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ABSTRACT

Since very little has appeared in the literature
regarding solutions of driven nonlinear differential-difference
equations, it has been the purpose of this investigation to
obtain approximate sclutions to these equations and to
investigate their resonance properties. The equations
considered are second—order.quasi—linear differential-
difference equations.

Stabllity criteria are presented for equations
having delayed damping and for equations having a delayed
restoring force.

Application of the Ritz method leads to general
"equations which determine the_constants in the assumed
solutioh. The general equations for systéms with odd
nonlinearities are used to obtain the resonénce properties
for several specific examples. Unusual jump resonance
phenomena are obtalned Whén the input frequency is varied.
Regions of the response curve occur which are not connected
to each other.

- The approximate solution is verified by an analog
computer simuiation employing track and store techniques to
enable automatic plotting of the response curves. The Ritz-
method results compare favourably with the analog-

simulation results.
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1., INTRODUCTION

Ordinary differential equations (or systems of
equations) have been and stillxare a.useful tool in the ana=
lysis of a wide variety of physical phenomena. It must bé
kept in mind, however, that in using ordinary differential
equations to describe phenomena, it is assumed that the future
behavior of the system depends only on the present state and
is independent of the.ﬁast. In order to more accurately
describe physical systems, therefore, it is necessary to con-
sider the fact that their rate of change depends not only on
their present state, but also on their past history. In place
of the ordinary differential equation , |

ax

3z = fx,t) > X(to) = Cy (1.1)
we must write
%% = £ [x(t), x®, t] , (1.2)

where (¢ ranges over a set of values less than t,and the initial

function,xo(ﬂD,is specified for the range,?,less than the ini-
!

tial time,to° Of the many equations of this type, perhaps the

simplest is a differential - difference equation,

d ’ .
Eoot [x(), x(t = t7),e00,x(t = 1), 1], (1.3)
wher¢ 0 <tl<t2 <ooo <Tpo

In this case; only a certdin finite interval of the immediate
past history of the system is'involved in the determination of
the present (instead of the whole past as in an integro=

differential equation).
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The study of differential-difference equations was

(1)

begun by John Bernoulli in l728>and theory regarding these

equations has been developed in several hundred papers since
then. Due to their application to control theory, this study
has been greatly intensified in recent years. - Many Russian

(2) (3)

“and Khalanai'”’y have considered

(4)

authors, such as Krasovskii

the problem of stability. Bellman and Cooke have developed

theorems analogous to those for ordinary differential equations.

(5)

Pinney has also contributed to the general theory, and

(6) (7)

bibliographies by Choksy and Weiss give reference to

356 separate items all dealing with time delay systems and/or
agsociated mathematics;ﬂ Abundant references are also giveﬁ in
the previous works citéa.

Differeﬁtial—difference equations arise in the theory

(8) (9) (10)

,poputation studies ,
(11)

of elasticity , mathematical economics

the study of combustion in liquid-fuel rocket motors

mathematical biophysics(lZZthe theory of‘automatic control

(13%(14)’(15>’<16)and in a number of other areas involving time

delays.

1.1 Scope of the Present Work

Some theorems developed by Krasovskii pertaining to
the stability of systems with delay are given in Chapter 2.
These theorems.are then applied to discuss the s%ability of*twp
rather general blasses of second-order nonlinear systems with

delay.
Although much of the theory pertaining to existence,

uniqueness, and stability of solutions to differential-difference



equations has been developed, very little has been done to
obtain solutions due to their complexity(l7). Bécause of this
complexity itvis desirable to obtain an approXiméte solution,
This approximate solution must approach the actual solution
with some reasonable degree of accuracy énd must also exhibit
any qualitative behaviour characteristic of the system, such
as jump resonance, Therefore, approximate solutions have been
developed in Chapter 3 by employing the well known Ritz method(22>;
The general equations for the amplitude and phase of a one-

term approximation to the solution are obtained and applied

to several particular examples. The results thus obtained

are then compared to those obtained by an analog computer
simulation discussed in Chapter 4. Both sets of resulté show

that rather unusual jump resonance phenomena are often obtained,

In Chapter 5 some general conclusions and ideas for

future research are given,



2. STABIIITY

Before investigating the solution of any differential
equation, it is useful to determine beforehand which values
of the coefficients of the equation (if any) lead to stable
solutions. - Then,only systems which are inherently stable in
the undriven case need be studied to determine their resonance
proyerties.

The stability of a linear differential-<difference
equation can be determined by examining the roots of its associated

characteristic equation(ls)’<19>.

If these roots have neggtive
~real parts, the solution of the equation is stable. Because

of its transcendental nature, the characteristié equation, in
genefal, possesses an infinite number of roots. The relation
between the location of these rootS'and‘the coefficients of |
the differential-difference equation is necessarily much more
complicated than for an ordinary differential equation. A
graphical technique sometimes provides more useful information
than a direct examination of the roots of the characteris%ic
equation. One such technique, employing a dual Nyquist diagram,
is given by 'J,o'nes(?O)o The algebraic part and the transcendental
part of the characteristic equation can be plotted separately
and the stability determined frém their intersection points.

The effect of the delay on the stability can then be easily
determined.

For nonlinear systems with delay, the stability is

most easily determined by applying ILyapunov's second (or direct)



method. This method is described in most modern books on ad-
vanced control theory. Its great merit is that it can be applied
to stability discussions for very general equations without

finding explicit solutions.

2.1 Some Theorems agdADefinitibhs Concerning Lyapunov's Second
Method for Eguations with Time Delay

The Russian author, Krasovskii, has done a great deal
of work concerning the stability of systems with time delay.
Some of his theorems and definitions are given in this sectiOn§

(2)

the interested reader is referred to Krasovskii's book'”’for
the proofs and further information on the subject.

We are interested in equations of the form,

dx.,
‘dt'-l" = Xi [Xl(t-hil)ynnoy Xn(t—hin); Xl‘(‘t>,oao, Xn('t), t] (201)
(i = lkynooyn; Oshij(t)sh)y

where the right hand members,Xi(yl,,:y, Y3 Xpyreees X ,t), are

continuous functions of thelr arguments and are defined for

<= fml<E Geenw, @2
where H is a constant (or infinity). We suppose further that
these functions satisfy a ILipschitz condition with respect to
the X and Y in the region (2.2), 1l.€.,

" 1" 1t " ' 1 1 1 ' !
‘Xi(ylyowoy yn; leooo, Xn,t) - Xi(yl,eou, yn; Xl’q-o, Xn,.t)l
n o
< I ;g% lx;—xél + ;Ej ly;-y;| ) e

J=1



It will also be agsumed that
Xi [Xj(¢),t] =0
on the entire arc,

xj(¢)=0; i=1,.00., 03 J=1lyeee, nj

~h <@ <0.

The following notation 1s used:

I2] = sup(|xy[eeen |xy]),
=l o= 6F =D
|=| 5 = sup(|=x,(8)])  for -n<gs0,

0 n
| "
I=i 2 {hf [ <2wle]”
XO(¢O> = [Xi0(¢0)] (i =l,uon, n 3 =h SﬁOSO),

To emphasize the dependence of x(t) on the initial curve
and the initial value of %, we shall denote [xi(t)] by
[ G0t 1]
Definition 1. (a) The solution,x = 0,0f equation (2.1) is calléd
stable if for every positive number, € >0,we can find a positive

number,§> 0, such that whenever the inequality,
"Xo(¢o)" <3,
is satisfied, the relation,
”X [Xo(¢d)’ o t] ” < &,
holds for tZto,

(b) If, whenever condition (a) is satisfied, the

conditions,



1im HX [xo(¢o)’ Ty t]1| =0
t+ 00 |
| = [%,(8,)y tyr t]] < By for all t 2t (H = const.),

are satisfied for all initial curves,x (§ ),satisfying the in-
équality,
: h
ENCR) R (2.3)
then the solution,x = O,0f egquation (2,1) is asymptotically
stable and the region (2.3) lies in the region of attraction of

the unperturved motion.

Theorem 1. Suppose there is a functional, V[?(¢), t], that

 satisfies the conditions, ,
v [=(@), #]] <w, (=@ )+ w([=@)] 3)
7=, t] 2w [|x(0]],

1i
v =0 ) < -gfJ=0)]], (2.4)

‘Where Wl(r) and Wz(r) are functions that are continous and mono-

tonic for r5>O, and Wl(O) = WZ(O) =03 w(r) is a function that is
" continous and positive for r £ 0. Then the null solution,x = 0,

of equation (2.,1) is asymptotically stable.

If X, and hij(t) are periodic functions of the time,ﬁ,
all with period,®, (or if X, and hij'are independent of the time,t),
then condition (2.4) may be replaced by the following weaker
hypothesis:

A sufficient condition that lim sup(%%)should be nonpositive

t—+0
along a trajectory is that the equation,

+



AV
lim sup(At) =0 ,

t—0

be valid for all tZto only along the trajectory,x = O.

Definition 2. The solution,x = 0,o0f equation (2,1) is called
uniformly asymptotically stable with respect to the ‘bime,’cozo,
and with respect to the initial curve, xo(¢o), in region (2.3), |
if it satisfies condition (b) of Definition 1 and also satisfies
the following conditions:

(1) +the number,d>0,0f Definition 1 (a) may be chosen
independent of to 203

(11) for arbitrary n >0, there exists a number,T (n), such
that

I [%5(8s) t6r & + A < n

holds for every t 2%  + T(vl); independent of the choice of &
piecewise~continuous initial curve,xo(¢o), in region (2.3).

If the right hand member of equation (2.1) is =
periodic function of time with period, e, (or is independent of
the time,t), then the null solution,x = O,is always uniformly
asymptotically stable in the sense of Definition 2,

Now consider the "perturbed" system of equations,

dx . * *
a?l = Xi {Xl(t)’“?’xn(t); Xl[tahil(t)]’°‘“’Xn[tihin(t)]’ 'b}

+ R, {:xl(t),..,,xn(t): x [5-80 (8)] 5 enermy b8y (8) 5 ¢

"
(i, j=14“,m.;O$h“CWsh; QS%Jﬁ)shL

where the continuous functions,Ri,are not required to reduce to

zero for X, =y. = 0,
3793
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Definition 3, The null solution,x = O,of the system (2.5) is
called stable for persistent disturbances if for every € >0
there exist positiﬁe nﬁmbers,&o, Ns A, such that the solution,

X [xo(¢o), T t],of the system (2,5) satisfies the inequality,

"x [Xo(¢o)’ to’ K ]ll < &,
for all t 2% , tOEEO, whenever the initial curve,xo(¢o),satisfies

the inequality ,
||Xo(¢o)“h <8

.
and the perturbed time delays,hij,and the functions,Ri,satisfy

the inequalities,
"Ri<xlgbv\79 Xn ; yly’oooy yn, t)l <YL ,(i = lyeoa,n),

for "x"<e, ”y“<e, and
|ny4(5) - h;j(t)l <D (4, 3= 1,000,m)

Theorem 2, Suppose that the null solution,x = 0,o0f equation
(2,1) is asymptotically stable uniformly with respect to time,
t,,and the initial curve,xo(¢o), in the sense ovaefinition 3.,

then the null solution,x = 0,1is stable for persistent disturbances.
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2.2 RStability of Systems with Time Delay in Particular Cases

2.2+1., Systems with Delayed Damgingw

Consider the second-order nonlinear equation,

2
-d—ﬁ = X‘ [X(’t)’y y(t)] fﬁﬁ[y(t“h)y 't] 9 (2'6)

O

(y = —% ; h is a positive constant),

il

where the functions X and ysatisfy the requirements,

X(x - X{x,0 <—39M<’b fOI‘Xr‘éoyy9éo'

N X
(2.7)
where a and b are positive constants, and
|9z, < L]y . (2.8)
We write equation (2.6) in the equivalent form,
ax_ _
3 =T | | (2.9)
%-'%_= X(x,0) + [X(x,y) - X(x,O)] +‘(f)[y(t-h), t] o
Krasovskii(z) has shown the following:
Define the functional V by
bid , 0
0 , ~h
(2.10)

To estimate the derivative,%%,along a trajectory of the system

(2.9), write
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% - [X(x,y) - X(X,O)] y + yfp[y('b—h), 't] + _a_%z _ ag2(t-h)u

Conditions (2.7) and (2.8) gilve the estimates ,

v < ’32 5) L1 |y(t)y(t—h)| "—%— 72 (t=h). (2.11)

foT}

The functional,V,satisfies the hypotheses of Theorem 1 if the
right hand member of inequality (2.11) is a negative-definite
function of the arguments,y(t) and y(t-h). This condition is

satisfied if the numbers,a and L,are related by

a>L, (2.12)
Thus, inequality (2.12) is a condition sufficient for the asymptotic
stability of the nﬁll gsolution,x = y = O0,0f the system (2.9),

If the right hand member 6f equation (2.6) is a periodic
function of time with period, e, (or is independent of time),then
the null solution 1s always uniformly asymptotlically stable in
the sense of Dgfinition 2 and hence the system will be stable
for persistent disturbances.

The stability criterion expressed by equation (2.12)
can also be obtailned heuristically., Due to the delay,h,there
will be some frequencies of oscillation,w, such that wh is an
odd multiple of w., At these frequencies, the delayed damping
term, y(t-h), will be out of phase with the damping term, y(t).
Since a and L are, effectively, the coefficients of the damping
and delayed damping térms, then a must be greater than L in
order that the system should have no negatiﬁe damping at any

frequencye.
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2.2.2 Bystems with Delayed Restoring Force

Consider the linear equation with delayed restoring

force ,

2
a d
dx(t) | a S5 4 px(t) - ex(t-h) = 0 ,

(a, b, and c are constants; h is a positive constant).

This can be written in the equivalent form ,

dx _
Y _ _px - -
~ = bx - ay + cx(t-h).
We wish to find all, % 5 and a5y such that the quadratic form,
2 . 2
vi(x,y) = X" + 205Xy + 0,57 (2.15)

is positive-definite and satisfies the condition,

%% v o+ %% (=bx = ay) = —x° - y2 . (2.16)

Substituting equation (2.15) in equation (2.16), we obtain
' 2

0 =2~ +b(b +1)
11 St y (2.17)
oo = 1 (2.18)
12 5% |

and o =b+ 1 . |
22 S8b (2.19)

v(x,y) is a positive~definite function of the arguments,x(t)

1 lloc22:>oc§_2 (see Appendix A). A sufficient

condition for this is that a and b be greater than zero.

and y(%),if oy, >0 and «
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The functional,V,can be taken in the form,
’ 0
v [;‘@), y-&)] = @y x2 + 2a12xy + a22y2 + U J‘ xz(ﬁ)dﬁ, (2.20)
~h
(W>0) =
av

The value of the derivative, y it , along a trajectory of the
system (2.14) is

e @D = - [@-wEfe) + g2 (1) + wx2(t-h) - 2a

A*_t—>-0+ ex(t)x ('*t_-h)

12
-2a,,0y(t)x(4-h) ] . (2.21)

The right hand member of eguation (2.21) is a negative-definite
function of the arguments,x(t), x(t-h) and y(%),if

(1 -u)>0 (2.,22)

and - (L - n) (p- agzcz) - aiz c®>0. (2.23)

Maximizing the left hand member of inequality (2,23)
with respect to u,we find
1+ 2 2

W =———§2 . (2.24)-

Substituting this value of u in inequality (2,23),we obtain

- o2 o2 72
[l %500 } B aizc2 >0 . (2.25)
5

‘Since we have chosen b >0, then a.,>0 (see equation (2.18),

12
and hence inequality (2.25) may be written

2 2

a5 ,C <1 (2.26)

From inequality (2.22) and equation (2.24),we find that a220

“12!"'. .

must be less than unity. Thus if inequality (2.26) is satisfied
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(and hence (2.23)), then inequality (2.22) is satisfied as
well, and the right hand member of equation (2.21) is negative-
definite. The functional,V, thus satisfies the hypotheses of
Theorem 1 and hence inequality (2.26) is a condition sufficient
for the asymptotic stability of the null solution,x =y = O,0f
the system (2.14).

Having determined the stabiiity criterion for the
linear equation (2.13), let us now consider the nonlinear

equation,

£ = x [x(4), y(+)] +¢g[x(t=n), t] | (2.27)

Q'QJ
S L

(y = ; h is a positive constant),

where the functions X andjﬂsatisfy the requirements,

X(x,v) ; X(x,0) _ —a, & XXO <=b forx#£0,y#0,
(2.28)
where a and b are positive constants, and
|@[x(t-n), t]] <T | x(+-n)| . (2.29)

The linear equation (2.13) will now be a special case of the
general equation (2.27). Equation (2.27) can be written in

the equivalent form,

Q:IQ-I
Sd e
{

=7 y (2.30)

2
!

= X(x,0) + [X(x,y) - X(x,0)] + f[x(t-h), t]

Define the functional,V, by
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v [2(@),5y@®)] = -2 a,, j X(€,0)d + (aj; - oc22b)x2
0 .
0
+ 200 Xy + a22y2 + U S x2(£)q£ R © (2.31)
-h
(L>0) .
4y

To estimate the derivative,ag,along a trajectory of the system

(2.30), we write

%% = [—2a22X(x,O) + 2(all - a22b)x + 2a12y] y
+ 2(ocl2x + a_22y) {X(x,o) + [X(X,Y) - X(X,O)] + f[x(t-h), t]}
+ pxz - pXZ(t—h) R (2:32)

Conditions (2.28) and (2.29) give the estimates,

—X Ss-2 ["‘12“2 + (@8 + ay,b = app)xy + (ay8 - “12)3’2]
+ 20 ,Tx | x(t=h)| + 20,,Ty | x(t-h)] J
+ uxz - ux2(t-h) . (2.33)
If ay95 %55 O,, and p satisfy equations (2.17), (2.18), (2,19)

and (2.24) respectively, then the right hand member of in-
equality (2.33) is equivalent to fhe right hand member of
equation (2.21) with cx(t=h) replaced by L lx (t-h)l, Thus,
the right hand member of inequality (2.33) is a negative-
definite function of the arguments,x(t), x(t-h) and y(t),if

2 .2 | |
aol” <L = 20,570 (2.34)
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The functional,V,satisfies the hypotheses of Theorem 1 and
hence inequality (2.34) is a condition sufficient for the
asymptotic stability of the null solution,x = y = 0,o0f the
system (2.30),

By use of the simple transformation,tl = b%t , in equation

(2.27), we may replace b by unity, a by

8 _
b = 2P

and L by'

ol
il

k , (k>0)

The stability criterion (inequality (2.34)) then becomes
2y ¥2 . (2.35)

(2D
1" "=

The stable region defined by inequality (2.35) is indicated in
Fig. 2.1, '

Again, if the right hand member of equation (2.27) is
a periodic function of time with period,®, (or is independent of
time ), then the null solution is always uniformly asymptotically
stable in the sense of Definition 2,and hence the system will
be stable for persistentdisturbances.

Having determined the stability criteria for the two
equations (2.6) and (2,27), we may now proceed with the development

of the approximate solutions,
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3. APPROXIMATE ANATLYTICAL SOLUTIONS

In the study of linear systems i1t is convenient to
deal with sinusoidal inputs and the resulting sinusoidal out-
puts. The ratio between the complex amplitudes of output and
input is known as the "transfer function". Although the in-
formation represented by these transfer functions seems to be
very specific, the property of superposition, inherent in
linear systems, makes these functions the basis for a complete
description of system behavior,

In nonlinear systems the property of superpostion
does not hold. The outputs, in general, are no longer sinusoidal
and the response to a sinusoidal input does not permit the
response to an input of any other type to be foretold exactly.
Nevertheless, the sinusoidal inputvfunctions are a convenient
method for investigating certain representative features of

system behaviour, such as the phenomena of jump reSonance<22)’

(23)?"The'problem then,is to determine, with some reasonable
degree of accuracy, the amplitude and phase of the system out-

put corresponding to any amplitude and frequency of the sinusoidal
input. The curves obtained for varying input frequency or
amplitude will be called response curves. This problem has been
solved by Klotter(24>for quasi=linear systems with no delay by

- employing the Ritz method. This method can also be applied to
systems with delay as is done in section 3%.2. It is interesting

to note that if the delay is reduced to zerd, the equations

developed reduce to those developed by Klotter(as indeed they
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should),

3.1 The Ritz Method ‘
Al though the Ritz method is described in the

(22), a brief discussion of it is given here.

literature
| The Ritz method postulates the existence of a function,
F(x,%,t), such that the Buler-Ilagrange equation,obtained from

the minimization of

I-= f F(x,%x,t) dt (3.1)
ot
a
is the nonlinear equation we wish to solve, i.e.,

oF -'..i[_a_E]=E(x> =0 (3.2)
ax at | 3% '

Consider then the minimization of the right hand member of

equation (3.1) given
oo

x(4) = 5y fi(t)

k=0
where x(t) is an exact solution to E(x) = 0.if the %k(t) form

a completglinearly independent set. We seek an approximate

solution ,

n o |
%(+) =;Oak # () s (3.3).

where n is arbitrary. The larger the n, the more accurate is the
solution and the more work involved. Substituting equation (3.3)

in equation (3.1), we obtain

§
b , :
= J Flag Yo + 8y ¢p *eeet 8y oy Yo + 81 1 +eeet
£
2}

s, 0)at o (3.4)
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Since the set5¢k,is chosen beforehand (i.e., trigonometric
functions if E(x) yields an oscillatory solution), equation

(3.4) must be minimized with respect to ay e Setting

oI =0
o2y
yields -
129 Yy )
o1 = [ arar= (254 + 224 av = 0,
day  p 97y t dF 3%
a , a
which finally becomes
t, t,
Q1 = [2E- 4 (An)] far v dry | = 0 - B9
82 ¢ Lax at \o% 3%, '

If we now specify that ;ﬂk(ta) = ¢k(tb) = O,or that g, is
periodic with period (tb-ta),equation (3.5) becomes

t

b '.
Q1 = [_éf. -4 (_G__F_)] ¢ at = 0 .  (3.6)
O% ¢ L d% at \af |

Since F(x,%,t) was so postulated that

%-fg(_g_g)= E(X)

equation (3.6) finally becomes

by
21 = [ FE® at = 0 . (3.7)
08, ¢

a
Equation (3.7) is known as the Ritz averaging integral and may
be taken to mean that we are trying to satisfy the differential
equation (3.2) in some "welghted" average.

Due to the orthogonality of the trigonometric

functions with unity weighting, for oscillatory systems the

Ritz method is equivalent to the Principle of Harmonic
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(22)_ (14)

Balance Cunningham uses this method in his attack on

‘nonlinear differential-difference equations.

3.2 Application of the Ritz Method to Steady-~State Oscillations

in Nonlinear Systems with Delay

The Ritz method will now be applied to the
differential-difference equation,
s : . ‘ : . 2
E(x) = ¥(t) + 2Djwg; [%(£)]+ 2Dp g, [k(t-n)] = [x(t)]

7

+ kwifg [x(t—h}] - G sin wt = 0 . (3.8)
Equation (3.8) is the equation of motion of a fairly general
nonlinear system with delay, subjected to a harmonic driving

force. The functions,fl and f,, describing the restoring and

2
delayed restoring forces, and the functions,gl and €59
describing the damping and delayed damping forces, are all
assumed to be single-valued and integrable functions of their

respective arguments.

If fl, f2, g1 and g, are odd functions of their
respective arguments, that is
£ [x(e)] = -r; [x(0)] 5 £y, [~x(e-m)] = -1, [x(t-0)],

(3.9)

It
1l

gq [—X(f)] -8 [X(t)] y 8y [?x(t—hi] -85 [x(t—h)],
the resulting motion has the mean value zeroc.
If only terms with frequency,w,are considered, an
appropriate assumption for the approximate solution is
X(t) = X sin(wt - ©) . (3.10)

The Ritz conditions are
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2
w .
_( E[¥(©)] sinwt dt = 0
0
on
W
and S B [%(t)] coswt dt = 0
' 0

When equations (3.9) are applied, the Ritz conditions become
) : : 2
[Fl -t 2b, NG, Sln(Qf»nh) * kF, COS(QMIJU] *

. 2 2
[?DlrlGl + 2D2rlG2 cos(q}unh) - kF, sin(Qfonh{] = [§] (3.11)

X
and .
tan 0 = 201N Gy * 2DyN Gy cos(nu h) - kFy sin(nuw h) 0 g 45,
2 . 5 . ' -
Fy - "+ 2D2QG2 31n(qunh) + kF, cos(qﬁanh)
where
T 4
2 3 | 2
F. = L4 S f.(Xsina)sina do = 4 S f, (Xcosa)cosa da, (3.13)
L 1 1
X nX
0 0
T T
2 2
Fp = 4 S f,(Xsino)sing do = s S f,(Xcosa)cosa dey (3.14)
TX X
0 0
T X
2 2
G, = L 5 gl(stina)sina da = 4 5 gl(chosa)cosa da, (3.19)
WX : . Tt wX
: 0 ¢
x n
2 2
G, = L 5 g2(stina)sinwxda = Y 5 g2QuXcosa)cosa da, (3.16)
nwX X
0 | o 0
= W S = G (3.17)
(" , °
n W,
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If the driving term in equation (3.8) has the form,

G coswt,instead of Gsin wt, the assumed sclution would be
%X(t) = X cos (wt - Q)

instead of equation (3.10). The resulting equations (3.11) to
(3.17), however, are unchanged by these réplacements.

If fyy £, g; and g, are non-odd functions,'thatvis
they do not satisfy equations (3.9), the resulting motion does
not have zero mean value. Therefore, a mean value,M,must be

included in the assumption for x. Equation (3.10) is replaced by

X =M+ X sin(wt - ) = M+ A sinwt - B coswt ,

where A X cos © and B =X sin ©.
Consequently, there will be three Ritz conditions for determining

the three constants,M, A and B or M, X and ©. These conditions

are
on
w
j CE[¥()] sinwt dt =0
-
2n
w
S E [%(t)] cos wtdt =0
0
2n
w
S E [%(0)] at =0
o
If we let
on 5

- W
Foy = £, [%()] at, Gy 7 L e [xw)]at,
0 n .0
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2% 2%
w ; .
Fop = § fp[%(t)] at, Gop = 1 5 g, [¥(¢)] at,
0 n O .
2n 2x
w ) w
Fgy = 1 S £ [%(t)]sin wt at,  Ggy = L1 S g, [X(t)] sinw t dt,
14 w
0 : . n" 0
2% : 2z
w W
'F82 =1 S. f2[§(tﬂ sinwt dt, GS2 = 1 S ggtﬁ(ti]sin wt dt,
14 W w
0 n O
21 on
w w
0 n O
W W
Fo, = 1 S £ [%(t)] cos wt at, Gy, = L S g, [K(t)] cos wt at,
0 n
the Ritz conditions become
Fop * kFq, + 2D1Goy + 2D5Goy = 0 (3.18)}
2, _
Fgy * KFgp + 2D1Ggy * 2D,Ggy ~ N°A = 8 = 0 (3.19)
. 2 _
and Foy + kKFap # 2D Gy *N°B =0 . (3.20)

In general, equations (3.18), (3.19) and (3.20)
represent a system of nohlinear algebraic eguations for the
three unknowns,M, A and B. The application is thus tedious, and
hence only systems with odd nonlinegfities are considered

hereafter.
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3.3 Illustrative Examples and Comparison of the Ritz-Method

Results to the Analog-Simulation Results

There are numerous particular eXamples leading to
equations with delay, €.8., differential-difference equations,
which arise from many particular fields of interest,as
mentioned in'fhe Introduction.

A simple example 1s the equation describing the

(1),

thickness of a sheet of metal coming from a rolling mil
x(t) = ;kEx(t-h) - XO] ,

where x is the thickness at any time,t, Xq 1s the desired
thickness, k is a constantdetermined by the control éystem
and h is the delay due to the separation of the rolls and the

measurement point.
(10) 1¢a4

'Studies in the field of population growth
to the equation,'
%(t) = rx(t)[l - xgt-hg] ,

i Xs ‘
where x 1s the population at any time,t, r is the reprodﬁction
rate, X is the steady-state population ultimately reached (or
the average value thereof), and h.is the delay due to the fact
that the population does not react immediately to its increasing
number.

An.example from the field of economics is Goodwin's

(9
,

nonlinear model of the business cycle

Fy(t+0) + (1 - ) y(t+0) = g[y(t)]

where y is the income at time,t, © is the delay between
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investment decisions and corresponding outléys, § is the time
constant of the income-ébnéumption relationship, @ is the change
in consumption per unit change in income, and @(y) is the
nonlinear induced investment. |

The analysis of a microphone, amplifier and speaker
combination with acoustic feedback(26)’1eads to the equation,

I(t) + R I(t) + 1 I(t) + Ak i{?-gg} = BKIL2 13[t-g§] ,
L LC C c C c

where I 1s the plate current at time,t, A and B are constants
related to the fube characteriétics, ¢ is the velocity of sound,
8§ 1s the distance té the reflecting object, k is an amplification
constant,'and R, L. and C relate to the circuit elements.

A system with distributed parameters méy sometimes be
treated by approximating its transfer function by one of the form,

G = e BS ,

Ts + 1

i.e., the transfer function of a delay (e_hs) and a time-constant

element.

(13)

The analysis of contrcl systems sometimes leads

to equations of the form,

1

X(t) + ay 0 (3.21)

x(t) + a; x(t-h) + ag x(t)

and %(t) + a; x(t) + ag x(t) + a5 x(t-h) = 0 . (3.22)

1
Equation (3.21) contains a natural damping term,a&i(t),as well
as a‘delayed damping term,al%(t—h). Equations of this type arise
when an artificially produced damping is added to increase an
insufficient natural damping, as in thé stabilizatibn of a

(13), (1h)

rolling ship . Equation (3.22) contains a natural
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restoring force, abx(t),and a delayed restoring force,aox(t—h).
Equations of this iype may'arise, for example, in the guidance
of an aircraft. The delay,h,could be due to the computation time
of a computer in an autopilot or to a human operator who controls
the rudder position and, therefore, the restoring force.

The simple equations (3.21) and (3.22) (at least
simple in appearance) may be further complicated by nonlinear
terms and the presence of adriving term or ihput,f(t). The
nonlinear terms may be due to hysteresis; backlash in gears;
mechanical stopss clamping circuits; friction; saturating effects
in amplifiers, inductors and capacitors; and a multitude of
other sources. Equations of this type with f(t) taken to be
G cos wt or G sin wt are considered in this section using the
approximate techniqﬁe described in the previous section. The
results are compared with the results obtalned by an analog
simulation. Before the approximate technique is applied to
epecific examples, however, a brief description of the

(22),(23),(28)

phenomenon known as "jump resonance'’ will be given.
The jump resonance phenomenon 1is peculiaf to systems
having a nonlinear restoring force,f(xL and a sinusoidal input.
The nonlinearity,f(x), is assumed to be an odd function in the
following discussion. If the input amplitude is held coﬁstant
and the input frequency,w, is increased, thevresponse curves,
ABCDE,are obtained (see Figs. 3.1 and 3.2); if the input
frequency is decreased, the response curves, EDFBA,are obtained.

If the damping is decreased, the resonant effect is more

pronounced and the separation of the jump points,w 1 andtuz, is
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increaséd. If the damping is increased, the resonant effect is
less pronounced and the separation of the jump points is
decreased until some critical damping is reached beandfwhich

(29)

no jumps are obtained If'the input frequency is held
constant and the input amplitude,F,is increased,:the response
curves, ABCDE, are obtained (see Figs. 3.3 and 3.4)3 if the input
amplitude.is deéreased, the response curves,EDFBA, are obtailned.
‘The resonance phenomenon previously described pertains

to systems having no delay. Since no previous work on the jump
resonance phenomenon for systems with delay has appeared in the

- literature, it is useful to apply the Ritz method to these
systems and determine thé effect of the-delay!on the response

curves. This is done in the following examples using equations

which stem from the important equations (3.21) and (3.22).

Example 1.

Consider the equation,

w, x(£) + 2D k(t-h) +w2[x(t) + u¥ (8]

- X(t) + 2D W
- G sin wt = 0 , (3.23)

which has a delayed damping term and a nonlinear restoring

force of the type“referred to in Figs. 3.1 ana 303, This |

equation is of the same type as equation (2.6) and is,'therefore,

stable when Dl>|D2|.

Applying.equations (3.13) to (3.16), we obtain

9
AL

S T G (3.24)

G o= G.=1 (3.25)
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and F, =0 . (3.26)
After substituting equations (3.24%), (3.25) and (3.26) into
equation (3.11), we obtain
2

B+ a, 0%+ a by =0 (3.27)

where A = X° ,

— 2 . :
ay = 2(1 - N+ 2D2Q'51nrv»nh) ,
- 2 . 2 . 2
a; = (1 - n° + 2D2r151nrvunh) + (2qu.+ 2D2rlcosrlwnh)
- 2 '
and ag = - 8

The quantities,X and S, have been replaced by dimensionless

quantities,X = X and § = S,where L = [JExJ“l. After substituting
L L.

equations (3.2%}, (3.25) and (3.26) into equation (3.12), we

obtain

tan O = 2D * 2Dyn cosnw h . (3.2@)
A+ 1 - q? + 2D, sinqw n |

The response curves can now be obtained by solving for the
positive real roots of the cubic equation (3.27) in A and then
substituting‘these‘values of 4 into equation (3.28). This
computation has been done using ah IBM 7040 digital computer
which has a plotterlavailable for recording output data. The
response curves for'any desired values of the éoefficients can
then be quicklyvobtainediusing a relatively simple computer
program. Typical response curves are shown in Fig. 3.5 .
These approximate curves are tc be compared to those obtained
by an analog simulation,where the amplitude, X,1is taken to be

the peak value of the output waveform and the phase,9,tc be the
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difference (in radians) between the zerc crossings of the output
and” input waveforms.

As is the case for systems without delay, the Ritz-
method results show that in some regions thefoutput cah exist in
three states (corresponding to the cases where three positive
real roots of equation (3.27) exist), whereas the analog —
simulation resulfs show only two states. This is due to the fact
that the two extreme states are stable and the middle state 1is

(30)

unstable and, therefore, could never be obtained
experimentally.

It is evident that the approximate results are quite
close to the analog-simulation results (especially for low-
output amplitudes where the effect of the nonlinearity is small),:
and also that the presence of the delayed damping produces
isolated regions of the response curve when the input frequency
is varied, whereas the response cﬁrve for varying input
_ émplitude is similéf'to Fig. 3.3. At certain frequencies the
delayed damping will be in phase with the natural damping , at
certain other frequencies the delayed damping will be out of
phase with the natural damping, while at intermediate frequencies
the delayed damping will have a component in or out of phase
with the natural damping and a component in or out of phase with
the restoring force. Consequently, as the input frequency 1is
increased or decreased the effective damping oscillates between two
extremes. If ﬁhe upper‘extreme is larger than the critical

damping necessary for Jjump resonance, then isolated regions of

the response curves are obtained as in Fig. 3.5.
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These isolated regions can also be explained by
considering the roots of equation (3.27). The nature of the

roots depends on the quantity, (q+r), where

q = 3%a(a® + 9p°)  and r = 2b2(a2 + )2 + gt
27 | 27 T
, — 2 .
where a=1 - n 2D2q_s1nq9>qh
. \
and _ b = ZDIQ + 2D2Q'cosqﬁ)nh

There are two complex conjugate roots and one real root, three
real unequal roots; or three real roots (two of which are equal),
depending on whether (q+r) is positive, negative, or zero
respectively. |

»When there is damping but no delayed damping (Di>O,
D2=O), qQ decreases monotonically from some positive value and
finally becomes‘negative,while.r increases monotonically from
some positive value as q’increases from zero. Due to the presence
of qé in r, (gq+r) is positive forAlarge q:.Thus it is possible
for (q+r) to decrease from some positive value to some negative
minimum and then increase,finally becoming positive as qlincreases
from zero. Thus, as q'increases, the numbefcﬁ\realroots of equation
(3.27) will be one, then threé, and finally,one. |

- When there is a delay present,q.and r are no longer
monotonic due to.the presence of the terms,éinrlwnh and
cosqunh. For large or small values of q‘, (q+r) will pe
positive. For intermediate values of Q’, however, (q+r) can
osciilate about zero as q'increases (the 1arger(nnh5 the more
oscillations occur). Thus, as Qlincreases, the number of real

roots of equation (3.27) will be one, then varying between one
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and three, and finally,one. Isolated regions of the response
curves will then appear in the frequency range where the number
of real roots of equation (3.27) varies between one and three.
With the frequency in the proper interval, the isolated regions
can be obtained by giving the system a sufficiently large
initial condition or by incfeaéing the input_amplitude until a
jump 1s obtained. and then decreasing the input amplitude to its
original value. The jumps-associated with the isolated regions
are always downward Jumps in amplitude. Consequently, the
isolated regions cannot be obtainéd simply by varying the input
frequency. ‘

The Ritz-method results show two isolated regions of
the response curve for varying frequency, whereas the analog-
simulation results show only one. The amplitude for the unstable
portion of the isolated region is cloée to that for the stable
portion. Thus the stable portion of the isolated region is
probably unstable for small fluctuations in amplitude. This
would also explaiﬁ the difference between the Ritz-method results
and the analog-simulation results for the isolated region that
was obtained in the analog simulation. .

The respbnse curve for varying input ampiitude is
similar to that for a system without delay, because the effective
damping remains constant if the frequency remains constant. If
the frequency remains constant and the input amplitude 1is
varied, the quantities,q and r,mentioned previously, are
monotonic even with délay present and, therefore, only one

region with three real roots is possitble.
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Example 2.
Consider the equation,
.e : - hd 2 2 1/3 .
x(t)+-2Df%lx(t)+-2D2%1x(t4n +er}(t)+ B x (tﬂ
- Gsin wt =0 |, (3.29)

which has a delayed damping term and a nonlinear restoring
force of the type referred to in Figs. 3.2 and 3.4. Although
the nonlinear function)xl/% is integrable, enabling the Ritz
method to be applied, it does not satisfy a Lipschitz condition
at the origin because of the infinite slope at this point. In
any physical system, the slope of the nonlinearity could be
!large but never infinite. Since equation (3.29) is the
mathematical model of some physicai system, we may consider it
to be an'accurate model everywhere except for a small
nelghbourhood about the point,x = O,where we assume the slope
of the nonlinearity to be large but not infinite. The stability

criterion is then the same as for equation (3.23), i.e., Dl>|D2|'

Applying equations (3.13) to (3.16),we obtain

Fo=1+p’_ D) x3 (3.30)
2t/3 [1(2/3)]
G, = Gy, = 1 ‘ (3.31)
and F, =0 , . | (3.32)

where P.is a Gamma function. After substituting equations
(3.30), (3.31) and (3.32) into equation (3.11) we obtain the
cubic equation (3.27), where now

\ = %2/3

9

ay = [(l - Qz + 2D2(Lsinr1wnh)2 + (2Dfl* 2D2q,COSQE)nh)%]—E
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)
2 2(1‘vl

_ 2
and ag = - 8 ay

- o
i

+ 2D2vlsinvtonh) ay

The quantities,X and S,have been replaced by dimensionless

quantitiesyX = X and § = S,where
L

L :[ [(1/3) ]3/2 pd = 12487 3 . (3.33)
23 [r(z/3)) 2

After substituting equations (3.30), (3.31) and (3.32) into

equation (3.12),we obtain

tan O = 2D1Q + 2D2q_cosqprgl .

A-l + 1 - QZ * 2D2q_sinrvnnh

The response cﬁrves can now be obtained as in Example 1. The
curves shown in Fig..3,6 are similar to those fqr a system
without delay (see Figs. 3.2 and 3.4) except that isolated
regions are obtéined when the frequency is varied as in Example L
. The response curve for varying input amplitude is again

similar to fhat for a system.without;deléy. The approximate
results are close to the analog-simulation resglts'except for
low-output amplitudes whére the approximate results are least
accurate,and the analog-simulation results afe inaccurate

1/3

because of the technique used to obtain the function,x .

Example 3.

Consider the equation,.

%(t) + 2D w, %(t) +wi[x(t) +u2”:x3(t):| + kwfl x(t-n)

1
-G sin wt = o - (3.34%)
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which has a delayed restoring force and a nonlinear restoring
force of the type referred to in Figs. 3.1 and 3.3. This
equation is the same type as equation (2.27) and is,therefore,
stable when

(2D1)2> k

. | ~ (3.39)
1 - x|

Applying equations (3.13) to (3.16),we obtain

_ 2 2
F, = 1+%u X< (3.36)
Gy = F, = 1 (3.37)
and G, = O . (3.38)

After substituting equations (3.36), (3.37) and (3.38) into

equation (3.11), we obtajn the cubic‘equation (3.27), where now

A= X
a. = 2(1 -n2 + k cosng _h)
2 ' rl» L n b]
a. = (1L -N% + k cosnw h)® + (2D.n - k sinnw h)2
1 q r[ n lQ - '1 n
_ 2
and ag = = S ,

where the dimensionless quantities,X and S,described in Example 1
have been used. After substituting equations (3.36), (3.37) and

- (3.38) into equation (3,12),we obtain

tan © = 2D - k sinnw h

1+ A -“q? + k cosnw h

The response curves can now be obtained as in Example 1. The
response curves shown in Fig. 3.7 are similar to those for a
system without delay (see Figs. 3.1 and 3.3),except that

isolated regions are again obtained when the frequency is
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varied. The effective damping iﬁ this case changes with
frequency because of the component of the delayed restoring
force,which is in or out of phase with the natural damping. In

other respects this examplé is similar to Example 1.

Example 4.

Consider the equation,

X(t) + 2D

o X(8) +wS[x(e) +u ? 3] + kof x(t-h)

- G sinwt =0 (3.39)

which has a delayed restoring force and a nonlinear restoring

force of théjtype referred to in Figs. 3.2 and 3.4. If we
1/3

treat the ﬁonlinearity,x , as in Example 2, the stability

criterion for this equation is given by equation (3.35).
Applying equations (3.13) to (3.16),we obtain
- equation (3.30) for Fi,

Gy ='F, = 1' (3.40)

and ’ G, =0 . ' (3.41)
After substituting equations (3.30), (3.40) and (3.41) into
equation (3.11),we obtain the cubic equation (3.27), where now

s = 3273

b

[(1 - 92 + k cosqu,m)® + (2D - k sinny W],

2(1 - vf + k cosvlwnh) aq

a1

- 2
and a5 = - 8% a; ,
where the dimensionless quantities,X and S,described in Example 2
have been used. After substituting equations (3.30), (3.40) and
v(3.41) into equation (3.12), we obtain
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tan © = 2Dn - k sinfw h

A"l + 1 - Qg + k cosrlwnh

The response curves can now be obtained as in Example 1. The
effectivevdamping changes with frequency as in Example 3,
otherwise the discussion for the response curves- shown in
Fig. 3.8 is the same as for Example 2.

The Ritz methed can also be applied to systems which
have nonlinear damping'tefms. These systems do not exhibit jump

resonance, but it is of interest to obtain their response curves.

Example 5.

Consider the equation,
.. i ; 2 .3 L w2
X(t) + 2Dlwn[x(t) + u_z %°(t)] + 2D k(t-h) + ©° x(t)
' w
n

which has delayed damping and nonlinear damping. This equation
is stable when Dl>|D2|’

Applying equations (3.13) to (3.16) and substituting
the results into equations (3.11) ahd (3.12),we obtaln for the

cubic equation (3.27)

A =%
a, = 2Dlﬂ_+ 2D2Q cosrlwnh ,
3
DlYL
(1 - n° + 2D.n sinnw _h)2 + (2DN+ 2D.N cosnw _h)>
al= Q 2“ Q n ]ﬂ 2&, n n
6
)+D1VL
and aj = _= 5° ,
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and for. the phase |

_ 2
tan 6 = 2qu~(l + q{A) + 2qu_cosTUnnh

2 .
1 - n- + ZDZrLSlnYP”nh

where the diménsioﬁlesé quantitiesys;X and §,describedj11Example 1
have been used. Typical response curves are shown in Fig. 3.9.
Since the effect of the nonlinear damping is small, the Ritz-
method results and the analog—simulation results are quite
close. The nonlinearity increases the damping as the outpﬁt
amplitude increases, causing the peak of the curve for varying
frequency to be somewhat flattened and the curve for varying
input amplitude to be concave down. The delayed damping causes
slight humps in the frequency response curve due to the varying
effective damping with frequency. This effect is somewhat

diminished due to the nonlinear damping term.

Example 6.

Consider the equation,

CR(t) + 2ppu [R() + u? wi/3 &1/3(tﬂ + 2D,

W k(t-h) + W2 x(t)
- G sin wt =0 (3.43)
which has delayed damping and ncnlinear daﬁping. If the
" difficulties due to the presence of the cube root term are
; treated as in Example 2, the equation is stable when D1>|D2’.
. Applying equations (3.13) to (3.16) and substituting
the results into equations (3.11) and (3.12), we obtain for the

cubic equation (3.27)

A = 22/3

I
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_ 2
ay = _ . - 8 : s
(1 - rf + 2D2rtsinv1/wnh)2 + (ZDlvl + 2D2rLcosernh)2
2/3
a, =~ Dy N7 ag
=2
1/3
and  a, = L+Dl N %
. -
S

and for the phase
2/3 .
tan 0 = 2PN l/ﬂl ‘ é]) + 2D,n cos nw h
| 1 - Q? + 2D2YLsinvlwnh

where the dimensionless quantitiés,i and S,described in Example 2

have been used. Typical response curves are shown in Fig. 3.10.
The Ritz-method results and the analog-simulation results are
again quite close. The nonlinearity decreases the damping as the
output amplitude increases, causing the peak of the curve for
varying frequency to be sharply peaked and the curve for varying
input amplitudé to be concave up. This sharpbpeaking of the .
resonance curve would be useful where a high Q circuit 1is
required. The effect of the delayed damping is the same as for

Example 5.
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4. VERIFICATION OF THE APPROXIMATE SOIUTION
BY ANAIOG SIMUIATION

The validity of the approximate analytical method
mentioned in section 3 depends on assuming the cofrect form of
the solution. If the assumedform ig incorrect, the results
obtained by this method are completely meaningless,

In view of the quasi-linear nature of the systsms
considered, 1% has been assumed in section 3 that the response
of the system to a sinusoidal input will be approximately
ginusoidal and of the same frequency as the input., This
"assumption 1is easily verified by simulating the system on the
PACE 231R analog computer. In order to compare the Ritz-
method results to the analog results it is desirable to measure
the amplitude and phase of the fundamental component of the
output waveform, Since the system is nonlinear, the output
waveform, in general, deviates somewhat from a true sinusoid.
This deviation, however, is not large and, therefore, it is
reasbnable to"base the measurement of thé amplitude of the
fundamental on the peak jglue of the output waveform and the
phase on the zero=-crossover.

| The versatility of the PACE 231R enables automatic
plotting of the system output amplitude and phasé vérsus the
ffequency or amplitude of the sinusoidal system input. In
view of the large numbef of examples considered, it is essential
that the response curves be obtained automatically,btherwise

the compﬁting time and the time to plot the curves would be



48
prohibitive,

The sinusoidal system input ( A coswt or A sinwt)

is obtained by solving the nonlinear differentisl equation ,

2

EE-eI:AZ-‘-x2-i2]'§:+w2x=O . (4.1)
w

which was suggésted by Van der Pol and is discussed by Jackson(3l),

(see Fig., 4.1). Equation (4.1) has the limit cycle solution,

x = A cos(wt + @), (4.2)
which is easily verified by substituting equation (4.2) into

equation (4.1), If the initial conditions are chosen as

x(0) =4 ,  x(0) =0,
the solution begins at the iimit cycle and the term,8,in equation
(4.2) becomes zero. With e fairly large (say 10), the solution
tends rapidly to the limit cycle if any disturbances occur.
Thefefbre, if the signalg corresponding to w and A are varied
reasonably slowly, the nonlinear oscillator of Fig. 4.1 will
- continuously yield the output,A cos wt. The circuit described

(32)

by Humo does not function in this manner and hence his
results are in error.

A control circuit (Fig. 4.2) enables the operator to
hold A constant and sutomatically increase or decrease w, or
to hold w constant and automatically increase or decrease A,
With switdhes,SlO, Sll’ 812_ and SlB’in the left position, w
is swept by integrator 26 while A is set by pot. P59; with the
switches in the right position,A is swept by integrator 26

while w is set by pot P59. With switch,S 2,in the right

o
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position the output of integrator 26 increases; in the left
position the output decreases. The sweep rate is controlled
by pot. P§8.

Fig. 4.3 shows the analog simulation for the system
of example 1 (sec. 3.3)'and the track and store circuits used
to detect the system output amplitude or phase. The analog
gimulations of the other systems are similar to Fig. 4.3 ahd are
therefore not shown. A tweﬁfy Segment diode function generator
provides a good approximation to the cube root quantity required
for examples?,,4, and 6 of section 3.3. The infinite slope
at the origin for the cube root function cannot be obtained
using the function generator and hence the results obtained
for low amplifude inputs to the function genefator are somewhat
in error,

‘The delay élemenf is simulated'by means of an Ampex
tape recorder (Model SP300 F.M. Direct). The tape speeds of
17/8 (+ 0.4%), 3 3/4 (+ 0.4%), 7 1/2 (+ 0.2%), and 15(+ 0.2%)
inches per second, provide delays of 1455, 728, 364, and 183
milliseconds respectivelys The frequency response at a tape
speed of 15 inches per second is from O %o 2500 Hz. The
maximum frequency is reduced by a factor of two each time the
tape speed is reduced by a factor of two. The inputs and out~
puts to the various channels of the tape recorder are available
as‘trunk line terminations at the analog patch panel. The
resistors necessary to protect the tape recorder from overload
and to provide the appropriate signal levels at the tape recorder

and the analog patch panel are incorporated in these trunk lines.
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The delay element could also be simulated by approxi-

B8 ynich is the transfer

mating the laplace shift operator,e”
function associated with a pure time delay,h. This simulation,
however, requires a large ﬁumber of integrators for as accurate
an approximation as can be ‘ovtained with the tape recorder. The
tape recorder has the added advantage that the delay can be
changed merely by changing the tape speed.

With swifches,SOO and 3037in the left position, the
output amplitude is plotted. The signal,x(t), is applied to
comparétorAMS and the signal,-i(t),is applied to comparator M6,
Bach signal is compared to zero volts. (The operation of the
comparators, integrator mode control, and AND gates is described
in Appendix B.) The normal digitél output, M5, and the comple-
.mentary_output,ﬁ@,arerapplied as inpﬁrs to an AND gate (see
- Fig, 4:3). The normal output. (M5.M6) of the AND gate is thus
at a ONE level for the first haif of each positive half-period'
of x(t) and at a ZERO level for the remainder'of the period.

The signal,MBoﬂE,controls the mode of integrator 10,while the

signal,M5°ﬁ§,controls’fhe mode of integrator 11. Integrator
10 thus "tracks" the system output during the first half of
each positive half—periéd,While integrator 11 "storés" and plots
the maximum value of each positive half-period. The system
output amplitude is thus. obtained.

With switches,SOO and 803,1n the right position, the.
phase of the output is obtained. The system input is applied

to comparator,M6, while integrators 10 and 11 track and store

the output of intégrator 00, The signal,MSoﬁg, which controls
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the mode of integrator 00, is now at a ONE level each time the
system input goes positive until the time the system output
goes positives From the time the system input goes positive,
therefore, integrator 00 integrates at a rate proportional to
w for a time equal to the time x(%) lags the input and is then
reset. The output of the track and store circuit is then
proportional to the'phase of the output.

If the signals corresponding to w and A are varied
- slowly enough that tfansient effects are negligible; then
continuous plots of the steady-state system response curves are
obtained.

The results obtained by the analog simulation are
given in sec 3.3, and are compared to the results obtained by

the approximate analytical method.
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5. CONCLUSIONS

The purpose of this investigation was to obtain
approximate analytical solutions of quasi-linear differential-
difference equations and to determine their resonance
properties.

Stability criteria for these eQuations have been
given prior to the approximate analytical solutions and the
- determination of the resonance properties. The stability
criterion for equations with delayed damping 1s due to
Krasovskii(2l); the stability criterion for equations with
delayed restoring force has been developed by the author.

Approximate analytical solutions of a general
seéond—order nonlinear differential-difference equation have
been obtained by employing the Ritz method.

“ General equations which lead to the determination of
the consfanté in the assumed solutions have been given for
systems with odd nonlinearities and for systems with non-odd
nonlinearities. The general equations for systems with odd
" nonlinearities héve been used to obtain the resonance properties
for several specific examples of such systems. It has been found
that the response curves for varying input amplitude are similar
to those for.systems without delay, whereas the response curves
for varying input frequency exhibit a rather peculiar jump
phenomenon which is not obtained for systemsvwithout delay. When
the input frequepcy is varied, isolated regions of the response
curve occur. It ﬁas been found that these regions can be

obtained physically by giving the system a sufficiently large



55
initial condition,or by increasing the input amplitude

sufficiently and then decreasing it to its original value. The
isolated regions are attributed to a frequency—dependent
effective damping caused by the interaction of the natural
damping with the delayed damping or the delayed restoring force.
This peculiar jump resonance phenomencn has not previously been
mentioned in the literature.
| The approximate.solutions for the specific examples

have been verified by an analog computer simulation. This
simulation employs track and store techniques to enable
automatic plotting of the response curves. The Ritz-method
results compare favourably with the analog-simulation results.

In view of the success of the Ritz method for the
exémples considered, it would be useful to prove theoretically
that the Ritz method is applicable to general nonlinear
- differential-difference equations. It would also be useful to
extend other approximate techniques available for ordinary |
nonlinear differential equations to nonlinear differential-
difference equations. It would then be possible to investigate
transient behaviour and such phenomena as entrainment of
frequehcy which occurs when an oscillator is subjected to a
sinusoidal dfiving force.

In conclusion, approximate solutions to some qﬁasi-
linéar differential-difference equations have been obtained

and their resonance properties determined.



56
APPENDIX A

SOME DEFINITIONS AND PROPERTIES PERTAINING TO QUADRATIC FORMS

The following definitions and properties pertaining
(33),

- to quadratic forms are given by Ayres

. A homogeneous polynomial of the type

n. . n

. ' <
‘= ! =
q X'AX :iJ ji: aij Xixj s
- i=1 j=1
whose coefficients,aij,are elements of F is called a quadratic

fqrm over F in the.variables,xl,,,“,xn°

The symmetric matrix,4 = [aij]’(aij': ay3),1s called
;jhe matrix of the quadratic form and the rank of A is called the
rank of the form. 1f thé fank is r<n the quadratic form is
called singular; otherwise, nonwsingﬁlar°

A minor of matrix,A,is called principal if it is
bbtained by deleting certain rows and the same numbered columns
of A. Thus, the diagonal elements of a principal minor of A are
aiagonal elements of A.

For a symmetric matrix,A = [aij],over F, define the
leadiqg principal minors as '
yoeey Py = |Al

Po = 1y Py = 8175 Py = |agq 8y,

g21 %22
A real quadratic form,X'AX,is positive-definite if,
and only if,its rank is n and all leading principal minors are

positive.
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APPENDIX B
ON THE OPERATION OF SOME ANALOG COMPUTER COMPONENTS

v The following specifications were obtained from the
PACE 231R MIG System handbook'>4)i

B;l' Integrator Mode Control

o _YThé integrator is placed in the electronic switching
(ES) mode by grounding its ES termination on the Memory-and
Iogic Unit (MILU) pre-patch panel. In the ES mode the integrator
is placed in "initial condition" by applying +5 volts (a ONE
level) to one of the MIU panel IC terminations (designated

S/R in Fig. 4.3). An input of zero volts (a ZERO level)

switches the integrator to the "operate" mode.

_B{ 2 ‘E;ectronic Compatators

The analog inputs are applied at the analog patch
penel and provide the following digital outputs at the MLU
pre-patch panel: ' |

(1) When the analog input sum is negative (less than
,. =10 mv.) the normal digital output is at & ZERO level;
(2) When thé analog input sum is positive (greater than

+10 mv.) the normal digital output is at a ONE level.
B. 3 AND Gates
If all of the inputs to an AND gate are at a ONE level

the normal output is at a ONE level; if one or more of the

inputs are at a ZERO level the normal output is atzaZERO level.



10.

lll

12.

13.

58
REFERENCES

Bernoulli, J., "Meditationes. Dechordis vibrantibis...",
Commentarii Academiae Scientarium Imperialis
Petropolitanae, 3 (1728), 13-28. Collected Works,
Vol. iii, p. 198.

Kfasovskii, N.N., 'Stability of Motion', Stanford University
Press, 1963.

Khalanai, A., "Absolute Stability of Some Nonlinear Control

Systems with Time Delay", Automation and Remote
Control (Translated from the Russian), Vol. 25,
pp. 268-279, pp. 1251-1256, 196k.

Beilman, R., and Cooke, K.L., "Differential-Difference

Equations', Mathematlcs in Science and Engineering,
Vol. 6, Academic Press, N.Y., 1963. -

Plnney, g., -Ordinary Difference-Differential Equations®
Unlvers1ty of California Press, 1959.

Choksy, N.H., "Time Lag Systems - A Bibliography", I.R.E.
Trgns. on Aut Cont., Vol. AC-5, No. 1, pp. 56-70, 70
19 0]

Welss, R ,'”Transportatlon Lag - An Annotated Bibliography",
I.R.E. Trans. on Aut. Cont., Vol. AC-4, No. 1,

pp. 56-64%, 1959.

Volterra, E., "On Elastic Continua with Hereditary
Characteristices", J. Appl. Mech., Vol. 18,
pp. 273-279, 1951. '

. Bothwell F.E., "The Method of Equivalent Linearization",

Econometrlca, Vol. 20, p. 269, 1952.

Cunningham, W. J., "A Nonlinear Differential-Difference
- Equation of Growth", Proc. Natl. Acad. Sci. U.S.,
Vol. 40, pp. 708-713, 1954- |

Summerfield, M.J., "A Theory of Unstable Combustion in
Liquid Rocket Motors", J. Amer. Rocket Soc., Vol. 21,
p. 108, 1951.

Roston, S., "Mathematical Formulation of Cardiovascular
Dynamics by use of Laplace Transforms'", Bull. Math.

Biophys., Vol. 21, pp. 1-11, 1959.

Minorsky, N., ~“Nonlinear Oscillations , D. Van Nostrand Co.,
N.Y. s DP. 514-540, 1962.




14,

15.
16.
17.
18.
19.

.20.‘

21.
22,

23.

24,

25.

26.
27 .

28.
29.
30.
31.

59

Cunningham, W.J., Introduction to Nonlinear Analysis -,
McGraw-Hill Book Co., N.Y., pp. 221-244, pp.: 332-333,

1958.

Smith, 0.J.M., ~Feedback Control Systems , McGraw Hill Book
Co., N.Y., pp. 299-352, 1953.

Popov, E.P., 'The Dynamics of Automatic Control Systems",

Addison-Wesley Publishing Co., pp. #03-hhl, 1962.

Pinney, E., op. cit., pp. 28-31.

,Pinney5 E;,~op; cit., pp. 41-70.

Bellman,R., and Danskin, J.M., "The Stability Theory of
Differential-Difference Equations", Proc. of the Symp.

on Nonlinear Circuit Analysis, Vol. II, Polytechnic
Institute of Brooklyn, N.Y., pp. 107-123, 1953.

Jones, P., "Stability of Feedback Systems Using Dual Nyquist

Diagram", I.R.E. Trans. on Circuit Theory, Vol. CT-1,
No. 35, p. 35, 1954.

‘Krasovskii, N.N., op. cit., p. 175.

Cunningham, W.J., op. cit., pp. 171-213.

Hayashi; C., Nonlinear Oscillations in Physical Svstémgi,
 MeGraw Hill Book Co., N.Y., PP. 114-127, 196kL. :

‘Klotter, K., "Steady-State Vibrations in Systems Having

Arbitrary Restoring Forces and Arbitrary Damping
Forces", Proc. of the Symp. on Nonlinear Circuit
Analysis, Vol. II, Polytechnic Institute of Brooklyn,
N.Y., pp. 234-257, 1953.

KantoroVich, L.V., and»Krylov, V.I., ~Approximate Methods of
: Higher Analysis , Interscience, pp. 2L40-272, 1958.

Pinney, E., op. cit., pp. 201-203.

Eckman, D.P., Automatic Process Control' , John Wiley and
Sons Inc., N.Y., p. 291, 1958.

Minorsky, N., op. cit., pp. 375-380.
Cunningham, W.J., op.cit., p. 331.
Cunningham, W.J., op. cit., pp. 297-298.

Jackson, A.S., ‘Analog Computation , McGraw Hill Book Co.,
N.Y., pp. 182-185, 1960.




60

32. Humo, E., "Parameter Sweep in Iterative Analog Computer
Techniques", Annales de l'Association internationale

pour le calcul analogigue, Vol. , No. 2, pp. 77-81,
1965.

33. Ayres, F., ‘Theory and Problems on Matrices’, Schaum
' Publishing Co., N.Y., pp. 131-138, 1962.

34, “MLG System (Memory -and Logic Unit 14.138 and Expansion

Groups)', Vol. I, Electronic Associates Inc., Long
~ Branch, New Jersey, pp. 12-2k.




