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ELECTROMAGNETIC WAVES WITHIN NON-UNIFORM 
BOUNDARIES AND IN INHQMOGENEOUS ISOTROPIC MEDIA 

ABSTRACT 

F i e l d r e s t r i c t i o n s on E- and H-waves are examined for 
an inhomogeneous i s o t r o p i c medium. Re s t r i c t i o n s on E-
and H-waves are, also, discussed for wave-guides of 
varying cross section, such as for example a c i r c u l a r -
section waveguide having an a x i a l l y dependent radius 

For an a x i a l l y symmetric periodic structure with a 
slowly varying radius, an approximate wave equation i s 
derived which i s separable. The f i e l d problem, i s then 
reduced to finding the so l u t i o n to H i l l ' s equation. 

A treatment of electromagnetic waves i n media with 
c h a r a c t e r i s t i c s possessing f i n i t e d i s c o n t i n u i t i e s i n 
the d i r e c t i o n of propagation i s developed. The 
development avoids the use of e x p l i c i t boundary condi
t i o n s . To i l l u s t r a t e the method, three examples are 
given. 

This method i s extended to include media with 
c h a r a c t e r i s t i c s possessing f i n i t e d i s c o n t i n u i t i e s i n , 
and transverse to, the d i r e c t i o n of propagation. Two 
examples are given. In the f i r s t an E-wave so l u t i o n 
i s found for a c y l i n d r i c a l waveguide loaded p e r i o d i 
c a l l y with d i e l e c t r i c d i s c , the disc radius being 
smaller than the ca v i t y radius. Two methods of solu
t i o n are offered^ one i s a f i r s t mode approximation 
and the other i s an approximate series s o l u t i o n . 

A short comparison i s made between experimental 
measurements made on d i e l e c t r i c loaded periodic 
structures of the" forementioned type and t h e o r e t i c a l 
predictions based on the f i r s t mode approximation. 



GRADUATE STUDIES 

F i e l d of Study: E l e c t r i c a l Engineering 

Applied Electromagnetic Theory 
E l e c t r o n i c Instrumentation 
Network Theory 
Servomechanisms 
Communication Theory 
Electron Dynamics 

G.B; Walker 
F. K. Bowers 
A o D . Moore 
E.V. Bohn 

A . D . Moore 
G. B. Walker 

Related Studies: 

Elementary Quantum Mechanics 
Numerical Analysis I 
Plasma Physics 
D i f f e r e n t i a l Equations 

W. Opechowski, 
T.E. Hull 

L.G. de Sobrino 
C.A. Swans on. 



ABSTRACT 

F i e l d r e s t r i c t i o n s on E - and H-waves are examined for 

an inhomogeneous i so trop ic medium. Restr ic t ions on E - and H— 

waves are, a l so , discussed for waveguides of varying cros s -

sec t ion , such as for example a c i r c u l a r - s e c t i o n waveguide having 

an a x i a l l y dependent radius*, 

For an a x i a l l y symmetric periodic structure with a 

slowly varying rad ius , an approximate wave equation i s derived 

which i s separable. The f i e l d problem i s then reduced to 

f ind ing the so lut ion to H i l l ' s equation. 

A treatment of electromagnetic waves i n media with 

c h a r a c t e r i s t i c s possessing f i n i t e d i scont inu i t i e s i n the 

d i r e c t i o n of propagation i s developed. The development avoids 

the use of e x p l i c i t boundary condi t ions . To i l l u s t r a t e the 

method, three examples are given. 

This method i s extended to include media with character

i s t i c s possessing f i n i t e d i s cont inu i t i e s i n , and transverse 

t o , the d i r e c t i o n of propagation. Two examples are g iven. 

In the f i r s t an E-wave so lut ion i s found for a c y l i n d r i c a l wave

guide loaded p e r i o d i c a l l y with d i e l e c t r i c d i s c s , each with a 

c e n t r a l l y located ho le . In the second example, an H-wave 

so lut ion i s found i n a c y l i n d r i c a l resonant cavi ty containing 

a c e n t r a l l y located s o l i d d i e l e c t r i c d i s c , the disc radius 

being smaller than the cavi ty rad ius . Two methods of so lut ion 

are offered; one i s a f i r s t mode approximation and the other 

i s an approximate series so lu t ion . 

A short comparison i s made between experimental measure— 



ments made on d i e l e c t r i c loaded per iodic structures of the 

forementioned type and theore t i ca l predict ions based on the 

f i r s t mode approximation* 

i i i 
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1 . INTRODUCTION 

The topic of th i s thesis arose during an inves t igat ion 

into the wave so lut ion i n a d i e l e c t r i c loaded per iodic structure 

of the type i l l u s t r a t e d i n Figure 1,1. A central hole i s present 
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F i g . 1,1. Cross Section of a D i e l e c t r i c Loaded Periodic Structure 

i n each disc to allow electrons to pass along the axis of the 

waveguide. As a r e s u l t , the structure may be used i n beam-

couplers , i . e . l i n e a r acce lerators , t r a v e l l i n g wave tubes and 

backward wave o s c i l l a t o r s * 

In p r i n c i p l e , the f i e l d problem i n th i s type of structure 

can be solved by so lv ing i n each homogeneous region the 

d i f f e r e n t i a l wave equations developed from Maxwell's equations 

and by matching the solutions for the d i f ferent regions at the 

boundaries."^ Due to the excessive labour involved i n any 

numerical work c a r r i e d out to e s tab l i sh a match at a l l the 

boundaries, for p r a c t i c a l purposes the method i s not e n t i r e l y 
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s a t i s f a c t o r y . Consequently, i n design work i t i s customary to 

s impl i fy the problem by using the s o l i d disc model''" and/or the 

anisotropic model 1 to approximate the s tructure . 

These models oversimplify the problem and i t was thought 

that a d i f ferent approach might be u s e f u l . Instead of considering 

the medium inside the waveguide as being made up of homogeneous 

sect ions , i t was decided that an inves t igat ion should be 

carr i ed out with the emphasis shi f ted to the fact that the medium 

as a whole i s inhomogeneous. In other words, the p e r m i t t i v i t y 

i s a funct ion of the spa t ia l parameters. 

This sh i f t i n emphasis changes the problem from solving 

a simple wave equation i n each region and matching solutions at 

the boundaries to so lv ing a wave equation which holds throughout 

the waveguide. Although the matching problem i s e x p l i c i t l y 

removed by viewing the medium as a whole, the wave equation to 

be solved i s more complex since i t has s p a t i a l l y dependent 

c o e f f i c i e n t s . In f a c t , to add to the complexity, the coef f ic ients 

have f i n i t e d i s c o n t i n u i t i e s i n the ax ia l and r a d i a l d irect ions 

because the p e r m i t t i v i t y has such d i s c o n t i n u i t i e s . A l s o , since 

i n some problems p a r t i a l d i f f e r e n t i a l s of the p e r m i t t i v i t y occur 

i n the c o e f f i c i e n t s , at points where the p e r m i t t i v i t y has f i n i t e 

d i s c o n t i n u i t i e s impulses may occur i n the c o e f f i c i e n t s . Section 

5 i s devoted to f inding approximate solutions to wave equations 

having coef f i c ients which have f i n i t e d i s cont inu i t i e s and 

impulses occurring i n the ax ia l and r a d i a l d i r e c t i o n s . Two 

so lut ion methods are offered; one i s a f i r s t mode approximation 

and the other i s an approximate series so lu t ion . 

In order to gain experience i n t rea t ing wave equations 
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with c o e f f i c i e n t s having f i n i t e d i s continuities and impulses, 

some problems which have discontinuities of the permittivity-

only i n the ax i a l d i r e c t i o n are examined i n section 4. These 

problems are treated f i r s t because they are easier than the 

problems i n which the discontinuities of the permit t i v i t y occur 

i n the r a d i a l as well as the ax i a l d i r e c t i o n . Also, the 

problems i n section 4 may be solved by other methods, thus 

providing a check on the answers found. 

During the course of the investigations of d i e l e c t r i c 

loaded periodic structures^ i t was noticed that the wave 

equations have periodic c o e f f i c i e n t s and are s a t i s f i e d by 
2 

Floquet—type solutions. Since i n metal loaded periodic 

structures the f i e l d solution i s i n the Floquet form, the 

following question arose. Could a wave equation with periodic 

c o e f f i c i e n t s be found for metal loaded periodic structures? 

This question motivated the investigation of section 3 where such 

a wave equation i s given f o r an a x i a l l y symmetric periodic 

structure with a slowly varying radius. 

While examining the f i e l d behaviour i n the type of 

structure shown i n Figure 1«1, i t was established that before a 

pure E-wave could exist i n the structure, the f i e l d behaviour 

must be considerably r e s t r i c t e d as i s shown i n section 2> 

Further investigation l e d to some general E- and H-field 

conditions which result from the spatial dependence of the 

cha r a c t e r i s t i c s of the medium* These conditions are discussed 

i n section 2. Since i n an inhomogeneous medium the f i e l d 

behaviour often must be r e s t r i c t e d before an E- or H- f i e l d can 

exists the question was asked i f analogous r e s t r i c t i o n s might 
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ex is t for waveguides with varying cross sect ions , such as for 

example a c i r c u l a r - s e c t i o n waveguide having an a x i a l l y 

dependent r a d i u s . These ant ic ipated r e s t r i c t i o n s were found 

and are given i n sect ion 2. 

The main purpose of th i s thesis i s to present general 

methods for the analys is of f i e l d problems a r i s i n g i n per iodic 

loaded waveguides. However, much of the theory i s by no means 

r e s t r i c t e d to such waveguides. In f a c t , the primary reason 

for examining ( in sect ion 5) resonant cav i t i e s which are 

p a r t i a l l y f i l l e d with d i e l e c t r i c material i s to demonstrate 

th i s p o i n t . In addi t ion to the theore t i ca l study, a short 

comparison i s made i n the f i n a l sect ion between experimental 

measurements made on d i e l e c t r i c loaded per iodic structures and 

theore t i ca l predict ions based on the f i r s t mode approximation. 
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2. ON E - AND H-FIELD CONDITIONS ON ELECTROMAGNETIC 
WAVES 

2,1 General 

As i s very v e i l known, i t i s convenient to c l a s s i f y 

electromagnetic waves which, may be propagated i n regular hollow 

waveguides into two categories , namely, waves i n which there i s 

no long i tudina l component of e l e c t r i c i n t e n s i t y , H - or TE—waves, 

and waves i n which there i s no long i tud ina l component of 

magnetic intens i ty* E— or TM-waves. This c l a s s i f i f l a t i on arises 

na tura l ly from the boundary value problem presented by the walls 

of the waveguide (which are normally assumed to be per fec t ly 

conducting). The discuss ion of wave propagation i s reduced to 

an eigenvalue problem and i t i s found that cer ta in eigenfunctions 

correspond to E—type waves and the rest to H-type waves. I t 

can, a l s o , be shown that the summation of a l l these E—type and 
3 

H—type waves form a complete set so that the general problem 

may be solved. 

Very considerable p r a c t i c a l use i s made of the fact that 

the wave pattern corresponding to a single eigenfunction may 

be excited alone and i t may be surmised that even i f the post— 

u l a t i o n of E— and H—waves had not been so convenient i n the 

mathematical a n a l y s i s , i t would s t i l l have been desirable to 

invent them. 

The topics to be discussed i n th i s section are the 

r e s t r i c t i o n s imposed upon other f i e l d components of a wave by 

the postulat ion that one f i e l d in tens i ty component, such as E 2 

or H , i s zero. 



A number of authors ~* have investigated electromagnetic 

vave problems i n waveguides with varying cross sections. For 

such problems, often the f i e l d must s a t i s f y certain r e s t r i c t i o n s 

before an E—wave can exist and, likewise, before and H—wave can 

ex i s t . In t h i s regard, an example i n section 2 . 41 , u t i l i z i n g 

the equations established i n section 2 . 2 , demonstrates the 

r e s t r i c t i o n s on an E—wave i n a waveguide i n which the walls are 

described by 

r = f ( z ) 

where r i s the r a d i a l and z i s the axial c y l i n d r i c a l coordinate. 

To within the knowledge of the writer, i n previous work^*^' 1 1* 1^* 1^ 

these r e s t r i c t i o n s or similar ones are a l l assumed rather than 

derived. 
17—20 

Authors have noted that pure E - or H—waves cannot 

exist i n an inhomogeneous lin e a r isotropic medium unless there 

are certain l i m i t a t i o n s imposed upon the f i e l d . In the thesis 
17 18 

and paper by Adler: * as well as i n the report by Malinovsky 
19 

and Angelakos these l i m i t a t i o n s are noted for the case where 
the properties of the medium are functions of the transverse 

20 

co-ordinates. Zucker and Cohen discuss i n t h e i r paper the 

condition imposed upon an H—wave when the permeability i s 

constant, the conductivity i s zero and the p e r m i t t i v i t y i s a 

function of the s p a t i a l coordinates. In the present treatment^ 

necessary conditions for Er- and H-waves to exist i n a l i n e a r 

inhomogeneous isotropic medium are derived for the case i n which 

the permeability, permittivity and conductivity can a l l be 

functions of the spatial coordinates. Under some circumstances 
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these conditions are , a l so , su f f i c i en t as i s shown i n the 

example discussed i n sect ion 2.44. 

2.2 Conditions 

If a r e c t a n g u l a r coordinate system i s oriented so that 

the z—coordinate i s i n the d i r e c t i o n of propagation (along the 

axis of the waveguide)* by d e f i n i t i o n the condit ion for an 

E-wave to exist i s 

H Z £ 0. ( 2 * 1 ) 

In t rea t ing c e r t a i n E-wave problems, such as the one 

discussed i n sect ion 3 j i t i s advantageous to refer to a s y s t e m 

of orthogonal c u r v i l i n e a r coordinates and* then, to express the 

f i e l d vectors i n terms of three components i n the d irec t ions 

of the uni t vectors of the c u r v i l i n e a r system. For such a 

s i tua t ion a useful r e l a t i o n which i s an equivalent statement t o 

( 2 . 1 ) i s 

V z . H = 0 ( 2 * 2 ) 

where H i s the magnetic f i e l d in tens i ty vector . The equivalence 

of ( 2 . 1 ) and ( 2 . 2 ) i s obvious since 

V z = k 

where K i s the uni t vector i n the z - d i r e c t i o n . 

In a s imi lar manner, for H-waves 

E = 0 
z 

or 

V z « £ = 0 ( 2 . 3 ) 
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where E i s the e l e c t r i c f i e l d in tens i ty vector . 

For waveguide problems i n which the properties of the 

medium are s p a t i a l l y dependent, the f i e l d i s , i n general , a 

hybrid of E - and H—waves* Before a pure E-wave can exis t i n a 

waveguide f i l l e d with a l i n e a r inhomogeneous i so trop ic medium, 

the necessary condit ion 

V. -1 
5 1 = o (2.4) 

must be s a t i s f i e d . In (2.4) e i s the p e r m i t t i v i t y and tf i s the 

conduct iv i ty of the medium and <D ip the angular frequency at 

which the wave o s c i l l a t e s . 

Equation (2.4) can be establ ished by employing the wave 

equation derived i n Appendix 1 for B, namely 

VCV.H) - V 2 H = «2n(e - jg ) f i 

OTN-1 

where u. i s the permeabil i ty of the medium. When the coef f ic ients 

of the component vector i n the z—direction are equated, the 

r e s u l t i s 

(2.5) 

For some cases th i s condit ion i s , a l so , su f f i c i ent as w i l l be 
demonstrated i n sect ion 2*44. 



Since for an E-wave 

then from (2.5) 

H = 0, z 1 

(« - fir1 V(e - j£) . | f 

or 

Therefore , 

( e - W SI = o. 

Likewise, the necessary condition which must be satisfied 

before an H—wave can exist i n a l i n e a r inhomogeneous isotropic 

medium i s 

= 0. (2.6) rr [ -1 6 E 

Through the use of the wave equation 

V(V.E) - V 2 f i = m\(z - j£)fi + l i - ^ M i ) . ^ ) - fiTiuV)*]. , 

which i s derived i n Appendix 1, (2.6) can be established in 

exactly the same manner as (2.4). 

2.3 Common Equation Form 

As a point of c u r i o s i t y , equations (2.2), (2.3), (2.4) 

and (2.6) can be expressed i n the common form 

= o, (2.7) 
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(a) For (2.2) the form (2.7) can be r e a l i z e d i n the 

fol lowing manner. I f (2*2) i s mul t ip l i ed by ( i , the resu l t i s 

Vz.B = 0 (2*8) 

where 

B = u.H 

and fi i s the magnetic f lux density vec tor . Now, ( 2 . 8 ) Gan be 

d i f f e r e n t i a t e d with respect to z to give 

^ (Vz»F) = V z ^ + V ^ . B = Vz.g = 0. (2*9) 

Since no magnetic charges ex i s t , 

V « £ = o . (2.10) 

Through the d i f f e r e n t i a t i o n of (2.10) with respect to z , the 

re su l t i s 

^ (V.B) = V . ^ § = 0. (2 ,11) 

At th i s po int , (2.9) i s mul t ip l i ed by z"~ and (2 .1l ) i s m u l t i p l i e d 

by z - 1 ; taking the difference of the re su l t ing expressions g i v e s 

Hence, 

z - 1 £5 = 0. (2.12) 

T) = z.t F = B. 

It can be r e a d i l y shown that (2.12) i s equivalent to 

(2.2) or (2*8) by l e t t i n g V operate on each term of the 

—1 cbB 
product z~" ^ • I f t h i s i s done, 
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-1 r-j - 2 r 7 u B A 

z V . ^ z V z . <5— = o. 

Since ( 2 , l l ) must be s a t i s f i e d , 

Hence, 

and thus 

Vz. ^ = 0. 

Vz . B = f(x,y)e 

or 

j«t 

B = f ( x f y ) e d l , t . z 

Since B has no z-dependence, th i s solution for B corresponds to 
Z ; Z 

a f i e l d component that i s cut—off at a l l frequencies and thus 

cannot be part of a wave except for the case i n which the 

t r i v i a l solution, 

B £ O i z * 

holds. Therefore, 

Vz*B = 0. 

(b) For (2.3) the form (2,7) can be re a l i z e d i n the 

following manner. If (2.3) i s multiplied by (e - j j j ), the 

resu l t i s 

Vz.D1- 0 
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where 

D'= (e - j £ ) E . 

The equation of continuity i s 

bp _ 
57 = - V . J 

where p i s the volume charge density and S i s the current density 

vector. For a li n e a r medium 

J = cr E . 

Consequently, p can be expressed as 

p =V . j J fi. 

Since the divergence of the e l e c t r i c flux density vector, D, gives 

then 

For a l i n e a r medium 

Therefore, 

V * ( e - = 0 

or 

V . D 1 = 0. 

Now, i t i s eas i l y seen that by the substitution of S1 for $ i n 



the proof given i n (a) , the equation 

-1 bD' = 0 

can be der ived . Hencej 

Tj = z , F = D' . 

(c) For ( 2 « 4 ) i t i s obvious that 

77=e — j ^ , P = H. 

(d) For (2*6) i t i s obvious that 

77= iit F = E*. 

2.4 Examples of F i e l d Res tr i c t ions 

In the examples to follow only the f i e l d r e s t r i c t i o n s 

on E—waves are discussed. S imi lar treatments can be carr i ed 

out for H-wave problems* 

2.41 A Waveguide with a Rad ia l l y Varying Cross Section 

The inves t iga t ion i s on the f i e l d behaviour of an E—wave 
1 

i n a per fec t ly conducting waveguide i n which the walls are describ 

by 

r = f ( z ) . 

Furthermore, to s impl i fy the problem, the waveguide i s to be 

f i l l e d with a medium that has a constant permeabil ity and 

p e r m i t t i v i t y and a zero conduct iv i ty . 

This example was se lected, p a r t l y , to demonstrate how the 

s t i p u l a t i o n that only an E—wave i s allowed i n a waveguide can 

considerably r e s t r i c t the behaviour of the f i e l d . A further 
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reason was that the r e s u l t s to be obtained w i l l be made use of 

i n the treatment i n section 3 of a waveguide with a p e r i o d i c a l l y 

varying radius. 

For the problem i n hand, new orthogonal curvilinear co

ordinates (u^, U £ , u^) are chosen such that u^ i s constant at 

the walls of the waveguide* Consequently, the new coordinates 

can be expressed as 

u l = u i ( r » z ) 
u 2 = / 

u.j = u^(r,z) 

(2.13) 

where ^ i s the c y l i n d r i c a l angular coordinate and u^, and u^ 

are analytic functions of r f fi and z. It i s assumed that (2*13) 

can be solved with respect to r, f> and z to give 

r = r ( u 1 # u 3 ) 

fl «. u 2 

The d i f f e r e n t i a l elements of distance i n the curvilinear 
21 system are 

d s i ~ h i d u i » = 1 » 2 » 3 ) 

where the Lame" co e f f i c i e n t s are 

(2.14) 

with x, y and z being the rectangular coordinates. Since 
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x = r cos 

y = r s in 

then 

fox for / fox . / fox for / ^ — = ?— cos p. ^ — = - r sxn 6, ¥— = e— cos 6 
^ u l <^ul ^ u 2 ^ 3 ^ u 3 

= s in «{, ^ = r cos «£, = \ r s in • foux fo^ ^ ' fou2 ^ fou3 fou3

 p 

Therefore, from (2.14) 

h 2 = r 

Hence, 

h i = h ^ u - ^ u ^ . (2.15) 

From (2.2) the expression 

h 7 5 u 7 H i + K 3 " f $ 3 _ H 3 = 0 

i s obtained where H^ i s the component of S i n the d i r e c t i o n 

and H_ i s the component i n the u~ d i r e c t i o n . Throughout the 
J A J 

remainder of th i s example i t w i l l be assumed that *?r— and 

fouj^ fou3 

exis t and are not i d e n t i c a l l y zero. Hence, 

h, H. 1 = - h T f H 3 < 2 ' 1 6 > 
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where 

b u 3 ^ U l ' 

- i 

Maxwell's equations are 

V x E = -jfl>B 

V x H = 7 f j«B 

(2.17) 

(2.18) 

For the present example the conductivity i s zero. Consequently* 

i f the curl of (2.18) i s taken and (2.17) i s used to eliminate 

E, H must s a t i s f y 

a>2p,e H = V x ( V x H). (2*19) 

From (2.19) the scalar equation obtained by equating the 

c o e f f i c i e n t s of the component vector i n the u,j d i r e c t i o n i s 

«2H,e H 3 = A -
1 2 h l h 3 I T ; < h i V - < h

3
H3>)] 

h 2 h 3 
(h 3H 3) - %r3 < h2V (2*20) 

where H 2 i s the component of H i n the u 2 d i r e c t i o n . Since h^* 

and h 3 are not functions of u 2 , as i s seen from (2.15)-, the 

term involving HL i n (2.20) can always be operated on f i r s t 

of a l l by u 2« If th i s operation i s done f i r s t , then g^— can be 

considered i n place of H»« Consequently, as w i l l be shown. H 
^ 2 

can be eliminated from (2.20) by using 

V.H = 0 . (2*21) 
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Prom (2*21) 

foH, 
fou. h l h 3 ^ ( h 2 h 3 H l > ^ < hl h2 H3> 

(2.22) 

Now, i f (2.16) and (2.22) are used to eliminate and from 

(2.20), the r e s u l t i n g d i f f e r e n t i a l equation i s 

•* 3 h 1 h 2 

l2 fo 
^ l L h l h 3 & u l U 3 3 ] " h 2 fou/ 

^1 ^ ^3 

»1 & r h2 fo 
h 2h^ fou^ 

+
 h i 

h 1 h 3 fou3 

r h2 fo 
h2h,j fou^ L h l h 3 *>ul 

r h 2 fo 
fou-j^ [h^h-} fou3 

(2.23) 

They are 

At t h i s point the boundary conditions w i l l be introduced. 
22 

n x E = 0 (2.24) 

n.B* = 0 (2.25) 

n*D = Ps (2.26) 

n x S = K (2.27) 

where 

ii = the unit vector normal to the surface of the 

conductor and directed into the region where the 

f i e l d e x i s t s , 
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ps — the surface charge densi ty , 

K = the surface current dens i ty . 

I f E 2 i s the component of IS i n the d i r e c t i o n and 

i s the component i n the u^ d i r e c t i o n , from (2.24) on the 

boundary 

E 2 = 0, E 3 = 0. 

From (2.25) 

H l = 0 (2.28) 

and thus from (2.16) 

H 3 = 0. 

Equation (2.18) y i e l d s the scalar equations 23 

(2.29) 

^ 2 
( h 3 H 3 ) " %q <h2H2> I ( 2 - 3 0 > 

j * e E 2 = hTh 1"3 h; < h A > - < h

3 V ] < 2* 3 1> 

E 3 = [ ( h 2 H 2> - h-2

 ( h i V ] 

where E^ i s the component of § i n the u^ d i r e c t i o n . Since H^, 

H 3 , E 2 and E 3 are zero on the boundary, a l l of t h e i r der ivat ives 

i n the u 2 and u 3 d i rec t ions are zero on the boundary. Hence, 

at the boundary (2.30) gives 

E i = - o r : h: (h

2

H

2> (2.32) 
2"3 
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and (2.3l) gives 

%r- <h3H3> = 0 

or with the use of (2,29) 

foH, 
0. (2.33) 

According to (2.16), (2.29) and (2.33) 

foH., 
fou-, = 0. 

Hence, (2.22) shows that dn the boundary 

foH2 

= 0. (2.34) 

If (2.32) i s d i f f e r e n t i a t e d with respect to u 2 , the resu l t i s 

foEn 

fou 2 j»e h 2 h 3 

foH2 + foh2 *H 2; 
m
 h2 ^ cSu^j fou3 fou2. 

and thus from (2.34) 

foEx 

^ 2 
= 0. (2.35) 

If , i " 2 and i 3 are the unit vectors i n the u^, u 2 and 

u 3 directions respectively$ then 
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and from (2.27), (2*28) and (2.29) 

? 2 *3 

- l 0 0 = - H 2 t 3 . 

0 H 2 0 

Therefore, 

and 

K 2 = 0, K 2 = 0 

K 3 = "H2* 

Consequently, the surface current on the waveguide walls must 

flow i n the u^ d i r e c t i o n and from (2.34) i t can be seen that 

cannot have any u 2 dependence. 

According to (2*26) 

and from (2*35) i t can be noted that i s independent of u 2 * 

Now, i t i s convenient to return to (2.23). must 

sa t i s fy (2*23) and the boundary conditions (2.29) and (2*33)* 

Further boundary conditions can bei establ ished by using the 

form of (2.23) 

fo2IL fo^IL « ^ v cbH- <5S3 

4 = a„ =r + a., ~r + a„ + a- — - + aA — - + a-IL 
fou/2 " " ° fou 2 1 fou 2 2 fou.fou, 3 fou, 4 fou. 5"3 l 3~"l l3 

(2*36) 

where 

â ^ = a i ( u 1 , u 3 ) , ( i = 0, 1, 5) . 



21 

In f a c t , i t w i l l be shown that on the boundary 

bu. 
"5 = 0, (n = Oj 1/ 2, ...) . (2.37) 

Equation (2.37) can be established by induction. F i r s t of a l l , 

through the use of (2*29) and (2.33) and the fact that 

and u^ l i e on the boundary* (2.36) gives 

J>2H3 

= 0 . 

The assumption i s , now, made that 

^H 3 

SuT1 
= 0, (n = 0* 1, N - 1). 

If (2.36) i s d i f f e r e n t i a t e d N-»2 times with respect to u^,. then 

N-2 

6 u , N bu. N-2 
b2H3'1 

L0 ^ 2 
2 J bu. 1=2 

b 2IL 
1 6 u 3

2 

N̂-2 

bu. N-2 
b2H, 

2 bu 3cbu 1 

bN-2 
a. 

6H, 
bu 1 J 

13=2 a. 
bu 3J 

KN-2 
N-2 a5^3 

(2.38) 

Since only derivatives up to N-*l with respect to u^ occur on 

the r i g h t side of (2.38)$ 
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r - l - 0 

and thus (2.37) i s established* 

Therefore, on the boundary 

fonH 
3 

= 0, (n = i + j + k = 0, 1, 2, . . . ) • 
fou^ fou^ fou3

k 

c^H 
This re su l t i s e a s i l y v e r i f i e d since from (2.37) •£ i s zero 

foXH 1 

and thus any change i n r on the boundary must, a l so , be zero* 

Since and a l l of i t s der ivat ives are zero on the 

boundary, from the three dimensional Taylor series expansion the 

only analyt ic so lut ion to (2*23) i s 

Hence, from (2.16) 

H 3 s 0* (2.39) 

E± = 0. (2*40) 

As a consequence, from (2*31) 

E 2 s 0* (2.41) 

Through the use of (2.22), (2.39) and (2.40) 

foH. 

fou2 
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Equation (2.17) y i e lds the scalar equations 

w H i = - v ; ( h 3 E 3> " Ii; <h2E2> (2.42) 

w H 2 = h ^ | u - < * A > - ^ <h3E3> 

(2.43) 

By means of (2.40), (2.41) and (2.42) 

b E 3 

^ 2 
£ 0 

and from (2.39), (2 .4l) and (2*43) 

b E , 

& u . s 0* 

Therefore, i t can be concluded that before an analyt ic E—wave 

so lut ion can exist i n the structure under examination, i t i s 

necessary that the f i e l d s be r e s t r i c t e d to having no VL^ 

dependence and 

E± = 0, E 2 = 0, H3 = 0. 

2.42 A Medium with a Radial and A x i a l Dependence 

The example to be discussed i s the case i n which an 

E—wave exis ts i n a c y l i n d r i c a l waveguide which i s f i l l e d with a 

medium having a s p a t i a l l y dependent ef fect ive p e r m i t t i v i t y and a 
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constant permeabi l i ty . In p a r t i c u l a r , the ef fect ive p e r m i t t i v i t y 

s a t i s f i e s the equation 

be 1 be ' 
with and ex i s t ing and being not i d e n t i c a l l y zero. 

In an inhomogeneous medium, i f an E-wave ex i s t s , some 

rather r e s t r i c t i n g requirements might have to be met. The present 

example was se lected, p a r t l y , to show what type of r e s t r i c t i o n s 

might be expected. However, a more immediate reason was that 

the resu l t s w i l l be u t i l i z e d i n sect ion 5, which deals with 

d i e l e c t r i c loaded structures* 

For a waveguide f i l l e d with a medium which behaves i n 

the forementioned maimer, since 

V*H = 0, 

from (2.4) 

Ve«* || = 0 . (2.44) 

In c y l i n d r i c a l coordinates (2.44) i s 

where H^ i s the r a d i a l component and H^ i s the angular component 

of H. Since the ef fect ive p e r m i t t i v i t y does not have angular 

dependence and for an E~wave 

H = 0, (2.46) 
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then from (2,45) 

b e ' a H r 
for foz 

= 0. 

As s t a t e d 

consequently, f o r an E—wave to e x i s t 

foH 
s 0* (2.47) 

o z 

I f ( 2 « 4 7 ) i s i n t e g r a t e d 

H r = f ( r ^ e ^ . (2.48) 

The s o l u t i o n i n (2*48) corresponds to a f i e l d component 

t h a t i s c u t - o f f at a l l f r e q u e n c i e s and thus cannot be part°of 

a wave except f o r the t r i v i a l s o l u t i o n , 

H r = 0. (2.49) 

As a r e s u l t of (2.49), f u r t h e r r e s t r i c t i o n s op the 

f i e l d can be found through the use of Maxwell's equations, (2.17) 

and (2.18). In c y l i n d r i c a l c o o r d i n a t e s Maxwell's equations are 

-, foE^ foE/ 
r for--3T = - H r ( 2- 5°> 

foE foE 
a r - 5j* - •-*•" >V ( 2 - 5 1 ) 

foE 
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1 bEz • , * 
r 

r z = j«>e' E / (2.53) 
foH, foH 
foz for 

foH 

r 5T< r ! V> " 7 5 ^ = ^ ' V 

The subst i tut ion of (2*46) and (2.49) into (2.53) gives 

E ^ & 0. (2.54) 

By means of (2.49), (2.50) and (2.54) 

foE 
z 

and from (2.46), (2.52) and (2.54) 

foE 
- - 0. (2.56) 

Furthermore, i f (2 .5l) i s d i f f eren t ia t ed with respect to ^ f 

from (2.55) and (2.56) 

foH 

Therefore, i t can be concluded that before an E-wave can exis t 

i n the medium under examination, i t i s necessary that the f i e l d 

has ho angular dependence and 

H = 0, E / = 0, H = 0 . 
r P z 

A point to note i s that the r e s t r i c t i o n s imposed upon 

the f i e l d components, other than 



are i n i t i a l l y caused by the r a d i a l dependence of the ef fect ive 
I 

p e r m i t t i v i t y . I f the ef fect ive p e r m i t t i v i t y i s only a funct ion 

of z , no r e s t r i c t i o n s re su l t from (2,4) because i n (2.45) 

H £ 0 z 

•which forces 

and thus a l l terms i n (2.45) vanish . 

2,43 Case of Equation (2.4) Being Not Suf f i c i ent 

A simple example which demonstrates that (2.4) i s 

not su f f i c i en t i n general i s where 

e = constant 

P- = f (y) 

6 = 0 

p s 0 

and the magnetic f i e l d s a t i s f i e s the condit ion 

V . H = 0 (2.57) 
z=zA 

at the plane Z = Z Q . 

From (2,4) 

Therefore. 

V 4 = f (x*yV*V 
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Consequently* to sa t i s fy (2.57), 

V*H = 0 (2.58) 

throughout the waveguide. Also* from (2.10) 

V*B = 0 

and thus 

Hence y 

Since 

V | X . H + uV.H = Vu-.H = 0. 

4 ^ H = 0, 
ay y 

then 

H y s 0. (2.59) 

From (2.58) and (2*59) 

&H &H 

and i f B i s el iminated from (2.17) and (2*18), the resu l t i s 

V 2 H x + <o2iiz H x = 0 (2.61) 

V 2 H + <d2jie H = 0. (2*62) 
z z 

Equations (2.60), (2*61) and (2*62) form a se l f -cons is tent set 

from which H and H can be solved. In f a c t , the s o l u t i o n . , x z 1 J 
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i s only the t r i v i a l so lut ion for H • Hence, (2.4) i s not 
z 

s u f f i c i e n t i n th i s case. 

2.44 Case of Equation (2.4) Being Suf f i c ient 

A simple example which demonstrates that (2.4) may be 

s u f f i c i e n t i s where 

I e = constant 

I* = f U ) 

tf = o 

p = 0 

and 

V . H = 0. 

z=z 0 

As i n sect ion 2»43 

Hence, 

Since 

then 

Vu - .H = 0. 

^ H = 0. 
dz z 

H = 0 . z 



3. AN APPROXIMATE WAVE EQUATION FOR AN AXIALLY SYMMETRIC 
PERIODIC STRUCTURE WITH A SLOWLY VARYING RADIUS 

3.1 General 

Ba s i c a l l y * there are two types of periodic structures, 

those with a, p e r i o d i c a l l y changing boundary and those with a 

p e r i o d i c a l l y varying medium. Examples of the l a t t e r type w i l l 

be treated i n sections 4 and 5» The present section i s devoted 

to an a x i a l l y symmetric periodic structure with a slowly varying 

radius• 

In many beam—couplers such as li n e a r accelerators, 

0—type t r a v e l l i n g wave tubes and backward wave o s c i l l a t o r s , an 

E f i e l d component i s necessary. For these devices E-wave 
2* 

solutions are of special i n t e r e s t and for this reason the 

treatment to follow w i l l be r e s t r i c t e d to an examination of 

E—wave f i e l d s . Mention should be made that for H—waves an 

analogous approach can be followed. 

One advantage of structures with angular symmetry i s 

that they have a minimum surface area for any fixed volume and 

thus have a high i n t r i n s i c Q. Besides t h i s , a x i a l l y symmetric 

structures are of interest because i n such guides E-wave 

solutions may exist i n which a l l the f i e l d components except E 

go to zero on the axis. Consequently, i n these structures the 

electron beam defocusing problem i s not as great as i n 
24 

structures such as the sinuous waveguides discussed by Cullen , 

i n which f i e l d components other than E exist along the z-axis. 
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3.2 Theory 

An approximate wave equation i s derived which i s 

separable and, as a consequence, i t turns out that the f i e l d 
i 

problem can be reduced to f inding the so lut ion to H i l l ' s 

, . 2 5 , 2 6 , equation * • 

The radius of the periodic structure to be invest igated 

var ies as 

r = n j l + b © ( ^ z ) ) (3.1) 

where © ( — z ) i s a per iodic funct ion with a period p. A l s o , 

0 s u ^ O ^ b - e l and ® ( ^ z ) | ^ 1. 

A new system of orthogonal c u r v i l i n e a r coordinates 

(u^, u 2 , u^) are chosen such that u^ i s constant at the wave

guide w a l l . A l s o , u^ i s regarded as a function* that i s 

perturbed from z . Consequently, the new system.to be introduced 

i s 

u l = 
1 + b © ( ^ z ) 

u 2 = p1 

u 3 = z + A ( r , z ) • 

(3.2) 

I f ® ( ~ z ) i s expanded i n a Taylor series about u^, 

where 

a(SV) 
v p 3' 



32 

T h e r e f o r e , 

r = U l ( i + b © ( 2 ^ z ) ) = u ^ l + b © ( ^ u 3 ) ] - ^ b © t ( 2 | u 3 ) A ( r , z ) + 

( 3 . 3 ) 

o r 

t h e 

r = u x j i + b © ( ^ | u 3 ) j - A r 

where A r i s t h e p e r t u r b a t i o n o f r i n g o i n g f r o m z t o u 3 i n 

ar g u m e n t o f © ( - ^ z ) „ F o r t h e t y p e s o f p r o b l e m s t o be c o n s i d e r e d , 

© ( - — z ) i s to v a r y s l o w l y enough t o i n s u r e t h a t 
XT • 

u j i + b © ( ^ z ) ) = U l ( i + b e ( % 3 ) | . 

( 3 . 4 ) 

H e n c e , 

and 

|Ar|«r 

p i b © , ( 2 j u 3 ) A ( r , z ) ^ u j l + b@(3Bu3)) . ( 3 . 5 ) 

A l s o , a c c o r d i n g t o ( 3 * 4 ) 

- u j l + b © ( ^ u 3 ) ) . ( 3 . 6 ) 

A f u r t h e r r e s t r i c t i o n i s t h a t t h e a p p r o x i m a t i o n 

A ( r , z ) S A [ U i ( I + b © ( 2 ^ u 3 ) j , u 3 ] ( 3 * 7 ) 

must be s a t i s f i e d , 

w i t h r e s p e c t t o z. 

I n o t h e r w o r d s , A ( r , z ) must v a r y s l o w l y 

From a T a y l o r s e r i e s e x p a n s i o n , 
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A(r,z) = A ^ J l + b © ^ ) ) , u 3] + ( Z-u 3) | | 
z=u. 

r - u ^ H * ® ^ ) ) ' 
z=u. 
r ^ J l + b C H K ^ ) ) 

To within a f i r s t order approximation from (3.3) 

r - uJl+b(3K^u 3)) at - ^ u x b e , ( % 3 ) A ( p , a ) * 

Therefore, (3,8) becomes 

(3.8) 

A(r,z) = A ^ j l + b G ^ )) , u 3] - A(r,z) | f 
z=u. 

z=u. 

r=u 1(l +b@(^u 3)) 

As a re s u l t * i n order to s a t i s f y (3.7) 

OA 
S I 

+ @ t (27£ } |A 
p 1 w v p 3 Or z=u. 

r=u 

z=u. 
:= U l(l +b©(^u 3)) 

I 
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or 

^A [ U i ( i+be^g i^ ) ) » u 3 ] 

fou 
(3,9) 

From (3 .2 ) f (3.6) and (3.7) the old coordinates can be 

approximately expressed i n terms of the new coordinates as 

U , > (3,10) 

z = u 3 - A f u ^ l + b e t 2 ^ ) ) ,u 3 ] * , 

A d i f f e r e n t i a l change i n a vector B can be wri t ten as 

dE = dx 1 + dy ] + dz k = du^a-̂ + du 2 a 2 + du3a"3 

where "i , ~f and £ are the uni t vectors i n the x, y and z d irec t ions 

respect ive ly and a^ , a 2 and a<3 are the unitary vectors i n the 

u^f u 2 and u 3 d i rec t ions re spec t ive ly . Therefore, 

1, 2, 3) 

(3.11) 

where, as already mentioned i n sect ion 2.51, 1̂  i s the uni t 

vector i n the u^ d i r e c t i o n and 
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Since 

x = r cos p 

y = r s in jrf, 

then from (3,10) 

h 2 = u l ( 1 + " ^ i M f (3.12) 

a n d (l+WSX^)) ( c o s u 2t + s i n u 2 j ) - ^ - C 

2jv 
P 

M3 .13) 

Therefore, from (3.13) 

0 

1 1 # 1 3 

j t 2 . r 3 = o 

^ • ( ^ ( i ^ ^ ) ) - ^ ( i - ^ l 
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Hence, 1̂  and "i^ are approximately orthogonal to one another i f 

foA / __ foA 
fci^ I " fou3 

22, 
P 1 ^ ( ^ 1 3 ) (1 + b © ^ ) ) 

(3.14) 

Due to (3 .9) , (3.14) can be s impl i f i ed to 

bA_ 2^ 
P V G F ^ ) ( l + b e ^ ) ) . (3.15) •2it 

Since along the axis of the waveguide A must be zero, integrat ing 

(3,15) gives 

A " \ ( % u 1

2 b ^ ( ^ u 3 ) ( l+bgK 2^)) . (3.16) 

To insure that the wave equation i s separable, the 

r e s t r i c t i o n 

( ^ b G F ^ ) ) 2 

(3.17) 

i s made. Consequently, from (3.12) along with (3.9) 

h2 - u ^ l + b ® ^ ) ) 

h 3 s l 

(3.18) 

and* as w i l l be shown, for these Lamg coef f ic ients a separable 

so lut ion e x i s t s . 

Through the use of (3.16) and (3.17) i t can be seen that 

(3.5) i s s a t i s f i e d . Now, (3.16) i s d i f f erent ia ted with respect 

to u 3 and the r e s u l t i n g expression, when substituted into (3 .9) , 
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gives the condit ion 

\ ( ^ ) V b 2 ® F ( 5 J u 3 ) 2 + l ( ^ ) 2 u l 2 b ® ' < ^ u

3 ) ( 1 + b ® ^ 3 > l 1. 

(3.19) 

If (3.17) i s kept i n mind,- then (3.19) i s s a t i s f i e d i f 

( ^ U l ) 2 b e * * ^ ) ( x ^ ^ ) ] (3.20) 

The conditions imposed on the waveguide parameters are not as 

r e s t r i c t i n g as they might appear. For example, a check w i l l show 

that the parameters, given i n ( 3 . l ) , of a structure with a 

radius varying as 

r = *36(l + .5 cos z) 

eas i ly sa t i s fy the condi t ions . Such a waveguide has a noteworthy 

amount of load ing , since b i s a measure of the load ing . 

As already establ ished i n sect ion 2.41, before an E-wave 

can exist i n the type? of structurq being treated , the f i e l d 

can have no u 2 dependence and 

H, = 0* E 0 = 0, H , s 0 . 

Therefore, from Maxwell t s equations 

-l b ( h . H j 
3 » e i E i = - 537 - i J L J L " 

3 » e 1 E 3 = 

L2U3 bu. 

b (h 2 H 2 ) 

h l h 2 

jajij H 2 = * h 1 h 3 L 

b(h 1 E J ) 
b u 3 

>(3.21) 

b ( h 3 E 3 ) 

b u x 
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where and e.̂  are constant* El iminat ing E.^ and E^ from 

( 3 * 2 1 ) and using the IK'S given i n (3.18) y i e lds 

u n 5 — — "5;— (h.M-j + h, 1 Ou-ĵ  ^ Cu-^ 2 2 J 1 fou. ~2 ( H 2 H 2 ) + * > * l e l h 2 H 2 = 0 

(3.22) 

where i s an approximation of since the h^'s are 

approximate* Equation (3*22) i s separable and l^B^ can be 

expressed (with time dependence suppressed)- as 

h 2 H * = R d i ^ T d ^ ) . ( 3 . 2 3 ) 

I f ( 3 . 2 3 ) i s substituted into ( 3 * 2 2 ) , the resu l t i s 

u 1 d 
R dun 

1 dR 
u l 

+ h , 
1 d 2 T . ,2 O 

T —2 + a Hel 
du^ 

= 0 

Therefore, 

u 1 dun 

1_ dR "I 
u l d u l J 

+ K R — 0 (3.24) 

d^T . r 2 L / K | 2 1 
T = 0 . (3.25) 

The so lut ion to (3*24) i s 

R (3.26) 

Since at the wall of the waveguide 

E 3 = 0, 
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the boundary condit ion to be f u l f i l l e d i s 

Ku^ du^ = 0 . 

u, = tl, 

I f (3,18) i s used to eliminate h^ from (3,25), then 

d 2 T 
du. 

u> n 1 e 1 

K 

(1+^6(^3)) _ 
T = 0 (3.27) 

and (3.27) i s commonly known as H i l l ' s equation. Extensive 

treatment of H i l l t s equation exists i n the l i t e r a t u r e . For 

example, a general so lut ion method i s discussed by Whittaker 
27 28 and Watson and, a l s o , by B r i l l o u i n , 

Now, (3,27) i s a l i n e a r second-order d i f f e r e n t i a l 

equation with a per iodic c o e f f i c i e n t . For th i s type of 

equation, provided the coe f f i c i en t i s s ingle valued, Floquet 's 
29 

theorem states that a p a r t i c u l a r so lut ion has the form 

e ^ 3 P ( ^ , ) p 3 

where P(—~u-j) i s a per iodic funct ion with period p. 

Since P("2^u.j) can be expanded i n a Fourier series* i n 

the treatment put for th by the forementioned authors, T i s 

expanded i n the series 

- A 
0 0 

T = e P 3 -3 
• 2njL 

0 0 

a e n 
P 3 a e n 

- j ( - ^ ) u 3 

n = ~»co n = -co 

(3.28) 
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where 

A l s o , the coe f f i c i ent of T i n (3.27) i s expanded i n the Fourier 

series J oo 0 

2 K z \ , 3 p u 3 
* ^ i e i T = / V 2 

p V 
(3.29) 

( l + b © ( ^ u )) n = -oo 

Then, (3.28) and (3.29) are substituted into (3.27) and the 

expression obtained i s 

oo co co 
b.i a e k n 

- j (X+2(k-to)iC )^ 

m = - c o n = -oo k = -co 

= 0 . (3.30) 

x a ( ^ ± 2 r 2 L - ) u 3 

By mul t ip ly ing (3.30) by — e ^ and integrat ing the result* 

ing expression from 0 to p , the equations 

co 

_ ( & 2 £ E ) 2

 a + ) b a = 0 (3.3l) p m / m«-n n v ' 
n = -co 

or 

oo 
-i 

p ^—• r n = -co 

(3.32) 

are determined. The determinantal equation for (3.32) i s set 

equal to zero so that a non—trivial so lut ion can be found for 

the a ' s . 
m 
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For the case i n which the ser ies , 

oo 

b , n * 

n = —co 

30 
i s absolutely convergent* Whittaker and Watson evaluate the 

determinantal equation f o r i the set of equations which r e s u l t 

fcii when (3*31) i s d iv ided by \JQ — fi^OSF)2

 9 i n th i s instance , the 

determinant i s 

S^OO = det B 
mn 

where 

m̂m 

b. 
B m—n 

mn 
b0 A * ^ ) 

, m £ n 

From Whittaker and Watson*s treatment 

£ ) j (X) = i + K 

(3.33) 

The constant /C" can be calculated at )(= 0. Hence, 

a ( o ) - i 
K = ( — ) tan\/V f * (3.34) 

Since 

from (3.33) and (3.34) 

. 2 X & ' . 2 V ^ P 
s in Tj-. = 3^(0) s in — (3.35) 
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An approximate so lut ion to H i l l ' s equation can be found 

by truncat ing the series (3*28) and (3.29). Solutions using 
31 

perturbat ion theory have been given by B r i l l o u i n as well as by 
32 

McLachlan • 

Once T i s determined, from ( 3 » 2 l ) , (3.23) and (3.26) the 

f i e l d i s known and 

1 (OZ 

J ^ K u ^ dT 
du. 

H 2 ~ 

E„ s~ - i 3 J we 

1 ( 1 + b € x 2 i U 3 ) ) 

J 1 ( K p 1 ) T ( u 3 ) 

l+b0(^u 3)) 

K_ J o ( K u x ) T ( u 3 ) 

1 ( i + b f t - 2 ^ ) ) 

> (3.36) 

The f i e l d component, E , can be determined from 
z 

E = k . B = k « I E , + k , "i^E-z 1 1 3 3 

Through the use of (3.13) and (3.15) 

\ ~ - l K b © U ^ S ) E 1 + B, 

or 

E = -
z • e 1 ( l 4 b©(^U3) ) 

& u ^ e 1 ^ ) J ^ K ^ ) f f - +K J ^ K u j T U d u 3 0V 1 

Along the axis of the waveguide 
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and thus 

z = u 3* 

Therefore« 

z J toe 
1 (l+bBC^z) 

For the l i m i t i n g ease i n which b — » 0, 

i ^ — r 

u^ — » z 

and (3.36) becomes 

E J. (Kr) |£ tte^ 1 v 7 dz 

= J ^ K r ) T(z) 

E z = J 0 ( K r ) T ( z > 

(3,37) 

where T s a t i s f i e s the d i f f e r e n t i a l equation 

2 
M j - + ( a 2 ^ . , ^ - K 2) T = 0. 
dz 

It can be recognized that (3*37) i s an E-wave solution i n a 

uniform c i r c u l a r - s e c t i o n waveguide. Hence, i n the l i m i t (3.36) 

i s i n agreement with the known solution. 

Some comments can now be made with regard to p e r i o d i c a l l y 

perturbing the radius of a c i r c u l a r - s e c t i o n waveguide. As can be 

seen from (3.36), the u^ dependence i s the same as the r 

dependence i n a uniform waveguide and thus the v a r i a t i o n of the 
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cross sect ion perturbs the argument of the Bessel funct ions . A l s o , 

according to (3.36) the amplitude of the f i e l d i s modulated by the 

factor 

1 

With reference to (3,27) i t i s convenient to define an ef fect ive 

v2 

K as 

where 
E f f e c t i v e = fi2 + A k 2 

2 0 AK = K'- - i 

2 2 Since ^ - e f f e c ^ i v e i-s a n o s c i l l a t o r y perturbation of K , the 
effective propagation fa c t o r , defined as 

E f f e c t i v e = * V l - ' ^ a > <3'38> 
( l + ^ % 3 ) ) 

o s c i l l a t e s . This result implies that the phase of the f i e l d i s 

modulated. 

In a vacuum from (3.38) 

2 2 K 2 

^ e f f e c t i v e = a ¥ o " " ~ 2. 

and thus 

Pef f e c t i v e ^ * V o = ||) ( 3« 3 9> 
where c i s the speed of l i g h t * This s i t u a t i o n i s not necessarily 

true i n d i e l e c t r i c loaded structures such as the one discussed i n 

section 4 since 

E f f e c t i v e = * \ * - ^ 
and, as a consequence, e can be increased u n t i l 
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Hence, along the axis of such d i e l e c t r i c loaded structures i t i s 

possible to have regions where the phase v e l o c i t y of the f i e l d 

i s l e s s than the speed of l i g h t whereas (3.39) indicates that for an 

empty metal structure with a slowly varying radius such low 

v e l o c i t i e s are impossible* 

I f the space harmonic where n = 0 i n (3.28) i s to be used 

far beam—coupling, i t w i l l be shown i n what follows that the radius 

of the waveguide wall must be r e s t r i c t e d by the condit ion 

V 
M c m 

where 

M = the mth root of J\.(x) m 0 

v ^ = the phase v e l o c i t y of the Oth space harmonic 

H r = the r e l a t i v e permeabil i ty 

e r = the r e l a t i v e p e r m i t t i v i t y . 

For many purposes the Oth space harmonic i s of greatest in teres t 

because i n (3.28) aQ i s usual ly larger i n magnitude than a n for 

n ^ 0* 

Since from the boundary condit ion E-j = 0 

J Q C K ^ ) = 0, 

then 

I f a r e l a t i o n 

= M m . (3.40) 

Kp = N (3.41) 
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can be e s t a b l i s h e d , 
M 

m (3.42) 

To f i n d a lower bound f o r tt^$ an upper bound of N must be 

determined. The l a t t e r bound can be found by n o t i n g t h a t the 

phase v e l o c i t y of the Oth space harmonic i s 

_ tt top 

Hence, 

(3.43) 

and thus 

"Wo cp (3.44) 

S u b s t i t u t i n g (3.44) i n t o (3*38) y i e l d s 

^ e f f e c t i v e ~ ̂ r e r ep l + b © ^ ) ) 

or 

(3 e f f e c t i v e 
^rrx^h[i^@(^n3)) 

- (Kp)' 

I f 

then 

Kp 

^ e f f e c t i v e * G 

and the f i e l d i s evanescent everywhere. Therefore, f o r 

propagating regions to e x i s t i n the waveguide, Kp must be l e s s 
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than 

VJy-Xv p h(i+b) 

Hence, from (3.42) 

tu 
m' 

L\/irr r xv p h(i +b )J 
(3.45) 

Since 
~ 2 /2it\' 

where X i s the free space wavelength, by means of (3.44) 

P = 
27tC 

X . 

Eliminating p from (3.45) gives 

tu 
M m 

_2n^/|i re r X(l+b) _ 
(3.46) 

If coupling i s desired i n the f i r s t pass band and on the 

axis, (3.45) can be relaxed since X ^ ^ a n 4 p̂h"""" c* Even further 
relaxation can be achieved because M 2*405 and b a 0. As 

m 
a r e s u l t , 

2*405 .38 ^ 
P = P (3*47) 

2lt \ / ^ r E r 
e r r 

tl. 
2*405 X = •16 

4* \/n rP r 

(3.48) 
e r r 
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When the guide i s empty, (3.47) and (3.48) become 

=» ,38p (3.49) 

=» ,16X. 

A l s o , (3.49) can be wri t ten as 

2-rcti, 
> 2.405. (3.50) 

It can be seen that when (3.50) i s s a t i s f i e d , in jgenera l , 

(3.17) and (3.20) are not s a t i s f i e d unless b i s smal l . In other 

words, to keep the radius of the waveguide slowly vary ing , b 

must be a small number. Consequently, when an empty periodic 

structure with a slowly varying radius i s used, the i n d i c a t i o n i s 

that to achieve heavy loading the beam-coupler would have to be 

operated i n a higher pass—band and/or u t i l i z i n g a higher space 

harmonic. As can be surmised from (3.45), by going to a higher 

pass—band and/or employing a higher order space harmonic the 

lower bound for i s reduced. 

I f the waveguide i s f i l l e d with a d i e l e c t r i c material* such 

as t i t a n i a , having a r e l a t i v e p e r m i t t i v i t y of 93.5, then (3.47) 

becomes 

. 2icn-

As a r e s u l t , (3.17) and (3.20) can be s a t i s f i e d without"b" 

necessar i ly being smal l . Therefore, when f i l l e d with a d i e l e c t r i c 

such as t i t a n i a , the structure under study may be heavi ly loaded 

while operating i n the f i r s t pass-band and using the Oth space '• 
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harmonic• 

D i e l e c t r i c f i l l e d structures of th i s type may have a p p l i 

cations i n t r a v e l l i n g wave tubes since i n these tubes d i e l e c t r i c 

losses do not present a problem. 

A structure which has not been examined but co\ild be 

invest igated by adapting the present treatment i s i l l u s t r a t e d 

i n Figure 3 .1 . This structure i s a combination of the two basic 

F i g . 3 .1 . A Structure with a P e r i o d i c a l l y Varying Boundary and  
Medium 

types of per iodic structures mentioned i n section- 3 .1 . One 

spec i f i c example i s the case i n which d i e l e c t r i c regions of 

constant p e r m i t t i v i t y are p e r i o d i c a l l y spaced between constant 

u.j surfaces . 

3.3 Discuss ion 

The theory just developed gives a r e l a t i v e l y simple f i e l d 

so lut ion for an a x i a l l y symmetric periodic structure with a 

slowly varying radius and, as a consequence, should prove to be 

of some use i n designing spec i f i c structures for beam-couplers. 

For a structure i n which the radius of the walls i s not 

slowly v a r y i n g , the a p p l i c a b i l i t y of the present development 

has not been examined. However, as a point of speculat ion, i t 

might be quite meaningful to employ the expressions i n (3.36) i n 

order to obtain the f i e l d on the axis of the s tructure . 
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Section 3.2 has served to introduce l i n e a r second-order 

d i f f e r e n t i a l equations with per iodic coe f f i c i ents and has 

presented a c l a s s i c a l treatment for f inding the Floquet s o l u t i o n . 

As w i l l be seen i n sections 4 and 5. the same type of mathematical 

problem ar ises i n the inves t iga t ion of wave propagation through 

p e r i o d i c a l l y varying media. In both sect ions, a modified 

approach i s adopted for solving the d i f f e r e n t i a l equations i n 

order to overcome d i f f i c u l t i e s caused by d i scont inu i t i e s i n the 

media e 
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4, WAVES IN MEDIA VITH FINITE DISCONTINUITIES IN THE DIRECTION 
OF PROPAGATION 

4.1 General 

A treatment of electromagnetic waves i n media with 

c h a r a c t e r i s t i c s possessing f i n i t e d i s cont inu i t i e s i n the d i r e c t i o n 

of propagation i s developed. The development avoids the use of 

e x p l i c i t boundary conditions at the d i s cont inu i t i e s and i n th i s 

respect i s bel ieved to be nove l . To i l l u s t r a t e the method, three 

examples are given, for which solutions have previously been 

obtained by the use of e x p l i c i t boundary condit ions . The purpose 

i n inves t igat ing these examples i s to help c l a r i f y the issues 

involved before proceeding to more complex problems, as for 

example, problems i n which the d i s c o n t i n u i t i e s occur transverse 

to as well as i n the d i r e c t i o n of propagation. Such problems are 

discussed i n sect ion 5, 

In a l i n e a r i s o t r o p i c medium having ei ther the permeabil i ty 

or e f fect ive p e r m i t t i v i t y a funct ion of z , c er ta in general 

statements can be made about the wave solutions to Maxwell's 

equations. F i r s t of a l l , the d i f f e r e n t i a l wave equations are 

s u f f i c i e n t l y separable for E—, H—and TEM-waves to allow the z*-

dependent part of the wave so lut ion to be separated from the 
33 

transverse dependent part • The z - v a r i a t i o n due to the 

permeabil i ty or ef fect ive p e r m i t t i v i t y i s incorporated into the 

d i f f e r e n t i a l equation s a t i s f i e d by the z-dependent part of the 

wave s o l u t i o n . Consequently, the p a r t i a l d i f f e r e n t i a l equation 

that i s s a t i s f i e d by the transverse dependent part of the wave 

so lut ion i s i d e n t i c a l to the corresponding equation that would arise 
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for problems involv ing a homogeneous medium* 

It i s eas i ly shown,- as done i n "Waves i n Inhomogeneous 
33 

Isotropic Media" and i n the examples discussed i n sect ion 4*5, 

(e*g. equation (4.27)), that the d i f f e r e n t i a l equations containing 

the z-dependent part of the wave so lut ion can be expressed i n 

the form 
*-b(z) T = 0 (4*1) 

where the c o e f f i c i e n t s , a(z) and b ( z ) , are spec i f ied i n the 

chart shown i n Figure 4*1* 

Wave a(z) -b(z) 

TEM 
1 fi)2^e,(z) - K 2 

TEM 
1 « 2 i x ( z ) e ' - K 2 

E 

e*(z) fl>2ne1(z) - K 2 

e'(z) E 

1 «o 2n(z)e' - K 2 

H 

1 a>2\ie ' (z) - K 2 

H 

ii (z) <o2u(z)e • - K 2 

[i(z) 

K = separation constant 

F i g * 4 .1 . Chart for Coef f ic ients of Equation (4*l) 

The fol lowing inves t igat ion i s centered on equation (4*l) 

for problems i n which the coe f f i c i ents are f i n i t e functions and 

e i ther one or both coe f f i c i ent s have f i n i t e d i s cont inu i t i e s but 

d_ 
dz a(z) -1 dT 

dz 
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otherwise are wel l behaved. A c t u a l l y , the fol lowing treatment 

i s , a l s o , appl icable to cases i n which the d i s cont inu i t i e s occur 

i n the der ivat ives of the c o e f f i c i e n t s . 

The Sturm-Liouvi l l e problem involv ing (4.1) has been dealt 

3 4 35 36 with for p a r t i c u l a r cases by Marcuvitz and, a l so , Angulo ' 

from an approach using Green's charac ter i s t i c funct ion . 

37 

O o l l i n deals wi th- th i s problem by applying the Rayle igh-Ritz 

method. Such approaches are applicable to the Sturm-Liouvi l le 

problem because spec i f i c i n i t i a l and f i n a l conditions are known. 

In the present treatment the s i tua t ion i s quite d i f f erent since 

no i n i t i a l or f i n a l conditions are given. 

The standard approach for solving (4.1) i s to f ind the 

so lut ion i n each region where the coef f i c ients are well behaved 

and to use given boundary condit ions at the points where the 

coef f i c ients have f i n i t e d i s c o n t i n u i t i e s . 3 8 ' 3 9 T h e boundary 

conditions re late the so lut ions-of the d i f ferent regions. It 

might be added that th i s approach may, a l so , be used for the 

Sturm-Liouvi l l e problem. 

In th i s thesis the problem.-will be approached from the 

point of view that (4.1) holds for a l l z . Consequently, at 

points where the coef f i c ients have d i s c o n t i n u i t i e s , boundary 

conditions are not e x p l i c i t l y needed. Hence, the so lut ion to 

(4.1) w i l l be sought without the use of stated boundary condi t ions . 
41 

B r i l l o u i n adopts the same point of view i n his inves t igat ion 

of (4 , l ) for the case where 

a(z) = 1 

-b(z) = a rectangular waveform. 
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However, h is method of s o l u t i o n , which w i l l be discussed i n 

sect ion 4.523, leads to d i f f i c u l t i e s and as a r e s u l t , h is answer 

only holds for the l i m i t i n g case i n which the d i s cont inu i t i e s 

disappear. These d i f f i c u l t i e s w i l l be avoided i n the discuss ion 

to fo l low. 

For the standard approach, the condit ion on T at a 

boundary point i s that T i s continuous or has a given f i n i t e 

d i scont inu i ty ; at a l l i n t e r i o r points T i s continuous. Con

sequently, from the point of view adopted here in , i t i s 

reasonable to state that the allowable functions for the so lut ion 

to ( 4 » l ) may have f i n i t e d i s cont inu i t i e s at points and, everywhere 

e l se , the allowable functions are to be continuous. At a point 

where a funct ion has a f i n i t e d i s c o n t i n u i t y , the function i s 

not def ined. This lack of d e f i n i t i o n i s eas i ly r e c t i f i e d by 

a r b i t r a r i l y assigning the funct ion a value at the point of 

d i s c o n t i n u i t y . For example* i n Fourier series the mean of the 

l e f t and r ight l i m i t i n g values i s given as the value of the 

funct ion at the point of d i s c o n t i n u i t y . 

An example might be useful to c l a r i f y the type of funct ion 

invo lved . I f T i s continuous over the i n t e r v a l [ z o » Z 2 J N A S 

a kink at , then the der ivat ive of T has a f i n i t e d i scont inu i ty 

occurring at z^ • The der ivat ive can be symbolical ly represented 

by 

dT _ 
dz ~ < 

f-^z) * z Q < z <= z 1 

f 0 ( z ) * z, «= z < z 2 

dT d 2 T Since -r— has a f i n i t e d i scont inu i ty at z, , then —-.must have an 
dz 

impulse at z-^. In the same vein , , higher order der ivat ives can be 
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discussed, 

4.2 Cont inuity Properties of the Solut ion 

Equation (4*1) contains the information that i f T ex i s t s , 
-1 dT 

then T and, a l so , a(z) rj—• are continuous for a l l z . These 

cont inuity propert ies can be establ ished by integrat ing (4.1) 

twice. On the f i r s t in tegrat ion of (4.1) the resu l t i s j, 

z 

a u r 1 H = J B ( T ) T ( T ) D T < 4 - 2 > 

and on the second in tegrat ion of (4.1) the resu l t i s 

T(z) = J a(T) d T j b ( t ) T(t) d t . (4.3) 

I f the assumption i s made that T(t) has f i n i t e 

d i s c o n t i n u i t i e s , the i n t e g r a l 

T 

b(t) T(t ) dt (4.4) 

i s continuous. Therefore, from (4.3) T(z) i s continuous. Hence, 

a contradic t ion exists and thus T(t) cannot have f i n i t e d i s 

c o n t i n u i t i e s . I f , ins tead , the assumption i s made that T(t ) i s 

continuous, the in tegra l (4.4) i s , nalc^ m o r e c o n t i n u o u s . 

Therefore, from (4.3) T(z) i s continuous. Hence, no contradic t ion 

exists and thus 

T = a continuous funct ion . (4.5) 

Since T i s a continuous funct ion , from (4.2) 

—1 dT 
a(z)~ ^ = a continuous funct ion . (4.6) 
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From (4.6) i t i s seen that i f a(z) has f i n i t e 

dT 
d i s c o n t i n u i t i e s , must also have f i n i t e d i s c o n t i n u i t i e s . As 

' dz 
a r e s u l t , T w i l l have k i n k s . 

4*3 Boundary Conditions 

At the points where the coef f i c ients have d i s c o n t i n u i t i e s , 

the boundary condi t ions , i f des ired , can be obtained from (4.5) 

and (4.6)* Hence, provided (4*l) holds for a l l z , the boundary 

conditions are contained i n (4*1)* Consequently, the problem 

posed when (4.1) holds for a l l z i s i d e n t i c a l to the standard 

problem i n which (4-.1) holds i n the regions where the coef f i c ients 

are well behaved and i n which the given boundary conditions are 

equal to the boundary conditions obtained from (4.5) and { 4 . 6 ) « 

This statement can be j u s t i f i e d by the fol lowing argument. From 

both points of view (4.1) holds everywhere except at the 

boundaries; at the boundaries (4*5) and (4.6) show that (4.1) 

re s tra ins T i n the same manner as given equivalent boundary 

conditions would. Hence, the iden t i ty holds . 

4*4 Existence and Uniqueness 

Through the use of the method of successive approximations, 

the existence of a so lut ion to (4*1) can be establ ished for the 

i n i t i a l value problem, 

T(z Q ) = T Q 

/ x-1 dT 
a < z ) dz" = S Q. 

z=z 0 

The proof i s s tarted by considering the system of two l i n e a r 



equations t h a t are e q u i v a l e n t to ( 4 , l ) , 
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a s 
dz 

= b(z) T 

dT / \ c 57 = a(z) S. 

The development of the proof from t h i s p o i n t i s somewhat standard 

and i s g i v e n , along w i t h a proof of the uniqueness of the 
42 

s o l u t i o n , by E, L, Ince, 
A more general e x i s t e n c e theorem t h a t might be co n s u l t e d 

43 

was proved by Caratheodory i n 1927, 

4»5 Example S o l u t i o n s 
4,51 An E l e c t r o s t a t i c F i e l d S o l u t i o n i n a P e r i o d i c 

Medium 

This s e c t i o n w i l l d e a l w i t h an e l e c t r o s t a t i c problem 

a r i s i n g i n a p e r i o d i c medium loaded w i t h i n f i n i t e d i e l e c t r i c 

s l a b s . The cross s e c t i o n of such a medium i s i l l u s t r a t e d i n 

Fi g u r e 4,2, The f i e l d i s to be set up by a p o s i t i v e charge on 

an i n f i n i t e metal p l a t e at z as —d and by a negative charge on a 

s i m i l a r p l a t e at z = d. I n the problem to be i n v e s t i g a t e d d—»oo , 

« d *-+* d 

• • • 

I 1 ' . 

D i e l e c t r i ( V | 
i / fijlab with 

e = e 

1 i 
I i 

i 

ff 

1 

0 
i n , 

X 

-*-z 

2 

a 

V.' 

I ' M " 

A i r 
e = e 0 

|i = u Q 

cr = 0 

,t, 11 

M l ' 

'''! 
'ir' 

!'V 

L'j' 

Metal 
P l a t e 

F i g , 4,2, Cross S e c t i o n of the Medium f o r Example 4,51 
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For a medium behaving i n the manner shown i n Figure 4 .2 , 

the p e r m i t t i v i t y var ies i n the z—direction as a rectangular 

"waveshapes This v a r i a t i o n i s described i n Figure 4 .3 , 

• e 

'0 

a 
"2 

a 
2 

F i g * 4 .3 . The Functional V a r i a t i o n of the P e r m i t t i v i t y for  
Example 4.51 ! 

In the region between the metal p la te s , since no free 

charge i s present, 

V«D - 0. (4,7) 

The f i e l d i s taken to have only z—dependence and thus from (4,7) 

dz = cu (4.8) 

Since 

co = 0 
and 

K = 0, 

(4*1) can be reduced to (4*8) by l e t t i n g 

I N - 1 dT _ 
a ( z ) dz" = D z • 

In th i s case, from (4.6) i t i s seen that D i s continuous and, 
z 

to be more s p e c i f i c , from (4*2) i t i s seen that 

D = constant. 
z 



I f the constant i s evaluated at z = —, 

where for 3 = « 0 

z 1 0 1 1 1 

D, = D 
1 z a 

z = 2 

(4.9) 

E7 = l im E 1 o z 
o-* 0 z = 

a-S 

E7 = l im E 
1 5 2 

o-*- 0 
a+ 

A c t u a l l y , at th i s point the problem i s completely solved since 

and thus 

D = e E 
z z 

E — '" ET a Z EC 1 

(4.10) 

(4.11) 

Prom (4.11) i t can be seen that E has a rectangular waveshape 

which i s inverse ly proport ional to the p e r m i t t i v i t y . 

A Fourier series so lut ion for E w i l l now be found 
z 

from (4 .8) . This approach* although i t i s for the present 

problem somewhat more laborious than the preceding method, 

demonstrates a method of so lut ion which i s more applicable to 

complex problems* 

I f D i s el iminated from (4.8) by using (4.10), i t 
z follows that 
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de where i s a per iodic impulse funct ion . On the assumption that 

E i s per iodic with period p . the required so lut ion may be 
z 

expanded i n ^he Fourier series 

oo 

E = z a e n 
d P (4.13) 

n = —oo 

As a f i r s t step for f inding a n for n / 0, (4.12) i s mul t ip l i ed by 
. 2njt 

e F a n £ i s integrated from —p/2 to p /2 . Hence, 

p/2 

-p/2 

1 dz dz + 

p/2 

-p /2 

i ^ z J p z „ 1 de , i r E — -3— dz z e dz = 0 

or after integrat ing the l e f t hand in tegra l by parts and 

e l iminat ing E from the r i g h t hand integra l through the use of 
z 

(4.10), 

.2nn; 
• P E 

p/2 

-p/2 

:2n-rt 
p/2 

-p/2 

i E dz z 

P/2 

-p /2 

j 2 n i z 

^z dz [ e ] d z 

= 0. (4*14) 

Since E i s p e r i o d i c , the f i r s t term from the l e f t i s zero. A l s o . 

from (4.6) D i s continuous* Hence, (4.14) gives 
z 

2n% 

p/2 

-P/2 

n ? z 

e p E dz z 

_ . .njta 
+ e 

a 
z = - 2 

• nrca 

a 
Z = 2 

(4.15) 
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where 

D , = D -1 z z=-' 

I f (4,13) i s subst i tuted into (4*15), a n i s found to be 

a n j 2n-rc 
- J .nua 

%1 L e 0 e U 

_-nna 
+ e D, 

e l eo, 

or 

a = n j2n-n; 1 - 3 , 
• nua 

E n 

-3 n-yta 
P E+ -1 

(4.16) 

where 

e r = e 1 / e 0 

E* + , = lira E -1 c- z 
6-o z = 

-a+1 

Hence, 

co 

E = ax + z O 1 - ± -

;nna -nit a "j 

e ^ E , - e * E ^ J . "O-p""5-5 

j2mx 
n = -oo 
n ^ 0 

If (4.17) i s evaluated for 

(4.17) 

E z = E 1 - , 

then 
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E-, = 1 - •=- l im 
8 - 0 

E, 
2 ; 

- E -1 

oo 

Since 

"0 

44 

+ "l - i ' l im o 
L r j 8 - o L 

E, 
s in mi S 

oo 

E - + E+ 
nu -1 

1 s in 2nn/ 8\ 

nrc 

n = 1 n = 1 

co 

n = 1 

s in nitQ  
P 0 

2p 
0 «= 0 < 2p 

B 1 = a Q + 1 -

In the same way, i t can be shown that 

( P - 2 a ) E " + - E +  

1 2p M l + 2 -1 E -1 a Q + 1 -

(4.18) 

(4.19) 

By evaluating E i n such a manner, no new unknowns are introduced 

and two homogeneous l i n e a r equations i n a Q , E-ĵ  and E * ^ are obtained* 

Consequently, from (4.18) and (4.19), a Q and E ^ can be found i n 

terms of E^ and are 

a 0 ~ 
a . 1 (£=§.*)' 
P c r p 

E, 

E ^ = E ~ . (4.20) 



63 

Hence, from (4.16) and (4.20) 

„• nu a s in : 
* — E T " . 

nn 1 

Therefore, 

E = EL z 1 
a + 1 (Era) + 2 [ 1 

co ' . mta s m —— 
P_ 2nn cos — - z n% p 

n = 1 

and th i s i s the Fourier series expression for the rectangular wave

shape found i n ( 4 . 1 1 ) » 

4.52 A Steady State E - F i e l d Solut ion i n a C y l i n d r i c a l 
Vaveguide Loaded with S o l i d D i e l e c t r i c Discs 

4.521 Derivat ion of the D i f f e r e n t i a l Equations 

The problem to be invest igated i s the steady 

state E—field behaviour i n a p e r f e c t l y conducting c y l i n d r i c a l 

waveguide loaded with s o l i d d i e l e c t r i c d i s c s . The d i f f e r e n t i a l 

equations to be solved can be arr ived at through Maxwell's equations 

which for the steady state case are given by (2.17) and (2.18). 

For the problem i n hand, the medium i s l i n e a r . The 

p e r m i t t i v i t y i s a funct ion of z , the permeabil ity i s constant, 

]iQt and the conduct iv i ty i s zero. 

I f the c u r l of (2.17) i s taken, then 

V x C7K E ) = - > > n 0 V x H (4.21) 

N o w , V X H c a n be e l i m i n a t e d f r o m (4 .2l) by u s i n g (2.18). T h e r e 

f o r e , 

V X 0?X E ) = V ( V . E ) - V 2 E = <a2ii0 D . (4.22) 
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I t i s more convenient to consider D instead of E since D i s 
'Z 

continuous. In terms of D alone, (4.22) becomes 

v v-(!)]-v^]=^ 0s. 

The scalar equation obtained when the coef f ic ients of the 

component vector i n the z—direction are equated i s 

V. ^0Dz (4.23) 

With the help of (4 .7) , (4*23) can be reduced to 

(4.24) 

Once D i s found from (4.24) *, the remaining f i e l d components can 
z 

be found through the use of (2*17), (2.18) and the l i n e a r i t y 

re la t ionsh ips 

D = e E 

S = |iQ S , 

The method of separation of var iables can now be used to 

solve (4*24)* F i r s t of a l l , (4*24) can be writ ten as 

„ 2n M * \ 1 de *>D* 2 _ . 
V t D z + "r™2 - e dz" <&T + * ^0 e D z = ° (4.25) 

2 2 where Sj^ denotes the part of V which operates i n the transverse 

plane. By l e t t i n g 

D = F ( r ^ ) T ( z ) , 
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(4.25) gives 

1 
T 

d 2 T 
d z 2 

1 de dT tf2 
e dz dz = K' 

Therefore, 

\ £ 2 F + K 2 F = 0 

d 2 T 1 de dT , / 2 M c TT-2 \ ™ n 

T~2 " e dz dz ' 0̂ - K ) T = °< 
dz 

(4.26) 

(4.27) 

On the boundary of the waveguide 

r = b 

D = 0. 
z 

Hence, 

F(b**0 = 0. 

The so lu t ion , F , to t h i s boundary value problem i s quite s tra ight 
45 

forward and can be shown to be 

F = J n ( K r ) 
co s njz 

s in ne 

where 

n = 0, 1, 2, 

and K i s found from the roots of 

J n (Kb) = 0, 

As for (4*27), i t i s a d i f f e r e n t i a l equation with the same 

form as (4.1) and, consequently, (4.27) has the same properties 

as (4*1). In sections 4.522 and 4.523 solutions for (4.27) w i l l 

be g iven. 
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4*522 A F i e l d Solut ion for the Matched Case 

For the case where the d i e l e c t r i c discs are 

matched into the a i r regions , the wave so lut ion can be completed 

by solving for T i n the manner to be described. The so lut ion w i l l 

be found for the f i e l d i n a medium i n which the distance between 

adjacent discs as wel l as thickness of the discs i s a r b i t r a r y . 

The cross sect ion of such a medium i s i l l u s t r a t e d i n Figure 4.4. 
C y l i n d r i c a l 
Waveguide 

/ / / • / , / / / z ZZL zzz. z z 

I I • i 

'.V 

I ' ( 

; ' 1 1 1 i / 

b r 
! K 

/ / / 

i f 1 i • i W , * , " | 

'Die lectr ic i 
Disc',' i ' 1 

\ ' » 7 ' . ' ' I ' I 
Ml , < l I I I . , 1 

' I I I ' ' , I. 

,| , * * J-i,1
 i , 

o-: = ' ' 0 ' ' ; , ; , 

A i r 
e = e 0 

I* = 1*0 

cr = 0 z Axis 

/ / / 7 l~T~T 

W /1 
l l 11 
Hill 

\ I ' I I 

Ti 1 > i 1 1 
11 

ZZZ z z z z z 

F i g » 4.4* Cross Section of a D i e l e c t r i c Disc-Loaded Structure 

SiCitee the p e r m i t t i v i t y can only have the value E Q or E ^ , as 
2 2 

shown i n Figure 4*5, i t follows that (6 UQE - K can only have the 
2 2 2 2 2 2 value fl> ̂ oeo ~~ ^ or fl) Ho ei "~ ̂  and, s i m i l a r l y , C e , C being a 

2 2 2 2 

constant, can only have the value C E Q or C E ^ . The dependence 
2 2 2 2 of both <o [AQE — K and C e i s shown i n Figure 4.5. 

46 
For the matched case,the wave impedance i n the a i r regions 
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* e 

0 

2 2 A C e 

. « 2 v2 

2 2 2 
P i g . 4 .5 . Diagram of e, G e and u ê — K Versus 

must equal the wave impedance i n the d i e l e c t r i c regions 

Z l = 

Hence, 

fl)2^0£0 ~ r 2 a > 2 ^ Q £ l - r 2

 p 2 

_ — ^ - C . 
E 0 e l 

(4.28) 

Consequently, when a match e x i s t s , the iden t i ty 

2 T7-2 „2 2 <* ia0e - K = C e (4.29) 

holds . As a r e s u l t , (4.27) can be expressed as 
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d 2T 1 de dT . n2 2 „ n ,. 
7 T - e " d i d I + C e T = °- ( 4 ' 3 0 ) 

dz 
The so lut ion to (4.30) and thus (4*27) i s 

z z„ 

- j J Ce(T)dT j J Ce(T)dT 

T = j^e ° + A 2 e 0 

where A^ and A 2 are a r b i t r a r y constants. Through the use of 

(4,29), T becomes 

z z_ 
- j / \J<o2iiQe - K 2 dT j N<d\Qc - K 2 dT 

T = A-̂ e : + A 2 e ° . 

(4.31) 

The i n t e g r a l , 

/ \/«d 2|i 0e - K 2 dT , 

0 

can be evaluated graphica l ly as i s shown i n Figure 4 .6 . I f i t i s 

remembered that no re f l ec t ions occur at the interfaces between 

the a i r and d i e l e c t r i c material* a quick check w i l l show that 

the answer obtained using the standard approach i s i n agreement 

with (4.31). 

From (4.31) T must be continuous and thus (4.5) i s 

s a t i s f i e d . I f (4.3l) i s d i f f e r e n t i a t e d , the r e s u l t i s 

e dz - ? c 

Z 2 

- j J \l<62iiQz - K 2 dT j J \/<c2LiQe - K 2 dT 
A 0 i 0 
A^e - A 2 e 

and the r i g h t hand side i s continuous. Hence, (4.6) i s s a t i s f i e d 
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\/w2n 0e - K 2 

z 

/ Va>2p,0e - K 2 dT 

0 

F i g . 4 .6 . Diagram of \lta2iiQC - K 2 dT Versus z 
0 

4.523 A F i e l d Solut ion for a Periodic Loaded 
Structure 

For the problem to be solved, i d e n t i c a l d i e l e c t r i c 

discs are placed at per iodic in terva l s i n the c y l i n d r i c a l waveguide, 

Figure 4.7 i l l u s t r a t e s the cross sect ion of such a s tructure . 

This sect ion w i l l only deal with the so lut ion of (4.27) since the 

remainder of f i e l d so lut ion has been outl ined i n sect ion 4.521. 

The z-dependence of the p e r m i t t i v i t y i s shown i n Figure 

4 .8 . The p e r m i t t i v i t y can be expressed as 

e = e Q + c Q h(z) (4.32) 
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C y l i n d r i c a l 
Waveguide 

1 
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e = e 

I* 

or 

F i g . 4 .7 . 

where 

Cross Section of a D i e l e c t r i c Disc-Loaded Per iodic 
Structure 

C 0 ~ e l e 0 

and h(z) i s the un i t rectangular waveshape shown i n Figure 4.8, 

0 

-*- z 

h(z) 2 

F i g . 4 .8 . Diagram of e and h(z) Versus z 

Through the use of ( 4 « 3 2 ) , (4.27) can be expressed as 
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dz 

Since (4.33) i s a l i n e a r second-order d i f f e r e n t i a l 

equation with per iodic c o e f f i c i e n t s , according to Ploquet's 

47 
theorem , T can be expressed as 

oo co 

T = e p > a

n

e = / a n e 

n = -co n - -oo 

For convenience, the d e f i n i t i o n 

s n - ^ p ; 

i s made. As a r e s u l t , 

co 

—s z 
T = > a e n . (4.34) n 

n = — oo 

1 s n z 

At th i s po int , (4.33) i s mul t ip l i ed by — e and the 

re su l t ing expression i s integrated from 0 to p. Hence, 

P - o / 2 V 2 S

 p

r s n z d 2 T , x (<» l i 0 e 0 - K ) f ^ z 
dz + 1 / e T dz P I d z 2  

J0 

2 p
r 

1 | S n Z 1 de dT . * ^0C0 / S n z . , v _ . 

p 6 e d i d i d z " — ' e h(z) T dz 

0 0 
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or after integrat ing the f i r s t in tegra l on the l e f t by parts , 

1 s n z dT 
— e 
P 

dz 
s s z 
— e n T 
P 

0 

n s z 
e n T dz 

0 '0 

o P 
K 2 ) r s n z 

e n T dz 

0 

l I e

s n z l dT de d z 

p / e dz dz 
0 

^0 C0 s z 
e n h(z) T dz.^ 

-o 

(4.35) 

The functions e and e T are per iodic and thus 

' P 
l . s n z dT 
— e 
P 

dz = 0 

0 

S n S n Z

 m i~ e = 0, 

0 

Through the use of th i s fact and the r e c o l l e c t i o n of the 

funct ional behaviour of h (z ) , (4.35) can be reduced to 

P p P+3. 

p / P / e dz dz p 
'0 

where 

"0 

2 „2 

£-g. 
2 

(4.36) 

Po = tt ^0 e0 " K ' 
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I f (4.34) i s subst i tuted into the l e f t hand in tegra l i n (4.36), 

the re su l t ing expression for a n i s 

a = n 2 * 2 
s n + P 0 

- P
r 2 

i f S n z . de , * E Q C Q — / e S 3 — dz -P J dz p 
0 

p + q 

2 

2 

s z 
e n T dz 

(4.37) 

where 
« 1 dT 
S = e~ dz" * 

Prom (4.6) S i s a continuous funct ion . 

The second in tegra l from the r ight i s found to be 

s z s (V" q) 
, » S f f d z = e n 2 S ( ^ ) / | | d z + 

s (£±1) V 2 ; „ / B ± 
2 

0 

S(E?-) / f f d z 

2 0 

, n V 2 ;

S (B=a) - e n 2 S ( ^ ) 
( e i - e o } -

(4.38) 

The in tegra l 

p + q 

2 
I = s z 

e n T dz 

2 

i s determined from (4.33). Over the in terva l to ^r^t (4.33) 

s impl i f i e s to 

+ (« 2n ne, - K 2 ) T = 0. 
dz^ u 1 

(4.39) 
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1 s n z 

If (4.39) i s mul t ip l i ed by — e and the re su l t ing expression 
Jr 

i s integrated from E±£L to then 

E±3. 
2. 

Era. 
2 

E±S. 
2 

s n z d 2 T , ^ (2 v2s 

dz 

s z 
e n T dz = 0. 

Era. 
2 

Consequently, 

(<D 2u. o e i - K 2 ) I 

E i a 
2, 

Era. 
2 

S n z d 2 T , e — ~ dz 
dz^ 

s n z dT 
dz 

E±3. 
2 

Era. 
2 

+ s 
n 

E±3. 
2, 

Era. 
2 

s n z dT , e -r— dz dz 

= -e n 2 #
6 l s ( E i a ) + e 

s n v • 2 ' 
l S ( E = a ) 

.[• +s_ e 

(E±3.) s (Era.) 
n v 2 ' / p + q x _ s n v 2 ; 

T (E± 3 . ) e ^ 2 7 T ( B ? ) - s n I 

Hence, 

I = n - e 
n ' 2 ' m / P - q 

- e -

s (E±a.) s (Era.) 
e n * 2 S ( E f ) - e n 2 S ( ^ 

2 a 2  

s n + ? l 

(4.40) 



where 
9 2 2 Bf = <*\e1 - K . 

Prom the subst i tut ion of (4.38) and (4.40) into (4.37) 

a = n 

."\sn t t ^ ) + ( s n

2 - K 2 ) s(£fa) —e 

(4.41) 

Another way to express a n i s i n the p a r t i a l f r a c t i o n expansion, 

a 
, C 2 S C

4 

n - P [ s n - JP0
 + s n + JPQ

 + s n - JPX
 + s n + JP1 

11 ° 1 *V 2 ; 

P W0

 S n + J B 0 S n " J f l l s n + J B 1 J 

(4.42) 

where 

CL = 

CL = 

2 

1 
2 

- T ( E ? ) - j<± s(2=a) 

-T(2=a) + s(2=a) 

^ (4.43) 
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-T(2±i) + s(£±a) 

> (4.44) 

Prom (4.43) i t can be seen that 

G l + C2 + C3 + C 4 = ° (4.45) 

P 0 P 0 P x P x 
— C, C„ + — - — C, 
E Q 1 E Q 2 e-̂  3 e i ^ 

0 (4.46) 

and from (4.44)*, s i m i l a r l y , 

D l + D 2 + D 3 + D 4 = ° (4.47) 

P 0 P o 1̂ P i 
— B1 • D» + — D, - — D. = 0. 
E Q 1 E Q 2 E l ^ 

(4.48) 

The next step i s to f i n d the four re la t ionships between 

the C s and D ' s . Once these re lat ionships are determined, four 

of the unknowns can be el iminated from (4.45), (4.46), (4.47) and 

(4.48). As a r e s u l t , the problem i s reduced to f inding the 

so lut ion to four l i n e a r homogeneous equations. 
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Since the o r i g i n a l four unknowns are T(^-^)f S(-̂ p-), T( P-^-) 

and SC^-^Oj the f o u r r e l a t i o n s h i p s between the C s and the D's 

w i l l be found by summing the s e r i e s f o r T(z) and S(z) at the 

p o i n t s ^ and E±9. and by e l i m i n a t i n g T(^), S(^)t T(^-) and 

and St^-^) with the equations 

C - i -C l - 2 

c 2 -

T ( £ ? ) + S ( E ? ) 

D 3 = 2 

(4,49) 

[_ T ( E±a) . Q s ( E±a , J 

In t h i s way, no new unknowns are i n t r o d u c e d . The equations 

r e s u l t i n g from (4,49) are f o u r l i n e a r nonhomogeneous equations i n 

which the C s can be expressed i n terms of the D's, I f the 

determinant of the c o e f f i c i e n t s of the C's i s non-zero, the 

s o l u t i o n f o r the C s i n terms of the D's i s unique. 

In Appendix 2 the s e r i e s are summed and the r e s u l t i n g 

expressions are 

j(X-20 0) . j(X+2QQ) . 
T ( ^ = y i c i + y 2

c 2 + y 3 c 3 ^ 4 c 4 + e yPi+e y ? 2 

J2G, 
-e y 3 D 3 - e 

- J 2 9 , 

V 4 

P P P P / 0 dor-2e0)y?D 

1 1 

P'j(X+2Q Q ) . ?, J2Q P -J2Q 
+ V y P 2 + V y 3 D 3 " ^ e y 4 D 4 

(4.50) 

denotes complex conjugate 
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j ( X - 2 0 0 ) _ j ( X + 2 © 0 ) -J20 J20, . 
U

y i C 1 + e ° y 2 C 2 - e V ^ - e 1 y * 0 4 -

- V l D l-y2 D2-V3 D 3 ~ V 4 D 4 

P 0 » j ( X - 2 © ) 0 - j(X+ 2 9 0 ) 0, - j 2 © 

Je7 e y 4 C 4 + J e 7 r l D l - d

e 7 r 2 D 2 + J e 7 r 3 D 3 - ; ] e - y 4 D 4 

2©Q = PQ(P—q.) = the phase change in the air region 

20^ = 0^q = the phase change in the dielectric region 

A——) 
e y i 

y-

,X-P 0P 
2j sin (—=—) 

e 

2j s in (—^—) 

X-0-.P 

y 3 

2 e 

2j sin (— 

y^ = e 
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The subs t i tu t ion of (4,50) into (4.49) y i e lds 

1 8 1 1 8 1 
b* x 1 +

 0 x 2 ^ ( l - ^ ) b 3 X 3 + 2 ( l +

P ^ ) b 4 X 4 = ° 

0 x 1 +
 b2 X 2 4 ( l - p ^ ) b 3 x 3 4i ( l - ^ b 4 x 4 = 0 

Z ( l \ ) b l e
 X l + 2 ( 1 +

P7 ) b 2 e x2 + e
 b 3 X 3 + 0 

x. = 0 4 

2^ 1 - p^) b i e
 xl+2"(1~P

;-)b2e x2 X3 4 X 4 = 

(4.51) 
where 

C l - 6 D l . J(—5—) 
x x = , b1 = e 

s i n — ^ — 

j(X+20 ) X+B p 
c2 - 6 D2 . 

x 2 = , b 0 = e 
s m — T — 

C 3 - 6 D 3 . ^~2^) x 3 = i , b 3 = e 

X-Pj.p 
s i n — — 

- J 2 0 , X + B , p 
c 4 - e D 4 . J ( - r - ) 

s i n 

X + B l P 
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The determinant of the coef f ic ients of x^ 1 s ( i = 1,2,3,4) i n (4.51) 

i s given by 

^ = 6 f + p^osM p + q) c o s Poqn^sinMp+q^sin^ 

Therefore, provided either 

PQ P 
c o s X £ ^ - s i n P 1 ( p + q ) s i n P Q q - ^ c o s p ^ (p+q)cosp 0q 

o r 

then 

sinX £ - sin[pQq + p-̂ p+q)] , 

0 

and the so lut ion for (4.5l) i s 

= 0 , x^ = 0 , x^ = 0 , x^ = 0, 

Hence, 

C, = e 
j ( X - 2 © 0 ) 

3 ( X + 2 © 0 ) 
C = e 0 D, 

J29 
C 0 = e D, 

C. = 
-J20. 

e D 4 . 

(4.52) 

Prom (4.45) and (4.46) and from (4.47) and (4*48), after 

the D's are el iminated by using (4.52), 
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C l + 

to C l -
e o 1 

C 2 + ° 3 + C 4 = 

+ 

P i 
+ 

P i 
E l 4 

c 2 + 

-J2© 
e 1 C 3 + e A C 4 = 

- j (X+2S ) -J2© P i J2© 
e C 2 

+ — 

6 1 
c 3 

e l 
e C 4 = 

- J 0 f - 2 8 0 ) 
e C l + 

P 0 - j(X - 2 © 0 ) P 0 — e C, - — 
e 0 1 e 0 

(4.53) 

Solving the determinant of the coef f ic ients i n (4.53) gives 

cos X cos 2©Q cos 20^ 1_ 
2 

' l e 0 ! ° f i + 

h*0 M l J s in 2©Q s in 2©^ 

(4.54) 

From (4.53) , C 2 and C 3 are found i n terms of to be 

Pn^ 0"! 

P o e i { 

-cos 2©, - j f l " s in 2©-,+ e 1
 dp.e 

-3 (X+2©Q) 

l - o 

P ^ O j(X-2© ) 
c o s 2 0o + Jp^;sin 2V e 

P o e i < 

P 0
£ l -j(X - 2 © Q ) 

cos 2©, - J3 s in 2 © , - e 
1 ple0 

M 1*0 
V c o s 2 0 0 + ^ s in 2©Q- e 

(4.55) 
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I 8 1 E 0 -cos 2QQ + j« _ s in 2©^ + e 
30C+2©, K 

V i '0 

0 1 ' ' 

If the series (4.34) i s summed i n the manner shown i n 

Appendix 2, over the i n t e r v a l , - ( ^ ) s z < ( ^ ) , 

JPr̂ v J ( 5 1 -n n 
, ( , ) =

 ( c i - D i e ) e , - « o « « " *?> : 

23 s in (—^—) 

| ( C 2 - B 2 e " 3 ^ ) e j ( 2 ^ ( . - B j L ) , 

23 s m (—Y~~> 

JP-A j ( P ) 
(C 3 -D e X ) e 2 - j P ^ z - 1 ^ ) 

+ — - — : e * . 

23 s in ( — f - ) 

+ — 2 1 — e ^ 

23 s m (— 

and over the i n t e r v a l , ^ g z < P*^> 
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T ( z ) = — — — e U * 

2j s i n ( 

, . X+PnP 

( C
2 - e Vf 3 fV z " 2 > 

+ ! ; e 
2j s i n (—£—' 

/ i X~Pn P 

(C,-e D 3)e *«30 (z - -^j1-) 
+ 3 

2j s m (—-j—) 

i i X+P-, P 

(C 4-e 3 l"" r i" *X)e "* 2 50. (z - B=i) 
+ — — e x * * 

2;j s m (—2"—; 

By means of (4.52)* for -(M.) z s E_£ 

- d P 0 ( z - E=l) d P Q ( z - ¥=1) 
T (z) = C i e

 U ^ + C 2e U Z (4.56) 

and for — z — 

- d P ^ z - ^ ) j p ^ z - B=a ) 
T(z) = -C 3e 1 ^ - C 4e 1 2 . (4.57) 

With t h i s done, the problem i s completely solved. The 

answer i s i n t o t a l agreement with the answer obtained by using 
48 

the standard approach for solving (4,33) . 
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As an as ide , for the matched case i f only an incident 
o*s0z J S , Z 

wave i s present, the coef f ic ients of terms with e or e 

must be zero. Hence, 

C 2 = 0, C 4 = 0 (4.58) 

and thus from (4.55) 

B 0 e l - J ( ^ - 2 0 0 ) 
cos 2©, - j Q s in 29, - e = 0 

1 J s l £ ( ) 1 

cos 2 © n + 3 f l s in 2 © n - e = 0. 
0 e l 

Therefore, 

= l (4.59) 

X = 2 © 0 + 2 © 1 . (4.60) 

As already mentioned i n the general d i scuss ion , 
49 

B r i l l o u i n attempted to solve, from the same point of view, a 

d i f f e r e n t i a l equation s imi lar to (4.33). A c t u a l l y , the equation 

was of the type 
2 

+ ( « 2 H 0 e 0 - K 2 ) T = -*>2uQc h(z) T . 
dz 

As has been done i n the problem just solved, he expanded T i n the 

series 
oo 

- j (^2m*)z 
T « ) ame 

m = - oo 

P 



However, he a l s o expanded the c o e f f i c i e n t 
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C(z) = tt2u0 [ e 0 + c Q h ( z ) ] - r 

i n a s e r i e s and t h i s expansion l e d him i n t o some d i f f i c u l t i e s . 

B r i l l o u i n expanded C(z) i n the F o u r i e r s e r i e s 

oo 

C(z) = 

and then proceeded i n the manner o u t l i n e d i n s e c t i o n 3 f o r s o l v i n g 

H i l l ' s equation, 

B r i l l o u i n demonstrated t h a t f o r the problem under con

s i d e r a t i o n the determinantal equation g i v e n i n (3,35) gives the 

wrong answer except i n the l i m i t i n g case where the d i s c o n t i n u i t y 

of the r e c t a n g u l a r waveform approaches zero. As he noted, the 

reason f o r t h i s e r r o r i s t h a t the t>n's f ° r & r e c t a n g u l a r waveform 

are not a b s o l u t e l y convergent. 

The r e s u l t i s that he was not able to complete h i s 

s o l u t i o n from t h i s approach. 

In the method of s o l u t i o n j u s t e s t a b l i s h e d i n t h i s s e c t i o n , 

the d i f f i c u l t i e s B r i l l o u i n encountered are avoided because C(z) 

as w e l l as 7 ^7 are not expanded. Instead, the meaning of C(z) 
1 de 

and — i s i n t e r p r e t e d i n the d e f i n i t e i n t e g r a l s t h a t f i n a l l y 

c o n t a i n these terms. 
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5. WAVES IN MEDIA WITH FINITE DISCONTINUITIES IN, AND 
TRANSVERSE TO, THE DIRECTION OF PROPAGATION 

5.1 General 

An inves t igat ion of electromagnetic waves i n media with 

charac ter i s t i c s possessing f i n i t e d i scont inu i t i e s i n , and trans 

verse to , the d i r e c t i o n of propagation i s carr i ed out for two 

examples. In the f i r s t example an E-wave so lut ion i s sought 

i n a c y l i n d r i c a l waveguide loaded p e r i o d i c a l l y with d i e l e c t r i c 

discs which have a centra l ly located hole . For the second 

example, an H—wave so lut ion i s found i n a c y l i n d r i c a l resonant 

cavi ty containing a centra l ly located s o l i d d i e l e c t r i c d i s c , the 

disc radius being smaller than the cavity rad ius . 

The standard approach"^ for solving wave problems i n these 

media i s s imi lar to the one mentioned i n sect ion 4. The so lut ion 

i s determined i n each region where the charac ter i s t i c s of the 

medium are well behaved and the boundary conditions are applied 

at the points where the charac ter i s t i c s are discontinuous. This 

involves matching i n f i n i t e series with i n f i n i t e s er i e s . Although 

i n p r i n c i p l e th i s approach gives an exact so lu t ion , i n pract ice 

the amount of labour involved i n any numerical work makes i t 

desirable to truncate the series after the f i r s t harmonic^. 
51 

C o l l i n applies the Rayle igh-Ritz method to get a 

truncated series expression which approximates the f i e l d for a 

s lot ted d i e l e c t r i c in ter face . This method can be adapted for 

f inding the solutions to the examples to be discussed. Once 

again numerical d i f f i c u l t i e s become the l i m i t i n g f a c t o r . For 

example, i f two harmonics are used, a s ix by s ix determinantal 
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equation must be solved. 

An approach which could be taken would make use of the 
52 

generalized te l egraphis t ' s equations for waveguides and give 

i n f i n i t e series so lut ions . I f these equations were employed, 

the p e r m i t t i v i t y would not be d i f f e r e n t i a t e d . Consequently, the 

in terpre ta t ion of the der ivat ive of the p e r m i t t i v i t y at d i s 

cont inui t i e s would not be required . Such a requirement i s 

necessary i n the treatment i n th i s thesis since a wave equation 

which holds throughout the medium i s employed. However, i f the 

t e l egraphis t ' s equations were used, three i n f i n i t e series would 

need to be determined d i r e c t l y ; one corresponding to the t rans 

verse e l e c t r i c f i e l d , another to the transverse magnetic f i e l d 

and the f i n a l one to the long i tudina l f i e l d . For the method to 

be suggested, only one i n f i n i t e series needs to be determined 

d i r e c t l y . Consequently, the pr ice that would be paid for not 

d i f f e r e n t i a t i n g the p e r m i t t t i v i t y i s the introduct ion of three 

times as many unknowns. 

For the per iodic structure to be discussed, an anisotropic 
53 

d i e l e c t r i c approximation can be made i f the period of the loading 

i s small compared with the wavelength of the f i e l d . However, i n 

th i s approximation the per iodic nature of the structure i s l o s t . 

A v a r i a t i o n a l method which gives upper and lower l i m i t s 
54 

for the f i e l d so lut ion has been developed by Chu and Hansen . 

One l i m i t i s found by matching E along a cy l inder of radius 
2D 

equal to the hole rad ius . As a r e s u l t , H^ i s , i n general , 

discontinuous. However, a second equation i s obtained by 

equating Poynting vectors at the surface of the c y l i n d e r . 

S i m i l a r l y , the other l i m i t i s established by reversing the role of 
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E^ and H^. For th i s method, due to computational d i f f i c u l t i e s , 

i t i s desirable to use only the f i r s t harmonic of the f i e l d i n 

54 
regions exter ior to the forementioned c y l i n d e r . 

A v a r i a t i o n a l method which can be applied to the cavity 
55 

problem i s establ ished by N i k e l ' s k i y . Although the f i e l d 

expression i s quite inaccurate , a good upper and lower bound for 

the resonant frequency i s of fered. 

Approximate solutions with varying degrees of usefulness 

for spec i f i c s i tuat ions can be found b y these methods. The 

inves t igat ion to follow offers further a l ternat ive solutions but 

no attempt i s made to compare the methods given by the fore -

mentioned authors and the methods to fol low. 

The treatment i n th i s sect ion i s an extension of the 

approach taken i n sect ion 4. Each medium discussed i s considered 

inhomogeneous and the der ivat ives of the p e r m i t t i v i t y at the 

d i s c o n t i n u i t i e s are regarded as impulse funct ions . For each 

example, a f i r s t mode approximation i s given and then an approxi 

mate series so lut ion i s suggested. The second so lut ion g ives , 

for the lowest order mode, an i t e r a t i v e answer i n which each 

coe f f i c i ent of the i n f i n i t e series i s approximated. To obtain a 

f i r s t i t e r a t i o n , the f i e l d needs only to be guessed inside the 

d i e l e c t r i c d i s c . No guess i s needed rn the a i r regions , 

5,2 A Per iodic Structure Loaded with D i e l e c t r i c D i sc s , Each 
Having a Central Hole 

In the E—wave problem now to be discussed, i d e n t i c a l 

d i e l e c t r i c d i s c s , each with a central hole , are placed at per iodic 

in terva l s i n a c y l i n d r i c a l waveguide. The cross sect ion of th i s 
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structure i s i l l u s t r a t e d i n Figure 5.1 

h i 

C y l i n d r i c a l 
Waveguide 

Z Z Z / / / / / 

t 1. p-q _ 

/ ' / / / / -J—7 Z Z Z Z 

11 i 1, 

Z Z Z 

-r 

a 
A i r 

e = e 

ff = 0 

0 
^0 

1 1 1 1 1 

D i e l e c t r i c 
Disc with 
"e = E ^ 

E = V$ 
Lcr = 0 

Central 
Hole 

/ / / / / / / / / / / / / / / / 

F i g . 5.1. Cross Section of a D i e l e c t r i c Disc-Loaded Periodic 
Structure with a Central Hole 

An easy check w i l l show that the funct ional behaviour of 

the p e r m i t t i v i t y i n the structure can be expressed as 

where 

'0 

Uz) 

E = £ 0 + c n h(z) g(r) (5.1) 

£ 1 - e 0 

the unit rectangular waveshape shown i n 
Figure 4.8 

g(r) = the unit step funct ion shown i n Figure 5.2, 

*-r 

F i g * 5 » 2 . The Unit Step Function 
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As shown i n section 2.42, before an E-wave can exist i n a 

region where the p e r m i t t i v i t y s a t i s f i e s ( 5 . l ) , i t i s necessary 

that the f i e l d has no angular dependence and 

H = 0, Ej = 0, H = 0 . r P z 

Therefore, from ( A l « 1 0 ) i n Appendix 1, must sa t i s fy the p a r t i a l 

d i f f e r e n t i a l equation 

(5.2) 

The remainder of the treatment w i l l be concentrated on the so lut ion 

of (5.2) for By. I f other f i e l d components are wanted, they can 

be found by using Maxwell's equations and the l i n e a r i t y re la t ions 

between the f i e l d densi t ies and i n t e n s i t i e s . The reason neither 

E z nor E^ i s determined d i r e c t l y from the d i f f e r e n t i a l equations 

instead of i s that each d i f f e r e n t i a l equation for the e l e c t r i c 

f i e l d components contains both E and E . As a r e s u l t , the ^ z r 7 

equations for the e l e c t r i c f i e l d are more d i f f i c u l t to handle 

than (5 .2) . 

5.21 F i r s t Mode Approximation 

The set of eigenfunctions, : J-^ (K^r)^, i n which the 

K 's are determined from m 

J 0 ( K b ) = 0 (5*3) 

i s complete and orthogonal over the open i n t e r v a l , ( 0 , b ) « This 

statement"^ can be supported since the eigenfunctions are 

solutions to the Sturm-Liouvi l l e problem 
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= 0 

y(0) i s i n f i n i t e 

dr (ry) = 0. 

r=b 

Consequently, can be expanded, f i r s t of a l l , by the series 

T (z) J , ( K r) (5.4) 

m - 1 

where K b i s the mth root of (5.3) m 

Subst i tut ing ( 5 » l ) into (5.2) y i e lds 

b 2 H 

(5.5) 

Through the m u l t i p l i c a t i o n of (5.5) by r J ^ ( K m r ) and the 

in tegrat ion of the re su l t ing expression from 0 to b , the equation 

obtained i s found to be 



9 2 

2 v 
dr 

0 0 

a T 
+ « ^ Q e 0 j r J 1 ( K m r ) H ^ d r 

0 

b b 

V , 0 c 0 h ( z ) J r J 1 ( K m r ) g ( r ) H / d r + cQh(z)Jr ^ ( F 7 ^ ( r V d r 0 0 

b 

0 

After two integrat ions by par t s , 

J J l ( V> [ r ir <*V] d r = " V* J r J1<V> H»<dr' 
0 0 

Consequently, (5.6) becomes 

2 V V 
^ I r J ^ r ) H^dr + (*\eQ - K f f l

2 ) J r J ^ r ) H^dr 
0 0 

b 

= ^ 2 u 0 c 0 h ( z ) Jr J ^ V ) H^dr + ^ h(z)a J± ( K m a ) £ ^(rH^)] 
a 

b 
c 

r= 

^ I f e l r V V ' V - (5.7) 
a 
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where 

e* = £Q + c 0 h(z) 

a+ = lim (a +S) • 

The der ivat ive 7 (rH^) can be expanded i n the series 

0 0 

m = 1 

Since 

b 

0 

b 

Km j r J1<V> V r > 
0 

the subst i tu t ion of (5.4) gives 

T*(z) = T (z ) . m m 

By the use of the series (5.4) and (5.8) , and i t s der ivat ive 

are eliminated from ( 5 « 7 ) . The resu l t i s 



94 

2 
d^T 

I dz f
 + Co.2 \ r J , 2 ( K r )dr 1 x m ' 

0 

_2°, b 

= -05 > 0 C 0 h ( z ) ) T n r J 1 ( K m r ) J 1 ( K n r ) d r 

n = 1 a 

oo 

+ — h(z) a J , (K a) 
e-^ ' 1 x ra ' T J A ( K a+) n n 0V n ' 

oo 

19. dh 
* dz 

dT 

I T r J i < V > J i < V > d r 

n = 1 
(5.9) 

where 

8 0 m 2 = " V o " K m 2 ' < 5 - l 0 > 

57 

r J 1

2 ( K m r ) d r = § i J ^ b ) 

0 

b 

/ r J , (K r ) J_ (K r )dr = %- J , 2 ( K b) 8 J l v m / l x n / 2 1 v m ' I 

a 

o \KJI ( E « a ) J n ( K a) - K J»(K a )J T (K a)l 
V 2 i r 2 L n l N m 0 ^ n m O m ' l ^ n J 
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where S i s the Kronecker de l ta funct ion , (5.9) become; mn 7 

2 
d^T % dh d T m 

dz f + P o / *. - - » W<*> T
m

 + ̂  t f dz 

C O 

2h(z) 

b 2 J 2 ( K b) 1 m ' n = 1 L E I 

- K a J , ( K a) J„(K a+) n 1 v m ' 0 x n ' 

,«2 

<° !̂ ocQa 

2 2 K - K ̂  n m 

fK J . (K a ) J n ( K a) - K J A ( K a )J n (K a)l T L m 1 N n ' 0 v m ' n O n l m ' J J n 

oo 

-2-12 &k 
* dz 

afx J n (K a ) J n ( K a) - K J„(K a)«J, (K a)l dT I m l n 0 m ' n 0 n ' 1 * m '\ n 

n = 1 b 2|*K 2 - K 2 1 J , 2 (K b) I n m J 1 m ' 

dz ' 

(5,11) 

The so lut ion to th i s i n f i n i t e set of d i f f e r e n t i a l equations, 

once subst i tuted into (5.4) , provides ah exact so lut ion for H^. 

As can be eas i ly surmised, i n p r a c t i c e , only an approximate 

so lut ion to the set can be ant i c ipa ted . 
58 

Provided a<=<=b, 

J 0 ( K i a ) s 1 - | ( K i a ) 2 

J ^ K j a ) s | ( K i a ) - X T s ^ a ) 3 

J 2 ( K i a ) = | ( K i a ) 2 

> (5.12) 
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and thus i f i s regarded as the d r i v i n g funct ion , for the 

smaller values of m=>l from (5.1l) 

Tm K IF) V 
Through the use of the asymptotic expressions 58 

J^(K a ) ~ . A"?2— cos (K a - x) 0 m ' \ %K a ^ m A' v m 

ri<V>~\/ n;K a m 
cos (K a - 7 1 ) , m 4 7 

for the larger values of m 

T oc m 

•sin K ai 
m 

.cos K a. 
m 

1 a T 
3 b A r ( K b ) 

Therefore, for a f i r s t approximation of the f i e l d , a l l terms 

for m=»l w i l l be neglected. On making such an approximation, 

(5.11) gives 

d 2 T 

dz \
 + *oi T l = • V o - 2 3> 

e b^ t^b) e l 
K 1 a J 1 ( K 1 a ) J ( ) ( K 1 a ) 

2 

• ^ V ^ l J * ( J l 2 ( K l a ) _ J
0

( K l a ) J 2 ( K l a ) ) h U ) ^ 

1 - [£) T - 1 — 
b / J 2 ( K x b ) 

J 1

2 ( K 1 a ) - J 0 ( K i a ) J 2 ( K i a ) ! f i dh ^1 
* dz dz * 

(5.13) 

By means of (5.12)> i f higher order quanti t ies are neglected, 
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(5.13) can be s impl i f i ed into the expression 

d 2 T 

dz 2 + 8 0 1 2 T l 

* dT, 

= - [*Vo - A K i 2 ] h ( z ) T i + ( H 1 * tr- JT 

(5.14) 

where 

AIL 2 = K. 2 — ( 2 

1 1 e 
0 i ^ i 2 i r 
1 l b / j ^ ^ b ) L 

1 + (fl) [AQEJ^ -

OC — 77 
i \_h 
8 

a 

2Kn

 2 ) a 2  

1 8 J 

>(5*15) 

Prom (5.14) when 

h(z) = 1, 

d 2 T 

dz 

1 2 
— + 3 T = 0 2 11 1 

where 

s n 2 = # V i - ( K i 2 + A K i 2 ) (5.16) 

2 

Before (5.14) i s a v a l i d approximation, i n (5.16) should only 

be perturbed a small amount by the presence of the ho le . Hence 
2 2 AK^ «=«= 

and thus "a" must sa t i s fy the condit ion 

a 1 + (•2|i0e"1' - 2 K X

2 ) | b 2 J 2 ( K b ) . (5.17) 
C Q I X 
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A point worth mentioning i s that AK^ i s always pos i t ive 

sxnce 

B^aoeKjb = 2.404, 

If both and are taken into account, i t can be shown 

that 

T 2 - = T l 

under the more relaxed condit ion 

a 
2"| e 

1 + ( « o 2 u o e i - 2 K 1

2 ) | * = 4 ^ b 2 J 1

2 ( K 1 b ) . 

(5.18) 

In place of (5.17)j (5*18) may be used. 

Transforming (5*14) y i e l d s 

d 1 dT^ 

dz [ e * ( l - a ) dz 
S Q 1

2 + (<o 2a 0c 0 - A K x

2 ) h ( z ) 

> ( l - a ) 

This equation i s of the form given i n (4.1) and, as a consequence, 

from (4.5) and (4.6) 

T^(z) = a continuous function (5.19) 

1 . dT 
S^(z) = (]_-<x) <lz~ = a c o n ^ i n u o u s function* (5*20) 

Prom (5.19) and (5*20) the boundary conditions for T^ are known. 

At th i s p o i n t , (5*14) can be solved e i ther by the standard 

method using boundary conditions or by the method developed i n 

sect ion 4.523 for the s o l i d disc problem. Since only minor 
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adjustments to the answer i n sect ion 4.523 need to be made, the 

second method w i l l be u t i l i z e d . 

I f (4.33) i s compared with (5.14), the s o l i d disc so lut ion 

can be made equal to the so lut ion for (5.14) by making the 

fol lowing replacements* 

T(z) T x ( z ) 

S(z) S x ( z ) 

K K, 

•o 
1-oc 

0 

1-oc 

'0 '01 

Once these replacements are made, 

co 
T x ( z ) = 

tt. — s z * n a e n 

n = - co 

* 

a 
* 1 

n s n " ^01 s n + ^01 S n " *hl Sn+ ^11 

(5.21) 

s (&=2-) 

1 
P 

_ * _ * * * 

s n " ^ 0 1 s n + Woi \- Mil V ^11 

(5.22) 
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D, 

D, 

1 
2 

1 
2 

1 
2 

1 
2 

1 
2 

1_ 
2 

1 
2 

1 
2 

1-a 

M 2 ? * M ^ ' ] 

01 

1-a 

1V 2 ; d p , , ° V 2 ' 11 

1-a 

+ ^ M f ] 

" l ^ ) ] 01 
1-a 

l l K 2 ' J P 11 
1-a 

> (5*23) 

A l s o , 

where 

= e 
j ( X - 2 © 0 ) # 

C = e 
j ( X + 2 0 n ) * 

D 2 

e D

3 

-3 2©!* * 
e D4 

2© Q = PQ^CP-OL) = "the phase change i n the a i r region 

20^ = P-ĵ ^q. = the phase change i n the disc , 
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The d ispers ion r e l a t i o n i s given by 

* 1 
cosX = cos 20Q cos 2©̂  - 2 

P01 

l £o 

1-a a , .1-a 

P 01 
s in 2© A 

J 0 

s in 20^ 

(5.24) 

and , C 2 and are found i n terms of to be 

e 0 

»01 

1-a 
* P 0 l l e l 

•COS 2© - j g ^ - i 
1 P l l \ e 0 / 

1-a 
s in 2©-,̂  + e 

* -j(X+2© 0 \ 

* P 
i c o s 2 © 0 + jp 

/e 

01 
0 

1-a 
s in 2©Q - e 

* HX~2Q1 ) 

* 1 - a . 
C 2 

cos 20, - o 
JXl 

Ipos 2© n + j 

23-.{ 

[-cos 2© Q + j | 
01 

'0 

1-a 

e l 
leo 

[ e0 

l e l 

1 - A * -JUT-2O 0*X 
s in 26-ĵ  - e 

1-a 
s in 2©Q — e 

* HX-2Q1 ) 

-o -— s in 2 © n + e 
E l / 

* j(X+2©1 ) N 

* P u l e , 1 1 IT) \ * «J (X-2©n ) 
V cos 2© Q .+ d p ^ ( ^ ) s in 2© Q - e 

Prom (4.56) and (4*57)* for - C ^ ) < z < 2=3-, 

(5.25) 

T-^z) = C x e + C 2 e 
d P 0 1 ( z - P*)) 

and for ^ < Z < ^ 
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^ ( z ) = ~< C 3 e " " i l l * - * 3 P n l z 

P 4
 E 

The new matched condit ion i s 

5 o i 

. l - a 

(5.26) 

which gives 

X = 20 Q + 2Q1 (5.27) 

Some points can, now, be made with regard to how the 

lowest order mode i n the s o l i d disc structure i s affected by the 

introduct ion of the ho le . Prom (5.20) 

dTn 

1—a , 
EQ dz 

dT, 

z = 

l - a , _ E , dz 
^ - 8 1 

(5.28) 

= ^ + 8 

where Ŝ O and §—K)» Equation (5.28) can be rewrit ten as 

E 0 dz 

dT, 

dz 

(5.29) 
For the s o l i d d i sc problem 

0 
dT 

dz 
1_ 
E-

dT, 

dz 
(5.30) 
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By analogy between (5.30) and (5.29) an effect ive p e r m i t t i v i t y 

for the d i e l e c t r i c disc with a hole i s 

e e f f * ~ e l • (5.31) 
l e l / 

Inspection of ( 5 » 3 l ) shows that since a = » 0 , 

e e f f . < = e l * 

Consequently, from t h i s point of view, the hole reduces the 

ef fect ive p e r m i t t i v i t y of the d i s c . 

As can e a s i l y be seen, 

fl 2 fl 2  

P01 = Po ' 

Therefore, i n the a i r region the presence of a small hole does not 

appear to af fect the propagation coe f f i c i ent and, i n t u r n , the 

phase change. However, 

hi - h 2 - A K i 2 • 

Hence, the propagation coef f i c i ent i n the region of the disc i s 

reduced. Because of t h i s reduct ion, the phase change across the 

disc i s decreased. 

Prom the aboVe statements i t appears that the perturbation 

caused by the hole may be reduced by increasing the d i e l e c t r i c con-
i 

stant of the d i s c . ' 

A more accurate treatment which includes the effect of T^ 

and, i f des ired , even T^ should be possible without undue 

d i f f i c u l t i e s . 
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5.22 An Approximate Series Solut ion 

An approximate series so lut ion i s now developed for 

(5,5), 

j . • v. / \d& l i b / TJ \ dh , x 1 dfy + c X z ) ^ - - f— (rH/) + c A -r- g ( r ) • 0 'dz e r o r p' 0 dz 6 ' e Oz 

(5.32) 

The series expansion for Hy i s i n the Floquet form, 

co 

H (r)e n 

n ' 
n = —co n = —co 

(5.33) 

where H (r) i s the coe f f i c i ent of the nth space harmonic. 
1 1 1 § n z 

I f (5.32) i s mul t ip l i ed by — e and the ensuing expression 

i s integrated from 0 to p , then replac ing H^ by the series (5.33) 

produces a double i n f i n i t y of l i n e a r homogeneous d i f f e r e n t i a l 

equations of second order . The so lut ion to the set of d i f f e r e n t i a l 

equations, once subst i tuted into (5.33), provides an exact 

so lut ion for H^. C l e a r l y , i n p r a c t i c e , only an approximate 

so lut ion to the set can be ant i c ipa ted . 

The approximate so lut ion to be developed i n what follows i s 
59 k 

analogous to the Stodola and Viane l lo method for determining 

approximate solutions to boundary value problems i n ordinary 

d i f f e r e n t i a l equations. In (5.32) t h e ; f i e l d terms to the r ight of 

the equal i ty s ign are approximated by the s o l i d disc f i e l d terms 
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found i n sect ion 4,523. Equa l ly , and no doubt with greater accuracy, 

the so lut ion for the f i r s t mode approximation i n section 5.21 could 

be used. The s o l i d disc so lut ion i s chosen because i t i s thought 

that the nature of the series approximation can be more eas i ly d i s 

cussed r e l a t i v e to the s o l i d disc so lut ion than to the f i r s t mode 

approximation. 

Once the s o l i d disc f i e l d i s u t i l i z e d i n (5.32), the terms 

to the r ight of the equal i ty sign act as a d r i v i n g function and 

i s the boundary value so lut ion to th i s new driven d i f f e r e n t i a l 

equation. A c t u a l l y , what i s found i s a f i r s t i t e r a t i v e so lut ion and t̂he 

f i e l d for the s o l i d disc problem i s the guessed so lu t ion . 

Since from (2.18) 

7 5 7 <*V jfl>eEz, 
(5.34) 

(5.32) can be rewritten as 

> 0 c 0 h ( z ) g ( r ) H ) y + j « c 0 h ( z ) | f ; E 5 

- j » c dh 
0 dz g ( r ) E r . (5.35) 

At th i s po int , Hy_ i n the terms of (5.35) to the l e f t of the 

equal i ty s ign i s replaced by the series (5.33). Once th i s i s done, 
1 § n z 

(5.35) i s m u l t i p l i e d by — e and the re su l t ing expression i s 
integrated from 0 to p . Hence, 

tF& h <rHn>] + < § n 2 + • V o > H n = W < r > / h ( z ) V 
3 z 

'0 

- a , o 0 g ( x ) | " e § n Z || B r d 2 + jo»c0 f f J . ' " ' h ( 2 ) E z d z 
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or 

h [F h <rV] - K\ = ? - W<r> * n V z 

p + q 
2 

g z 

2 

(5.36) 

P £+3. 

- j M c 0 g ( r ) J A ' | | V , + j B c 0 f f T > z ^ 

0 P - q 
2 

where 

8 n 2 = "<»»2 + » W = I ^F 2 1 ) 2 V ¥ 0 ' (5.37}. 

The expression, 

p+q 

g(r) / e n fydz, (5.38) 

Era. 
2 

i s completely" determined provided i s known i n the d i e l e c t r i c 

disc because g(r) is. zero over the i n t e r v a l , 0 < r « = a , and the 

region of in tegrat ion i s only from EzS. ^ 0 E±9. t S i m i l a r l y , tlie 

expression, 

g(r) | e § n Z | | E r d z , (5.39) 

' 0 

i s spec i f ied completely i f E^ i s known inside the d i e l e c t r i c 

r e g i o n . The reason i s that at z = and z = ^jr^t ^T i s 

continuous across the interface between the a i r and d i e l e c t r i c 
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mater ia l . A l s o , due to g ( r ) , E needs only to be known i n the, 
r 

reg ion , a«=r<=b« Since the l i m i t s of integrat ion of 

o f / E z d z ( 5 - 4 0 ) 

are only from ~̂2- -k0 P-ifl. a n a j;^ i s continuous at r = a, the 

determination of (5*40) can be made once E i s known i n the 
z 

d i e l e c t r i c d i s c . Therefore, the f i r s t i t e r a t i v e so lut ion can be 

found by guessing a f i e l d so lut ion i n the d i e l e c t r i c region only, 

¥ h e n the s o l i d disc f i e l d i s used i n (5.38), (5.39) and 

(5.40), a guess for each space harmonic i n the d i e l e c t r i c region 

i s provided;, since each f i e l d component i s expressible as a sum 
0 n of space harmonics. I f the guessed space harmonic i s H n e 

then 

—§ z ~ -s z „ n „ u n H e = E H e . n n n 

As can be seen from the f i r s t mode approximation, for a—»>0, 

E n ^ l . 

Prom sect ion 4.521 the s o l i d disc so lut ion i s 

D z = J 0 ( K i r ) T ( z ) . 

Therefore, i n the d i e l e c t r i c region from (5.34) 
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E = - J . (K n r ) ^ = 
r l e l dz 

= j f - J ^ r ) T(z) 

E
z
 = r~ J 0 ( K l r ) T ( z ) * 

- jq- ^ ( ^ r ) S(z| 

? (5.41) 

The subs t i tu t ion of (5.41) into (5.36) gives the 

d i f f e r e n t i a l equation for H "̂, the amplitude of the f i r s t 

i t e r a t i v e space harmonic* This equation i s 

f - [- f - (rH 1)1 - K 2 H 1 = e J . (K.r) g(r) + j » f J n(fc,r) 
dr L r dr * n \l n n n 1 1 ' 6 J n 0 * 1 ' dr 

(5*42) 

where 

2 E±2-

2 

P+a. 

Era. 

2 

o 
>(5.43) 

Prom (4*38) and (4*40) 

e = n 
.05 
JiT-

'0 
K l \ P ( s n

2 + P 1
2 ) 

* V 2 ' 

-e '•^'[•V, T ( E f ) + ( S n
2 - K l

2 ) BP*)] (5.44) 
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f = ± - '0 
n i \ P ( g n

2
+ s 1

2 ) 

n V 2 ; 

*V 2 ; 

—e [ t n T ( ^ ) - « , S ( ^ ) ] 

where T(2=3.), S C ^ ) , T C ^ ) and S ' fc^) can be determined to 

within an a r b i t r a r y constant by means of (4.43), (4.44), (4.52), 

(4.54) and (4.55)* 

An examination of the terms i n the d r i v i n g funct ion for 

(5.42) w i l l now be carr i ed put. These terms are 

* * f n J0<V> If (5.45) 

e n J ^ r ) g ( r ) . (5.46) 

Over the i n t e r v a l s , 0 < r « = a and a « = r « = b , (5.45) makes no 

contr ibut ion . However, (5.45) gives an impulse at the surface, 

r = a,and thus contributes to the boundary condit ion at th i s 

surface for the d e r i v a t i v e , — 4— (rH * ) . In a sense, the effect 

r ar n ' 

of the d i scont inu i ty caused by the hole i s averaged at the 

surface, r = a, over the complete period of the s tructure . The 

term giv ing the averaging act ion i s i n f and, i n p a r t i c u l a r , 

from (5.43) i s 

1 
P 

P+q 
2, 

Pza. 
2 

s z 
e n T(z) dz . 
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The expression i n (5.46) provides the coupling between the 

space harmonics. This feature can be noted by subst i tut ing into 

e n the space harmonic expansions for T(z) and S(z ) . In the 

l i m i t as a—»-0, 
g(r) = 1 

for a l l r and (5.42) reduces to 

f"" f~ T ~ ( r H
 1)1 - K 2 H 1 = e JAK.T). (5.47) dr L r dr n 'J n n n i l v ' 

I f the condit ion that E i s zero at the waveguide wall i s kept 
z 

i n mind, the so lut ion to (5.47) i s 

g n V 1 

which i s the s o l i d disc s o l u t i o n . By taking the other extreme 

where the waveguide i s empty , a = b, (5.42) becomes 

S i m i l a r l y , for CQ = - = 0, (5.48) r e s u l t s . The so lut ion 

to (5.48) i s 
H 1 = J , (jK r) n 1XJ n ' 

where 

J 0 ( j K n b ) = 0. 

Ifence, the space harmonic so lut ion i s equivalent to the mode 

so lut ion for an empty waveguide. Consequently, as should be 
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expected, from (5,42) for a = b or for CQ = 0 no coupling exists 

between the space harmonics, and for a = 0 the coupling region 

i s a maximum. When a hole i s present i n the d i s c , (5.42) shows 

that the coupling region i s reduced from the s o l i d disc case by 

the factor g ( r ) . Hence, from a physical point of view (5.42) 

seems quite reasonable* 

The general so lut ion for (5.42) w i l l now be treated , 

H could be expanded i n a series made up of a complete set of 

functions and the coef f ic ients of the series could be determined 

from (5.42). However, for the sake of s i m p l i c i t y , H ^ w i l l be 

solved i n each region where (5.42) i s well behaved and boundary 

conditions w i l l be u t i l i z e d to match the solutions at r = a* 

Examining (5*42) shows that i n the region, 0 < r < a , H n ^ 

must sa t i s fy the d i f f e r e n t i a l equation 

f - f i . f - (rH 1)] - K 2 H 1 = 0 (5.49) 
dr L r dr n \ l n n ' 

and i n the reg ion , a<=r<cb, 

f - [ i - f - (rH 1)] - K 2 H 1 = e J , ( K . r ) . (5.50) d r L r d r ^ n ' J n n n i l ' \ . - y 

The boundary conditions for H "̂ can be establ ished by 

integrat ing (5.42). On the f i r s t in tegrat ion 

r_ r 

? IF <RO = K2 J En ( T ) 4 T + E„J ' i i ^ w w 

+ 3»f n / J 0
( * l T ) 5 r dT (5.51) 
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and on the second integrat ion 

TL 

rH 1 = £ 2 / T d T / H 1 ( s ) d s + e / TdT / J , (K, s)g(s)ds n J J n n J J 1 1 

i 
r f 

+ ja»f n / T d T / J 0 ( K l S ) | f ds . (5.52) 

The in tegra l 

J1(K1T)g(T)a.T 

i s a continuous funct ion of r and the integra l 

i s a funct ion of r with a f i n i t e d i scont inu i ty at r = a . 

Consequently, both the integra ls 

TdT j r J 1 (K 1 s )g ( s )ds 

TXTJ.J0(KlB)ff ds 

are continuous funct ions . Therefore, by an argument s imi lar to 

the one advanced i n section 4 .2 , 

Hn^"(r) = a continuous funct ion . (5.53) 
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Since the in tegra l 

i s zero over the i n t e r v a l 0 < r « = a and has a f i n i t e step of 

^(K-^a) at r = a, 

r = a- r = a-

- f - (rH l ) 
r dr n 

K Z 

n 
H n

1 ( T ) d T + e 
n 

J 1 ( K 1 T ) g ( T ) d T 

r = a-

r = a+ r = a+ 

r dr n = t n 
H 1 ( T ) d T + e 

n x ' n 
r = a+ 

where 

+ j < o f n J 0 ( K i a ) 

a— m l im (a -8) 
S~o 

a+, = l im (a +8) 

Hence, the r e s u l t i n g boundary condit ion at r = a i s 

i f - (rH X ) r dr n = ^ f - (rH 1) 
r dr n ' 

r = a-

- j < o f n J 0 ( K i a ) . . ( 5 , 5 4 ) 

r = a+ 

In the reg ion , 0 < r < a , from ( 5 » 4 9 ) the so lut ion for H ^ 
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i s 

H 1 = A I, (K r ) . (5.55) 
n n 1 n 

I f i s imaginary, I^(^ n r) becomes J ^ ( j K n r ) . 

In the reg ion , a < r < b , the p a r t i c u l a r so lut ion for (5.50) 

has the form 

H 1 = B J , ( K , r ) . (5.56) 
np n 1 1 

Through the subs t i tu t ion of (5.56) into (5.50), 

(-K 2 - K 2 ) B = e v 1 n ' n n 

or 

e e e 
B = n = n ^ n = j « ft ^ 

n (-K 2 - K 2 ) (S 2-H0 2

l i n e n - .K 2 ) § 2+P 2 Kn

 n  
y n l y v n r 0 0 1 7 n r 0 1 

(5.57) 

The homogeneous so lut ion for (5.50) i s 

H . 1 = C ' I. (K r) + D K, (K r ) . 
nh n 1 v n ' n 1 v n ' 

¥ h e n & n i s imaginary, I-^f^r) i s replaced by J ^ j l ^ r ) and 

K ^ ( K n r ) i s replaced by T ^ ( j K n r ) . The combined so lut ion for 

(5.50) i s 

1 .(0 

(5.58) 
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At r = b, since E i s zero, ' z ' 

= 0, 

r = b 

As a r e s u l t , from the series i n (5.33) 

- | - (rH ) r dr n r dr n ' 
r = b 

= 0. (5.59) 

r = b 

Subst i tut ing (5.58) into (5.59) y i e lds 

j<oa J n (K-,b) + £ C ' I n ( K b) - K D K n ( K b) = 0, d n 0 N 1 ' n n O n ' n n 0 n 7 

Since 

then 

J Q C K ^ ) = o, 

I n ( K b) ^ 
D = 0 n C ' = I n ( t b)C . 

n K 0 ( K n b ) n 0 n n 

Therefore, 

H 1 = j £ - ft J (K,r)+ |~Kn(K b) I, (£ r) + I n ( K b) K, (K r ) l 6 . n n l v 1 7 |_ 0X n 7 1 x n 7 O v n 7 1 x n 7 J n 

(5.60) 

At the boundary, r = a , from (5.53), (5.54), (5.55) and (5*60) 

I, (K a) A = G, (K a) 6 + j f - ft J , (K na) I n 7 n 1 x n 7 n n 1 1 

K I n ( K a) A = K G n (K a) 6 + j«( f t - f ) J n ( K , a ) n 0V n 7 n n 0V n 7 n J x n n' O M ' 
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where 

G, (K r ) = K n ( K b) I, (K r) + I n ( K b) K, (1 r ) l v n ' O n ' l v n ' O x n I n ' 

G n ( £ r) = K n ( K b) I A ( K r) - I n ( £ b) K n ( K r ) * O n ' 0 ̂  n ' O n ' O n - O n ' 

Hence, A n i s given by 

^ a J,(K..a) Gn(% a) - (a - f ) J ^ K . a ) G, (H a) K^/ n i l ' O n ' v n n' 0 1 ' l x n ' 

K I_(K b) a) K, (& a) + I, (K a) K A (K a)l n O n ' l O x n ' 1 x n ' 1 x n ' 0 N n ' J 

The term, 

i s the Wronskian and i s equal to 

I A ( £ n a ) K^fc.a) + I^S^a) K 0 ( £ n a ) , 

60 

I n ( K a) K, (K a) + I, (6 a) K A ( £ a) = . 0 v n ' 1 x n ' 1 v n ' 0 x n ' & „ K a n 

Consequently, 

K 
_ i 
K, a J , (K..a) Gn(t a) - (a - f ) J n ( K n a ) G, (K a) n l x 1 ' O n ' v n n' 0 1 1 n ' 

(5*61) 

S i m i l a r l y , 

6 n = - j » a 

K^J an J l < K l a ) " ( V f n > J 0 ( K l a ) 

(5*62) 
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Since the Wronskian appearing when K n i s imaginary i s 

J ^ j ^ a ) I 0 ( j K n a ) - J0UKn*) V d*n f t ) = * 
7t3Kna 

for such a case careful at tent ion should be given to include the 

2/TC term i n A and C * n n 

According to (5*34) on the axis of the waveguide 

E 1 h ( r V 
r = 0 = 0 

Through the use of the series i n (5.33), 

co 
E 

0 
- ! - (rH ) r dr n y 

r = 0 n = - co 

—s z n 

= 0 

Hence, for th i s case the coe f f i c i ent of the nth space harmonic 

of E i s z 

b = - r - ± - 1 f - ( r H ) 

r = 0 

By means of (5.55) and (5*61) 

E 
b = T ~ — A I n ( K r ) 

n 3 t t e Q n 0 n 

r = 0 

A, 
-K a n 

K 
n 

K-, UV 1 
a n J (R^a) G n ( K n a ) - ( f t n - J ^ a ) G ^ a ) 

e o I 0 ( K n b ) 

(5.63) 
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Over the i n t e r v a l , 0 < r < a , from (5.33), (5.55) and 

(5.61) the f i r s t i t e r a t i v e so lut ion can be expressed as 

co 
, I A V ^ f c C a - f ) J n ( K . a ) G 1 ( K a)-K a J , ( K i a ) G n ( K a)| 

H l = j | - a \ 1 1 n n 0 1 1 n 1 1 1 1 1 1 0 n J I 1 ( K n r ) e 

1 ^—' In(t b) n = - c o O n 7 

(5.64) 

and over the i n t e r v a l , a < r < b , from (5.33), (5.60) and (5.62) 

co 

n - - o o 

(5.65) 

c o 
1 [ K 1 ( a n - f n ) J 0 ( K 1 a ) l 1 ( K n a ) - K n a n J 1 ( K 1 a ) l 0 ( K i i a ) ] . -s__z , •** - \ L i n n' I T 1 ' 1' n n n 1' 1 U ' n J ^ /ft- „ \ n 

+ 3 — a > G 1 ( K n r ) e 
1 ^ — 1 I n ( K b) n = - c o O n 7 

In (5.65) the f i r s t series corresponds to the s o l i d disc so lut ion 

and the second series i s a perturbat ion term. This statement 

w i l l become more evident as the discuss ion progresses. 

The d i spers ion r e l a t i o n i s found by equating at the point 

(r = b , z = p/2) the guessed so lut ion for i n (5.4l) and the 

f i r s t i t e r a t i v e so lut ion i n (5.65). This point was chosen 

because i t i s thought to be the point i n the d i e l e c t r i c region 

where the guessed and f i r s t i t e r a t i v e solutions behave most l i k e 

the exact s o l u t i o n . The j u s t i f i c a t i o n for th is statement i s 

based on the fact that the chosen point i s farthest removed from 

the perturbat ion caused by the hole and, i n p a r t i c u l a r , from the 

perturbat ion near the corners introduced by the hole . By 

equating the guessed and f i r s t i t e r a t i v e solutions at a point 
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where the f i e l d i s r e l a t i v e l y well-behaved, the hope i s that 

elsewhere the f i r s t i t e r a t i v e so lut ion i s allowed to deviate more 

than otherwise from the guessed so lut ion and i n turn approach more 

c lose ly to the exact so lu t ion . 

Prom (5*41) and (5*65) at r = b, z = p/2 

oo 

a e n 
n 2 

n = - oo 
(5*66) 

oo 
, .« /a \ 

+ J K ^ b ' 

K, (a - f ) J n ( K 1 a ) l , ( K a)-K a J 1 ( K 1 a ) l n ( K a ) l -s ?r 1. n n 7 0 v l / l n / n n l l y O v n / J , n 2 • 1 • • f-e 

n=-oo 
K b) n 0 n 

where 

8 l < K n b > = r b 
n 

has been employed. According to Appendix 3 

a e n 
S n 2 = T(5)^ 2' 2 j 

n=—oo 

C-ĵ e C 2 e 0 

L s m ( — o — ) s i n ( — ^ — ) . 

! _ e j (#X)1 

Therefore, (5.66) becomes 

J Q 0 J 1 ( K 1 b ) e 

2 J " 

J 2 Ĉ ê C 2 e 

s m ( — 5 — ) s m ( — 5 — ) _ 

J (X-X) 

00 

(-) 

n=-oo 
K I n ( K b) n 0 n 

(5.67) 
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and from th i s r e l a t i o n , since X i s known from (4.54), ^ c a n be 

determined as a funct ion of « for any p a r t i c u l a r s tructure . 

Provided (X~X) i s small , a s impl i f i ed formula for 

obtaining Xcan be found from (5.67). To begin with , 

[J(X-X) _ i ] - j(x-x). 

Therefore, from (5.67) 

X-X = K (I) 

2 s i n ( — ^ - ) s i n ( — e 

J ^ K j b ) s i n ( — g i i - J e U C 1 + s i n ( — ^ - ) e U C 2 

x V [ V V ^ V V * 1 ! ^ - g n V 1 ( K 1 a ) l 0 ( g n a ) ] ^ f 

n = -co 
(5.68) 

The terms of the series i n (5.67) which give a (%-X) contr ibut ion 

are of second order . This statement may be v e r i f i e d by 

inves t igat ing the r e l a t i v e magnitudes of the terms for the 

series i n (5.67) compared with the terms of the series 

co 

J-^Kjb) 

n = - co 

As a r e s u l t , for a f i r s t approximation the r ight side of (5.68) 

i s evaluated for S(=X a n < 1 thus 

B equals rea l p a r t . 1 
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:X 

X-X = R 

2 s m (.—x—)sm(—x—)e 

(-) 

J ^ ^ b ) s i n ( —f - ) e U C X + sin( 2

U )b U C , 

oo 

n = -oo 
K I n ( £ b) 

n 0V n y 

(5.69) 

For s u f f i c i e n t l y small "a" 61 

< M K i a > — l K l a 

I 0 ( £ n a ) — 1 

J o ( K l a ) — 1 

and thus from (5*62) 

n 

a>K f 0 

• n n 2 
- J : ~ a . 

2 I 0 ( K n b ) 

(5*70) 

Therefore, as a—»-0 

C - ^ 0 . 
n 
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Consequently, the series i n (5.67) approaches zero and, as a 

r e s u l t , 

Hence, 

and thus 

£L > Et « 

n n 

From (5.65) the f i r s t i t e r a t i v e so lut ion approaches the s o l i d d i 

s o l u t i o n . In other words* i n the l i m i t the two solutions are i n 

agreement, as they should be. 

Now, (5.69) w i l l be examined for the case where the 

f i e l d s for the s o l i d disc structure are matched. Such an 

inves t iga t ion gives some i n d i c a t i o n of the behaviour of the 

ef fect ive propagation coe f f i c i en t i n the d i s c . For example, 

from the s o l i d disc so lut ion and the so lut ion of the f i r s t mode 

approximation, i f (4.60) and (5.27), respect ive ly , are u t i l i z e d , 

X-X= 2O 0 * + 2%^ - 2 © 0 - 201 = ( p 1 1 - p x ) q = ( A p ^ q 

(5.71) 

where Ap^ i s the perturbat ion of 0̂  caused by the ho le . 

This examination w i l l be r e s t r i c t e d i n that only 

frequencies i n the f i r s t pass band w i l l be considered. These 

frequencies are i n the range of greatest in teres t i n beam—couple 

design since most higher order modes are s t i l l i n cutof f . 

The radius* a , i s to be taken small enough so that C n 
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can be approximated by (5.70). In r e c o l l e c t i o n from section 

4.523 for a match to exist 

c 2 = c 4 = 0 

C l = ^ C3* 

Hence, from (4.57) inside the d i e l e c t r i c disc 

T(z) = C^e 

As a consequence, (5.43) gives 

n — — e 
p ex 1 -

p_±g_ 
2, 

2 

s n z ^ 3 1 Z . e e dz 

C,e 
P e x 1 

I" s i n ( - ^ ^ L - P l ) | - j 

- ( & J J S 2 L - 8,) 
(5.72) 

Substituting (5.72) into (5.70) yie l d s 

n 
%x 

.a>a,2 °0 
r s i n 

X+2wi 
8 l ^ l l K C, n 1 

L ( X+2nn _ p ) 

(5.73) 

If (5.73) i s employed i n (5.69), the result i s 
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X~X= -Kjb^) '0/2 
s m (—~—) s in ( X+2nn 

e 1j»p 

8 ) a  
p l ; 2 

J ^ b ) 
n=-oo 

(5.74) 

The series i n (5.74) has been summed i n Appendix 4. By means 

of th i s summation and the fact that 

x-x= - * 1 i<y — n_ I " i 
2 lb) £ l P 1 | J ^ b ) 

(771 + T}2 +773S) (5.75) 

where S i s the sum defined i n Appendix 4 and 

BiM/ a i n< Bi- f lo>f 
q/2 

J ^ I ^ b ) 

^ ( V - B 0 " K l b 

s in 8 0 (p-q.) \ / B1 

0 Vl + B 
0 

s in ( P l - 8 Q ) | 

\q/2 s in 8 0 ( p - q ) - h ( : i

2 - P ) q 

7?3 = J l ( K l b ) ( y 
s in (8]_- B Q ) f | 

q/2 

The expression for i n (5.75) i s now to be compared 

with the fol lowing expression obtained from the f i r s t mode 

approximation. For the f i r s t mode approximation 
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He nee, provided =»AK^ , 

1 A K 1 2 

hi - h. - 2 • 

Through the use of (5.71) and (5.15), for "a" very small 

.2 

Since i n the f i r s t pass band 

0 S X < T I , (5*77) 

the terms 7^ and Tj^ are positive and th i s would indicate (5.75) 

and (5.76) have the same sign. As mentioned i n Appendix 4, S i s 

an o s c i l l a t i n g series that i s made up of the contributions of 

the higher order modes i n the waveguide and most of the terms i n 

S are evanescent. The contribution made by S i s , i n e f f e c t , 

ignored i n deriving (5*76)* 

Owing to (5*77)* 

<I>1 - »0> I S 2 • 

Consequently, the approximation 

sm (pz , fs0) | • { h - ? 0 ) a 

i s not too unreasonable. Therefore, for both (5.75) and (5.76) 
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and, a l so , 

'0 

then 

Furthermore, when 0 ^ — ^ P Q ' S :*- N C E 

Sin |V Pq)/ ^ K l . 
zot ^h2- Po 2 "" K i ^ b ) 2 b p o J i ( K i b * 

s i n ( 0 X - P Q ) f — 0, 

^ 1 

^ 0 

7 ? 3 — 0 . 

Therefore, for th i s case (5.75) and (5.76) approach exact 

agreement. At 0 ^ = 0Q, 7̂  i s a maximum and .7̂  decreases toward 

zero as 0 ^ increases* Since 

s in 0 Q ( p - q ) 

h + P o * 1 • 

s in ( 0 X - 0 Q ) | 

(p-q) 

s m 0 Q ( p - q ) + (—2~ )q 

(5*78) 
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an upper bound for TL, i s 2(-P-^). For a constant X, inequality 

(5.78) can be established since d i f f e r e n t i a t i n g the l e f t side 

by P-^ shows there i s no l o c a l maximum. Consequently, the 

absolute maximum occurs when P - ^ : = > = > PQ and thus 

sin ( P l - P Q ) | 

s i n [ p 0 ( p - q ) + O 1 ^ S 0)|] 

s i n P i 2 
sin ^ | 

= 1. 

In conclusion, (5*75) and (5.76) appear to be i n reason— 

able agreement. 

5.3 A Cavity with a Solid D i e l e c t r i c Disc P a r t i a l l y F i l l i n g the 
Central Region 

The H—wave symmetric f i e l d solution i n a cavity with 

a s o l i d d i e l e c t r i c disc p a r t i a l l y f i l l i n g the central region i s 

the topic of this section* An i l l u s t r a t i o n of the cross section 

of the cavity i s shown i n Figure 5.3. 

P 

Tr 

/ 

/ 

T r 
i a 

i i i . 

~T 

E r a 
2 —* 

D i e l e c t r i c \ bisc': •" , 
e = e n . i 

/ - i • 

il C = O i ' 
. v M - 1 ' 
i ' ' I i ' i ' 

, > i i > i 11 
f— v q.1 —-*• 

A i r 

e = e 0 

(f = 0 

z: / / ; 

Cavity 
^ Wall 

F i g . 5.3. Cross Section of a Cavity F i l l e d P a r t i a l l y i n the 
-Central Region by a D i e l e c t r i c Disc 

In his investigation into the properties of d i e l e c t r i c s , 
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L u t h r a examined t h i s problem. His treatment was i n i t i a t e d 

because i n h i g h power a p p l i c a t i o n s intense l o c a l f i e l d s may 

occur i n the a i r gap between the d i s c and the c y l i n d r i c a l w a l l 

and, i n t u r n , these f i e l d s o f t e n cause sparking and even the 

breakdown of the d i e l e c t r i c m a t e r i a l . Luthra d e a l t w i t h the 

case i n which the a i r r e g i o n i s near c u t o f f and the d i e l e c t r i c 

d i s c i s a h a l f wavelength t h i c k . As a r e s u l t , he s i m p l i f i e d 

the problem by c o l l a p s i n g the metal end w a l l s to the d i e l e c t r i c 

s u r f a c e s and, then, analyzed t h i s reduced problem. 

Inside the' c a v i t y shown i n F i g u r e 5.3, the p e r m i t t i v i t y 

may be expressed as 

e = e Q + c 0 h ( z ) g ( r ) (5.79) 

where h(z) and g ( r ) are d e s c r i b e d i n Figure 5.4. 

h(z) 

2 
Pig- 5*4* The h(z) and &(r) Functions 

The necessary r e s t r i c t i o n s on the f i e l d before an H-wave 

can e x i s t i n a r e g i o n where the p e r m i t t i v i t y s a t i s f i e s (5.79) 

can be a r r i v e d at i n a manner s i m i l a r to the treatment i n 

s e c t i o n 2.42 f o r E-waves. The r e s t r i c t i o n s are t h a t the f i e l d 

can have no angular dependence and 

E = 0, H/ = 0, E = 0 . r 7 p ~ 7 z 
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Therefore, from (A1.13) i n Appendix 1, must sa t i s fy the 

p a r t i a l d i f f e r e n t i a l equation 

The reasons for solving for E^ rather than or H z from the 

d i f f e r e n t i a l equations are the duals of the reasons advanced 

i n sect ion 5.2 for so lv ing for H^. 

If (5.79) i s substituted into (5.80), the resu l t i s 

b 2 E 

hlib ( r V l -+ ̂ + • V o ^ = -*Vo f i ( z >8< r >*t • 

(5.81) 

The next sect ion w i l l deal with the f i r s t mode approximation of 

the so lut ion to (5 .8l) and, immediately fo l lowing, another 

sect ion w i l l e s tab l i sh an approximate series so lut ion for (5.81). 

5.31 F i r s t Mode Approximation 

The set of eigenfunctions, <j J , (K r)p,. i n which the 

K 's are determined from m 

J j U b ) = 0 (5.82) 

i s complete and orthogonal over the open i n t e r v a l , (0 ,b) . As a 

r e s u l t , E^ can be expanded by the series 

o o 

* V = > Tm(z) W ) (5.83) 

m = 1 

where K^b i s the mth root of (5.82). 
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M u l t i p l y i n g (5.81) by r J ^ ( K m r ) and integrat ing the 

expression which succeeds y i e lds 

dz 
0 0 

a 

= - ^ 2 a 0 c 0 h ( z ) jrJ^r) E^dr. 

0 

(5.84) 

Through the use o f the series i n (5.83), E^ i s el iminated from 

(5.84). As a consequence. 

d^T 
m + B 2 T 

dz 

where 

2 K0m m 

- b_ oo a 

r < ^ l (^ m

r ^ d r 

= V a ^ U ^ T T n J r J 1 ( K m r ) J 1 ( K n r ) d r 

0 n=l 0 
0 2 , 2 v 2 
60m = <° ^O eO " Km ' 

Therefore, 

d 2 T 
m 

dz' 

o o r , 

o V" 1 K J , (K a ) J n ( K a)-K J n ( K a)J , (K a) , a 2 m ,„2 ^a\2 \ \ l n l v m / O x n / m 0 x m 7 1 x n J m 

+ ^ V - £ ( Z , Z. <K m
2 - K 2

n ) J o

2 ( K m b ) " * » 
n=l 

(5.85) 

s i n c e 63 

r J ^ X r H r = | * J 0

2 ( K m b ) 

0 

and 
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a 

f r J ^ V J j ^ V J d r = p ^ [ K n J 1 ( K m a ) J 0 ( K n a ) - K m J 0 ( K m a ) J 1 ( K n a ) ] 

J0 m " n 

For the case i n which 

Ab = b — a «=«= b, (5.36) 

J 0 ( K i a ) « J ^ b ) - | (K x Ab) 2 ] 

J ^ a ) S - J Q ( K 1 b ) ( K 1 A b ) >(5.87) 

J 2 ( K i a ) « - J 0 ( K 1 b ) [ l + 2 ^ + 2 ( | ^ ) 2 - ^ A b ) ' 

where the formulas 64,65 

oo 
J n[V b " H = ) JJhhK-J~h^ 

m = — oo 

J 2 ( K l a ) = K^a J i ( K i a ) ~ J

0

( K l a ) 

have been u t i l i z e d . I f i s regarded as t|ie d r i v i n g funct ion , 

from (5.85) for the smaller values of in > 1 

By the use of the asymptotic expressions for jQ(K m a) and J -^K^a) , 
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for the larger values of m 

m 
s in K a ra 

cos K a m j 
t T i • 

m / 

Consequently, for a f i r s t approximation of the f i e l d , a l l terms 

for m =• 1 w i l l be neglected. Ftdk (5.85) th is approximation 

y i e lds 

d 2 T 

dz 2
 + PoA 

J 1

2 ( K 1 a ) - J 0 ( K 1 a ) J 2 ( K 1 a ) 

J

0

 ( K l b ) 

h(z) T ± . 

(5.88) 

Employing the approximations i n (5.87) and neglecting higher 

order terms reduces (5.88) to 

d 2 T 

dz 
2 + P 0 1 2 T 1 = -("Vo ~ A K i 2 ) f i ( z ) \ (5.89) 

where 

2 .2 (5.90) 

When 

(5.89) gives 

£ ( z ) = 1, 

2 
d^T 

dz l
+ p l l 2 T l = ° 
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where 

l n

2 = » 2 i x 0 e 1 - ( K x

2 + A K - j ^ 2 ) (5.91) 

To insure the a i r gap between the disc and the c y l i n d r i c a l wall 
2 

only perturbs K-̂  by a small amount, 

A K X

2 <=<= K - j ^ 2 . 

Therefore, the condition, 

' K i 2 

2^ f ' (5.92) 

must be s a t i s f i e d . By taking T 2 into account as well as T^, the 

sti p u l a t i o n , 

T 2 * * T 1 ' 

i s met provided 

I A M " 
lb I .066 

(0 >ocoi 
(5.93) 

If desired, (5.93) can be used i n place of (5.92). 

According to (5.89) 

T^ = a continuous function 

dz = a continuous function 

(5.94) 

and (5.94) establishes the boundary conditions. 

Now, the symmetric solution to (5.89) can be determined 

i n a manner analogous to the approach used i n Appendix 5, for the 

case i n which a = b. The symmetric solution i s , i n the region, 
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0 = 

cos B | 
= A s in B 0 1 z , 

s in P 0 1 ( E ^ ) 

i n the region, ^ ^ < z< 

T x = A cos 8 i ; l ( Z - | ) 

and i n the region, •^^•<z<p, 

cos 8 ^ 
T I = A s in 8 0 1 ( p - z ) . 

s i n B 0 1 (E=a) 

The resonant frequencies are determined from the r e l a t i o n 

If th i s so lut ion i s compared with the so lut ion i n 

Appendix 5, i t i s eas i ly seen that 8Q-̂  and 8Q have the same form. 

Consequently, i n the a i r region the presence of the a i r gap 

between the disc and the c y l i n d r i c a l wall does not appear to have 

any appreciable effect on the behaviour of the propagation 

c o e f f i c i e n t . In the region of the d i s c , the square of the 
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propagation c o e f f i c i e n t , , d i f f e r s from 6̂  by a factor 
2 

AK^ . This perturbat ion caused by the a i r gap can be adjusted 

for by increasing the p e r m i t t i v i t y of the disc to 

Once th i s adjustment i s made, 

B l l = fll-

A more accurate so lut ion which includes the effect of some 

of the higher order modes can be achieved by extending the above 

ana lys i s . 

The antisymmetric problem can be dealt with i n a s imi lar 

fashion to the treatment just given. 

5.32 An Approximate Series Solut ion 

The purpose of th is sect ion i s to carry out an 

inves t igat ion to determine an approximate series so lut ion for 

(5.81), 

b i i h ( rV] + - ^ 2 + tt2¥oE/ = -*\°<$i*W')*t • 

(5.96) 

Since the symmetric so lut ion i s des ired , E^ i s expanded i n the 

series ~. 
co* 

E^ = ^ En< r> s i n £ f < 5 « 9 7 > 

n = 1 
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where "*" denotes that the sum i s only over odd values of n . 

Now, (5.96) i s mul t ip l i ed by s in —jp- and the ensuing 

expression i s integrated from 0 to p . Therefore, i f to the 

l e f t of the equal i ty sign E^ i s replaced by the series (5.97), 

the resu l t i s 

2+2. 

H 4 ( r B ) l - t 2 E = - g(r) ) s in ^ E/dz drLr dr v n'J n n p 6 X / p p 

where 

(5.98) 

t 2 = ( ^ ) 2 - < o 2 , 0 e 0 . (5.99) 

Determination of the expression, 

g(r) / s in ?f E^dz , 

i s complete provided E^ i s known inside the d i e l e c t r i c disc 

because § ( r ) i s zero over the i n t e r v a l , a < r < b , and the region 

of in tegrat ion i s only from to * As a consequence, the 

f i r s t i t e r a t i v e so lut ion can be found by guessing E^ i n the 

d i e l e c t r i c reg ion . 

The so lut ion found i n Appendix 5, for the case i n which 

a = b, w i l l be used for the guess. Analogous to the guess made 

i n sect ion 5.22, the present conjecture gives an approximation 

ins ide the disc for each harmonic i n (5.97). Since the so lut ion 

i n Appendix 5 i s for the lowest order mode, the f i r s t i t e r a t i v e 
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so lut ion w i l l be an approximation of the lowest order mode.in 

the cavi ty i l l u s t r a t e d i n Figure 5.3. 

From Appendix 5, inside the d i e l e c t r i c disc 

E = AJ-^I^r) cos p ^ U - |) (5.100) 

where 

tan ^ | = ^ cot P Q ^ ) (5.101) 

Po2 = *oVo " h2 

h 2 = ttoVi ~ K i 2 ' 
(5.102) 

The resonant frequency «0Q i s determined from (5.101). 
Greater f l e x i b i l i t y i n the guess could be achieved by 

leaving K and tt undetermined i n (5.100). However, another 

unknown, K, i s introduced. Consequently, to complete the 

so lu t ion , the guessed E^ and the f i r s t i t e r a t i v e E^ would have 

to be equated at an extra po int . As a r e s u l t , any numerical 

work would be considerably increased. 

By replac ing E^ i n (5.98) by (5.100), a f i r s t i t e r a t i v e 

so lut ion for E i s found to sa t i s fy n J 

htih <*0] " K2
 " a 1 • A e n J1<V> ««'> (5-103) 
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where 

e = n — sxn — 
s in ( M + s i n ( f - 8 l ) | 

L — + P K l ^ - P1 

P ^ 

(5.104) 

In (5.103) the d r i v i n g funct ion provides the coupling 

between the harmonics. The behaviour of th i s d r i v i n g function 

can be explained i n a manner s imi lar to the explanation given 

i n sect ion 5.22 for the behaviour of the coupling d r i v i n g function 

a r i s i n g i n (5.42). 

Through arguments s imi lar to those advanced i n sect ion 

5.22, by means of (5.103) the cont inui ty condi t ions , 

E = a continuous function n 

l ^ - w ^ (rE ̂ ) = a continuous funct ion , r dr > n ' 

(5.105) 

can be es tabl i shed . 

From (5.103) i n the reg ion , 0 « r « = a , 

* 2 1 K E n n A e n J ^ K j r ) 

(5.106) 

and i n the region, a « = r < b , 

d_ T l d 
dr 

f l d ( r B 1)1 . i 2 1 = 

L r d r v n \ l n n (5.107) 



139 

The so lut ion to (5.106) i s 

A e 
E 

n K +̂ K, 
n 1 

« - j J , ( V > • Vl<*n'> ( 5 - 1 0 8 ) 

and to (5.107) i s 

E 1 = C * I, (K r) + D K, (K r) n n 1 v n ' n 1 n (5.109) 

At r = b, E^ i s zero and thus from the series (5.97) 

E 
n 

0 

r = b 

Hence, (5.109) gives 

0 - V MV*) +DnMKnb) 

Consequently, 

I, (K b) 
D = — 1 n C • 

K x ( i n b ) n 

and (5.109) becomes 

By means of (5.105), (5.108) and (5.110) the boundary 

conditions at r = a are 
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P l ( K n a ) e n = I l ( K n a ) A n -
K K, \ n 1 

K F n ( K a) 6 = K I n ( K a) A„ -n 0 n n n 0 n 7 n 

A e n K 1 

~ 2 * ) J 0 ( K l a ) 

\ n 1 

where 

F, (K r) = K_ (K b) I, (K r) - I, (K b) K, (K r) l v n ' 1 n ' I n 7 1 n l x n 

F 0 ( K n r ) = K ^ K b ) I 0 ( £ n r ) + I ^ f c b ) K 0 ( K n r ) 

Solving for A n and C n y i e lds 

A n = 
ae FK J , ( K n a) F„(K a) - K, J.-. (K, a) F, (K a ) l A nL n 1 v 1 ' 0 v n ' 1 0 1 ' 1 n ' 1 

[ ( f ) 2 ~ ^ o i 2 ] 01 I 

C = n 
a e N [ K n J 1 ( K 1 a ) I 0(£ na) - K ^ O ^ a ) I ^ K ^ J A 

[ i f f - P o i 2 ] VV>> 

(5.111) 

s i n c e 

K n
2 + K x

2 = (Stt) - 0 01 

Therefore, over the i n t e r v a l , 0 < r < a , from (5.97), (5.108) 

and (5.111) 
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co 

E - A J ^ r ) n 

n = 1 [<f* 
- s i n 

n - j t z 

) - 3 01 

co 

- a A 
e j K 1 J 0 ( K 1 a ) F 1 ( K i i a ) - . K n J l ( K 1 a ) P 0 ( K n a ) ] 

n = 1 <f> -i>oi : 

I , ( K r ) s i n I n 
nitz 

P 
I, (K b) I n ' 

(5,112) 

and over the i n t e r v a l , a < r < b , from (5.97), (5.110) and (5.111) 

co 

E A V ^ ^ i J o ^ l ^ ^ l ^ n ^ - V l ^ l ^ ^ ^ V ^ ( f t , . 
- a A / " F , (K r j s i 

L r 2 -1 1 n 

n - r c z 

n = 1 

(5.113) 

The star notation i s dropped from the summation sign since e n 

i s zero for n even. Owing to the nature of e n and the fact 

that only squared terms of n occur i n K n , (5.112) and (5.113) 

can be rewrit ten respect ive ly as 

co 
2» u^c 

E 
^0C0 A J - L ^ r ) 

sin f t s i n ^ + B ^ f 
s i n 

n-niz 

n=-co 
nit. n 

(

P > - B01 

C O 

+a 

1 s in | ^ s i n ( ^ B 1 ) | [ K 1 J 0 ( K 1 a ) F 1 ( K h a ) - J n J 1 ( K 1 a ) F 0 ( K n ^ 

n=-co <f> - l»oi : I n (K b) 
I n ' 

X I . ( K r ) s i n ^ I n p (5.114) 
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and 

oo 
! aoVpaA^Bin f s i n ( ^ i ) | [ K 1 J 0 ( K 1 a ) l 1 ( K n a ) - K n J 1 ( K 1 a ) l 0 ( K n a ) ] 

E / = 

n=-oo I f + P J (—) 
P P 01 I n ( K b) 

I n 

X F , ( K r ) s i n 1 v n ' 
nn;z (5.115) 

The r e l a t i o n from which the resonant frequencies can be 

obtained i s found by equating at a point the guessed so lut ion i n 

(5.100) and the f i r s t i t e r a t i v e so lut ion i n (5.114). The point 

chosen i s at r = § , z = 2 " where § — * - 0 » Inside the d i e l e c t r i c disc 

no other point i s as f a r removed from the perturbation caused 

near the corners of the disc by the a i r gap. 

Equating (5.100) to (5.114) at r = 8 , z = § gives 

r^S) = 
0 0 

1 s in f- s i n t f ^ p f 

n =-oovp r l ' { ~ > - P01 

CO 

+a 
s i n

2 ft s l n ( ^ i ) | [ K i J o ( K i a ) f i ( g n a ) . g n J i ( K i a ) F o ( g n a ) ] j (tnS) -| 

n= - c o nn 
+ ' j [ l f ) 2 - '01 I , (K b) I n 

Since 

l im 
S^OLJ J 1 (KjS). 

E 
n 

K-, ' 
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oo 
2a' 

1 = >0C0 s m — s m \ i-p, 
p P 1 2 

L Z _ . ( sa + a ) 
n = *>covp K l y 

( f ) - B 01 

oo 

a 
K, 

n=«co ( f ) - B 0 1

: I n (K b) 1 x n ' 

(5.116) 

In that 

co 

s = 

C O 

n=-co v p ' v \ ' (f-) - B 01 

s m 

m 
r=' 0 0 (2m+l)n 4 i p i |(2m+l)7t)_ Q 

'01 

S can be summed i n the same fashion as the series treated i n 

Appendix 4. I f the summation i s carr i ed out, 

<i*i2 - O 
1 -

cos S 0 1 | 
cos B± | cos P o i ( E = l ) 

- | i - s i n p ^ f s in B 0 1 (B=a) 

Therefore, (5.116) becomes 
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2 2 

tt 2 - -^tt 2 c " ° ^012 0 e-̂  
o s Pm o L 01 J 

x " V o 
K 2 - ">oi2) 

2 
2w u~c~a 

oo 2 

+ " K i P 

V 0 a V K

n Bin j f s i n ( f + P l ) | | £ n J 1 ( K 1 a ) F 0 ( K n a ) - K 1 J 0 ( K 1 a : ) F 1 ( K n a ) ] 

A^oo (SS. + p ) (SIL)2 _ pm
2 I . (K b) 

Np K l ' vp ' r01 I n 

This r e l a t i o n gives the resonant frequency ft. 

A check of the l i m i t i n g case when a = b shows that the 

f i r s t i t e r a t i v e so lut ion agrees with the so lut ion given i n 

Appendix 5. 

5.4 Discussion 

For the per iodic structure loaded with d i e l e c t r i c discs 

having central holes , the d ispers ion equation found i n the f i r s t 

mode approximation i s much simpler than the d ispers ion equation 

found i n the approximate series s o l u t i o n . This simpler d ispers ion 

equation i s probably quite r e l i a b l e when a « b since the f i r s t 

mode approximation seems reasonable i n a l l regions of the structure 

except poss ibly near the axis of the d i s c s . In the v i c i n i t y of 

the holes i n the discs the f i e l d i s perturbed the most and thus 

higher order modes may become s i g n i f i c a n t . 

For the amplitude of the space harmonics, the approximate 

series so lut ion gives an expression which i s not unduly more 
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complicated than the expression obtained by the f i r s t mode 

approximation. At the same time, along the axis of the waveguide, 

the amplitudes determined i n the approximate series so lut ion are 

probably somewhat more accurate. This statement would have 

greater force i f the f i r s t mode approximation were employed for 

the guessed s o l u t i o n . 

Consequently, i n studying the properties of the periodic 

s t ruc ture , i n many instances poss ibly the best approach would be 

to use the d ispers ion equation given by the f i r s t mode approxi

mation and to use i n the v i c i n i t y of the axis the amplitudes of 

the space harmonics given by the approximate series s o l u t i o n . 

In a l i k e manner, i n a study of the behaviour of the 

f i e l d i n the resonant cavi ty discussed i n section 5.3, poss ibly 

the most agreeable approach would be to f ind the resonant 

frequency from the f i r s t mode approximation and to use, at l east 

over the i n t e r v a l , a -=r«=b» the f i e l d given by the approximate 

series s o l u t i o n . 
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6. SOME CALCULATIONS AND MEASUREMENTS FOR DIELECTRIC LOADED 
PERIODIC STRUCTURES 

6.1 General 

The d i e l e c t r i c loaded periodic structures to be examined 

are of the type shown i n Figure 5.1. For a structure loaded with 

d i e l e c t r i c discs of polystyrene, the frequency and disc thickness 

required for it-mode c o n f l u e n c e ^ ' ^ are calculated from the 
! * 

f i r s t mode approximation theory developed i n sect ion 5«21« These 

resu l t s are compared with the corresponding values obtained 

experimentally by Walker and Vest and with those determined 

from the s o l i d disc theory of section 4.523. For discs of the 

thickness ca lculated from the f i r s t mode approximation theory, 

the d i spers ion curves given by the f i r s t mode approximation and 

the s o l i d disc theory are p l o t t e d . An experimental d i spers ion 

curve for th i s case could not be read i ly obtained. However, the 

d i e l e c t r i c loaded per iodic structure i n the l i n e a r accelerator 

at The Univers i ty of B r i t i s h Columbia could be set up for 

measurements without too much d i f f i c u l t y . As a consequence, 

th i s s tructure , which i s loaded with t i t a n i a d i s c s , was used to 

f i n d an experimental d ispers ion curve. This experimental curve 

i s compared with the theoret ica l curves determined through the 

use of the f i r s t mode approximation and the s o l i d disc theory. 

For the accelerator structure at Th$ Univers i ty of 

B r i t i s h Columbia, the Oth order space harmonic of E i s examined 
7 r z 

on the axis for the case i n which i t s phase v e l o c i t y i s equal 

to the speed of l i g h t . A comparison i s made between the harmonic 

coe f f i c i ent found from the s o l i d disc theory and from the 
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approximate series solution discussed i n section 5.22. 

6.2 Polystyrene Loaded Structure 

The discs i n the polystyrene: loaded structure have a rela t i v e 

d i e l e c t r i c constant of 2.550. Other parameters for the structure 

are 

b = 3.620 cm 

a = .6350 cm > (6.1) 

p = 5.000 cm . 
4 

The thickness, q, i s to be determined so that a match takes 

place «.t X= "rt* Since K^b i s the f i r s t root of ^ ( K b ) , then 

Hence, 

and from (6,1) 

K-jb = 2.405. (6.2) 

J ^ K j b ) = .5191 (6.3) 

= .6644(10) 2. (6.4) 

Substituting (6.1), (6.3) and (6.4) into (5.15) y i e l d s 

A ^ 2 = .6632(10)~ 1 K x
2 + 1.544(l0)~ 3« 2a 0e 1 (6.5) 

a = 2.540(10)~ 3 . (6.6) 

Prom (5.16) and (6.5) 

8 1 1 2 = I 1 " l-544(l0)"3)«2n0e1 - (1 + .6632(10)" 1)K 1
2. 

(6.7) 
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According to (5.26) a match occurs when 

'01 
0 

'1' 

2 , .2a 0 

^ hi' (6.8) 

From (6.6) 

l e 0 

2a 5 . 0 8 0 ( l O ) - 3 

= (2.550) = 1 + .004752. (6.9) 

Since 

Poi 2 = • V o ~ K i 2 ' (6.10) 

(6.8) can be rewrit ten as 

a>2u.0e0 - K x

2 = j l + 3.201 (lOr3\<*\eQ i - - • ( l + .07139) ĵ -j 

or 

f l - 1.07139 
_ 2 

(6 = I ^ C 
1 - 1.003201 

e 
= K 1 C \ / 1 + ^ - (.9591) (6.11) 

r 

where 

c = 
1 = 2.998(10) 8 m/s, 

Therefore, 

f = ! j - = 3T18 Mc/s . 

U t i l i z i n g the matched dondition from (4.59), for the s o l i d disc 

theory, gives 
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f = - o - \l1 + — = Mc/s . s . d . 2n y e r 

Prom Walker and West's experimental measurements 

Consequently, 

f = 3722 Mc/s, exp ' 

f - f = 4 Mc/s exp I ' 

f - f , I = 18 Mc/s I exp s . d , I ' 

and thus the difference between the experimental measurement 

and the theoret ica l c a l c u l a t i o n i s improved by a factor of A\ 

i f the f i r s t mode approximation i s used instead of the s o l i d 

disc theory. \ 

Through the use of (6.11) 

« 2 u 0 e 0 = K±

2 [ 1 + i - (1 - .04088)] . 

Hence, 

H 0 1 = * V o " V - h \J ( 1 " e ° 4 0 8 8 ) " - « 7 « 1 0 ) . 

A l s o , 

<e2V0z1 - \ 2 = (e r ~ .04088).^ 2 

and from (6.5) 

AK^ 2 = .07174 K x

2 . (6 .12) 
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As a r e s u l t , 

P n = ^ \l (e r - .1126) = 1.037(10) 2 ., 

For a match to occur at X= n from (5.27) the thickness of 

the disc i s given by 

% ^ 0 1 P 3.142 - 2.038 1.75 cm 
B l l *01 (1.037 - .407)(l0) 2 

From the s o l i d disc theory 

3 0 ^ ^ 6 6 r ^ 2 ^ 4 1 6 0 ( l 0 ) 2 

8 1 = Kl\/^7 = (.6644) (l"0f)2(l. 597) = 1.061(10) 

By means of (4.60) the disc thickness i s equal to the 

expression 

% ~ B 0 P 3.142 - 2.080 , , K q , = Q s— = ~ = 1.65 cm. 
s . d . B x - B 0 ( 1 # 0 6 1 _ . 4 i 6 ) ( l 0 ) 2 

The measured value of the disc thickness i s 

l exp . = 1 ' 7 7 c r a ' 

Consequently, 

q — q = .02 cm ^-exp. ^L 

q _ — q , = .12 cm, ^exp. ^s .d . 

Hence, i n th i s case, the f i r s t mode approximation gives an 

answer which i s considerably c loser to the experimental resul t s 
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than the answer given by the s o l i d disc theory. 

For discs having a thickness of 

q = 1.75 cm, 

the d ispers ion curves given by the f i r s t mode approximation and 

the s o l i d disc theory are p lot ted i n Figure 6.1. These curves 

were determined from (5.24) and (4.54) respec t ive ly . 

6.3 T i t a n i a Loaded Structure 

The d i spers ion curve for the d i e l e c t r i c loaded per iodic 

structure i n the l i n e a r accelerator at The Univers i ty of B r i t i s h 

Columbia was obtained from measurements of the resonances i n the 

s t ruc ture . The discs used for loading are made of t i t a n i a which 

has a r e l a t i v e d i e l e c t r i c constant of 93.5. The other parameters 

of the structure are 

b = 3.849 cm 
a = 1.000 cm 
p = 5.000 cm ' ( 6 * 1 3 ) 

q = .5766 cm •. 

The experimental curve along with the curves determined from the 

f i r s t mode approximation and the s o l i d disc theory i s shown i n 

Figure 6.2. 

From Figure 6.2 i t can be seen that the curve predicted by 

the f i r s t mode approximation i s i n close agreement with the 

experimental curve over a large part of the f i r s t pass band. i . e . 

over the i n t e r v a l 1 <)( -=71 radians . For a l l points the curve 

given by the f i r s t mode approximation i s an improvement on the 

d i spers ion curve given by the s o l i d disc theory. 
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It should be pointed out that for the polystyrene loaded 

s t ruc ture , since <o <= 3 . 5 5(l0) 9 r / s , from (6.5) 

A ^ 2 <= .0725^ 2 

and thus the condit ion (5.17) i s eas i ly s a t i s f i e d . Hence, the 

f i r s t mode approximation should give resu l t s that are reasonably 

close to the experimental r e s u l t s . This statement i s i n 

accordance with the f indings already discussed. However, for 

the t i t a n i a loaded s tructure , since from Figure 6.2 

1 4 * 8 d 0 ) 9 < « < = 2 0 . 7 ( l 0 ) 9 r / s , then by means of (5.15), (6.2), 

(6.3) and (6.13) 

.93 2 «= AK^ 2 «= 1.62 K^2. 

Consequently, neither (5.17) nor (5.18) are t r u l y s a t i s f i e d . 

Therefore, i t cannot be expected that the dispers ion curve given 

by the f i r s t mode approximation w i l l always be i n close agree

ment with the experimental r e s u l t s . A better agreement can be 

expected by going to a second or t h i r d mode approximation. 

For the case i n which the phase v e l o c i t y of the Oth space 

harmonic of E i s the speed of l i g h t , 

z 

V p h a s e = c = ^ r < 6 - 1 4 ' 

and thus from (5.37) i n the approximate series so lut ion 

As a r e s u l t , i n (5.63) 
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K Q

2 G 0 ( K 0 a ) = 0 

a K Q G^(KQa) = 1 . 

Therefore, by means of (5.63) on the axis of the waveguide 

the coe f f i c i en t of the Oth space harmonic i s approximately 

b o = (6.15) 

Prom the s o l i d disc theory of sect ion 4.523 

a> 0) 
s . d . 

1 ' e S ° 2 E dz = — 
P z P 

e S ° Z i - T(z) dz 

0 0 

1_ 1 
e 0 P 

s „ z 
0 T(z)dz + i 

s Q z 

0 
T(z)dj 

0 0 

or 

( b0> . e n e n s.d* 0 0 

P+q 
2, 

2 

s Q z 
T(z)dz . 

(6.16) 

The operating point w i l l be taken as the point i n Figure 

6.2 where the curve for (6.14) intersects i n the f i r s t pass band 

the d i spers ion curve given by the f i r s t mode approximation. I f the 

experimental d ispers ion curve i s used instead, a s imi lar operating 

point i s obtained. For the present treatmentX 'wiH be set equal to 

the value given by the f i r s t mode approximation for the phase sh i f t 
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Consequently, from Figure 6.2 the operating point 

a> = 15,870 r / s 

X= 2.66 r = 152.4 . 
(6.17) 

At th i s frequency from the dispers ion curve given by the s o l i d 

disc theory 

X= 2.89 r = 1 6 5 . 6 ° . (6.18) 

Through the use of (5.57) and (5*43) 

V " f 0 : 

1 
P 

"Vo ^ c o \ 2 f V U 
Z~2~7~2 + 77 e T ( z ) d z 

\ s o + Po 1 / J 
Ez£ 

2 

'0 SQZ cLh 
e S(z) dz 

0 

and from (4.37) and (6.16) 

(b0) _ 1__ 
s . d . e 0 

l M V o fo 
P l ^ o 2 < £ l 

p_±g. 
2, 

Era. 
2 

s n z 
e u T(z)dz 

'0 
P L 2 l f l 2 

s 0 + P 0 / 

S Q Z 

e S(z) dz 

0 

By means of (4.57) 
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S\ rt 
ao -1o - p 

» H'0C0 +
 c_0 

I s 0 + B 0 1 - V J ' B i 

0X 2 ^ - j p ^ q 
e - e 

s 0 ( ^ ) -

8 o + J f l i 

s 
S 0 X 2 ' j 3 q 

e e 

§ (Era.) 

- e 

1 
P 

f J ' B i c 1"0 

l< so 2 + Bo 2K 

p 
s c r 2 ; « 0 ( ^ ) - d P i q -

JB n c 1"0 
P 2^a 2 (s Q +BQ ) e j 

\ 

Co 
3 

1 

s (2^0 
e - e 

+ C. e - e (6 . 2 0 ) 

Since 

8 - j * 
s 0 J p 

S 0 ~ 3 p ' 
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by the use of (6.13), (6.17) and (6.18) 

s Q = 3 .532(10) 

>0 = j . 5 7 8 ( l 0 r . 

As a resu l t of 

i t i s seen that 

Subst i tut ing 

into (6.2) gives 

From (6.17) 

= 93 .5e 0 , 

c Q = 92*5e 0. 

b = 3.849 cm 

K x '= .6248(10) 2 . 

" V o = (c) " - 2 8 ° 3 ( 1 0 ) ' 

By means of (6.22), (6.24) and (6.25) 

0 O = J.3318(10) : 

P1.= 5.081(10) 2 

(6,21) 

(6.22) 

(6.23) 

(6.24) 

(6.25) 

(6.26) 

Employing the values given i n (6.13), (6.17), ( 6 . 2 l ) , (6.22), 

(6.23), (6.25)* and (6.26), y i e l d s , from (6.19) and (6.20) 

a 0 - f 0 = C 3 ( -10 .37 + dl*407) + C 4 (9.154 - J3.309) 

(b Q) = ̂ -[c 3(-9.268 + j.1828) + C 4(8..337 - jl*968)] 
s • cL« 0 4 

(6, 
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- 3 ( 2 © ! -X) 
cos 2© r v + j a s in 20„ - e 

0 P Q e l ° 
P^O J ' ( 2 0 l + * ' -cos 2 © n + jo s in 2© n + e 

0 e l 

(6.28) 

Since 

2 © 0 = P0(P-CL) 

2©! = 0 xq , 

from (6.13) and (6.26) 

2 © 0 = j 1.468 

2©̂ ^ = 2.930. 
(6*29) 

The subst i tu t ion of the values i n (6.18), (6.22), (6.26) and 

(6.29) into (6.28) gives 

TT~ = -.9403 - j.1957 . 
C 3 

El iminat ing from (6.27) by means of (6.30) gives 

(6.30) 

t t Q - f Q = 19.8 e ^ 7 2 , 1 C 3 (6.31) 

(bn) = 17.6 e ^ 1 7 8 * 6 9 p-
0 s . d . e 0 

(6.32) 

Prom the value of "a" given i n (6.13) and the value of 

given i n (6.24) 

J 0 ( K i a ) = J 0 ( . 625) = .905. (6.33) 
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As a consequence of (6.15), (6.31) and (6.33), from the 

approximate series so lut ion 

b„ = 17.9 e

j l 7 2 a ° ^ . (6.34) 

The magnitudes given by (6.32) and (6.34) d i f f e r by 1.7$ and 

the arguments d i f f e r by 6 . 5 ° . 

In ca l cu la t ing e f f i c i enc i e s such as the shunt impedance, 

k I 2 

shunt P, 

where P^ i s the power d iss ipated per uni t length, and the series 

impedance, 

IV2 
series T?^ 

where P^ i s the power f l u x , for the present example, the value 

I I 2 bQ| given by the s o l i d disc theory would seem reasonably 

accurate for p r a c t i c a l purposes since th i s value d i f f e r s only 

by 3.4$ from the value given by the approximate series 

s o l u t i o n . 

The value for |t>Q| found i n (6.34), where the ef fect of 

the hole i s taken into account, and the value for |b^ | found i n 
i 

(6.32), where the effect of the hole i s not taken into account, 

d i f f e r s l i g h t l y . Consequently, i t appears that the presence 

of the hole does not great ly affect the value of |DQ | . Since 

the presence of the hole i s taken into account i n (6.34), i t 

i s not surpr i s ing that th i s equation gives a larger value for 

than (6.32). The reason th is resu l t might be expected i s 
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that i n an empty waveguide a l l the energy of the f i e l d i s i n 

the Oth space harmonic and the hole case should l i e somewhere 

between the s o l i d disc case and the empty waveguide case. 



162 

7. CONCLUSION 

In viewing a periodic structure as a wjaole rather than as 

a number of regions^ wave equations have been found which hold 

throughout the waveguide. This point of view has led to a 

simple wave equation which gives an approximate f i e l d so lut ion for 

an a x i a l l y symmetric periodic structure with a slowly varying 

radius* This wave equation has been shown to be separable 

and the problem has been reduced to solving H i l l ' s equation. 

In d i e l e c t r i c loaded structures the wave equations derived 

have coe f f i c i ents possessing f i n i t e d i scont inu i t i e s and i n some 

cases impulses* These d i s cont inu i t i e s are due to the d i s 

cont inu i t i e s i n the permi t t iv i ty* For the examples treated with 

d i s cont inu i t i e s only i n the ax ia l d i r e c t i o n , the solutions 

obtained are i n agreement with those found by other methods. 

When d i s c o n t i n u i t i e s occur i n the r a d i a l as well as ax ia l d irec t ion^ 

a f i r s t mode approximation and an approximate series so lut ion 

are der ived . TJie f i r s t mode approximation i s a r e l a t i v e l y simple 

solut ion* For example, for the d i e l e c t r i c loaded periodic 

structure with each disc having a. central hole , the f i r s t mode 

approximation i s of the same order of complexity as the s o l i d 

disc s o l u t i o n . From the comparison between experimental measure

ments and the theore t i ca l predict ions* to wi th in l i m i t s , the 

f i r s t mode approximation gives reasonably good answers. 

Although more complex than the f i r s t mode approximation, 

the approximate series so lut ion provides a f i r s t i t e r a t i o n on 

any guessed so lut ion that might be employed. As i s done i n 

sect ion 5, the s o l i d disc so lut ion can be used for the i n i t i a l 
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guess but, no doubt, a better i t e r a t i v e so lut ion could be 

achieved i f , ins tead, the f i r s t mode approximation i s u t i l i z e d 

for the guessed s o l u t i o n . 
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APPENDIX 1 

The v e c t o r i a l d i f f e r e n t i a l wave equation for the magnetic 

f i e l d in tens i ty can be arr ived at i n the fol lowing way. F i r s t 

of a l l , Maxwell's equations are 

V x E = - j « B ( A l . l ) 

V x H = J" + j «D . (A1.2) 

Now, i f the cur l of ( A l « 2 ) i s taken, the r e s u l t i s 

V x ( V x H) = V x J + jfl>Vx D. (A1.3) 

Since the medium i s l i n e a r and i s o t r o p i c , then 

D = e E (A1.4) 

B = a H (A1.5) 

J =. cr E ; (A1.6) 

D and J can be el iminated from (A1.3) through the use of (A1.4) 

and (A1.6) . Hence, 

V x ( V x H) = j«Vx (e -

= J«(e - j | ) V x E + j«V(e - j f ) x E . 

(A1.7) 

Prom ( A l . l ) , (A1.2), (A1.4) , (A1.5) and (A1.6) i t can be seen 

that 
i 

V x E = - j a u S (Al*8) 

E = i — V x H. (A1.9) 
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I f (A1.8) a n d (A1.9) a r e u s e d t o e l i m i n a t e t e r m s w i t h E i n (A1.7), 

t h e n (A1.7) be comes 

V x ( V x fi) = « 2 u . ( e - j f ) H + — — V ( e - jf) x ( 7 x 1 ) 

o r 

V(V . H ) - V 2 H = « 2 ^ ( e - j £ ) H + i 
(e - V 

V ( e - 3^)373 

" (V(e - ^ ) . V ) 9 

w h e r e i n r e c t a n g u l a r c o - o r d i n a t e s 

(A1.10) 

V(e - j £ ) . V H = V(e - j£).g t +V(e - j*) j + V(e - jf) - g k. 

I n t h e c a s e o f t h e v e c t o r i a l d i f f e r e n t i a l w a v e e q u a t i o n f o r 

t h e e l e c t r i c f i e l d i n t e n s i t y , t h e c u r l o f ( A l . l ) i s t a k e n a n d 

t h e r e s u l t i s 

V X ( V X E~) = - j « V X B . ( A l . l l ) 

P r o m (A1.5), ( A l . l l ) c a n be e x p r e s s e d a s 

V X ( V X E ) = - j t t u V X H - j«(Vn X H ) . (A1.12) 

I f (A1.8) a n d (A1.9) a r e u s e d t o e l i m i n a t e t e r m s i n v o l v i n g H i n 

( A 1 . 1 2 ) , t h e n (A1.12) b e c o m e s 

V X ( V X E ) = 0)2(i(e - j f ) E + i - [Vii X ( V X fi)] 



1 6 6 

or 

V(V.B) - V 2 E = a>2u.(e - jf) E + ̂  [V|tS7S - (V(x.V) fi] . 

( A l . 
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APPENDIX 2 

In th i s appendix the series 

c o 

T(z) = 

where 

a e n 
- s z n 

(A2.1) 

n = — oo 

c o 

S(z) - i f f 
' e dz 

1 
e s a e n n 

•s z n (A2.2) 

n = - c o 

s = j ( *+ 2nTt ) 

n d v p ' 

a = — n p 
"1 , ° 2 . . ° 4 

s n ^ 8 0 s n + J 8 0 S n - J ' 8 l S n + J 8 l 

s 

( ^ ) n v 2 

P l s n - J ' 8 0 s n + J 8 0 s n - 3 0 l S n + J 8 l -

(A2.3) 

are evaluated at the points P-^ 9- and ^ y 1 . The only summations that 

are needed i n th i s evaluation a r e ^ 

co s a n 
_ p e e_ 

n = - oo 

oo s a n 

n = - oo 

2j s in 

p e e 

2j s in 
(A2.4) 
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oo —s a n e p e e 

n = - co 
2j s in 

oo 
—s a n e p e e 

n = -oo 2j s in ( 2 ^ 2 ) 

for 0 < a < p . 

As a s tar t ing po in t , the series for T( p- | a-) w i l l be 

summed. Since the series i n (A2.4) only hold for 0«=:a«=p, i t i s 

convenient f i r s t to consider T ( £ ^ - - § ) where § = » 0 and then to 

obtain T( p ~^) by taking the l i m i t as §—»*0. 

Prom (A2.1) and (A2.3) 

oo 

2 P /L L S n^P 0

 S n + ^ 0 S n " ^ l V ^ J 
n — — oo 

oo 
1 
P 

D D P 3

 D 4 
+ T T o — + TTT" + 

L s n - J P 0

 s n + J P 0

 s n - ^ l s n + % 
n = —oo 

n (q+S) 

(A2.5) 
I t i s easy to v e r i f y that 

ZX - s n P 
e e = 1. (A2.6) 

Through the use of (A2.6), (A2.5) can be expressed more con

venient ly as 
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T(E=a>8) 
1 

p 

C l C 2 ° 3 ° 4 

V ^ O s n + J B 0 s n " J B l S n + J B 1 
n 

n = —oo 

oo 

p 

D l +
 D 2 
T 

L S n ^ B o S n + J ' B 0 

-s n (p-q -S) 

n = —oo 

oo 
1 
P 

D 3 + » 4 
s - j 8 n s + j 8 , L n J r l n d r l 

n 
( q+8) 

n = —oo 

Hence, i f the summations i n (A2.4) are now used, 

T(B=a - 8 ) = z e-
2 j s in ( — 5 — ) 

- j S 0 8 i ( — 2 ^ ) 

e e p 

2j sm (—^—) 

cc X-BjP £ X+B p 

+ 5 6 „ a _ C„ + 6 

O *- BnP 
J X - J ? 0 ( p - q - O ) - j ( — 

2j sm ( — 2 - 1 - ) 2 3 s l n ( 2 ) 

C - e e 

2j s i n ( 

O X+8np 
JX a'80(P-q-6) - j ( — j 1 - ) 

e e 

2j s in (—5—) 

o. X - 8 l P 

JP^q+O) J ( — 2 ^ : 

e e 

^ l ^ 23 s in ( — T T - ) 

D, 

e e  

2j s in ( — Y ~ ) 

D. 
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In the l i m i t as 8 - ^ 0 

T O ^ ) = y i C i + y 2

C 2 + y 3 C 3 + y 4 C 4 + e y l D i + e y 2 D 2 - e y 3?3 

Vb;ere 

- J 2 0 

4 4 

2 0 0 = P o ( p ~ q ) 

20 1 = p^q 

. ^ - 8 o p , 
e 3 ( ~ 2 — ) 

2j s in (—TT-) 

2j s in (—2^-) 

2j s m (—^—) 

e 3 ( ^ ) 
y 4 = - -

2j s i n ( . 2 ) 

As can be seen from Figure 4.8 i n the body of the thes i s , 

at z = P - ^ - - 8 , e = E Q « Consequently, from (A2.2) 

denotes complex conjugate 
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oo 

s(*=a-8) 
0 

j p 0 c 2 

• V ^ O S n + J P 0 + V ^ l " S n + J ' ? l 
n 

n = —oo 

c o 

P e 0 0"1 
J P 0 D 2 JPl D 3 

s -g'p n u r 0 V ^ O + V ^ l 
J P l D 4 1 S n " sn+^Je (q+S) 

n = — co 

Hence, 

s(£=a)= P 0 . P i p . 
- 3— + a — y 2 c 2 - j - y 3 c 3 + j — y 4 c 4 

.Po j(*-2©0) *. 
r l " l " d e 

-0— e y ,D, + j — e 
'0 

P 0 j(X+2©0) P, j201 P, -J20, 
0 " y2D2+ ̂  e y

3 V ̂  6 
4 - 4 < 

S i m i l a r l y , 

y 1c 1+ e -j(X+200) - J ' 2 0 l 1 , J 2 e i . A , y 2 C 2 - e y 3 C 3 - e y ^ 

- y i D i - y 2

D 2 - y 3

D 3 " 

. P 0 -3(X-2O0) P 0 -j(X+200) P, ,( 2 } =
 ^T: e y i c i + J r r e y2c2+3rr y 3 c 3 

P, j 2© Pr . P 0 .Pi .Pi 
•3^7 e y 4 ° 4 + ^ y l D l - J ~ y 2 D 2 + j — y 3 D 3 - j ^ - y 4 D 4 . 
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APPENDIX 3 

The summation of the series 

oo 1 n^ 
a e n 

n = - oo 

i s carr i ed out through the fol lowing steps. Through the use of 

(5.1l) and (5.19) i n the body of the thesis 

00 

T (P-) - — 
1K2J p 

-3 p n^ 

<»„2V><«»2«»i2> 
n = — 0 0 

n v 2 ; 

— e 
S n l 2 ; 

and thus 

00 

1 
P 

c c c c 
+ A , - a + ^ + 7T 

L § n^" 0 O § n + ^ S 0 V ^ l ^IPTJ 
n = — 0 0 

[ D i D 2 D 3 D 4 ] 

s q n u -, 

(A3.1) 

where the C's and D's are defined i n (4.43) and (4.44) and re la ted 

i n (4.52). Summing the series i n (A3. l ) with the help of (A2.4) 

y i e l d s 



"3 2 * e 
.M . , * * 0 * * 

- J ( — 5 — ) 

2 j s m ( — 5 — ) 

j — -a ( — 2 — ) 

2 e e 

2j s in ( — 5 ^ ) 

C^e e 
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2j s in ) 

4 
3 - 5 — 0 ( — 5 — ) 

23 ( s i n ( J- ) 

.M . , * - P 0 P 
J 2 J ^ 2 ) 

2 j s m ( — 5 — ) 

M . / + p o p , 
-3 o~ 3 (—o—) 

2j s i n ^ 5 
D 3e ^ e ^ 

23 s m C — J T M 

D 4 e e 

23" s in 75 ) 

By means of (4.52) the D t s can be el iminated to give 

X~2©n X~2©/-v -
-aC-y-2) -3(X-2© 0 ) j ( — 0 n 1 

J -e e 

23 s in ( — x — ) 

X+2© 
-jC-o"2) -j(X+2© 0) 3 ( — J ^ ) 

-e e 

X+20 0 ' 

23 s m (—-z—) 

'31 
- 3 © ! - 3 ' ( — ^ ) -3 2©! 3 ( ^ 2 ^ ) 0 © ! 

-e 

2j s in 
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or 

X+s P /?+M, 
J ° I -J(—T-) 3 ' 2 e i e e —e 

2j s m C 2 ) 

X-2© 
- J (—o ) 

X+2© n 

C ^ e 

2, siT^p; 
! « e , J (X-X) C„e 

2d s i n 

1 - e j (X-X)" 

- C 3 e - C 4 e x . (A3.2) 

Prom (A2. l ) T(?J-) can be eas i l y summed and shown equal to the 

expression 

- J ' ° 1 J ° l T ( | ) = - C 3 e 1 - C 4 e 1 . 

As a r e s u l t , (A3.2) can be rewritten i n the form 

V!> =T(|) 
L s m 

0 C 2 e 
1 - . J 
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The summation of the ser ies , 
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<x> . ,2wi +X sxn (—- — 

n = -oo 0 n I , ( K b ) (—Z— " h> 

w i l l now be treated . I f the d e f i n i t i o n , 

X+ 2n-n 
n p ' 

i s made, then 

oo s i n ( « n - P l ) | 

S t = 

n = -co 
V * n b > 

(A4.1) 

and since X=Xt 

(r 2 ,X+ 2mt 
K h = ( ^ ' " " ^0 e0 = W n " P 0 ~ K l 

For 

where K i s r e a l , n 1 

K 2 = - K 2 

n n 

= J 0 « n b ' -

The zeros of Jr>(E b) are K b and thus poles occur i n S, at U n m • * "b 
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•n = ±vV + K l 2
 " K m 2 ' 

Expanding lQ(Knb) y 2 2 2 
B_. + K, - K , r 0 1 m ' x=x 

gives 

dK 

x=x 
J n ( K b) - b J . (K b) "JT~ 
0 m 1* m ' dco 

n 
K-J*02+ K l 2 " K m 2 ) + -

in m 

or 

b v/ B 2+ K_ 2— K ' V 0 1 m_ 
K 

X=x m 
Jl<Kmb -̂n-\/Po2+ K l 2 - O + -

S i m i l a r l y , around « n = - \JBQ2 + K ^ 2 - K 
m 

b y P o

2

+ K l

2 - _ y 
E 

m 
V V > > K + v V +

 K l 2 - K m 2 > + — 

x=x 
Now,the r a t i o , 

K - P i ) 

can be expanded i n p a r t i a l f ract ions as 
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1 A o 

(<a -8, ) co -p.. v n r l ' n r l 
x=x 

oo 
v — 1 

/ 

m = 1 

oo 

m = 1 

m 

—m 

where 

0 tyvP^2- P 0
2- K^'b) 

K m 
m 

K m 
b ̂  K^- J l ( K m b ) ( K^- ^ 0 ) ' 

Therefore, 

P_ 
2n 

n = -oo 

oo oo 

^ 1 n ^ . ^ n + y | 3 0
2

+ K L
2 - K / p) m 
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Since 

oo 

I 
m = 1 

A2 

oo 

—m 

and 

n — -oo 

1 s i n [ n + yX-W]* % 

O O 

cos n Q = Ttcos a(ft - 0) ^ o < © < 2n 
n + a s m an 

n = -oo 

oo 

s i n j x © = ns in a(n - Q) 0<=©<2TI 
n + a s m an ' 

n = -co 

q 

the sum becomes 

« t - ! < 
M ^ i 2 " Po 2 " K i 2 ' b ' 

CO 

K 
m 

m 
—'i b \ / P n

2 + K 2 - K 2 J , (K b) = 1 V r 0 1 m 1 x m ' 

s m 
X ^ q - yp^+K^-^2" (p-q) 

wa 2 „ , 2 r ? ^ . r*-\/ 6 o 2 + K i 

L(\/P0 +KX -Km - P ^ s i ^ 2 
"Km P 

s in 
'X-Q^ +\/so2+ K x

2 - K

m

2 d p i ) 
s in 

L 2 J 

^ / B 0 2 + K l 2 - K m 2 + 3 l ) s i n 

r W s 0 ^ K i 2 - K m 2 ' p l 
^ / B 0 2 + K l 2 - K m 2 + 3 l ) s i n L 2 J 

(A4»2) 
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The series i n (A4.2) i s o s c i l l a t o r y with J^(K b) being pos i t ive for 

m odd and negative for m even. In the series the term corresponding 

to m = 1 i s due to a correct ion made by the lowest order mode, 

J^K^r), to the s o l i d disc so lu t ion . The terms for m » l are the 

contributions made by the higher order modes of the wave so lu t ion . 

If the term for m = 1 i s removed from the s er i e s , then for 

X= 8 0 (p -q) + 

E 
2 

. I Q ^ P - L 2 - P r / - K I 2 b ) b P 0 J 1 ( K 1 b ) ( 8 1 + S 0 ) s i n 

K l s i n Pp^""^ 
pPoCp-qJ+lPi+Po)^' 

* b 

where 

oo 

S = 

K 
m 

m = 2 
»0* K l " - V J l <Kmb> 

s i n 
'X-f>i<i- , ^ o 2 + K i 2 - K

m
2 ( P - t ) 

s in ' X - P ^ V P o 2 ^ ! 2 - ^ 2 ( p * q ) 

s in 
2 fJ 

( v
/8 0

2 +K 1

2 -K m
2 +P 1 ) s in ( v

/8 0

2 +K 1

2 -K m
2 +P 1 ) s in L 2 

Most of the elements i n S are evanescent; they damp out 

asymptotical ly as 
- K 3. 

-L- P m 2 . 
v m 
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APPENDIX 5 

Por the cavi ty shown i n the F igure , when an H-wave exists 

with no angular dependence and 

V / / —T 

/ 

-.r 

- r 

b 

• 2 

/ / / i r 
Dielectr ic , ' 
Disc i ' | . 
•E = ' ', 

0 = 0 , 1 , ' 

1 i , ' i • ' 

' , ' i '. q,' T ? 
/ / / z z z : 

A i r ^ ̂ - C a v i t y V a i l 

/ 

<r = 0 

F i g . A5 .1 . Resonant Cavity Containing a D i e l e c t r i c Disc 

E r = Ot E,= 0, E z = 0, 

i n the a i r regions E / s a t i s f i e s 

^ E 

and i n the d i e l e c t r i c region 

62E 
o 

The boundary conditions that E^ must obey are: 

( i ) at z = 0 and z = p 

E / = 0 



181 

( i i ) at r = 0 

E^ i s f i n i t e 

( i i i ) at r = b 

*y = 0 

( iv) at z = E=£L- a n d z = E±SL 

E / i s continuous 

As a r e s u l t , the so lut ion for E^,which i s symmetric about the 

plane z = p/2 and i n the lowest order mode,is i n the region, 

O-z-EfS., 

E !̂  = B J - ^ i ^ r ) s in 8 Q z 

and i n the region, — z — ^ 2 ^ * 

E = A J^KJT) COS 8 1 ( Z - | ) 

and i n the reg ion , ^ - S z s p j 

E^ = B J - ^ ^ r ) s i n 8 Q ( p - z ) 

where 

? o 2 = "oVo " K i 2 

h 2 = *o V i " K i 2 

K 1 b = the f i r s t root of J ^ K b ) . 



Prom conditions ( iv) 

B s in P Q ^ ) = A cos px | 

B 0 B cos P 0( Ef g") = 0]_ A s in ^ | . 

Therefore, 

cos B |-
B = — A 

s i n pQ(B=a) 

and 

t a n ? i | = *9_ c o i P ( )(Bzfl.) . 

This l a s t r e l a t i o n gives the resonant frequency, 
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