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ABSTRACT

Methods of designing multiﬁariable feedback
control systems based on system eigenvalues and matrix
diagonalization are discussed. It is shown that these
methods allow single-variable graphical analysis and design
techniques to be applied to multivariable systems. The
experimental deterﬁination of system eigenvalues is shown
to be feasible. The suitability of.these methods in conjunction
with simulation studies for investigation and design purposes
is also shown. |

A simulated two-axis tracking system is used to
compare the eigenvalue method and the diagonalized method.
| The eigenvalue methéd is applied to a system of four
parallel-operated synchronous machines and graphical methods

of stability investigation are discussed.
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DESIGN STUDIES OF A CLASS OF MULTIVARIABLE

FEEDBACK CONTROL SYSTEMS
1. INTRODUCTION

In the design of conventional single=variable
linear feedback control sYstems Nyquist and root-locus
diagrams are of considerable praétical use., -These graphical
methods are based.on the cﬁmplex-ffequency response and
enable the”designef to choose a suitable system
configuration and to study the effect of parametef variations.
A suitable choice of'systém configuration and parameter
values can then be made based on engineering experience or
a simulated study of the system.

An analytic design afproach‘to a complete system
synthesis is possible if suitable criteria for optimum
response are formulated analytically. The two most
suitable and therefore most often used criteria are the
minimization of mean-square drror and the specification of
closed-loop response.

Both the analytical and the graphical methods
have been éppliéd to the design and synthesis of
multivariable control systems.

A multivariable cdntrol system is one with n

independent inputs and m dependent outputs where n and m



are integers and

Consider Figure 1 which represents a linear

multivariable feedback control system and let n = m.

Figure 1-1. A Linear Multivariable Feedback Control System

X and Y are column matrices whose elements are
the Laplace transforms of the input and butput signals

respectively.

and



Cnl(s) .

are transfer matrices.
Analysis of the system

following equations:

AGE =

E =

Thus ' AG(X - CY) =
or AGX =

where I is the unit matrix.

Also Y =

of Figure 1-1

Y

X -2

X - CY

Y

(AGC + I)Y

(I + AGC) Lagx

p}ovided (I + AGC) is nonsingular.

gives the

el (1-1)

,o.(lfz)'

.(1-3)
. (1-4)

ceo(1-5)

eoo(1-6)

The transfer matrix AGC will be defined as the

open-loop transfer matrix and

H =

(AGC + 1)~ tAG

eo o (1-7)



will be defined as the closed-loop transfer matrix.
The poles of the closed-loop transfer matrix
are determined by the conditions

X=0
Y £O0 coo(1-8)

which, from equation 1-5, can only be satisfied if the

determinant
\AGC + Ii = O nao(l‘_g)

Equation 1-9 is known as the characteristic
equation., If the system is to be stable, the values of
s which satisfy equation 1-9 should all lie in the

left-half s-plane.
(1)

Povisil and Fuchs have developed a synthesis

method which considers the coefficients of the
charac¢teristic equation as fixed. This, of course, specifies
the poles of the closed-loop transfer matrix and the

synthesis deals with the realization of the poles by
(2)

suitable crbss—coupling and feedback connections. Kavanagh

(3)

and Freeman both assume that a specified H is given and

then realize this H by means of a physically realizable

(4)

compensating matrix. Horowitz considers the design

problem from much the same point of view as the above two
authors,(z’B)i;e.,: the desired system response is known.

He also discusses at some length the response variations

due to changes in the system configuration and also due to



system parameter variations. However, in most practical
applications H is not a priori known and these methods
are then not applicable.

Hsieh and Leondes(s) discuss the application of
fhe mean—squafe error criterion, an extension of the
Wiener method of synthesis, to multivariable systems.
However, analytical methods based on minimizing the mean-
square error are not applicable if the statistical properties
of the input and the disturbance signals are inadequately
known. Even if such information is available, the problem
may very well prove to be mathematically intractable. Under
. these conditions a graphical approach may be more suitable.

(6) (7)

Krasovskii and Newman discuss the

application of the conventional Nyquist criterion to a

(8,9)

two-dimensional system. Bohn introduces a procedure
for applying known single-variable feedback control system
étabilization techniqués to a special class of
‘multivariable systems.

In ‘actual design, simulation of the system is;
in general, essential. Optimization is then performed on
the simulated system by experimental evalﬁation of the
minimum mean-square error, system sensitivity to parameter
variations and non-linear effects, or any other suitable
criterion.

This study will deal with graphical analysis and

design methods and their experimental verification. The



mean-square érror’will be'investigated experimentally. The
systems studied will be restricted to a configuration
such as that shown in Figure 1-1.

The study basically deals with linear two-variable
feedback control systems for two main reasons:

(1) Many such systems occur in practice.

(2) Relative ease of simulation to

afford experimental verification of

theoretically predicted results.



2. THE EIGENVALUE METHOD OF ANALYSIS AND DESIGN

Consider once more the system shown in Figure 1-1.
Suppose now that the elements of the G matrix have the

common factor Gc(s). A new matrix can then be defined by
G = Gc(s)G' ceo(2-1)

Substituting this into equation (1-9) and replacing Gc(s)

:% yields

by

AG'C - AI| =0 oo (2-2)
The values of A which satisfy this equation are the
eigenvalues of the transfer matrix AG'C. Gc(s), or —,
represents the common factor which can be considered as a
vériable element while all other elements and the system
configuration are essentially fixed.

The stability of the system can be determined by
an application of the Nyquist criterion. Let
Ak(s); k =1,2, ¢o0,n

be the eigenvalues of the AG'C matrix. It follows from
equation (1-5) that the roots of equation (2-2) are the
poles of the closed-loop transfer matrix. The system is
stable if there are no values of s in the right half s-plane

which are roots of equation (2-2). To determine if this is

the case, consider the function Rk(s) defined by

R, (s) =x—(kl3+Gc(S) . (2-3)

From equations (2-2) and (2-3) it is easlly seen that the

roots of equation (2-2), when A = Ak, are the zeros of Rk(s)v



The condition for stability is that the zeros of Rk(s) must
all lie in the left-half s-plane, i.e., they must all have
negative real parts. This can be determined by considering
the Nyquiét plot of Rk(s) and application of the general |
condition for stability
N =12 - P

where P is the number of poles and Z the number of zeros of
Rk(s) in the right-half s-plane respectively and N is the
nuﬁber of positive revolutions of the radius vector Rk(j(o)°
If Z = 0, the system is stable. If Z > O, there are values
of s in the right-half s-plane which are roots of equation
(2-2) and thé system is unstable.

Equation (2-2) can be expressed as a polynomial

in A and may be written in the factored form

il
(@]

(A =2, - 2) .ooo(r, - A) vaa(2-4)

BA fRzlz\ By
|
|

22

1 n
= — W’T R A, =0 oo 0 (2-5)

~1
GFC k =1

or =
G,
¢

The multivariable system can be considered to be reduced to
n equivalent single-variable systems represented by the
factors of equation (2-4).

The eigenvalue method eséentially considers the
system interaction as an entity distinct from the variable
element. Ak may be called an interaction parameter and
represents the effect that the system has on the equivalent

single-loop system shown in Figure 2-1.



gy —3 G

A

N

Figure 2-1. Equivalent Single-Loop System

Analysis of the system of Figure 2-1 yields

% (2-6)
v = - 1 o 0 0 2-6
k™ sea, K o
c k
or Gc .
Vk fraed ; uk ) ) oo o (2—'7)

AP
In a conventional single-variable system (Ak = 1)
we consider a stability vector
R=1+G6G
c
and the condition N=2Z-P
If P=0, N=2 =0 for stability (see page 8).
In the eigenvalue system of Figure 2-1 we consider

the stability vector as defined by equation (2-3).

= _‘1—"' G ) e o e 2—8
ficle) - NEEE (28)

A (s)

considered the same as the -1 point in a conventional

If Ak(s) is a constant, is a critical point and is
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single-variable case. However, if lk(s) is a function of s,

-1
A (Jo)

is a critical locus and considerable care must be

exercised to determine N,

The above discussion illustrates the application
of the Nyquist criterion to multivariable systems where
eigenvalues can be introduced.

Another method of investigating system stability
is to consider the phase and gain margins by using the Bode
Plot Technique to obtain the-Nichols Plot of the functions

-1

and Gc(jm). The condition for oscillation is
A (Jo)

1
A (Jo)

Rk(J(O) = Gc(j(o) + =0

This requires the magnitude condition

¢ (jo)| = —2
l c'd Ak(ja)

and the phase condition
arg. Gc(jm) = arg. ;l(.
i (36)
The gain margin is illustrated in Figure 2-2a and the phase
margin is illustrated in Figure 2-2b. Figure 2-3 illustrates

- the phase and gain margins in a Nichols plot of the functions

-1 and Gc(jm).
,Ak(aw)
The above discussion shows how gain and phase

margin criterion may be applied to multivariable systems

where eigenvalues can’be used.



-/

11

w,

> Re

arg. Glw)= ary, =/
,9 [+ ') /:? )ﬁ (-7“7))

Figure 2-2a Gain Margin m = 20 log,, (Ak(jwl)Gc(jml))

» Re

\{VGw) X
0 .
w, . G. (1)
N '
\
~._ s

==l
I/.lk(f‘%)

. . . -1
Figure 2-2b Phase Margin ‘9= arg.Gc(Jwgz) - arg. sz)
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Using- similar reasoning, the eigenvalue method
may be used to make other single-variable techniques, such as

rootfloCus plots, applicable to multivariable systems.

db

=~angle

Figure 2-3. Nichols Plot by Bode Plot Technique



2.1 Illustrative Example 2.1
As an illustrative example, consider the system

shown in Figure 2-4,

+ P v c 3
X/ G// + }//
+
A//
7422
+

Figure 2-4. Illustrative Example 231



Analysis of the system of Figure 2-4 yields

G (X) = CTy) = Ayn (X, - Cy5Y,) = 1
. oo-(2‘—8)
Gyp(Xy = CooYn) + Ay (X) - CyYy) =X,
In matrix form equations (2-8) become
. : ,
Gip Al Xy 611011 25505 1 ojiYy
= +
Ay Gl 1 K A1C1 G0 0 1h|Ty
e s e (2-9)
The characteristic equation is
G101 25505 10 |
+ =0 .o (2-10)
A1 G52C00 0 1

The system shown in Figure 2-4 can be put into the form

shown in Figure 2-5.

Figure 2-5. Matrix Representation of Figure 2-4

14



To determine B and C consider the equation

BX = (BC + I)Y oo.(2-11)

Comparing equations (2-9) and (2-11) yields

Gy -4y

B = v (2-12)
Ay Goo

(G5 O

C = oeb(2—13)
0 C,,

As an example, consider now the case where

C1p =Cpp =1

Gy = Gyy = G (s)

Ay = Ay, = aG (s)
G(S): K

c I
(1 + sTl>(1 +.s12)
Therefore, from equation (2-12)

’ 1 -a
B = Gc(s)B' =AGc(s) co.(2-14)

a 1

Substituting this into equation (2-11) yields

B' + —1L Il =0 ...(2-15)
G, (s)
or, if —t is replaced by -A,
GC(S)
IB' - AI‘ =0 ... (2-16)

This is the eigenvalue equation and it has the form

15



Solving this equation for the eigenvalues yields

AM,2 =1 %132

%l and %l represent the critical loci. To discuss system
1 2

<

stability, we can sketch the Nyquist plot of the functions

R (s) = ——— + G _(s)
1
s) = ——— + G
R, (s) o 2 (s)

as shown in Figure 2-6. If the gain K of the GC element 1is
increased until the Gc(jw) locus intersects the %l point,
2
i.e., Rz(jm) = 0, the system becomes unstable.
Figure 2-7 illustrates the Nichols plot of
and Gc(jw). If the gain K of the G, element is increased

until the gain and phase margins are zera, the system

becomes unstable.

2.2 Illustrative Example 2.2

As a further example, suppose that

TKg

1 + sT3

Gy = Gyp = G

where Gc is considered to be the variable element. Solving

the eigenvalue equation (2-16) yields

_:l'._.

16
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AL
~N
\
W& -0 ] w"o\K - Re.
W= o0 We o
Gl )

iy 1., a
A 7/7‘0.3

" Figure 2-6. Nyquist Plot of — and G (ju).
’ M (i)

Figure 2-7. Nichols Plot of

| 20 Log. Magnitude
™~
AN
-/
\\ )
\
\
A
\ += Phase
90° \ 180°
\
-1

and G_(jw).
Ay (Jw) ¢
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_ -K
Al = 2 + ja
1 + sT3
-K
)\2:.—2——3&
1 + sTs

- The Nyquist plots of Rl(jm) énd R2(j@) are shown in
Figure 2-8. If the gain K of the GC element is increased
until the radius vector Rl(jm) =0 (or Rz(jw) = O)/the system
becomes unstable.

Figure 2-9 illustrates the Nichols plot of the

functions ——%— and Gc(jm). If the gain K of the G_ element
A (Jo)

1s increased until the phase and gain margins become zero,

the system becomes unstable.

2.3 Illustrative Example 2.3
As a third example, suppose that in equations

(2-12) and (2-13);

K
G, = G,, =G (s) =
11 CE (1 + sT,)(1 + sT.)
1 2
Ajp =4y, = a
C11 =Cpp =1

It follows from equation (2-11) that the characteristic

equation is



")
A
W_BO
/ -
/
/
_./‘ i
A, ) \\

Figure 2-8. Nyquist Plot of

F Wew

a6 (jw).
A (Jw) wnd G (Ju)

20 Log. Magnitude

=/ ,
A G !
N
AN
\
. .\\ Phaig
-/e'?o° 90° \\ ,80°

Figure 2-9. Nichols Plot of — —

1 and Gc(jw).

)\k(jw)

19



The eigenvalue notation can be introduced by replacing GC
with A. Carrying out this substitution and solving for the
eigenvalues yields

)2 2

(A +1 +a“ =0

A = -1 * ja

To determine stability, we consider the Nyquist

plot of the function
Rk(s) = —kk(s) + Gc(s) e (2-17)

which is shown in Figure 2-10. If the radius vector R2 = 0,

the system becomes unstable.

%m
A/ e Ja
el T~
/ >
{ AN
\ \
A aS Re

bz \/
: : - G; (Jw) KLocus

Ry

A tse

Figure 2-10. Nyquist Plot of —Ak(jw) and Gc(jm)

20
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The following two test examples compare the
results of simulation studies on an analog computer with

the theoreticallylpredicted results.

2.4 Test Example 2.1

XL@EG X’ A %
_{'

Figure 2-11. Matrix Form of Test Example 2.1

A A

X, g@ G
4X2 +‘f§j§> C; XZ v

X

Figure 2-12. Circuit Form of Test Example 2.1



ts0

L1
I
Inm
1 3
# F=2em
*(> X R
.'tjo @QZM
/mro
___IF__w
/~ 5=2m
’\ 3 i a,\
L X L~
—/\VN——
le=2m

Figure 2-13.

Computer Simulation of Test Example 2.1

<~

A

cc



1
In Figure 2-13, considering the section from X

to Y, the following equations are valid:

1 ! 1
—— —_— X — 0 Y
11 Tio 1 Tey 1
+
1 1 ! 1
L L iz o =—/lzx
Toy  Tap 2 Teo 2
1 1 1
+ -+ 0 Z
11 T2 Tpyp 1
- =0 ... (2-18)
0 rl + 1 + 1 22
22 To1 Tr1
Equation (2-18) may be written in the form
1
FX - QZ + CY = O
1y -1 :
or CC'FX -C QZ+Y=0 ... (2-19)
Now since Zlce 0
and Z2 ~ 0
we can set Z =20
: _ '
Therefore, C lFX = =Y

Now from Figure 2-11 AX =Y

23
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therefore | A=cCTtr ... (2-20)

Also, from Figure 2—11;

AGX = (AG + I)Y ... (2-21)
Now from Figures 2-12 and 2-13 we can see that G is
diagonal and that

G1p =Gy = G, (s)

provided potentibmeters L and 2 have identical settings.
- Therefore we can write equation (2-21) as

1

G (s)
The characteristic equation is
1
A+ I| =0 .o (2-22)
G, (s)
Replacing t ) by ~-A yields the eigenvalue equation
G (s

(]
|A - AII =0 ... (2=23)

From equations (2-18) and (2-19) we have

1 1 1 0
1 Tio , el
F = C =
1 L o L
21 Top £2

Substituting these values in equation (2-20) yields
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Tr1 Tel
11 T12

A = eeo(2-24)
i1 Ta2

‘The eigenvalue equation (2-23) becomes

TfL o, I
Fi1 SR -3
=0 ...(2-25)
r r
2 e,
t21 a2
Figure 2~13 shows that
T = = =r = = = 2M

11 = f12 T 21

Equation (2-25) becomes

Solving this determinant for the X values yields

A

1 0

i
(&

For the stability investigation we consider the Nyquist

plot of

Rk(s) = — + Gc(s)

1
A, (s)

k

Figure 2-13 shows that



with T = 1, provided a; = o

Figure 2-14 shows the Nyquist plot of this example.

G:,/_{w) Locus,
Insls A///z‘)/ Poin?

J/
N
)
/
L

Figure 2-14. Nyquist Plot For Test Example 2-1

' !
In.the simulation tests, when k = 0.5 the system
‘became unstable. Thus experimental results verified
the prediction that the system would be unstable if

the gain k' of the Gé(s) element reaches 0.5.

26
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2.5 Test Example 2.2
As a second example, consider the system shown in

Figures 2-15, 2-16 and 2-17.

C

<

Figufe 2-16. Circuit Form of Test Example 2.2



Analysis of the system of Figure 2-15 gives
GX = (GC + I)Y c..(2-26)

Analysis of the system of Figure 2-16 gives

Gy O |[X | (&, o |[cy o 1 o[y,
= +
0 G| X, 0 Gy f1Co  Cpp o 17173,
(2-27)

By inspection it is apparent that equations (2-26) and
(2-27) areé identical.
Now suppose that
11 —
22 c
Then
c

n 0 '
G =G (s) ( ) = GC(S)G

Equation (2-26) becomes

1 1
GX=(GC+——I)Y
,Gc(s)
The eigenvalue equation
1 » .
|¢ ¢ - AI| =0 ve.(2-28)

is obtained by replacing L with -A. Equation (2-28)

. (s)

then takes the form

=0 ... (2-29)

28



1=0
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/'~ ¢
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1 /m
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$.\
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Figure 2-17. Computer Simulation Test Example 2.2
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Figure 2-17 shows the analog computer simulation of the

system where

Tr
G, (s)= 1 - —X
1 + STeCp 1 + sT
With the switches Sy and S5 in position 2
Cll = 022 =1
—012 = 021,=”l
Now suppose we set @ =0, =«

Therefore n = m and equation (2-29) becomes

=0

7\2=l—,]

Now stability is determined by a Nyquist plot of

R (s) = —— + G_(s)
Ay (s)
Now
-1 -1
Al 1 + 3
and o = =1
A 1 -3

30



Thus instability occurs when

Al 1+ 1 + sT
which yields K =1 and «T =1

Component Values

Parameter Values Resulting

in an Unstable System

. { b Te _

e |Cop Iri T = rchi a |K =« ;; freq. T

10(.1}1.0 1 0.1 1 .158 1
5 111.0 5 |O°2 1 .315 1

Table 2.1 Experimental Resul

ts of Test Exahple'Z.l

{m

- _T'??/ersecf'/'an ot G; (10) Locus

:A_;— \\; ‘/}, j,—zL &’?O’-‘Ti-
C%Aﬂ»[@mc \\\\
AN
, _\\ Re
-} =1 .
2 .
=L e -j5
Ae
Figure 2-18. Nyquist Plot of Table 2.1
The experimental results agree with the predicted results.



Suppose now that n = 2 and m = 1. Equation (2-29) becomes

2 - A -2
=0
1 1 - A
which yields the eigenvalues
Al =1.5 + jl.32
A2 = 1.5~ 31.32
Therefore, =1 _ _=0.67
- Ay 1 + jO.88
A, 1 - jO.88
Now instability occurs when
-1__ _-0.67 _ _-K
)‘1 1 + jO.88 1 + joT-
which yields K = 0.67 and oT = 0.88
- Parameter Values Resulting
Component Values in an Unstable System
L Cp r, T ay ay K f ©T
2 0.1 1 0.2 .68 | .34 | .68|.67|.86

Table 2.2 Experimental Results of Test Example 2.2
The experimental results verify the predicted results.

Thus we see that it is possible to determine a

A-value by choosing a Gc element and varying its parameters

32
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until the system becomes unstable. As a somewhat more
interesting case, suppose we determine a A-locus by thé same
procedure.,

Suppose switches $; and S, of Figure 2-17 are in

position 1. This gives

1
C = C =
11 22 1 + s
Now letting n = m, i.e., @) = Uy, the eigenvalue

equation (2-29) becomes

R |
l + s
=0
_— 1 - A
1 + s
which yields
. 1 .
Al(Jm).z —_—t
1 + jo
Ay (j0) = —— -
1 + jo.

As before, from equation (2-3), the system is unstable

when Rk(jm) = 0. Figure 2-19 illustrates the Nyquist plot
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=/ =5 Re
w=0 X
L - -f.5
.y /
—— /
(77)
‘A.Z.(j ) { ALY _J‘/.o
\
\ /
AN //

\\__/ _J-[‘f

Figure 2-19. Nyquist Plot of —=1

;‘k('.]‘o)
In this particular case it is easier to plot Ak(jm) and
— =1 L ather than =%

G, (j0) T A (o)

- and Gc(jm). This is shown in

Figure 2-20.
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If the ——:l—-—-locus intersects the critical A-locus, at

G, (jo)

-a critical frequency © s the system is unstable. Thus, it
has been shown possible to determine the A-locus
experimentally by choosing a convenient Gc} The traﬁsfer
function Gc can be suitably varied by selecting various
T's, i.e., rf»and Ces and adjusting its gain, i.e., oy

and o until the system is on the verge of instability and

27
then measuring the frequency of free oscillation of the
system.
Now -1 _ 1 + joT
G, (jo) K.
Figure 2-20 shows that for each value of T selected, two

points of the critical locus may be determined. They are

1
~1 1 jo T
- = ot d 1
Gc K K
' "
and -1 1 jo T
= n. + n .
Gc K_ K
where
" ' 1 " ,
o T _ oF put k' £K
K K

The experimental results given in Table 2.3 and

Figures 2-21, 2-22, and 2-23 verify the predicted results.
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Figure 2-20. Nyquist Plot of Ak(jm) and.
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Cc



"

Table 2.3 Experimental Results for Test Example 2.2

12.66

c T K © =, K ©
£ | X )
0.105/1.05 : 1.70 i 0.805|0.588 2.58 |1.22
0.11 {1.10 | 1.58 | 0.73 |0.633 2.90 11.34
0.12 {1.20 | 1.45 | 0.642{0.69 13.50 |1.53
0.13 {1.30 | 1.37 | 0.582|0.73 14.03 11,70
0.14 :1.40 | 1.32 : 0.535|0.757 4,60 i1.85
0.15 ;1.50 | 1.27 | 0.495|0.787 5.13 [1.93
0.175{1.75|1.20 | 0.433|0.83 6.55 |2.27
10.20 2.0 {1.15 | 0.376/0.87 |O. 8.00 {2.53
10.30 {3.0 | 1.08 | 0.267/0.927:0. 15.50{3.56
{
.0.06 {0.60 | 1.43 | 1.25 10.70 0. 3.54 13.05
10.07 10.7011.31 | 1.06 |0.76310. 4.62 |3.60
10.08 10.80 | 1.24 | 0.906.0.805!0. 5.69 |4.03.
10.09 10.90 | 1.20 | 0.83 |0.834,0.622/6.85 |4.65
10.10 {1.0 i1.16 | 0.75 |0.862]0. 8.00 {5.02
|0.15 ;1.50 | 1.09 | 0.53 |0.91810. 15.52.12.6
, |
10,01 {0.10 | 0.705| 0.647|1.42 {0. 1.73 |1.54
10.02 10.20 | 0.640 | 0.532|1.56 2.29 |1.86
:0.03 [0.30 | 0.605| 0.465/1.65 2.85 |2.09
0.04 ;0.40 ! 0.580 | 0.412{1.72 3.46 12.36
0.05 [ 0.50 | 0.565 | 0.383|1.77 4.07 12.60
10.06 10.60 | 0.555| 0.341|1.81 4.74 12.78
0.07 {0.70 | 0.545 | 0.322|1.84 5.44 [2.88
0.08 10.80 | 0.540 | 0.298]1.85 6.16 |3.24
0.09 {0.90 | 0.538 | 0.279/1.86 6.93 |3.34
0.10 {1.0 | 0.530 | 0.265]1.89 7.70 13.65
0.15 11.50 1 0.523 | 0.205|1.91 4.63

\Fig. 2-22
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Im.

——~ NLocus (Theoretical)

A-Locus (Experimental)

/ .
A= 7f%;z} + 7

t —+—+——+-L++——Re.

Figure 2-21 A-Locus from Table 2.3

Im.

A-Locus (Theoretical)

A-Locus /fk/oer/'meﬂfc?/)

| o, ,
t G » /\_/f/'w.5 * 7

} } \ Il I :Re.

+
4

Figure 2-22 A-Locus from Table 2.3

38



Im.

- _2 -
A._ / ffw ‘+/

o s— A-Locus [ Theore tcal)

Figure 2-23 A-Locus from Table 2.3
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. In general, for a complex system, the calculation
of the critiéal A-loci is very complicated even with the aid
of digital computers. Using a convénient variable element,
Gc(s), in a simulated system, it is possible to find the
critical A-locus relatively easily. The variable element
is édjusted until the system is on the verge of instability.
This determines a. point on the critical A-locus. Aftervthe
critical A-locﬁs is complefely determined it can be used
to design a suitable variable element for the closéd-loop

system.

40
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3. NONINTERACTION

In the analysis of multivariable feedback control
systems much effort has been spent deﬁeloping methods for
attaining noninteraction, that is for éttaining a system
whose input variable, say Xk’ controls only its corresponding
output variable Yk, Stated mathematicélly, the condition
for noninteraction is that the closed-loop transfer matrix
H is diagonal. Once noninteraction has been accomplished,
the system can be treated as consisting of n single-variabie
systems.

Boksenbom and Hood(lo)

did some of the earliest
work on achieving noninteraction in multivariable systems.
Their major interest was in obtaining the conditions for
noninteraction in linear multivariable systems with
particular emphasis on an engine-type problem. M%erov(ll)
discussed a special class of systems which became
noninteracting if the gains of the system are increased
without 1imit. In general this means increasing loop gains
until the effect of the cross-coupling elements become
negligible.

Another method of achieﬁing noninteraction consists
of a trial and error selection of elementary transformations
which result in the diagonalization of the open-loop matrix.

-Thefe is no unique method of diagonalizing the open-loop

transfer matrix. A convenient method, which usually results



in simple physically realizable elements, will now be

discussed.

3.1 Diagonalization of Open-Loop Transfer Matrix

To illustrate this method, consider Figure 3-1

Figure 3-1 Open-Loop System

where E and Y are column matricesiwhefe elements are the
input and output signals respectively and G, F a,nd‘D—1

are n x n transfer matrices. G is taken to be diagonal
and is called the amplification or gain matrix, F is the

forcing matrix and D™ is called the dynamical matrix.

Analysis of Figure 3-1 yields

-1 '

D FGE :Y 001(3"'1)
or, premultiplying both sides by D,

FGE = DY " eee(3-2)

42
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One method of diagonalizing a 2 x 2 system is

shown in Figure 3-2 where

1 1
X = Y -
X, I,
X, - Y, G, O
E = | G =
X -1, 0 Goo
Fy, O Dy Dyp
o Fy Dyy Dy

and T2, C2 and C1 represent transformation and

compensation matrices which are to be determined.

Analysis of Figure 3-2 yields
p~'FGC, ¢

2T2E = Y 001(3"'3)

-1
or D FGCchTZ(X -Y) =% eee(3-4)

According to the design philosophy to be
discussed, the open-loop transfer matrix D_lFGCICZT2
is to be diagonalized and the diagonal elements are to be
suitably chosen to realize good dynamic performance.
For the particular configuration shown in Figure 3-2, this
method results in a diagonal H (clqsed;loop transfer
matrix). Suppose we write the D matrix in the factored

form



Figure 3-2 Diagonalization of Open-Loop Transfer Matrix

by
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!

D=TDT, ...(3-5)

The inverse dynamical matrix is

R R A A +ee(3-6)
Now choose T1 sb that
r,07'FGe, = (D)7t T'FEGe, cee (3-7)
- (0)7le ... (3-8)
This requires that
T,G = FGC; ...(3-9)
Thus | i
T2'1(D')‘1G02T2x = (1,7t () tee,T, + DY
...(3-10)
The matrices Tl’ T2, Cl,uCQ.and D' will now be determined.
Equation (3-9) is»satisfied if a new matrix C; is defined
by the matrix commutation
GC, = C; G ... (3-11)
and Cl} is chosen to be
c, =¥l cea(3-12)

Matrix T, is chosen to have the form

1
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12 _ '
T]_ = FC . . 000(3—13)
T2I 1
where Fc is a suitable common factor and Tiz and Tél are

transfer functions which are to be determined.

Postmultiplication of equation (3-5) with T2—1 yields

DT = T D cco(3"“‘l4)

The design philosophy is to diagonalize the open-loop
transfer matrix and suitably choosé the diagonal elements

to realize both good dynamic perform;nce and simple,
physically realizable, compensating elements. This objective

1
can be achieved if D has the form

/Dy, O
! 1
D :F O X D' 000(3"“15)
¢ 22
and if
Ly,
A (3-16)
2 —_— L B J
oc2Ie 1
where a5 and a2l are constants. The inverse matrix 1is

12
T2= e 000(3‘-17)
12%21 | -« 1
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where .l - a0y £ 0

Substituting equations (3-13), (3-15) and (3-16) into

equation (3-14) gives

D D 1 o [ 1 T, D.. 0

11 Dio 12 12- 11
11
= Fol 7 vl
Doy Paafl Toap 1] e | 0 Dy
or
i t 1 ]
Dyjy *+Dyoxp;  Dyyy, + D, Dy, Dy,Ty5
. . ’ = [ 1] 1 009(3—18)
Doy + Dyoupy Dpyyp + Doy D)1 Ty Dy

Equating elements yields

Dy, =D,, + D21a12 f"(3'20)
D, .« + D
' 11712 12 .
T12 : ) ooc(3—'21)
Dys
D.,x + D
! 22721 121 )
Tsy " ees(3-22)

Combining equations (3-19), (3-20), (3-21) and (3-22)

gives

, D D

12 © %1271

eeo(3-23)

20 * %505
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[ D + [0 D
Dyy Dy
Thus T1 has now been determined in terms of the
D matrix and the two constants a, and xy;- T, is given
1
by equation (3-17). C, and, hence, C, can be determined
from T, (see equation (3-12)). Cz‘is selected to be a

diagonal compensating matrix. Therefore, all elements of
the diagonalized system have been determined.

There is a restriction on a5 and x5y in that
the transfer-fuhctions given by equations (3-23) and (3-24)
must be physically realizable. It is evidently desirable
to have simple physically realizable elements fer Tl and
T2 which allow high loop gains'and yield a stable system.
Once suitable transformations are found, more quantitative
root-locus methods may be applied to determine gain

parameters, etc., for the variable elements. ‘The suitability

of the design may then be tested by simulation studies.

3.2 Illustrative Example
As an example, let us apply this procedure to

the system shown in Figure 3-3. Analysis of this system

yields
Fip. O 4[ Gy O |E 1 Fii911 | 1
0 Fpr/| O Gyyf\E;p Fyodoo 1 T,

.. (3-25)
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+
£ G Y
/ // // /
— e N
£, G, %
Figure 3-3 Two-Axis Tracking System
A comparison of equations (3-25) and (3-2) shows that
.
G11 0 Fll o !
G = F = '
0 Gy 0 Fy
000(3-’26)
L Fdp
D =
Fa2Jop 1

If 02 is assumed diagonal, we have
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C 0
%21, |
C2 = 000(3_27)
C
0 222
Equation (3-17) gives
) 1 ~¥12
T, = —— ... (3-19)
1l - o, 40,
coteral -y

If G is diagonal and G11 = G22,'it follows from the matrix

commutation
' .
GCl = ClG 005(3_13)
and equation (3-12) that
1
Fao O F, O
- 1 . .
Cl = C1 = i T1 = 1 Tl
11722 YO F11 0] F22
Equation (3-13) giveé
1
1 T12
Tl = FC T, 1 Aaoc(3—15)
21 . .
Therefore
l 1
= 0 1 T
F11 12
Cl = . Fc 000(3_29)
1 t
0] F T21 1



Now if F11 = F22 = Fc, we obtain

c, =| , ... (3-30)

Substituting the values of the D matrix elements into

equations (3-23) and (3-24) gives

+ J,,F

1 [0 4
T12 - 12 ll 11 000(3“‘31)
1+ 0y 5d55F 5,
o + J. . F
Tél -—'— 21 22 22 ) 000(3—32)
1+ ay99,F

From equation (3-3) the open-loop transfer matrix B is

B = D”'FGC,C

2T2 000(3—33)

The design philosophy is to diagonalize B and suitably

choose elements B11 and B22. Let us consider the case

where

=J17 = Jpy = I(s)
Fip = Fyy = F(s)
. LN ] (3_34)
Gy = Gy, = G(s)
C, =C, =0C,(s)
211 %y 2

Substitutihg these values into the matrix B and cancelling

51
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where possible we obtain

5 C,FG
T 25 _
(1 + (JF)°)(1 - a12a21>
1 t ! 1
1 + JFT,; - a21(T12 + JF) Ty, + JF - ay,(1 + JFT,,)
1 3 ! H 1
Ty = JF - o, (1 = JFTy,) .1 - JFT;, - o), (T, - JF)
1 1
C,FG (B B |
1 + (JF 1 - a, ' !
127217 1By By

where we have set J = J(s), F = F(s), etc.;ito simplify the

notation. Now for noninteraction we set

' ;
-a12-912JFT21 + T, + JF

v/
1

O aoo(3_36)

12

By =

t

1

These two equations are satisfied if we set

a12 = = =X 000(3—38)

1 1 1

le = '—Tzl = T o-a(3"39)

These relatiohships and equationS~(3—31) and (3-32) yield

T' - g—:—ﬁ— QQ.(3—40)
1 + oJF



Solving equation (3-35) for B, and B,, using equations

(3-38),2(3-39) and (3-40) yields .

CZFG

B S——————
1 + odF

=B =

11 22

The final open-loop transfer matrix is

C.FG
__g;__ 0
1l + odJF
B =
C,FG
0 2
1l + adJF

Thus by means of this choice of T, and T, the

open-loop transfer matrix is diagonalized and the system
design redudes to a discussion of the two noninteracting
systems each having an open-loop transfer function of the

form

2
1 + oJF

C,FG

Bk =

The choice of compensating networks and gain constants
for these systems can be found by conventional graphicai
methods.

This procedure does not necessarily lead to the
optimum design because it requires the open-loop transfer
matrix to be diagonalized. .This may not always be desirable
since the off-diagonal elements often improve.system

performance. The method does, however, allow the designer



to investigate the possibilities with relati?ely few
constraints on the selection of the compensating elements
and avoids the practical difficulties of a purely

theoretical approach.



4. THE TWO-AXIS TRACKING SYSTEM
A COMPARATIVE STUDY OF THE EIGENVALUE

METHOD. AND THE DIAGONALIZATION METHOD

This chapter deals with a treatment of the two-
axis tracking system shown in Figure 4-1. This particular
coﬁfiguration has been discussed by a number of authors.
Krasovskii(6) has dealt with it as an antisymmetric system,

i.e., the cross-coupling transfer functions are the

negative of each other

J = =J

11 22

Krasovskii defines the input and output signals as complex

X =X, + jX Y - Y, + jY

2 1 2

This procedure enables him to reduce the system to an
equivalent single variable system which he then treats in

(7)

the conventional Nyquist manner. Newman's paper deals
with the analysis of a similiar system.. The methods of
"both these authors are restricted to two variable sys%ems

with the necessary symmetry.

4,1 Open-Loop Two-Axis Tracking System

Consider now the two-axis tracking system shown
in block diagram form in Figure 4-1. Analysis of the

open-loop system (C11 = Cyy = 0) yields



Figure 4-1 Two-Axis Tracking System

<
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F..G,;E, - F .J,.Y, =Y

57

eeo(4-1)

1171171 1171172 1
Foyby,E, = Foody Xy = 1, coe(4-2)
In matrix form these equations become
/Fll 01167 9 1[E 1 F11911
L0 Fyll 0 6y,|E, Fradao 1
o s 0 (4_3)
From equation (4-3) the characteristic equation
1 F..J
Frodns 1
is obtained. Consider now the case where Fll = F22 = F.

If the stability of open-loop is to be investigated, the

eigenvalue method can be used. F is then replaced by A.

Substituting into equation (4-4) and solving for the

eigenvalues yields

+ 1
A =

. —_—
& V1195,

eee(4-5)

The eigenvalue equation has thus been factored in the form

(A=A (A =2,) =0

or _ | (F —.Al)(F,f Az) =0

ee.(4-6)



Stability is then determined by a Nyquist plot of the

function (see Figure 4-2).

B (s) = -A (s) + F(s) e (4e7)

Rk(jw) may be called a stability vector. The system will

oscillate at the frequency ®, if

Rk(jwc) =0

4,2 Closed-Loop Two Axis Tracking System

Let us now consider the closed-loop system of

Figure 4-1. Analysis yields the following matrix equation

F11%1 ° X 1+ C61% J11F11 31
0 Foolaol| X5 J2oF00 1+ CyulyoFs5 115
. e D(4—8)

Now suppose we let

J11 =Jdgp =9 Fi11 = Fpp =F

Gll = G22 =G C11 = 022 = C.

Equation (4-8) yields the characteristic equation

1 + CGF JF
= O 000(4_9)
JF 1 + CGF

The eigenvalue equation is obtained if J is replaced by A.

This equation then gives the eigenvalues



‘A/e (1) Locus

;‘7/&0) Locus

Figure 4-2 Nyquist Plot of Rk(jm) = -Ak(jm) + F(jo)
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- 1 L
)‘1,2—1 7 + CG | eoo(4-10)
In the case where J11 = —J22 = J, the eigenvalues
are '
A 5 =+3j = +CG (4-11)
1’2—__3 F ‘ e e 0 .

4.3 Simulation Study of Two~Axis Tracking Systems

In the two-axis tracking system shown in Figure

4-3, we have the following transfer functions:

G11 = G22 = KG ‘ Power Amplifier Gain
. KF_ ‘
F11 = F22 = — Transfer Function of an
s(1 + sTa)(l + sTb)
Amplifier
J =d = as Transfer Function due to

11 22
' Gyroscopic Torque

Practical difficulties arise if one attempts to simulate
the defivative elements as. The configuration shown in
Figure 4-4, which has the same response as that of Figure
4-3, includes no derivative elements and was used for analog
computer simﬁlation. To realize the transfer function Ff
(see Figure 4-4) with one operational amplifier the network
discussed in Appendix I was used. The network analog of

the system‘is shown in Figure 4-5. From Appendix I we

have

60
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S(1+sT )1 +57)

a.s
as
G S(1+ST)1+57)

Figure 4-3 Two-Axis Tracking System
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A

A

. od
(/#s 7;)/(1-#575)

Figure 4-4 Arrangment For Simulation of

Two-Axis Tracking System



1L

Jx\é&

Figure 4-5 Simulation Circuit for Two-Axis Tracking System
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) 1
3R C (S +

mc) (s + “5m)

For the simulétion the values

R = r, = 1 Meg
C = C1 = 0.1 pf
02 =0
are chosen, Thus
o 100/3

(s + 5.45)(s + 24.55)

From Figure 4-5 we have

r
F"=l 2
s N

2]
W

4,4 The Stability of the Open~Loop System

The stability of the open—lodp system will be
discussed first,bi.e., with switches sy and S, ofb
‘Figure 4-5 open.

Test 1 - Open-Loop System with Symmetric Cross-Coupling

Switches $, and S4 are in position 1.

3

o ] ' t
Thus J11 = J22 = a

From equation (4-5) instability occurs when

64



F = + 1
J11922
or when
' + 1
100/3 = 000(4—12)
(s + 5.45)(s + 24.55) a
i.e., '
F = i :-L-'
J
‘The left-hand side of equation (4-12) must be entirely
+ 1
‘real to equal — since a is entirely real.. Therefore
a
S = jo.
!

Therefore, theoretically the system is unstable when

1
.248

Experimental Values

a P System Condition
4.10 stable but highly-underdampe&
4,125 steady oscillation
4.15 unstable o o

Comparative Results

| Theoretical Experimental l % Difference

a | 4.03 412 | 2.0
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The Nyquist plot of F (jw) is shown in Figure 4-6.

Im

/
/':'/.7.(‘0) Z oCHS

w = 00 .
-7 unstsble = | \1/
/ 52‘&6/'//'{‘)/

Figure 4-6 Nyquist Plot for Test 1

Test 2 - Open-Loop System with Antisymmetric Cross-Coupling

Switch S3 is in position 1 and switch S4 is in position 2.

Thus C
J1p = -dyy = a
From equation (4-5) we know that for instability
' ' + 3
F (jo) = 130/3 - == ve.(4-13)
: 134 —«w™ + j30w a ' '

\
Now F (jo) must be entirely imaginary to satisfy equation

(4-13), therefore
© = VY134 =11.6 rad/sec
Thus

j0.096
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Therefore the 1limit of stability occurs at

1

= ——— =10.4
£ 0.096

a

Experimentally instability occurred at a = 10.4 and

=21 x 1.82 = 11.5

c

Comparative Results

- Theoretical Experimental % Difference
a 10.4 10.4 0
f 1.84 1.82 1

4,5 The Stability of the Closed-Loop System

The stability ef the closed-loop system will
now be discussed, i.e., with switches S1 and 82 in Figure
4~5 closed.

Test 3 - Closed-Loop System with Symmetrie Cross~Coupling

Switches 83 and S4 are in position 1.

Thus ' 1

Theoretically instability occurs when (see equation (4-10))

s(s + 5.45) (s + 24.55) .1 . (4-14)

as = +
100/3
Experimentally the limit of stability was found at a = 4
and f = .167cps (0w = 1.05). Substituting these values in

_.equation (4-14) gives
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L.HOS. = j4‘u2
RoHcSo

j4.18 + .006

Thus the experimental results verify equation (4-14).

Eigure 4-7 shows a Nyquist type‘plot of the functions of
equation (4-14).

Test 4 - Closed-Loop System with Antisymmetric Cross-Coupling

Switch S3 in position 1j switch S4 in position 2.

Thus ' '
Jop = =Jy; = @

From equation (4-11), theoretical instability occurs when

as = +j s(s + 5.45)(s + 24.55) +1 veo(4-15)

100/3"

"Experimentally the limit of stability was found at a = 10.4
and £ = 1.82cps (w = 11.5). Substituting these values

into equation (4-15) gives

L.H.S. = j119.5

Il

R.H.S. = j118.2 + 0.518
Thus the experimental results verify equation (4-23).
Figure 4-8 shows a Nyquist type plot of the functions of
equation (4-15).
When making a Nyquist type plot of the functions
of equations (4-14) and (4-15) it is easier to plot the

inverse functions. Thus for test 3 we plot

1 + 100/3
~ and
as s(s + 30s + 134) + 100/3




as shown in Figure 4-7 and for test 4 we plot
| + j 100/3

1 ~ ,
as 2% o(5 4 30s + 134) + 100/3
as shown in Figure 4-8.

Two other tests were conducted, o¢ne with

J.. = % and J

11 22 T &

and the other with

11 22 = 7@

J,y =2 and J
s
In both these tests the experimental results verified the

predicted results.

4.6 Diagonalization of Open-Loop Transfer Matrix

The two-axis tracking system will now be considered
using the diagonalization method discussed in chapter 3. The
diagonalized system has the form shown in Figure 3-2. From
ehuations (3-19), (3-30) and (3-26a), the desired transfer
matrices of the system with antisymmetric cross—coupling:

i'e°"Jil = -J22, were found to be

. 1 -FJ o Fi, 0 \
g1 5 Fzz/
G, O 1 T

¢ = 0o G ‘1=,
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Figure 4-7 Nyquist Plot of Test 3
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Figure 4-8 Nyquist Plot of Test 4
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o 1 1 -
2 1l + a2 o 1

From the first eigenvalue test, equation (4-12), we can
obtain '

a 100/3

JF =
(s +5.45)(s + 24.55)

coo(4-16)

Substituting this value for JF in equation (3-41) yields

, a(s? +30s + 134 - 2399,

T = 5 eeo(4=1T7)
(s“ + 30s + 134 + aa 100/3)

This transfer function can be conveniently realized by means
of an active network. This realization is discussed in

!
Appendix II. In order for T +to be realizable in the form

given in Appendix II, « must be chosen such that

a 100

134 - &0

>0

or
a 100

a > m ee.(4-18)

From the analysis of the system based on the eigenvalue
method, we know that the limit of stability was reached at
a = 10.4 (see Test 4, page 68 ). At a = 10.0 the system

was stable but highly underdamped. Suppose that a = 10.0
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and that the system is to be designed using the diagonalization

-method. If a = 10.0, we must have

1000
&= 402

a > 2.485

For the simulation tests a was set at 3.0 and

s 4 30s + 23

s + 30s + 1134

_was realized by the network shown in Appgndix IT1.

Figure 4-9 shows a block diagram of the diagonalized system

and Figure 4-10 shows the network analog ofuthe diagonalized

two-axis tracking system. |
To test the degree of noninteraction achieved by

the diagonalizatién, a fixed sinusoidal signal was applied

to an input terminal (say Xl) of both the diagonalized and

the undiagonalized system and the amplitude of the outputs

was measured. For the undiagonalized case both outputs -

Y, and Y, had equal amplitude. For the diagonal system the

amplitude of the output Y, was approximately 15% of the

2
amplitude of Yl. Two design criteria;. were used for
comparative tests of the eigenvalue system and the diagonalized
system., The criteria are stability and mean-square error.

Stability will be discussed first.

4,7 Stability Comparison

Stability was tested By examining the system:

response to an input wave consisting of a rectangular pulse
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Figure 4-9 Block Diagram of Diagonalized Two-Axis Tracking System
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Figure 4-10 Networ__k Analog of the Diagonalized Two-Axis Tracking System
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applied mahually by a switch. The undiagonalized system was
highly underdamped, indicative of its nearly unstable state.
The diagonalized system fesponse had approximately a 10%

to 15% overshoot and then the oscillation died out very
rapidly indicatiné a stable system., These results are shown
in Figures 4~11 and 4-12..

4,8 Mean-Square Error Considerations

In addition to various closed-loop response
‘criteriégﬁ one oflthe most important feedback control systems
design criterions is the minimization of the mean-square
error. This was the second criterion used for comparative

purposes. Consider Figure 4-13

/¢Zﬂ

sy Yis)

Figure 4-13 System With Noise In Input

Analysis of the system of Figure 4-13 yields

Y:H(X-’:-N)
For a single;variable system the total mean-square error

can be found by the equation
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Vo/#s
-

Figure 4-11 Eigenvalue System Response to Single Rectangular
‘ Wave Pulse (Very Little Damping)

AN

\_/

™ |

Figure 4—12'Diagonalized System Response to Single Rectangular
Wave Pulse (Adequate Damping)
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o2 - E}Tf{|ﬂ(jm)|2§m(jm) + |Hy(J0) - If(jw)|2@xx(jm)} do
| - ... (4-19)
where

H(jow) = system transfer function

@NN(jd), Noise auto-correlation function

@Xx(jw)»z Signal auto-correlation function

Hd(jw) = desired system transfer function

D
If we are concerned with an input signal which is entirely

noise, equation (4-19) reduces to

= -ﬁ—f‘ﬂ(jw”z@m(jw)dm ... (4-20)

-

It is apparent that, for a multivariable system, to apply

2

¢

this equatibﬁ'in matrix form and sdlve for

2 2 2 2 2 _

e” = 01" = )" + eyt +iiiiie T oo (4-21)

would involve a great deal of labour. If a system is at
all complicated, the most realistic method for determing the
optimum choice of parameters for a fixed configuration is by
experimental determination of e2. This is done quite
simply in the manner shown in Figure 4-14.

This type of procedure was applied to both the

diagonalized and undiagonalized systems. A random signal



Feed bac k
N = Zo System
e S et ‘ &t
quarer Integrator |~

Figure 4-14 Experimental Determination of e2

with a white noise output in the range 0.04 cps to 10 cps
was introduced at Xl and el2 énd e22 were measured and
recorded. This was also done for the signal introduced
atAXZ. TheAparameter a representing the gain of the cross-
coupling elements was varied. The results of these tests
are shown in Figures 4-15 and 4-16. A

From Figures 4-15 and 4-16 we can see the mean-
square error remains relatively flat (within the accuracy of
the experimént) as the degree of cross-coupling is varied
for both the diagonalized and‘the undiagonalized systems.
Consequently in this partidular'case a mathematical analysis
to determine e2 would be fruitless since it is evident that

the minimum mean-square error (with respect to «a) criterion

does not have any significance.

4,9 Comparative Comments

It is seen that in the case considered the
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Figure 4-16 Diagonalized System Mean-Square Error
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diagonalized System is more st;Lle than the eigenvalue system,
siﬁce with a = 10.0 the latter was near the limit of stability
while the stability‘margin of the former was adequate.

The mean-square error tests did not show one system
to be superior to the other.

In both systems, i.e., the eigenvalue and the
diagonalized, no compensating networks have been used to
improve system'performapée. If such networks were desirable,
it would be simpler to deal with the diagonalized system.
Consider the s-plane Figures 4-17 and 4—i8, It is quite
apparent that to compensafe Gc(jé) in Figure 4-17 so that
the Gc(jw)_loCus avoids the Ak(jm) locus would Be considerably
more difficult than to compensate Bkk(jw) in Figure 4-18 so
that the Bkk(jw) locus does not encircle the -1 point.

.Considerably more elements:are required in a
diagonalized system (approximately twice as many). To reduce
the number of componéhts required it may be possible to
achieve approximate noninteraction by-approximating the transfer

functions using simple RC networks. For example

n % 4 30s + 23
s% + 30s + 1134

can be very crudely approximated by the network shown in

Figure 4-19.
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Figure 4-18 Diagonalized System Compensation
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Figure 4-19 Approximate T" Network

Using this particular network in the system the same tests
as before were carried out. The results of these tests
were:

(1) Diagonalization was nearly nonexistent, i.e.,
interaction was very strong. -

(2) Response to a single square wave pulse was
somewvhat better than the eigenvalue system.
Overshoot was approximately the same as with
the active network (10-15%) but the
oscillations took approximately 5 times longer
to damp out.

(3) The mean~-square error stayed relatively flat
as the cross-coupling was varied, however,
the value of ;§ was approximately twice that
of the "active network" system.

The unsatisfactory resuits from this transfer function

approximation is probably due to the fact that the

approximationbis inadequate over a sufficient bandwidth,
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5. EIGENVALUE METHOD APPLIED TO A STABILITY STUDY
OF FOUR PARALLEL CONNECTED. SYNCHRONOUS MACHINES

The'féllowiﬁg is an example of the eigenvalue
method as applied to a system of four parallel connected
synchronous machines.

The block diagram for incremental operation is

shown in Figure 5-1 where

Gp = s(Mls + 1) = transfer function of the prime
mover
GT = 1 = transfer function of torque

(1 + sT)(1 + sT,) .
' producing element

G, = L ' = compensating network
s{1 + sT3)
SDi = Laplace transform of incremental speed deviation
. . th .th
Tki =  synchronizing torque coefficient of k and i
- lines
L. = local load disturbance

This is a four generator system and all the generators
and control elements are assumed to have identical transfer
functions. This is not a restriction; it merely simplifies
the procedure for illustrating the principle involved. This
system can be analyZéd”hsingithe eigenvalue method.

Analysis of the single loop shown in Figure 5-1

yields
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Figure 5-1 Single-Loop of Parallel Operated Synchronous Machines
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n
1 ,
_<——-GP + sGp(K G + K ,) + (1 + G Gy) z le)Al‘
k=2
n
- (1 + G_Gg) Ty = Ly - eee(5-1)
k = 2
Now setting
L 4 G (K,.G. +K )
3 Gp T'*711 ¢ 12
_)\ = E = 0..(5—’2)

1 + GcGT

and writing equation (5-1) in general form gives

n n
PENIEDY S '
(-~ + Tik)Ai - TikAk = I—:—E_E—— eee(5-3)
' 1 1 c T
where - i =1,2 (s..n
k = 1,2‘1...11
ik
Let
n
Am = % Tk
1 .
m£ k- 000(5_4)
A = =T

be the elements of the matrix A.
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System stability can be determined from a Nyquist

plot of the function

1

+ G eee(5=5)
hk(s)

R (s) =

.where the_lk's are the eigenvalues of the matrix A.

Such a system has been dealt with by Crary(lz).

A network analyzer was used to determine the synchronizing
coefficients Tjk and the swing curves evaluated by numerical
integration.

The following discussion will deal with the
stability of the linearized system under various possible
network conditions. From equations (5-4) we obtain the

eigenvalue equation

A+ T, Ty, - Ty, ~Th4
Ty A+ Ty, -Ty ~Toy4
. =0
—T3y ~T35 A+ Ty STy
T4y ~T42 ~T43 A+ Ty
e o 0 (5—6)
where 4
4
e = ) T
j=1



87

To illustrate the applicability of the eigenvalue

method, let us use the tie-line coefficients given by Crary.

Since we are dealing with the stability for the linearized

system, we shall neglect the intial incremental deviations

in angular displacement and the power angles.

It is apparent from equation (5-7) that one A

value is going to be zero. This is seen by adding the

second, third and fourth columns to the first.

Using Crary's values for the synchronizing

coefficients the following determinants were solved on the

Alwac III E digital computer:

(1) Fault On

(2) Pault Partially Cleared

“A + .7931  -.T480 -.0231
~.7480 A + 1.0440 —.1510
-.0231 -.1510 A+ .2378
~.0220 ~.1450 ~.0638

A+ .863 -.782 ~.038
~.782 A+ 1.311 -.250
-.038 ~.250 A+ 413
-.043  -.279 -.0638

-.1450

-A + .2307

~.043
-.279
"'0125

A+

447




(3) PFault Cleared

A+ 1.205  -.960 ~.116 ~.129

~.960 A+ 2.567 =.T60 -.847

~.116 -.T760 A+ 1.247 -.371 =0
-.129 -.847 -.371 -A + 1.347

The eigenvalues for these determinants are given

in table 5.1.

Eigenvalues
System Condition Ai Az A3 A4
Fault On | 0 1.689 .318 .29
Fault Partially Cleared 0] 1.936 .559 . .513
Fault Cleared ' 0 3.424 1.69 1.251

Table 5.1 Eigenvalues

Essentially we have reduced the multivariable system of
Figure 5-1 to four equivalent single variable systems as

shown in Figure 5-2.

5.1 Nyquist Stability Investigation

Now to graphically study the stability of the

system, we construct a Nyquist plot of the func¢tion

. J
A

+ G(s)

Rk(s) ;

k
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Figure 5-2 Equivalent

Multi-Loop Single Variable System
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Substitution of the proper transfer functions

into equation (5-2) yields

G(s)

[s(l+ Tls)(l+ T2s)(1+ T3s)+ l] (1+ Mls)

(1+ Tls)(14-T25)(1+-TBS)4—s(l+—Mls)(Kli+-Klzs(1+-T3s» '

To plot the function G(s), we consider the

behaviour of the function as s —-0 and as S —ww . We find

that

T,T,s
G(s) = -2
(S —9—00) 12
G(s) = 1
(s — 0)

Knowing the necessary time constants and gains we can then

plot the G(s) locus.

In the case considered, suppose the G(s) locus is

as shown in Figure 5-3. From Figure 5-3 we know that the,

system will be unstable if the G(jw) locus intersects or

encloses the critical points - %— (K =.1,2,3,4).

k

5.1 Root-Loci Stability Investigation.

Another way to graphically study the stability of

the system is to determine a root-locus plot of the function

kkG,

Suppose we consider the root-locus plot of the



Figure 5-3 Nyquist Plot of R (jo) = it + G(jo)
Ay
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Im
/
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Figure 5-4 Root-Locus Plot of

the Function AkK



function KG where K is variable from O to = . A root-locus
plot of KG can then take the form shown in Figure 5-4. The
system will remain stable provided thaf the root-loci remain
in the left-half s-piane.

One such diagram is sufficient for a complete:.
root-locus analysis of the system. The roots are found
by locating the value‘of K = Ak’ for example the condition
K =0 gives the roots for A = 0 as shown in Figure 5-4.

For different network conditions the“kk's change. The
corresponding locations of the characteristic roots in the
s-plane can be defermined from Figure 5-4.

If a root-locus analysis of the characteristic
equation of the system is attempted by conventional methods,
a polynomial with 20 zeros would have to be considered and
considerably mbre labour would be involved. Thus it is
apparen£ that the eigenvalue method provides a simpler

root—~locus analysis for this system.
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6. CONCLUSION

Single variable graphical analysis and design
techniques have been shown to be applicable to certain
types of multivariable systems when the eigenvalue method
‘and the diagonalized method are used. The experimental
determination of system eigenvalues has been investigated
and shown to be feasible. The suitability of simulation
studies to verify design, to investigate the influence of
parameter variations and to evaluate the mean-square érror
has-been shown. |

A comparison of the eigenvalue method and the
more complicated diagonalization method has been made. It
was seen that the design methods are very useful to
determine initial sjstem configufation for simulation
studies. The simulated system can then be used to perform
optimization and further improvements.

The eigenvalue method has been applied to a
system of four parallel-connected synchronous generators
and graphical methods of stability investigation have been

discussed.
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:Appendix T

Consider the network shown in Figure AI-1

¢
an ", — ¢
R R, R
Vi e AMAA - AAA AN II> 2
L. 1.4
‘Figure AI-1

Wadhwa(l3) has shown this network to have the transfer

function
v -b
_O= O ooo(AI_'l)
Vi a s3 + a s2 + a,s + 1
3 2 1
where
. a2 :
bo = ——_—
(1 + 3a)
o
a, = ———— RC, + (1 + a)RC
1 (1 + 3a) 2 6

_ CX.(]. + 2“2 R2C6(02 +C

(1 + 3a) 4)



[0 4
N = RCCC
37 (1 + 3a) 27476
R1=R3=R5=R R7=R8=CXR
a3(1 + 2a)
a) > —————

a2(1 + 3a)
Now setting C4 = O makes ay = 0

If we set a =1

f
equation AI-1 becomes

Yo _ 1
Vi 32202 (s + 1,09) L, 4.9l
S 2RC ( 2RC

)

e (AI-2)
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Appendix II

Consider the network configuration shown in Figure AII-1

Z, Z,
A 2;

~
N
N
Y
<

Figure AII-1

The transfer function has the form

Z

L +_3_(; -
\' Z Z, \z, T Z Z, T Z
_0 _ 1 4 1 2 3 5 (AII-1)
-V-.— Z LR 2§
i 1 3 ll 1 1 1

7 +57 iy +5 + 75 +

Tg T Ty Ty TL, T Ly T L

Now if we set



1 _1 1
Z]. R]_ z = Czs
2
1 1 1
7 =% 7 = C,s
Z, © R, z, = 2%
1 1 1
7 =% = =C_,s
Z5 R5 Z6 6

Substituting fhese values into equation AII-1 yields

2 Y L
v s“(C,R,Cy) + sBaCu(7 + 7+ B ) + g

o - | 1 3 5 1
7. = -
i 2(0p.0 ) - (L L L L
87(CoRaCq) + sRyCe(R ¥ | +§) *+ R
o7 Ry Ry 5 5
Now if-C4 = C6 weJobtgin
2 1 /1 1 L D S
v s“+s 5 (g +5 *R)* EROCT
v, = P 1 1 1 1 1 cee
i s“+sGc (R *R *RE) T EECC
2 3 5 5%3V2Y¢
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