the "slice genergtor". The scalar
potential at any point along the surface of the antenna can
be most conveniently determined using the relation (2-16)
which in the one-dimeﬁsional‘case becomes

2 A =-j LU ves(2-19)

w.i

Then for Bb €1 one has

oA |-

—>z| =8B
"|z=b

b AZ 4 = - aB

0z | .
{z==t:"

R T

Hence

d4,(b) bAz(-ia) 2 [ ]

g — -—3— =28B=- J%— U(b) - U(-b)



Prom here folloWS'immediately

BE-J(‘;'& v_g 000(2-’20)

where V; = U(b) = U(=~b). ‘ 000 (2=21)
. The other constant, C , cannot be evaluated directly.
This is determinad by the other boundery condition which
specifies that the current must vanish at both ends of the
antenna. Therefore this constant can onlj be datermiﬁed

after the integral equation,

v
J[I(u) YV (z,u) du = =j Bg‘ sin B lz| + C cos Bz ...(B=22)
i o

which is obtained by simply substituting (2~20)‘in Eq, (2-18),
has been solved.
After the current distribution is known, the input

impedance Zi is calcﬁlated using the formula

Zi =7 ooa(2-23)

i“

where V6 = the scalar potential difference applied at the base,

Ii = the inﬁut (base) current.

2.3 Mgde Theory of Schglkuanf

Consider a biédﬁiéélfénﬁenna with zero gap width, and let

the caps be spherical surfacﬁs (Fig. 2-3).
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Fig. 2-3a. ldealized Biconical Fig. 2-3b.Broken Line:Actual
Antenna Solid Line:Idealized

Using spherical coordinates and the antenna configuration
shown in Fig. 2-3a, Maxwell's‘equations with the appropriate
boundary conditions can be solved exactly. This is possible -
since, as can be easily seen, any one of the boundaries can
be made to'coi#Cide with one ofithe spherical coordinate
surfaces. In practice, the gap is not zero; but if it is
small compared with the length of the antenna, Fig. 2-3b
suggests that the deviation from the ideal case is very small
indeed and hence the solution based on the ideal configuration
will be a very good approximation to the actual one,

Because the boundary conditions imposed on the solution

in region 1 are different from those on the solution in
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region II (Fig.2-3a), it is necessary to construct two sets
éf solutions, one for region I and the other for region II
in such a way as to satisfy the appropriate boundary conditions.
The continuity of the solution is maintained by matching the
solujions at thelsurface dividing these two regions. For the
details of matdhing these solutions, the reader is referred

to the listed refetences(a)’(g)’(lo).

It will be appropriate
4o point out here, ﬁoﬁever, that the solutions contain enough
integration constgnts to make this matching possible.

of particulaf iﬁterest here is how the input impedance
of the antenna can be evaluated., It is found that the solution
in region Ilcongistq of two parts: the principal and the !
complementary parts. Accordingly the current'along the
antenna consists of a principal part Io(r) associated with the

priﬁcipal or the TEM wave and a complementary current I(r),

associated with ell other waves, and hence
I(r) = Io(r) + 71 (r) 000 (2=24)
The input admittance is defined as

He) I () + T (x,)
N 1 €79 M { F39) ooo(2-25)

where V(r) is the transverse voltage defined as

g |
V(r) = r By de e00(2-26)

and ¢ is the half-angle of the cone. I+ turns out, that only
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the TEM component of the wave contributes to the integral
(2-26). It is further known that the complemehtary current
vanishes with the width of the gap and heﬁce for a small gap
i%s effect can bé neglected. The expression for the input
impedance'ia‘therefore simplified.into:
7 vo(ri)

: = cee(2=27)
A Io (ri)

which means that the input impedance can be cél¢u1ated-in
terms of the TEM wave alohg.' |
The ﬁ#i#cipal cﬁrrept and the transverse voltage along

the.éntenna‘aatisfylthe ordinary transmission line'OQuationa.

KI(r) = V(L) [j sin B(p,-'r) + K Y, cos B(L - ri..(2-28)

V(r) = V(L) [qoa B(L = r) + j KT, sin B(L - :i..gz—zsf

where K = 120 log. cotgy - oss(2-30)
is the characteristic impedance of the antenna,

and ¥, = I (L)/V (L) ‘ ees(2-31)
is the terminal admittance of the antenna.

From Eqs, (2-27),(2-28) and (2-29) i follows immedistely

that
;Zavsin BL - j K cos BL

1 XY " K'sin BL - j Z, cos BL |
| 2 | o
with 2,6 = K° Y.. .o (2-83)

Note, howeier, that I(L) must be evaiuated from the general
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solution and not from Eq. (2-28). Similarly Y(L) must be
calculated from Eq.(2-26). |

This theory fré#ts a cylindrical antenna as a limiting
case of a biconical antenna,'th@t is, by letting the cone
angle ¢ " gpprbach zero. The input impedance of an infinitely
thin c¢ylindrical antenna can therefore be calculated from

Bq.(2-82) by the same limiting procesa.

2.4 Storer's Variational method“n)'“z)

To facilitate comparison, consider the follpyipg“zelgtiqns

P;‘ = % v& In = -;':[‘-E.no-in dV 000(2-34)
A
v 2p!
Zx'ian Ig—a—z-p— _ 000(2-35)
n In

where V! is defined by Eq. (2-34).

The index n refers to a set qf possible field
configurations obtained from a set of current distribution Ino
Note that although dimensgionally the same, Pﬁ and Z& do no#
represent power and impedance in the conventional sense,

Basically Storer uses a differential equation similar to
that of Hallen and King. The antenna is assumed %o be driven
a$ the base, which has aﬁ infinitely small gap, by a potential
discontinuity defined as o '

lim _/;Ez)rzp dz = =V e00(2=36)

¢—~0
-6

which means that
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(Bl =V {5(;)

with lim f&(z). dz = 1 ...'('2-37)'L
m*o_d ' ‘ 4 :

His differential equation is

o

3 |
V §(z) = -;-‘2"- (-'a-gg- + a"" Az) vee(2=38)

assuming that the antenna is a perfect conductor.
The input impedance of the antenna is defined as
| 2, -i' | cee(2-39)
Multiplying the differential equation (2~38) on both
sides by $I(z) and then integrating the resuls with respect

to .z over the whole length of the antenns gives

VI - ‘j! (—-2— + B%A)) I(z) dz ...(2-40)

Finally dividing boih sides of Eq. (2-40) by fI? and
substituung'the result in Eq. (2-39) gives

Z; = ffK(z-z ) I(z') I(z) dz' dz ...(2-41)

41tI

-

where'ﬁta—z‘) =;x(z'-}z)

2 2 =3iBR
+ﬂ » ('53'5 +B )-fs,-éi— eee(2-42)
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It can be shown that the "impedance" function (2-41)
has an extrepal property, in the sense that the first
variation of»the>impedqnce for small variation in the current
distribution I(z) along the antenna caﬁ be made zero. There-
fore, it can be expected that a good result for the "input
impedance"” will be obtained if a suitable current distribution
is used in Eq. (2-41).

For his analysis Storer takes the current distribution

to be

I(z) =V [A sin B(ﬁ - lzl) + B (1 - cos B(L - lz‘ﬂl
) 000(2“ 3)
The constants A and B in Eq. (2-43) are determined by imposing
two conditions, namely:
. vl

(1) 10) = 1 = -

(ii) The first variation of the input impedance

is zero,

The first condition is satisfied by taking

1/zi - A sin BL

B = 000(2—44)

1 - cos BL
which can be proved by simply substituting Eq.(2-44) into
qu (2-39) [ ]

The current distribution is therefore given by
1/24
l - cos BL

- A sin BL:

1(z) = V'[A sin B(L - |z‘) + 1 -cos B(L '1z|)u
eoo(2-45)
Application of the second condition which requires that

9z,
Y 0 ees(2-46)
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will determine the value of the constant A. Finally the
"input impedance" of the antenna is determined using the

relation (2-41).
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(18)

3. A Discussion of the Existing Methods

3.1 Introduction

Within their respective limitations, all methods
described in the foregoing sections give results that agree
to some extent with oxparimcnts. The simplifying assumptions
and the mathemadical model chosen in the thebries, however,

are subject to sovorO'criticisms(8)?‘14>. It is thgrefofg

necessary to make a closer study of these theories.

However, before attempting any critical discussion, the
impedance concept applicable to the system being considered
must be fuliy understood. For this purpose, consider a black-
box B (Fig. 3-1) which has two input terminals. Let I, be
input currenb, Vi the scalar potential difference between
terminals 2 and 1, Pi the éomplex input power, and Zi the

input impedance.

Fig. 3-1. Black Box
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Then the following relations hold(}%)
z A | ,
i(v,I) * Ii 0.0(3—1)
2P, '
Zi(P,I) = :I I* 000(3-2)
¥*
VY
Z = 000(3‘3)
i(P,V) ¥
’ 2 P,

where the capital letter indices indicate %0 what quantities
the impedance is referred. |

At low frequencies, there is no question about the
meaning of the potential difference "Vi", the input current
”Ii“ and the input power "Pi". These quantities are uniquely
defined, and consequently all three formulas above will givé
the same result, although the first one is more commonly used
at these frequencies.

In anteﬁna theories and generally in high-frequency
networks, this is not the case. The potential difference "V"
between two points is no loﬁger uniquely defined. Power, on
the other hand, is uniquely defined. Current distribution
along cylindrical antgnnas is alsoAclearly defined. A correct
definition for the input impedance must therefore be based on
these quantities. Relation (3-2) meets this requirement.

If desired a scalar potential difference between'the input

terminals may then be defined as

2 Pi
Vy= oo =k L ce(3-4)
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To be useful the definition of impedance as given by
Eq.(3-2) must be related to experimentally defined quantities.
Impedances are measured indirectly by first measuring the
standing-wave ratio along the dfiving line far from the load
terminﬁls together with the positions of the field's maxima
and mipima. From these the reflection coefficient ' and hence
the relative impedanée&'of the load with respect to the
characteristic impedance ZO of the transmission line can be

found using the relation

é-g ‘l + T - ZL
1 -7 Z,

...(3—5)

where ZL is the impedance of the load. The assumption made
here is that the higher order modes of the field have little
effect on the,appgrent impedance of the load.

A To'defivélg formula for antenna impedance, the scalar
potential U, ;ector potential A and current distribution 1
are mos# gppropriate. Consider for example Fig. 3-2, where
a cylindrical antenna is shoﬁn driven by a'two-ﬁire transmission

line,

From Eq. (2-1?) it follows immediately that

-E...E*=—ij.‘{*—gradu o‘?.* 000(3"‘6)

The tangential component of the electric field vanishes on the
surface of the cohductdr. Hence integrating over all current

filaments F bounded by the terminal planes gives

0 = - jw fx.. 1" ar - fg'ré.dU . T ar ... (8-7)
F
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Fig. 3-2., Antenna Driven by a Two-Wire Line

Using the vector identity

dgiv (Uf*) = graa U . T¥ + v aiv T ...(3-8)
and the equation of continuity
agiv ¥ = jug" .ee(3-9)

Eq. (3-7) becomes, after some simple manipulations

$v, 1} = ju(Wy - W1) = By ...(3-10)
where S Wy= -%—f’.‘{* at Ceee(3-11)
F
V= = J Uq at oo (8=12)
I, = the input current,
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Vi = the scalar potential difference
between terminals 1 and 2.
By brinéing the terminals 1 and 2 to the input terminals
of the antenna, yhe complex input power of the antenna is

obtained. Eq. (3-2) then gives a suitable formula for the

input impedance as seeﬁ from the terminals 1 and 2. That is

zi = -I-i-l"ié- (W - W) vee(3-13)
i

3.2 The Energy Method

The Poynting vector and the induced-emf methods, by the
natur; of the assumed current distributioh, fail to give
satisfactory results whenever the half length L of the anbtenna
satisfies the condition BL = nm; for these cases the'input
impedance referred to the bése current is infinite or very
large if BL is in the neighborhood of nn, where n is an integer.
To get around this difficﬁlty, "loop impedance" is mggﬁ,commonly
used. o

The failure of the induced-emf method to take account of
the boundary condition is also a subject of controversy(a)xlahu72
The mebthod is based on the experimentally determined fact that
for thin antennas the current distribution is nearly sinusoidal.
The boundary condition is not considered. Due to the mathe-
matical difficulties involved, approximations are necessary

and these cannot satisfy all physical conditions imposed

on the problem. However, no valid explanation for the success
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of this method has been given.

Since E;i = 0 over fhe antenna, this means that, accord-
ing to the induced-emf method, the input power Pi is zero.
Fof actual antennas, this is not thé case and consequently
the question arises as to the source of the radiated power.
In the usual method of explanation this source is considered
to be concentrated at the gap and the inpyt power is then

given by

i _ 2%
A ~b

*
%
=
(=1
N
i
Nf-
<
-t
%

P, = -g.fE.I*dz=-,§r1- o In =tz |-1°r
oeo(3-14)

where A indicates that the integration must be carried out

over the antenna inéluding the gap and 2b is the width of

the gap, which is sufficiently narrow such that the current

may be assumed constant, A "generator" located at the gap

is therefore conéidered to drive the current against the

field.

Actually the energy is guided to the antenna from a
distant source by the fransmission'line. The poﬁer radiated
from the antenna can be found using Eg. (2-4)., It must
be stressed‘however, that in usjing this equation the surface
of integration must enclose the source. Otherwise the result
of the ihtogra&ioh is zero. This does not mean that tﬁpre
is no radiaté&'powex, but rather that there is pn area\é%m_l
where the time average of the energy flow is inﬁo the volume

and a surface S, , where there is an equal flow out of the

volume (see Fig. 3-3).
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Fig. 3-3. Integration Surfaces for Egs.(3-15)

and (3-16)

Hence one can write

Pi= --}fﬁxﬁ* .-I‘Tds

s.

and Prad" IjE xH . N ds

This separation is not natural especially if
is a two-wire line. A more natural separation of

and output power is obtained using the scalar and

ese(3=15)

ees(3=18)

the feeder
the input

vector

potential as outlined in Sec. 3.1. Knowing the input or

‘the maximum current the input impedance of the antenna can

be computed using Eq. (8-13).
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It is a simple matter to see, however, that Eq. (3-14)
is in no way rélated to the derivation of the input impedance
of cylindrical antennas using the'induced-eﬁf method. It
is also not related to Eq. (3-10).

In the indﬁced—emf method the source of excitation is
considered to be the disfributed generators along the antenna,
The concept‘of a distributed generator must be cléarly defined,
since otherwise the impedance Zolas determine@ from Eq.(3-14)
will have no physical significdnce. |

A distribuﬁed generétor can be specified by means of two

conditiong:

l) a épnstraint on the current flow,

In aﬁtennas, due to the skinleffect, the current

floﬁsjlargely neaf the surface., We can then speak

of a surface constrgint.

2) a meghanésm that will balance the force on the
cuf¥eﬂ£vand charges due to the electromagnetic
field.

In antenna theory all electromagnetic forces have
been accounted for in Maxwell's equations. FProm the
macroscopic innt of view any additional mechanism for
introducing fqrées must appear to be non-electrical, A
convénienirmééhgnism is therefore a mechanical force.

'Now‘éonsiaér a linear rédiator as shown in Fig. 3-4.
Energy may be assumed delivered o this radiator from some
mechanical source as was assumed above. Referring to Eq.(2-1),
one can ndw interpret the left-hand side of'this equation as

the complex power input due to the mechanical forces.
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>2

,_.._.
L1

Pig. 3-4., Linear Radiator

The usefulness of this method can best be seen by
considering the problem of finding the self-inductance of
a thin closed current filament at low frequencies (Fig. 3-5).
This problem will first be solved using the induced-emf
method, assumipg.that the current Io is constant over the
filament. ?ho divergence of the current density and hence
the charge density are therefore everywhere zero. The
electric field intensiﬁy at 2 point P on the filament is there-
fore given by

(E)P = - JN(X)P

) -ifr -
= - LR ﬁ; I -2 — 4R
am L % '

eee(3=17)

1

where L implies that the integration must be carried out over

the whole current filament,

Pig. 3-5. Current Carrying Loop
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The mechanical input power is given by (see Eq. 2-1)

1 *
Ploch = -?9513 . I dR,
L
juw TI% [ (i BT
) e
= 87 ff T dlﬁl"ﬂiz
L L
Therefore
_ Jjup | [[cos Br sin Br] .= >
Lrad = 41:[ [ J af, . i,
L L
Hence

Brag = 3% f fs—i%‘ﬁ'{ﬁlt 'dﬁz_
| L L

aR.. 4R
x=“z’1:—[ --Lr——?-=wL oe.(3-18)
i L - ‘
Rra.d= 0

This gives Neumann's formula for the self-inductance of a
thin loop.

The same problem will now be solved using the boundary-
value method. To do this the loop must be broken at one place
and a transmission line connected to the tarminals.\ This will

supply the required energy (Fig. 3-6).
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Y

Pig. 3-6. A Loop Driven by a Two-Wire Line

1

Let the current distribution meeting the boundary condition
be I= I (1. + 8) | Ceee(8-19)
where § is a small variation and let the charge density be q.

Then from Egs. (3-10),(3-11) and (3-12):follows that

2 | 2
i * _ 1 * _ 4 . *
7V I =2 J“’[ SRNCUES. J“’f Uy a4
1 1 .
2 2 )
w *W ik an Jjw *
= &m [1211\P dR, .dR, - gye qu 1 V|aR,|{ak,|
1 171
2 2 '
Jop I I
= 00 ffw(1+6)(l+6)dR5dR2
8™ 11
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1 * Jup 1,1, > >
sV.I. = ———‘é-;t-——- d'R],'d'R2

€

11
171
» 2 2
Jwp IOIQ I f : * * -
+ —57 V(8] + 6, + 8,8;) R, .dR,
: 1 1
2 2 -
J'w ) *
- Bueo[ f\V 9,95 [dF, ||aF, | | -+ (3-20)
1 1

At low frequencies the variation 6§ and charge density q are
small. The first integral in Eq.(3-20) is therefore dominant
and this is the same as the mechanical power input as
calculated using the induced-emf method.

One now understands that in evaluating the input impedance
of cylindricql antennas, the induced-emf method avoids cal-
culating the energy integrals (3411) and (3-12) and
calculates the approximate values from the mechanical input
power, Since it is known that for thin antennas the current
distribution is almost sinusoidal, the energy integrals obtained
are good approximations, |

However the Significénce of the mechanjcal force is still
open to questions,sihce.its exisbtence on antennas is not
apparent., To answer this,one has only to recall the evaluation
of the capacitaﬁce'of'charged conductors in an electrostatic
field, It is a %ell known result of elementary electromagnetic
theory that Eq. (3;12) can be obtained by considering the

charges to be brought into an assumed position from infinity
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by means of mechanical forces. If the difference;between'
the assumed and actual charge distributions is small, the

error in the com}uted capacitance will also be small.

3.3 Hallen-King Method

In tﬁe Halleh-King method the current distribution along
the antenna is determined from Bq.(2~22)., This is an integrai_
;quation of the first kind. Hallen, by a suitable choice 6f
an expansion pafameﬁer &{ solved the equation by successive
approximations. The convergence of the iteration;‘Que to the
complexity of the higher‘order terms, is not known. It turnms
out that the second or third order solution is sufficient for
practical purposes., The effect of the choice of the expansion
parameter on the convergence of the iteration is discussed by

King(18) (19)

and by Gray
The input impedance and the current distribution
calculated using this theory agree very well with experiments.
This alone does not justify the theory. To investigate this,
one recalls that the foilowing assumptions were made:
1) The antenna is excited at the gap by a scalar
potential difference VS defined as
Vs = lim [U(b) = U(-b)] ver(3-21)
-0 :
where U is the scalar potential of the antenna,
This is called a "slice generator" and replaces the
dransmission line.
'2) The input impedance is defined as
2y = —-‘Irf’— ... (3=22)

i
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These are circuit concepts and they imply that the
electromagnetic field can be determined éntirely by-the
scalar quantity Va. This is of course impossible.

A closer examination of the theory will reveal the

following:

a) The determination of the input impedance of the
antenna requires first of all the determination of
the current distriﬁution satisfying the boundary
condition.- The first assumption suggests that the
applied voltage V6 determines the excitation level
of the antenna. Actually this is determined by
the complex power input from the t ransmission line
and hence Vé should be replaced by Vi, the scalar
potential difference of the transmission line. In a
linear system, Ii - the input current -, Io-the
maximum current - and Vi are porportional to each
other. Hence any of these may be used as a proportion-
ality cpnétanﬁ to debtermine the excitation level. If
the first two are used, the enefgy integrals (3-11)
and (3-12) must be evaluated. Equating the results
‘with the input power through Eq. (3-10) sets the ex—
citation level of the antenna. The choice of I,
however, leads to the "loop impedance” and conversion
into the physicaily more useful input impedance is
necessary.

b) Here, however, V6 is introduced as the "gap voltage"
with the transmission line removed. This quantity

reduces to zero with the width of the gap which can
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be seen by simply writing the expression for V5

Vs = lim [ 0(b) - U(-b)]

b=0 ,
. 1 o1 1 1 1
= tl)l_inom- [q(z ) [\V (b,z') = Y (~b,z )] dz
= 0

I4 will be shown in a later section that the trans-
ﬁiasion.liné alone will produce a scalar potential
difference Vi across its terminals. Vi is the source
of excitation of the antenna, and does not vanish as
b-—Of I is thus obvious that the "gap voltage" as
it is defined, is not capable of representing the
effect of the transmission line, since Vi #:yé.

¢) The definition of the input impedance as given in |

the second assumption sbové, is made by King(7) on

the ground of th® convenience it offers:i ‘g in .
no way rblatod to the experimentally determined f
(see Eq. 3-5). Taking Vs as the proportionality
constant (see part (a) above), the current
distribution will have the following form
I(z) = Vg £(2) 0<z<L ..+ (8-23)
I, = I(b) = Vg £(b)
Adhering strictl& to the original model, (see‘assumption
#1), the method used by Hallen and King should give an input
impedance that is zero, since it is a well known fact that for
zero base separation the input impedance of the anténﬁa

vanishe$§2%), Physically this is to be expected, since for



32
a narrow gap, the field between the base surfaces will
approximate that of a parallel plate capacitor. At zero
gap width this capacitor has an infinite capacitance and
hence the input impedance of the antenna is zero.

Since the Hallen-King method gives a finite input
impodénce, the Question arises hoﬁ $his can possibly occur.
The o#planation of this paradox will now be given.

The zero-order current distribution gs obtained by King

(Reference 1, p.25,Eq.26) is given by

Zﬂjié sin B(L ~ z)
I(z) = : AT
C q! cos BL

At this stage \y can be regarded as an undetermined expansion

o0 (3-24)

parameter. In the Hallen and King method qg is obtained by an
extensive semi-empirical method. Actually the amplitude of
I(z) can only be determined from the power input to the
antenna., This can be done approximately using the induced-emf

method., This gives

Finally substituting the current distribution (3-24) into this

equation and rearranging the terms gives -

2qj sin BL

eee(3-25
VY = & o8 L. 2y ( )

where Zi can be determined by the induced-emf method, since
the current distribution is sinusoidal. Eq. (3-25) will then

give an approximate value for the expansion parameter,
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- : . Vs
Using King's definition of input impedance Zi = T; and
Eq. (3-24) it is easy to obtain Eq. (3-25) once more. It is
now apparent that in the Halien—King method a judicious semi-
empirical choice of Y must be made in order that this is the
case, By choice of \y the induced-emf method is unwittingly
applied to compute the power input and have V5 = Vi. King's
original choice of \y was made on the basis of obtainihg a
rapidly converging solution of the integral equation for
the current disttibution. The history of the expansion
ﬁarameter \y is a sequence of semi-empirical adjustment to
overcome the inadequacies of the Hallen-King Model (Reference

10, p.p. 144-148).

3.4 Mode Theory of Antennas

The modo”théoty\of antennas gives an exact formulation
of the problem. Conditions that make: this possible and the
approximation involved have been discussed in Sec. 2.3.

Note also that here attention is first focussed on the solution
of Maxwell's equations instead of directly on the evaluation
of the currentﬁdistribution along the antenna.

The fact that a biconical antenna is a natural extension
of a transmission line is also used to its full extent. This
can be clearly seen in the expression for the input impedance

see Eq. (2-32)).which is a well-known expression for the
impedance seen at the input terminals of the transmission line
a distance L from the términals to which the load Za is~
connscted.

The evaluation of the terminal admittance Yt is however,
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cumbersome, since this requires the exact evaluation of the
field quantities at the ends of the antenna, where the solu-
tions must be matched (see Sec. 2.3). Taiszl)'using variational

methods has devised a method of finding Y, without the

t
necessity of matching the solutions.

From the point of view of obtaining the imput impedance
of a cylindrical antenna, the method is even le;s aftractive,
since it does not give the dependence of thevreactive pari of
the impedance on thelthickness of the antenna., In fact, to
obtain an expression for the input impedance of cylindrical
antenna, Schelkunoff has developed a theory of non-uniform

tmansmissinn lines(zz).

3.5 Storer's Variational Method

To understand £Qe copditions underlying the variational
expressi&n for the input impedance.of éylindrical antennas,
Eqgs . (2-34) and (2-35) in Sec. 2.4 are very useful., It follows

. ]
directly from Eq. (2-34) that

A

= I ‘ - T _Thy_eo® T
= P} 5[[(52 E).(3, -1)) -2 El.ll} dt
- 'é' El’iz + 2011} d~
A
wvhere the index 1 and 2 refer to two different field

configurations.

Using the reciprocity theorem
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A A

in the last equationvone.obtainé
: " "._."’ »'—? - -
?é = P} § [Jr(gz El),,(i2 11) dt - 2 '[( 1.11 El.lz)dt
A ' : A

P] - -}fAE.A‘i’ dx -fﬁl.Ai’ dt .++(3-26)
2 |

whereAE=ﬁ - El, and Ai = :i.2 - 11,

Flnally by substltuting Eqg. (2-35) into Eq.(3-26) one obtains

2 .
I - - . -
ZésZi-ﬁ-Zi(:—é——1)——%[Aﬁ.Aid’t--—g-2-fEl.Aid‘t

...(§-2§)

This is a variational expression for the quantity A Z' -Zé -Zi,

The approximate current distribution chosen by Storer is

]

given by

1/23 - BL
Ik(z)=v1;[Ak sin B(L -|z|) + k A“ sin

1l - cos BL

1 - cos B(L - z)

(k = 1,2...) «+.(3-28)
Obviously the input current is Vi/Zﬁ, and this does not
depend directly on Ak’ Hence setting I1 equal to 12 in
Eq. (8-27) will give

Zé=zi-1—2fAi§.A*{ d'r--g-z fr«Tl.AI dt ...(3-29)
Io4 Is2
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It is obvious from Eq.(3- 29 that the first variation
of the "input impedance" is'zéro for small va;iation of the

current distribution if the relation

A
is satisfied. Fér.arbitrary z&? this requires that.ﬁi vanish
over the antenna, except at the input where AT = 0. This is
the boundary condition. |

Eq. (3&28) determines A, from ;;;; = 0. This value of
A, will be called A,. The tangentxal component of the
electric field obtained from Egq. Sgaza) with the appropriate Ak
is not everywhere zero. Setting —SI;% = 0 only makes the
integralf—ﬁ’l. A7 at = sz(z) A 1(z) dz = 0.

A A

The evaluation of the input impedance using relation
(2-41) and current distribution (3-28) is therefore not correct
since the boundary condition is not satisfied. Effectively,
Storer, referriqg“to Eq. (2-41), merely defines an "impedance"

Zi as

Z{ = I _[,[K(z z') I, (z') 1 (z) dz' dz eeo(3=31)

4n
and sets Zi = Zi,'the input impedance of the antenna,

There is no justification for this. However, it will
be shown (see Eq. 4-16) that the field of the transmission

line driving the antenna is large near the gap. The complex
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input power to the antenna is therefore given by

* *
1

- %
= - i =4 -
P;= %j Ejo i dv =4V.I. =22, 1.1, e oo (3-32)
A

where ﬁ;”is the impressed field from the transmission line and
i is the current distribution along the antenna meeting the
boundﬁry condition.

Now if I(z) and ﬁ'represent the current distribution and
electric field intensity of the correct solution, then §¥y4ﬁi
and one has (see Eq. 2-34 and 2-35)

‘}Zt]:? = --}fﬂ’ .1 dt = %_[Ei(z) I(z) dz
A A
ggvixf

2
= ézili

From here it follows immediately that

2t = 2. ... (3-33)

There is no justification for setting Zi=Z'=Zi. The
stationary property for the particular current chosen applies
only to Zi and not, as originally stated, to Z'. Despite
this descrepan‘éy, Storer's method gives a reasonably accurate
formula for the input impedance of the cylindrical antenna,
Storer's method is a semi-empirical extension of the induced-emf

method.
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4. _Solution of the Cylindrical Antenna Problem

‘4.1 The Interaction Between the Transmission Line and the
Antenna.

To obfain a valid solution of the cylindrical antenna
problem, the effect of the transmission line must be correctly
accounted for. This has previously never been done,

@his effect appears as an interaction between the
transmission line and the antenna. The current and charges on
the transmission line produce a field which excites the antenna,
Conversely the field of the antenna also affects the current
distribution along the transmiésion line. Iﬂ Hallen's model
this interaction is represented by a "slice generator" that
maintains a scalar potential difference V6 across the gap.

The mechanism in this method is therefore clear. The
field of the transmission line induces a current distribution
along the antenna. This distribution must be such that the
boundary conditions are satisfied. One of these requires that
the tangential component of the total electric fieid vanishes
on the surface of the anténna. This problem will be discussed
in more detail in a later section.

I+ was mentioned esarlier that the current distribution
along the transmission line is affected by the antenné field,
A question arises as to the possibility of taking this effect
into,acggypﬁ in view of the fact that the antenna cﬁrrent is
‘unknown., Thi;b;;;;ingly difficult situation can be accounted

for if one first notes that the antenna induces higher order



39
modes in the transmission line. Prom transmission line
theory it is known that the effect of these higher order modes
decreases with the spacing of the transmission line. This effect
can be included in the impedance of the antenna.

Now let Zi be the input impedance of the antenna including

its coupling effect and Zc be the characteristic impedance of
the transmission line; then the principal current distribution .
along the transmission line is given by (see Fig. 4.1)
LAZ

{ L

-b

ur. -],

Fig. 4.1 Cylindrical Antenna Driven by a Two-Wire Line

I(x) = (Vi o7IB% _ yr o*ifx)
(]

+
vo

= T (@-jBx - r ejsx) o..(4—1)
]

where V:4=,tﬁe scalar potential difference at the transmission



40
line terminals (x=0) associated with the wave

travelling in the positive x direction,

V = the scalar potential difference associated with the

o
wave travelling in the negative x direction.
I' = s the voltage reflection coefficient.
v
°

For reasons of simplicity, the currents associated with the
wave of higher modes are neglected. This can be dohe, since
these waves are relatively small (for small b) and confined
in a region near the jynction bf the transmission liﬁe and the
antenna.

Since the current distribution along the antenna, as
mentioned earlier, is determined by the boundary condition,
it is necessary to know the tangential component of the
electric field intensity on th?lsurface of the antenna.

Exact evaluatihn of this field is difficult and the result is
very complicated. 'For thin antennas, the field evaluated on
the z-axis, with the antenna removed, serves as a more useful
approximate value of the field on the surface. This can be
obtained using E@s.(z-izl through (2-15). Since the vector
potential does nét contribute to this field,Aonly the scalar
potentiél function need be evaluated.

It is further found more convenient to evaluate the
field of only one line first using a system of coordinates

as shown in Fig. 4-2,
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dx.
—!-(—xl) 4XL ’. -& B . T -

Fig. 4-2 Cylindrical Antenna Driven by a Two-Wire
Line; Half Section.

The charge density distribution Q(x) along the
transmission line can be obtained from Eq. (4-1) using the

equation of continuity

d

-5~ I(X) = - jw Q(x) oo (4=2)
Therefore
v .
Q(&) = % 'Z"Q' [Q-JBX +Teaﬂx] 000(4—3)
¢ .

It -was suggested in the previous chapter that it is better
to use the input current Ii as piaba;tionality factor than the
voltage Vz as is the case in Bq. (4-3). This can be done by
first:noting that

_ +
.pv+ = 2,1} .
oce e (4-4)
and V =«21



Therefore 1-1*+1‘-Y-;(1-;;;) (1 -7T)
= %o o =7 — = I, :
, 0
v: I,
&nd .Z-c- = I - r 0.10(4—5)

' Finally substitution of Eq.(4~5) into Eq. (4-3) gives
ax) o B i [,iex, o iBx (4
Q X) = © r—_—T- (] + T e eee —6)

The scalar potential on an arbitrary point on the

u-axis is given by.

U(n) = gzt f 0(x) Y (x,u) dx  ...(4=T)
e, ,

omiBT = 3BV 4 uP

i Vx2 4+ u?

where Y (x,u) =

and L is the length of the transmission line.
The u-component of the electric field intensity E(u)
is given by
E(u) = - 5%- U(u)

0 . .
I, -jp(r + x) -jp(r - x)
d
=" 4ngeo" 1 1.P {('Sﬁ [e N +.° N }ax

veo(4-8)

It can be shown that (see Appendix I)

) eniflr+ x) sb" [r o x emiB(r + x)]
du ~ r T 3x u T .

p) e‘ja(r - x)_ ) [r + X e—jB(r - x)] ees(4=9)
du r = T dx u . r '
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If Bq., (4-9) is substituted into Eq. (4-8) the integrand of the
resulting integral bequéé‘a perfect differential. Notihg that

”“3”g‘4=‘30 the result is
Aae

x = 0

| 3Q I1 e'Jﬂ vuz + L + L éaJB( u? 4 L 'L)
=-TTT[‘1°” u
' ' Vuz + L
; Vo + 12 _p o~iB(Vu? 4+ 12 4 1)
+ T e ,
u : » .
22

For large L the following approximate values may be substituted

80 I [r - X e'jﬁ(r +'x)‘_;~r +.X Jﬂ(r - x)
o Tu

«eo(4-10)

in Eq. (4—10)
Vu2+L2 "'Q::L;z ’l
Vug + L2

e'&B Vu? + 12 -U;e—j%?(h/L)z‘;l eee(4-11)

.Vu2+-L - L <o
Vu? + 12 K

The approximate value of BEq. (4-10) is therefore

. 30 I, =
EWW?-TT%[“"Yiggf‘ﬁ]
= - 30 I, £(u) ' cee(4=12)

e“iBu 2
‘Whevre f( u)= ﬂ__u—_- - mu e e (4"'1 3 )



44
Now the field of the t ransmission line can be obtained
from Eq.(4-12) by simple transformations. Note however that
for balanced condition

Il(x) = - Iz(x)_

Ql(x) = - Qz(x)
where the indices refer to the line concerned. To obtain the
field of the line #1 (Fig. 4-1) substitute u = z - b and for

the second line u = z + b, Thefresult is

E,(z) = Ey(2) + Ey(z) = =80 I, [2(z - b) ~ £(z + b)]
000(4-14)
For small b, BEq. (4~14) can be approximated by

B (2) = 60 I, p% £(z) | oo (4-15)

where f£(z) is obtained by simply substituting z for u in

Eq. (4~13) and hence

-ipz
Ei(Z) = 60 Ii b %[Q P - (1 —21') Z] 000(4-16)
2,/2, -1 -1
But = T = 3
i’%e £+1
hence 2= § +1 | coo(4-17)

Finally using (4-17), Eq. (4~16) becomes, for small b

z e

d -iBz _;
E;(z) = 60 I, b—— [ ° — - § ]

=-60 I, bgsb-z- () ...(4-18)
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As mentioned earlier in this section, the electric field
Ei(z) of the transmission line induces a current distribution
I(z) along the antenna such that the boundary condition is |
satisfied. Therefore there is energy transfer from the trans-

mission line to the antenna; its average.vaiue is .given by

P, = ifEi(z) 1*(z) dz | ee.(4-19)
A

where A means that the integration must be carried out over
the antenna only.

From pre&ious analysis (see Eqs. 4-12 and 4-18) it can
be seen that the impressed field Ei(z) is concentrated near
the gap. To obtain an apprqximate value of the power transfer,
the input current Ii = I(b) can therefore be substituted for
I1(z) in the integrand of Eq. (4-19). The resulting error
decreases with the base separation of the antenna. Hence for a

small gap one has

2 |
P, = - 30 |Ii| ftl,iinobfs% (%_) dz
A

2
= §o€|11| » . ee(4-20)
The complex input power from the transmission line is
given by Egs. (2-5) and (3-10). Equating this to Eq. (4-20)

gives the following relations

Pi=§zi~|xi|2 =4V, 1;=60€|11|2 oo f(e-21

and Z, = 1205 | eeo(4=22)
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It is eaéy to see that
A fEi dz eeo(4-28)
‘ A
with b+0 can then be interpreted as the "input voltage" to the
antenna,

Eq. (4-22) would suggest that the characteristic
impedance of the transmission line is 120 ohms. This value
has no special significance and it is simply a result of
taking b-0.

| The result of this elementary analysis is important.
It showé the dependence of the impressed field and the "gap
voltage" on the input impedance of the antenné. I% clears up
the misleading statement often made in elemghtary‘anténha
theory which states that the input impedance of the antenna
can be obtained if the input cuyrrent and the impressed field
are known., The fallacy in this statement is that the impressed
field is not known until the input imﬁedance of the antenna is

determined in the first place,

4,2 The Electric Field of the Antenna

Consider a éylindrical éntenna with half length L, basé
separation 2b and diameter of the cylindrical surface 2a.
Fig. 3-2 shows the antenna configuration.

The antenna field can be found from the retarded poten-

tials, These are:

- u - -jBr
A .-.Tn—°fi @r dv ves(4-24a)
AV
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1 eiBT
U=4n—°-;- f q T dv eeo(4=24b)
A,
E=~- jwuA - grad U eeo(4=25)

where 1 and g are the current and charge densities of the
antenné‘respectively and r is the distance from a volume element
in the antenna to the point of observation. A.v implies that
the integration must be carried out over the whole volume of
the antenna. |

The current and charge densities are related through the
equation of continuity

div 1= = jwq veo(4-26)

Due to the skin effect the current and_charges cn the
antenna are confined within a thin layer ?p the surface of
the antenna; by symmetry these distributions are independent
of the angular positions and hence the current flow is axial.
Therefore the volume integration in the above equations can be
reduced into an integration over the surface of the anténna.
The charge and current densities must be changed acc;rdingly
info qg and is for surface densities. Since the current flow
is axial the vector potential K has only a z-component.

Let the z—cbﬁpbnent of the electric field intensity of

the antenna on its surface be disignated by Eaz then
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juwp |
Egz == 41t° fis\l/(r) ds - Z}t_e_ -Sb_i f qs\lf(r) ds
A ° A+C
J Mo

< fi Y(r) ds - ‘—1-1'—6: 5%— qu\y(r) ds
A A :

'Zn‘i“ % qu\p(r) ds .o (4-27)
° c
where Y (r) = 3:-3—2- with r2 = (z - u)z + 2 az(l-cosc?)

r
| ... (4-28)

The first two integrals in Eq., (4-27) must be carried out
over the cylindrical surface and the last one over the caps
and base surfaces of the antenna. The current flowing radially
on the caps of the antenna d&es not contribute to the z-component
of the electric field of the antenna.

For the integration over the cylindrical surface of the
antenna, an average value of r over the angular position

will be used instead of the exact value as given by Eq.(4-28).

This is equal %o \/7(2 - u)2 + a2, King (Reference 1, p.16)
shows that this choice introduces only a small error in the
value of the integral.

Noting that %\V(r) = - %W(r), Eg. (4-27) then becomes
2n
AT

Eaz-(z) -5 ® f d‘ffis(u)\y(z,u) du +
2 Z o 3

"1';_5 f d‘f’f‘l (‘1) '?‘W(Z u)du +

0
4M [sr\lj(r) ds
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5,00 =-Tp [T Wiz @+ 2 [ o) 2 Y (zu) a
L °1L
+ Ine qu S%W(r) ds ooo(4=29
where 27ma i(u) = I(u) and 2ma q(u) = Q(u)A «ee(4=30)
- L
and _[ £(u) du stands for jp £(u) du + JP £(u) du.
L =L

The second integral in (4-29) can be integrated by parts

and the result is

e o & Ve =50 - g [Waw & o) a
L L

From the equation of continuity it follows immediately

that 1 d 2
fL-Q( ) ==-35 3.2 I(u) | o+ (4-31)

Hence

Z“Lo fg(u) -BB_E\V(Z’“) du = E8(2)+

2
4n3we f\V(z u) —5 I(w) du

...(4—32)
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where B, (z) = sl [g(n)\v(z,n) - Q-L) Y (z,-L) +
0
+ Q(-b)Y(z,~b) - Q(b)\lf(z,b)] vo.(4~33)

Substituting Bq. (4=31) into Eq.(4-29) and noting that

B2

Juwp \ 2 j
4n9 = Ewm%;'(w““o e,) ”‘3%63;
gives '
| . 2
Baa(2) = Ey(2) - g f[-%:g- + g2 1(u)]\|/(z,u) au +8_(2)
J v
‘ oeo(4-34)
where
E,(2) = gb- !qs V) as .+ (4-35)

is the contribution %0 the tangential E-field due to
the charges oﬁ the caps and base surfaces of the antenna.
For thin amﬁ@nngs the last term in Eq. (4-34) is small
compared with the other terms and can be neglected,
To satisfy the boundary condition on the surface of

the antenna, the total tangential electric field must vanish,

Hence »
E&z(z) + Ei (z) =0
or 2 .
ES(Z) + Ei(z) o= m%;— [—b—lsii—zl + Bz I(u)] \V (z,u) du

L ooo(4=36)

It is interesting to note that Es(z) as given by
(4=33) is related to the tangential component of the electric
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field of a sinusoidal current distribution. This is given

by (see reference 4, p.323)

| ~iBr,  =iBr, o—iBT
E(z) =-j301 [° + -2 cos L 2—2
s o r, T, Ty
000(4-37)
where ri = (z - L)2 + a
rg = (z + L)2 + a2
r2 = 2% 4 a? ee.(4-38)
and the current distribution is
I(z) = 1, sin B(L - Iz') 0os(4=39)

In evaluating BEq. (4-37) the base.separat;on b is assumed
zZero.

From Eq. (4-39) it follows that
1
J !

QL) = - 3= 52 1(2)

(-L)= - - 4 1 4 = --B1
Q Jw Tz_ z. .Z'=_L

Cd
-b = b = e I
o 4b=0 o )lb=0 ju~ dz (=) z=0

Also g = 30
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Hence =-j 30 I_ = b I, - L) _o(=L) 4 40)

4n3we 4neo. 41teo
J 60 Io cos BL = 4nwe° I0 cos BL
= lim - —Qi—l- = lim 22%91
b~0 % b—0

0-0(4—41)
Substituting Bgs. (4-40) and (4-41) in Eq. (4-37)

and noting that

o~ IBT -jfr ‘
—.-—--l-:v,/(z, L), 2—1:2—3—=\VQz,-L)
and -—3-5_—rt-—= lim W(z b)
0 b-=0
= lim V¥ (z,-b)

gives

B, (z) = z,%—[em W (2,L) = 9(-L) Y (z,-L) -
_ o
+ 2 W(a,b) + 9(-0) W (s, -b)] ... (4-a2)

which is identical to Eq. (4-33). For a sinusoidal current

distribution Eq. (4-33) is then identical to Eq. (4-37).
The current distribution along éylindrical antennas

is known to he almost sinusoidal. Therefore the field of

a sinusoidal distribution can be used to approximate Es(z)

as given by Eq. (4-33).
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4,3 The Current Distribution.
- ——

T;; obtain the current 'distr.ibution along the antenna
a differential equation for ihis @is,tribution will be
determined first, ‘This can be done us?ng Maxwell's equations
and evaluating them on the surf{a.ce of the antenna using
an appropriate system of coo;dinates. Of particular interest

here are the equations

curl ﬁ = - jw'ﬁ s e jwp.oﬁ 000(4-43)
div ﬁ = q 010(4-45)

In polar coordinates Eq. (4-43) becomes, taking only the ¢

component, 5
E >E
f _ 2 .
curly E = <3 Sp = ~jup He eee(4~46)

On the surface of the antenna, due to the fact that
the current flow is axial, the magnetic field of the antenna
at the surface has only a ¢ compoxien‘b. That this is consistent
with the electric field intensity on the surface of the
é.ntenna. can be seen from the following relations
OE, _ BE?
Sabqp 0z

curl? E = = - jprH?

dE,
By symmetry —<— =0
o¢

Symmetry and axial current flow gives E?e 0
OE 9 E?

Z
3’59 - az=0

Hence —jwpoﬂg, =
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Similarly the z-component of the magnetic field iF related

to the electric field through the relation

hr-Np &

. 2_1[2 2E¢
_proﬂz.«.z curlz .= =§; Tg‘; (?E?) - -y?—
vhich can be proven equal to zero by the same method as
above.
Integrating EQ. (4-44) over a typical meridian surface

of the antenna gives
[curl ﬁ . d-; = f_{ . d} 030(4-47)

where by a meridian surface S is meant the surface
perpendicular to the axis of the antenna and bounded by the
cylindrical surface of the anténna. Over this region the
electric field intensity and hence D is everywhere zero.

Applying Stoke's Law to Eq. (4-47) gives

Jeur1 E.. a5 - 9Sﬁ.as=lz.*s=xz

8
Hence 27a H? =1I, eoo(4=48)
Therefore combining (4-48) with (4-46) gives
BE? ‘B
z .

From Eq. (4-45) it follows that

j&iv D dv = j};dv

v v

Using Gauss's theorem gives

Eg,(z) = 2z) .eo(4=50)

Zﬂaeo
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where Q(z) is the charge density per unit length.

Hence bE?

1 g% Q(z)

Dz 2naeo

1 3%1(a)
,]Zmoeoa bzz

eee(4=51)

The latter result follows from the equation.of continuity.

Substitution of (4-51) into BEq. (4-49) gives

2 ' OB -
dI(=) 2 s 2 _
Bzz + ﬂ I(Z) = JZﬂGow (a-SQ—) 000(4 52)

The current distribution along the antenna must therefore
satisfy the non-homogeneous second order differential equation

(4-52). The solution of this differential eQuationris

L
janco
I(z) = C sin B(L =z + ©) + 5 y(u) sin B(z = u) du
z
Y] (4-53)
| " JE
where y(z) = a‘jﬁ? remains to be determined,

The function y(z) canbe obtained by first returning to
Eq{4-36) and Eq. (4-52). Combining these equations gives

J(y(u)q/(z,u) du = 2 [Es (z) + E; (z)} ees(4-54)
L

This is an integral equation of the first kind if both:

functions on the right hand side are known, Es(z) is given
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by Eq. (4-32), It has been shown that this can be
approximated by Eq. (4-37). Henc? both terms on the right
hand side of Eq. (4-54) are known, except for a proportionality
constant Io’ that must be determined from the excitation
1eve1 of the antenna.
One method of solving this integral equation is to
expand both sides in Pourier series. The resulf is then a
system of linear equations relating the Fourier coefficients
of the known and the unknown functions (see Appendix II).
Another method is to use successive approximations and
has been used successfully by Hallen. This methgd will be
used here. |
The zero order solution of the integral equation (4-54)
can be found by first noting that the kernel qf(z,u) has a
very large value in the neighborhgod of z = u.
Hence
fy(u) VY (z,u) du = y(z) f\P(z,u) du
L L
T2 [Es(z) + Ei(z)]

and the zero order solution for y(z) is given by

»2 Es(z) + Ei(z)'”

[\V (z,u)du

1

y(z)

2B, (z) + E, (z)]
K(z)

n

ooo(4=55)
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where (Reference 7, p. 335, Eq. 48)
K(z) = - Cin B(L -z) = Cin B(L + z)

L - 2z + 'VQL - z)§7+ al
\/(L +'z)2 + d? - (L = z)

+ 1ln

-3 [Si B(L - 2) + i B(L + z)]
ees(4-56)
To show the behaviour of the function K(z), a plot of this
function for several lengths and thickness is reproduced in
Figs. 4= 3 and 4-4. The ‘function is therefore almost constant
over the antenna.
Hence thevzeré order solution of the current distri-

bution is given by

I(z) = C sin B(L - 2 + ©) +

Ei(u),+ Es(u)
K(u)

sin B(z - u) du

vt |

ese(4-57)

The evaluation of the integral in Eq. (4-57), due to the
complexity of the integrand, cannot be done exactly. However,
since theVdéhbﬁiﬁator, aé shown above, is almost constant

over the lengtﬁ of the antenna, the average wvalue of the
denominator c;n be used tq.approximate the exact function.

This is evaluated in Appendix III and the result is

2L S sin 2 BL
\J_/-,.--Zln;—+2(1n2-c_in25L- 5L

+ ;i[l" SO;LZJ_L - 8i2 BL]) .o (4-58)
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Th 0.5 o5 =o.4 =o' 0 0.2 0.4 0.5 0.8 1.0
' Z
Inm [K(2)] E—
BL = 5 Q= 10
1 -5
Q=20
1 -10
Im K(2)

Figo 4"3.

Graphs of K(z) for BL = g—, Q= 10 and
BL = 3, Q= 20 /
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20 4Re [K(z)]

15 4
10 4
Re [Il((z)] /
0.5_L. BL = T
Q =10
n].l.o "0:8 -0..6 -0.4 -002 0 002 004 0‘6 008 1.0 z
¥ ¥ 1 } t -+ } $ $ >
—_— - L
Im[K(z)]
=20
-10 +
Im [K(z)]

Pig. 4-4. Graphs of K(z) for BL = %, 00 = 10
and BL = %, Q = 20.
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After taking this approximation, the integration is

straight forward and the result is

I. b
I(z) = C sin B(L - z +©) + ] 1209§2) Gé;) -3 qf‘ F(z)
]
oo-(4-59)

where G(z) and F(z) are defined and evaluated in Appendix
IV and Appendix V respectively.
The constants C and © can be found by considering the

cap of the antenna (Fig. 4-5).

Fig. 4-5. Current Distribution on the End Surface

Due to symmetry the gonduction current on the cap will flow
radially, while on the cylindrical surface it is axial. To
preserve continuijy the axial flow on the boundary line
between the cylindrical surface and the cap must equal the

radial flow. Hence

[I(Z)]2=L -7 [IS’ ]9=a .es(4-60)

Positive direction of the current on the cap corresponds to

the positive direction of ? s a8 given in Fig. 4-5.
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Evaluating the axial current distribution at z=L gives

Due to rotational symmetry of the current and charge dis-

tribution on the caps, the equatien of continuity is

1 9 [pls] = =i oso(4-62
_-56[? g] JwQ(?) ( )
For thin antennas the charge density over the caps does
not change very much with the radial distance g and hence
I? = B? 000(4—63)
where B is a constant that can be determined by substituting
Bq. (4-63) into Eq. (4-62) which gives
B - dsR(e) _ jugle) o (4m4)
Substituting (4-64) in Eq. (4-63) and using Egs. (4-60)

and (4~61) gives

C sin o = - dufle) o . _ _jued(L)

. 0(4"65)
. ‘ d I(=z .
Since ' = - jwQ(L),
; dz z=L
it follows bthat BC cos & = jwQ(L) ves(4-66)

Eq. (4=61) indicates to what extent the axial current
distribution deviateé from zero at the end of the antenna.
For infinitely thin antennas, this value must be zero.

It is Kknown that the current on the cap of the antenna
effectively increases the length of the antennalby an amount
in the order of its radius.

Hence, for thin antennas sin BO- = B and cos B =1
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Therefore C = iQ%LEl_ : ese(4=6T)

and e = g;__- | e..(4-68)

The zero order current distribution is therefore

given by

: I. b B
.I(z)=—llﬂgé-lil-—[sin B(L - z + %a)-ﬁG\yz -] t}_/ F(,z)g

ees(4-69).

For small gap width the contribution & the last term
in Eq. (4-69) is very small since F(z) increases as log%
and consequently lim b F(z) = 0, For practical purposes
this can be neglegg;g. This means that the coupling between
the transmission line and the antenna has little effect on the
antenna current distribution. Eq. (4-69) can then be

simplified into

1(z) =1“i§3¥1[sin B(L - z +ia) +J-lG\; ]

=1 [ sin B(L - z +»éa) + Eé%l] .o+ (4-70

The constant Io is determined from the complex power
input to the antenna and making use of the fact that I, = I(b).

To facilitate comparison with the existing theories,
the relative magnitudes of the current distributions for
various lengths and thickness of the antenna are plotted in
Figs. (4-6), (4-7), (4-8) and (4-9).. In comparing the
results it is important to note that the expansion parameter
\V is not uniquely defined.> The zero order current
distribution plotted is obtained from Eq. (4~70) using
Eq. (4—5@) for Y. The first and second order plots of King
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According to Eq. (4-70)

xperimental (King)
for Q0= 10.12.

—XKing's second order.

|

0.2 0.4 0.6 0.8 1.0 I11/11)
ax

Fig. 4-6 Current Distribution &long Cylindrical

Antenna for BL = n/2 and Q= 10.
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1.0h_
0.9-
0.8. Calculated from Eq. (4~70)
\‘\—Experimenta,l (King)
| W for Q =.11.5
\
0.7+ ' \\ King's second order
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0.5
0.4—»‘
003'
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Fig. 4-7 Current Distribution Along IILnax

Cylindrical Antenna for BL=n and Q=10
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Calculated from Eq. (4-70)

ing's second order

s
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Fig. 4-8. Current Distribution Along Cylindrical

Antenne for BL

n/2 and Q= 20.
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1.

Calculated using Eq. (4-70)

King's second order
008-—

0.64+

0.47

0.34

0.11

0.0 0.2 0.4 0.6 0.8 1.0 |1/ 11},

Fig., 4-9 Current Distribution Along Cylindrical
Antenna for BL = ® and (O = 20,
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use a more elaborate expansion parameter (reference 1,

p. 107, Eq. 37).

4.4 Comparisqn of the Correction Terms

The current distribution alohg ﬁpe antenna has been
solved using the non-homogeneous differential equation (4-52)
and the zero order solution is given in Eq; (4=70). This
consists of a sinusoidal principal part and a correction
term given by the first and second terms inside the bracket
in Bq. (4-70) respectively.

Both Hallen and King solved the integral equation for
the current (2-22) by successive approximaﬁions and obtained

(see Reference 1, p. 85)

s=n M
sin B(L - 2) + ) s(i:
527[ v& s=1 (\y)

é \y ' 8=n As

cos BL + 8
s=1 (YY)

ono(4°"71)
where s= 1, 2, 3, ¢cccecess.ony, and n is equal to the
required order of the solution.

Eq. (4~71) can be written as

8= Ms(z)
I(z) = Is [sin B(L - z) + SZ: -(—W]

o0 (4-T2)
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where

= j 2n V§ 1

s 4 \% "~ s=m A cee(4=73)

s=1 (VY)*®

The Hallen/King first order solution is therefore given by

I

M, (z)
Y

A question now arises whether Ml(z) is in some way

I(z) = I, [sin B(L = z) + ] oeo(4=T4)

related to G(z) in Eq.(4-70), since both current distributions
must satisfy the differential equation (4-52),
G(z) is a particular solution of the differential equation
2
(4-52). Hence applying the operator D = 2—5 + 82 to G(z) gives
dz
D[G‘(z)]A= Y (z,L) + VY (2z,-L) - 2 cos BL V¥ (2,0)  ...(4=75)

It is shown in Appendix VI that
D[Ml(z)] = -8 [V (2,L) + ¥ (2,L) - 2 cos BL Y (z,0)} . (VI-8)

This is similar to Eq. (4-75).
The consequence of the foregoing result is that

Ml(z) = G(z) + A sin B(L - 2) X coo(4=T76)

G(L) = O

since MI(L)
Due to the complexity of G(z) and Ml(z) only graphical
comparison of these functions will be made. Figs. (4-10),
(4-11), (4-12) and (4-13) represent the function

h(z) = Re [M;(2) - G(z)] " eea(4=TT)

graphically, for various thickness of the antenna,
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6
5.6 sin B(L - z)
4 ]
- Re M, (2) - G(z)]
T2 Im[G(q)] Re M, (z)
\\\ \
2T PO
\\\\ ~ Im[Ml(Z)]
0 0.2 0i4 0.6 0.8 1.0 z
.7 L
Ve
7
7
7
7
e
-2 == __ -
T~o _--"Re [G(z)]
-4+
-6 +

Fig. 4-1Q Comparison Between MlH(z) and G(z)
for BL = m and Q = 10.
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Comparison Between MlH(z) and G(z)

for BL = n and (0= 20
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2.3 sin f(L-z)

Re[MlK(z) - G(z)]

71

Be[G(z)]

Fig. 4-12. Comparison Between MlK(i) and G(z)
for BL=xn and ()= 10,
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7.2 sin B(L-2z)

Re[Mlk(Z) - G(Z)]

-6+

-81

Fig4-13. Comparison Between Mlk(z) and G(z) for

BL:‘W andﬂ: 20

'

ﬁe [G(z)]

L [
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Re[f] means the real part of the function inside the

bracket. Graphs of g(zj = A sin B(L - z) are also plotted
- on the same diagrams where the A's are appropriately chosen
to match the maximum value of the corresponding h(z).

It is thus seen that Hallen and King's correction terms
contain a large sinusoidal component. This can be also
seen by expanding y(u) (Eq. 4-53) in powers of ﬂ!’l which
leads to the form

I(z) = I [sin B(L - 2) + ﬂ\f’l + —‘\1-}%’] s (4-78)

and comparing this with Eq. (4-71) which can be written as

I(z) = I [sin B(L - 2z) + Ml\(;) + 'M\(;% ] 000 (4=79)
where H(z) and M(z) are so defined that Eqs. (4-78) and
(4-79) are exact representationsof the current distribution.
Substituting Eq. (4-76) into Eq. (4-79) and comparing
the result with Eq. (4-~78) gives
M(z) = H(z) - A y sin B(L - z) ooo(4-80)

Evidently, King's higher order correction terms contain

a large sinusoidal component. Graphical plotting of M2(z)9
see Fig, (4-14),indicates that this sinusoidal term must
also be contained in the third and higher order terms which

are not considered by King.
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Fig. 4-14. Kiﬁg's Second Order Correction Term
for BL=n and 2 =10.

The agreement with the experimentally determined
current distribution and input impedance is hence semi-
empirical. This agreement is obtained by a suitable choice
of \V and the fact that no terms higher than the second order
are considered. The very peculiar fact that this same choice
of \V gives a good approximation to the input impedance
(see Eq.(3-25)), has, until now, completely obscured the

.empirical nature of the Hallen-King theory°

4,5 TheAInput Impedanqe

In”Sec.ls-l“a formula for the input impedance
applicable to cylindrical antennas is derived. Since the
actual current distribution along acylindrical antenna is
very complicated, analytical evaluation ef the integrals

(3-41) and (3-42) is not possible. Evaluation of a formula
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suitable for numerical computations is therefore desirable.
This can be done with the ai@ of a series expansion outlined
in Appendix II.

Using this method one qi)'tains

Aw) = 42 fﬁi(u) Y (u,2,¢) adz dg
| AL 27
=-;%f I(u) E}ff VYV (z,u, ) d dz
' 0

-L

B 5 -
_2_% Z Lk I e(pu)/L ooo(4=81)
n,m "

= -(tz)/L .
where I, =31 f I(u) e dz 000 (4-82)
=L
t = jum, p= jnn
and knm is as defined in Appendix II, Eq., II-9,
Hence

Wy = %fZ(u) T (w) ar = 4 f A(w) 1% (u) au
A ~-L

;—% me Lknm‘KIm' f I*'(u) e(Pu)/L du

! =L
Mo *
= -’——-LZ Lk I 1
2n n’m' nm m n 000(4-83)
L
* %,
where ,Iﬁ = 2—11_‘- f I (u) e‘P“)/L dz oo (4-84)

>
-L
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J( U(u) q*(u) drt

>

L
= "'—2-1';?;' Z Lknm Qm Qg 000(4""85)
. ,m

But O

Similarly Qg

t
Hence We

Substituting

noting that

]
|
&l
o o
e 1} e
I!—'
p-'lﬁ-'
e
P
N
S
[¢+]
L]
P
[
N
g
.
-
[« 7
N

1 eoo(4-86)

_P_1* oe.(4-87)

e m— Lk (tp) I I* 000(4”88)
anzeoL n,m nm m o n

Egs.(4-80) and (4~85) into Eq. (3-13) and

Jwp L
271

= j 60 BL

and i _ i 60
2ne L = J BL’
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gives after rearranging the terms

2
. 120 n *
Z. = j =, (BL) Lk [1 - (=) ] I I 000(4=89)
i J lIiF B 2;; nm BL n@ m n |

The current distribution I(z) can be written as

I(Z) = IO f(Z)

Consequently I, =I_ £(0) I: =1, £900) »0(4-90)
* * %
Im = IO fm In = IO fn 000(4"’91)
g (tz)/
1 -(tz)/L
where fm = 5T l— £(z) e dz coo(4=92)
L
* ,
fn = 'é%‘_' f f*(u) e(pu)/L du 000(4‘93)
-L

Pinally, substituting Egs.(4-87) and (4-88) into Eq.(4-86)

gives

. 2
120 L ‘
o A ) e 1o ] g g s
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5. Conclusion

It has been shown that the Hallen=King theory of antennas
is of s semi-empirical nature. Both the current distribution
and input impedance depend on a semiwémpiricai choice of an
expansion barameter and the number of terms taken into
consideration, A correct solution of the problem must take
into account the effect of the transmission'lineo This
eliminates the inconsistencies existing in Hallen=King method
and relates the theoretically determined input impedance to that
determined experimentally.

The zero order current distribution obtained using‘théA
theory developed here (Eh,4-70) compares favourably with King?s

second order distribution (see Figs. 4-6, 4-7, 4-8, and 4-9).

Due to mathematical difficulties, the higher order solution-- " ' " %

cannot be found analytically. >Expressions are available through
which the cufrent distribution (see Eqs. 4-53 and II-6) and

the input.impedance (see Eq. 4-94) can be determined exactly.
These are in a form suitable for numerica} computation with

the use of digital computers.
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APPENDIX I

Prove that

Q_e‘j.3<‘7fx)=%[£:x e-J‘B(r+x)} (1-1)

du T Tr

Proof
Let .
= o Blr + ) §§-[F(x SR, X)] .
u T x ’ r

. 2 _
Noting that rz = x-‘?' + u and hence -%—:‘i = -’-;— and %ﬁ- = -—;—f-

the left hand side of (I-2) becomes

-j B(r + x) | : -i B(r +x) _
& =i o)

r

Evaluating the right hand side of (I=2) gives

-j B(r +
%[F(x,u) = r~r ‘ "1

] o—d ﬁ(r + X)) (1.4)
T

iBE+1)+ -2

r2

[M - F(x,u)
d x

=j B(
since S%'e - i il x)= - [.]' P(.%+ 1) +

r

x ] o=d Bl(r + x)
2

Equating the imaginary parts of (I-3) and (I-4) gives

i B(E +1) F(z,u) = j B —

Hence F(x,u) = ru+ =
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Multiplying the nominator and the denominator by —%—E}% gives

F(x,u) = ‘:ér_’x’z‘) =_1' ;’f" (1-5)

Substituting (I-5) into (I-2) gives (I-1). Q.e.d.

o= 1 B(r + x)

The real part of (I-4), omitting the factor

is
2 2
BF(i u) _ x/r2 P(x,u) - _fr zx)x L X=-r__I 5 X
d ur ur ur
= -u/r2

which is exactly the same as the corresponding term in (I-3)

Prove that

> e-i‘B(r - x)‘ _ gl [ r+x e~ 3 B(r - X)] (1-8)
X — —

" du T = u r

Prqof Bl )
Let e” Brr — T = E(x,u) and (I=7)
2 B(x,u) = f—x[ G(x,u) E(x,u)] (1-8)

dr dr

Again noting Sx = %— and Su = —%7 evaluation of (I-8) gives

- Jﬁ% + —5—) = jlﬁli;&l_ G(x,u)[j B(%— - 1) +‘5—]

2 dx o2
Equating the imaginary part gives
G(x,u) = —% — - - E+X (1-9)

X - T u



Check on the real parts

é—%‘-’;‘J—u-L - G(x,u) xz =

r

-xr-r2+xr‘+x

2

ur

2

Qoeodo

81
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APPENDIX I1I

Solution of the integral eguation

21
E(u) = T11t' : fy(z) \V(z,u,c?) dz d¢ (II=1)

A
with the aid of Fourier Series.

It is shown in reference (23) that

s(u - z)

27
6[ YV (z,u,9) dg= f%— J(Ko(s) I (s) e L ds (II=2)
C

where Ko(s) and Io(s) are modified Bessel's Functions, and the
intégration contour C lies along the imaginary axis of the
complex plane S.

Substituting Eq. (II-2) in Eq. (II-1) gives

E(u) = éJY(z)[j};L !KO(S)IO(S) e 's_(-{'—z')—ds]dz (I1-3)

The term inside the square bracket, which is a function of u
and z, can be expanded in a double Fourier Series of the form
1 - alu - 2) ~(+2)/L _(pu)/L
FEE_J(KO(B) Io(s) e L ds = E: k e e
c ni (II-4)

i+

with t = jom, m=0,%1, £ 2,.,.......

1+

P=jmm, n= 09119

2900000000
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Substituting Eq.(II-4) in Eq.(II=3) gives

E(u) = %2;knm e (Pu)/L _['y(z) e=(tZ)/L dz
A

L
Z Lk elPu)/L %‘1‘. L[ y(z) e=(¥2)/L 4 (11.5)

nm
nm

Since ﬁ[;(pu)/L du = 0, for p#0
A

2L for p = 0, multiplying Eq.(II-5) by

"

ef-(Pu)/L

5 du and then integrating the result over the same

interval gives

By =) Lkyp ¥ (11-6)
nm '
where E 6 = —%E j' E(u)-e-(pu)/L du (I1I=7)
-L” L
Yy = _21_ ] y(z) o= (t2)/L 4, (11-8)
-L

The Fourier coefficient knm can be obtained by multiplying
both sides of Eq. (II-4) by o (+2=P0)/La; ay ana integrating the

result over the antenna. This gives

knm=ﬁ%ﬁj1;(sto(s) sing is;P) sinhs(f ; £) ds (11-9)

The result of this integration is given in the Appendix of re-

ference (23).
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APPENDIX TIII

Evalugtion of +L

= —11‘- fK(u) du (I1I-1)
-L

Although it is poss1ble to evaluate(III-1) by straight
1ntegrat10n of K(z), it is more convenient to flnd\y using

the original function

L L
VY = -—4—5 f du j YV (u,z) dz(I1I-2)
AL -

0o

To do this, transform V (u,z) into P(z,y) using the

trgnSformqfion

Z =u+ 2

y=u-z (II1-3)
and obtain

| ~iB Vy? + a?)
. P(x,y) = - .
Viy® + &%) (I11-4)
The Jacobian of the transformation is -
ey oyl o,

|J<“»Z’~ = | Syl =2

hence : dx dy = 2 du dy. ~ (II1=-5)

Therefore using (III-2); (III-4) and (III-5) one obtains

jf;a's\/—(yz +e?)
2'V?y2 : az) dx dy ‘III=6)
D . .
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Where D implies the boundary of integration indicated by

Fig, I1I-1b.

b

'y

K
L 2 2L
3
y=2L+X
y=2L=-x
-L 0 L u =21
1 Y= =X=2L
4 -L
Fig., III-la, Surface of In- Fig. II1I-1b, Surface of In-
tegration in (u,z) Plane, tegration in (x,y) Plane.

The equation for the boundary of the surface of integration
in (x,y) plane can be found in the following way:
The boundary corresponding to boundary (1) in the (u,z) plane,
satisfies u = L.
Hence in the (x,y) plane this corrésponds.to
X =L+ 2 N
Y=l =2
Eliminating z one obtains
y = 2L - x
By similar method the other boundaries can be obtained and the
equations are as given on the diagram.
Therefore noting fhat the 1ntegrandfig an even function

of y and also that
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-y + 2L -y +:2L

[ dx = 2 f dx
y = 2L 0
y = 2L y - 2L
dx = 2 [ dx,
=2L - y 0

integration over the shaded area only will give % of the value

of (III-6).
Hence
2L . 2 2 2L - y
‘i’:f—ﬁbf -ip Viy +8L)dy [ ax
) Viy? + a2) 0
. 25 . 2 2
1 | e—JBV_(y + a%)
=—L—_[ (2L-y) dy
0 ,Wy2+a2)
L
- | (y-ou) (08B _j SR BY, gy (111-7)

0

where r ='\,/—(_y2 + az) :
2L . v 2 L

But ](Y_ZL)_GQ%&.@:[ y_cg.%ﬁx_dy
3 .

o
2 L »

-f 2L——§—°°: - ay
0

2 L 2L
*EM-ZLII-COSBy dy_j ay
. r
0 0

B y



2 L )
f(»y-zL)» 08 Br 4y = 510 2BL | o1 Cin 2pL - 2L 1o £&
0 - |

87

B

2L 2 L
[(y-ZL)E‘—%—ﬂdrE’f (y 2L)§_1£‘;§§.L dy
0 0

zL-.cos 2BL _ o 55 2pL.

Therefore
Y:zlnﬁ-l-‘--pz[lnz-cinzsLnii—‘iB-%ﬂ‘-
+ j(l - cos 2L _ SivzﬁL}] _ (111-8)

2L
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APPENDIX IV

L ' . . :
G (z) =‘[ (\Vl +\P4‘- 2 cos‘BL\Vz) sin B(z = u) du., (IV=1)

,-iBR

Z
where H/= )

(L - u)2 + a2

= U <+ & (IV—Z)

R = (L + u)2 + a2

Using Eq.(IV-2) and noting that
L38(z = ) _ ~iB(z - u)
sin ﬁ(z o u) = EJ .

Eq.(IV=1) becomes
C[eniB(Ry+u-z)  3B(Ry - u+ 2)

G = =44
(z) ﬂf[ - o

Z

1 1

o~iB(Ry + u -2)  -jB(R, - u + z)

+ -
R4 R4
~iB(R, + u = z)

- 2 cos BL e 2 -

R,

‘e-jB(Rz -u + z)
+ cos BL — R du (IV=3)
2

A typical integral in(IV -3) is of the form

L
G, (2) =f e‘_J'B(Rl +u-z) g

Z A Rl
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This integral can be easily evaluated using substitution

v = BtRi +u + L)

i

hence —
e‘v

u = z, v, = 5FVYL-+ z)2 + 8% 4 2 + L]

u =L, v

[ VaL? + a2 + 21] |

o
ll

Therefore

G (z)

Yo o

odB(z + L)-[ 2:%Ezf dv
"1

e‘jﬁ(z + L)[Ei vy = Ei vi]

The other integrals can be evaluated in a similar way and

it

therefore only the answers and respective substitutions are
given below.
The indices on G's are taken in successive order,

Second infrgral: w = B(R1 = u =1L) ~ =" n

B[\/(L+ 2)2 + a2 - 2 - L]

g[Var? + % - 21]

G,(z) = ~edF(z + L) [gi w, - Ei w, |

. . dv du
Third integral: v = B(R4 + u = L) = = ﬁz

U=z, Vg= BP/(L - z)2 + al + z - L]
u=1L v,= Ba

GS(Z) = ejF(z = L)[Ei vy = Ei v4]
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. o - _d'_E _ Q'B
Fourth integrals w = B(R, - u + L) w = "R,
u=1z, Wg= BP/}L -2)% +a% -z 4 L]

ua = L, W49 = Ba.,

Gylz) = - e~if(z - L) [Ei wo = Ei4w4]

24 i 1 v = dv _ du
Fifth integrals v = B(R2 + u) v = R,

u=3z, Vg= BFJZZ + 8 4 z]

B[VL2 + a2 + L]

. . Lo dv _ du
Sixth integral: w = B(R2 - u) v =R,

; 5 5 _
u =1L, We = BIV L™ + a” = Ll
- - =jBz . R TE
Gﬁ(z) = =2 cos BL e [E1 Vg Ei w6]

Therefore

2j G(z) = cos B(z + L) [Ei v, - Ei vy + Ei W, = Ei wl]

+ cos B(z = L) [Ei vy~ El vy +Biw

3 4~ Ei wg]

- 2 cos BL cos Bz[Ei Ve Ei vy + Ei LA Ei w5]
+j sinB(z + L) [Bi v, - Ei v, - Bi w, + Ei w,|

4+ Ei w3]

+j sin p(z - L) [Bi v, = Bi vy - Ei w
- j 2 cos BL sin BL [Ei Ve = Bi vg = Ei w, + Ei ws]
(Iv=4)

But Bi(v) = Ci v - j Si v



91

where Ci(v) = = J[ AE%E_Ede
v

(IV = 5)
Si(v) =

!
0\4
-]
[N
®is
]
o
E]

and v4 = w4 = u

Finally substituting (IV-5) in (IV-4) and rearranging the
terms gives

G(z) ==%[sin B(z + L) (Ci v, - Civ, -Ciw,+Ci wl,

- cos B(z + L) | Si v, - Si v) + Si w, - Si w1)

+ 8in B(L = 2z) | Ci v, = Ci w

3 3

cos B(L - z) |2 Si u - Si Vg

- Si.ws)

+ 2 cos BL cos Bz

Si v - Sivg + Siwg - Si ws)

2 cos BL sin Bz

Ci vy = Ci vy - Ci wg + Ci ws)]

R [cos B(z + L) (Cl v, = Ci v, + Ci w, = Ci wl)

+ sin B(z + L) (Si v, = 8i v, - 8iw,+Si wl)

+ cos.B(L - Z) .2 Cci uo - Ci vg = Ci wg

+ sin B(L - z) QSi vy - Si w3)

2 cos BL cos Bz

Ci Vg = Ci Vg + Ci Wo = Ci WS)

2 cos BL sin Bz | Si Ve = Si Vg = Si We + Si WSH

(IV=6)
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APPENDIX V
L
o~J Bu
Fl(z) = ,[ sin B(u - z) 5—[———————]du 0oo(V=1)
z ,
L
' =] Bu
= ,[ sin B(u =z) d g—ﬁf———
z
Integrating by parts gives L L
. . o~ J Bu e=J Pu
1(z) = sin B(u =z) — - BJ(-—TT——~ cos B(u =z) du
z z

ooo(vﬂ”z)
The last integral in (V-=2) can be easily evaluated by first
expanding the co?ine function into expomential functions.

The result is

L L
.[ LN j'Eg— cos B(u =z) du =J[e_j gy plu-e) + o7 flu-z) du
z .

u
f o=i B 2 f =i B(2u-z)
=) TEm Wt T — M

it
[\
(=]
=]
Nlr
+

ej B z[[cosz gu_jsinz Bu]d“

p 2u 2u

g Bz
=Tz

1n'—+.___(1n-=-clnzBL

+Cin 2 Bz - j Si 2 BL + j Si 2 Bz)
ooo'(V”S)
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Substituting (V=3) into (V=2) gives

Fl(‘z) - 8in ﬁ(lL = 2) cos ﬁL -"B cos(Bz)-1n -I-;-
L

-%B cos Bz (Cin 2 Bz = Cin 2 BL)

+4B sin Bz (Si 2 Bz - Si 2 BL)

- J'[Sin B(L ;Z) sin BL +_§.3sj_n Bz (Cln 2Bz - Cin 2BL)
+%PB cos Bz (Si 2Bz - 8i 2 BL)} 000 (V=4)
L
Fz(z) = [ sin B(u = z) 5%- (-‘]f-) du ooo(V=5)
z
L
= ] sin B(u - z) 4 ('1]—;)
z L

gin B(u - z)
u

.2

L
“Sf cos B(u = z) du
u ;
z

_ 8in BéL = 2) _ g cos Bz (In L - Cin BL + Cin Bz)

- B sin Bz (Si BL - Si Bz) eoo(V=8)
And F(z) = R, (z) + (g‘- 1) F,(z) ooo(V=T)
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APPENDIX VI

Hallen's first order correction term is given by
(Reference 1, p. 85, Eq. 27)

‘Ml(z) = Fl(z) sin BL - Gl(z) cos BL +

+ Gl(L) cos Bz = Fl(L) sin Bz eoo(VI =1)

where (assuming perfect conductor)

Fl(z) = Fo;%’— J[Foz“ q/(z,z') dz*
A

Foz = co8 bz - cos BL
6 (=) =6, ¥ = [, ¥(z,2) as
A .

Goz = 8in B|z| - sin.BL°

2

-jfr
qj(;,z') = er —, with r2 = (z - u)2 + a

. 2
Applying the operator D = (§_2 + 82) to Eq. (VI-1) and
z
noting that D[cos Bz] = D[sin Bz] = D[Foz}= D[G'oz]z 0 gives

D[Ml(z)] = - sin BL D [[Fozn Y (z,2°) dzn] +
A

cos BL D {f&ozﬂ V(z,2') dz“} 0o o (VI=2)
A .

2
Ly [Fen Vime aw =2 o, 2 W a

A A
- p:
=T % f Fogr $z0 ¥ (2,27) da'
=L

L

<+

== g% [{Foz' q/(zpzv)y
~L




Since Fo,L= Fo,aL =0

Integrating Eq. (VI-3) by

2 |
— ’[Foz,‘\lf(.z,z") dz' =

322

A
Hence
sin BL D[fFozq V(z,2")
A
Also

32 f
S;E I oz’ q/(z z') dz’
A

95

L
"f \V(z,z")-.—bé-z-g Foz,dz"]
=L

L

- B g%- J( sin Bz' Y (z,z") dz'

-L
L

s] sin Bz’ —f—ig WV (z,2') dz'...(VI=3)
1 |

parts gives

B sin BL [\V (2,1) + ¥ (24L)]
...B f cos Bz’ \V (z z') dz°®
000(VI=4)
dz'} = B sin L [ W(z,L) + \J{J(ZPL)]'
- cos BL sin BL 62 Lj\y(zgz”)dzﬂ}
A

0o {(VI=5)

p) ;
-~ 5z %( 0z' 37 q/(z z') dz

R
Sy T
= dz {l Gzt Vlz;2 ))

L

[\‘V (z;2") -§— Gyt d‘z“]

jp (z z') S—— G .o dz’
=L

oo (VI=B)
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since G ; = Go(-L) =0

Hence
2 '
7%;@ G, V(z,z') dz' = - B g%- jp cos Bz' Y (z,2") dz®
A : . -L
ji cos Bz' Y(z,z') dz'
(& e
[cos Bz' \.{j(z z )‘
+ B_/?sln Bz* q/(z z') dz“]
L
- B [(cos Bz ! ql(z,z‘)j
0
L
- B./_sin Bz' VYiz,z*) dzq
= B [2 Y (z,0)
- cos BL (W (2,1) + \V(z,-L)]]
- Bzf sin-BlﬂlW(z,zF)dz_'
Therefore -k ' '
cos BL D J(Gozj V(z,2') dz' = 2B cos BL V(z,0)

A
- B cos?BL [V (2,1) + VY (2,-L)]
- cos BL sin BL B2 [f\{/(z,z') dz"] eeo (VI-T)
A

Finally substituting Eqs. (VI-5) and (VI-7) into Eq, (VI—Z)

gives

D [M(2)] =-8 [Y(z,L) + Y(z,-L) - 2 cos BL Y (z, o)]
.o (VI-8)
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