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ELECTROMAGNETIC WAVES WITHIN NON-UNIFORM
BOUNDARIES AND IN INHOMOGENEOUS ISOTROPIC MEDIA

ABSTRACT

Field restrictions on E- and H-waves are examined for
an inhomogeneous isotropic medium. Restrictions on E-
and H~waves are, also, discussed for wave-guides of
varying cross section, such as for example a circular-
section waveguide having an axially dependent radius

For an axially symmetric periodic structure with a
slowly varying radius, an approximate wave equation is
derived which is separable. The field problem is then
reduced to finding the solution to Hill's equation.

A treatment of electromagnetic waves in media with
characteristics possessing finite discontinuities in
the direction of propagation is developed. The
development avoids the use of explicit boundary condi-
tions. To illustrate the method, three examples are
given.

This method is extended to include media with
characteristics possessing finite discontinuities in,
and transverse to, the direction of propagation. Two
examples are given. 1In the first an E-wave solution
is found for a cylindrical waveguide loaded periodi-
cally with dielectric disc, the disc radius being
smaller than the cavity radius. Two methods of solu-
tion are offered: one is a first mode approximation
and the other is an approximate series solution.

A short comparison is made between experimental
measurements made on dielectric loaded periodic
structures of the forementioned type and theoretical
predictions based on the first mode approximation.
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ABSTRACT

Field restrictions on E- and H-waves are examined for
an inhomogeneous isotropic medium. Restrictions on E- and H-
waves are, also, discussed for waveguides of varying cross-—
section, such as for example a circular-section waveguide having
an axially dependent radiusa

For an axially symmetric periodic structure with a
slowly varying radius, an approximate wave equation is derived
‘which is separable. The field problem is then reduced to
finding the solution to Hill's equation.

A treatment of electromagnetic waves in media with
characteristics possessing finite discontinuities in the
direction of propagation is developed. The development avoids
the use of explicit boundary conditions. To illustrate the
method, three examples are given.

This method is extended to include media with character-
istics possessing finite discontinuities in, and transverse
to, the direction of propagation. Two examples are given.

In the first an E-wave solution is found for a cylindrical wave—
"guide loaded periodically with dielectric discs, each with a
centrally located holes In the second example, an H-wave
solution is found in a cylindrical resonant cavity containing

a centrally located solid dielectric disc, the disc radius

being smaller than the cavity radius. Two methods of solution
are'offeredz one is a first mode approximation and the other

is an approximate series solution.

A short comparison is made between experimental measure—

ii



ments made on dielectric loaded periodic structures of the
forementioned type and theoretical predictions based on the

first mode approximationa
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1., INTRODUCTION

The topic of this thesis arose during an investigation
into the wave solution in a dielectric loaded periodic structure

of the type illustrated in Figure 1.1l. A central hole is present
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Fige le4l: Cross Section of a Dielectric Loaded Periodic Structure

in each disc to allow electrons to pass along the axis of the
wvaveguide, As a result, the structure may be used in beam—
couplers, ie.es, linear accelerators, travelling wave tubes and
backward wave oscillatorss

In principle, the field problem in this type of structure
can be solved by solving in each homogeneous region the
differential wave equations developed from Maxwell's equations
and by matching the solutions for the different regions at the
bounda,ries.l Due to the excessive labour involved in any
numerical work carried out to establish a match at all the

boundaries, for practical purposes the method is not entirely



satisfactory. Consequently, in design work it is customary to
simplify the problem by using the soiid disc model1 and/or the
aniéotropic model1 to approximate thg structure.

These models oversimplify the problem and it was thought
that a different approach might ﬁe useful. Instead of considering
the medium inside the wafeguide as being made up of homogeneous
sections, it was decided that an investigation should be
carried out with the emphasis shifted to the fact that the medium
as a whole is inhomogeneouss In other words, the permittivity
is a function of the spatial parameters.

This shift in emphasis changes the problem from solving
a simple wave equation in each region and matching solutions at
the boundaries to solving a wave équatiqn vhich holds throughout
the waveguide. Although the matching problem is explicitly
removed by viewing ﬁhe medium as a whole, the wave equation to
be solved is more complex since it has spatially dependent
coefficients. In fact, to add to the complexity, the coefficients
have finite discontinuities in the axial and radial directions
because the permittivity has such discontinuities. Also, since
in some problems partial differentials of the permittivity occur
in the coefficientsy at points wher; the permittivity has finite
discontinuities impulses may occur in the coefficientss Section
5 is devoted to finding approximate solutions to wave equations
having coefficients which have finite discontinuities and
impulses occurring in the axial and radial directions. Two
solution methods are offered; one'is a first mode approximation
and the other is an approximéte series solution.

In order to gain experience in treating wave equations



3
~with coefficients having finite discontinuities and impulses,
some problems which have discontinuities of the permittivity

only in the axial direction are examined in section 4., These

problems are treated first bedause they are easier than the
probléms in which the disconfinﬁities‘of the permittivity occur
in the radial as well as the axial direction, Also, the
problems in section 4 may be solved by other methods, thus
providing a check on the answers found.

‘During the course of the in&estigations of dielectric
loaded periodic structuresy it was noticdd that the wave
equations have periodic coefficients andvare satisfied by
Floquet~type solutions.2 Since in metal loaded periodic
structures the field solution is in the Floquet form, the
following question aroses Could a wave equation with periodic
coefficients be found for metal loaded periodic structures?
This question motivated the investigation of section 3 where such
a wave equation is given for an axially symmetric periodic
structure with a slowly varying radius.

Vhile examining the field behaviour in the type of
structure shown in Figure lsly it was established that before a
pure E-wave could exiét in the structure, the field behaviour
must be.considerably restricted as is shown in section 2.
Further investigation led to some general E-~ and H-field
conditions which result from the spatial dependénce of the
characteristics of the mediumy These conditions are discussed
in section 24 Since in an inhomogeneous medium the field
behaviour often hust be restricted before an E- or H-field can

" existy the question was asked if analogous restrictions might
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exist for waveguides with varying cross sections, such as for
example a circular-section waveguide having an axially
dependent radius. These anticipated restrictions were found
and are given in section 24

The main purpose of this thesis is to present general
methods for the analysis of field problems arising in periodic
loaded waveguidess However, much of the theory is by no means
restricted to such waveguidess In fact, the primary reason
for examining (in section 5) resonant cavities which are
partially filled with dielectric material is to demenstrate
this pointe In addition to the theoretical study, a short
comparison is made in the final section between experimental
measurements made on dielectric loaded periodic structures and

theoretical predictions based on the first mode approximation.



2. ON E- AND H-FIELD CONDITIONS ON ELECTROMAGNETIC
WAVES

2.1 General

As is very well known, it is convenient to classify
electromagnetic waves which may be propagated in regular hollow
waveguides into two categories, namely, waves in which there is
no longitudinal component of electric intensity, H- or TE~waves,
and waves in which there is no longitudinal component of
magnetic intensityy E— or IM-waves. This classifidation arises
naturally from the boundary value problem presented by the walls
of the waveguide (which are normally assumed to be perfectly
conducting)s. The discussion of wave propagation is reduced to
an eigenvalue problem and it is found that certain eigenfunctions
correspond to E-type waves and the rest to H-type waveses It
canyg also, be shown that the summatioﬁ of all these E-type and-.
H-type waves form a complete set3 so that the general problem
may be solved.

Yery considerable practical use is made of the fact that
the wave pattern corresponding to a single eigenfunction may
be excited alone and it may be surmised that even if the post~
ulation of E~ and H-waves had not been so convenient in the
mathematical analysis,y it would still have been desirable to
invent them.

The topics to be discussed in this section are the
restrictions imposed upon other field components of a wave by
the postulation that one field intensity component, such as EZ

or Hz, is zero.



A number of authors4~16

have investigated electromagnetic
wave problems in waveguiides with varying cross sectionse For |
such problems, often the field must satisfy certain restrictions
before an E~wave can exist and, likewise, before and H-wave can
existe In this regard, an example in section 2.41, utilizing
the equations established in section 2.2, demonstrates the

restrictions on an E-=wave in a waveguide in which the walls are

described by
r = £(z)

where r is the radial and z is the axial cylindrical coordinates-

To within the knowledge of the writer, in previous works’s’ll’12’14

these restrictions or similar ones are all assumed rather than

derived,
17-20

Authors have noted that pure E- or H-waves cannot

exist in an inhomogeneous linear isotropic medium unless there

are certain limitations imposed upon the field. In the thesis

and paper by Adler;7’18

19

as well as in the report by Malinovsky
and Angelakos these limitations are noted for the case where
the properties of the medium are functions of the transverse
co—ordinatess Zucker and Cohen20 discuss in their paper the
condition imposed upon an H-~wave when the permeability is
constant,; the conductivity is zero and the permittivity is'a
function of the spatial coordinatess In the present treatment,
necessary conditions for E~ and H-waves to exist in a linear
inhomogeneous isotropic medium are derived for the case in which

the permeability, permittivity and conductivity can all be

functions of the spatial coordinates. Under some circumstances



these conditions are, alsoy sufficient as is shown in the

example discussed in section 2.44.
2.2 Conditions

If a rectéhghlar coordinate system is oriented so that
the z=~coordinate is in the direction of propagation (along the
axis of the waveguide)y by definition the condition for an

E~wave to exist is

==
]

0. (241)

In treating certain E-wave problems, such as the one
discussed in section 34 it is advantageous to refer to a system
of orthogonal curvilinear coordinates and, then, to express the
field vectors in terms of three components in the directions
of the unit vectors of the curvilinear system., For such a
situation a useful relation which is an equivalent statement to
(2.1) is

Vz.H = 0 | (242)

where H is the magnetic field intensity vector. The equivalence

of (2.,1) and (2.2) is obvious since

Vz =k

where K is the unit vector in the z-direction.

In a similar mannery for H-waves

E =0
Z

or

Vz.E = 0 | (243)



where E is the electric field intensity vector.

For waveguide problems in which the properties of the
medium are spatially dependent, the field is, in general, é
hybrid of E- and H-wavess Before a pure E-wave can exist in a
waveguide filled with a linear inhomogeneous isotropic medium,

the necessary condition*
o=l OH|_
v. [(e ~ 59 3;]_ 0 (244)

must be satisfiede In (264) € is the permittivity and o is the
conductivity of the medium and @ is the angular frequency at

which the wave oscillatess
Equation (244) can be established by employing the wave

equation derived in Appendix 1 for H, namely

V(2.0) -V = o%u(c - jOR

¢ -7 (Ve - 3D) dvE) - [Vee - jg).v)n]

where p is the permeability of the medium. When the coefficients
of the component vector in the z-direction are equatéd, the

result is
%Z- (%B) -V, = 02u,:('§ - i),
+ (e - 39 [(V(a - 3DLR) 4Vt - D s } (245)

For some cases this condition is, also, suff1c1ent as will be
demonstrated in section 2444,




Since.for an E-wave

H =0,
Z
then from (2.5)
%z. (VLH) = (e - j%)-l Ve - jg) ‘,%E

or
(e - ;ig)‘l(v. %%] - (e - jf)-z(V(e - jg) " %g) = Og

Therefore,

Ve [(8 - jg)-l %E:l = O,

z

Likewise, the necessary condition which must be satisfied
before an H-wave can exist in a linear inhomogeneous isotropic

medium is

Z

‘7&[P_1 %EJ = Os ' (2‘6)
Through the use of the wave equation
V(VE) -V°E = o%u(e - 3DE + v [ WW).VE) - eVE] ,

which is derived in Appendix 1, (2.6) can be established in

exactly the same manner as (2.4).
2e3 Common Equation Form
As a point of curiosity, equations (2.2), (2.3), (2.4)

and (2.6) can be expressed in the common form

%{77"1 %g] = 0. (247)
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(a) Por (2.2) the form (2.7) can be realized in the

following manner. If (242) is multiplied by p, the result is -

where

e

B uH

1l

and B is the magnetic flux density vector. Now, (2.8) can be

differentiated with respect to z to give

% (VzoB) = Vza%% + V%ﬁ'.ﬂﬁ = Vz.%lzi = 0, (249)
Since no magnetic charges exist,
VO'E = O. (2010)

Through the differentiation of (2.10) with respect to z, the
result is

2 (wB) = W& -o. (2411)

At this point, (2.9) is multiplied by z~2 and (2.11) is multiplied

by z-l; taking the difference of the resulting expressions gives
[ B - (2012)
Hence,

It can be readily shown that (2.12) is eqnivalent to

(2+2) or (248) by letting ¥/ operate on each term ofjthe

product 21 %% + If this is done,
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-1 OB =2 OB _
z v- 8; - Z VZ. Z)Z = 0,
Since (2,11) must be satisfied,

VZ.%‘E=O.

Hence,
& (Vob) = 0
and thus i
VzeB = £(x,y)ed®
or
B, = f(x,y)ejmt.

Since BZ has no z-dependence, this solution for Bz corresponds to
a field component that is cut—off at all frequencies and thus
cannot be part of a wave except for the case in which the.

trivial solution,

holdse Therefore,
VZ¢§ = 0.
(b) For (243) the form (2.7) can be realized in the

following manner. If (243) is multiplied by (e - jg), the

result is

VZQI—)"= 0
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where

ﬁ": (8 - J(%)E.
The equation of continuity is
b —t

where P is the volume charge density and J is the current density

vector, For a linear medium

Consequently, F)can be expressed as
- g
P =Veig E.
Since the divergence of the electric flux density vector, 5, gives

Vb =p,
then

VoD =V (jgﬁ)-

For a linear medium

Therefore,
or

Now, it is easily seen that by the substitution of D' for B in
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the proof given in (a), the equation
V.{z—l %—2'-] =0
can be derived. Hencey
T = 2z, F=D.
(c) For (2.4) it 15 obvious that
77=e~‘jg,F=ﬁ.
(d) Por (24.6) it is obvious that
N=py F=E,
2s4 Examples of Field Restrictions

In the examples to follow only the field restrictions -
on E~waves are discussedes Similar treatments can be carried

out for H-wave problemsas

2.41 A Waveguide with a Radially Varying Cross Sectien
The investigation is on the field behaviour of an E-wave

in a perfectly conducting waveguide in which the walls are described
by
r = f(Z)c

Furthermore, to simplify the problém, the waveguide is to be
filled with a medium that has a constant permeability agd'
permittivity and a zero conductivity.

This example was selected, partly, to demonstrate how the
stipulation that only an E-wave is allowed in a waveguide can

considerably restrict the béhaviour of the field. A further
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reason was that the results to be obtained will be made use of
in the treatment in section 3 of a waveguide with a periodically
varying radius.

For the problem in hand, new orthogonal curvilinear coe
ofdinates (ul, Uy u3) are chosen such that uy is consfantAat
the walls of the waveguidee Consequently, the new coordinates

can be expressed as

uy = ul‘r,z)
u, =8 | (2413)
uy = u3(r,z) J

where @# is the cylindrical angular coordinate and Uy 0, énd ug
are analytic functions of ry g and z. It is assumed that (2,13)

can be solved with respect to r, § and z to give

T = r(ul,u3)
gfuuz
7 = z(ul,u3).

The differential elements of distance in the curvilinear

system a,re21

where the Lamé coefficients are

,_ 3 2 2
b = VRS + Q)7+ Qe (2014)
. 1 1 1

with x, y and z being the rectangular coordinates. Since
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X =17T cos ¢

then

%%— ey sin 4, oy _ r cos @, y_ _ o sin g .
1 i

Therefore, from (2.14)

i
H

Hence, ..

h. = hi(ul,u3). (2015)

From (2.2) the expression

b‘l*—‘

1 Oz Z
hl uy 1 3 %u3 3

is obtained where H1 is the component of H in the uy direction

and H3 is the component in the u, direction., Throughout the

dz Oz

remainder of this example it will be assumed that u and o
1 3

exist and are not identically zero. Hence,

. _
1
H =- R, 5 H, (2416)
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where

‘Maxwell's equations are
VxE = ~joB (2417)
Vx H=7 4+ jed . (2418)

For the present example the conductivity is zero. Consequently,

if the curl of (2.18) is taken and (2.17) is used to eliminate
E, H must satisfy

mzps i=Ux (Ux H. (2419)

From (2.19) the scalar equation obtained by equating the

coefficients of the component vector in the uqy direction is

h
*—[%—["’—(%—‘ D - 8 o)
D h1

where H2 is the component of H in the u, direction. Since hl’
h2 and h3 are not functions of u,, as is seen from (2;15)g the
term involving H2 in (2420) can always be operated on first

oH, |
of all by Uy If this operation is done first, then 8—— can be

considered in place of H2¢ Consequently, as will be shown, H2

can be eliminated from (2620) by using

VH =0. (2421)
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From (2.21)

oH, 1 [ d
— - ____[:SE; (h2h3H1) + SE; (hthHB)],
(2422)

Now,; if (2416) and (2.22) are used to eliminate Hl and H2 from

(2.20), the resulting differential equation is

: 2
h h, ®“H
2 1 d [ 2 D ] 1 3
o ue H. = == | =~ : (h,H,))| = = ———=
S T V) 08 [ duy | hyhy duy By du,?

2
B > [hzb (hhH)]_b [hzb ! EH)J
hyhy dusy [ hihy duy 17273 duy {hyhy dug | hy 3
h h
1 [ 2 2 ] ~
+ —= (h,h, ER)| . (2423)
h2h3 SuB h1h3 Sul 1 26 3
At this point the boundary conditions will be introduced.
They are22
nx E =0 (2624)
fieB = 0 (2425)
1.0 = p, (2426)
tnxH=X (2427)
where

N = the unit vector normal to the surface of the
conductor and directed into the region where the

field existsy
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the surface charge density,

R

K = the surface current density.

If E2 is the component of E in the u, direction and E

2 3
is the component in the u, direction, from (2424) on the
boundary

E, = 0, E; = O.
‘From (2.25)
| H, =0 (2.28)
and thus from (2.16)
Hy = 0. (2429)
Equation (2.,18) yields the scalar equations23
: 1 d d
jor By = iz | 8 58y - 3 gy ] (2030
273 2 3
. 1 [2 d T
joe E, = (h H,) = = (h,H.)| (2631)
2 h1h3 i bu3 11 bul 373 ]
iy 1 [2 d ]
joe E, = (h,H,) - (h,H.)
3 h1h2 i bul | 272 Suz 171 ]

where E1 is the component of B in the u, direction. Since H

1 1?
H3, E2 and E3 are zero on the boundary, all of their derivatives
in the u, and Uy directions are zero on the boundary. Hence,

at the boundary (2.30) gives

joe E1 == 5 ho SE; (h2H2) (2;32)
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and (2.31) gives

or with the use of (2429)

oH
5;?— ~ 04 (2433)

According to (2.16), (2e29) and (2.33)

Hence, (2,22) shows that on the boundary

dH,
55; = Oe (2.34}

If (2.32) is differentiated with respect to u,, the result is

OF; - 1 [11 2 (bﬂz oh, sz]
I, ee—erre— + —
Suz J(OF h2h3 2 5u3 8“2 bu3 bu2
and thus from (2,34)
QE;
Slg = O, (2¢35)
If il, IZ and i3 are the unit vectors in the u;y u, and

uy directions respectively, then

i = ~1

1
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and from (2.27), (2428) and (2.29)

I, T, Ij
K = Klll + K212 + K313 = | -1 0 0 = —H213.
0 H2 0

Therefore,

and

Consequently, the surface current on the waveguide walls must
flov in the u, direction and from (2434) it can be seen that
K3 cannot have any Uy dependence.

According to (2426)
R = =Dy = —eE;
and from (2435) it can be noted that f% is independent of Uye
Now, it is convenient to return to (2.23). H3 must
satisfy (2.23) and the boundary conditions (2.29) and (2433).

Further boundary conditions can bei established by using the

form of (2.23)

2 2 2 | |
P %H %H >H dH dH
-—-%-: a, 3 + ay ———%'+ a5, S———é——— + a, S—l + a, ——l‘+ a5H3
bul buz bu3 u3bu1 uy u,
(2036)
where

a; = ai(ul,uB), (i =0, 1y evey 5)e
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In facty it will be shown that on the boundary

I
i,

b o = O, (I]. =O, 1’2, .l.) . (2'37)
u
1

Equation (2437) can be established by induction. PFirst of all,
through = the use of = (2429) and (2433) and the fact that u,

and u, lie on the boundary, (2436) gives

2%
2 _~0
bulz

.

The assumption is, now, made that

o, ,
= O, (n = O’ 1, coey N - 1).
du,® |

If (2.36) is differentiated N~=2 times with respect to Uy then

Mn, M2 [ %] 2 [ % "2 X,
it o { U =l R o Uiy =l Rt |
bul bul.m, i buz' | bul _bg3 bul bu3buL .
-2 [ dH, =2 [~ D] N-2
+ e | a + =3 | & + aH
du, 2 | 3 du du, V2 | 4 du | du N2 | 53T
e | L 1 1 3 1
(2438)
Since only derivatives up to N~l1 with respect to u occur on

1
the right side of (2.38)y
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a.NH3
=0
N
Z).ul

and thus (2;37) is establisheds
Therefore, on the boundary

n
P} H3

TG =0, (D =1+ j+k=0,1, 2, eee)e
1 2 3

d'H

u

This result is easily verified since from (2.37)

dim

3 .
T is zero
1

on the boundary must, also, be zeros

and thus any change in
u
1

Since H3 and all of its derivatives are zero on the

boundary, from the three dimensional Taylor series expansion the

only analytic solution to (2423) is

H Oe (2439)

3

m

Hence, from (2,16)

H1 = Qs : (2440)

As a consequence; from (2¢31)

E 0. (2441)

]

2

Through the use of (2422), (2.39) and (2.40)

Os

¢
N
il
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Equation (2.17) yields the scalar equations

jw,le == h:hB [g‘lz (h3E3) - %ﬁ; (h2E2)] (2§42)

. 1 2. d ]
jepH, = - R, B, [ o, (h,E ) - duy (h3E.3)~
JopH; = = hihz [ g“l (h,E,) - %;; (hlEl)d. (2443)

By means of (2.40), (2441) and (2.42)

bEB
=0
5,

" and from (2.39), (2.41) and (2.43)

Therefore, it can be concluded that before an analytic E-wave
solution can exist in the structure under examination, it is
necessary that the fields be restricted to having no u

2
dependence and

2442 A Medium with a Radial and Axial Dependence

The example to be discussed is the case in which an
E~wave exists in a cylindrical waveguide which is filled with a

medium having a spatially dependent effective permittivity and a
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constant permeabilitye In particular, the effective permittivity

satisfies the equation
. O
S'ZE—JEZf(r’Z)

1
with St and > existing and being not identically zero.

In an inhomogeneous medium, if an E—yave exists, some
rather restricting requirements might have.to be met. The present
example was selected, partly, to show what type of restrictions
might be expected. However, a more immediaté'reason wvas that
the results will be utilized in section 5, which deals with
dielectric loaded structuresas

For a waveguide filled ﬁith a medium Whicﬁ behaves in

the forementioned manner, since

-

V¢H = 0’

from (2.4) '
Ve'ta %%, = O (2444)

In cylindrical coordinates (2.44) is

, OH JH ' OH
iy e - (2443)

where Hr is the radial component and Hﬁ is the angular component

of Hs Since the effective permittivity does not have angular

dependence and for an E-~wave

H =0, (2.46)
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then from (2.45)

As stated

de !

Sr— F 0s
consequently, for an E~wave to exist

OH .
- bzr = Qs | (2047)

If (2447) is integrated

H, = £(r,8)ed"". (2448)

The solution in (2448) corresponds to a field component
that is cut—off at all frequencies and thus cannot be part’of

a wave except for the trivial solution,

H, = O. (2.49)

As a result of (2449), further restrictions op the
field can be found through the use of Maxwell's equatibns, (2617)

and (2.18). In cylindrical coordinates Maxwell's equations are

OE OE
% b,dz - b;d = .= jeop Hr (2050)
bEr bEZ
S 5;— =.5jmp H¢ (2.51)

: E
% % (rEy‘) - '}:’Vr = —jep H (2.52)



26

OH, OH, .
-5 = e By (2453)
%’%;’(rHﬁ) - % g;z = joe' E .
The substitution of (2446) and (2.49) into (2.53) gives
E; = 0. (2454)
By means of (2:49), (2450) and (2.54)
%;5 =0 | (2455)
and from (2.46), (2.52) and (2.54)
OE
(2456)

r

&—EO.

Furthermore, if (2.51) is differentiated with respect to g4,

from (2.55) and (2.56)

5,

Therefore, it can be concluded that before an E-wave can exist

in the medium under examination, it is necessary that the field
has no angular dependence and

H = 0, E¢ = Oy HZ
A point to note is that the restrictions imposed upon

the field componentsy other than

HZ = 0,
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are initially caused by the radial dependence of the effective
!
permittivity. If the effective permittivity is only a function

of z, no restrictions result from (2.4) because in (2.45)

H =0
Z

which forces

OH
de!
S 5 =0

and thus all terms in (2e45) vanish.
2443 Case of Equation (2.4) Being Not Sufficient

A simple example which demonstrates that (2.4) is

not sufficient in general is where

g = constant
= £(y)

= 0

0

O a E
It

and the magnetic field satisfies the condition

=0 (2457)

at the plane Z=Z(ye
From (2.4)

v. -2 @ -o.
Therefore,

Vol = 2(xyy)ed®t, s
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Consequently, to satisfy (2457),

V.H =0 (2458)

throughout the waveguidees Also; from (2.10)

=

VeB = 0

and thus
VioF + pVell =V B = 0,

Hence,

dp, ~ 0.

dy "y
Since

d

4o
then

Hy = O (2459)

From (2.58) and (2659)

OH_ OH,
Sx T =0 (2,60)
and if E is eliminated froﬁ (2417) and (2418), the result is
V3, + wzpé H =0 (2.61)
VZHz + azpe HZ = 0. (2;62)‘

Equations (2460), (2661) and (2,62) form a self-consistent set

from which Hx and Hz can be solved. 1In fact, the solution, .
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is only the trivial solution for H_ . Hence, (2.4) is not

sufficient in this cases
2.44 Case of Equation (2.4) Being Sufficient

A simple example which demonstrates that (2.4) may be

sufficient is where

| € = constant
p = f(z)
=20

P:O

and
VOﬁ = O.‘
As in section 2,43
VM.ﬁ = 0. -
Hence,
dp _
dz Hz = 0.
Since
ap
dz ?-é 09
then
H = 04
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3. AN APPROXIMATE WAVE EQUATION FOR AN AXTALLY SYMMETRIC
PERIODIC STRUCTURE WITH A SLOWLY VARYING RADIUS

341 General

Basically; there are two types of periodic structures,
those with a periodically changing boundary and those with a
periodically varying mediume. Examples of the lattef type will
be treated in sections 4 and 5, The present section is devoted
to an axially symmetric periodic structure with a slowly varying
radius.

In many beam—couplers such as linear accelerators,
O=type travelling wave tubes and backward wave oscillators, an
Ez field component is necessarys For these devices E-wave
solutions are of special interest and for this reason ﬁhe
treatment to follow will be restricted to an examination of
E~wave fieldse Mention should be made that for H-waves an
analogous approach can be followed,

One advantage of structures with'angular symmetry is
that they have a minimum surface area for any fixed volume and
thus have a high intrinsic Q. Besides this, axially symmetric
structﬁres are of interest because in such guides E-wave
solutions may exist in which all the field components except EZ
go to zero on the axis. Consequently, in these structures the
electron beam defocusing problem is not as great as in
structures suéh as the sinuoﬁs waveguides discussed by Cullen24,

in which field components other than EZ exist along the z-axise
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3+2 Theory

An approximate wave equation is derived whichJis
separable and, as a consequence, it turns out that the field
pro%lem can be reduced to finding the solution to Hill's
equation25’262 |

The radius of the periodic structure to be investigated

varies as

r = ul(l + b@(—zl;;z:)) (341)

where C)Cg%z) is a periodic function with a period pe. Also, -

O=1u

1° O<b=1 and I@(%z)' =1,

A new system of orthogonal curvilinear coordinates

(ul, Uy u3) are chosen such that u. is constent at the wave=

1

guide wall. Also, usy is regarded as a function that is

perturbed from z. Consequently, the new system.to;be introduced

is
T
u = N
1 27
1 + b®(=z)
P
u =4 S (3.2)
u, =z + Ar,z) .
7/
If()(;%z) is expanded in a Taylor series about u,,
21y _ 27 _ 2n 21
@( PZ) = @('?13) p®,(—pu3)A(r’z) T esoe
where c)(2“ )
d =
1 (2T _ p3 ‘
® (—p'u3) = °

2n
a( Pu3)
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Therefore,

r=u 1+ 2@E)) = u (1 + 2OFuy)| - Zup @ (uy)n(ryz)+ e

p 1
(3.3)
oz
T = ul(i + b()(g%u3ﬂ - Ar
where Ar is the perturbation of r in going from z to uj in the

argument of()(%%z). For the types of problems to be considered,

CD(E%Z) is to vary slowly enough to insure that

w1+ @) = u 1+ 28(EHn;)) .

(344)

Hence,
|Ax|<=<r

and

<<u1(1 + b@(g%u3)) . (3.5)

2
Lu b @' (Zuy)a(x,2)

Also, according to (3e4)
= | 2n
r = ul(l + b O( Pu3)) . (346)
A further restriction is that the approximation

AMr,z) = [ (1 + b @( S )) y u ] (347)

must be satisfieds In other words, A(r,z) must vary slowly

with respect to z. From a Taylor series expansion,
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Mryz) = afuy (1460, u,] + (z-u,) $

Z'::u3

r=u, (1+b@(§%q3))

# [r = oo, B2 b

Z=u

r=ui(1+bCX2%u3))

(3.8)
To within a first order approximation from (3,3)

v~ up (146@(2u,)] & = b @ (Zuy)al ryz)e

Therefore, (3.8) becomes

A(fQZ) = A[ultl-l-b@(zﬂ uy )) y u ] - A(r,é) %%

z=u3
=y (14003, )

b@'( 3)A(r,z) % + een o

z=u
3

r:iul t 1 +b®(2-%"u3 ))

As a resulty, in order to satisfy (3.7)

Qul + 2L g gy () 2 | -1
Z;u3 ‘ . Z=u3

reu, (1460, ) r=u) (1+6@(%u;)
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or

<'<1.__ (3‘9)

From (3.2), (3.6) and (3¢7) the old coordinates can be

approximately expressed in terms of the new coordinates as
reou (1+b®(g-7iu )) )
1 p3 ‘

g = u, ‘ | > (3,10)

il

ug = A[u1(1+bCXg%u3)),u3] 8 )

A differential change in a vector R can be written as

dR = dx 1 + dY_J + dg k = dulal+ du2a2+ du3a3

where I, T and k are the unit vectors in the x, y and z directions
respectively andvﬁl, 32 and 33 are the unitary vectors in the

Uy U, and u, directions respectively., Therefore,
f,=nt =T 4548 F, (-1, 2, 3)
i T it T du, u; o ug ’ I

(3.11)

~where, as already mentioned in section 2,51, ii is the unit

vector in the u, direction and

n =V + B Ll




Since
X =71 cos &
y = r sin 4,

then from (3.10)

hy & \/(1+b®(2 )) +( )

35

hy = w1+ b@(EE 3)) > (3.12)
\ h, = \/(1 - %%_3_)2 + (g%ulb@ (-2-;;%))2

and (1+bCX 3))( cos u,T + sin uzJ) - %%;é )

'i‘l =

Vo) + (3]

TZ = -~ sin uz'f 4+ cos uzj >(3-13)

o g%ule)(g%u3)(cos uzi + sin uzj) + (1 - %%;)E

I, = ‘

Therefore, from (3,13)

i.‘l :-"0

| 1pei3 =0

4
R

J(l - %3') + (%u, b0 (72'%“3))2

2L, 10@ (2u,) (1408(%Lu,)) - %Afl'(l - %/i;)

=

Vi |* « RV - &7

b (2aper (22y)°
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Hence, Tl and TB are approximately orthogonal to one another if

bA (1 - ) = g%ulb (2“u3) (1 + bcx 3] -

(3.14)
Due to (3.9), (3.14) can be simplified to

gﬁ 2“ b()(zﬂ 5) (1+bCX ) (3415)

Since along the axis of the waveguide A must be zero, integrating

(3e415) gives

b=t (g%)ulszY(gguB) (l+bCXg%u3)) . (3.16)

To insure that the wave equation is separable, the

restriction

2, @ (Lu 3)) (3.17)

is made. Consequently, from (3412) along with (3.9)

~ 27
h, & 1+bCX—5u3) \

=3
m

5 l(1+bcx 3)) T (3.18)

=
IR
-

and, as will be shown, for these Lam& coefficients a separable
solution existse

Through the use of (3416) and (3.17) it can be seen that
(325) is satisfied. Now,‘(3.16) is differéntiated with respect

to uq and the resulting expression, when substituted into (3.9),
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2 2 2
1,2 2 (2 1 (2 ‘1 (2
lg (—p) u12b Q) (—%u3) 5 (—%) >b@® ( T‘u )(1+b®( )) =<1l
(3¢19)
If (3.17) is kept in mindy then (3.19) is satisfied if
l( u, ) b wa( 3) (1+bCX 3))l =<1ls (3420)

The conditions impesed on the waveguide parameters are not as

restricting as they might appears

that the parameters, given in (3
radius varying as

«36(1

easily satisfy the conditionss

" For example, a check will show

«l), of a structure with a

+ 5 cos z)

Such a waveguide has a noteworthy

amount of loading, since b is a measure of the loadinge.

As already established in
can .exist in the type:

can have no u, dependence and

of structursg.

section 2.41, before an E-wave

being treated, the field

2
H, =0, E2 = 0, H3 = 0,
Therefore, from Maxwell's equations
d(h,H,) ]
2 3 bu3
d(h,H,)
joe, By = hlh 2 2 %(3.21)
172 bul
oy 1 - o e [ 2L 208 ]
1 2 1 3 bu . bul ®

7
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where By and €, are constantes Eliminating E1 and E, from

1 3

(3421) and using the h,'s given in (3.18) yields

2

o) [l o) ( *] 2[6
u = h. H.)| + h Y
5u u Su 272 1 2
1 oy 1 ©%1 | du,

* 2 * '
(h,H,) + plelthz] =0

(3.22)

*
where H2 is an approximation of H2 since the hi's are

‘ *
approximates Equation (3,22) is separable and h2H2 can be

expressed (with time dependence suppressed)-as

hZH; = R(u)T(u,) . (3.23)

If (3.23) is substituted into (3.22), the result is

u : : 2
1d [1_ dR ] 2[1=d T 2 ] }
R du1 1y dul, 1T du32 171
Therefore,
a [1 ar ] 2
. —— = 22 + K°R = 0 (3.24)
1 du1 [ul du1
2 2
d=T 2 . |K _
w2 [“ Hi®y = (h , ] T=0. (3.25)
Uq 1

The solution to (3424) is

R = ulJl(Kul) . (3.26)

Since at the wall of the waveguide
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the boundary condition to be fulfilled is

=1 d _ —
Ku, au [ulJl(Kul)] = J, (Kul) =0 .
ul = ﬂl
If (3.18) is used to eliminate h1 from (3;25), then
2 2 :
a T2 + “2”181 - K 5T =0 (3.27)
du 21
3 (1+bCX Pu3))

and (3.27) is commonly known as Hill's equation. Extensive
treatment of Hill's equation exists in the literature. For
example, a general solution method is discussed by Whittak;r
and Watson27 andy also, by Brillouin.28 |

Now, (3.27) is a linear second-order differential
equation with a periodic coefficient. For this type of
equation, provided the coefficient is sihgle valued, Floquet's

29

theorem states that a particular solution has the form

byl
3 21
e P (—'1-)*113 )
where P(Q%UB) is a periodic function with period p.

Since P(g%uB) can be expanded in a Fourier series, in
the treatment put forth by the forementioned authors, T is -

expanded in the series

00 o= . X+2ny
..J-Xu3 _j___12n1n 14 e-J ( D )u3
T=¢ P a_e P = &n

(3.28)
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where

Also, the coefficient of T in (3.27) 1is expanded in the Fourier

series . Sa®) _j2nnu
2 K - b p 3
© !,l,lEl - 5 = ne -
21 —
: ‘1+b®(—-§u3)) n = —o0o

(3.29)

Then, (3.28) and (3.29) are substituted into (3.27) and the

expression obtained is

o0 .(X+2§k+n2n)u
Z (K-}-?mﬂ;) am -3 (&z_ﬂl}f’_)uB + > > bka’ e 1Y 3

m = -00 = o0 k = —-o-o
. 2
. J(Zﬂimﬂ”)“3
By multiplying (3.30) by 7 e and integrating the resulte
ing expression from O to p, the equations
o0
__@&ﬂéz&)z a_ + b a =0 (3.31)
P m nen ®n = .
n = -0

or
oQ

' 1 ;
- — b . a
™ (2&2mn}2 Ml I
p n = -0 .

a = O, (m = ‘o.,—2,"1,0,1,2".0>).

(3.32)

are determined. The determinantal equation for (3.32) is set

equal to zero so that a non-trivial solution can be found for

the a_'s,
m
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For the case in which the series,

n = -0

is absolutely convergent, Whittaker and Watson30 evaluate the

determinantal'equation foﬁﬁthe set of equations which result

2@§?E%2 o In this instance, the

when (3.31) is divided by by = (
determinant is

9, () = aet B |

where

From Whittaker and Watsont's treatment

‘ ; b
@10() =1 +K[cot (X"’\ZT)P) - cot (

X-\bgp )] .
>

(3.33)

The constant K can be calculated at X= O. Hencey

(0)-1
K = (Ei—;———) tan/bg § . (3.34)
Since
551CX7 =0,

from (3.33) and (3.34)

Vbop

2 =:£a(0) sin2 5 . (3.35)

sin

INYINY
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An approximate solution to Hill's equation can be found
by truncating the series (3+28) and (3.29). Solutions using
perturbation theory have been given by Brillouin31 as well as by

McLachlanBz.

Once T is determined, from (3.21), (3.,23) and (3.26) the
field is known and

dJd

B = 4 p (Kuy) gT )
[0 u
! (1+bCXg%u3)) 3
. Jl(Kpl)T(u.3) | (5.36)
5 = _ .
(1+b®(2%u3))
B x g K I (Kuy )T (u,y)
3700 ey 20 )
(1+b@(-5u3)) )

The field component, Ez, can be determined from

z 171 373
Through the use of (3.13) and (3.15)
o 275 1.2_11:
Ez_——sulb@(puB) E1+E3
or
N i 21 2n ar_ |
E = - [ D u, bE ( Pu3) J, (Ku,) 2, +K JO(Kul)T(uBﬂ .

21
wal(1+bCX pu3))
Along the axis of the waveguide

A =0
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and thus

Therefore,
K T(z)
©e
1 21
(l+b@( Pz))

E_ & =

For the limiting case in which b — O,

i, — I

ey
and (3.36) becomes

- dar

B, = geT 91 (E7) 3

T (01

Hﬁ = Jl(Kr) T(z) < (3437)

- . 4K
EZ = JO(Kr) T(z)
l 7

where T satisfies the differential equation -

a2

dz2

+ (@Ppe; - k%) T = 0.

It can be recognized that (3637) is an E-wave solution in a
uniform circular-section waveguide. Hence, in the limit (3.36)
is in agreement with the known solution.

Some comments can now be made with regard to periodically
perturbing the radius of a circular-section waveguide. As can be

seen from :(3.36); the u, dependence is the same as the r

1

dependence in a uniform waveguide and thus the variation of the
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cross section perturbs the argument of the Bessel functions. Also,
according to (3.36) the amplitude of the field is modulated by the
factor

1

27
l+bCX—5u3)

*

With reference to (3.27) it is convenient to define an effective

K2 as
2 2 2
effective K™ + AK
where
N 1 5 - 1
27
[1+60(2Lu,)
Since K2 is an oscillator erturbation of K2 the
effective y P ’
effective propagation factor, defined as
B2 = 02y g, - K2 (3.38)
effective ~ © M1%1 .

(1+b@(&g-u3))2 ’

oscillatesa This result implies that the phase of the field is
modulated.

In a vacuum from (3.38)

2
2 2 K
Beffective =@ poEg = | 2 2
(1+b@(-r-§u3))
and thus 5
2 2 _ e
Beffective<:w Boo = (c) (3°39)

where ¢ is the speed of lights This situation is not necessarily
true in dielectric loadéd structures such as the one discussed in

section 4 since
2 2
Beffective = @7poe ~ K

andy as a consequence, € can be increased until
2
(ozpoe - K2>(%) .

2
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Hence, along the axis of such dielectric loaded structures it is
bpossible to have regions where the phase velocity of the field
is less than the speed of light whereas (3.39) indicates that foran
empty metal structure with a slowly varying radius such low
velocities are impossiblea

If the space harmonic where n = 0 in (3.28) is to be used
for beam—-coupling, it will be shown in what follows that the radius
of the waveguide wall must be restricted by the condition

Mmc

n,.>

1 Vphkxl%b)\/prsr

P
where

M = the mth root of Jo(x)

ph = the phase velocity of the Oth space harmonic

By = the relative permeability

™
fl

the relative permittivity.

For many purposes the Oth space harmonic is of greatest interest

because in (3.28) aq is usually larger in magnitude than a, for
n;é()o

Since from the boundary condition E3 =0

JO(Kul) = O,
then

ﬁxgi =M . (3.40)

If a relation

Kp = N | (3.41)
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can be established,
M

‘[Il = ng Pe (3042)
To find a lower bound for ui§ an upper bound of N must be

determined. The latter bound can be found by noting that the

phase velocity of the Oth space harmonic is

v I ee— -
h
P X/p X
Hence,
XV
0 =R (3.43)
and thus 5
2 XVph
©“noeq = | ~op . (3444)
Substituting (3044) into (3438) yields |
2 2
52 _ Xvon|” [ &
effective =~ Frfr cn o
P 1+66(<Lu)
or
. 1 b(@(.?‘n: )) 2
52 1 [ Vi XV [1458(EEn, . (kp)?
effective — 5 o 3 \ . - - P o
22 (14668(Zn,)) |
If
kp = VB XV, (14D) ,
. : c
then

Befi’ective =0
and the field is evanescent everywhere. Therefore; for

propagating regions to exist in the waveguide, Kp must be less
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than
Mprsr)(vph(1+b)
c |
Hencey from (3442)
" Mc
ﬁl > [ LU JP - (3.45)
\/prer)(vph(1+b)
Since
2 27 2
©poeo = ()

where A is the free space wavelength, by means of (3.44)

Eliminating p from (3.45) gives

M
T, >[ e J A (3446)
21\ p e, X(1+4Db) |

If coupling is desired in the first pass band and on the
axisy (3445) can be relaxed since <7 and Voh=Ce Even further
relaxation can be achieved because Mm 2’2;405 and b = 0y As

a resulty

0= 24405 p= —=38 (3647)

2TV By VitpE p

4n Uu'r;r uurzr
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When the guide is empty, (3.47) and (3.48) become

U, = .38p . (3449)

U, = .16A.

1

Also, (3.49) can be written as

275a

= 2,405, (3.50)

It can be seen that when (3,50) is satisfied, inﬁgeneral,
(3617) and (3.20) are not satisfied unless b is small. In other
wvords, to keep the radius of the waveguide slowly varying, b
must be a small number. Consequently, when an empty periodic
structure with a slowly varying radius is used, the indication is
that to achieve heavy loading the beam—coupler would have tb be
operated in a higher pass—band and/or utilizing a higher space
harmonic. As can be surmised from (3.45), by going to a higher
pass—band and/or employing a higher order space harmonic the
lower bound for oy is reduced. |

If the waveguide is filled with a dielectric material, such
as titania, having a relative permittivity of 93.5, then (3,47)
becomes |

. Znul

= 25

As a result, (3.17) and (3.20) can be satisfied without"b”
necessarily being smalls Therefore, when filled with a dielectric
such as titania, the structure under study may be haavily loaded

while oﬁerating in the”first'bassiband and using the Qth space
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harmonic.
| Dielectric filled structures of this iype may have appli-
cations in travelling wave tubes since in these tubes dielectric
losses do not present a problema

A structure which has not been examined but could be
investigated by adapting the present treatment is illustrated

in Figure 3.le This structure is a combination of the two basic

-Axially Symmetric

Fige 34le A Structure with a Periodically Varying Boundary and
Medium ' ,
types of periodic structures mentioned in sectiom 3.1+ One
specific example is the case in which dielectric regions of
constant permittivity are periodically spaced between constant

u, surfaces,

3

343 Discussion

The theory just developed gives a relatively simple field
solution for an axially symmetric periodic structure with a
slowly varying radius andy as a consequence, should prove to be
of some use in designing specific structures for beam-couplers,

| For a structure in which the radius of the walls is not
slowly varying, the apﬁlicability of the present development

has not been examined. However, as a point of speculation, it
might be quite meaningful to employ the expressions in (3.36) in

order to obtain the field on the axis of the structure.
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SecfionAB.Z has served to introduce linear second-order
differential equations with periodic coefficients and has
presented a classical treatment for finding the Floquet solution.:
As will be seen in sections 4 and 5, the same type of mathematical
problem arises in the investigation of wave propagation through
pericdically varying mediaes In both sections, a modified
approach is adopted for solving the differential equations in
order to overcome difficulties caused by discontinuities in the

media»
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4, WAVES IN MEDIA WITH FINITE DISCONTINUITIES IN THE DIRECTION
OF PROPAGATION

4,1 General

A treatment of electromagnetic waves in media with
characteristics possessing finite discontinuities 'in the direction
of propagation is developede The development avoids the use of
explicit boundary conditions at the discontinuities and in this
respect is believed to‘be novele To illustrate the method, three
examples are given, for which selutions have previously been
obtained by the use of explicit boundary conditions. The purpose
in investigating these examples is to help clarify the issues
involved before proceeding to more complex problems, as for
example, problems in which the discontinuities occur transverse
to as well as in the direction of propagation. Such probléms are
discussed in section 5.

In a linear iéotropic medium having either the permeability
or effective permittivity a function of z, certain geﬁeral
statementsacan be made about the vave solutions fo Maxwell's
equations. First of ally the differential wave equations are
sufficiently separable for E—~y H—and TEM-waves to allow the 2
dependent part of the wave sélution to be separated from thé
transverse dependent part33. The z-variation due to the
permeability or effective permittivity is incorporated into'thé
differential equation satisfied by fhe z—dependent part of the
wave solution. Consequently, the partial differential equation

that is satisfied by the transverse dependent part of the wave

solution is identical to the corresponding equation that would arise
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for problems involving a homogeneous mediuma
It is easily shownyg- as done in "Waves in Inhomogeneous

Isotropic Media."33

and in 'the examples discussed in section 445,
esge equation (4.27», that the differential equations containing.
the z-dependent part of the wave solution can be expressed in

the form

oyl
%—;[a(Z) %Tz-] =b(z) T =0 ()

where the coefficients, a(z) and b(z), are specified in the

chart shown in Figure 4sle

Wave aﬁg) ‘ -b(z)
o 1 0e’ (z) - K2
1 ‘ wzp(z)e' - K2
et (2) ©pe ' (z) - K2
. o e’ (2)
1 @?p(z)e’ - K2
1 . wzpe'(z) - K
H ' ——
p(z) mzu(z)e' - K2
n(z)

K = separation constant

Figs 4.1. Chart for Coefficients of Equation (4,1)

The following invéstigation'is centered on equation (441)
for problems in which the coefficients are finite functions and

either one or both coefficients have finite discontinuities but
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otherwise are well behaveds Actually, the following treatment
isy also, applicable to cases in which the discontinuities occur
in the derivatives of the coefficients.
The Sturm-Liouville pxoblem.involving (4.1) has been dealt
with for particular cases by Marcuvitz34 and, also, AnguloBs’36
from an approach using Green's characteristic function.

Gollin’'

deals with-this problem by applying the Rayleigh-Ritz
method. Such approaches are applic%ble to the Sturm-Liouville
problem because specific initial and final conditions are knowne
In the present treatment the situation is quite different since
no initial or final conditions are,given.

The standard approach for sélving (4.1) is to find the
solution in each regien where fhé‘cdefficients are well behaved
and to use given boundary conditions af the points where the

38,39,40

coefficients have finite discontinuities. The boundary
conditions relate the solutions-.of the different regions. It
might be added that this appreaeh may, also, be used for the
Sturm-Liouville problem. |

In this thesis the problem.will be approached from the
point of view that (4.1) holds for .all z. Consequently, at
points where the coefficients have discontinuities, boundary
conditions are not_explicitly needed. 'Hence, the solution to
(441) will be sought without the use of st%ted boundary conditions,
Brillouin41 adopts the same point eof view in his investigation

of (4.1) for the case where

a(z) = 1

-b(z) = a rectangular vaveform.
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However, his method of solutiony which will be discussed in
section 4,523, leads to difficulties and as a result, his answer
only holds for the limiting caée iﬁ which the discontinuities
disappear. These difficulties will be avoided in the discussion
to followa | |

For the standard approach, the condition on T at a
boundary point is that T is continuous or has a given finite
discontinuity; at all interior points T is continuous. Con-
sequently, from the point of view adopted herein, it is
reasonable to state that the allowable functions for the solution
to (4,1) may have finite discontinuities at points and, everywhere
elsey the allowabhle functions are to be continuous. At a point
where a function has a finite discontinuity, the function is
not defined, This lack of definition is easily rectified by
arbitrarily assigning the function a value at the point of
discontinuity. For exampley in Fourier series the mean of the
left and right limiting values is given as'the value of the
function at the point of discontinuitye.

An example might be useful to clarify the type of function
involﬁed. If T is continuous over the interval [ZO;Z2] but has
a kink at zy s then the derivative of T has a finite discontinuity

occurring at z The derivative can be symbolically represented

1‘
» (2)
£f.(z) 3 zn< z < z
ar 1 0 1
dz —
£,(2) 3 z;<z=12, .
ar . a°T
Since Iz has a finite discontinuity at Z) s then ——Eﬂmust have an
: dz

impulse at Ze In the same vein, higher order derivatives can be
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digcussed.
4,2 Continuity Properties of the Solution

Equation (4.1) contains the information that if T exists,

then T and, also, za),(z)_1 %% are continuous for all z. These

continuity properties can be established by integrating (4.1)
twice. On the first integration of (4.1) the result is

Z

a(z)"'l g—g =[ b(T) T(T) 4T (4.2)

and on the second integration of (4.1) the result is

7 T

B T(z) =fa,(’7') dT[b(t) T(t) dt. (443)

If the assumption is made that T(t) has finite

discontinuities, the integral

T

fb(t) T(t) dt | (4.4)

is continuous. Thereforey, from (443) T(z) is continuous. Hence,
a contradiction'exists and thus T(t) cannot have finite dis-—
continuities. If, instead, the assumption is made that T(t) is
continuous, thg integral (4.4) is, onqq,moré,ucontinuous.
Therefore, from (4.3) T(z) is continuous. Hence, no contradiction
exists and thus

T = a continuous function. (445)

Since T is a continuous function, from (4.2)

a,(z)—1 %% = a continuous function. (4.6)
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From (4.6) it is seen that if a(z) has finite

discontinuities, %% must also have finite discontinuities. As

a result, T will have kinkss
4,3 Boundary Conditions

At the points where the coefficients have discontinuities,
the boundary conditions, if desired, can be obtained from (4.5)
and (4.6)s Hence, provided (441) holds for all z, the boundary
conditions are contained in (44l)e .Cdnsequently, the problem
posed when (441) holds for all z is identical to the standard
problem in which (4.1) holds in the regions where the coefficients
are well behaved and in Which'the given boundary conditions are
equal to the boundary conditions.obtained from (4.5) and {4.6).
This statement can be justified by the following argument, From
both points'df view (4,1) holds everywhere except at the
boundaries; at the boundaries (4e5) and (4.6) show that (4.1)
restrains T in the same manner as given equivalent boundary

conditions would. Hencey the identity holds.
44 Existence and Uniqueness

Through the use of the method of successive approximations,
the existence of a solution to (441) can be established for the
initial value problem,

T(ZO) = TO

a(z)—l dT

dz = SO'

Z=ZO

The proof is started by considering the system of two linear -
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equations that are equivalent to (4.1),

das _
i = b(z) T
%%‘:‘a(z) Ss

The development of the proof from this point is somewhat standard

and is given, along with a proof of the uniquepess of the

solution, by E. L. Ince.42
A more general existence theorem that might be consulted

43

was proved by Caratheodory ~ in 1927,

4,5 Example Solutions

4,51 An Electrostatic Field Solution in a Periodiec
Medium
This section will deal with an electrostatic problem
arising in a periodic medium loaded with infinite dielectric
slabse The cross section of such a medium is illustrated in
Figure 4,2, The field is to be set up by a positive chafge on
an infinite metal plate at z'= —~d and by a ﬁégativecharge én a

similar plate at z = ds« In the problem to be investigated d—o00 &

< a e d >
I | f— p — | |
q TTﬂ I (vt K ANy Metal
! 1!, | Dielectrigy Y il Plate
g ' f dlab with'h Lo : il
[ 4 & Ly, ( Air (TN
H . T X | ot
! I € =€ Ly | I ,
|| l [ l[ |'| )

: l | _ ||l|l 3 |l|‘ € 280 ||‘|
i ] bo=THto |, L = e '

L[] ] » L] — . - ] L *
: \(l\l g = O l”‘ z 'l'l p’ p’o 'll"
/ ! Ll L. N og=20 ooy
' b iy 250l o
1 l“ o 2 h :Hl
i |
! ' W le— g ——J1 {1 "¢
4 ' yo ‘l'l oy
[ i \ Iy [y
. Lt A\ LA L/v\-

Fige 442+ Cross Section of the Medium for Example 4,51
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For a medium behaving in the manner shown in Figure 4,2,
the permittivity varies in the z~direction as a rectangular

waveshape. This variation is described in Figure 4.3,

| 4
A - p
.,  ®
€0
) a 2
2 2

Pigs 4.3. The Functional Variation of the Permittivity for
Example 4.51 ? o

In the region between the metal plates, since no free
charge is presenf,

VD = 0. (447)

The field is taken to have only z-dependence and thus from (4.7)

&

dzz = Oe (448)
Since
0w =0
and '
K = 0,

(4s1) can be reduced to (448) by letting

a(Z)—l 'g.% = DZ -

In this case, from (4.6) it is seen that DZ is continuous and,
to be more specific, from (44.2) it is seen that

DZ = constant.
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If the constant is evaluated at z = %,
- +
D, =Dy =gk =¢eF (4.9)

where for 8 =0

Dl = Dz
z = &
2
E. = lim E
1
, -0 Z az;zg
+
E1 1im E

O 0

Actually, at this point the problem is completely solved since

D, =¢E, (4.10)
and thus
80 — .
B, =2 B e (4.11)

From (4.11) it can be seen that Ez has a rectangular waveshape
which is inversely proportional to the permittivity.

A Fourier series solution for EZ will now be found
from (4.8). This approachy although it is for the present
problem somewhat more laborious than the preceding method,
demonstrates a method of solution which is more applicable to
complex problems.

If D, is eliminated from (4.8) by using (4.,10), it

follows that

(4012)

mLpa
N| =
+
M |-
(3
=
f
O
.
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where %% is a periodic impulse function. On the assumption that
EZ is periodic with period p, the required sdlution may be

expanded in.fhe Fourier series

-— J _2 n'”;.Z
E = ae P, (4.13)
Z n

As a first step for finding a for n #0, (4.12) is multiplied by

j2n7cZ

e P and is integrated from —b/2 to p/2. Hence,

p/2 , p/2 ,
2N - VT
j=—z dE ] Z
R e A e P g Lde g, o
dz - z € dz -
-p/2 -p/2.

or after integrating the left hand integral by parts and

eliminating EZ from the right hand integral through the use of

~
N

(4.10),
.2nT p/2 P/2 . 207 P/2 . 207
P g _j2hn o' P g ag - S P D g-[-L']dl
z J P z z dz Le J9%
-p/2 -p/2 -p/2
- 0. ' (4.14)

Since Ez is periodic, the first term from the left is zero. Also,

from (4.6) D, is continuous. Hence, (4.14) gives

P/2 j2nnz ;jnna jnna
.2n7 P ~_| P 1 P lq
s e Edz =-|e p_,s[1] +e D[
- -t a _a
-p/2 Z= 2 Z= 2
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where

A[l] = difference in L
£ £

D, =D,

8
= 2‘

If (4413) is substituted into (4.15), a_  is found to be

_jona ' jhna
a_ = JU S P p i _1 +e P D 1.3
n j2nn -1 €5 € 1 €y €4
or
jnna _jnna
- 1 s P p P Rt
&y = Tomm [1 . e E] - e E7, (4.16)
where
e, = al/so
EY = 1im E
-1 Z —a+
R
Hence,
o PR
.- e E] - e E ==k,
Ez=a.0 +[1—%)\ 1 =1 e P
r j2nm
n = -0
n#£0
(4.17)

then
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0 .nng e . 207 8
1 E p -5 -3
— . —— + e
E. =a, + [1 - = ] lim E g?fﬁ*_ - E_ -
1 0) €. 8—’0 1 j2nm 1 j2ng
n = —00 n = -o0o
n#£0 £0

fo%%) [e%)
sin nné:) sin 2ng7 (a__S_)
=a, + |1 ~ L lim ET S gt P 2
0 £ 1 nf -1 nm
r -0
n =1 n=1
Since o0
g sin nué ‘
_ P p - 8 '
= y 0= 06 = 2p y
=1 ny 2p o
- 1 {1l o= p-2a +
E] = ag + [1 - er][z E; + (5500) E—l] . (4.18)

In the same way, it can be shown that

+ L7 [(e=2ay g 4 Lt |
El, =ag + {1 - er][( 55 ) Bp + 3 E_l] . (4.19)

By evaluating EZ in such a manner, no new unknowns are introduced

and two homogeneous linear equations in ags EI and Eil are obtained.

Consequently, from (4.18) and (4.19), aq and Erl can be found in

terms of EI and are

i~

1

o
o
i
—
Qe
o+
L

s

(4.20)

[ ]
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Hence, from (4.16) and (4.20)

1 sin ZL&
n € ng 1
r
Therefore,
[ore B .
sin 22
E =E |2+1 (22) 42(1 -1 — P o5 28R,
/ P €. P €. ng P
n =1

and this is the Fourier series expression for the rectangular wave-.

shape found in (4.11).

4,52 A Steady State E-Field Solution in a Cylindrical
Waveguide Loaded with Solid Dielectric Discs

4.521 Derivation of the Differential Equations

The problem to be investigated is the steady

state E-field béhaviour in a pgpfectly éonducting cylindrical
waveguide loaded with solid dielectric discs. The differential
equations to be solved can be arrived ét through Maxwell's equations
which for the steady state case are given by (2.17) and (2.18).

For the problem in hand, the medium is linear. The
permittivity is a function of z, the permeability is constant,
Y and the conducfivity is zero,

If the curl of (2.17) is taken, then
VX X E) = -jop VvV X H. (4621)

Now, VX H can be eliminated from (4.21) by using (2.18)s There~

fore,

VX WX B) VWE) -V%E = 0%, D . (4422)
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e -t
It is more convenient to consider D instead of E since Dz is

continuous. In terms of D alone, (4.22) becomes

I[o-(8) - 912 - 8

The scalar equation obtained when the coefficients of the

component vector in the z-—direction are equated is

o2
B (v 12) -V el - o, (4.2

V4

With the help of (4.7), (4423) can be reduced to

, D i
2, _14e9%% 2 o |
VD, -5 +t0peEDd, =0 . (4.24)
Once DZ is found from (4.24)4 the remaining field components can
be- found through the use of (2417), (2.18) and the linearity
relatidnships |

D=¢E

i

oo
i

P’Oﬁ-‘

The method of separation of variables can now be used to

solve (4424), First of all, (4424) can be written as

2 Lz L 2 _
VtDz+bz--edzaz—+(opoeDz_O (4.25)

where ‘%2 denotes the part of§72 which operates in the transverse

plane. By letting

D, = F(ryd) T(z),
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(4025) gives

2
1 o2, _1[a®r _1aear, 2 2
~F % F =7 [dzz ~ & dz dz T 9 Ho° T] = K" .
Therefore,
Y%ZF + K2°F = 0 (4.26)
T Lde dT | (2, o _g?) 1 _o (4.27)
1,2 € dz Az Bo ‘ = Ve .

r=>
D ‘-:O.
Z
Hence,
F(byd) = O

The solution, F, to this boundary value problem is quite straight

forward and can be shown to be45

F = Jn(KI')(

sin n

co s nd)

where

n = O, 1’ 2, eosvecse
and K is found from the roots of

As for (4.,27), it is a differential equation with the same
form as (4.1) and, consequently, (4.27) has the same prbperties
as (4e1)e In sections 44522 and 44523 solutions for (4,27) will

be givena
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4,522 A Field Solution for the Matched Case

For the case where the dielectric discs are
matched into the air regions, the wave solution can be completed
by solving for T in the manner to be described. The solution will
be found for the field in a medium in which the distance between
adjacent discs as well as thickness of the discs is arbitrarye.

The c¢ross section of such a medium is illustrated in Figure 4.4.

Cylindrical
Waveguide

] [/ [ L L [ [ [ [ [ L [ [ [ / /]
Y Voo T i et vy Air RN byt
0 PRT 5 0 I A O | IR SITRY I A
1 il ! n| |Dielectrict 0 dol

[ + o

!\ | H }‘ A Dlsc\'z (ol po=pg O 'l

\ | ’ Yapt g ' |
\l‘ lll 1 l 1 N |(l l;‘ :‘“ ,\\’I ,I ] l'l .' \ g = O I‘ 'fll (('

: [ e T Ly ool e !
X Il‘\}t z | ln|' :,E’=l€l]‘_",| /,Ié "|:'
H A [ }J AR s VAN Axi Ly i
ll1) L | ll, \‘p‘lﬁ:."P:Ol“ b X1S ," N ’III
i [ i | Lttt [ "
1 . /' !: ,Il’ (l’():'l_l\'o‘"‘lll,(‘ l|‘i '(.('

T T T T T 7 T T T T T 77 77 7 A

Fige 4.4. Cross Section of a Dielectric Disc-Loaded Structure

Sin;e the permittivity can only have the value €y OT €4y as
shown in Figure 4.5, it follows that mzuoe - K2 can only have the

value wzpoeo - K2 or mzpoel --»K2 and, similarly, C?sz, C being a

2 2.2

cohstant,'can only have the value Czeo or C €, s The dependenée

of both mzpoe - K2 and 0252 is shown in Figure 4.5.
For the matched case, the wave impedanée46 in the air regionsn
\/”2“0,5 0~ K
zO B e

0
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v

A© RoE - K

Y

Fige 4.5 Diagram of g, 0282 and wzuoe - K Versus z

must equal the wave impedance in the dielectric regions

\/(OZI.LOEI — K2
Z) = ©e y
Hencey
2 2 2 - 2
o uen - K o pe, - K
€0 &1

Consequently, when a match exists, the identity

2 2.2

wzpoe - K® = C% (4.29)

holdé, As a result, (4.27) can be expressed as
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2 . ,
d“T 1 de 4T 2 2
.2 - i a C%“ T = 0. (4.30)

The solution to (4.30) and thus (4427) is
' T Z

-j 7 Ce (T)dT j f Ce (T)aT

_ 0 0
T = Ale + A2e

where Al and A2 are arbitrary constants. Through the use of

(4429), T becomes

Z,.
- g\/wzpoe» ~ K° aT
e i ‘

Z
y 4\/@"2}1,08 - K? aT
ve .

+ A2

T=Al .

(4.31)

The integral,

” v
/szpoe - K° aT '
0

can be evaluated graphically as 1s shown in Figure 4.6, If it is

remembered that no reflections occur at the interfaces between

the air and dielectric material, a quick check will show that

the answer obtained using the standard épproach is in agreement

with (4.31). | |
From (4.31) T must be continuoqs and thus (4.5) is

satisfiede If (4.31) is differentiated, the result is
Z Z

-J ]\/(ozpoe - K2 a7 J j\/wzp,os - K2 ar
0 0

= -jC Ae - A2e

L
€

Q1Q
N |3

and the right hand side is continuous. Hence, (4.,6) i& satisfied.
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2 w2
| VO uoe - K
> Z
\Z
fdw2poe - K2 dT
0
>~z

2

Fig. 4.6« Diagram of-/—dﬁzpos - K d7 Versus z

4,523 A Field Solution for a Periodic Loaded
Structure

For the problem to be solved, identical dielectric
discs are placed at periodic intervals in the cyiindrical waveguide-
Figure 4.7 illustrates the cross section of such a structure.

This section will only deal with the solution of (4.27) since the
remainder of field solution has been outlined in section 4.521.
The z-dependence of the permittivity is shown in Figure

4,8. The permittivity can be expressed as

e =gy + coh(z) (4.32)
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Fige 4e7« Cross Section of a Dielectric Disc-Loaded Periodic
Structure

where

and h(z) is the unit rectangular waveshape shown in Figure 4.8.

A€ ' r"qj‘—“*———' P —
Te,
€0
- > 7
bP=q
bn(z) 2
T1
> 7

Fige. 4.8. Diagram of e and h(z) Versus z

Through the use of (4632), (4.,27) can be expressed as
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T 2 2 1 de dT 2
2 + (¢ kot — K )T = s a7 dz ~ © pocoh(z) T . (4.33)

Since (4.33) is a linear second-order differential
equation with periodic coefficients, according to Floquet's

theorem47, T can be expressed as

(o] oQ

. . . +
.=J§; -j38, -j (X201,
T =c¢e a e P = a_ e P .

n = =90 n = -«~00

For convenience, the definition

'Sn — j()ginﬁ)

is made. As a result,

—snz
T = a e . (4.34)

S _Z
n

At this point, (4.33) is multiplied by % e ™ and the

resulting expression is integrated from O to p. Hence,

P 2 2 Y
1 S,z d2T (0 Koo — K sz
= e ) dz + . . e T dz
p dz P

0 0

P ' P
1 Sp% 1 de 4T “2“000 5p2
= 5 e bl il dz - ——5——- e ~h(z) T dz

0 0
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or after integrating the first integral on the left by parts,

p p P
S _z s S_z S S _z
% e 1 %% - 52 e T + —%— ‘/'e T dz
0 0 0 /
p
(wzposo - K2) s z
+ = e T d=z
0 P
Y . P
S _z TN S_z _
:-]-'- enlﬂgﬁdz— 0°0 enh(z)Td_Zo"
P e dz dz P _
0 0
(4.35)
S_z - sz
The functions e %% and e * T are periodic and thus
P
1 ®n® ar B
P e iz =0
0]
p
/ sn SnZ
’\‘ 'I—)—"e T =00
0]

Through the use of this fact and the recollection of the

functional behaviour of h(z), (4.35) can be reduced to

2 2 B
.8 + B s _z
.JL_E;_Jl_ J{ie o dz =

0 0

g -
\__—-W
® n
bN
o |
QJIQ-'
N {3
Q1Q
N {™
oy
N
1
&
‘ =
Lok @]
[)
(@]
N
®
0
=]

where
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If (4.34) is substituted into the left hand integral in (4.36),

the resulting expression for a is

o
P 5 2
oo . S _2 [CHNVPN S_2Z
o = ——=1 L ¢gngdey, 00 e ™ T az
n s 2 + B 2 P dz P
n 0 0
P=9q
2
(4437)
where
1 4T
8 = e dz °
From (4.,6) S is a continuous function,
The second integral from the right is found to be
2.8 2.8
1Y .
s z s (B=9) s (BXd)

n de _ ."'n* 2 P=q de n' 2 P+q de
J[-e S aa dz = e S( > ) dz dz + e S( 2 ) az dz
0 , ,

P=q _ p+q
: sn(Bga) — sn(ngy' +
= |e s(B3%) - e 7 ° T8(BFY) | (e - gp)

(4.38)

The integral

is determined from (4¢33). Over the interval E%Q to R%ﬂ’ (4.33)
simplifies to

a2y

2

el (©%pge, - K°) T = 0. (4439)
Z .
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Sz
If (4.39) is multiplied by % e ™ and the resulting expression

is integrated from Egﬂ to R%Q’ then

btq btq
2 2
s z .2 s z
4°T 2 2
[engz—zdz+((op,oel—K)feanz=O.
P=g P=q
2 2
Consequently,
E‘hg
2 s z -2
(¢°2Po*’1"K2)I=- / e " i—%dz
Z
b=q
2
b+q okt
S z 2 2 S 2z
— g’! + ngld
==° dz Sn € dz %
2 2
G B B g
- - btq n b—g
= —e EIS( 3 ) + e 818( > )
CEINC
n Ptay _ n P=qy _
+s [e T( > ) e T( S ) snI] .
Hence,
p+d E%Q ( ; ) : s (E%Q) g
sple ™ 2 TEEY) — e 2 Tn(E5Y) (e e ™ 2 TSR 2 5(BY
I = n ~
2 a2
Sn + B1

(4.40)
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where
From the substitution of (4.38) and (4.40) into (4.37)
(e, = €,) ( P=g ) |
1 0 - 2 2 —-
0 = T | R m + (5,2 - 1) 550

(sn.+ ﬁo)(si‘+

82)

s (B2
we D 2 [mzposn T(E%Q) + (sn2 - K?) S(B§QJ

(s2 + Bg)(Si + Bf)

n

-

(4.41)

Another way to express a, is in the partial fraction expansion,

C C CC

4

1 1 2 3
-1 —— + —— + :
“n T p [ s+ 3By | s,— 1By

C ] Sn(ng)

+ -
sn+ 361

1 [ e R D, Dy ] s, (F39)
P gn: JBO s _+ JBO Sn_ JBl s_+ jBl
(4.42)
where |
c, =3 [u:(M) + iz s(P——°~)]
1 [, p=- €0 . p-
¢, =3 |1 - g S(Bz—“')] :
{ (4443)
Cy =3 _-T(P—ﬂ) - a-g-l- S(%ﬂ)]
0 =3 [-1359) + izt s3]
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W
| + £0 +
- [0 + 2 52|
1 + £0 +
p, = {250 - 32 s
™ £
b, =3[08 - st sep9)
€
b, =3 [+ gt sy

From (4,43) it can be seen that

C, +C, +C, +C, =0 (4.45)

Bo Bo B B
1 1
— ¢, - —C —~C,-—¢C, =0 (4.46)
£q 1 €9 2 1 3 €7 4
and from (4.44), similarly,
Dy +D, + D3 +D, =0 (4.47)
Bo By By B,
56 D, - ;6 D, + EI ‘3.-.55 D, = O. (4.48)

The next step is to find the four relationships between
the C's and D¥s. Once these relationships are determined, four
of the unknowns can be eliminated from (4.45), (4.46), (4.47) and
(4.48)e As a result, the problem is reduced to finding the

solution to four linear homogeneous equations,.
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. Since the original four unknowns are T(R%Q), S(Rgg), T(E%Q)

and S(ng), the four relationships between the C's and the D's
will be found by summing the series for T(z) and S(z) at the

points R%ﬂ and R%Q and by eliminating T(Rég), S(R%Q), T(R%Q) and

and S(R%Q) with the equations

c. = L T(2=4) .50 s(E=9)
1 =2 |27 TR, PV
1 [ p- €0 L p-
o, = & [1@50) - 52 sesv) |
> (4.49)
A . ]
Dy =3 |15 - g5 s
1 [ + :,e»-‘ + l
-k [ s sy]

7/

In this way, no new unknowns are introduced. The equations
resulting from (4.49) are four linear nonhomogeneous equations in
which the C's can be expressed in terms of the D's, If the
determinant of the coefficients of the C's is non-zero, the
solution for the C's in terms of the D's is uniquee.

In Appendixvz the series are summed and the resulting

expressions are

J(&205) ,  i(X26,) 4 S

o (B=9y_ A
(= )_ylcl+y202+y303+y404+e ‘ yyD; +e Y504
j2e, -j20,
—¢  y3Dj-e Y4P4
B B B B B, j(X-26.)
p=qy__.PO Po A P o 0 |
S(5)=-lg v Oy Hig 3 20 ig Y303ty Cy-ie yfnl
0 &g 2] 0 0 0
(4.50)
IR b i
I YoP T Y3737 d¢ Y474
0 0 0
%

denotes complex conjugate
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i(26,) -3 (X+20,,) -3j20 j2o
ptay_ 0 0 _ 1 % 1%
T ( 5 )=e Y1 Cq+e y,C e ¥3C5-e ¥4C4
Y10y 7Y P35y, 0y
By =i (X-26,) ()GQQ ) By —J26
ptay_ _:Po 0 Bo - 1 1 %
(5= e 16435 y202+3—1-e ¥3C5
By 3201 Bo B B B
0 1 1
—Ige fc4+3‘1‘5’1])1 T Y2PatIT V303 7IT Yaly J
where
20, = Bo(p=q) = the phase change in the air region
291 == qu = the phase change in the dielectric region
(X"‘Bop)
IV
yl = £
X- Bop
2j sin ( )
| XtBop
j(——)
e
y2 =
X+BOP
2j sin ( )
X"Blp
‘ J( 7) )
y3 = €
X~ Blp
2j sin ( )
X+Bip
i(—=—)
Yy == .
* X+Blp
2j sin ( )
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The substitution of (4.50) into (4.49) yields

A
b1 x1+
B B
X 1
B -i(X26,) B -j (Xa20,)
1 0 0 1 0 0 1 t _
> 1+§I)b19 X1+§(1+§I)b29 x2+e 3 Xyt 0] x4 =0
B i(&28,) B j(Xe20,.) ~j26
1 0 0 1 o 1.x _
5(1—§I ble x1+§ —Bl bze x2+0 X4 b4x4 =0
(4.51)
where
J (X-20,) ~ X-Bop
X = b = e
1 ' ! 1
. X"’Bop
sin 5
j (O&26,) | X¥Bop
2 - € D2 J( 2 )
X, = b, = e
2 , ! 2
__ X+Bop
sin >
j2e X-B,p
Cy e D i (=)
x, = = 3 b, = e 2
3~ ' ’ 3
o he
sin —5
-j26, - X¥Byp
C, - e D : j )
__4 4 b = e 2
X4 = y 4 -_ [ J
XBip

sin
2

B B
1 1 1 1
0 x2+§(1+Fg)b3x3+§(l+§5)b4x4

=J

4_0
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The determinant of the coefficients of xi‘s (i =1,2,3,4) in (4.51)

is given by

D= |+ cosh (pra)cosyag sind) (pha)singya-jsin[Bya+d, (pra)]).

Therefore, provided either

p B
cosX # E%sinﬁl(p+q)sinﬁoq - E%cosﬁl(p+q)cosﬂoq
or

sinX #£ - sin[BOq + Bl(P+q)] 9
then '
D£ O

and the solution for (4.51) is

Hence, y o) .
_ eJ X—z O D
1 1
j(X+2GO)_
02 = e D2
. L (4.52)
j29l
03 = € D3
—j291
C4 = e D4 ° )

From (4,45) and (4.46) and from (4.47) and (4448), after

the D's are eliminated by using (4.52),



C1 + 02 + 03 + C
p B B B
= ¢, - =2 ¢, + Loc, + L¢
0 €o €1 €y
-j(x264) -j(X+20,) -j20, i26,
e Ci + e 02 + e C3 + e c
Bo —i(x-26) Bo -—il(X+20,) B, -i20, B, i20;
—_ e Cl - — ¢ 02 + — e C3 - = @ C

(4.53)

Solving the determinant of the coefficients in (4.53) gives

" BoE B.e
cos X = cos 26, cos 20, - % [5382 + Béeg sin 26, sin 20,.
(4.54)
From (4.53) Cl’ C2 and 03 are found in terms'of C4 to be
Bosy —§ (X#26,) \ )
-cos 291 - jB = sin 201+ e
% _Pifo Lix 10
C,  Bat _
4 7o B, j(x=26,)
| P1%0 . 1
cos 290 + JB = sin 200— e
0"1 -
BoE -j (X-28,)
cos 20, - jﬁoel sin 20,- e -0
Eg _ Bleo eiX 170
C, ~ Bae .
cos 200 + J sin 290— e
Bo1
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(4.55)



B, i (O&20,)
—cos 200 + sin 2@0 + e
c p05'1
3 _ g
Ca Bieg (20 |
cos 26, + J sin 20, —- e 1
0] : Bosl 0 )

If the series (4.34)(is summed in the manner shown in

Appendix 2, over the interval, —(259)5255(253),

T(2) (C;-Dye 7 Je ~jBg(z - B54) -
A = e :
2j sin (XLEOP) |
5 (A&BOP)
-=J o4, J ) - )
| (oge % Bz - BY
X+
2j sin ( SOP
X"Blp
o 3B §(=7) . _
P e M T3k (= - 54
X-B
2j sin ( zlp)
Xty
—~iBpa. i(—) }
+ (04“" 4e )e e.]Bl(z - P-ig')
X+B,p
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. . X_Bop
(© _./eJ(X Bo(p-a)] ) )e-J(A =)

T(z) = L ' L —e

-jpo(z -~ Rég')

2j sin (—BLP-')

)(Bop

j(X+BO(p-q))D -j (=)

(c

2~¢ 2) iBo(z - 55
+ ; e
X
23 sin ( Bop)
X“'Blp
JX"B (P—Q) "“J( )
(03—e ( 1 L e 2 ajﬁl(z - R%ﬂ)
* | X-B,D. e
2§ sin ( élp) N
X4B, P
i[esy (p-a)] -3 ()
(C,—e [, %4)e 27 iy (s - B3
o+ e
X
25 sin (5L)
By means of (4."52),' for -—(P:zlg') stp—g-q-
—ig~(z - B=9) ; - k=a
T(z) = Cje Pol” 2 4 cze‘wo(Z 2 ) (4456)
and for P.E_Q.SZEIL;(].
-jB. (z - B=9) iB, (z - B2=9)
T(z) = s-CBe JB]‘ ’ 2 - C4e:|‘3l ° 2 o (4.57)

With this done, the problem is completely solvedas The

answer is in total agreement with the answer obtained by using

the standard approach for solving (4.33)48-
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As an asidey for the matched case if only an incident

. . . _dBoZ iBy2
wave is present, the coefficients of terms with e or e
must be zero. Hence,
€C,=0,C, =0 (4.58)
and thus from (4¢55)
Posr . - =i0x2e,)
cos 20, - j sin 28, - e =0
1 Blso 1
cos 20, + ] sin 20, ~ e = Oe
0 Boel 0
Therefore,
B.e
5o =1 (4.59)
0~1
X = 20, + 20.. . (4.60)

0 1

As already mentioned in the general discussiony
Brillouin49 attempted to solve, from the same point of view, a
differential equation similar to (4.33). Actually, the equation

was of the type

2
aT, 2 K2
(122 ((0 ”080 ) T

2pocoh(z) Ta

As has been done in the problem just solved, he expanded T in the

series
oo

-] (Z’FZIHTE) z
T = a.me P °

_m = =00
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However, he also expanded the coefficient

c(z) = mzpo [EO + coh(z)] - K2

in a series and this expansion led him into some difficulties.
Brillouin expanded C(z) in the Fourier series

0O

C(z) = b e p

and then proceeded in the manner outlined in section 3 for solving
Hill's equation.

Brillouin demonstrated that for the problem under con-
sideration the determinantal equation given in (3.35) gives the
wrong answer except in the limiting case wheré the discontinuity
of the rectangular waveform approaches zero. As he noted, the
reason for this error is that the bn's for a rectangular waveform
are not absolutely convergent. | |

The result is that he was not able to complete his
solution from this approach.

In the method of solution just established in this section,
the difficulties Brillouin encountered are avoidéd because'C(z)
as well as % %% are not expanded. Instead, the meaning of C(z)

de

and % s is interpreted in the definite integrals that finally

contain these terms.
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5. WAVES IN MEDIA WITH FINITE DISCONTINUITIES IN, AND
TRANSVERSE TO, THE DIRECTION OF PROPAGATION

5.1 General

An inYestigation of electromagnetic waves in media with
characteristics possessing finite discontinuities in, and trans-—
verse to, the direction of fropagation is carried out for two
examples. In the first example an E—wa&e solufion is sought
in a cylindrical Waveguide loaded periodically with dielectric
discs which have a centrally located hole. For the second
example, an H-wave solution is found in a cylindrical resonant
cavity containing a centrally located solid dielectric disc, the
disc radius being smaller than the cavity radius.

The standard approqchso for solving wave problems in these
media is similar to the one mentioned in section 4., The solution
is determined in each region where the characteristics of the
medium are well behaved and the boundary'conditiohs are applied
at the points where the characteristics are discontinuous. This
involves matching infinite series with infinite series. Although.
in principle this approach gi&es an exact solution, in practice'
the amount of labour involved in any numerical work makes it

50

desirable to truncate the series after fhe first harmonic” . .

Collin51

applies the Rayleigh-Ritz method to get a
trunéated series expression which approximates the field for a
slotted dielectric interface. This method can be adapted for
finding the solutions to the examples to be discussed. Once

again numerical difficulties become the limiting factore. For

example, if two harmonics are used, a six by six determinantal
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equation must be solved.

An approach which could be taken quld make use of the
generalized telegraphist's equation552 for waveguides and give
infinite series solutions. If these equations were employed,
the permittivity would not be differentiated. Consequently, the
interpretation of the derivative of the permittivity at dis-
continuities would not be required. Such a requiremeﬁt is
necessary in the treatment in fhis thesis since a wave equation
Which holds throughout the medium is employed. ' Howevery, if fhe
telegraphist's equations were used, three infinite series would
need to be determined directly; one corresponding-to~the trans-
verse electric field, another to the transverse magnetic field
and the final ome to the longitudinal field. For the method to
be suggestedy, only one infinite series needs to be determined
directly. Consequently, the price that would be paid for not
differentiating the permitttivity is the introduction of three
times as many unknowns.

For the periodic structure to be discussed, an anisotropic
dielectric approximation53 can be made if the period of the loading
is small compared with the wavelength of the field. However, in
this approximation the periodic nature of the structure is lost.

A variational method which gives upper and lower limits
for the field solution has been developed by Chu and Hansen54..
One limit is found by matching EZ aiong a cylinder of radius
equal to the hole radius. As a fesult, H¢ is, in general,
discontinuous. However, a second equation is obtained by
equating Poynting vectors at the surface of the cylinder.

Similarly, the other limit is established by reversing the role of
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Ez and Hé‘ For th;s method, due to computational difficulties,
it is desirable to‘use_only the first harmonic of the field in
regions exterior to the forementioned cylinder.54

A variational method which can be applied to the cavity

55 Although the field

problem is established by Nikel 'skiy.
expression is quite inaccurate, a good upper and lower bound for
the -resonant frequency is offered.

Approximate solutions with warying degrees of usefulness
for specific situations can be found by these methodse. The
investigation to follow offers further alternative solutions but
no attempt is made to compare the methods given by the fore-
mentioned authors and the methods to foilow.

The treatment in this section is an extension of the
approach taken in section 4. Each medium discussed is considered
inhomogenéous and the derivatives of the permittivity at the
discontinuities are regarded as impulse functionse. For each
example, a first mode approximation is given and then an approxi-
mate series solution is suggested. The second solution gives,
for the lowest order mode, an iterative answer in which each
coefficient of the infinite series is approximated. To obtain a
first iteration, the field needs only to be guessed inside the
dielectric disce No guess is needed inthe air regions.

5¢2 A Periodic Structure Loaded with Dielectric Discs, Each
Having a Central Hole

in'the E-wave problem now to be discussed, identical
dielect?ic'discs, each with a central hole, are placed at periodic

intervals in a cylindrical waveguide. The cross section of this
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structure is illustrated in Figure 5.1,

P . Cylindrical
Waveguide

[ [ [ [ [ [ [ [ [ [
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[ [/

L—u—-" Il :| ‘| l'i/_ D:i-elec‘.tric |I ! |'|
2 \

Ir

Disc with tt

£ £ |
Y o [ - Hole AR
o l“l’:l"l‘o “|‘l1 'l'
g 0

' \
L

— T 77 7 7 7 77

Fige 5.1« Cross Section of a Dielectric Disc-Loaded Periodic
Structure with a Central Hole

An easy check will show that the functional behaviour of

the permittivity in the structure can be expressed as

€ =¢gq + coh(z) g(r) l (5.1)
where

h(z) = the unit rectangular waveshape shown in
Figure 4.8

g(r) = the unit step function shown in Figure 5.2.

}\g(r)

1

>

|
i
)
|
|
|
a é

Fige 562« The Unit Step Function
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As shown in section 2.42, before an E-wave can exist in a
region where the permittivity satisfies (5.1), it is necessary
that the field has no angular dependence and

Hr = 0, Eﬁ = 0, HZ = 0.

€

Therefore, from (Al,10) in Appendix 1, H, must satisfy the partial
g

differential equation

D H 3 . OH
%[%% (I‘Hﬂ‘)] +?_z'g= "‘”2”O£Hd +';l:'%£%% (I'Hg‘) +'i‘%;gzé o

The remainder of the treatment will be concentrated on the solution
of (5.2) for Hﬁ.' If other field components are wanted, they can

be fohnd by using Maxwell's equations and the linearity relations
between the field densities and intensities. The reason neither

EZ nor Er is determined directly from the differentiél equations
instead of Hd is that each differential equation for the electric
field components contains both EZ and Er' As a result, the
equations for the electric field are more difficult to handle

than (5.2).
5021 First Mode Approximation

The set of eigenfunctions,ﬂ{Ji(Kmr)}, in which the
Km's are determined from

Jy(Kb) =0 (543)

is complete and orthogonal over the open interval, (O,b)e This

56

statement can be sufported since the eigenfunctions are

solutions to the Sturm~Liouville problem
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d 2
s (ry)] + K%y =0

H |-

=1
dr

y(O) is infinite

d _
3 (ry) = O.
I‘:b

Consequently, Hd can be expanded, first of all, by the series

Hy = jo jiz: %I T (2) J,(K r) (5.4)

where Kmb is the mth root of (5.3).

Substituting (5e1) into (5.2) yields

2 l
H

Y OH
+ coh(z) %% : %f%? (rHy) + cq 1 e(x) %'SEé .

Through the multiplication of (5.5) by rd Kmr) and the

1 {
integration of the resulting expression from O to b, the equation

obtained is found to be
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b b
. bZH
d 1
'j(r Jl(Kmr) 5;[; %; (rﬂﬁﬂ dr +—/‘rJl(Kmr) —S;é dr
0 0
b
+ mzuogO-/Fr Jl(Kmr)Hﬁdr
0
b b
- —wzpocoh(z{/’r Jl(Kmr)g(r)Hﬁdr + cOh(z{/’r Jl(Kmr)%g %’l %— rHé)dr
‘ 0]
b
%—d/-r J (K r)g(r) = 6__ dr. (546)
After two integrations by parts,
b | b
fr 3 (K r) %r-[%%? (rHy)] ar = - szfr 3, (Kx) Hydr.
0 0

Consequently, (546) becomes

b b
a2 r J,(K r) Hdr + (m2 e~ - K 2) r J,(K r) H,dr
2 1Y m ] Ho®o m 1'"m 4
0 ‘ 0

b
= _wzuocoh(z)fr Jy (K r) Hddr + E—- h(z)a J, (K a.)[ F(rHﬂ{)]
. r=a+
A _

;04
*

°“|p~
Q-'lp-'

b
[r J (K 1) Hydr. (5.7)
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where

€ = SO + coh(z)

a+ = 1lim (a +é§.

00

'—l

. . Pe) . .
The derivative = 5% (rHé) can be expanded 1n\the series

00
L (rm,) = j& K T(z) Jo(K r) (5.8)
r Or 4’ = JK1 m m 0'"'m~’* *
m =1
Since
b
5 .
@ b 2 * 19
2= K 2= J.“(Kb) T (z) = r Jo(K r) = (rH/) dr -
K, 'm2 "1 Y'm m o\*m™/ T dr )
PR O
b
= Km-/’r Jl(Kmr) Hﬁdr,
0
the substitution of (5.4) gives
*
Tm(z) = Tm(z).

By the use of the series (5.4) and (5.8), H¢ and its derivative

are eliminated from (5.7)s The result is



5 b
d Tm 2 2
[7 thom  Tn| [ * 9 (Eyridr
z S
0
o0 b

= ~0%u e qh(z) :g:: Tn‘/ﬂr 3y (Byr)d) (K r)ax

n=1 a

. : w
o o
+ ;I h(z) a Jl(Kma) K T JO(Kna+)
n =1
c dT
0 dh . n :
+ ¥ 4 E '(E-'fr J) (K r)Jd, (K r)dr
n =1 a \‘
wvhere
2 2
Bom = © Hoto ~ K"
Since57
b
rd 2(K r)dr = EE J 2(K b)
5 1 m -2 1 m
0
b

rJ. (K1) J. (K r)d —ﬁJz(Kb)S )
1Y m 1'"n r=s 1 m mn

a

2
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(549)

(5.19)

- —-—a‘E—z [KnJl(Kma)JO(Kna) = KmJo(Kma)Jl (Kna’)]

K —

m n
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where E&n is the Kronecker delta function, (5.9) becomes

a’r .
dz2 + Bom Tm = — pocoh(z) Tm + :; iz

2h(z) c '
+ 2 2(K b) IZ [E—(ll Kna, Jl(Kma) JO(Kna+) :

dT
m
dz

=

w2pocoa
P [KmJl(Kna)Jo(Kma) - KnJO(Kna)Jl(Kma)] T
K2 -k
n m

o0
_,_QH_E ZE:: K I, (K a)To(K a) - K J (K a)J, (K a)] ar_
,* .

dz °
bz[an - sz] 2(K b)

(5.11)

The solution to this infinite set of differential equations,
once substituted into (5.4), provides aﬂ-exaét solution for Hd’
As can be easily surmised, in practice, 6n1y an approximate
solution to the set can be anticipated.

Provided a<n=b,58

~ L 2
JO(Kla) = ] - 4(Kla)

Jl(Kla) 4

[\ [

(Ka) - %E(Kla)B % (5.12)

J2(K1a) x~

coj+

(Kla)z | ’
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and thus if Tl is regarded as the driving function, for the

smaller values of m=1 from (5.11)

2
Tn & (%) rl‘1"

Through the use of the asymptotic e_xpressionss8

[_2 i3
JO(Kma.)N _mea cos (Kma, - 4)

.2 3n
Jl(Kmaf)N 'nKma cos (Kma -7 ),

for the larger values of m

~ m: 1 a\?
r & | (258 .
M lcos K a (Kmb)3 b 1

[sin K é.

Therefore, for a first approximation of the field, all terms
for m=1 will be neglected. On making such anAapproximation,

(5411) gives

2
d°T c
1 2 2 2 0
3 +tBor Tp = —[®"koco - 33 c [KlaJl(Kla)JO(Kla)
b Jl(Klb) 1 .

dz

2 a2 (. 2
wuoe; 5 (9,2 0)- 35(Kpa) T,k a)] | | BTy

T
(& 1 2 S0dh 1
+{1 = (b) T [Jl (K a)- JO(Kla)Jz(Klai] shrkv
1'% : |
(5.13)

By means of (5.12)y if higher order quantities are neglected,
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(5.13) can be simplified into the expression

2

a“T * 4T
| 2 2 2 1 de” "1
2 P T =- [@?uge0 - 28,2 ] n(z) 1+ [1‘“]3* iz iz

(5414)
where
2 N
2 2 0 (a 1 [ 2y 2
MK, © = K. ¢ — [& 1 + (@2 poey ~ 2K ) ]
p(5415)
, ,
1 ( K-18‘ ) (a)2
X = § _b' -
Jl(Klb) J
From (5.14) when
h(Z) = 1,
dle )
2 PP =0
Z
where
2 2 2 2
By~ = pogl - (K7 + AK; )e (5416)

Before (5.14) is a valid approximation, in (5.16) K12 should only

be perturbed a small amount by the presence of the hole. Hence

and thus "a" must satisfy the condition

2] € »
52 - 2 1,25 2 o
[1 + (0%pge; - 2K ?) %]<<% b°J, “(K;b)e (5417)
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A point worth mentioning is that AK12 is always positive

since
Kla. =<K;b = 2.404,
If both T1 and T2 afe taken into account, it can be shoVn
thgt b
T2<:<=T1

under the more relaxed condition

2 €
2|, 2 2 1.2, 2
a [1 + (¢ BoE1 -~ 2K-l ) % ]«4'&—6 b Jl (Klb).
(5.18)
In place of (5.17); (5+418) may be used.
Transforming (5.14) yields
' 2 2 2

a [ 1 ) [Bor” + (@Twgey - 4K T)h(z) T
dz e*(l-ot) dz J s*(l-“) 1

This equation is of the form given in (4.1) and, as a consequence,

from (4.5) and (4.6)
Tl(z) = a gontinuous function (5619)

daT
) 35~ = & continuous functions (5420)
|

1
5;(2) = ¥l

From (5.19) and (5420) the boundary conditions for T, are known.
At this point, (5.14) can be solved either by the standard
method using boundary conditions or by the method developed in |

section 4.523 for the solid disc problem. Since only minor
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adjustments to the answer in section 4.523 need to be made, the
second method will be utilized.

If (4.33) is compared with (5.14);¢$he solid disc solution
can be made equal to the solution for (5.14) by making the

following replacementss
T(z) — T,(2)

s(z) —— Sl(z)

By > By -

Once these replacements are made,

o0
Tl(z) = a e (5¢21)
n = -0
* * * *
p=q
cx_1[ 4 % L3 L 4 esn( 5 )
n T p|sy- dBpy syt IBgy o osym 3By syt 3By,
* *
D D D ¥ B s (B
L1 1 .22 .3 . 4 JSn'2
P sy~ 3Boy " ospt Boy osym By st By
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c,” =% -Tl(P-'zlﬂ) + jeg sl(qu)]
] 01
- l-x -
¥ 1 - .0 P=9g
c, ==|T (%) - ; S, (=2
2 =2 N1'2 Boy 1027
. l-a -
* 1 — o1 =g
c, =3%|-1,(8%) - j s(E4)
3 2|71V 2 B1q 2 /|
l-x -
* 1 p=ay , o1 P=q
C4 "2[f‘T1(2)+3311 S1(2)_ |
L e _ S (5.23)
_ 4 jekach : P+q
Dy =3 | MR +ip 5 (5
- 1-a -
¥ _ 1 (R+a ._0 P+
Dy =3 |BR) - i 51 (50
_ 1-o -
x 1 £
RN
_ l-x 1
¥ _1|_ P+q 1 ' Pptq
Dy =3 Tl(z)'*i’ﬁ11 S1(2_'

Also,
%
C = e 0 D
. 1
. *
o ¥ _ e3(X+2@O ) iy
2 = 2
. *
C * ergl D *
3 - 3
i20 "
¥ TdeFy *
C4 = e D4
where

26, = BOl(p-q) = the phase change in the air region

20 = Bllq = the phase change in the disc.
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The dispersion relation is given by

8 e l-« 8 e l-x
* *
cosX = cos 26, cos 20, - %[B-O—l E-l + El—l-(—(-)-) ]sin 290* sin 201*
11\%0 01\%1
(5.24)
* * * . : L%
and C, , C and C are found in terms of C to be
s | 2 3 4
- * 3
' * .301 * =J (X"‘ZQO )
* cos 20 - Ja sin 20 + e
C B € l-a 1 Bll '
1 _l_l_(_Q) JiX
* = B € *
cos 290 + jg-— — sin 20, =~ e
011%1
BOl v —i0¢20,7)
% cos 20 - sin 291 -
c p
—2_ _ 11
c,” Po 1-a (
4 Bi1l50 x  J(x26,7)
os 290 + J'B—‘— — sin 200 -
01151
% Bll 80 1-a % 3(X+2O )
* —Ccos 290 + JB— — sin 290 + e
C3 01'\"1
*x = .
%4 Byfeol™® «  d0e20)
cos 290 + JF— — sin 290 -
0111 )
(5.25)

From (4.56) and (4457), for —('L;-g-)szs_}?-,

* 6"3501(Z - (B59)) Lot 65301(z - (EEQ»

T (z) = C; 2

and for P?-szs%q-
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() = o, e—jsll(z - (55 ) ejsl‘l(z - (5] :

The new matched condition is

B
Bll( ) (5426)
01
which gives
* * ‘ (
X =20, +20, . 5ﬁ27)’

’

Some points cany now, be made with regard to how the
lowest order mode in the solid disc structure is affected by the

introduction of the holes From (5.20)

dT daT
—1— L =i 1 (5.28)
sol-a dz _ ell_a dz _
zZ = 129' —8 7z = P-ZJ' +8

where 8>O and 8—*0. Equation (5.28) can be rewritten as

1 _ 1 4%
€En dz €ol* dz
0 z._P;cL—S ele) Z=P-—q'+8
2 1 2
(5429)
For the solid disc problem
L ar L . (5230)
€9 dz e, dz
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By analogy between (5.30) and (5.29) an effective permittivity

for the dielectric disc with a hole is

€g\®
Inspection of (5.31) shows that since a=0,

Seff'<€1¢

Consequently, from this point of view, the hole reduces the
effective permittivity of the'disc.

As can easily be seen,

Therefore, in the air region the presence of a small hole does not
appear to affect the propagation coefficient and, in turn, the

phase change. However,

Hence, the propagation coefficient in the region of the disc is
reduced. Because of this reduction, the phase change across the

disc is decreaseda
! |

From the ab%ve statements it appears that the perturbation

: \
caused by the hole may be reduceq by increasing the dielectric con-
i

{

stant of the disce *
A more accurate treatment?which includes the effect of T2
and, if desired, even T3 should be possible without undue

difficulties.
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5.22 An Approximate Series Solution

An approximate series solution is now developed for

(5.5),

51

X’H

2 2 '
5 + @ ”OSOHﬁ = —® pocoh(z)g(r)Hﬁ

H =

%? (I‘Hﬁ)] +

zZ

OH
(dE L LY dh L34
+‘¢Oh(z)dz € T Or (rHﬁ) + ¢ az g(r) e oz °
(5032)
The series expansion for Hﬁ is in the Floquet form,
—.]( +2:1E')l'ﬂ:)z _gnz
Hﬁ = / : Hn(r)e = Hn(r)e
n — ~00 n = -0
(5.33)

where Hn(r) is the coefficient of thegn;h space harmonic,

If (5.32) ﬁs multiplied by % e ™ and the ensuing expression
is integrated from O to py then replacing H¢ by the series (5433)
produces a double infinity of linear homogeneous differential
equations of secoﬂd orders The solution to the set of differential
equations, once substituted into (5.33), provides an exact
solution for Hﬁ' Clearlyy in practice, oﬁly an approximate
solution to the set can be anticipated.

Theyapproximate solution to be developed in what follows is

59

analogous to the Stodola and Vianello method for déiermining,
approximate solutions to boundary value problems in ordinary
differential equationss In (5.32) the field terms to the right of

the equality sign are approximated by the solid disc field terms
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found in section 4.,523. Equally, and no doubt with greater accuracy,
the solution for the first mode abproximation in section 5.21 could
be used. The solid disc solution is chosen because it is thought
that the nature.z; the series approximation can be more easily dis-—-
cussed relative to the solid disc solution than to the first mode
approximation,

Once the solid disc field is utilized in (5.32), the terms
to the right of the equality sign,gdt as a driving function and H¢
is the boundary value solution to this new driven differential
equation. Actually, what is found is a first iterative solution and.the .

field for the solid disc problem is the guessed solution.

Since from (2.18)

oH
x‘é = -j(OE:E
Z T

(5.34)
% %; (xHy) = joeE,,

(5432) can be rewritten as

%" |
Q [LQ (rH /)| + — 4 + wzp e H, = —@zp c h(z)g(r)H + jwc h(z)gg E
or LT or 4 > 22 0%0"g 0o é 0 dr “'z

. an |
- jecy 7 g(r)Er; (5435)

At this point, H, in the terms of (5.35) to the left of the
g

equality sign is replaced by the series (5;33). Once this is done,

g z
n

(5635) is multiplied by % e and the resulting expression is

integrated from 0 to Ps Hence,

P

3 z
S |= & ‘ s 2 2 _1f .2 n
dr[r dr (anﬂ * (8,7 + @ el = P[4” ”Ocog(rZZre h(z)Hydz

P- g8 2 | br g 4
- 0" dh 5 3, 4 joc, & ™ h(z)E a
: Jncog(r) e 3, Bodz + jocy 52 [ e z)E dz
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o

(5436)
e =T
z
. n® dh . d Sz
-Jmcog(r)-/fe ig Epdz + jocy 3 J/f e X E dg
0] P=9
2
where -
£2__ (82 +0%uc) = (Xiznn]z o2 (5.37)
n n Hoto/ = P Hofo" oy
The expression,
§nz
g(r) e Hydz, (5.38)

i

is completely determined provided H¢ is known in the dielectric
disc because g(r) is zero over the interval, O=r<a, and the
region of integration is only from Eég to E%Q . Similarly, the

expression,

5 |
8 z
g(r) J[.e n R dg, - (5.39)
Oy l‘.

is specified completely if Er is known inside the dielectric

region. The reason is that at z = EEQ and z = B%Q, Er is

continuous across the interface between the air and dielectric
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material. Also, due to g(r), Er needs only to be known in the

region, a<r<bgs Since the limits of integration of

Ptq

d 2~ §nz

E% e E dz (5.4q)
P=q

are only from pzq to and Ez is continuous at r = a, the
determination of (5.40) can be made once EZ is known in the
dielectric disce Therefore, the first iterative solution can be
found by guessing a field solution in the dielectric region oqu.
When the solid disc field is used in (5.38), (5439) and
(5.40); a guess for each space harmonic in the dielectric reg{on
is provided, since each field component is expressible as a sum
0 ~Sn?

of space harmonics. If the guessed space harmonic is Hn e ’

then

As can be seen from the first mode approximation, for a—O0,
E _>1.
n

. From section 44521 the solid disc solution is

D, = JO(Klr)T(z).

Therefore, in the dielectric region from (5.34)
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1 : dT 1 A )
EI‘ = e K—le'T Jl(Klr) EE = = Kl— Jl(Klr) S(Z)
.0
E =2i-J, (K ) T(z)
T g, 01 ¢

Z 1 p

The substitution of (5.41) into (5.36) gives the
differential equation for Hnl, the amplitude of the first

iterative space harmonics This equation is

d TLad gy g2l of 3 (k. p) 38
dr [r dr (an ﬂ Kn Hn = €n Jl(Klr) g(r) + Jmfn JO(KII) dr
(5442)
where
o2 B B
TN § =z c 8§ z N
e 0-0 ‘n © [0 n dh
e = JKl ——5———) J/_e ‘T(z) dz + JKl‘P,[/”e S(z) i, 4z
P=g 0
2 5(5443)
p+q
1 [%o 2 8 =z
f = ——(——) e U T(z) dz.
n = ey |P
- /
> ‘
From (4.38) and (4.40) .
|
c £, (559 f
°n = j%‘( —|° [0%ge, T(5D)+(5 2 - K 2) s(B5Y)]
1 p(§n +B; )l o>n 2 *n T ™1 N2

8, B , ptq 2 2\ «(P*q
—e [(o pod, TS +(8,° - K %) s(55 )] 5(5.44)




109

1 °o An(%g) + +
n = ZI( (§n2+512)) e [, T33%) - ¢ s (249)]
s (55
—e (8, TB5Y) - ) s(B5D)]

where T(pgq), S(pzq), T(R%ﬂ) and S(?%ﬂ) can be determined to

within an arbitrary constant by means of (4.43), (4.44), (4.52),
(4454) and (4.55)a
An examination of the terms in the driving function for

(5042) will now be carried out. These terms are

joz_ J,(k r) $& (5445)
e, J,(Kr) g(r). (5446)

Over the intervalsy, O<r<a and a<r<b, (5445) makes no
contribution. However, (5+45) gives an impulse at the surface,
r = a,and thus contributes to the boundary condition at this

surface for the derivative, % %; (anl). In a sense, the effect

of the discontinuity caused by the hole is gveraged at the
surface, r = a, over the complete period Qflthe structure, The
term giving the averaging action is in fn and, in particular,
from (5.43) is

§ z

e T(g) dz.

S |+
oI
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The expression in (5.46) provides the coupling between the

space harmonicse This feature can be noted by substituting into
e, the space harmonic.expansions for T(z) and S(z). In the
limit as a—0,

g(r) =1

for all r and (5.42) reduces to

4 [l Guly) - g 2! _
4 (L @) -k 2! - e J) (K r). (5447)
If the condition that EZ is zero at the waveguide wall is kept
in mind, the solution to (5.47) is
e
R e J, (K 7)

n A2
S, +BO

which is the solid disc solution. By taking therthér extreme

where the waveguide is empty , a = b, (5.42) becomes

& |

2

%; (anlﬂ - g - 0. (5448)

Similarly, for Co =€) — &g = 0, (5.48) results. The solution
to (5.48) is
1

H = = Jl(JKnr)

where

A

JO(anb) = 0.

Hence, the space harmonic solution is equivalent to the mode

solution for an empty waveguide. Consequently, as should be
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expected, from (5.42) for a = b or for Co = O no coupling exists
between the space harmonics,and for a = O the coupling region
is a maximum. When a hole is present in the disc, (5.42) shows
that the coupling region is reduced from the solid disc case by
the factor g(r), Hencey from a physical point of view (5.42)
seems quite reasonables

The general solution for (5.42) will now be treated.
Hn1 could be expandeﬁ in a series made up of a complete set of
functions and the coefficients of the series could be determined

1 i1l be

from (5.42). However, for the sake of simplicity, Hn

solved in each region where (5.42) is well behaved and boundary

conditions will be utilized to match the solutions at r = a.
Examining (5e42) shows that in the regiop,()f:wza; Hn1

must satisfy the differential equation

dr [r;dr (an ﬂ - Kn H™ =0 (5449)
and in the regiony a<r<b,
dr [I‘ dr (an )] - Kn Hn - en J]_ (Klr)‘ (5:50)

The boundary conditions for Hn1 can be established by

integrating (5.42)e On the first integration
T r

14 1y, ¢ 2 1 |
=37 (kB ) = Kn an (T)ar + enj Jl(KlT)g(T)d‘r

r

. C\dg 1
+ jof JoleT)d'r aT (5.51)
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and on the second integration

T T T T

=K 2]7&7 H, Ls)as + eandT[Jl(Kls)g(s)ds :

1
H
i

dg
+ jof j'TdT[J (Kls)ds ds. (5.52)

The integral

r

[ (K, T)g(T)dT

is a continuous function of r and the integral
T

dg
[ JO (KlT ) e aT

is a function of r with a finite discontinuity at r = as

Consequently, both the integrals

r T

deT J1 K s)g(s)ds

-
dg
deT[JO(Kls)ds ds

are continuous functions« Therefore, by an argument similar to

the one advanced in section 4.2,

Hnl(r) = a continuous function, (5453)
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Since the integral
T

ag 57
fJO(KlT)dT aT

is zero over the interval O<r«<a and has a finite step of

JO(Kla) at r = a,

r = a— r = a=—

14 2 1
= 0 0 J[. H, (mar + e J[. Jl(KiT)g(T?dT

m
(i
[
~—
I
=

r = a+ r = a+

% %—;(anl) = ﬁnz f Hn1 (T)aT + e f J, (K T)g(T)aT

r = at+

+ jof I, (K a)

where
am = lin {a -O)
&0
d~0
Hence, the resultiﬁg boundary condition at r = a is
1l d 1 1 . '
T35 (fH7) == g—r (anl) -J(ofnJO(Kla,).u‘:i (5+54)
r = a=- r = a+

In the region, O=r<a, from (5.49) the solution for Hn1
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is

Kr). (5455)

If Kn is imaginary, Il(ﬁnr) becomes Jl(anr).
In the region, a<r=b, the particular solution for (5.50)

has the form
g 1

hp = B, Jl(Klr). (5.55)

Through the substitution of (5.56) into (5.50),

2 s 2
(uKl - Kn )Bn = ®n
or
_ e, _ en - e _ iﬂ.g )
n-_ ([ 2 2y T (a 2,2 w 2y 2 2 - n
DR TR ) (B Mg =K ) 8 48T Ky
(5.57)

The homogenpous solution for (5.50) is

H 1

_ 1 ey A
an = Cp Il(Knr) + DnKl(Knr).

When ﬁn is imaginary,.Il(Knr) is replaced by Jl(jﬁnr) and
' Kl(ﬁnr) is replaced by Yl(jﬁnr). The combined solution for
(5.50) is

1 0 P
iy =g 8 J (k) + ¢ ' I, (K r) + DK (K r)e

(5458)
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At r = b, since EZ is zero,

As a result, from the series in (5.33)

H |

d 1 d 1
a? (an) = ; 'd—r (an ) O. (5059)

r =>5>, r =Db
Substituting (5.58) into (5.59) yields
jos_ J,(K;b) + R C_° Io(ﬁnb) - ﬁnDnKo(ﬁnb) = O

Since

JO(Klb) =

|
o

then
B I,(K b) o I
n n ~ “"0'n n
KO(Knb)

Therefore,
Hl—"°—-§J(Kr)+[K(Kb)I (R r) + I.(Rb) K (f:r)]é
n JK1 n"1'\71/" 0'"n 1 n 0‘"n 1 n n*
(5460)

At the boundary, r = a, from (5.53), (5.54), (5.55) and (5.60)
A A N A
Il(Kna) An = Gl(Kna) én + JKI G Jl(Kla)

R I,(Ra) A =R Gy(Ra) 8 +jea - £ )J (Ka)
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where

G (K r) = K (K b) I,(K r) + I (K b) X (K r)
Go(R ) = Ky(R b) IQ(Knr) - IR p) K (R r)e

Hence, An is given by

7| &, Iy (Ka) GO(Kna) - (8 - £) J5(K a) Gl(ﬁna)} |

A = =jw

®
"

R, 1,Bp) [15(R ) K (R a) + 1, (Rje) K (R a)]

The term,

1,(R a) K (R a) + I, (R a) Ky (R a)s

is the Wronskian and is equal to6o
o A _L
Io(K a) Kl(Kna)-+ I,(R a) Ky(R a) = e
n.

Consequently,

R Y o

&/ % J, (Ka) Go(ﬁna) - (an- fn)qO(Kla) G, (K a)

An=—'j‘0a . ; .

IO(Knb)

(5461)

o

Similarly, [

 ) 8, J(Ka) I,(R a) - (8 - £ )T (K a) Il(ﬁna%
@n = =j0a

iO(Knb)

(5662)
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Since the Wronskian appearing when Kn is imaginary is”

Jl(jﬁha) Yo(jﬁna) - Jo(iR a) T, (iR a) = y

, njﬁna

for such a case careful attention should be given to include the

2/n term in An and Cn“

According to (5434) on the axis of the waveguide

1 19
E, T jwe, 1 or (rHy) ‘
r =0 : ‘ r =0
Through the use of the series in (5.33),
00
_ 1 E 1d ~Fn”
Ez jmeo' r dr (an) e bt

r =0 n = -0o Jr =0
Hence, for this case the coefficient of the nth space harmonic
of E is !
z .

_ 1
n jweo

1l d '
‘r dr (an) *

By means of (5.55) and (5.61)

oY

o 1N
bn - jmso An I-O(’K\nr)
| r = 0
R A | .
) g, | & I, (Kye) 6o(R ) - (8- £) J5(Kja) G (Ka)
= R g e . - ‘ | .
n R e e
, eOIO(Knh)

(5.63)
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Over the interval, O<r<a, from (5.33), (5.55) and

(5.61) the first iterative solution can be expressed as

oQ

1 .0 Z [Kl (an—fn)_JO (K1a5Gl (Kna)—ﬁngn‘}l (Kla)GO (Kpa)] -8,2

H, "= j+—a I. (K r)e
4 IK 1'n
! =—00 IO(Knb)

(5.64)

‘and over the interval, a<r<b, from (5.33), (5.60) and (5.62)

3 o0
/ —g V4
1 .0 a n
H’& = JKl Jl(Klr) % a.e
n = -0
‘oo

Z [k, (82000 (K2)T) (R )R & J; (K 2)T (R a)] & oy
| 71 Ny
| I,(K b) ;

(5465)

L0 -
+igy—a

Kl
N=—00

In’(5.65) the first series corresponds to the solid disc solution
and the second series is a pertqrbation term. This statement
will become more evident as the discussion progressesa

| The dispersion relation is found by equating at the point
(r = b, z = p/2) the guessed sotution for Hﬁ in (5.41) and the
first iterative sqlﬁtion in (5.65)«. This point was chosen
because it is thoﬁgﬁt to bé the point in the dielectric region
where the guessed an& first iterative solutions behave most like
the exact solutiop. The justification for this statement is
based on the fact that the chosen point is farthest removed from
the perturbation caused by the hole and, in particular, from the
perturbation near the corners introduced by the hole. By

equating the guessed and first iterative solutions at a point
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lwhere the field is relatively well-behaved, the hope is that

. elsewhere the first iterative solution is allowed to deviate more
than otherwise from the guessed solution and in turn approach more
closely tb‘the exact solution.

From (5441) and (5.65) at r = b, z = p/2

o0
© ~8 g
. .Q
it Jl(Klb)T(g-) = jg Jq (¥;b) 8 e n
1 1 e
n = -0
(5466) .
' o0
. - A ._A A . A —A B
w2 [Kl(an-fn)Jo(Kla,)lll(Kna) R 8 J, _(Kla)IO(Kna,)]je s 2
K, b R 1.(R b)
Nn=—— 00
where
1
SRS &
has been employeds According to Appendix 3
o0 O . .
. e -jo
2 =% ro % % o
g o D2 _ pRyL 1° iy, 28 1—ed O |
n 277 2] X-BP. X+8,p
n=— 00 sin (—=—) sin ( )
2 2
Therefore, (5.66) becomes
J. (K,b) _‘% c 1% c. =% -~
1 10° 1° + -2 00 _
2] XPBoP . X#Byp
sin ( ) sin ( )
2 2
(Vo) ' ‘ :
a _ e _" A Eod _2 P
_ (Q)z : [k, (8,~2,)3, (K 2)T (R 2)-R 8 5; (K a)I)(R a)] 53
(8 ' .
n=—09 KnIO(ﬁnb)

(5.67)
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and from this relation, since X is known from (4.54), /?ca,n be.
determined as a function of @ for any particular structurea
A
Provided (X=X) is small, a simplified formula for

obtaining j?can be found from (5.67). To begin with,

(63060 _ 1= 5(50).

Therefore, from (5667)

. % 3
2 sin (X zop)sin( ZOP) er

BoP. 39 XBop, =35 ]
2

A *
R-x=r, | ()

o'l

Jl(Kib)[sin(ELE——)e Cl+sin( 3 e

o0
. Z : [Kl(an £.)3,(K )1, (R a) KnanJl(Kla)IO(Kna)] 5 3

KnIO(Knb)

(5.68)

The terms of the series in (5.67) which give a (SQX? contribution
‘are of second ordere. This statement may be verified by
investigating the relative magnitudes of the terms for the

series in (5.67) compared with the:terms of the series

o0

-8 122
3 A n
J; (K b) 8 e .

n = —00

As a result, for a first approximation the right side of (5468)
is evaluated ii’or 2:)( and thus

Re equals real partes '
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X"B OP X""B oP 322-(

2 sin ( 5—)sin(—5—)e

X+#B P 39, 8D | meTo
Jl(Klb)[sin( 52)e” o)+ sin(X - )b ! 002]

XX = By [(%)

e

(o)

o0 .
< z [Kl(an-f‘n)JO(Kla)Il(ﬁlﬁ_),:_ ﬁnﬁnJl(Kla)Io(ﬁna)] -8 %J-
n ==
R=x (5.69)

61

For sufficiently small "a®

1
Jl (Kla)—> 5 Kl?,
IO(Kna)—+1

JO(Kla)—~1

(5470)
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Consequently, the series in (5.67) approaches zero and, as a

result, ,
[ej(?-X) - 1] —o.
Hence,
X —X
and thus

From (5.65) the first iterative solution approaches the solid disc
solution. In other wordsy; in the limit the two solutions are in
agreement, as they should be.

Now, (5.69) will be examined for the case where the
fields for the solid disc structure are matched. Such an |
investigation gives some indication of the behaviour of the
effective propagation coefficient in the disc. For example,
from the solid disc solutionfand the solution of the first mode

~

approximation, if (4+60) and (5.27), respectively, are utilized,

)?_X&’ 290* + 201* - 200 - 201 ,= (Bll - 31)q = (Aﬁl)q
(5471)

where ABl is the perturbation of Bl caused by the holes

This examination will be restricted in that only
frequencies in the first pass band will be considered. These
frequencies are in the range of greatest interest in beam—coupler
design since most hiéher: order modes are still in cutoff,

The radiusy; a, is to be taken small enough so that én
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can be approximated by (5.70). In recollection from section

44523 for a match to exist

Hence, from (4.57) inside the dielectric disc

T(Z) = C

e‘jﬁl(z - (559

1

As a consequence, (5443) gives

okt
1 %o i8, (559 ? Spz Bz
f == —C,¢ e e dz
n| . P g 1=
X=X P2q
2
, . X+2nm a
2 % -8, % j(ZEZgﬂ_) sin(-55550 Bl)g )
E s e - e g
pey 1 Xe2n7
| (5472)
Substituting (5.72) into (5.70)‘yie1ds
4.4 in(X*F2nn _ ooyga
& _j—=— — e e
n P & X42nm 2
Rx P
(5.73)

If (5.73) is employed in (5.69), the result is
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.,i "0 ) q
2y igyg) 2 ZE:: 2.
1l (x)p) IO(ﬁnb)l? (A225 _ g))
(5.74)

The series in (5.74) has been summed in Appendix 4. By means

of this summation and the fact that

X= BO(P"q.) + quy

A

R-x 2 : L (a 31 ‘“‘CEWFT) + T, +7),8) O (5.79)

where S8 is the sum defined in Appendix 4 and

_ ‘Blb)(Sin(Bl_BO)% )( Iy (K;b)
o a/2 1o[VB,” - Bo2 - Klzzq
‘n _ (Sin BO(P-Q)\/ 31 \( sin (Bl— O)g )
2 B0 }bl + BO }q/2 sin [Bo(p q)+( ﬁb)4
in ( )
T, =9, (K b)(Bl\ - 2}2 o 2)

The expression fmrjad(in.(5‘75) is now to be compared
with the following expression obtained from the first mode

approximation., For the first mode approximation

2 2
V8,2 - ok 7 .
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Hence, provided Blz;¢>AKl »

Through the use of (5.71) and (5.15), for "a" very small

2

2 ¢ K
~ _ 1 0 1
R-x= - 5 (&) 5 gz (Jl ) (5.76)

Since in the first pass band

=p) [

O0=X<=m, (5677)

the terms‘ﬂl and'T)2 are positive and this would in@icate (5¢75)
and (5.76) have the same sign. As mentioned in Appendix 4, S is
an oscillating series that is made up of the contributions of
the higher order modes in the waveguide and most of the terms in
S are evanescent. The contfibuti;n made by S is, in effect,
ignored in deriving (5.76)a

Owing to (5477),

- dgdesl
(By = Bg) 3573 -
Consequently, the approximation
; - 9 ~ - q
sin (Bl ' ﬂo) > = (Bl Bo) )
is not too unreasonable. Therefore, for both (5.75) and (5.76)

X-X&q
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and, also?‘
Rx (2

%o
€1

X=X o<

Furthermore, When.ﬁl——*ﬂo, since

sin (Bl - Bo)% - q Kl

Io“B'l - ﬁoz"hKlé'_b) ] 2bByJ; (K;D)

; q
sin (ﬁl - BO) > -—a—O{
then
V'7h 1
7@'_* 0

‘03'—*'0 .

Therefore, for this case (5.75) and (5.76) approach exact
agreement. At Bl = BO, ﬂh is a maximum andqﬂh decreases toward

zero as Bl increasess Since

vSin Bo(P_q)

B < (p-q)
Bl
PARTAY S
5 =3 (5278)

+ B
3 sin [ﬁo.(p-q) + (-l—é-,-—o)q]
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an upper bound for ﬂb is Z(ngﬁ. For a constant X, inequality
(5.78) can be established sincé differentiating the left side
by Bl shows there is no local maximum. Consequently, thg

absolute maximum occurs when Bl>=’ﬁo and thus

sin (Bl - Bo)%' _sin B,

l.

Il

(ST [\¥] =}

sin[BO(p—q)+(51+ BQ)%] sin Bl

In conclusion, (5475) and (5.76) appear to be in reason=

able agreement.

503 A Cavity with a Solid Dielectric Disc Partlally Filling the
Central Region
The H-wave symmetric field solution in a cavity with
a solid dielectric disc partially filling the central region is
the topic of this sectiones An illustration of the cross section

of the cavity is shown in Figure 5.3.

1Y
VA L 4 VA V4 L L
T
Tﬁ Dleleckrlé / Cavity
b a DlSC : . ltll / Air /— Wall
/)r llgl\::leill.|l|
> _L ATirila MY B I
/| Z g = 01 =Ko
' \‘n\ ' (‘ :‘ : o=20 /
(' fo ! /
—"2 kg S
. 'y \ L Ly /
VA VA L VA L VA VA

Fige 543s Cross Section of a Cavity Filled Partially in the
Central Region by a D1e1ectrlc Disc

In his investigation into the propertiés of dielectrics,
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Luthra,62

examined this problem. His treatment was initiated
because in high power applications intense local fields may
occur in the air gap between the disc and the cylindrical wall
and, in tﬁrn, these fields often cause sparking and even the
breakdown of the dielectric material. Luthra dealt with the
case in which the air region is near cutoff and the dielectric
disc is'a half wavelength thick. As a result, he simplified
the problem by collapsing the metal end walls to the dielectric

surfaces and, then; analyzed this reduced problem.

Inside the' cavity shown in Figure 5.3, the permittivity

may be expressed as

£ =gy + coﬁ(z)g(r) (5479)

vhere h(z) and g(r) are described in Figure 5.4.

i ﬁ(Z) A}@(r)

1t 1

P=9 ptq -z a b > T
p) 2 P

Fige 544. The h(z) and g(r) Functions

The necessary restrictions on the field before an H-wave
can exist in a region where the permittivity satisfies (5.79)
can be arrived at in a manner similar to the treatment in
section 2.42 for E-wavess The restrictions aie that the field

can have no angular dependence and
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Therefore, from (Al.13) in Appendix 1, E¢ must satisfy the

partial differential equation

4 ¥E |
%;-[%-%; (rEﬁﬂ + _;Eé— = —mpoeEﬁ. -~ (580)

The reasons for solving for Eﬁ rather than Hr or HZ from the
differential equations are the duals of the reasons advanced
in section 5.2 for solving for Hﬁ'

If (5.79) is substituted into (5.80), the result is

, ¥E A
%; [%5%; (rEﬁﬂ + S;Eé + w2u050E¢ = -mzpocoh(z)@(r) Ed .

(5681)

The next section will deal with the first mode approximation of
the solution to (5.81) and, immediately following, another

section will establish an approximate series solution for (5.81).

531 First Mode Approximation
The set of eigenfunctions,.{Jl(Kmr)},vin which the

Km‘s are determined from

Jl(Kb) =0 (5¢82)

is complete and orthogonal over the open interval, (0O,b). As a

result, Eﬁ can be expanded by the series

E¢ = ZE:: Tm(z) Jl(Kmr) | (5.83)

m =1

where K b is the mth root of (5.82).
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Multiplying (5.81) by r Jl(Kmr) and integrating the

expression which succeeds yields

b b
2 A
d : 2 2y
525‘/’rJ1(Kmr)E¢dr + (¢ boEo— Ky ) rJl(Kmr)Eédr
0 0
l a
= -mzpocoﬁ(z)-jfrJl(Kmr) Egdr. | (5084)

0

Through the use of the series in (5.83), E¢ is eliminated from

(5.84). As a consequence,

b o0 a
2
Ty 2 2 2 ‘
,—;;E +_BOm T, rJl (Kmr)dr = — pocoh(z) T, rJl(Kmr)Jl(Knr)dr
N 0 n=1 0

where

2 _ 2 2
Bom = ®"Bofo = Ky -

Therefore,

o0

2
T, 2 m .2 2y2 f [KnJl(Kma)JO(Kna)—KmJO(Kma)Jl(Knaﬂ
— + B = —0°p.c, ()= h(z) T
a 2 Om m 0°0'b’Db (K 2 _ K2 )J 2(K b) n
z m n’" 0 m :
n=1
(5.85)
since63
; b
r J.%(K r)dr = b 5 2(K_b)
1l m -2 0 m
0

and
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a

R - -
fr J (K r)d) (K r)dr = 5 Z[KnJl(_Kma)Jo(Kna) KmJO(Kma)Jl(Kna)] .
O m n

For the case in which

Ab =b — a <<b, (5.86)
~ N 1 2] \
JO(Kla,) ™ JO(Klb) [1 -3 (KlAb)~
J (Kja) 2 -J,(K;b) (K 2b) : 2(5487)

IR

2 2
Ab Ab 1
J2(Kla) —JO(Klb)[1+2_b— + 2(p ) - 2(K1Ab) ]

7
where the formulas 64,65

o0

T, [ (b = ob)] = Z g (K/b)J___(-K Ab)

m = =00

_ 2
J2(K1a.) = Kla' J1 (‘Kla.) - JO(Kla)

3

have been utilized. If '1‘1 is regarded as the driving function,

from (5.85) for ‘t;he smaller values of m=> 1

ng< ‘%2)3 Ty

By the use of the asymptotic expressions for JO(Kma.) and Jy (Kma),
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for the larger values of m
sin K a
e o
cos K a
Consequently, for a first approximation of the field, all terms

for m > 1 will be neglecteds Frdi (5.85) this approximation

yields
42T ol 3.2(K. a)=d (K 2)J. (K. a)
. 1 +B 2T _ _‘02 c (ﬁ 1 1 0 1 2 1 B(Z) T'
.2 01 "1 = #0%'‘p 2 ‘ 1*
(5488)

Employing the approximations in (5.87) and neglecting higher

order terms reduces (5.88) to

a2 -
—1 = =(w? 2)a(z) T (5.89)
dz2 + BOl T1 = —(0 LoCo ~ AKl z 1 5689
where :
2
2 _ o2, o [AR
When
(5.89) gives
afr, R
7 +B T =0

dz
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where

2 2

+ 0K, 2). (5.91)

2 ‘
Bip” = ©%poey = (K 1

To insure the air gap between the disc and the cylindrical wall

only perturbs K 2 by a small amount,

1
2 2
AK1 <<K1 .
Therefore, the condition,
2
2 K
(£2) <<( S (5.92)
0 paeq

must be satisfieds. By taking T2 into account as well as Tl’ the

stipulation,

T

<<=T

1’

is met provided

2

3 K

(%}2) =< L066 (—21——) - (5493)
CRTIN :

If desired, (5.93) can be used in place of (5.92).

According to (5.89)

T, = a continuous function.

3 (5.94)
daT
EEL = a continuous function

and (5.94) establishes the boundary conditions.,
Now, the symmetric solution to (5.89) can be determined
in a manner analogous to the approach used in Appendix 5, for the

case in which a = b. The symmetric solution is, in the region,
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in the region, Ed< z< Bt ’

T1 = A cos Bll(z - %)

and in the region, p—gq-fzsp,

cos B 4
T 11 2

A sin By, (p-2z).
sin 301(E§g)

The resonant frequencies are determined from the relation

tan B, % = == cot ﬁOI(%ﬂ . (5.95)

If this solution is compared with the solution in
Appendix 5, it is easily seen that 601 and BO have the same form, .
Consequently, ip the air region the presencg' of the air gap
between the disc and the cylindrical wall does not appear to have
any appreciable effect on the behéviour of the propagation

coefficient. In the region of the disc, the square of the



135

propagation coefficient, 6112, differs from B12 by a factor

2
S

for by increasing the permittivity of the disc to

This perturbation caused by the air gap can be adjusted

2
€, =8 t e (fh) .

Once this adjustment is made,

A more accurate solution which includes the effect of some
of the higher order modes can be achieved by extending the above
analysise.

The antisymmetric problem can be dealt with in a similar

fashion to the treatment just given,
532 An Approximate Series Solution

The purpose of this section is to carry out an

investigation to determine an approximate series solution for

(5.81),

2
2L (my) + % + 0ugeon, = Pugegh(n)a(x)E
or Lr ar "7 32 . Fofotg T T BoSat#ISiEIRg .

(5+96)

Since the symmetric solution is desired, Eﬁ is expanded in the

Ed = :E:: En(r) sin E%E 4 S (5497)

n=1

series
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where "¥" denotes that the sum is only over odd values of n.
Now, (5.96) is multiplied by sin E%E and the ensuing

expression is integrated from O to p. Therefore, if to the

left of the equality sign Eﬁ is replaced by the series (5697),

the result is

p+q
2 2
207 pC
d_fld_ 22, __ 2 koo . npz
H[r dr (rEn)] - Kn En = - P @(r) f sin ——-p Eﬂ;dz
P=q
2
(5.98)
where
2
an = (%) - wzuoeo . (5099)

Determination of the expression,

g(r)

sin E%é Eﬁdz',

o

is complete provided Eﬁ is known inside the dielectric disc
because 8(r) is zero over the interval, a<r<b, and the region
of integration is only from E%Q to B%ﬂ « As a cpnsequence, the
first iterative solution can be found by gﬁessiné Eﬁ in the
dielectric region.
The solution found in Appendix 5, for the case in which

a = b, will be used for the guess. Analogous to the guess made
in section 5.22, the present conjecture gives an approximation

inside the disc for each harmonic in (5.97). Since the solution

in Appendix 5 is for the lowest order mode, the first iterative
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solution will be an approximation of the lowest order mode.in

. the cavity illustrated in Figure 5.3

From Appendix 5, inside the dielectric disc

By = A7, (K;7) cos B, (z - B) (54100)
where
q Po P=q
tan B, 3 = EI cot Byl 5 ) (5.101)
Bo” = “02”080 - K12
' (5.102)

2 2 2
By” =g kot — K7 e

The resonant frequency @, is determined from (5.101).

‘Greater flexibility in the guess could be achieved by
leaving K and « undetermined in (5.100). However, another
unknown, K, is introduced. Consequently, to complete the
solution, the guessed Ez and the first iterative E¢ would have
to be equated at an extra point. As a result, any numerical
work would be considerably increaséd. |

By replacing Eﬁ in (5.98) by (5.100), a first iterative

solution for En is found to satisfy

4 [% - (rEnl)] ~R2ET - he J (k;r) 8(r)  (5.103)
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‘where
2 in (BL a in (BL _'g.)2
. PTIN g | Sin (p + 31)2 sin (p Bl)2
en=——P—s1n-2-— + .
an an _
p T Py P Py

(5.104)

In (5.103) the driving function provides the coupling
bétween the harmonicss The behaviour of this driving function
~can be explained in a manner similar‘to the explanation given
in section 5.22vf0r the behaviour of the coupling driving function
arising in (5.42).

Through arguments similar to those advanced in section

522, by means of (5.103) the continuity conditions,

En1 = a continuous function
T (54105)
3@4&?‘(§ﬁﬁf$”= a continuous function
r ar T%n !
can be establishede.
From (5.103) in the region, O<r<a,
a [1d 1 62 1 4
dr [? dr (rEn ﬂ - Kn En = Aen Jl(Klr)
‘ (54106)

S el -k2e! -o. (5.107)
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The solution to (5.106) is

Ae
1 n
En = - W J]. (Klr) + AnIl (ﬁnr) (50108)
n 1 ‘

and to (5.107) is

=
Il

c ' I;(R r) + DK (K r). (5.109)

At r = Db, E¢ is zero and thus from the series (5.97)

Hence, (5.109) gives
:n Il(ln ) n 1( n ).

Consequently,

and (5.109) becomes

Bl =8 [k ®Rp) 1R ) - I, (Rp) KR ). (5.110)

n

By means of (5.105), (5.108) and (5.110) the boundary

conditions at r = a are
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A
' Fo(K a) ¢ = K IR a) A - (K 2+nK12)JO(K1a)
n 1
where
Fl(ﬁnr) = Kl(ﬁnb) Il(ﬁnr) e‘Il(Knb) Kl(ﬁnr)
F (R x) = K (Rb) I,(R r) + I, (R b) Ky(R r) .

Solving for An and 6n yields

aen[RnJl(Kla) Fo(R a) - K T, (K a) Fl(ﬁna)]A

A =
B n 2 2 s
[(Eﬂ - Po1 ] I, (K,b)
' (5.111)
o seplRyt (Ke) TRps) - K,J4 (K a) I, (R a)]a
n
2
[(%ﬂ - B012] I, (R;b)
since

2
2 _ (nqn 2

n *ET=G0) -8y -
Therefore, over the interval, O=r<a, from (5.97), (5.108)

and (5.111)



141

[Son)

Eﬁl = -AJ; (K1) j{: zen sin ngz
2
w N A

L ZE:: e[ K190 (K 2)F; (R a)-R J; (K 2)Fy (R a)] (R e)ain B2
2
2 A
n =1 [(gl‘-) - Bo1 ] 1,(R b)

(5.112)

and over the interval, a=<=r<b, from (5.97), (5.110) and (54111)

Eﬁl = ;a A é en[KlJo(Klé)I;fﬁhé)jﬁgil(Kla)}o(ﬁna)]Pl(ﬁnr)sin
2 : .
=1 3 2 A
n NN ENCRY

(5.,113)

The star notation is dropped from the summation sign since e
is zero for n even, Owing to the nature of e and the fact
that only squared terms of n occur in Kn’ (5.112) and (5.113)

can be rewritten respectively as

(%)
2 iy BN s (DT a :
1 2w BoCo sin 3 51n(,p +Bl)2 . nnz
E, =—A|J,(K,r) sin ===
g P 1'% : P

nfw nn 2 2
n="°°[p—"31] I:(-I-)_) - BOl ]

+a ZE:: sin 3E Sin(%ﬂ*ﬁl)%[KlJo(K19?Flﬂﬁna)*ﬁnJl(Kla)Foﬂﬁﬁaﬂ '
2 A

X Il(ﬁnr)sin Egé ] (5.114)

nnz
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and

o0

1 2m2”000aAj§:151n §1s1n( BI)Q[K J (Kia)ll(ﬁna)—ﬁnJl(Kla)Io(ﬁnaﬂ

fg = P ,
A== 2 p) @7 - 2] 1@

X F (R r)sin ngz . (5.115)

The relation from which the resonant frequencies can be
obtained is found by equating at a point the guessed solution in
(5.,100) and the first iterative solution in (5.114). The point
chosen is at r -_—_8, z :-g— where 8—»0. Inside the dieiectric disc,
no other point is as far removed from the perturbation caused
near the corners of the disc by the air gap.

Equating (5.100) to (5.114) at r =8, z = -‘21 gives

o0

2
2 . nn . nfmn q
20°pc z sin 3= sin(32+8,)
Jl (K]_S) — 090 [Jl (Klg) 2 2 172

i (B2 45 (@2 8,

n ==00'p

o0

Zsin‘z 2—“sm( 31)9-[1{ Jo (K a)Fy (K a.)—K Jy (K a)F, (R a)] I, (K 8) ]
+a .

[— 2 A
e ) 39 - h0?) 1R

Since
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2 20 2 n
20%u,¢, : : sin %ﬂ sin (Bﬂ+31)%
p nn ‘ nfg 2 2
(= + Bl) [(P—) - Boy.

1 =

n-—~oop

.P—

az n§_1_n., Misin (28 Bl)&[K To(K a)F (R a)-R 7, (Kla)Fo(ﬁnaﬂ]

e
Lo 54 p) [q;—ﬂ ~ By ] 1 (R b)
(5.116)
In thét
o0 2 . o0 |
sin %ﬂs1n( Bl)& sin(igmillﬂ + Bl)g
S = . S~ .

n_doo(55g+ By) [(%ﬂ) “501ﬂ L E2m+1)n ]“§2m+12n) Boy ]

S can be summed in the same fashion as the series treated in

Appendix 4., If the summation is carried out,

=2 G.Z_.. % [1 cos 8. B [0 P12 o0® Bor (55)
1 01 o1 3

sin Bl % sin BOI(EEQ)].

Therefore, (5.116) becomes
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2 2
0 - B
: - — 4 P-gy _ "1 . q .. _
5 Eg 2 = 3 E.[cos ﬁl 5 Cos BOl( > ) BOl SLnB¥A2 sin BOI@REQ)
0y°- —w° %% Fo12
0 €1
2
“ ko9
X, —
[8,%- 85,7
1 01
2 o 2. |
A » :_E L4 n‘II g— _ » A (
Ef_ggigi Kn sin 5 51n(;—+31)2[KnJl(Kla)Fo(Kna) KlJO(Kla)Fl(Knaﬂ
Klp > : : ' ,
n— =00 5— + B]_) [(F") - BO]. ] I]. (ﬁnb)

This relation gives the resonant frequency .
A check of the limiting case when a = b shows that the
first iterative solution agrees with the solution given in

Appendix 5.
54 Discussion

For the periodic structure loaded with dielectric discs
having central holes, the dispersion equation found in the first
mode approximation is much simpler than the dispersion equation
found in the approximate series solution. This simpler dispersion
equation is probably quite reliable when a<<b since the first
mode approximation seems reasonable in all regions of the structure
excépt possibly near the axis of the discs. In thé vicinity of
the holes in the discs the field is perturbed the most and thus
higher order modes may become significant.

For the amplitude of the space harmonics, the approximate

series solution gives an expression which is not unduly more

[ 3



145

complicated than the expression obtained by the first mode
approximation. At the same time, along the axis of the waveguide,
the amplitudes determined in the approximate series solution are
probably somewhat more accurate. This statement would have
greater force if the first mode approximation were employed for
the guessed solution,

Consequently, in studying the properties of the periodic
structurey; in many instances possibly the best approach would bé
t0 use the dispersion equation given by the first mode approxi-
mation and to use in the viecinity of the axis the amplitudes of
the space harmonics given by the approximate series solution.

In a like mannery, in a study of the behaviour of the
field in the resonant cavity discussed in section 5.3, possibly
the most agreeable approach would be to find the resonant |
frequency from the first mode approximation and to use, at least
over the interval, a<r=D>by the field given by the approximate

series solution,
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6. SOME CALCULATIONS AND MEASUREMENTS FOR DIELECTRIC LOADED
PERIODIC STRUCTURES

6.1 General

The dielectric loaded periodic structures to be examined
are of the type shown in Figure 5.1. For a structure loaded with
dielectric discs of polystyréne, the frequency and disc thickness

66,67 are calculated from the

required for n—-mode confluence
first mode approximation theory developed in section 5421. These
results are compared with the corresponding values obtained

67 and with those determined

experimentally by Walker and West
from the solid disc theory of section 4.523. For discs of the
. thickness calculated from the first mode approximation theory,
the dispersion curves given by the first mode approximation and
the solid disc theory are plotted. An experimental dispersion
curve for this case could not be readily obtained. However, the
dielectric loaded periodic structﬁre in the linear accelerator
at The University of British Columbia could be set up for
measurements without too much difficulty. As a consequence,
this structure, whiéh is loaded with titania discs, was used to
find an experimental dispersion curve. This experimental curve
is compared with the theoretical curves determined through the
use of the first mode approximation and the solid disc theory.
For the accelerator structure at The University of
British Columbia, the Oth order space harﬁonic of EZ is examined
on the axis for the case invwhich its phase velbcity is equal

to the speed of iight. A comparison is made between the harmonic

coefficient found from the solid disc theory and from the
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approximate series solution discussed in section 5.22.

6.2 Polystyrene Loaded Structure

The discs in the polystyrene: loaded structure have a relative
dielectric constant of 2.550, Other parameters for the structure
are
b = 3.620 cm
a = 6350 cm (641)
P = 54000 cm .A

The thickness, q, is to be determined so that a match takes

place at X= m. Since Kb is the first root of JO(Kb), then

K;b = 2.405. | (6.2)
Hence,

J; (K;b) = .5191 (6.3)
and from (6.1). |

K, = .6644(10)°, | (6.4)

Substituting (6.1), (6e3) and (6.4) into (5.15) yields

2

.6632(10)‘1'1(l

2
AKl

+1.544(10)%6%uge,  (6.5)

2.540(10)~3 . | | (646)

R
I

From (5.,16) and (6.5)

2 | =3y 2 1y, 2
By,° = (1 - 1.544(20))w®ue, - (1 + .6632(20)7V)K

(6.7)
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According to (5.26) a matech occurs when

2 2u
s 2 _ (%] [ By° . (6.8)
01 ~ (e, €
1 0 .
From (6.6)
-3
L] = (2.550) =1 + .004752. (629)
0
Since
2
Bor° = wzposo - k%, (6410)
(6.8) can be rewritten as
. . ‘ 2
0ugeg - K2 = (1 +3.200(10)PfePp ey L - (1 + .07139) %—) K,
| r r
or
1 1,07139
- 2
€
r_ . _ 1
© =Kjc 15003201 - K c Vh + 2 (.9591) (6.11)
r
where
c = —lfj = 2.998(10)8 m/s.
\/P‘QEO

Therefore,

[(\] -
f = 3 = 3718 Mc/s.

Utilizing the matched dondition from (4.59), for the solid disc

theory, gives
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Il—‘

s.d.” 27 €_

= 3740 Mc/s.
r .

From Walker and West's experimental measurements

fexp = 3722 Mc/s.
Consequently,
Ifexp - f| = 4 Mc/s
lfexp - s.d,| = 18 Mc/s

and thus the difference between the experimental measurement
and the theoretical calculatien is improved by a factor of 4%
+ 1f the first mode approximation is used instetd of the solid
disc theory. V \

Through the use of (6.11)

2 2 1

Hence,

- 2
2 2 (1 - .04088) .
Bop = Veo boto - K17 = K V/ - =L = ,4075(10) .

r

Also,

wzpoel - K12 = (cr - ,04088)K12

and from (6.5)

2
1

2
1 .

AK. © = 407174 K (6.12)
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As a result,

By, = K, V(e - .1126) = 1.037(10)% .

For a match to occur at X= 1 from (5.27) the thickness of

the disc is given by

q == “P01? 3,142 - 2.038 ~1.75 em
Biy ‘*501 (1.037 - .407)(10)?>

From the solid disc theory

2
By = 1 _ .6644(10) _ °416O(1O)2

T 1.59
Ver !

B, = K o = (.6644) (10)%(1.597) = 1.061(10)2.

By means of (4.60) the disc thickness is equal to the

expression

"~ PP 3.142 - 2.080
P1 = Po " (1.061 - .416)(10)2

qS‘dn = = 1.65 Clne

The measured value of the disc thickness is

Yexpe = 1.77 cm.
Consequently,

Qexpe — 1 = «02 cm

qexp- - qs.do : 12 cm.

Hence, in this case, the first mode approximation gives an

answer which is considerably closer to the experimental results
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than the answer given by the solid disc theory.

For discs having a thickness of
q = 1.75 cm,

the dispersion curves given by the first mode approximation and
the solid disc theory are plotted in Figure 6.1. These curves

were determined from (5.24) and (4.54) respectively.
663 Titania Loaded Structure

The dispersion curve for the dielectric loaded periodic
structure in the linear accelerator at The University of British
Columbia was obtained from measurements of the resonances in the
structure. The discs used for loading are made of titania which
has a relative dielectric constant of 93.5. The other parameters

of the structure are

b = 34849 cm

a = 14000 cm

P = 5.000 cm i (6413)
q = #5766 cm ..

The experimental curve along with the curves determined from the
first mode approximation and the sélid disc theory is shown in
Figure 6.2.

From Figure 6,2 it can be seen tﬂat the curve predicted by
the first mode approximation is in close ag;eement ﬁith the
experimental curve over a large part of the first pass band; i.e.
over the interval 1< X <71 radians. For all points the curve
given by the first mode approximation is an improvement on the

dispersion curve given by the solid disc theory,.
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Parameters of the
Structure
3500 T € = 2455

= 3.620 cm
= 6350 cm
= 5,000 cm
= 1,750 cm

KR -8 o oH

3000 1

First Mode Approximation -
Dispersion Curve determined
from (5.24) °

©
(Mr/s)

2500 1

> Stop Band of 15 Mr/s

2000 -

Solid Disc Theory‘Dispersion
Curve determined from (4454)

|

|

1500 v 4 T Y T
0 12 37 4 5 6

)((radians/section)

Fige 601ls Dispersion Curves for the Polystyrene Loaded Structure
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Fig. 6.2. Dispersion Curves for the Titania Loaded Structure
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It should be pointed out that for the polystyrene loaded

structure, since @ < 3.55(10)9 r/s, from (6.5)

AK, 2

2

and thus the condition (5e417) is easily satisfied. Hence, the
first mode approximation should give results that are reasonably
close to the experiﬁental results. This statement is in
accordance with the findings already discussed. However, for
the titania loaded structurey, since from Figure 6.2
14g8110)9<:w<=20¢7(10)9 r/sy then by means of (5.15), (6,2),
(6.3) and (6.13)

2
l L ]

2 2

.93 K, <0K “<1.62 K

Consequently, neither (5e17) nor (5.18) are truly satisfieda
Therefore, it cannot be expected that the dispersion curve given
by the first mode approximation will always be in close agree-
ment with the experimental results.. A better agreement can be
expected by going to a second or third mode approximation.

For the case in which the phase velocity of the Oth space

harmonic of Ez is the speed of light,

— e = 2 (6.14)
P

and thus from (5.37) in the approximate series solution

KO = 0.

As a result, in (5.63)
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Y

K02 G,(Rya) = 0
a KO Gl(ﬁoa) = 1.

Thereforey by means of (5.63) on the axis of the waveguide

the coefficient of the Oth space harmonic is approximately

a, - f
~ 0 0
bo = JO(Kla) (——é—o——-)

. (6+415)

From the solid disc theory of section 4.523

P p
SAZ SAZ
(b) =L e 9 Eaz=L] 9 Lq,) az
0 P zZ P €
Sod‘
0 0
p p
SAZ S Z
Ll 0% nyaz+ L]0 [LL]NZMZ
€n P P € €
0 0
0 0
or
pt+q
a 2 SAZ
(bO) - ZQ - %_ (1 - %—) L e 0 T(z)dz.
Sade 0 0 r P
‘P=q
2

(6.16)

The operating point will be taken as the point in Figure
6.2 where the curve for (6.14) intersects in the first pass band
the dispersion curve given by tﬁe first mode approximation. If the
experimental dispersion curve is used instead; a similar operating
point is obtaineds For the present treatmentj%will be set equal to

the value given by the first mode approximation for the phase shift
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per section. Consequently, from Figure 6.2 the operating point
is

© = 15,870 r/s
(6.17)

2= 2066 r = 152.400

At this frequency from the dispersion curve given by the solid
disc theory
X= 2489 r = 165.6°, (6418)

Through the use of (5.57) and (5443)

2
s g _ L (“ koo °o)
0770 T p | 2. 2
5o +BO

2 2
©°p
(by) =L [_ L ( 0% ) f " (2)dz
Se.de. 0] +Bo
REQ .

P
c SAZ
+.];. _-2—(_)—5 eo S(Z)g_hdZ.
P \sp7+8, | i
0]

By means of (4.57)



O o Cy o ; ) -3Bya 8,(55%)
ao'fozl >——>5 + || == [e e - e ]
s (RE s (P=9
L 4 [eso( 2 )eJqu _ eso( 2 )]]
8,+iB,
_1[ 3P ; [ 855D 8B -jqu]
P (§02+B(“)2)€1 3
‘o, [eso > eJqu _ eso > ] (6.19)
and
2 + . -
() =L )1[Z %%, %ol " [eso%g—)e—aalq i esO<P7°-)J
O's.ia. 0| Plsy248,2 F1f[S07iP

c, [eso(ﬂgﬂ) RUTS esO(B%Q)]J

so+361

P (s 3 - e

2 . 2
0 o )ey

. (6420)

s (Ei& .8 (R=9)
+C, [e ot JP1e _ 50(5 ]}

Since

e l;< B I
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by the use of (6.13), (6417) and (6.18)

i «532(10)%

SO=
| (6421)
so = 3 «578(10)2 .
As a result of
€)= 93a5gy;, (6+22)
it is seen that
cq = 9245¢. (6423)
Substituting
b = 3.849 cm
into (6.2) gives
K, = .6248(10)% . (6024)
From (6.17)
2 (02 4 ‘
©“ugey = (3] = -2803(10)%. (6425)
By means of (6.22), (624) and (6.25)
By = j#3318(10)2
" _ (6.26)
B, = 5.081(10)% .

Employing the values given in (6.13), (6.17), (6.21), (6.22), .
(6.23), (6.25), and (6426), yields, from (6.19) and (6.20)

ao-fo - c3(-1o.37 + jle.407) + c4(9.154 - j3.309)

l—[c3(-9,268 + j.1828) + C,(8.337 - j1.968ﬂ .

(b -1
Sed. 0

o)
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According to (4455)

. Bleo -j(zgl -X)
c cos 290+J B sin 290 - e ,
—é‘ = O 1 . a (6.28)
€3 Bigo . - 3(26, +X) |
-Cco0Ss 200 + jB = sin 200 + e
0°1
Since
290 = Bo(P"Q)
201 = qu' )
from (6.13) and (6.26)
200 = j la468
(6429)

201 = 24930,

The substitution of the values in (6.18), (6.22), (6.26) and

(6.29) into (6.28) gives

C4
o= = —+9403 - j.1957 . (6430)
3

Eliminating C, from (6+27) by means of (6.30) gives

~n 'l 010
Ay~ £ = 19.8 eI172+17 ¢, (6.31)
- . o C
S.d‘ O

From the value of "a" given in (6.13) and the value of
K, given in (6.24)
JO(Kla) = J,(.625) = .905. - (6433)
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As a consequencé of (6.15), (6431) and (6.33), from the

approximate series solution

bo = 17-9 e

j172.1° ¥3

L ] 6.34
0

The magnitudes given by (6+32) and (6.34) differ by 1.7% and

the arguments differ by 605

In calculating efficiencies such as the shunt impedance,

|v
shunt = P

0
1

Z

2

where Pl is the power dissipated per unit length, and the series

impedance,
|

z » —
series P

where P2 is the power flux, for

|2

the present example, the value

for Ibol2 given by the solid disc theory would seem reasonably

accurate for practical purposes
by 3.4% from the(value given by
solution,.

The value for Ibol found
the hole is taken into account,
(6;32), where the effect of the

differ slightly. Consequently,

of the hole does not greatly affect the value of Ibo

since this value differs only

the approximate series

in (6.34), where the effect of
and the value for |b0| found in
hole is not taken into accaunt,

it appedars that the presence

« Since

the presence of the hole is taken into account in (6.34), it

is not surprising that this equation gives a larger value for

lbOI than (6.32). The reason this result might be expected is
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that in an empty waveguide all the energy of the field is in
the Oth space harmonic and the hole case should lie somewhere

between the solid disc case and the empty waveguide cases
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7+ CONCLUSION

-In viewing a periodic structure as a whole rather than as
a number of regions; wave equations have been fdund which hold
throughout the waveguide. This point of view has led to a
simple wave equation which gives an approximate field solution for
an axially symmetric periodic structure with a slowly varying
radiuss This wave equation has been shown to be separable
and the problem has been reduced to solving Hill's equation.

In dielectric loaded structures the wave equations derived
have coefficients possessing finite discontinuities and in some
cases Impulsess These discontinuities are due to the dis-—
continuities in the permittivitys For the examples treated with
discontinuities only invthe axial direction, the solutions
obtained are in agreement with those found by other methods.

When discontinuities occur in the radial as well as axial directiony
a first mode approximation and an approximate series solution

are derived. The first mode approximation is a relatively simple
solutions For example, for the dielectric loaded periodic
structure with each disc having a central hole, the first mode
approximation is of the same order of complexity as the solid
disc solutions From the comparison between experimental measure-
ments and,ﬁhe theoretical predictionsy to within limits, the
first mode approximation gives reasonably good answers. )

Although more complex than the first mode approximation,
the approximate series solﬁtion provides a first iteration on
any guessed solution that might be employed. As is done in

~section 5, the solid disec solution can be used for the initial
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guess but, no doubt, a better iterative solution could be
achieved if, instead, the first mode approximation is utilized

for the guessed solufion.



164

APPENDIX 1

The vectorial differential wave equation for the magnetic
field intensity can be arrived at in the following way. First

of all, Maxwell's equations are

VxE==joB | ' (A1.1)
Vx H

1l

J + joD . | (A1.2)
Now, if the curl of (Ale2) is taken, the result is
Vx (Vx H) = Vx T + joVx D. . (A1.3)

Since the medium is linear and isotropic, then

]-3 = £ E (A1I4)
B=yuH (A1,.5)
J = o E; (Al.6)

D and F can be eliminated from (A1.3) through the use of (Al.4)

and (Al«6). Hence,

.

Vx (Vx H) = joVx (e - ‘j‘%)fl

1l

T | je(e - DV E + jove - iJ) x B.
(A1.7)

From (Al.1), (A1.2), (Al.4), (Al.5) and (Al.6) it can be seen
that
VXE = - j(opﬁ (Al'."s)

= L -~ Vx H (A1.9)
jo(e =~33) | '

=
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If (Al1.8) and (Al.9) are used to eliminate terms with E in (A1.7),

then (Al.7) becomes

Vx(Vx H) = o p,(e - ,)-)H + ——-—-V(e - s 9y x (Vx H)

£ - J-)
or

O
(e - ig

V(@0 -V = e - PR+ —L vt - $H VA

- V(e - 32 .v)ﬁ] (A1.10)

where in rectangular co—ordinates

In the case of the vectorial differential wave equation for
the electric field intensity, the curl of (Al.l1) is taken and
the result is

VX (VX E) = -jeVX B. (A1.11)
From (Al.5), (Al.11) can be expressed as
VX (VX E) = -jopVX H - jo(W X H). (Al.12)

If (A1.8) and (A1,9) are used to eliminate terms involving H in
(Al.12), then (Al.12) becomes

= 2 . 3 1
VX (VX E) =%l - i) B+ [V X (VX B)]



or

V(V.E) -V2

o

E

=0u(e - 3O E+ - [VuVE - W) E] .

166

(A1413)
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APPENDIX 2

In this appendix the series

00
T(z) = ZE:: ane—snz (A2.1)

14r 1 E ~SpZ |
S(z) = e ol s s, ae (A2.2)
n = -0
where
_ . ( X+ 2n1
sy = 3(555)
P=q
Lo [ c% Cz c, c4 ]esn( 5+)
n P [s,=JBy s *iBy s -iBy T s +iBy
: +
s (R_Q)
1 D1 D2 D3 D4 e D 2
“pls -jB + s_+]jB + s.—-jB *+s +jB
P n~ P aTIPo n~IF1 nTIP1
(A2.3)
are evaluated at the points B%Q and E%g. The only summations that
are needed in this evaluation a,reAl
e Vo) Coea . Cud N
s a T jPa :J(X-ER2 )
e P € e
s -JB X-Bp
n oma
N T e 2j sin ( > )
00 - . (XtBp
s « ja j(55=)
é e 2 _pe e ( ')
S +jB - . > A204
. 2j sin (AEQE)
n = —-0o 2
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- . ;S—E[z
o - —JBa —J( 2 ‘)
e o _p_e e
; s =jp X
n . . -_—
n T oo 2j sin (_EER)
00 : : Z&EE
Z - ) JB“ _J( 2 )
n
e _pe e '
s +jp
n v" . . 3’*’@2
n = —00 23‘51n ( 2 ) /

for O=a=p.
As a starting point, the series for T(Réﬂ) will be
summed. Since the series in (A2.4) only hold for O<a<p, it is

convenient first to consider T(PEQ--S) where 8=’O and then to
obtain T(P?-) by taking the limit as 8—*0.

From (A2.1) and (A2.3)

Cc Cc Cc C s 8
(&3 -98) =L L 2 s34 |0
2 P s =By = sptiBy  s,—iB; - s *iBy

n = =00

00
1 [ D, D, Dy D, Sn(Q+éb
- = - + - + > + - e e
p sn_JBO Sn+‘]BO Sn_JBl Sn+JB1
n = =00 .
(A2.5)
It is easy to verify that
iX -s_p
e e T =1. . (A2.6)

- Through the use of (A2.6), (A2.5) can be expressed more con-

veniently as
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‘ C C C C s 8
i -8) -1 ) [ e e ] o
P n~IP0 ntJPo n P n"IF1

I: Dl D2 ] -Sn(P"q —8)
s,-iBy | S,*iBg] °

_1 [ D, . Dy ]esn(Q+éb
P ST38y SR, :

Hence, if the summations in (A2.4) are now used,

X=BAP X+B P
iB® #H=2) ~iBy 8 i (=)
b=q _ _ & e ) e
T(B5% -0) - T XBgr, 1”7 X+Bop ¢2
2j sin ( 5 ) 2j sin ( )
X-B.P X8, P X-BP
80 1= —jsls 3 (=) iX -38o(p-a-0) 5 ()
+ e e C + e C - e e e D
4 4 P 1
2j sin (X Blp) 2j sin (X+Blp) 2j 8in ( Bop) ‘
X+B 4P X-Bip
X iBg(p- ~q-0) -j( 0 ) JBl(q+§5 i (=)
_ e e XB e D2 - e X B D3
+ —
2j sin ( OP) ' 2j sin ( 21P) '
- X#Byp
~3B ( (a+0) 3 ( L)
_ e e D
X P 4 °

2j sin ( )
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In the limit as 8——>O

J¢264) 4 ilxw2ey) 4§20

=gy _ ky
T(F) = 510y 4,C#y 30347, C b yyDjte yoDame  T¥3Ps
- =j2e,
e 4Dy
where
200 = Bo(P-q)
X-B P
3 20 )
=%
1 “BoP
2j sin ( 20 )
X#Byp
i(—=%)
e
Y2 = X+B P
2j sin ( 5 )
X-B,p
i (—2)
y — e .

2j sin ( 5 )

X487
i)
e
Ya = XBp_ °
2j sin (— 3 )

As can be seen from Figure 4.8 in the body of the thesis,

at z = EE_Q —8 ; € = eqe Consequently, from (A2.2)

x denotes complex conjugate



171

o . ] =S
S( - _8) 3 1 JBO 1 _ JBOCZ + 361.03 _ JBlc4 ]esn
2 T pe s "'JBO s +iBy 8 =JB, s, +iB,
[o o]
L1 [330D1 L ML W L b ]esn(Q+éb
pe sn-JBO s,+iB, sneiﬂ*i' s,tiBy *
n = -0 .
Hence,
: p B B
p=qy_ _ 0 Fo A Py
S(FH)= = 3= vCy + 35 v Ly - JgT vaCy + dg 940
0 0 0 0
By d(X26,) 4 B 1(X204) 4 B, 3J20 B, =j2o
‘j—g e y1D1+ jgg e y2D2+ J—l e 1y3D3— j—l e 1y4D4.
€0 0 €0 €0
Similarly,
-3 (X-20,) -j (X¢26,,) j20, j26
ptay _ 0 0 _ o 1 %
T( 3 ) = e y1C + e Y,C,— e 3C3 e Y4Cy
By —i(Xx-26,) B, -3(X420,) B, =-j26
ptay _ _: 0 ] 0 U1 1 %
S( > ) = Jel e ¥,C1+ 3g e e y202+3el e ¥3C5
By 326, 4 B B B By

. 0 0
—EL ¢ Vala® Ig iPrm 35 Volo* T Y3Psm JE" 4Dy -
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APPENDIX 3

The summation of the series

is carried out through the following steps. Through the use of
(5411) and (5.19) in the body of the thesis

%) ‘gnP
. c ' -2 3 (B:Q)
(3 = 59 § 3 [e n2 [“ZuognT(EE )
(8 “+8,7) (8, “+8,°)
n = =00
2. 2 8hl ; 2 + 2 2 +
2 P=q n a m(RPtdy, (2 2_ p+q
r (5,2, %) s(259)] - [0208,T(B5D+(3, %k, )5 (259 |
and thus
o0 -3gg
T (®) =L [ﬁ P T S ]e""
12 P S,~iBg .~ S,*iBy 8 -iBy S +iB;
Nn = =00
§nq
- Dl + x~D2 + D3 + D4 ] e ?
gn—vao Sn+jBO 'Srn‘JBl §n+331
(A3.1)

where the C's and D's are defined in (4.43) and (4.44) and related
in (4.52), Summing the series in (A3.1) with the help of (A2.4)

yields



Boa . )?—Bop Boa . )?+Bop Bia | )?-Blp
-i—5— =i(—%—) 5= =il=—=") -i—5 =i(—3
Cle e . Cze e ' C3e e
L&) - XBop ¥ RBop. (2—611?
2j sin ( > ) 2j sin ( 5 ) 2j sin ) )
Bja )?+Blp
C4e e
+ >
. X¥ByP
23151n > )
Boa  X-Bop B XtB 4P Bia  X-Byp
[ I S I 2°> e LpTans L
Dle e D 2® , D3e e

t—

2j sin (2“3OP) 2j sin 6?+20p) 2j sin (ﬁLglp)

Pia )?+Blp
"J 2 J ( 2
D4e e

o 4B, P *
2jsin(Y21)

By means of (4.52) the D's can be eliminated to give

X~26 O
. [-a( ) =30¢-269) a( )]
py G e - ,
hQ) = )?:-Bop
2j sin (
X+26,, Xi26
[-j( s—2) -3 (X20,) j( )]
02 e - e
8 o -
2j sin ZOP)
5-B,p )?—B

2j sin Eg—zlp)

P
-j0, -j(—) =joe, j(—* )Jo
C 1 2 1
3 e e e
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X+B.p >?+B P
. [ 0y =i(—5) 20, -je j(—;l—)]
4 e e — e e
* +B. D
2j sin (X 21 )
or
X-20 20
i (=) -i(—==2)
C,e . 0O C.e VR
V1 l1 o .3 0O&0) 2 i (&=X)
Tl(%) = R?_BOP [1 - e’ ] + ' 2_’_301) [1 - eY ]
2] sin 5 ) 2j sin ( 3 )
-j0 i0
- 03e 1. C4eJ 1 . (A3.2)

From (A2.1) T(%) can be easily summed and shown equal to the
expression

-je je
Py _ _ 1 _ 1
T(2) = 03e C4e "

As a result, (A3.2) can be rewritten in the form

‘jé} ¢.o0 0 ce 200 j (R
Py _ m(By , & 1° 2 16’2
sin > ) sin >
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APPENDIX 4

The summation of the series,

(o o] sin (2H‘I‘EP+X _ Bl)%
"t Z | | X ’
2 2ny_+
ool (K b) (S5 - 8))
A_—_-X

will now be treated. If the definition,

o0 - X+ 2nm ,
n Y
is made, then
(%)
s - q
sin (wn Bl)2
Sy = — (A4.1)
WARSENCES . (0,1
= X
and since )?:X,
g2 _ (Xt2m?® 2 . _,2_g2_ g3
n = VT p Hof0 = ®n 0 1
For
R2-x2
n n
where Kn is real,
I,(K b) = J5(K b).
A
X=X

The zeros of JO(Knb) are K b and thus poles occur in S, at
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_ 2 2 2
wn_-_t;\/BO +Kl —Km R

Expanding Io(ﬁnb) around the zero, @ =\/B02 + K12 - sz,
SEx
gives
dk

~ n 2 2 2

ToRb)| = Top) = b Iy (Ee) Bl oV BoR A ES) 4
XX gnsz
or
2 2 2
bV[B + K, %< K

A 0 1 m 2 2 2 ,

Iy(K b) = K_ Jl(Kmb)(“n‘\/Bo + KO- KT) 4 e

XX

2

. . 2 2
Similarly, around ©0 = —\/BO + K1 - Km

2 2
t’JBO + K1 f_Em
- K
m

2

Io(ﬁnb) =
Sex

2 2 2
Jl (Kmb)(‘.on+ \/BO + Kl - Km ) + svee

Now, the ratio,

A ’

I,Rb)|  (e,-8))

can be expanded in partial fractions as
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o0
1 _ AO . ZE:: Am =
&) ) e L (e VB, 2+ K > K %)
XX
-
A
+ Z 3
iy '(con+ Bo * K;°- K )
where
1 |
A =
° T k=B K7 b)
K_ |
A - _
moy, \/soz+ Klf- Km§ 3, (K _b)( \/302+ Kli— sz‘- B,)
. K.

. \/Boj+ Klz- K Jl(Kmb)( \/BOQ+ K, “- Km?+ Bl)

Therefore,

s _ D [AO Z%:: s1n[n+ 5;(X331P)~]n >

t T 27 1
n = —o0o n +-2-7-{(X_61P)

oo
j : Z in[n+ - a
+ A Sln[n'" zn(X—BIP)]'n D +
m | 1
. _1__ 2 2 2
ool +,2n(X-'\/BO + K, °-K

m =1 n = - K ° p)

-
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o0 o0 '
Z Z — n+ _(X Blp)] : ]
+ .
2_ 2
- n+ (X+\/BO+K K. “ )
SinceAzl
00
cos n8  qcos a(n - O)
g n+a sin am » 0=8<=2m
n = -0 |
%)
% sin n@ gsin a(n - 8)
n+a sin an » 0=0<2n
n = —0o
and
T %<'n’
the sum becomes
S, =% —
2 2 2
IO(\/Bl - Bp - K b)
- 2. 2 o 2 '
= . - [X-Bya- VBy2+K, 2K 2 (p-q)
. sin _
+ m L 2 J —
2 2 2 J XA/BA“HK,“-K “p
m=1 b\/BO +K -k 9 (Kmb) (\/602+K12—Km2-61)sin[ 0 é =z ]

[X?qu 8,2+

2_ . 2
K, “~ K (R—qﬂ
2

[X+ 3 +K }L zr-—-] . (A4*‘.2)
0
2

sin
+

2 2 2 .
(\/30 +K, “-K_“ + Bl)sn.n
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The series in (A4.2) is oscillatory with Jl(Kmb) being positive for'
m odd and negative for m evens In the series the term corresponding
tom =1 is due to a correction made by the lowest order mode,
Jlﬁﬁif), to the solid disc solution. . The terms for m=1 are the
contributions made by the higher order modes of the wave solution.

If the term for m = 1 is removed from the series, then for

X= Bo(p=q) + B;q

K1 sin Bo(p—q) | ,
2B (p=a)+(B,+B)a
b) bBOJl(Klb)(Bl+BO)sin[ 10 }

» %]
g [X_qu' ;}[‘302“{1 &, (p-a) |

i Km |_ Sl:Ill . 2 : -
S = ; 2 : } ‘ T - » B Ty ‘
: 2 QO + Kl - Km JL(Kmb4f¢502*K12?KmZ—Bi2sinfx’ ?O

Sy =% = *
2 2 - 2
IO(\/BI - Bo - Kl

where

‘ +K1 ."-Km P] .
-2

)
g | o
, X+ B 2+ K, “=K P
(\/302+K12-K 2+Bl)sin[ ‘\/O | ]

Most of the elements in § are evanescent; they damp out

asymptotically as
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APPENDIX 5

For the cavity shown in the Figure, when_dn H~wave exists

with no angular dependence and

[ P "l
yA A V4 L L ya / /
o [ \ [
Dielectric, .
b Disc 'y | Air //‘Cav1ty Wall
‘e = €41 "
! =
AT | r\‘lJ‘]-( 80 /
P’ = O ! —
3> . & AP J 1L _“:
/ Zr |6 ,= O ’l '
’ ! i og=20
fou 1 i ( ||
| i 1’
Ez_g 14 . A
2 AT
] 1 [
L L ,J / L L VA

Fige. A5.1. Resonant Cavity Containing a Dielectric Disc

J
in the air regions Eﬁ satisfies

béE
d Il 4 2
8;-[; %;v(rEdﬂ + bzz + wo HOEOEd =0
and in the dielectric region
5[t & G5y -+ 52 9 Fot1fg =0

The boundary conditions that Eﬁ must obey are:
(i) at z =0 and z = p

E;&:O
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Il
o

(ii) at r
Eﬁ is finite

(iii) at r =b

(iv) at z = =% and 5 = BX4

E¢ is continuous

- OE
Hr and thus Szé is continuous.

As a result, the solution for Eﬁ,which is symmetric about the

plane z = p/2 and in the lowest order mode,is in the region,

0= zs%ﬂ,

Eﬁ =B Jl(Klr) sin B,z

and in the region, P—E-Q<ZS]§',

E¢ = A Jl(Klr) cos Bl(z - %)

and in the region, P;;‘g'stP,-

E’é.: B Jl(Klr) sin Bo(p—z)

where
Bo? = 0 Boto ~ Ky
8% = 0phoey - Ky
Klb = the first root of Jl(Kb).
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From conditions (iv)

B sin BO(ng) = A cos Bl 1
BO B cos BO(EEQ) = Bl A sin Bl % .

Therefore,

cos B 4
B = 12 A

sin B (551)

and

| W
= O

tan Bl % = cot BO(REQ) .

This last relation gives the resonant frequency, ®se
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