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ABSTRACT 

Since very l i t t l e has appeared in the l iterature 

regarding solutions of driven nonlinear differential-difference 

equations, i t has been the purpose of this investigation to • 

obtain approximate solutions to these equations and to 

investigate their resonance properties. The equations 

considered are second-order quasi-linear d i f ferent ia l -

difference equations. 

S tabi l i ty c r i t e r i a are presented for equations 

having delayed damping' and for equations having a delayed 

restoring force. 

Application of the Ritz method leads to general 

equations which determine the constants in the assumed 

solution. The general equations for systems with odd 

nonlinearities are used to obtain the resonance properties 

for several specific examples. Unusual jump resonance 

phenomena are obtained when the input frequency is varied. 

Regions of the response curve occur which are not connected 

to each other. 

The approximate solution is verif ied by an analog 

computer simulation employing track and store techniques to 

enable automatic plotting of the response curves. The R i t z -

method results compare favourably with the analog-

simulation results . 

i i 
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1. INTRODUCTION 

Ordinary dif ferential equations (or systems of 

equations) have'been and s t i l l are a.useful tool in the ana

lys is of a wide variety of physical phenomena* It must be 

kept in mind, however, that in using ordinary dif ferential 

equations to' describe phenomena, i t is assumed that the future 

behavior of the system depends only on the present state and 

is independent of the past. In order to more accurately 

describe physical systems, therefore, i t is necessary to con

sider the fact that their rate of change depends not only on 

their present state, but also on their past history. In place 

of the ordinary dif ferential equation , 

ff = f (x,t) , x(tQ.) = Cr< (1*1) 

we must write 

| | = f [x(t) , x(#), t ] , (1.2) 

where x9- ranges over a set of values less than t, and the i n i t i a l 

funct ion,x(t#), is specified for the r a n g e , l e s s than the i n i -

t i a l time, t . Of the many equations of this type, perhaps the 

simplest is a dif ferential - difference equation , 

~ = f [x(t ) , x(t - t 1 ) , . o o , x ( t - t^), t ] , (1 .3). 

where 0 < t-̂  < tg < * . . < t^. 

In this case^ only a certain f ini te interval of the immediate 

past history of the system is involved in the determination of 

the present (instead of the whole past as in an integro-

differential equation). 



The study of differential-difference equations was 

begun by John Bernoulli in 1728? and theory regarding these 

equations has been developed in several hundred papers since 

then. Due to their application to control theory, this study 

has been greatly intensified in recent years. - Many Russian 
(2) • (3) authors, such as Krasovskii v 'and Khalanai , have considered 

the problem of s tabi l i ty . Bellman and C o o k e ^ have developed 

theorems analogous to those for ordinary dif ferential equations. 

Pinney yhas also contributed to the general theory, and 

bibliographies by Choksy^^and Weiss give reference to 

356 separate items a l l dealing with time delay systems and/or 

associated mathematics., Abundant references are also given in 

the previous works cited. 

Differential-difference equations arise in the theory 

in sti 
.(ID 

of e last ic i ty , mathematical economics^^population studies 

the study of combustion in l iquid-fuel rocket motors 
(12) 

mathematical biophysics ,the theory of automatic, control 
(13),(14), (15), (16) , , . - ' 

' ' ' and in a number of other areas involving time 
delays. 

1.1 Scope of the Present Work 

Some theorems developed by Krasovskii pertaining to 

the s tabi l i ty of systems with delay are given in Chapter 2. 
These theorems are then applied to discuss the s tabi l i ty of'two 

rather general classes of second—order nonlinear systems with 

delay. 

Although much of the theory pertaining to existence, 

uniqueness, and s tabi l i ty of solutions to differential-difference 
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equations has been developed, very l i t t l e has been done to 
(17) 

obtain solutions due to their complexity . Because of this 

complexity i t is desirable to obtain an approximate solution. 

This approximate solution must approach the actual solution 

with some reasonable degree of accuracy and must also exhibit 

any qualitative behaviour characteristic of the system, such 

as jump resonance. Therefore, approximate solutions have been 
(2 

developed in Chapter 3 by employing the well known Ritz methodv 

The general equations for the amplitude and phase of a one-

term approximation to the solution are obtained and applied 

to several particular examples. The results thus obtained 

are then compared to those obtained by an analog computer 

simulation discussed in Chapter 4. Both sets of results show 

that rather unusual jump resonance phenomena are often obtained. 

In Chapter 5 some general conclusions and ideas for 

future research are given. 
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2 . STABILITY 

Before investigating the solution of any differential 

equation, i t is useful to determine beforehand which values 

of the coefficients of the equation ( i f any) lead to stable 

solutions. Then,only systems which are inherently stable in 

the undriven case need be studied to determine their resonance 

properties. 

The s tabi l i ty of a l inear differential-difference 

equation can be determined by examining the roots of i t s associated 

characteristic e q u a t i o n ' . If these roots have negative 

real parts, the solution of the equation is stable* Because 

of i t s transcendental nature, the characteristic equation, in 

general, possesses an inf ini te number of roots. The relation 

between the location of these roots and the coefficients of 

the differential-difference equation is necessarily much more 

complicated than for an ordinary dif ferential equation. A 

graphical technique sometimes provides more useful information 

than a direct examination of the roots of the characteristic 

equation. One such technique, employing a dual Nyquist diagram, 

is given by J o n e s ^ ^ , The algebraic part and the transcendental 

part of the characteristic equation can be plotted separately 

and the s tabi l i ty determined from their intersection points. 

The effect of the delay on the s tabi l i ty can then be easily 

determined. 

For nonlinear systems with delay, the s tabi l i ty is 

most easily determined by applying Lyapunov's second (or direct) 
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method. This method i s described i n most modern books on ad

vanced control theory. Its great merit i s that i t can be applied 

to s t a b i l i t y discussions f o r very general equations without 

finding e x p l i c i t solutions* 

2.1 Some Theorems and. Definitions Concerning Lyapunov's Second  
Method f o r Equations with Time Delay 

The Russian author, Krasovskii, has done a great deal 

of work concerning the s t a b i l i t y of systems with time delay. 

Some of his theorems and de f i n i t i o n s are given i n this section; 
(2) 

the interested reader i s referred to Krasovskii's book v 'for 

the proofs and further information on the subject. 

We are interested i n equations of the form, 

dx. 

dt^ = X i L x i ( t - l l i i ) » • - • > ^ ^ " ^ i n ^ ' ^ ( t ) , . . . , x n ( t ) , t j (2.1) 

( i = l . . . . , n ; 0<h ( t ) < h ) , 
where the right hand memb er s, X_̂  (y^y o • • t y^ J x - ^ , o , . , \ are 
continuous functions of th e i r arguments and are defined f o r 

y ±| <H ( i = 1 , . . . , n), (2*2) 

where H i s a constant (or i n f i n i t y ) . We suppose further that 

these functions s a t i s f y a l i p s c h i t z condition with respect to 

the x. and y. i n the region (2.2), i . e . , 
j J 

II II II It I T T t 

Xj^(y-^yo.», y^; x-^,..., x^jt) — X^(y-j_»«»•» y^$ x^,,.., xn'^^ 
• n . n 

< L( |xj-x'| + £ ). 
d=i .i=i 

< H 



It w i l l also be assumed that 

\ [x3(0),t] = 0 
on the entire arc. 

x.(0) =0; i = 1 , . . . , n; j = 1 , . , . , n) 
J 

-h<0£O. 
The following notation is used: 

X I = sup(J x^ p o o tr 9 

2 — ^ l ° * °' "̂"n̂  

x|| | = sup(|x i(0)| ) for -h<0<O y 

0 n 

L - h 1'-L J 

X q ( 0 o ) = [ x i o ( 0 Q ) ] ( i =1,. . . , n ; -h<# o *0) . 

To emphasize the dependence of x(t) on the i n i t i a l curve 
and the i n i t i a l value of t, we shall denote {j*-^^)] by 
x [x ( 0 q ) , t Q , t] 

Definition 1. (a) The solution,x =' 0,of equation (2.1) is called 
stable i f for every positive number, e >0,we can find a positive 
number,6>0,such that whenever the inequality, 

k t e y l l h i * • 
is satisfied, the relation , 

holds for t > t . 
o 

< e 

(b) If, whenever condition (a) is satisfied, the 
conditions. 
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lim 

t-»- oo 
= 0 

x [x o (0 ), t , t ] | | < H for a l l t > t 0 ( H 1 = const.) , 

are satisfied for a l l i n i t i a l curves, X Q(0 ).,satisfying the i n 

equality , 

then the solution,x = 0, of equation (2,1) i s asymptotically 

stable and the region (2.3) l i e s in the region of attraction of 

the unperturbed motion,-

Theorem 1. Suppose there is a functional, v[x(0), t J , that 

satisfies the conditions, 

|V [x(0) f t] | <W1( ||x(0)|| ) + W2(||x(0)|| |) , 

7 [x(0), t ] > W[||x(0)||], 

t ^ m 0 + - P ( f ) = - f [ | | x (0 ) | | ] , (2.4) 

where W^(r) and Wg(r) are functions that are continous and mono-

tonic for r>0 y and W.^0) = W2(0) =0; w(r) is a function that is 

continous and positive for r ^ 0. Then the nul l solution }x = 0, 

of equation (2.1) is asymptotically stable. 

If X^ and b-^.j(t) a r e periodic functions of the time,t, 

a l l with p e r i o d , © , (or i f X:. and h. . are independent of the time,t) , 

then condition (2.4) may be replaced by the following weaker 

hypothesis: 

A sufficient condition that lim . sup (-fr)should be nonpositive 
t—0 + A t 

along a trajectory is that the equation , 
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lim sup(^) = 0 , 

be valid for a l l t ^ t only along the trajectory, x = 0. 

Definition 2, The solution,x = 0, of equation (2,1) is called 

uniformly asymptotically stable with respect to the t ime,t o >0, 

and with respect to the i n i t i a l curve, x (0Q), in region (2,3), 

i f i t satisfies condition (b) of Definition 1 and also satisfies 

the following conditions? 

(i) the number, 5>0, of Definition 1 (a) may he chosen 

independent of t >0j 

( i i ) for arbitrary i|>0, there exists a number,T (r\), such 

that 

holds for every t > t + T(r^), independent of the choice of a 

piecewise-continuous i n i t i a l curve,xQ(0 ), in region (2.3)* 

If the right hand member of equation (2.1) i s a 

periodic function of time with period,9,(or is independent of 

the time,t) , then the no i l solution,x = 0,is always uniformly 

asymptotically stable in the sense of Definition 2, 

Now consider the "perturbed" system of equations , 

dx, 
~ = X i ^ ^ C ^ ) , . . . f x n ( t ) j ^ [ t - h ^ C t ) ] r . ' . . r x n [ t - ] i l n ( t ) ] , t j -

+ R± ^ x x ( t ) , . . . , x n ( t ) ; x 1 [ t -g i l ( t ) ] , . . 0 , x n t -g i n ( t ) , t j . 

( i , j = l , . . . , n ; O < h ^ ( t 0 ^ h ? 0 < g ± ^ (t) < h), 

where the continuous functions,R^,are not required to reduce to 

zero for x. = y . =0, 3 3 



Definition 5. The nu l l solution,x = 0, of the system (2.5) is 

called stable for persistent disturbances i f for every e>0 

there exist positive numbers,<SQ? r|, A, such that the solution, 

x [X
O(0Q)> ^q9 "fc]*0^ "the system (2,5) satisfies the inequality, 

l x [ x o ( 0 o ) ? V * ] II < e ' 

for a l l t £ t Q , tQ ^ 0, whenever the i n i t i a l curve, X Q (0Q), satisfies 

the inequality , 

x (0 ) o^o 
h 

< <S0 , 

and the perturbed time delays, h . a n d the functions,R.,satisfy 

the inequalit ies , 

R i ( x 1 . . . . , x n j y 1 y n , t ) | < rj_ , ( i = l , . . . , n ) , 

for x < e y || < e, and 

|h ± ^(t) - k ^ ( t ) | <A ( i , j = l f . . . r n ) . 

Theorem 2. Suppose that the nu l l solution,x = 0,of equation 

(2.1) is asymptotically stable uniformly with respect, to time, 

tQ,and the i n i t i a l curve,X q (0 o ) , in the sense of Definition 3., 

then the nu l l solution,x = 0, is stable for persistent disturbances. 
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2 . 2 Stabil i ty of Systems with Time Delay in Particular Cases 

2 . 2 . 1 . Systems with Delayed Damning 

Consider the second-order nonlinear equation, 

2 

^ - f = X [x(t) , y(t)] + ^[y(t-h), t] , ( 2 . 6 ) 

(y = ^ ! h i s a positive constant), 

where the functions X and ^satisfy the requirements , 

X(x,y) - X(x.O) < _ a 9 XJ^Ol < ^ f o r x ^ o, y ^ 0 , 
y x 

( 2 . 7 ) 

where a and b are positive constants, and 

|y(y.t)| £ l|yj . (2.8) 
We write equation ( 2 . 6 ) in the equivalent form, 

dx 
dt (2.9) 

| | = X(x y 0) + [X(x.y) - X ( x , 0 ) ] + ̂ >[y(t-h), t] . 

( 2 ) 

Krasovskii^ has shown the following? 

Define the functional V by 
x 0 

V [ x ( * ) , y W ] = - f x ( £ , o ) d £ + z £ :
+ | / y 2

(e) d£ . 
0 - b 

( 2 . 1 0 ) 

To estimate the derivative, along a trajectory of the system 

( 2 . 9 ) , write 
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H = [x(x,y) - X(x,0)] y + yj(>[y (t-h), t] + ayJL _ S|i(t-h). 

Conditions (2.7) and (2,8) give the estimates , 

fll ..<; = a £ [ ± ) + E | y ( t ) y ( t - h ) | y 2 ( t -h) . (2 . i i ) 

The functional,V,satisfies the hypotheses of Theorem 1 i f the 

right hand member of inequality (2.11) is a negatire-definite 

function of the arguments,y(t) and y(t-h). This condition is 

satisfied i f the numbers,a and L,are related by 

a > L „ (2,12) 

Thus,inequality (2.12) is a condition sufficient for the asymptotic 

s tabi l i ty of the nu l l solution,x = y = 0,of the system ( 2 . 9 ) » 

If the right hand member of equation (2*6) is a periodic 

function of time with p e r i o d , © , ( o r is independent of time), then 

the nul l solution is always uniformly asymptotically stable in 

the sense of Definition 2 and hence the system w i l l be stable 

for persistent disturbances. 

The s tabi l i ty cr i ter ion expressed by equation (2.12) 

can also be obtained heuris t ical ly . Due to the delay, h,there 

w i l l be some frequencies of osc i l la t ion, co, such that wh is an 

odd multiple of rt. At these frequencies,' the delayed damping 

term, y(t-h), w i l l be out of phase with the damping term, y( t ) . 

Since a and L are, effectively, the coefficients of the damping 

and delayed damping terms, then a must be greater than I in 

order that the system should have no negative damping at any 

frequency. 
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2.2.2 Systems with Delayed Restoring Force 

Consider the linear equation with delayed restoring 

force , 

! ^ + a ^ . + b l ( t ) - o x ( t . h ) a = 0 , if , 
dt< 

(a, b, and c are constants; h is a positive constant) 

This can Toe written in the equivalent form , 

= y , ( 2 . 1 4 ) 

= -bx - ay + cx(t-h). 

We wish to find a^^ and a 2 2 such that the quadratic form, 

v(x,y) = a i ; Lx + 2a 1 2xy + a 2 2 y , (2 .15) 

is positive-definite and satisfies the condition , 

| J y + & (-bx - ay) = -x 2 - y 2 . (2.16) 

Substituting equation (2.15) in equation (2.16), we obtain 

a l l = & 2 + ^ ' , (2.17) 

a10 = 1_ (2.18) 
X d 2b 

a n d " 2 2 = ' ( 2 ' 1 9 ) 

v(x,y) is a positive-definite function of the arguments,x(t) 
2 

and y ( t ) , i f > 0 and a2.1a22 > a12 ^ s e e Appendix A). A sufficient 

condition for this is that a and b be greater than zero. 
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The functional,V, can be taken in the form, 

0 

V [x(<9), y(d)] = a l l X
2 + ' 2 a 1 2 x y + a 2 2 y 2 + u { x 2 ( £ ) d £ , ( 2 . 2 0 ) 

-h 
(\x>0) • 

The value of the derivative, | | , along a trajectory of the 

system (2.14) is 

lim = _ | " ( l _ ^ ) x 2 ( t ) + y 2 ( t ) + ^ x 2 ( t _ h ) _ 2cc 1 2cx(t)x(t-h) 

-2a 2 2cy(t)x(t-h)] . (2.21) 
At-»-0 + 

The right hand member of equation ( 2 . 2 1 ) is a negative-definite 

function of the arguments,x(t), x(t-h) and y(t), i f 

( 1 - u-) > 0 ( 2 . 2 2 ) 

and • ( 1 - u) (u. - a 2
2 c 2 ) - a 2

2 c 2 > 0 . ( 2 . 2 3 ) 

Maximizing the lef t hand member of inequality ( 2 . 2 3 ) 

with respect to |i,we find • 

2 2 
1 +a c 

* - ff- • ( 2 . 2 4 ) -

Substituting this value of |i in inequality ( 2 . 2 3 ) , we obtain 

1 " a | 2 ° 2 j 2 _ a 2
2 c 2 > 0 . (2.25) 

'Since we have chosen b > 0 , then <x^ > 0 (see equation (2.18), 

and hence inequality (2.25) may be written 

a 2
2 c 2 < 1 - 2a 1 2 | c | . (2.26) 

2 2 . 

From inequality (2.22) and equation (2.24),we find that a
2 2

c 

must be less than unity. Thus i f inequality (2,26) is satisfied 
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(and hence (2.23)), then inequality (2.22) Is satisfied as 

well , and the right hand member, of equation (2.21) is negative-

definite. The functional,"?, thus satisfies the hypotheses of 

Theorem 1 and hence inequality (2.26) is a condition sufficient 

for the asymptotic s tabi l i ty of the nul l solution,x = y = 0, of 

the system (2.14). 

Having determined the s tabi l i ty cr i ter ion for the 

linear equation (2.13), let us now consider the nonlinear 

equation , 

2 

^ - | = X [x(t), y(t)] +^[x(t-h), t] (2.27) 

(y = | f ; h is a positive constant), 

where the functions X andysatisfy the requirements, 

X(x,y) - X(x t0) = _ & f X ix .01 < ^ for x ^ 0, y ^ 0, 
(2.28) 

where a and b are positive constants, and 

|^[x(t-h), t ] | <L |x(t-h) | . (2.29) 

The linear equation (2.13) w i l l now be a special case of the 

general equation (2.27)* Equation (2,27) can be written in 

the equivalent form , 

ff = y f (2.30) 

|Z = X(x,0) + [X(x,y) - X(x,0)] + <^[x(t-h), t] . 

Define the functional ,V, by 
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.A. 

V [ x ( # ) , y ( < £ ) ] = -2 a 2 2 j X(<f,o)d£ + ( a ^ - a 2 2 b)x 2 

0 

0 

+ 2a 1 2xy + a 2 2 y 2 + u j x 2 ( £ ) d £ , ( 2 . 3 1 ) 
-h 

(u>0) . 

To estimate the derivative, along a trajectory of the system 

(2.30), we write 
dV 
dT = [-2a2 2X(x.O) + 2 ( a l x - a 2 2 b)x + 2a 1 2 y] y 

+ 2( 1a 1 2x + a 2 y) £x(x,0) + [X(x fy) - X(x,0)] + jp[x(t-h), t 

+ ux2 - ux 2(t-h) . (2.32) 

Conditions (2.28) and (2.29) give the estimates, 

H £ - 2 [ « 1 2 ^ 2 + (« 1 2a + a 2 2 * - «n)xy + ( « 2 2 a - « 1 2 ) y 2 ] 

J 

+ 2a 1 2Lx I x(t-h)| + 2a 2 2 l y | x(t-h)| 

+ ux2 - ux 2(t-h) . (2.33) 

If a 1 1 ? a 1 2 , a 2 2 and u- satisfy equations (2.17), (2.18), (2,19) 

and (2.24) respectively, then the right hand member of i n 

equality (2.33) is equivalent to the right hand member of 

equation (2.21) with cx(t-h) replaced by L Jx (t-h) | . Thus, 

the right hand member of inequality (2.33) is a negative-

definite function of the arguments,x(t), x(t-h) and y(t), i f 

2 2 
a 2 2 L < 1 - 2 a 1 2 L ^ ( 2 o 5 4 ) 
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The functional,V, satisfies the hypotheses of Theorem 1 and 

hence inequality (2.34) is a condition sufficient for the 

asymptotic s tabi l i ty of the nu l l solution,x. = y = 0,of the 

system (2.30). 
4 

By use of the simple transformation,t^ = b t , in equation 

(2.27) r
 w e m a y replace b by unity,, a by 

and 1 by 

L = k , (k>0) . . 

The s tabi l i ty cr i ter ion (inequality (2.34)) then becomes 

(2D.,) 2* k 2 . (2.35) 
1 1 - k 

The stable region defined by inequality (2.35) is indicated in 

Fig . 2.1. 

Again, i f the right hand member of equation (2.27) is 

a periodic function of time with p e r i o d , © , ( o r is independent of 

time), then the nu l l solution is always uniformly asymptotically 

stable in the sense of Definition 2,and hence the system w i l l 

be stable for persistentdisturbances. 

Having determined the s tabi l i ty cr i ter ia for the two 

equations (2.6) and (2.27), we may now proceed with the development 

of the approximate solutions. 



Stable Region 

/ 

•O 1.0 2.0 3.0 4.0 5.0 

2 D 1 

Figure 2.1 Region of Stability 
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3. APPROXIMATE ANALYTICAL SOLUTIONS 

In the study of l inear systems i t i s convenient to 

deal with sinusoidal inputs and the resulting sinusoidal out

puts. The ratio between the complex amplitudes of output and 

input is known as the "transfer function". Although the i n 

formation represented by these transfer functions seems to be 

very specif ic , the property of superposition, inherent in 

linear systems, makes these functions the basis for a complete 

description of system behavior. 

In nonlinear systems' the property of superpostion 

does not hold. The outputs,.in general, are no longer sinusoidal 

and the response to a sinusoidal input does not permit the 

response to an input of any other type to be foretold exactly. 

Nevertheless, the sinusoidal input functions are a convenient 

method for investigating certain representative features of 
(22) 

system behaviour, such as the phenomena of jump resonancev ' * 
(23) 

. The problem then,is to determine, with some reasonable 

degree of accuracy, the amplitude and phase of the system out

put corresponding to any amplitude and frequency of the sinusoidal 

input. The curves obtained for varying input frequency or 

amplitude w i l l be called response curves. This problem has been 

solved by B l o t t e r ^ f o r quasi-linear systems with no delay by 

employing the Ritz method. This method can also be applied to 

systems with delay as is done in section 3.2. It is interesting 

to note that i f the delay i s reduced to zero, the equations 

developed reduce to those developed by Blotter(as indeed they 
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should). 

3.1 The -Ritz Method 
Although the Ritz method is described in the 
(22) 

l i t e r a t u r e v , a brief discussion of i t is given here. 
The Ritz method postulates the existence of a function, 

F(x,x,t),such that the Euler-Lagrange equation,obtained from 
the minimization of , 

f 
I = J E(x , i,t) dt , ( 3 . D t 

a 
is the nonlinear equation we wish to solve, i.e., 

6E - _d 
a x dt d x 

= E(xO = 0 * (3.2) 

Consider then the minimization of the right hand member of 
equation (3.1) given 

oo 
x(t) = £ a k ^ k ( t ) , 

k=6 

where x(t) i s an exact solution to E(x) = 0. i f the ^.("O form 
a complete, l i n e a r l y independent set. We seek an approximate 
solution , 

n 
x(t) = a k ^ k ( t ) , (3.3) 

where n is arbitrary. The larger the n, the more accurate i s the 
solution and the more work involved. Substituting equation (3.3) 
in equation (3.1), we obtain 

I = J E(a Q fa + a x ^ + ...+ a n fo*Q fa + & ± ^ +...+ 

t 
a n ^ n , t ) d t . (3.4) 
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Since the set ,^ k , i s chosen beforehand ( i . e . , trigonometric 

functions i f E(x) yields an osci l latory solution), equation 

(3-^) must be minimized with respect to a^. Setting 

dl = 0 

d a. 
yields 

d a 1 
k 

I F dt = 
d a k 

b 

t L d x 6% -I 

dt = 0 

which f ina l ly becomes 
t 

JLI = f• I dF - d 
6 a k 

b 
j \M - JL lM)] ^ dt • J U ^ 

t L d x dt V d x ' J d x 

a' 

o . (3.5) 

If we now specify that ^ k ( t a ) = ^ ^ b ^ = ° ? o r t n a t ^ l s 

periodic with period ( t^ - t ) , equation (3>5) becomes 

d i = 
d a 

r* r 

) [_*£ - JL /jiE\l ^ 
k t L dx dt V d x / J 

a 

dt = 0 (3.6) 

Since F(x,x,t) was so postulated that 

bF - _d_ V&F \ = E(x) 
dt V dx / »x 

equation (3-6) f ina l ly becomes 

t b 
J_I = J" x E(x) dt = 0 (3-7) 

£ a k 

Equation (3-7) is known as the Ritz averaging integral and may 

be taken to mean that we are trying to satisfy the di f ferentia l 

equation (3«2) in some "weighted" average. 

Due to the orthogonality of the trigonometric 

functions with unity weighting, for osci l latory systems the 

Ritz method is equivalent to the Principle of Harmonic 
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(22) (Ik) Balance . Cunningham uses this method in his attack on 

nonlinear differential-difference equations. 

3 . 2 Application of the Ritz Method to Steady-State Oscillations  

in Nonlinear Systems with Delay 

The Ritz method w i l l now be applied to the 

differential-difference equation , 

E(x) = x(t)'+ 2D 1o)ng 1 [x(t)J + 2D2w'n g 2 [x(t-h)] + co | f ] _ [x(t)] 

+ koo2
if2 [x(t-h)J - G sin wt = 0 . ( 3 - 8 ) 

Equation ( 3 - 8 ) is the equation of motion of a f a i r ly general 

nonlinear system with delay, subjected to a harmonic driving 

force. The functions,f^ and f 2 , describing the restoring and 

delayed restoring forces, and the functions, g-̂  and g 2 , 

describing the damping and delayed damping forces, are a l l 

assumed to be single-valued and integrable functions of their 

respective arguments. 

If f^, f 2 , g-̂  and g 2 are odd functions of their 

respective arguments, that; is 

f l ["^t)] = " f i [x(t)] , f 2 [-x(t-h)] = - f 2 [x ( t-h)] " 

g l [-xt^] = -Si [x(t)] , g 2 [-x(t-h)] = - g 2 [x(t-h)],_ 

the resulting motion has the mean value zero. 

If only terms with frequency,oo, are considered, an 

appropriate assumption for the approximate solution is 

x(t) = X sin(wt - 0) . ( 3 - 1 0 ) 

The Ritz conditions are 

( 3 - 9 ) 
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2* 
to 

j* E [x(t)] sin wt dt = 0 

0 
23t 
to 

and 
0 
j E [x(t)] cos to t dt = 0 . 

0 

When equations (3*9) are applied, the Ritz conditions become 

2 

[ F l " I 2 + 2D2rj_G2 sin(r|tonh) + kF 2 cos(r|0)nh)] + 
[2D 1 r |G 1 + 2 D 2 ^ G 2 cos(r^tonh) - kF 2 s i n ( r p n h f | = [s] (3-11) 
and 

tan 0.= 2 D i a G l +
 2D 2^[G 2 cp s^o^h) - kF 2 a i n Q ^ h ) ? ( 3 > 1 2 )  

F l " I 2 + 2D 2 r |G 2 sin(r|_tonh) + kF 2 cos(r|tonh) 

where 

2 2 
F-, = J+_ \ f., (Xsina)sina da = J+_ \ f, (Xcosa)cosa da, (3.13) 

* x o 1 « X 0 

2 2 
F 9 = J±_ \ fQ(Xsina)sina da = J+_ ) f 0(XCOSQ;)cos a da, (3 . l h ) 

*x J
0 * x o 2 

2 2 
G-, = k \ g1 (toXsina)sina da = h \ g, (wXcosa)cosa da, (3-15) 

wtox o * w X o 

2 2 
g9(toXsina)sin a da = V \ g 9 (tdXcos a)cos a da , (3 .16) 

•7 = , s = _G_ . (3.17) 
to 2 
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If the driving term in equation (3-8) has the form, 

G cos tot, ins tead of G sin out, the assumed solution would be 

x(t) = X cos (tot - 0) 

instead of equation (3-10). The resulting equations (3.11) to 

(3.17)5 however, are unchanged by these replacements. 

If f-p f^, g-̂  and g 2 are non-odd f u n c t i o n s t h a t is 

they do not satisfy equations (3»9) 5 the resulting motion does 

not have zero mean value. Therefore, a mean value,M,must be 

included in the assumption for x. Equation (3.10) is replaced by 

x = M + X sin (tot - 0) = M + A. sintot - B costot , 

where A = X cos 0 and B = X sin 0. 

Consequently, there w i l l be three Ritz conditions for determining 

the three constants,M, A and B or M, X and 0. These conditions 

are 
2% 
to 

j " E [x(t)] sin tot dt = 0 

0 
2% 
to 

j E [x(t)] cos tot dt = 0 

0 
2% 
00 

\ E [x(t)] dt = 0 
0 

If we let 

F01 

2« ^ 
00 to 

j f x [x(t ) ]dt , G Q 1 = _1_ j g l [ x ( t ) ] d t , 
0 W n .0 
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2jc 2jt 
CO CO 

F Q 2 = j f 2 [ x ( t ) ]d t , G Q 2 = JL_ j g 2 [ x ( t ) ] d t , 
0 w n 0 

OJ co 
F S 1 = 1 j ^ [ x C t ^ s i n tot dt, G g l = _1_ [ g x [x(t)] sinco t dt, 

* 0 • % * 0 
2% 2jt 
to co 

"FS2
 = - j f 2[x(t)] sin tot dt, G g 2 = j g 2 [ f ( t ) ] s in cot dt, 

% 0 W n " 0 

to CO 

F c l = 1 j f x [x ( t ) ] cos tot dt, G C 1 . = ._1_ J" g 1[x >(t)]cos tot dt, 
% 0 " n 5 1 0 

2JL 2x 

to co 
F C 2 = 1 j f 2 [x ( t ) ]cos tot dt, G C 2 = _1_ ^ g 2 [x(t)]cos cot dt, 

the Ritz conditions become 

F01 + k F 02 + 2 D 1 G 01 + 2 D2G02 = 0 » (3'18V. 
FS1 + k F S2 + 2 D1GS1 + 2 D2GS2 " '" S = 0 (3-19) 

and F C 1 + k F C 2 + 2D G c l + l | 2 B = 0 . (3.20) 

In general, equations.(3.18), (3.19) and (3.20) 

represent a system of nonlinear algebraic equations for the 

three unknowns,M, A. and B. The application is thus tedious, and 

hence only systems with odd nonlinearities are considered 

hereafter. 
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3•3 I l lustrat ive Examples and Comparison of the Ritz-Method 

Results to the Analog-Simulation Results 

There are numerous particular examples leading to 

equations with delay, e .g . , differential-difference equations, 

which arise from many particular fields of interest,as 

mentioned in the Introduction. 

A simple example is the equation describing: the 
(rh) 

thickness of a sheet of metal coming from a ro l l ing m i l l : 

x(t") = -k[x(t-h) - x 0] , 

where x is the thickness at any time ,t, XQ is the desired 

thickness, k is a constantvdetermined by the control system 

and h is the delay due to the separation of the ro l l s and the 

measurement point. 

Studies in the f i e ld of.population g r o w t h l e a d 

to the equation, 

kit) - rx(t) "l - x(t-h) 
x 

s where x is the population at any time,t, r is the reproduction 

rate, x is. the steady-state population ultimately reached (or 

the average value thereof), and h. is the delay due to the fact 

that the population does not react immediately to i t s increasing 

number. 

An example from the f ie ld of economics is Goodwin's 
(9) 

nonlinear model of the business cycle \ 

fry(t+0) + (1 - a) y(t+0) = 0[y(t)] , 

where y is the income at time,t, 0 is the delay between 
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investment decisions and corresponding outlays, # is the time 

constant of the income-consumption relationship, a is the change 

in consumption per unit change in income, and 0(y) is the 

nonlinear induced investment. 

The analysis of a microphone, amplifier and speaker 

combination with acoustic feedback^ leads to the equation, 

I(t) + R I(t) + _1_ I(t) + Ak I 
L LC C 

t-2$ 
c 

Bk 3 L 2 I 3 

where I is the plabe current at time,t, A. and B are constants 

related to the tube characteristics, c is the velocity of sound, 

§ is the distance to the reflecting object, k is an amplification 

constant, and R, L and C relate to the c i rcu i t elements. 

A system with distributed parameters may sometimes be 

treated by approximating i t s transfer function by one of the form, 

-hs G = 
Ts + 1 

-hs 
i . e . , the transfer function of a delay (e ) and a time-constant 
element. 

The analysis of control systems J sometimes leads 

to equations of the form, 

x(t) + a^ x(t) + & 1 x(t-h) + aQ x(t) =. 0 (3-21) 

and x(t) + a x i ( t ) + a'Q x(t) + aQ xCt-h) = 0 . (3.22) 

Equation (3.21) contains a natural damping term,a xx(t),as well 

as a delayed damping term, a-^x(t-h). Equations of this type arise 

when an a r t i f i c i a l l y produced damping is added to increase an 

insufficient natural damping, as in the s tabi l izat ion of a 

ro l l ing s h i p ^ ' . Equation (3-22) contains a natural 
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restoring force, aQx(t), and a delayed restoring force ,SQX( t -h) . 

Equations of this type may arise, for example, in the guidance 

of an a ircraft . The delay,h,could be due to the computation time 

of a computer in an autopilot or to a human operator who controls 

the rudder position and, therefore, the restoring force. 

The simple equations (3.21) and (3.22) (at least 

simple in appearance) may be further complicated by nonlinear 

terms and the presence of a driving term or input , f ( t ) . The 

nonlinear terms may be due to hysteresis; backlash in gears; 

mechanical stops; clamping c i rcu i t s ; f r i c t i o n ; saturating effects 

in amplifiers, inductors and capacitors; and a multitude of 

other sources. Equations of this type with f(t) taken to be 

G cos cot or G sin cot are considered in this section using the 

approximate technique described in the previous section. The 

results are compared with the results obtained by an analog 

simulation. Before the approximate technique is applied to 

specific examples, however, a brief description of the 

phenomenon known as "jump resonance" ' OJ^K w i l l be given. 

The jump resonance phenomenon is peculiar to systems 

having a nonlinear restoring force, f(x), and a sinusoidal input. 

The nonlinearity,f(x), is assumed to be an odd function in the 

following discussion. If the input amplitude is held constant 

and the input frequency,co, is increased, the response curves, 

ABODE,are obtained (see Figs. 3.1 and 3.2); i f the input 

frequency is decreased, the response curves,EDFBA,are obtained. 

If the damping is decreased, the resonant effect is more 

pronounced and the separation of the jump points,to and to p., is 
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increased. If the damping is increased, the resonant effect is 

less pronounced and the separation of the jump points is 

decreased u n t i l some c r i t i c a l damping is reached beyond ; which 
(29) 

no jumps are obtained^ If the input frequency is held 

constant and the input amplitude, G, is increased, the response 

curves, ABCDE, are obtained (see Figs. 3 = 3 and 3 « ^ ) ; i f the input 

amplitude is decreased, the response curves,EDFBA,are obtained. 

The resonance phenomenon previously described pertains 

to systems having no delay. Since no previous work on the jump 

resonance phenomenon for systems with delay has appeared in the 

l i terature, i t is useful to apply the Ritz method to these 

systems and determine the effect of the delay on the response 

curves. This is done in the following examples using equations 

which stem from the important equations (3.21) and (3.22). 

Example 1. 

Consider the equation, 

x(t) + 2D1a)n k(t) + 2D2ton x(t-h) + to2[x(t) + \x2 x 3 (t)] 

- G sin tot = 0 , (3-23) 

which has a delayed damping term and a nonlinear restoring 

force of the type referred to in Figs. 3.1 and 3.3» This 

equation is of the same type as equation (2.6) and i s , ' therefore , 

stable when D-̂ > |^2i * 

Applying equations (3«13) to (3.16), we obtain 

F n = 1 + 3 u 2 X 2 , (3.2*f) 

G 1 = G 2 = 1 (3-25) 
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and F 2 = 0 . (3-26) 

After substituting equations (3 • 2̂ 1-), (3.25) and (3.26) into 

equation (3.11), we obtain 

A 3 + a 2 A 2 + a± A + aQ = 0 , (3-2?) 

o 
where A = X , 

a 2 = 2(1 - y^2 + 2D2r£ sinrjwnh) , 

a l = ^ " I 2 + 2D 2r^sinr|W nh) 2 + (21)-^ + 2D2 r|_cos t| ̂ h ) 2 

and aQ = - S 

The quantities, X and S, have been replaced by dimensionless 

/ r 1 
quantities. X = X and S = S,where L 

L L 
. After substituting 

In

equations (3.2^+), (3.25) and (3.26) into equation (3 .12), we 

obtain 

tan 0 = 2 M + 2 D 2 r l c o s y i c o n h ^ ( 3 > 2 ^ 

A + 1 - r̂ 2 + 2 D 2 ^ s i n r | c o n h 

The response curves can now be obtained by solving for the 

positive real roots of the cubic equation (3.27) in A and then 

substituting these-values of A into equation (3-28). This 

computation has been done using an IBM 70^0 d ig i t a l computer 

which has a plotter available for recording output data. The 

response curves for any desired values of the coefficients can 

then be quickly.obtained using a re lat ively simple computer 

program. Typical response curves are shown in F ig„ 3°5 » 

These approximate curves are to be compared to those obtained 

by an analog simulation,where the amplitude, X, i s taken to be 

the peak value of the output waveform and the phase,0,to be the 
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Figure 3*5 Response Curves, Example 1. 
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difference (in radians) between the zero crossings of the output 

and" input waveforms. 

As is the case for systems without delay, the R i tz -

method results show that in some regions the output can exist in 

three states (corresponding to the cases where three positive 

real roots of equation (3.27) exist), whereas the analog-

simulation results show only two states. This is due to the fact 

that the two extreme states are stable and the middle state is 

unstable and, therefore, could never be obtained 

experimentally. 

It is evident that the approximate results are quite 

close to the analog-simulation results (especially for low-

output amplitudes where the effect of the nonlinearity is small), 

and also that the presence of the delayed damping produces 

isolated regions of the response curve when the input frequency 

is varied, whereas the response curve for varying input 

amplitude is similar to F ig . 3«3- At certain frequencies the 

delayed damping w i l l be in phase with the natural damping , at 

certain other frequencies the delayed damping w i l l be out of 

phase with the natural damping, while at intermediate frequencies 

the delayed damping w i l l have a component in or out of phase 

with the natural damping and a component in or out of phase with 

the restoring force. Consequently, as the input frequency is 

increased or decreased the effective damping oscil lates between two 

extremes. If the upper extreme is larger than the c r i t i c a l 

damping necessary for jump resonance, then isolated regions of 

the response curves are obtained as in F ig . 3>5-
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These isolated regions can also be explained by 

considering the roots of equation (3-27). The nature of the 

roots depends on the quantity, (q+r), where 

q = S 2 a(a 2 + 9b2) and r = 2b 2 (a 2 + b 2 ) 2 + 3^ , 
27 27 ~h~ 

2 
where a = 1 - X\ + 2 D 2 r ^ sinrjw h 

\ 
and b = 20-^ + 2 D 2 r£ cosrjto n h ' . 

There are two complex conjugate roots and one real root, three 

real unequal roots, or three real roots (two of which are equal), 

depending on whether (q+r) Is positive, negative, or zero 

respectively. 

When there is damping but no delayed damping (D-̂ XD, 

D2=0), q decreases monotonically from some positive value and 

f ina l ly becomes.negative,while.r increases monotonically from 

some positive value as increases from zero. Due to the presence 

of in r , (q+r) is positive for large r̂ . Thus i t is possible 

for (q+r) to decrease from some positive value to some negative 

minimum and then increase,f inal ly becoming positive as increases 

from zero. Thus, as ^ increases , the number of real roots of equation , 

(3.27) w i l l be one, then three, and f inal ly ,one. 

When there is a delay present,q.and r are no longer 

monotonic due to the presence of the terms, sin r | ^ a )
r i

n a n ^ 

cosr^co^h. For large or small values of , (q+r) w i l l be 

positive. For intermediate values of 1^, however, (q+r) can 

osci l late about zero as r| increases (the larger 10 n h , the more 

oscil lations occur). Thus,, as increases, the number of real 

roots of equation (3-2'7) w i l l be one, then varying between one 
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and three, and f ina l ly , one. Isolated regions of the response 

curves w i l l then appear in the frequency range where the number 

of real roots of equat ioni (3 .27) varies between one and three. 

With the frequency in the proper interval , the isolated regions 

can be obtained by giving the system a suff iciently large 

i n i t i a l condition or by increasing the input amplitude u n t i l a 

jump is obtained- and then decreasing the input amplitude to i t s 

original value. The jumps- associated with the isolated regions 

are always downward jumps in amplitude. Consequently, the 

isolated regions cannot.be obtained simply by varying the input 

frequency. 

The Ritz-method results show two isolated regions of 

the response curve for varying frequency, whereas the analog-

simulation results show only one. The amplitude for the unstable 

portion of the isolated region is close to that for the stable 

portion. Thus the stable portion "of the isolated region is 

probably unstable for small fluctuations in amplitude. This 

would also explain the difference between the Ritz-method results 

and the analog-simulation results for the isolated region that 

was obtained in the analog simulation. 

The response curve for varying input amplitude is 

similar to that for a system without delay, because the effective 

damping remains constant i f the frequency remains constant. I f 

the frequency remains constant and the input amplitude is 

varied, the quantities,q and r, mentioned previously,are 

monotonic even with delay present and, therefore, only one 

region with three real roots is possible. 
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Example 2. 

Consider the equation , 

x(t) + 2 D 1 w n x(t) + 2 D 2 c o n x(t-h) + w 2 [ x ( t ) + u 2 x 1 / 3 ( t ) ] 

- G sin wt = 0 , (3-29) 

which has a delayed damping term and a nonlinear restoring 

force of the type referred to in Figs. 3.2 and 3 A . Although 
1/3 

the nonlinear function,x , is integrable, enabling the Ritz 

method to be applied, i t does not satisfy a Lipschitz condition 

at the origin because of the inf in i te slope at this point. In 

any physical system, the slope of the• nonlinearity could be 

large but never i n f i n i t e . Since equation (3.29) is the: 

mathematical model of some physical system, we may consider i t 

to be an accurate model everywhere except for a small 

neighbourhood about the point,x : = 0,where we assume the slope 

of the nonlinearity to be large but not i n f i n i t e . The s tab i l i ty 

cr i ter ion is then the same as for equation (3.23), i . e . , D-^>J| 
Applying equations (3.13) to (3.1*6),we obtain 

F x = 1 + u 2 , r(l/ 3 ) X ~ 2 / 3 , (3.30) 
2 1 / 3 [ r ( 2 / 3 ) ] 2 

G1 = G2 = 1 • (3-31) 

and F 2 = 0 , - (3-32) 

where P is a Gamma function. After substituting equations 

(3.30), (3-31) and (3*32) into equation (3.11) we obtain the 

cubic equation (3.27), where now 

A = X 2 / 3 , 

a 1 = [(1 - Y[2 + 2 D 2^sin»|W n h ) 2 + (21>fli- 2 D 2 * ^ cos irjw nh)2J~ 
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Figure 3.6 Response Curves, Example 2. 
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1 

and a, •o 

The quantities, X and S, have been replaced by dimensionless 

quantities rX = X and 3 = S,where 
L L 

L =r PCI/3) ] 3 / 2 j i 3 = 1 . 2 ^ 8 7 )i-
_ 2 l / 3 [p ( 2 / 3 ) ] 2 . 

(3.33) 

After substituting equations ( 3 « 3 0 ) , ( 3 . 3 D and (3.32) into 

equation (3.12), we obtain 

The response curves can now be obtained as in Example 1. The 

curves shown in F ig . 3.6 are similar to those for a system 

without delay (see Figs. 3«2 and 3-^) except that isolated 

regions are obtained when the frequency is varied as in Example 

The response curve for varying input amplitude is again 

similar to that for a system without delay. The approximate 

results are close to the analog-simulation results except for 

low-output amplitudes where the approximate results are least 

accurate,and the analog-simulation results are inaccurate 
1/3 

because of the technique used to obtain the function,X . 

Example 3. 
Consider the equation , . 

tan 0 = 2D 1^ + 2D 2 ^ cosr îd h 

G s i n tot = 0 (3.3*0 
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which has a delayed restoring force and a nonlinear restoring 

force of the type referred to in Figs. 3.1 and 3«3- This 

equation is the same type as equation (2.27) and is ,therefore, 

stable when 

(2D n) 2> k 2 . (3.35) 
i - | k | 

Applying equations (3*13) to (3.16), we obtain 

F]_ = 1 + 3. l^ 2 X 2 , (3.36) 
1 + ^ 

G1 = F 2 = 1 (3-37) 

and G 2 = 0 . (3-38) 

After substituting equations (3-36), (3.37) and (3«38) into 

equation (3.11), we obtain the cubic equation (3.27), where now 

A = X 2 , 

a 2 = 2(1 -r r^2 + k cosr^)nh) , 

a 1 = (1 - IT]2 + k cos^o) nh) 2 + (20-^ - k s i n r ^ h ) 2 

and aQ = - 5 2 , 

where the dimensionless quantities,X and S, described in Example 1 

have been used. After substituting equations (3.36), (3-37) and 

(3.38) into equation (3.12), we obtain 

tan 0 = 2Dl1-ksinrnh 

1 + A -.. + k cosrju^h 

The response curves can now be obtained as in Example 1. The 

response curves shown in F ig . 3-7 are similar to those for a 

system without delay (see Figs. 3-1 and 3*3), except that 

isolated regions are again obtained when the frequency is 



39 

Analog-Simulation Results 
Ritz- Method Results 

Frequency r\_ Input Amplitude § 

Figure 3*7 Response Curves, Example 3« 
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varied. The" effective damping in this case changes with 

frequency because of the component of the delayed restoring 

force,which is in or out of phase-with the natural damping. In 

other respects this example is similar to Example 1. 

Example h. 

Consider the equation, 

x(t) + 2D1oon x(t) + to 2[x(t) +\i 2 x 1 / 3 ( t ) ] + kto2 x(t-h) 

- G sin tot = 0 , (3-39) 

which has a delayed restoring force and a nonlinear restoring 

force of the type referred to in Figs. 3*2 and 3>*h. If we 
1/3 

treat the nonlinearity,x , as in Example 2, the s tab i l i ty 

cr i ter ion for this equation is given by equation (3-35)* 

Applying equations (3.13) to (3.16),we obtain 

equation (3-30) for F^, 

G]_ ='F 2 = 1 (3 AO) 

and G 2 = 0 . (3^1) 

After substituting equations (3-30), (3A0) and ( 3 A D into 

equation (3.11), we obtain the cubic equation (3.27), where now 

A .= X 2 / 3 , 

a l = [(1 - H. 2 + k cos^co nh) 2 + - k s i n r ^ h ) 2 ] " 1 , 

a 2 = 2(1 - r^2 + k cosv|wnh) a-̂  

and aQ = - S 2 a^ , 

where the dimensionless quantities,X and S,described in Example 2 

have been used. After substituting equations (3.30), (3A0) and 

(3-!+l) into equation (3.12), we obtain 
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tan 0 = 2 D l 1 - k s i n " n h . 
A " 1 + 1 - lf|2 + k cosr|a)nh 

The response curves can now be obtained as in Example 1. The 

effective damping changes with frequency as in Example 3, 

otherwise the discussion for the response curves- shown in 

Fig . 3.8 is the same as for Example 2. 

The Ritz method can also, be applied to systems which 

have nonlinear damping terms. These systems do not exhibit jump 

resonance, but i t is of interest to obtain their response curves. 

Example 5. 
Consider the equation , 

x(t) + 2D1con[x(t) + j i _ x 3 (t)] + 2D2con x(t-h) + w 2 x(t) 
to2 

n 

- G sin tot = 0 , (3A2) 

which has delayed damping and nonlinear damping. This equation 

is stable when D X >|D 2 | . 

Applying equations (3.13) to (3-16) and substituting 

the results into equations (3-11) and (3.12), we obtain for the 

cubic equation (3.27) 

_? 
A = X , 

a 2 = 2I>^\_ + 2D2V| cos\q_wnh 

D i a 3 

a _ (1 - V^2 + 2D 2 » | sinvito n h ) 2 +• (20^+ 2D2r|_ cos y^oonh)2 

and aQ = - S 2 
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and for. the phase-

tan 0 = 2 D 1 ^ (1 + Y^k) + 2 0 - ^ cosT[tonh , 

1 - n 2 + 2D 2 r | s in r|co n h 

where the dimensionless quantities,X and 3,described in Example 1 

have been used. Typical response curves are shown in F ig . 3«9 . 

Since the effect of the nonlinear damping is small, the Ri tz-

method results and the analog-simulation results are quite 

close. The nonlinearity increases the damping as the output 

amplitude increases, causing the peak of the curve for varying 

frequency to be somewhat flattened and the curve for varying 

input amplitude to be concave down. The delayed damping causes 

sl ight humps in the frequency response curve due to the.varying 

effective damping with frequency. This effect is somewhat 

diminished due to the nonlinear damping term. 

Example 6. 

Consider the equation, 

x(t) + 2D1con[x(t) + u 2 to 2 / 3 x 1 / 3 ( t ) ] -r 2 D 2 W n x(t-h) + w2 x(t) 

- G sin 'tot = 0 , (3A3) 

which has delayed damping and nonlinear damping. If the 

d i f f i cu l t i e s due to the presence of the cube root term are 

treated as in Example 2, the equation is stable when £>X>|D2|. 

Applying equations (3=13) to (3.16) and substituting 

the results into equations (3.11) and (3.12), we obtain for the 

cubic equation (3.27) 

A = X 2 / 3 , 
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a, 0 2 

a 1 
- ̂  nrJ a, 

and a 2 
S 2 

and for the phase 

tan 0 = 2D 1 r^(l + l/[r]_ 2 / 3 A] ) + 2D2»^_cos r|_o)nh 

where the dimensionless quantities, X and 3, described in Example 2 
have been used. Typical response curves are shown in Fig . 3.10. 
The Ritz-method results and the analog-simulation results are 

again quite close. The nonlinearity decreases the damping as the 

output amplitude increases, causing the peak of the curve for 

varying frequency to be sharply peaked and the curve for varying 

input amplitude to be concave up. This sharp peaking of the . 

resonance curve would be useful where a high Q circuit, is 

required. The effect of the delayed damping is the same as for 

Example 5« 
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4. VERIFICATION OF THE APPROXIMATE SOLUTION 

BY ANALOG SIMULATION 

The va l id i ty of the approximate analytical method 

mentioned in section 3 depends on assuming the correct form of 

the solution. If the assumed form is incorrect, the results 

obtained by this method are completely meaningless. 

In view of the quasi-linear nature of the systems 

considered, i t has been assumed in section 3 that the response 

of the system to a sinusoidal input w i l l be approximately 

sinusoidal and of the same frequency as the input. This 

assumption is easily verif ied by simulating the system on the 

PACE 231R analog computer-,, In order to compare the E i t z -

method results to the analog results i t is desirable to measure 

the amplitude and phase of the fundamental component of the 

output waveform. Since the system is nonlinear, the output 

waveform, in general, deviates somewhat from a true sinusoid. 

This, deviation^ however, is not large and, therefore, i t i s 

reasonable to base the measurement of the amplitude of the 

fundamental on the peak value of the output waveform and the 

phase on the zero-crossover. 

The versa t i l i ty of the PACE 2 3 1 R enables automatic 

plotting of the system output amplitude and phase versus the 

frequency or amplitude of the sinusoidal system input, In 

view of the large number of examples considered t i t is essential 

that.the response curves be obtained automatically, otherwise 

the computing time and the time to plot the curves would be 
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prohibitive. 

The sinusoidal system input ( A cosoot or A sintot) 

is obtained by solving the nonlinear di f ferential equation , 

x - e A - x - x 
2 

to J 

x + to 2x = 0 , (4.1) 

("=51} 
which was suggested by Van der Pol and is discussed by J a c k s o n w / 

(see Pig. 4 * 1 ) . Equation (4.1) has the l imit cycle solution, 

x = A cos(wt + ©) , (4.2) 

which is-easi ly verif ied by substituting equation (4.2) into 

equation ( 4 . 1 ) . If the i n i t i a l conditions are chosen as 

x(0) = A , i ( 0 ) = 0 , 

the solution begins at the l imit cycle and the term,©, in equation 

(4.2) becomes zero. With e f a i r ly large (say 10 ) , the solution 

tends rapidly to the l imit cycle i f any disturbances occur. 

Therefore, i f the signals corresponding to to and A are varied-

reasonably slowly,, the nonlinear osci l lator of Pig. 4 .1 w i l l 

continuously yield the output,A cos tot. The c ircui t described 
(32) 

by Humo does not function in this manner and hence his 

results are in error,, 

A control c ircuit (Fig* 4 .2) enables the operator to 

hold A constant and automatically increase or decrease to, or 

to hold to constant and automatically increase or decrease A. 
With switches, S^Q, 1̂2 a n ^ ^ I 3 » ^ n ^ e ^-e^^ position, to 
is swept by integrator 26 while A i s set by pot. P59> with the 

switches in the right posit ion,A is swept by integrator 26 

while to i s set by pot P59» With switch, , i n the right 
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position the output of integrator 26 increasesj in the left 

position the output decreases. The sweep rate is controlled 

by pot. P58. 

Pig. 4.3 shows the analog simulation for the system 

of example 1 (sec. 3.3) and the track and store circuits used 

to detect the system output amplitude or phase. The analog 

simulations of the other systems are similar to Pig. 4.3 and are 

therefore not shown. A twenty segment diode function generator 

provides a good approximation to the cube root quantity required 

for examples 2t 4 and 6 of section 3.3. The inf inite slope 

at the origin for the cube root function cannot be obtained 

using the function generator and hence the results obtained 

for low amplitude inputs to the function generator are somewhat 

in error. 

The delay element is simulated by means of an Ampex 

tape recorder (Model SP300 P.M. Direct) . The tape speeds of 

1 7/8 (+ 0 . 4 # ) , 3 3/4 (+ 0 . 4 # ) , 7 1/2 (+ 0.2%), and 15 ( + 0.2%) 

inches per second, provide delays of 1455? 728, 364, and 183 

milliseconds r e s p e c t i v e l y « The frequency response at a tape 

speed of 15 inches per second is from 0 to 2500 Hz. The 

maximum frequency is reduced by a factor of two each time the 

tape speed is reduced by a factor of two. The inputs and out

puts to the various channels of the tape recorder are available 

as trunk l ine terminations at the analog patch panel. The 

resistors necessary to protect the tape recorder from overload 

and to provide the appropriate signal levels at the tape recorder 

and the analog patch panel are incorporated in these trunk l ines . 



51 

Figure ^.3 Analog Simulation of a System with Delay 



The delay element could also be simulated by approxi

mating the Laplace shift operator, e"*13, which is the transfer 

function associated with a pure time delay,h. This simulation, 

however, requires a large number of integrators for as accurate 

an approximation as can be obtained with the tape recorder. The 

tape recorder has the added advantage that the delay can be 

changed merely by changing the tape speed. 

With switches,SQ 0 and 3 Q ^ r i n the left position, the 

output amplitude is plotted. The signal,x(t), is applied to 

comparator M5 and the signal,-x(t), is applied to comparator M6. 
Each signal is compared to zero volts , (The operation of the 

comparators-, integrator mode control, and AND gates is described 

in Appendix B.) The normal d ig i ta l output,M57and the comple

mentary, output, M6,are applied as inputs to an AND gate (see 

Fig . 4 * 3 ) . The normal output.(M5.M6) of the AND gate is thus 

at a ONE level for the f i r s t half of each positive half-period 

of x(t) and at a ZERO level for the remainder of the period.' 

The signal,M5.M&, controls the mode of integrator 10,while the 

signal,M5»M6, controls the mode of integrator 11, Integrator 

10 thus "tracks" the system output during the f i r s t half of 

each positive half-period, while integrator 11 "stores" and plots 

the maximum value of each positive half-period. The system 

output amplitude is thus, obtained. 

With switches, SQ 0 and S Q ^, in the right position, the 

phase of the output is obtained. The system input is applied 

to comparator,M6,while integrators 10 and 11 track and store 

the output of integrator 00. The signal,M5»M6, which controls 



53 

the mode of integrator 0 0 , i s now at a ONE level each time the 

system input goes positive u n t i l the time the system output 

goes positives Prom the time the system input goes positive, 

therefore, integrator 0 0 integrates at a rate proportional to 

to for a time equal to the time x(t) lags the input and is then 

reset* The output of the track and store circuit is then 

proportional to the phase of the output. 

If the signals corresponding to to and A are varied 

slowly enough that transient effects are n e g l i g i b l e t h e n 

continuous plots of the steady-state system response curves are 

obtained i 

The results obtained by the analog simulation are 

given in sec 3«3, and are compared to the results obtained by 

the approximate analytical method 
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5. CONCLUSIONS 

The purpose of this investigation was to obtain 

approximate analytical solutions of quasi-linear di f ferent ia l-

difference equations and to determine their resonance 

properties, 

S tabi l i ty c r i t e r i a for these equations have been 

given prior to the approximate analytical solutions and the 

determination of the resonance properties. The s tab i l i ty 

cr i ter ion for equations with delayed damping is due to 
(21) 

Krasovskii , the s tab i l i ty cr i ter ion for equations with 

delayed restoring force has been developed by the author. 

Approximate analytical solutions of a general 

second-order nonlinear differential-difference equation have 

been obtained by employing the Ritz method. 

General equations which lead to the determination of 

the constants in the assumed solutions have been given for 

systems with odd nonlinearities and for systems with non-odd 

nonlinearit ies . The general equations for systems with odd 

nonlinearities have been used to obtain the resonance properties 

for several specific examples of such systems. It has been found 

that the response curves for varying input amplitude are similar 

to those for systems without delay, whereas the response curves 

for varying input frequency exhibit a rather peculiar jump 

phenomenon which is not obtained for systems without delay. When 

the input frequency is varied, isolated regions of the response 

curve occur. It has been found that these regions can be 

obtained physically by giving the system a suff iciently large 
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i n i t i a l condition,or by increasing the input amplitude 

suff iciently and then decreasing i t to i t s original value. The 

isolated regions are attributed to a frequency-dependent 

effective damping caused by the interaction of the natural 

damping with the delayed damping or the delayed restoring force. 

This peculiar jump resonance phenomenon has not previously been 

mentioned in the l i terature . 

The approximate solutions for the specific examples 

have been verif ied by an analog computer simulation. This 

simulation employs track and store techniques to enable 

automatic plotting of the response curves. The Ritz-method 

results compare favourably with the analog-simulation results . 

In view of the success of the Ritz method for the 

examples considered, i t would be useful to prove theoretically 

that the Ritz method is applicable to general nonlinear 

differential-difference equations. It would also be useful to 

extend other approximate techniques available for ordinary 

nonlinear di f ferent ia l equations to nonlinear d i f ferent ia l -

difference equations. It would then be possible to investigate 

transient behaviour and such phenomena as entrainment of 

frequency which occurs when an osci l lator is subjected to a 

sinusoidal driving force. 

In conclusion, approximate solutions to some quasi-

linear differential-difference equations have been obtained 

and their resonance properties determined. 
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APPENDIX A 

SOME DEFINITIONS AND PROPERTIES PERTAINING TO QUADRATIC FORMS 

The following definitions and properties pertaining 
( 3 3 ) 

to quadratic forms are given by Ayres J J : 
A homogeneous polynomial of the type 

n . n 
q - X'AX = £ £ a ± J x.x. , 

i=l o=l 

whose coeff icients ,a . . ,are elements of F is called a quadratic 

form over F in the.variables, x ^ , . . . , x . 

The symmetric matrix,A = [ a i j ] > ( a i j = a j i ^ i s c a H e d 

.the matrix of the quadratic form and the rank of A is called the 

rank of the form. If the rank is r < n the quadratic form is 

called singular; otherwise, non-singular. 

A minor of matrix,A,is called principal i f i t is 

obtained by deleting certain rows and the same numbered columns 

of A. Thus, the diagonal elements of a principal minor of A are 

diagonal elements of A. 

For a symmetric matrix,A = ^a^^.J,over F, define the 

leading principal minors as 

PQ 1? Pi a l l ' ̂ 2 a l i a12 
a21 a22 

, . = . , p^ |A 

A real quadratic form,X'AX,is positive-definite i f , 

and only i f , i t s rank is n and a l l leading principal minors are 

positive. 
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APPENDIX B 

ON THE OPERATION OP SOME ANALOG COMPUTER COMPONENTS 

The following specifications were obtained from the 

PACE 231R MLG System handbook^ 5 4^ 

B . l Integrator Mode Control 

The integrator is' placed in the electronic switching 

(ES) mode by grounding i t s ES termination on the' Memory and 

Logic Unit (MLU) pre-patch panel. In the ES mode the integrator 

is placed in " i n i t i a l condition" by applying +5 volts (a ONE 

level) to one of the MLU panel IC terminations (designated 

S/R in Pig. 4.3). An input of zero volts (a ZERO level) 

switches the integrator to the "operate" mode. 

B. 2 Electronic Compatators 

The analog inputs are applied at the analog patch 

panel and provide the following d ig i t a l outputs at the MLU 

pre-patch panels 

(1) When the analog input sum is negative (less than 

-10 mv.) the normal d ig i t a l output is at a ZERO leve l ; 

(2) When the analog input sum is positive (greater than 

+10 mv.) the normal d i g i t a l output is at a ONE leve l . 

B. 3 AND Gates 

If a l l of the inputs to an AND gate are at a ONE level 

the normal output is at a ONE levels i f one or more of the 

inputs are at a ZERO level the normal output is at a ZERO leve l . 



58 

REFERENCES 

1. Bernoull i , J . , "Meditationes. Dechordis v i b r a n t i b i s . . . " , 
Commentarii Academiae Scientarium Imperialis  
Petropolitanae, 3 (1728), 13-28. Collected Works. 
Vol . i i i , p. 198. 

2. Krasovskii, N.N. , S tabi l i ty of Motion 1 , Stanford University 
Press, 1963. 

3. Khalanai, A . , "Absolute Stabi l i ty of Some Nonlinear Control 
Systems with Time Delay", Automation and Remote  
Control (Translated from the Russian), Vo l . 25, 
pp. 268-279, pp. 1251-1256, 196k. 

+ . Bellman, R., and Cooke, K . L . , Differential-Difference 
Equations . Mathematics in Science and Engineering, 
Vol . 6, Academic Press, N.Y. , 1963. '" 

5« Pinney, E . , Ordinary Difference-Differential Equations:1. 
University of California Press, 1959. 

6. Choksy, N .H. , "Time Lag Systems - A Bibliography", I .R.E. 
Trans. on Aut. Cont.. Vol . AC-5, No. 1, pp. 56-70, 
I960. 

7. Weiss, R., "Transportation Lag - An Annotated Bibliography", 
I .R.E. Trans, on Aut. Cont.. Vol . AC-+, No. 1, 
pp. 56-6+, 1959. 

8. Volterra, E . , "On Elast ic Continua with Hereditary 
Characteristics", J . Appl. Mech., Vol . 18, 
pp. 273-279, 1951. 

9. Bothwell, F . E . , "The Method of Equivalent Linearization", 
Bconometrica, Vol . 20, p. 269, 1952. 

10. Cunningham, W.J . , "A Nonlinear Differential-Difference 
Equation of Growth", Proc. Natl . Acad. Sc i . U.S . , 

. Vol . .+0, pp. 708-713, 1954-. 

11. SUmmerfield, M. J . , "A Theory of Unstable Combustion in 
Liquid Rocket Motors", J . Amer. Rocket S o c , Vol . 21, 
p. 108, 1951. 

12. Roston, S., "Mathematical Formulation of Cardiovascular 
Dynamics by use of Laplace Transforms", B u l l . Math.  
Biophys.. Vol . 21, pp. 1-11, 1959-

13. Minorsky, N . , Nonlinear Oscillations , D. Van Nostrand Co., 
N.Y. , pp. 51+-5+0, 1962. 



59 

ik. Cunningham, W.J . , Introduction to Nonlinear Analysis , 
McGraw-Hill Book Co., N.Y. , pp. 221-2+4-, pp.< 332-333, 
1958. 

15* Smith, O.J .M. , Feedback Control Systems , McGraw H i l l Book 
Co., N.Y. , pp. 299-352, 1958. 

16. Popov, E . P . , The Dynamics of Automatic Control Systems 
Addison-Wesley Publishing Co., pp. 403-Wf, 1962. 

17. Pinney, E . , op. c i t . , pp." 28-31. 

18. Pinney, E . , op. c i t . , pp. +1-70. 

19. Bellman,R., and Danskin, J . M . , "The Stabi l i ty Theory of 
Differential-Difference Equations", Proc. of the Symp.  
on Nonlinear Circuit Analysis. Vol . II , Polytechnic 
Institute of Brooklyn, N.Y. , pp. 107-123, 1953-

20. Jones, P. , "Stabi l i ty of Feedback Systems Using Dual Nyquist 
Diagram", I .R.E. Trans, on Circuit Theory, Vol . CT-1, 
No. 35, p. 35, 195*+. ' 

21. Krasovskii, N .N. , op. c i t . , p. 175-

22. Cunningham, W.J . , op. c i t . , pp. 171-213-

23. Hayashi, C , Nonlinear Oscillations in Physical Systems1 , 
McGraw H i l l Book Co., N.Y. , PP. 114-127, 1964-. 

24-. Klotter, K. , "Steady-State Vibrations in Systems Having 
Arbitrary Restoring Forces and Arbitrary Damping 
Forces", Proc. of the Symp. on Nonlinear Circuit 
Analysis, Vol . II, Polytechnic Institute of Brooklyn, 
N.Y. , pp. 234-257, 1953. 

25. Kantorovich, L . V . , and Krylov, V . I . , Approximate Methods of 

Higher Analysis , Interscience, pp. 2+0-272, 1958. 

26. Pinney, E . , op. c i t . , pp. 201-203. 

27. Eckman, D.P. , Automatic Process Control1 , John Wiley and 

Sons Inc., N.Y. , p. 291, 1958. 

28. Minorsky, N . , op. c i t . , pp. 375-380. 

29. Cunningham, W.J . , o p . c i t . , p. 331. 

30. Cunningham, W.J . , op. c i t . , pp. 297-298. 

31. Jackson, A .S . , Analog Computation , McGraw H i l l Book Co., 
N.Y. , pp. 182-185, I960. 



60 

32. Humo, E . , "Parameter Sweep in Iterative Analog Computer 
Techniques", Annales de 1 'Association internationale  
pour le calcul analogique, VolT""^ , No. 2, pp. 77-81, 
1965-

33.. Ayres, F . , Theory and Problems on Matrices1-, Schaum 
Publishing Co., N.Y. , pp. 131-138, 1962. 

34-. i,;MLG System (Memory and Logic Unit 1+.138 and Expansion  
Groups): , Vol . I. Electronic Associates Inc., Long 
Branch, New Jersey, pp. 12-2*+. 


