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ABSTRACT

Dynamic wind tunnel tests were made on plunging rec&angular 2:1
and 1/2:1 cy;inders and the results were compared with predictions
of a quasi-steady theory. The velocity-amplitpde and time-~amplitude
curves for those cylinders which oaciilated were recorded. Dynamic
tests were also pefformed on a 2:1 rectangular cylinder with a 10"
splitter plate mounted on the wake centerline to prevent the vortex
excitation. Direct static force measurements for the Reynolds number
range 2 X 10{4 RN<,7 b o 1O4 were made for the rectangular 2:1 and 1/2:1
cylinders and the "D" section, using an Aerolab pyramidal strain gauge
balance system. The quasi-steady theory used assumes that the instan-
taneous aerodynamic forces actihg on the oscillating cylinder may be
approximated by the static forces on the cylinder at an angle of attack
equal to the appafent angle of attack of the oscillating cylinder at
that instant. The above theory was also extended by including an ex-
pression for the vortex excitation.

The rectangular 2:1 cylinder for values of critical reduced wind
speed‘Uo greater than 10 oscillated in agreement with the predictions
of the quasi-steady .approach. The rectangular 1/2:1 cylinder was
found to be a "hard" 6scillator as predicted by the quasi-steady theory.
By the solution given by the quasi-steady theory the recfangular 2:1
cylinder which exhibits the galloping phenomenon in air flow will not
gallop under similar conditions in water flow., In the Reynolds number

range considered the static forces on the "D" Section were extremely

Reynolds number dependent in the range of the angle of attack 36%?K%O°.
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NOMENCLATURE
Lateral displacement of oscillating cylinder
Lateral dimensiog of cylinder secfion
Streamwlise dimension of cylinder sgction
Length of cylinder
Mass of oscillating system
Coefficient of viscous damping of oscillating system
Spring constant
(k/m)l/2 = Circular frequency of free undamped oscillatihg
Air velocity
Air velocity relative to0 oscillating cylinder
Angle of attack of relative wind to cylinder section
tan™ " (7/7)
Air density
Pressure
Aerodynamic 1ift on cylinder
Aerodynamic drag on cylinder

Lateral aerodynamic force on cylinder
L
2 nl
(672)V relh

)
(@/2)\r2r

[/
elh

Fy

(©/2)v°n L

-V/(wh) = Dimensionless flow velocity

y/h = Dimensionless displacement

Dimensionless oscillation amplitude

viii

system



Dimensionless damping coefficient

Dimensionless mass parameter

Critical air velocity

B = r/(2mw)
© n%g
n = —_——
2m
_ 2B _
Uo T nA T
t = Time
T: wt

N\
s
{1

Dimensionless time

Derivative with time

Y = Kinematic viscosity
Vh
RN = ) Reynolds Number
w, = Fundamental circular Strouhal frequency
w,h
. l A .
S = fh/v = 2# = Strouhal number
K1= %/w
A.R. = b/h = Aspect ratio
A,B,C,D,E’F, =

Coefficients of polynomial approximation to CFy

ix



I, INTRODUCTION

This project was part of a continuing programme studying the
aerocelastic instability of bluff cylinde%s. It is well known that bluff
cylinders exhibit various forms of vibration when elastically mounted
in a flow of air., Best known, pefhaps, is the vortex-excited oscilla-
tion, in which the cylinder vibrates in a particular mode over a smail
discrete range of wind speeds containing that at which the fundamental
freduency of the Karman Vortex street formed in the wake coincides
with the natural frequency of the mode. Some cylinders, however, will
begin to oscillate under conditions in which the frequency of vortex
shedding is far removed from any elastic natural frequency of the cylin-
der. These bluff cylinders are termed aerodynamically unstable and ex-
hibit galloping.

Some galloping instabilities require combined motion of the
cylinder section in two or three degrees of freedom; the individual
degrees of freedom being stable. Many of the observed cases of gallop-
ing, however, have been predominantly in one degree of freedom of thé
cylinder section, lateral +translations iﬁ a horizontal wind normal to
the cylinder axis. Because of its relative simplicity and importance,
this form of galloping has been studied in this project.

In an earlier phase of the programme, Brook:s1 investigated the
instability of bluff bodies of rectangular section and the 'D!' section.
He showed that for plunging oscillation the D-section and the short
rectangles are stable at rest, The square sectiony, however, did show
strong instability. His thesis also contains a fairly complete his-

torical background on the problem of aero-elastic instability of bluff



cylinders. Smith2 with more sophisticated and accurate instrumenta-
tion extended Brooks'! investigation of rectangular sections. His
thesis also includes an extensive investigation into the unstable
oscillation characteristics of the square section, Parkinson3 showed
that this oscillation can be analyzed as an aeroelastic non-linear
oscillator using a quasi-steady theory; however, a similar investi-
gation for the 2:1 rectangle did not show any agreement with Smith's
experimental values,

The present investigation was undertaken to find the cause of
such discrepancy. Extensive force measurements were also taken on
‘the 1/2:1 rectangle and the "D" section. An attempt was made to
find the experimental "hard" oscillation characteristics of the
1/2:i rectangle, to check the theoretiéal value predicted by using the
quasi-steady theory. Finally the effegt of including the response function,
due to the formation of wake vortices, on the differential equation

given by the quési—steady theory was investigated.



"II, THEORY

2.1 Qutline of Theory

A quasi-steady theory is used for predicting the model oscilla-
tion, This theory assumes that the instantaneous aerodynamic forces
acting on the oscillating cylinder may be approximated by the forces
on the stationéry cylinder at an angle of attack equal to the apparent
angle of attack of the oscillating cylinder at that instant. For a
model with square cross-section, Parkinson and Smith4 showed good
agreement of experimental results with the quasi-steady theory. A
simplified model of vortex excitation is also included in the follow-
ing analysis.

The quasi-steady anaiysis without a vortex excitation term leads
to a quasi-liﬁear differential equation, of the autonomous type, of
the form

Y+ Y= pf(y) - (2.1)
for which)u<<l

" When vortex egcitation is included the differential equation
becomes Y o+ ¥ =P8 (‘[, ?) (2.'2)
and again ).1<<1.

The derivation of equations (2.1) and (2.2) is shown in the appendix.
Both these equations are solved using the quasi-harmonic theory of
Kryloff and BogoliuboffB. The functions ﬂi) and g(?f,i) were determined
by approximating the lateral force coefficient (CFy) using Chebyshev
polynomials6° FPor the models considered the respective coefficients

of the polynomial are given in the appendix.



2.2 Differentisl Equation of First Kind

Consider

Y+Y=)1f(i')

when)x = 0, the solution is of the form
Y=Y sin (Z+ o) (2.3)
¥ =% cos (T+ o) (2.4)

For }1«1 Kryloff and Bogoliuboff show that within a first

approximation:

ay 5
= P (Y cos(Z + @)) cos (T+ @) (2.5)
4 2 (5
—= = -4 (Y cos (Z+ ®)) sin (T+ o) (2.6)
dT Y-
Since _@i y 49 , are proportional to the small parameter P Y and @
aT 4T

will be slowly varying functions of time during one period T. For .
the first approximation Y and & can be considered constant during
one period. Let¢ =T+ &

Expanding f(? cosq/) COSy, f(? cosy)sinl,yin Fourier series, we have

£(Y cosy)cosy= KO(Y) +<! (K _(¥)ecos ny)
n30 °
£(Y cosq)sinty:%() (Qn(?)éin- ny) where

27

KO(Y) = 1/2=%n of £(Y cosy) cosydy ‘ (2.7)

and the coefficients Kn and Qn are calculated in the usual way.

L pk, @) 4 (7) con ny)

dd® .
=% S Q(¥)sin ny
aT. ¥ n7an 2



Integrating these expressions in the interval t, t+ + T and con-
sidering Y and ® to be constants within the interval, we arrive at

the equations of the first approximation:

ay =
E-Z_' =).1KO(Y) (2.8)
d® = 0 (2.9)
az
These equations can also be written as Sf{ = -8
at
21 _
where § = - “4%— J[ £(Y¥ cos y) cosgpdy (2.,10)
2nY :
0]
and
2n
Lr_, . & £(Y cos¢) sinpdy = 1 (2.11)
aT =
2nY
0]
. . . 4y
The stationary oscillations correspond %0 ‘E% = 0, and are there=-

fore given py Y = Oy and the real positive roots of the equation

& = 0. In the phase plane, Y = 0, the initial position of equili~
brium, is a singular point at the origin known as a focus. The positive
roots ?i‘Of eyuation § = 0 define trajectories in the phase plane

known as limit cycles, The stability of equilibrium and of 1limit

cycles is determined by investigating the tendency of the oscillator

to return to the original focus or limit cycle after a small dis-
placement.

The limit cycle is stable if

26

2Y ¥ - 1.
1

> 0 (2.12)

an¢ unstable if

55 - 0 (2.13.)

i



The model will not oscillate from rest if
8 (0)>0 (2,14)

However, self-excitation will take place if

§ (0)<o (2.15)
. ay id®
The evaluations of EE and'a% terms for rectangular model cross-

sections (b/h = 2, b/h = 1/2) are shown in the appendix. '

2.3 Differential Equation of Second Kind

Consider
Y + Y =;Pf (Y) + Yl sin (Kiz + @l) (2.16)
where K1 = wr/w and @1 constant

We distinguish two cases
1. Kii 1(i.e.) .Non~-linear non-resonance

2. Kl::l(i.e.) Non~-linear external resonance

2.3.1 Non-ILinear Non Resonance

Let ¥ = x + & sin (Kfr + @l)
Y
1
where Sl = >

l--Kl

Substituting these in equation (2.16), we get

X +x = }11’ (x + Slchos(Kl'L’+ qbl)) (1e€s) ¥ + x =)1g('(,5c)
As before when)1 =0 x =7 sin (T+ @) = ¥ siny
}E:? cOs (Z‘f- @) :? COSLY

Since f(f) is a polynomial in Y and ¥ = % + lel cos(Kf:+ @l), then

g(r,x) is also a polynomial in x.



Hence we can write

g(T ? 3‘)

M
fo(?c) + f.‘l £ (x) cos nKl'Z’

As before from Kryloff and Bogoliuboff, we have

- M
% = p [fo(Y’ cos('w) +£ (fn(Y cos¢) cos nKlZ' )J cos

n=1

fe2

M - .
?%:_):_;1 [fo(Y cosy) +2 fn(Y cos qz) cos nKl’E‘]anJ

n=1

The Fourier expansions of fo, fn are

M
fo(? cos ) = 2 (gK(i)COS K )
- K70
7 cong) = £ (s, (D) )
£.(Y ¢ = Y)cos K
n os‘f' K£70 gn,K' ? v

For the first approximation by the method of Kryloff and Bogoliuboff,

we get
27
a¥ = p 1 £ (¥ cosy) cosyay (2.18)
ir /5 / ©
) \
e . 21 _ ‘
oA a U/ £ (T cosy) sinyiy= 0 (2.19)

The expression for particular cases is given in the appendix.

2.3.,2 Non-linear External Resonance

For Kl",c

The equation (2,16) can be written in the form

Y+ Y= prR T3

By Krylbff and Bogoliuboff the generating solution is

Y = Y sin (Kl’C+ &)



LetKlZ'+q>=(,

Y = ¥ siny

Replacing the non-linear excitation force e =}1F(K]'_C ,Y) by the

equivalent linear one

e, = ~A\Y-RY the D.E. becomes Y + Y + Y = 0

For the first approximation the equivalent parameter is obtained

by equating the fundamental harmonic of e =}1F(K£K , YK, cos (K]'.Z'+<b))

1

t0 the linearigzed form

e = N K,cos (KT + @) -KY sin (KT + @), where
- 2n - |
A= - _:.d-i_ /‘ F((lf‘"' & + cbl), KlY cos (/)C‘Os(r dy
YK
1 0

271

= A ) . ,

K = 3 / F((¢- o+ ¢ ), K.Y cosg)singdy
0

The Kryloff and Bogoliuboff first approximation solution for

this linearized equation is derived in the appendix.



IITI., APPARATUS AND INSTRUMENTATION

3.1 General Cutline

From previous experiments on aéroelastic instability of blﬁff
bodies, information was available on some of the problems to be en-
countered, Most of the equipment designed by Smith2 was tested and
found to be satisfactory for use in this project,

Force measurements on models were taken on the Aerolab gtrain
gauge balance, A special bracket was made for mounting the model on
the turntable of the balance.

Since Smith's displacement transducer needed to be calibrated for
different ranges of amplitude a scale divided into 1/20 of an inch
increments was mounted close to the shaft on the bottom floor of the
tunnel, A D.C. differential amplifier with a gain of 60 was constructed
for amplifying small ampi&tude diépiaceménts encountered in the vortex
excited region. The amplifier output was recorded on a galvanometer-

type chart recorder.

3.2 Wind Tunnel

All tests were performed in the University of British Columbia
low speed, low turbulence, return-type tunnel in which velocity can be
varied between 3 feet per second and 150 feet per second with a turbu-
lence level of less than 0.1%., The flow is smoothed by three screens
ana enters the test section through a 7:1 contraction cone which éccel-
erates the flow and improves its uniformity. The test section is 9 feet
long, and has a cross section 36 incheé by 27 inches, with 45° fillets,
The fillets decrease from 6.0 inches at the upstream end to 4.75 inches

at the downstream end to offset the effect of boundary layer growth,
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The tunnel is powered by a 15 horsepowef direct-current motor
driving a commercial axial-flow fan with a Ward' Leonard system of
speed control. The pressure differential across the contraction is
measured on a Betz micromanometer which can be read to 0.0é mill-
imetef of water; the test section velocity is calibrated against the

above pressure differential, The outline- of the tunnel is given

in fig (1). -

3.3 Wind Tunnel Balance

Force measurements were taken from an Aerolab pyramidal strain
gauge balance system. The balance system is designed to support a
model in the wind tunnel, adjust its angle of attack over a i%Odegree
range, adjust its angle of yaw over a 360 degree range, and separate
and measure the six force and moment components to determine the
resultant force and moment exerted by the air stream on the model, The
angular position of the model in yaw and angle of attack is indicated
6n Veeder Root Counters to the nearest tenth of a degree. The force
components are separated mechanically and measured through individual
strain gauge load cells, Read out is accomplished through‘the use
of appropriate electrical equipment. Since the cylindrical models
were mounted between the top and bottom of the tunnel the 1lift force
and the angle of attack of the models were measured as side force and
angle of yaw resp;ctively on the balance., The balance was used only

in measuring the 1ift and drag force of the models at different angles -

of attacke.
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The wind tunnel balance in position with the electrical read-
out equipment is shown in fig.(2). A special bracket as shown in fig,
(3) was made for attachmznt of the model to the "live" turntable,

The fairing turntable, with slots provided for model mounting
and identical in dimension to the "live" turntable, was attached to
the bottom panel of the wind tunnel, Filler blocks were used to cover

the gap between the fairing turntable and the model,

3.4 Models

Static models used for force measurements were of "D" and rec-
tangular cross section with end fittings provided to suit the turn-
table brackets of the wind tunnel balance, The "D" section was made
from solid oak of two inch diameter, a smooth surface being obtained
by spraying the model with acrylic plastic. The rectangular model
was made out of solid aluminum of croess-section 1,870 inches by .935
inches, By using the yawing mechanism of the balance the rectang-
ular section could be used as either b/h = 2 or b/h = 1/2, where "b"
is the streamwise dimension and "h" is the width.

A dynamic model of rectangular cross section 1 inch by .5 inches
by..065 inch wall thickness was made out of aluminum section with metal
tabs proyided at the ends for mounting. The end tabs could be rotated
90° degrees so that the model could be either used as b/h = 2 or b/h =
1/2. In order to investigéte the dynamic behaviour of the model with
splitter plate,<Smith's b/h ; 2 wooden model was used. The stream-
line model for damping calibration was made out of so0lid aluminum

of cross section 1.4 inches by .15 inches; the corners were rounded
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and slots were milled in the ends for mounting. Rectangular models
for static and dynamic tests, and the streamline model are shown in
fig.(4). The "D" section used for force measurements, with end

fitting, is shown in fig,(3). Overall length of all the models used

was 30 inches.

3.5 Model Mounting System

The mounting system used by Smith2 was found to be adeguate for
the present investigation., It consigts of two channels each support-
ing two air bearings at the top and bottom of the tunnel test section
jhus permitting only a plunging degree of freedom to the model. The
top and bottom channels are connected by 2 1/2 inch x 2 1/2 inch angle
iron bolted at the ends., Screws to adjust the parallelism of the two
sets of bearings are located at the intersections of the lower
channels and the angles, The lower channel can be moved in the stream
direction to ensure that the model is vertical,

The air bearings support load by means of presgsure forces caused
by introducing high pressure air between the load carrying surfaces.
High pressure air is introduced into the journal-type bearings through
a number of equidistant holes around a circumference, BEach of these
holes contains a small regulating orifice., The aif flows axially from
the middle to the end of the bearings. fhe design and construction of
the bearing is given by Smithz.

Four springs were fastened to the top and bottom of the two
angles with adjustable hooks. ILight soldered aluminum clamps provided

attachment for the springs and the model, to the shaft. Details of
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the clamp, and the general arrangement of the top air bearing mount-
ing system are given in fig. (5)°

Air for the bearings was supplied by an Ingersoll-Rand 2-stage
compressor, Model 11 3/4 & T x 8 VHB-2, pumping into a 250 cubic foot
storage tank. Alr was carried from the tank by a flexible hese to0 a
throttling valve which distributed air at 60 pounds per square inch

to all bearings from the main supply at 118 pounds per square inch,

3.6 Splitter Plate Mounting

Vertical streamwise splitter plates were connected to the top
and bottom of the tunnel by 1 1/2 inch by 1 1/2 inch "handy angles".
The connection of the angles to the tunnel floor and ceiling and the
plate is shown in fié.(6). The plates were .0625 inch thick and
26,75 inches long. The plates were wide enough that the flow re-
attachéd on the plate after initial separation at the corners of the
model. Arie and Rouse7 found experimentally for a flat plate model of
3.,0" by .0625" mounted. transversely to the flow, a splitter plate of
length 30" was necessary for the flow to reattach behind the model, thus
preventing the formation of the alternating vortices in the wake.
Plates of different widths of 6 inches, 5 inches, 4 inches, 3 inches,
and 1 inch were made. The 6 inekh pYate-was mounted as close as possible
to the trailing edge of the model without touching it. Different
widths of splitter plates were added to the 6 inch plate. It was
found that an additional 4.inch plate was necessary for the flow re-
attachment to occur, The flow was assumed to have reattached when

there was not an appreciable vibration of the plate with the wind on.
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However, at large wind velocities the plate did vibrate and hence
it was stayed to both sides of the wind tunnel side panel, The
splitter plate in position behind the b/h = 2 wooden moqel.with
stays is shown in fig,(6){

3«7 Displacement Measurements

Diéﬁlacement measurements were made with Smith's displacement
transducer. It is essentially an alr core transformer with primary
and secondéry coils wound on co-axial cylindrical forms with an annular
gap between them, Either the inner or outer coil may be used as the
primary winding. By inserting the aluminum shaft into the annulus,
the magnetic codpling between the coils is varied, hence the output
of the transducer is proportional to'the displacement of the shaft,

The displacement transducer was mounted on the top channel of the air
bearing mounting system as shown in fig,(5). A 10 k¢ signal was used

as the input to the primary windings of the transducer, using a Hewlett-
Packard 202 C oscillator for excitation, The output signal of the
transducer was a high-frequency carrier, amplitude modulated by dis-
placement.

A full-wave rectifier with an appropriate filter used by Smith2
was modified for demodulating the high frequency signal, A Minneapolis
Honeywell Model 916 Visicorder was used to record the dynamic dis-
placement and to record time-amplitude traces.,

The galvanometer for this recorder has an input impedance of

about 3% ohms and requires a source resistance of 3-100 ohms. Since
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the transducer had a very high output impedance the output signal from
the rectifier could not be directly fed into the recorder without
seriously loading the transducer and affecting its performance. A D.C.
differential amplifier was constructed to affect the matching. The
amplifier built is used extensively in polar-cardiographs. Basic design
characteristics were given by Hilbibers. It had a gain of 60, in-

put impedance of 2 megohms and an output impedance of 20 ohms. The
schematic diagram for the amplifier is shown in fig,(7)'and the
amplifier in fig.(B).

The output signal from the rectifier had a D.C. level superimposed
on the A.C. signal, To make use of the fuli six inch chart on the visi-
corder, a variable bias cifcuit was added to the rectifier. ’The
schematic diagram of the rectifier with variable bias control is shown
in f£ig,(9).

Por calibration of the transducer a wooden scale marked in 1/20th
of an inch increments was mounted close to the shaft under the floor
of the wind tunnel as shown in fig.(10), When the model was oscilla-
ting a strobotachometer was used to give a clear indication of the shaft

displacement.

3.8 Magnetic Damping

Damping, in addition to inherent damping within the system, was
introduced by means of Smith's2 electromagnetic eddy-current dampers,
The model-carrying shafts pass through the magnetic field created by

the damper., Energy is dissipated from the oscillating system by the
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eddycurrents induced in the shafts.

There was an appreciable build up of residual magnetism on the
damper probably due to the vibration of the tunnel at large ampli-
tudes of model oscillation, To overcome this undesirable residual mage
netism a system was arranged whereby the coils of the damper could
be switched over t0 a variable A.C. source. The A.C. voltage is
raised to give a greater magnetic field than the D.C. source had
given, and then slowly decreased, effectively erasing the residual
magnetism, -The damping was found to be almost viscous for model amp-
litudes ©of .5 inches up to 5 inches., Position of the bottom damper
is shown in fig,(lo), and the electric supply circuit is given in

fig, (11).
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Iv. TEST PROCEDURE AND RESULTS

4,1 Test Procedure

4,1.1 Static'Tests

Static force measpfements were taken on models of both rec-

\

tangular cross section (b/h = 2, b/h = 1/2) and "D" section., The

Y

bottom end of each modél‘was attached to the turntable of the

balance and the balance was raised to a height such that the top end
of the model had a clearance of .03 inches from the wind tunnel ceil-
ing. Using the yawing mechanism of the balance, the angle of attack

of the model could be varied by increments .of +. 1 degree.

Due to the symmetry of the model section at zero angle of attack,
no lift force was produced and this aerodynamic characteristic was
used to establish the turntable position which gave zero angle of
attack, At each angle of attack the balance bridgé circuits for
1ift and drag components were set to a null position at zero wind
speed; the 1ift and drag forces were recorded for various desired
wind speeds., After each set of readings at one angle of attack, the
zerogs of the force recording channels were checked with no wind and
found to be within + 1% of the reading.

The angle of attack of the model was increased by increments of
two degrees until complete flow reattachment occurred. In the region
for which sharp changes occurred in the force measurements, the angle
of attack of the model was increased in steps of 0.5 degree, Lift
measurements could be read to an accuracy of * 2% of the reading, while
drag forces could be measured t0 an accuracy of + é% - 8%° This de-

crease of accuracy was due 10 the effect of model vibration.
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4,1,2 Damping Calibration

For the calibration of the damper it was necessary to have
a record of the logarithmic decrement of the stréamline model at a
desired value of current, The decay of amplitude with time given
by the displacement transducer was recorded by the visicorder. A
schematic diagram of the circuit is shown in fig.(12). To show
the oscillation cycle clearly, the visicorder was set at a speed
of 1 inch per sec, A 1 cycle per second triangular wave from a
Hewleﬁt-Packard 202A low frequency generator, which had an output
impedance of 40 ohms,; was directly connected to one channel of the
visicorder., This signal was used as the time base for the amplitude-
time decay record. The residual magnetism in the damper was removed
as outlined in section 3.8, By changing the output of the variable
power supply, the current in the damper was set to a desired value,
The output of the oscillator supplying the high frequency signal
to the displacement transducer was set to give a full trace on
the visicorder for the possible maximum amplitude of the model,
The throttling valve for the airbearings was adjusted to give a
pressure of 60 psi. The streamline model was allowed to oscillate
from a known initial amplitude., From the record of amplitude-
time decay, the ratioc of amplitude to initial amplitude was plotted
againsf time on a semi-log graph. This procedure was repeated
at each damping level and corresponding damping constants were
determined.

The test section and equipment are shown in fig,(lB)o
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4,1,3 Velocity-Amplitude and Amplitude~Time Measurements

The circuit shown for recording the logarithmic decrement of
the streamline model was used in recording steady-state amplitude of
the model on the visicorder. Utilizing the linearity of the dis-
placement transducer, the output signal of the visicorder was calibrated
against model amplitude which éould be measured by the scale mounted
on the bottom of the tunnel, For the maximum amplitude the output
of the oscillator was set to give a full six inches deflection on the
visicorder. To make use of the full six inches of the visicorder
chart, thus giving greater accuracy in measuring amplitudes, separate
calibration curves were drawn for various ranges of wind velocity.
After the damping level had been set for the test, the throttling
valve was adjusted to give a pressure of 60 psi for the air bearings.
The tunnel was started at minimum air speed and the velocity in-
creased until the model oscillated from rest. At intervals of one min-
ute the displacement was recorded by the visicorder until the model
amplitude reached a steady—s?ate. The steady-state amplitudes were
recorded for increasing wind velocity up to the limit of the air
bearing system., Several check points were taken over this region with
decreasing wind velocity., The tunnel was set at the minimum wind vel-
oéity at which tbe model oscillated from rest, While the model was
ospillating the wind velocity was decreased in small increments and
the corresponding steady amplitude recorded until the model stopped.
Due to vibration created by large model amplitude, it was fre-

quently necessary 10 erase the residual magnetism built up in the
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dampers. This procedure is described in section 3.8,

In the case of the b/h = 1/2 model, a desired wind velocity was
gset and the model was given a known initial amplitude. The dis-
placement was recorded on the visicorder as previously described.

The circuit used in measuring steady-state amplitude was used
in recording the amplitude-time build-up curve. The 1 cycle per
secoﬂd triaﬁgular signal used in damping calibration was fed into one
channel of the visicorder for time base calibration, For a desired
wind velocity the model was allowed to oscillate at a steady-state
amplitude, The amplitude was measured, as previously described and
the input to the displacement transducer was adjusted so that the full
available width of the visicorder record was equal to the double
amplitude. The model was stopped by shutting off the air supply to

the air bearing, and started by suddenly turning it on again.



4,2 Results
4,2,1 Force Measurements

Force measurements were taken on models of b/h = 2, b/h = 1/2,
and "D" Section. For each model, the force measurements were taken
for five Reynolds numbers in the range of interest by varying the
wind velocity., The force ccoefficients are presented uncorrected for
tunnel wall effects. The corrections, using expressions given by
Whitbread9 would decrease values for the 2:1 rectangle by about
5.5%, for the 1/2:1 rectangle by about 7% and the "D" section by
about 6%,
(a) b/h =2

The 1ift and drag for two Reynolds numbers are shown in fig, (14).
Within the experimental error the measurements taken for Reynolds
numbens between 20,000 and 40,000 were bounded by thgse two curves.
There is good agreement with Brooks'1 result figﬂlS),‘ The poly-
nomial used for representing the lateral force coefficients in the
differential equation along with the meaéured coefficients are shown
in fig. (16).
(b) b/h = 1/2

The Reynolds number effect on the 1lift and drag for this model
is small fig.(17). Iift and drag measﬁred by Brooksl are 8% higher
fingB). The measured lateral force coefficient approximated by the
11th order Chebychev polynomial is shown in fig.(19),
(¢) "D" Section

The 1ift and drag for angles of attack between 3%6° and 60° are

extremely dependent on Reynolds number., This effect is shown in fig.
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(20) for the five Reynolds numbers in the range of interest. The
measured values of lift and drag lie between Brooksl and Cheersll
for angles of attack up to 40°, At angles of attack higher than 40°
there ;s good agreement with Cheers., This comparison for Rn = 66,000
is shown in fig. (21). The lateral force coefficient curves are ex-
tremely dependent on Reynolds number, and an extremely high order
polynomial is also required to approximate theﬁ.

It would be more convenient to represent this lateral force co-
efficient by some other type of functioq° The lateral force co-
efficient for the two Reynolds numbers of interest is shown in fig.

(22).

4,2,2 Velocity Amplitude

(a) b/h =2

Velocity-amplitude measurements were made on aluminum (1/2" x ")
and wooden (1" x 2") models. _ /
Aluminum Model

Pive desired damping levels were used for this model. The non-
dimensionalized experimental result with the corresponding theoretical
curve for three damping values is shown in fig. (23).
Wooden Model

Velocity-amplitude measurements were made at three desired damp-
ing levels., The non-dimensionalized experimental and theoretical

result for this model is shown in fig. (24). This was repeated with

the splitter plate mounted in the wake at the model centre line.,
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The non-dimensionalized experimental result is shown in fig. (25).
There was a strong amplitude modulatioﬁ at the lower wind velocities
when the splitter plate was removed from the wake. The envelope of
the amplitude modulation for three damping levels is shown in fig.
(26). The mddulation frequeﬁcy is shown versus non-dimensionalized
wind vélocity for two damping levels in fig. (27).

The theoretical velocity-amplitude curves for various damping
levels for both the -wooden and aluminum model collapse on to a single
curye when multiplied by a suitable parameter as suggested by
Parkinson4. The single theoretical curve with the experimental data

reduced in the same way is shown in fig. (28a) and fig. (28b).

(b) b/h = 1/2
This model did not oscillate from rest for any wind velécity.
For different wind velocities the model was given a maximum ini-
tial amplitude. In all cases fhe moael did not continue to oscillate.

The theoretical curves for two damping levels are shown in fig. (29).

4.2,3 Time-Amplitude Result for A.R.2. Model

Time-amplitude curves were recorded on the visicorder for the
wooden and aluminum models, To predict the theoretical time-ampli-
tude curve for one wind‘velocity, the initial amplitude was taken
t0 be fhe value given by the visicorder for that velocity; the
final amplitude necessary to calculate the build-up time was taken
to be 95% of the theoretical value predicted for that wind velocity.

The theoretical and experimental time amplitude build-up curves for



the aluminum model for various wind velocities are shown in fig. (30). ’

When 7B is plotted against g% U all the theoretical curves for alum-

inum and wooden models collapse on to a single curve for a given in-
itial amplitude. These theoretical curves for two initial ampli-
tudes with the experimental points for both the models are shown in

.

fig. (31).
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V. DISCUSSION OF RESULTS

5.1 Damping Calibration

For double amplitude greater than 1", the semi-~log plot of
amplitude ratio with time used in calculating the damping coeffi-
cient "r" was linear showing the pure viscous effect of the damper.
The calibration curve for the damper is shown with Smith's calibration
in fig. (32). The present calibration is lower‘by a constant value
due to the reduction in thickness of the aluminum shaft used in
the present investigation. A small difference could also be present

due to0 the different streamline model used.,

5.2 Rectangular 2:1 Model

5.2.1 Torce Measurements

The force measurement shows that at @ = O the flow which separ-
ates at the upstream corners of the model is symmetrical about the
model centreline and hence does not develop any lateral force.
With ipcreasing a, the lateral force inc¢reases due to the increased
asymmetry of the separated shearlayers-., The lateral force coeffi-
cient reaches the maximum value when the windward shearlayer re-
attaches on the underside of the model., There is a small in-
crease in the angle of attack at which reat%achment occurs with in-
crease in Reynolds number. For the range considered re-attachment
occurs at '‘a = 75 which shows good agreement with Brooksl. Parkinson3
has shown that the angle of attack at which the flow reattachment
occurs limits the maximum amplitude, hence to use the quasi-steady
approach, it is important to obtain the aerodynamic force coeffi-

cients for a Reynolds number close to that of the oscillating
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c&linder whose response is t0 be investigated or predicted. In

the amplitude range considered there is very little Reynolds number
dependence of force coefficient, The graph of force coefficient con-
firms the "soft" oscillatory characteristic for the 2:1 rectangle.
The polynomial approximation to the force coefficient is within the

accuracy o0f the experimental investigation,

5.2.2' Comparison of Experimental Amplitude-Velocity and Velocity-

Time Curves with Theoretical Prediction Using Differential

Equation ¢f the Pirst Kind

(a) Amplitude-Velocity

For large values of U the theoretical predictions for the
aluminum model for thé three damping levels show good agreement
with the experimental results. Only the stable limit cycle is
compared with the expefimental results, since with the present
apparatus it was impgssible to give the model a known initial ampli-
tude., The beginning and the endnpoint of the unstable limit cycle
shown dotted was determined experimentally, and the agreement with
the theoretical value is poor. For large values of U, as the theory
predicts, the experimental values for the three damping levels
shown lie on paréllel curves, but for U values less than 24 there
is a general trend for the experimental curves to converge. For
the lowest damping the unstable limit cycle does not appear, and the
model starts to oscillate from rest for the wind velocity correspond-
ing to the resonanEe frequency of the vortex formation in the wake,

which is far removed from the velocity predicted by the quasi-steady
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theory., ?he comparison of experimental results with theory in
this region is poor for U less than eight. For U greater than 8 the
experimental curve follows closely the theoretical curve predicted.

The experimental results for the wooden model for the two
damping levels shown do not agree with the theoretical values predicted.
Similar to the aluminum model for the lower damping, the model os-
cillated from rest for the wind velocity corresponding to the vortex
resonance, Smith's results shown for two values of damping are 4
percent higher,

The splitter plate, used in an attempt to eliminate effects of
the vortex formation in the wake, made the model oscillate from
rest for three different wind velocities corresponding to the three
damping levels set. Although these velocities did not correspond to
the values predicted by the quasi-steady theory they were well re-
moved from the vortex resonance wind velocity. The experimental
curve does not show any agreement with the theory predicted using
the force measurements on the model without the splitter plate. To
make such a comparison, the force measureﬁents should be taken on
the model with the splitter plate in the wake, which is extremely
difficult to do. Although no comparison could be made with the
theory the splitter plate investigation proved that the velocity
at which the model started to oscillate from rest was influenced
by the vortex formation in the wake.

The amplitude modulation shown for the wooden model for the

three damping levels when the splitter plate is removed shows clearly
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the effect of the vortex formation in the wake, To make further
analysis Oflthis effect dynamic pressure distributions should be
measured on the model to see the instantaneous effect of the vortex
formation on the after-body of the section, The regular modulation
frequency for two damping levels increases with wind speed, because
the vortex frequency is increasing. This.frequency is éaptured
(made equal t0) the frequency of the oscillating system for:a rahge
of wind speeds near resonancé (when the vortex frequency for a
stationary cylinder equals the system natural frequency), but for
wind speeds enough above the resonant value, the vortex frequency
again increases with wind speed. Af first it lies close enough to
'the frequency of the oscillating system to produce the observed beat
phenomenon., This agrees qualitatively with the theoretical linear
forced oscillation prediction for the beat phenomenoﬁ.

The results for the aluminum and wooden model are plotted in a
dimensionless form fig. (28) according to which, if the theory correctly
predicted the phenomenon, all points would collapse into the single
theoretical curve predicted. The three sets of data for which Uo is
less than 10 all give curves starting from zero amplitude at a wind
speed corresponding closely to the vortex resonance, indicating that
the vortices not accounted for in the galloping theory are mainly re-
sponsible for its discrepancies. The experimental velocity of

nAl
2B

does not agree with the theoretical value predicted,

= o35 for which the model oscillates from rest for zero amplitude
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The vortex formation in the wake not accounted for in the theory
could be.the cause of such a discrepancy since the splitter plate
investigation showed that there was a strong effect of wake vortices
on this velocity. To find the exact mechanism which governs the in-
itiation of oscillations, instantaneous dynamic pressure distributions
around the model will have to be considered.
(b) Velocity-Time

The experimental results for four wind velocities fig.(30) on the
aluminum model show good agreement with the build-up time predicted by
the quasi-steady theory. The.theoretical single collapsed amplitude
build-curves fig.(Sl) for two agsumed initial amplitudes, show good
agreement with the experimental results. The theoretical curve
predicts a higher build-up time than is necessary for the wooden
model since there is a strong influence of vortex formation on this

model.

5.3 Theoretical Results Using Differential Equation of the Second

Kind
5.3.1 Non-Linear Non-Resonance <Kf¢ 1)

The square prism requires only a seventh ordef polynomial to
approximate the experimental force coefficients, which simplifies
mathematical computatioﬁ considerably, and it was used to0 investigate
the gquasi-steady mon-linear non-resonance condition. The general ex-

pression to calculate the steady state solution for this model is shown
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in appendix III. The steady state solution has terms in powers of Sl,

which is a function of 1if% coefficient,mass parameter, wind velocity

nC
Le
and the Strouhal number and is given by el = 1755%55572' When 81

is set to zeroj that is, when there is no response function, the

expression for steady-state amplitude reduces to the solution for

the differential equation of the first kind given by Parkinson4. Any

change in the steady-state solution for the differential equation of
1

the second kind only involves terms in powers of §. and can be ne-

glected if 4, is very much smaller than one. When U is large

1

nC

%, = = . For rectangular cylinders C /(ZRS) is a finite
1 2 Ley

-(278)
quantity of order 1 and the magnitude of Sl is determined by the mass
parameter "n", For the rectangular cylinders tested in the wind tunnel
n is of order 10_4and hence Sl can be neglected. The steady-state

solution then reduces to the solution givén by the differential
equation of the first kind.

The mass parameter "n" has order of magnitude one if the experi-
ment is perfbrmed in a &ater tunnel with the same experimental condi-
tions used in the wind tunnel. The general solution is given by;

'Y = ¥ gin (T+ 3) + 8, sin (Kit‘+ @1)

The steady-state amplitude Y calculated is shown in fig. (33), for

various assumed C values. For C less than .5 we have curves

Lep Leg



similar to that predicted for the model in the wind tunnel. The
unstable 1limit cycle which is given by the S bend is not shown for the
model in the water tunnel, since it has been ?ushed close to the
origin and is extremely small in maegnitude. The magnitude of Y

decreases with increasing C values, For wvalues of C greater than

about .5 there is no oscillation given by the galloping phenomenon.

1 sin (Kif'+ @1). This quench-

The solution then is given by ¥=9
ing of auto-periodic oscillation by the hetero-periodic oscillation
12
is termed "Asynchronous Quenching" (Minorsky).
The rectangular 2:1 model also exhibits the above phenomena
and the theoretical predictions are shown in fig, (34).

Heinelo gives an experimental value of C for the square and

Lep

2:1 cylinder as 2,2 and 1.1 respectively. If these values are used,
the theory predicts no galloping oscillations for the square and

rectangular 2:1 cylinder in water flow,.

5.3.,2 Non-Linear External Resonance (Kf:jl)

The expression derived for the 2:1 rectangular model is shown
in appendix '2,2.2. The expression for the stationary oscillation

(¢quation 12) is a function of Cp . and this equation was solved
i id

using arbitrary values for C in the range .1 up to 2, For all the

Leg

values Ci 2 considered the equation for stationary oscillation pre-
f

dicted no oscillation. The investigation was not carried any further



32

and it is possible that a more detailed analysis might give a different
result which would show better agreement with the experimentai results

near the vortex excited region.

5.4 The Rectangular»l/2:l and the "D" Section

For the rectangular 1:1/2 Model the quasi-steady theory as shown
predicts an initial double amplitude of 5 3/4" for the model to be-
come unstable., With the present experimental apparatus it was only
possible to give the model an initial double amplitude of 5", which
explained the inability to find the upper stable limit cycle predicted
by the theoretical curve,

The force measurements for the "D" section show a previously
unsuspected large Reyn0lds number dependeﬁce for high incidence, related
apparently to chaﬁging re-attachment characteristics on the semi-
circular after-body of the section. Pressure distributions around
the model in this region will have to be investigated to explain

such re-attachment mechanism.



33
V1l CONCLUSIONS

From this investigation, it may be concluded:

1. Contrary to previous belief the dynamic beﬁaviour of the 2:1
rectangle can be predicted using a quasi-stéady approach for
models which have a UO value greater than 10,

2., The discrepancy between quaéi-steady theory prediction and the
experimental result for the 2:1 rectangular model which has a
U0 value smaller than 10, for values of U clése to the natural
frequency of the s&stem, is due to the wake vortices not accounted
for in the galloping th;ory and nﬁt due to a hysteresis in the
separation and reattachment angles auring the oscillation cycle.

3., For the rectangular 2:1 model in air, the quasi-steady theory
prediction with the added fo¥cing fdﬁction, for external non-lin-
ear non-resonance condition, does not show any significant change
from.£he theory predicted by negleqting the forcing function.

4, The quasi-steady theory predicts that the réctangular 2:1 and the
square cylinders whichlexhibit galloping oscillation in air flow
will not gallop for similar conditions in water flow since the
galloping oscillations are quenched by the altérnating vortices
formed in the wake.,

5. The modulation frequency observed for the A.R.2, wooden model is

the beat phenomenon which is present when the vortex Strouhal

frequency is. captured by the model freguency.



Te

9.

34

There is a small Reynolcs number 2ffect on the lift and drag

forces of the rectangular 2:1 and 1/2:1 model.

For the "D" section in the range of Reynolds number sonsidered,
for angles of aftack,greater than 36° and less than 60° there is
a large Reynolds number effect on the 1ift and drag forces due
to the changing re-attachment characteristics on the semi-

circular afterbody of the section,

The rectangular 1/2:1 model is a hard oscillator as predicted

by the quasi-~-steady theory.

Although the splitter plate mountea on the wake centire line of
the rectangular 2:1 wooden model prevented the vortex excita-
tion, the model oscillation behaviour in the galloping region
did not agree with the theoretical value predicted using the

force measurements of the model without the splitter plate.



35

V1l RECOMMENDATION FOR FUTURE WCRK

The dynamic pressure distribution should be investigated

around the 2:1 rectangular model, for Uo values less than 10, to

explain the discrepancy with the quasi-steady theory near vortex-
excited region. The quasi-steady analysis with the vortex excita-
tion should be further investigated for the non-linear external reson-

ance condition (Kfz 1).

To investigate the oscillating characteristics of the 1/2:1
rectangle some mechanical device should be designed to give the
model the large initial amplitude necessary. The air bearing system
will have t0 be redesigned to allow large amplitudes predicted by
the quasi-steady theory,.

The oscillating characteristics of the rectangular 2:1 and the
square prism should be investigated experimentally in water flow to

verify the results predicted by the quasi-steady theory.



APPENDIX I

Definition of Force Coefficient

N~
—

- b

'] W:v’ -
7 rel. L l% _J
¢ b
k

Define Fy as the aerodynamic force bn 'Ehe‘-,h,o@y’, glvery by

P = -1/29V?h@ (C, cos a + C_ sin a)
y rel L

D

v

but V = ———
.. rel cos «

Therefore Fy = -1/2@ Vzhz(CL + Cp tan a) sec a

Define CF by

y

2
cFy = Fy / 1/2evhi

therefore (}Fy = -(CL + G tan a) sec a.

36
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APPENDIX II
2.1 Differential Equation of the First Kind for the Rectangular
2:1 Model
The differential equation of motion is

my + ry + ky = 1/20Fye Vzhﬂ (1)
Tet Gy = BG/V) -G/1)7 + DG/V)T —0G/V)%4 B G/V) 4 A G/V)

where A,B,C,D,E,PF are the coefficientsof the polynomial used to
approximate the experimental CFy curve using Chebyshev polynomials

5 5

and are given by F

572.79098 x 10 E = 160.73516 x 10

166,428 x 10% C = 742.39918 x 10°

1l

. D

B = 1100.6281 A = 2,329066

Substituting this in Equation 1 and non-dimensionalizing, we get

¥ +v= 28y, B 23 C 5, D 7 _ _E 9 _F ;{11}
Y+Y-nA[(U-nA)Y+AU Y _m Y +AU5 Y NG Y +E9. (2)

This is of the form discussed in Section 2,2, from which we get

P =

-g% =-9% where

’ B <2 C -4 .35 D =6
8=-£A;[(U-&E)+2—Y-2—,Y+ I ¢
2 nA 4 AU 8 7 64 .5
_ 63 E g8, 231 _F 3-(101
128 o’ 512, .9 (3)
%g: 1 therefore & = constant

For steady-state solution

=0 i.e., 6 =0 (4)

A%
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If % (O)<.O self excitation will take place

28 _
(1eee) 1f V7SS = U

2.2, Differential Equation of the Second Kind for the Rectangular

2:1 Model
2.2.1 Non~Linear Non-Resonance:
The differential equation of motion is
., 2 '
my +ry + ky = 1/2 CFer h + Fo sin (wlt + @1) (5)

2
where F_ = CLfZ 1/2@Vvnl ; $, = some phase angle

Non-dimensionalizing this equation, we get

Y+Y=np £(Y) + Y, sin (Kl’Z’+ @1) (6)
.where}l =nd ,7T= wt
W
2 1

Equation (6) is of the form discussed in Section 2,3.1
From which we get

dy s 7 av

az” " e az = °
therefore & = constant
where
_ M _ 28 3 B_ 2.2 15 ¢ __ 4,4 35 D o 6.6
S = -3 H(U )t a0 M mTe T3 MR Y T N
AU AU
- 315 E 8 8 693 F _ 10 10}
2=2 2— g ° g% 22 =3 g
128 ,.7 1 1 256 ,,9 1 1
6. 6
3 B 15 G 2.2 315 D . 4 4 315 E 8 K
p 2 = _ =2 X3 k" 4 L T G =— "1 "
{4 AU 4 43 171 32,45 11 16,7
+ 17325 F 9181{18}?2
512 9
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5 ¢ 105 D .2 2 945 E 4.4 5775 F 6 63-44
- = o e e —— Y
*{ s 3 t 16 5 K -5 TN K 5% K

55 D 63 _E__2 2 17325 _E 4 fj-s
+{64 5 60 791K * o5 g 9 % )7

128 7 256 ,.9 11 512 .9 (7)
Y
and %l = 12
l-Kl
The steady-state solution is given by
ay :
T 0 (1.e.) Se =0
If § in section 2.2 is replaced by Se’ then all the stability
analysis discussed there can be directly applied for this case.
2.2.2 KiQ:l Non-Iinear External Resonance
The solution to the linearized equation by Kryloff and Bogoliu-
boff for the first approximation is
Y =Y sin (K£Z+ ®) = ¥ siny A (8)
4y rY
Where - > (9)
a® =
i 1 +K - Kl
21

n?Kl

and ;\= ——d /\[}xf (Y Ky cosy ) + Y, sin (y - & + @I)Jcosz{dq/ (10)
0
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- 1 = . . , . .
K = - = / (/Jf(Y Ky cosy) + Y, sin (- 3+ él)]smtrdtr
LJ. d« -
21
—_ —l—— . Y ] ( - ) 3 dl .r
= - == / ls1n L,/—\I.)+<.D1 sing dy
1Y o
o)
= 1 - B
therefore A== = Y_  cos (<D - )
7 1 1

From equation (10)

1 2T
-~ by
- [ pe(T K cosy) cosgay
WY K / '
1 o
[0}
. 21 _
s - __;-{___ /ﬁf(y cos 9,) COSerCf/ (S_ane Klz l.)
n '
0

_—_28 (For 2:1 rectangular model from equation 2.10)

- 2% ,
Therefore A=20 - ——-—_1-——— /‘ Yl sin (9,_ o + c_r_)l) cos ydly
.Y K
1
o
andg-zz_(6+—-—l— Y sin (& - 3.)) ¥
ar = 1 1
2YK
1
From equation (9)
4o = X
ar- 1 +XK - K1 = 1+ 5 - K1
do Yl
therefore Ti—’_t’: 1 - ——— cOs (’1) —@1) - K1
2Y
For stationary oscillations —3—% = %—Z)": 0
Therciore Bquations (8) and (9) reduce to
Yl
1-—=cos (& - 2.)=-K. =0

2y

40

(11)



S+ -~ Y, sin (2 - 8,) =0
oY K
1
Let K} = 1 (at resonance)., Then
2
cos” (& - @l) =0
- 2 222
2 -
sin® (& - ®.) = (285{):.""‘SY
1 Y 2
1 Y;

therefore Y = Yl/25

where Y. = nUQC

1 Leg

41

(12)
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~ APPENDIX III

Non-Linear Non-Resonance for a Square Section

The differential egquation is given by

§+Y=nA(u-§-§)i-(f%)i3+(—9-3-)’y5-(—]2-;)i7+y

sin (R T + o.)
AU AU 1 1

1

where for a Reynolds number of 22,000, the coefficients of the polynomial
are given as A = 2,69, B = 168, C = 6270, D = 59,900,
The general sglution is of the form

Y=Y sin (T+ ®) + 9, sin (K{K + @

1 1)
For steady-state amplitude

4z

T =0 i.e. ® = a constant

and ax3 + bx2 + ¢cx = d ) -

where
x = (3/0)°
_322
& =64 A
._2 ¢ 105 D 2
b = - 8 1 + T 2 (2n313)
_2B_13 C 2 315 D 4
c=Ti" 4 1 (2n%l$) Ty (znals)
- _ 2By _23B8 2 4 33 2D 6
a= (1 nAU) > A (2nels) + ;g % (2n318) % i (znals)
wh K
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. APPENDIX IV
Differential Equation of the First Kind for the Rectangular
1/2:1 Model
The differential equation of motion is

ny + ry + ky = 1/2 CFyevth

where

Cpy = r/v)M - G/ + p(/v)T - c(/V)° + BG/V) - AGG/V)

2

F 656.,12104 x 10 E

[
i
1}

375.25079 x 10> D = 7076.95

C = 503.36067 B = 15.72543 A 027513333

]
!
i

The expression used in Appendix 2,1 can be directly used for
calculating steady-state amplitude when the coefficients are replaced

by the above coefficients and the y/V term of the CFy polynomial is

replaced by a negative sign.
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