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ABSTRACT

Methods for studying the behavieur of on-off feed-
back systems, with the emphasis on steady-state periodic
phenomena, are presented in this thesis. The two main -
problems analyzed are (1) the determination of the
periods of self and forced oscillations in single-,
double-, and multiloop systems containing.an arbitrary
number of on-off elements; - and (2) the investigation of
the asymptotic stability-in the small of single-loop
systems containing one on-off element which may or may
not have a linear region of operation.

To study the periodic phenomena in on-off systems,
methods of determining the steady-state response of a
single on-off element are first described. Concepts per-
taining to the steady-state behaviour are then introduced:
in this respect it ‘has been found that generalizatiens
of the concepts of the Hamel and Tsypkin loci and also
of the phase characteristic of Neimark are useful in the
study of self and forced oscillations.

Both the Tsypkin loci and the phase characteristic
concepts are used to determine the possible periods of
self and forced oscillations in single- and double-loop
systems containing an arbitrary number of on-off elements;
these concepts are also applied to multiloop systems.

- On-off elements containing a linear region of opera-
tion, called a proportional band, are then described;
both the transient and periodic responses are presented.
An approximate method for determining the periodic
response is given. The concept of the Tsypkin loci is
used to determine the possible periods of self and forced
oscillations in a single-loop system containing one on-
off element with a propertional band.

The asymptotic stability in the small, “or local
stability, of the periodic states of single-loop systems
containing one ideal on-off element has been considered
by Tsypkin. In this thesis, Tsypkin's results have been
generalized to include the cases on on-off elements
containing a proportional band. The stability of such
systems is determined by the stability of equiwvalent
sampled-data systems with samplers having finite pulse
widths. Finally, this stability problem is solved by a



direct approach, one that makes use of the physical defi-
nition of local stability; the results obtained by this
method agree with those derived by the sampled-data

- approach.
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ABSTRACT

Methods for studying the behaviour'pf on-off feedback
systems, with £he emphasis on steady—stéte periodic phenomena,
are presented in this thesis. The two main problems analyzed are
(1) the determination of the.periods of self and forced oscillations‘
in single-, double—, and multiloop systems containing an arbitrary
number of on-off elements; and (2) the investigation of the asymﬁ—
totic stability in the small of single-loop systems containing
one on-off element which may or may not have a linear region
of operation. .

To study the periodic phenomena in on-off systems, methods
of determining the steady-state response of a single on-off element
are first described. Concepts pertaining to the steady-state
behaviour are then introduced: in this respect it has been found
that generalizations of the concepts of the Hamel and Tsypkin loci
and also of the phase characteristic of Neimark are useful in the
study of self and forced oscillations.

‘Both the‘Tsypkin loci and the phase characteristic concepts
are used to determine the possible periods of self and forced
oscillations in single-~ and double-loop systems containing an
arbitrary number of on-off elements; these concepts are also
applied to multiloop systems.

' On-off elements containing a linear region of operation,
called a proportional band, are then described: both the
transient and periodic response are presented. An approximafe
method for determining the periodic response is given. The

concept of the Tsypkin loci is used to determine the possible

ii



periods of self and forced oscillations in a singlé-loop system
containing one on-off element with a proportional band.

The asymptotic stability in the small, or local stability,
of the periodic states of single-loop systems céntaining one ideal
on-off element has been considered by Tsypkin. In this thesis,
Tsypkin's results have been generalized to include the cases of on-
off elements containing a proportional band. The stability of such
systems is determined by the stability of equivalent sampled-
data systems with samplers having finite pulse widths. Finally,
this stability problem is solved by a direct approach, one that.
makes use of the physical definition of local stability; the re-
sults obtained by this method agree with those derived by the

sampled-data approach.
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1. INTRODUCTION

The study of on-off feedback control systems having a
single loop with one on-off element has been developed by many
authors during the last three decades. Many of the tecﬂniques
for investigating the steady-state behaviour of such systems
resort to approximate methods, of which the best known is that of

the describing function.l’z’3

On the other hand, the best known
exact methods are those of D.A. Kahn,4 B. Hamel‘,5 J.Z. Tsypkin,6
and E.V, Bohn.7

Concerning the determination of the periods of self
oscillations in a single-loop feedback control system containing
two symmetric relays, Tu Syui-Yan and Tei—Lui—Vy8 gave both an
exact solutiony; using the method of the Tsypkin Loci, and an
approximate solution, using the method based on harmonic balance.
Also, Yu.Il. Neimark and L.P. Shilnikov9 studied the symmetric
periodic motions of a multistage relay system by means of
Neimark's concept of the phase characteristice.

Nevertheless, to the knowledge of the author, no study of
multiloop automatic control systems containing an arbitrary
number of on—off elements has been attempteds The main purpose
of the first two parts of this thesis is to investigate the
complicated forms of ospillation in a single-loop system con-
taining a single on-off element and the simple symmetric modes
of self and forced oscillations in singie—, and double-loop
control systems having an arbitrary number: of on—-off elements.

Part I of this thesis gives the fﬁndamental concepts and

formulae required in the study of the various systems con-

sidered in Part II. The working principley classification, and



equations of on-off elements are reviewed in Chapter 2. The
response of these elements to an arbitrary input and to the
general periodic input, and the methods of calculating the
response are given in Chapter 3. Next, in Chapter 4, the con-
cepts pertaining to the periodic response of on-off elements,
namely, the concepts of the Hamel and Tsypkin loci (or
hodograph), are reformulated so as not only to make evident
the relationships existing among these concepts, but also to
facilitate the study of self and forced oscillations in the
multiloop systems considered in Part II. The conditions for
the existence of self and forcedoscillations for the various
multiloop systems are then determined with the help of these
conceptss Methods of solving for the simple symmetric modes
of oscillation in single-, a£d double-loop systems are given
in Chapters 5, 6, and 7.

Feedback control systems with proportional bands are con-
sidered in Part III. The problem of determining the periodic
states of feedback control systems having a single nonlinear
element with arbitrary pieceﬁise linear characteristic has
received rigorous attention in the last few years. M.A.

Aizerman and F.R. Gantmakherlo’ll

studied the piecewise
linear characteristic consisting of segments parallel +to fwo
given straight lines, whereas L.A. Gusev12 dealt with an
arbitrary piecewise linear cﬁaracteristic. Their methods of
solving the problem differ, but in both cases the solutions

take into account all the harmonics. Part III deals with an

exact method for the determination of the transient state in a



system containing one nonlinear element having the saturation
characteristic with hysteresis. A simple method of solving

the simple symmetric oscillations in such a system is

presented. The method is approximate, but sufficiently accurate
for systems possessing linear parts with a filtering action,

An exact solution is then formulated in the form of a set of
linear Volterra integral equations of the second kind.

Finally, Part IV of the thesis deals with the stability
of the periodic states in control systems having one on-off
element with or without a proportional bande An exact solution
shows that the "asymptotic stability in the small" of such
systems reduces to a consideration of the stability of finite
pulse width sampling systems with feedbackes The results
obtained are a generalization of those of Tsypkin.6 An
approximate method applicable to sysfems with nonlinear elements
having'characteristics other than the on-off type, with or
without a proportional band,‘is also presenteds In contrast
to the sampled-data approach, a direct method of investigating
the stability of self and forced oscillations in single-loop
systems having one on-off element is presented. This method
is'directly related to the physical definition of stability:

a disturbance is applied, and the ensuing deviation from the

state of equilibrium is studied.



PART I

FUNDAMENTAL CONCEPTS
OF
ON-OFF ELEMENTS



2. ON-OFF ELEMENTS

According to their workiﬁg principle, on=off control
systems are essentially nonlinear. Therefore it is evidently
impossible to analyze their behaviour by the well-known linear
methods of the theory of feedback control systems. Neverthe-
lessy, the specific pebuliérity of on-off systems, namely that
they are piecewise linear, permits their investigation by
comparatively simple mathematical methods.

In general, the on-off or relay element may be regarded
as consisting of the on-off component followed by a linear
part, which is composed of the actual linear part of the
relay plus the linear part following the relay. Figurev2£1
gives the convention and notatiohs for the relay element. The

symbdl N represents the on-off (honlinear) component, whereas

On-off Linear
Element Part
t t
x() N y )7 Hes v
|

Figure 2s1., Conventions and notations
' for the relay element.
H(s) denotes the transfer function of the linear part, where
s is the complex fréquency variable., The quantities x(t),
y(t), and v(t) are respectively the input to the on-off
element, the input to the linear part, #nd the output of the

linear part, and are all functions of the time variable t.



In the field of automatic control x(t) is referred to as the
control signal, and y(t) as the correction signal.

In on-off control systems the correction signal y(t)
changeé by jumps at every instant when the control signal x(t)
passes through certain fixed values known as the threshold
values. Hence the linear part of the system H(s) is sub-
jected to rectilinear pulses of fixed heighty, the sign,
duration and relative distribution of which depend both upon
the external excitation and upon the initial conditions
existing in the linear part of the system,

In general, on-off elements may be classified as
symmetric or asymmetric with respect to the origin of the
coordinate axes x and y, where x = x(t) is the control signal,
and y = y(t) is the correction signal. Furthermore, in each
of these two classes a dead zone may or may not be present.

In addition these elements may or may not possess hysteresis,
that is, y(t) may be a single or multivalued function of x(t).
Table I gives this classification of on—off elements.

BEquations and characteristics of on—off elements

The output y(t) of the on-off symmetric component N is
a function both of x(t) and %(t), where x(t) a Q%%El « Con-
sequently, the equation of the on-off symmetric component can

be written in the form

y(t) = P (x(t), x(t))

where P (x(t),%(t)) is a -~ nonlinear function. For simplicity

we will use the notation

y = O (x) o (2.1)



TABLE I.

* CLASSIFICATION OF ON-OFF ELEMENTS

ON-OFF ELEMENTS

SJmme‘bric

Without VWith
Dead Zone Dead Zone
Without J&h Without With
i . .
rlysteresis Hysteresis Hysteresis Hysteresis
¥ ¥4 ¥4 y4
I - —_—
0 § o] 2 _ O s( el 5
X
_ | 1 =

Asy mmetric

Without With
Dead Zone Dead Zone
Without Without With
I
HystTresis Hysteresis Hysteresis = Hysteresis
Yy N v/ g4
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The plot of y vs. x is called the characteristic of the on—-off
component N,
In the case of asymmetric on-off elements the character-

istic can be expressed in the form
y =y, + Px-x), (2.2)

that is, P(x - Xa) is symmetric with respect to the point
(xa,y&). The characteristics and corresponding equations for
asymmetric on-off components are given in Table II., If the
elements are symmetric we merely put X, = Y = Oe

From Table II we observe that the first three
characteristics can be regarded as special cases of the fourth.

In f&c’b,

b,x -x)|  =Ddylx-x),
S A=l

b (x - x )] = Dylx~x),

and finally

CD4(x - xa) = q;l(x - xa).
x =0

The linear part of the system can best be analyzed by
means of the Laplace transform. In the case of zero initial

conditions, the output of the linear part is determined by
V(s) = H(s) Y(s) (2.3)

where

v(s) = ;ﬁ(v(t)] and Y(s) = ;,t(y(t)] .



TABLE II. CHARACTERISTICS AND EQUATIONS OF ON-OFF COMPONENT N

Characteristic Equation
Y
' f
M
Y R vy -y, =, (x-x_) =M sign (x=x_)
3 a ~*1 a a
|
o
y ]
\ |
%-X1e & Yy = Ya =CI:)2(){_xa.)
I N T D
% I:? o M sign(x-—xa—xo) , for x>0
l' =
e X >X M sign(x-xa+xo) s for x<o
N
J = -
: y =Yy "'CD}(X xa,)
> X 1 ™M
L  [yignte.x )
v o, =3 [s1gn X=X _-X_
[ .
5 ;a > X + s1gn(x—xa+xo)]
Y
A
| y=y_ =P, (x-x_)
"‘"Xo"'}“bl('_ M’F a 4 a
At + ~I-- M [sign(x—x -x )+sign(x=x_ +Xx ﬂ
M| | P exH |2 a0 a.°
4 ° = for x>o
o M [ . N
. y — 12 51gn(x—xafxo)+s;gn(x—xa-hxo)
a for x<o
Remarks: 1. x———————*%:}i:;——————_"y
1, for x > a,
2. sign (x-a) =< o , for x = a,
-1 , for x < a.
3s In the case of a symmetric characteristic

put X, =Y, 0.




Equation (2.3) may be rewritten as

V(s) = H(s) Iy, + Dlx - x.)] -

Now suppose that non-zero initial conditions exist within
the linear part H(s). By means of the Laplace transform, the

output V(s) can always be expressed as
V(s) = H(s)Y(s) + VO(S)y

where Vo(s) is the output resulting from the initial con-
ditions within H(s). Consequently, the effect of the initial
conditions may conveniently be referred to the output of the
linear part in the manner shown in Figure 2.2, Similarly, any

external influence f(t) applied to the system may be referred

Y(s) He) Yo + V(s) = HE® YE) +V._(s)
— H® Y- ->- °

Vo(®)

Figure 242. Initial conditions in the linear
part referred to the output.

to the gutput of the linear part.
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3. RESPONSE OF ON-OFF ELEMENTS

In on-off elements the correction signal y(t) changes by
jumps at every instant when the control signal x(t) passes
through the threshold values with %X(t)>o0 in certain cases and
%(t) <o in others. Consequently, the investigation of the
response of on-off control systems is reduced to the investi-
gation of the behaviour of the linear parts of the system to a
sequence of rectilinear pulses, the parameters of which
depend upon the form of the control signal and upon the threshold
‘values of the on-off elements. Hence, the basic method of
determining the response of the system is through the application
of the superposition principle to the linear parts. For any

one on-off element, the response is determined by the equation

V(s) = H(s).;f(ya+cb(x—xa)j +V_(s) .
3.1 THE RESPONSE FOR AN ARBITRARY INPUT

The most general on-off characteristic, that is, the case
of the asymmetric on-off element with hysteresis and dead zone

is represented by the equation:
Yy -y, = O -x) .

Without loss of generality, and for definitenessy, we will assume
that the control signal x(t) passing through.the first

threshold value at the instant Ti is decreasing, that is

i(Ti) < 0. The general forms of the control and correction
signals, ‘together with the on-off characteristic are shown in

Figure 3.1.



11

x(t)
)
AN ,
Xat X, A\
SRS A /
Y =¥, + D x-x,) AN AN /.
A a 4 xa | i |
Xy—A%, : \ / S \ / L
I Xa—Xg | \ /: : ! \ /{ i
: : :\/ : | : :\/ : I
| 1 t 1 N | as
BRI Y /‘l& © T t T2 éz"é ta Ta t+7t
FeAX A .i
vl ()
.La {A S
fa— X —>4
! A Y
A
: N 33+M
0 Xg x [‘
a) Y3 | B |
| . |
Mf-M_-__I__-'| | : ; | l |
S R T B A R B
° t Ta 1, T3 % Te  ty
()

Figure 3+1.(a) On-off characteristic with dead zone
and hysteresis;

(b) Control signal x(t); (c¢c) Correction
signal y(t%.

The switching conditions
k
x(tk) = X + (-1) Xy
Kk (k = 1,2,.00) (391)
%(t,) (-1)%> 0
correspond to the switéhing instants tl' tz,..., along the

threshold values x_ + (—l)kxo; whereas the switching conditions

k+1
x(7) = x_ + ('1); AX

(k = 1,2,.44) (3.2)
(1) (-1)" >0
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correspond to the switching instants T19Tpsaee along the
threshold values x_ + (-1)k+1Ax0. It may happen that the
switching instant tm is absent, in which case the switching
instant T+l will also be absent.

The input to the linear part is given by

yu(t) + M > (DET [u(t-t, 1) = ut = 1)], (7, <t<ty)
k=1 |

y(t)
(3.3)
_ . _ . ' _ n -
= Right—hand side of (3.3) + M(-1)"u(t tn),(tﬁgt<7h+1)

(3.4)

where t = o, and u(t-a) is the unit step function initiated at
the time t = a.
Let g(t — a) be the response of the linear part to the

unit step u(t - a), that is
Sf(g(t - a)) = E-S(i)- e”5%
with the understanding that

g{t — a) =0 for t <a
Then the expression for the response of the on—off element to an

arbitrary input with switching instants 7i,t1, 72,t2,... is
n
k-1
v (4) +yelt) + M ;(—1) e (4=t )-e(+-7)],

(7, <t <t) (3.5)
V(t) = <

(Right-hand side of (3.5) + M(—l)ng(t—tn),
(b, <t <7 ;)  (3.6)

where vo(t) represents the response due to the initial con-
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ditions; that is

(vo (t) +y g(t) + Mg(t) (dgfg,<%15

v (8) + v e(t) + M[g(t) - g(+-7))] (T <<ty)

v (8) +y,g(t) + M[g(t) - gt=T)-g(t=t))] ~ (t3<t<T,)

v ()24, (8) + ¥y g(t) + M g(t) - g(t=T)-g(tety)  (T,<H<Ey)

" | v gt = 7)] |

v (1) +y, () + Mlg(t) - g(t-73)-g(t=t;) = (+,<t<Ty)
+ gt - 7‘2)+g(t-t2)__], | |

In general, the response may be constructed graphically by

means of the superposition principle.
3.2 THE STEADY STATE RESPONSE

Various methods of evaluating the steady-state output
response of the linear part of the system are now presented for
the general case of an on-off characteristic represented by

y -y, = $x-x) .

In the case of complicated forms of oscillations, self or
forced, the input to the linear part of the system y(t)
repeats itself, in general, after 2n commutationsy where n is
an even integer. In the absence of a dead zone there are, ‘in
geheral, n commutations, where n is even. The general forms
of the periodic control signal x(t) and of the periodic
correction signal y(t))Jcorresponding to the on-~off charac-
teristic under consideration, are shown in Figures B*Z(a) and

2(b), respectively.
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3&(%)
/\ N\ Xst+Xg VAN 14
7\ TN e, I\ N/
JHR [ N [ha N\ [ [v A [
N S Jhend N N S [T
o S N e N ATV A
=TT R N '\/I |
| ' A I | L | One Period =T | | 1“-]
| | | | . | (@i | ! | b | I | |
co N NS 2 B B | X | | |
! l | YgtM L | | —| |
|
| i | D’a | I !
o b T4 M | | by |
A I N R T R P I L I N
I | | ! o I [ 1] L L | Y
@n-z0T '(g,—n)T’ (@7 J oT Jr 6T | &T T
(-3 T (oL (BT é(;-,)-r q PzL 6T AL A
(b)

Figure 3»2.(&) General Form of Control Signal x(t)
(b) General Form of Correction Signal

y(t), in the case of complicated
oscillationse.

It may happen fhat FET is absent. In such a case it follows
from the characteristic of the on-off element that OE+1T is
also absent.

The correction signal y(t) can be expressed as the sum
of a fixed component Yoo and a sequence of rectilinear pulses

relative to y_  and denoted by yl(t); that is
y(t) =y, +y,(%), (3.7)

where, letting

Auk,i = (-1)i [u [t-(k+pi)T] - u[t-(k+q+l)T]J , (3.8)
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1-1
y(t) = M[(—l)lu [t-(n+ Q) 1] +ZAum,i+ > >0 Auk’i]
1=0

k=m-=1 i=o0
(3.93;)

(m+ QT <t <Am+Gy )Ty
m:O, _-tl,j‘_Z, e

2'—-0, ]., LI I Il—]. ;

-1
yy (2) = M[Z bug o+ Z Z By ] (3.9b)
1=0

k=m-1

(m+ G T <t <(rn+pl)T,

m:O, il, _4:2, o 00 y

2:1, 2, o0y Noe

Al‘bernatively, expressions (3.9a) and (3.9b) can be written as

-oc0 f-1 n-1
y () = [( ) ult-(me @)1] + + 2] Auy 4 +Z buy 1J
k=m i=o
(3.10a)
(m+P£)TSt <(m+0i+l)T
—oco {-1 n-1
yl(t) =M Z(Z Auk’i + Z Auk_l'i) y (3.10b)
k=m i=o0 i=2

| (m+O’TI)T <t <(m+ &)T,

respectively.

In the case of dead-zone only, the above expressions
retain the same form, except that the O 's change values,
whereas in the absence of a dead zone we have A = -1 and
X 2 0y SO that we simply replace o3 by fDi for all 1i.

The output v(t) of the linear part of the system is
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determined as follows. Let g(t) be the response to a unit step
input initiated at time t = o:

'1—1(§§QJ’ t>o0

g(t) = (3.11)

o , 1 <o

Then the response of the linear part to the input y,(t) is given
put N

b
d - -1 n-—1
v, (%) = M[—l) g[t-(me)1] + Z(Z bey, +Z b8y, 1))
k=m i=o0
(3.12a)
(m -_'-Pl)T <t <(m+CMT,
m=0o, + 1, + 2,...
{=o0, 1,..., n-1 ;
—-oo f~1
v, (t) = MZ(Z bgy 5 +Z bgy_y 3) s (3.12b)
k=m i=o
(m +oi)T <t <(m+p£)T,
m=0, + 1, + 2,400
£= l, 25004, n ,
where
bgy 3 = (1) [g [t- (k) T] - & [t~ (k+cr+1)T]J (3.13)
Since I [g(t—T)] = Eéﬁl e~ST
then
. -s0. T -3 o T
i(Agk 1] = 1)1 gsil (e SPJ. - e SO;.+1 )e—SkT ,
[
-1 ' n-1
so that sT
£y Z %4
(v, (t)) = me~smT Hls) [“° — eST ,
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(m +opT <t <(m+ ,OL)T,

-1 ST n-1
s 2: 2 &,
(v, (+)) = wem=nT Bls) [( 1y e R ——r }
(3.14b)
(m +&)T <t <(m+0i+1)T ’
- -sc: . T
where § = (- 1) it - e *%i41 ) (3.14c)

The response of the linear part to a fixed component Vg
in the steady state is
v, =y,e(e) =y Hlo) , (3.15)

which is finite if the linear part of the system is stable.

Consequently, the total output of the linear part of the system

can be expressed as

v(t) = v, o+ vl(t)

= ¥, Bo) + 5= 4 Hs) 1 (s)e™smTes?t as
C1 or C
(3.16)
(m+Gp)T <t < (m+ )T,
where | ST n-1
D 5ite >
Il(s) = =0 sT1= , (3.17)

where C, is a path enclosing only the poles of H(s)/s, where

02 is a path enclosing only the poles of Il(s), and where the
contour integrals along C1 and 02 are taken in the mathematically
positive and negative sense respectively; whereas |



18

v(t) = yaH(o) + M E§ Eéﬁl Iz(s) e—smTeSt ds

21
Cl or 02

(3.18)
(m+pE)T <t <(m+oz+l)T y

where

I,(s) = (_1)2 ;SP&T + I, (s) (3.19)

In general, vl(t) is asymmetric, and
vy (8+T) = vy (t) (3.20)

If, howevery, the condition
vo(t +2) = —v.{t)
1 2 1

is satisfied, then the function vl(t) is said to be symmetrices

This necessarily means that

= odd integer , )

s

e
Il
[\ { g
“

(3.21)

1 n
Py = F v P ety 2y B

+0y (k=1, 2,000y 3) |

Nl::iq
Il
[\ Lo

Thus, if we are consideriné the response vl(t) for
nT <t < (m+ %)T, then, substituting conditions (3.21) into (3.17),

ve get



n
L-1 n-1 {-1 L2 -1
SiEe eSS e [DoB-e 225 5] 0P
1 (S) — 1=0 i:ﬂ - 1=0 i:l
1 1 - sT 1 - esT
n
L-1 3 1
§1 esT/2 zzj ¥ :
_ 1=0 l:ﬂ-
- 1 + eST/2 )

(3.22)

Consequently, in the case of symmetric but complicated forms of

oscillations, the response of the linear part of the system is
given by

M H(s) -smT st
v(t) =y H(o) + 55 é& 150 1 (s)e eSYds  (3.23a)

C1 or C2

(m+OE)T <t <(m+ Q)T,

n

m=0, il,ooo; 2=1’ 2’..", 5

-s O,T
v(t) = yaH(o) + 5%5 @h Eéﬁl [FJ)Ie SF% +Il(si]e-smTeStds
C1 or C2
(3.23b)
(m+ Q)T <t <(m+oi+l)T,

m=0, i 1,00.;E=°’ 1,"" %-1

where Il(s) is now givén by (3.22).

Methods of Calculating the Periodic Qutput Waveform

So far we have set up very general expressions for the
periodic output v(t) of the linear part of the system. Let us
now turn our attention to the various methods of calculating

the shape of the periodic state. We will classify these methods

as follews:
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1. The g-Method, which uses the unit step response g(t) of the

linear part of the system;

2. The Cl-Method: We derived an integral representation of

vl(t) in the form

v, (1) = 95 H(s) 1(5) o5 as , (3.24)

where C1 is a contour enclosing only the poles of H(s)/s. By
the residue theorem, of the theory of functions of a complex

variable,

Vl(t) = :E: Residues of Eéﬁl I(s)eSt

(3.25)
Thus, this method uses the transfer function, H(s), of
the linear part of the system,

3. The Cz~Method: An alternate integral representation of

vl(t) was found to be

¥§ —L—l I(s) e° ’ (3.26)

2

v, (t) =

where G, is a contour enclosing only the poles of I(s). Thus,
by the residue theorem,

vl(t) = =M E Residues of H(s) I(s)eSt
. S
Poles of I(s)

(3.27)
Since the poles of I(s) all lie along the imaginary axis of the
complex s—plane, we are essentially using H(jw), the so-called
frequency response of the linear part of the system, in the

evaluatidh of Vl(t). For this purpose we will find it more
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convenient to rewrite H(jo) as

H(jo) = H_(0) ¢3°()

where Ho(w) = IH(jw)‘, and 6(w) = arg H(jo) .

The g-Method of Determining the Periodic Output Waveform

Recalling that va(t) = yag(oo)

we find the total output v(t), in terms of g(t), to be

v(t) =y 8(ee) + (3.12a), (m+Q)T <t <(m+Tp )T,

2 = Oy l,-ony n""].; (3.28)

v(t) = ygleo) + (.3.12b), (m+ )T <t <(m+0,) T,

RZ ]., 2,..., n (3.29)

(m:o,'j-_ 1, 12,000) .

Hence the construction of the periodic state reduces to
the superposition of the responses of the linear part of the
system to pulses of height (—l)iM and of duration
«3}— FE-J)’ i=lyess, n, plus the steady component yag(eo).

This method is convenient if bgy ;—> O as Ky o0
that isy in those cases where the linear part of the system is
stable.

The Cl-Methéd of Determining the Periodic Output Waveform

Let us suppose that the transfer function H(s) is a

fractional rational function, i.e.

H(s) :%3 ,
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ahd that the degree of the numerator does not exceed that of
the denominator. Furthermore, let us assume that H(s) has
poles at

s, = © of multiplicity r, - 1,

SV £ o of multiplicity y (=1, 2,¢0esD) o«

fy
The sum of the multiplicities of the poles is equal to the

degree of the denominator of H(s), i.e.

ro—' 1 + I‘l -+ I‘2 + see + I‘P = N, Sa'y »
Let us put
r, —p—-1
Vv Tr
m = 1 d T n 1 [ P(S) (S haed %/)l/} (3030)
o— — ' - =
(ﬂ/ uw 1)1 ds 14 Q(s)s s=s

1%
Recalling that
v, (t) =y gloo) =y, H(o) ,

and using Eqse. (3.30) and (3.25), we get the total output of

the linear part of the system in the form

P 11 " (s.) ﬁ/t ’
C d"I(s,,)e

vy Y 3.31) .

v(t) = ¥,Coo t M E i: o i F ( .)

V=0 p=o v '

We now evaluate special cases of (3.31).

Suppose that H(s) has only simple poles; all different

from zero. Then
r0=r1=...=rN=l,p=N,p=0 9

so that (3¢31) becomes

N
s, bt
Y,
v(t) =y, +M > C o L(sy e (3.32)
V=0



where

P(s, ) .
C - 2%2% , and C = SR 2 .
00 Q(o /0 Q’(s Ys
| A %

Therefore, in the case where y(t) is asymmetric, we have from

(3.16), (3.17) and (3.32)

s, b

N
v(t) = y,C,, +-p1§E:cVo I,(s) e Ve, (3.33)
V=1 '

(qr<e<QT; L=1, 2,..., n),

and from (3.18), (3.19) and (3.32)

JA N th
v(t) = (y, +M(-1) )c__ + MZCI/O I,(s) e
V=1
(3.34)

(%?St<obqh L =0, 1,uyn=1) .

In the simplest case where n = 2, and Fﬁ and CTz are absent,

i.e. the input has the shape shown in Figure 33, we obtain:

y(t)
A

Y +M —--

[ —— : :‘/a

i )
| I
I I
i "
} I

ct

pT=0 agT  QT=T

Figure 3+3. Form of y(t) for n = 2, with P, and T,
absent,

23
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N  s,,(1-00)T
vV 1 sy ,t
1 - e vV
v(t) = (y + M)C  + M ZCVO 1 e (3.35)
V=1 1 = e
(of;t<101T),
N —%}I'T
1 s, t
1 - e | %4
v(t) = y,C, + MZCVO ST ° (3.36)
V=1 1 - ¢

0 T<t<T) .

In the other simple case where dead zone is absent and n = 2 we

have
0y =Pyr T =Py =1,
so that equation (3.34) reduces to
v(t) = (y,+ M)C__ + 2M Z C o o e
V=1 1 - e (3.37)
N -8 fﬁT
V st
l - ¢ 1%
v(t) = (y,- M)C _ +2M » C 7 e (3.38)
V:]. 1l - e V

(T <t <T) .

Let us now consider the complicated forms of symmetric
oscillations, the general formulas of which are given by
(3.23a) and (3.23b). Special cases of these follow.

Case 1: H(s) has simple poles all distinct from zero, so that

In this case we get
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{-1 Szzl %-1
N Z% (s)) — eV 575 (s)
| | 5
v(t) = a 00 + Ml;§; CVQ SV % e
L+e (3.439)
(OpT <t < O =1, 2,00, ),
and |
N L -s f)T s, t
v(t) = M(- 1) Coo * MZCVO(_l) R 70 R
V=1

+ Right-hand side of Eqn. (3.39)
(3.40)

n
(pZT<t<O‘ -2--1) .

2+1T;£ =0, lyoooy

In the simplest case when % = 1 (recall that % must be an odd

number for symmetric oscillations), equations (3.39) and (3.40)

reduce to

N ~s,07 T
v(t) =y C +MZC 1-e "1 eSVt (3.41)
Ya 0o o < T ¢
1 —
and (1 )
N s -C; )T
| AKX 1 s, b
1 4+ e Vv
v(t) = (y + M)C , + M_ZCVO T e
— i v e V2
(3.42)

(o <t <OyT),

respectively.
Case 2: H(s) has one pole equal to zero, and the other N-1

poles are simple, i.e.



26

P(s) P(s)
H(S) = Q(s) = 1 ’ Ql(o) f'é 0o °

Then r_ = 2y, Ty =T, = oes =Ty ) = 1, so that from Eq. (3.31)

we obtain

st1 M1 t
v(t) = (y + I(0))C_ +C_; E-ESL-] + E CVOI(gj)eSV
8=0 V=1

(3.43)

Computing Eqe (3.43) in the case of (3.23a) and (3.23b), i.e.

for complicated but symmetric oscillations, we obtain

— -1
v(t) = yaCoo + = [:E: (- 1) ( i+l F% ZZ: ( l) (e i+l F{)]
8_1 T n_4
N-1 Z%i(s,/) - esl-/z ZZt 5ilsp) | st
i=0 1= V
+M > Co T o
V=1 1 + eSV 2
(3.44)
(O}JTSt<p£T; 2 =1, 2,.0., %) F]
< 2%
v(t) = M [(ml) Coo* Co1 (- 1 (s- [T + > c (- 1) e ]
V=1
(3.45)
+ Right-hand side of Eq. (3.44)
(IOY,TSt<q,’+1T; £ =0y lyceay 'Izl“l)y
where
c = d [(P(s c _ P(o) d C P(s ) °
oo ~ ds [Ql S } ' Yol T Q00 » an - ZSVssV
S=0 :
(3.46)

Furthermore, if % =1, that is we have simple symmetric
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oscillations, Equations, (3.44) and (3.45) reduce to

N-1 —ﬁfj‘
1 s, ;b
MT l — e V
v(t) = Y4Coo ¥+ Co1 =5 T, + M E : o sVI e (3.47)
V=1 1 +e¥2
T
0 1<t<3),
and
1
T < 1+esl/(2 -9, syt
v(t) = (v, + M)Coo+/ ColM(t- 501) + M C 0 : T e
b=l 1+6 72
(o<t<OyT) (3.48)
Case 3: H(s) has two poles equal to zero, whereas the other
N - 2 poles are simple, i.e.
H(s) =%i§-=—ﬂﬁ)§, 0,(0) £0 .
as Q,(s)s
: 2
Then o= 3, )= Ty = see = TN = 1. Egquation (3.31) then
becomes
: t
vit) Zé - dIgszeS :
W= (o + T())Co o+ Oy =g
S=0
N-2
C 2 st s, ;b
02 d°I(s)e Vv
+ 3% o2 ] + E Collsy) e (3.49)
S =0 V=1
s=0 =

The computation of (3.49) in the case of (3.23a) and (3.23b),

i.e. for complicated but symmetric oscillations, yields

n
> -1

-1
y Z i Z i
~i=o0 i=4
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3 -1

_?2_ [ [Z(l) (O_1+1 Pl Z( l) (O-1+1 Pl)]

5—1

-1
+D2 [ D7 (1 p-0p,,) (2 + 207 41)

= Z (Pym ) (2R 207 - 1)]J

=]

T 371

N-2 -1 S
AOILADRNIEREID WA :)
V:l i':O Q,

. P n
(crLTst<pr, £-1, 2,..., 3)

(3.50)
whereas
v 02 <2 PT Sl/ ]
—ﬁ—lM (- 1) [c +Cp (4= g1 + 32 (3- &T) +z/Z
=1
+ Right—~hand side of Eq. (3.50) (3.51)
( QT <t <Gy T £=0, 1,..., 521- - 1),
where
c - 1éd? [Ps] c _Q_[Ps] ,
oo 2 210,(s ' Yol T ds | Q,(s
ds 2 s=o 2 s=0
(3452)

_ P(o _ P(s))
C o= Q—iToL)' R and C o =_ S

——
0'(s))s,
In the case of simple symmetric oscillations, i.es.

T . '
%: 1, P T =pP;T = 5 , equations (3.50) and (3.51) reduce to
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C
vi(t) Ya T 02 T T
sl =Lfc +c oy + 3= 20“1[2t - 3(207+ 1)] ,

00 ol 2
N-2 _%VCET Sy b
1 - e V
I S TR R
V=1 1 + e 2
O, 1 <t <Ly
1 277
and
v - da e vo (e-2o)e C—Og[t2—tTO'- &for (1-20 )]
M - M 00 ol 2717 2 17271 1
N-2 s)(z - )T
1 s, ,t
1 + e 1%
+ Z CI/O SV_':!-‘_ e (3054)
Z/:l 1 + e 2 '

(o <t <0y T) .

Cases 1, 2 and 3 dealt with above are the ones usually
encountered in practice. Other cases may be similarly
evaluated by an application of equation (3.31).

The 02~Method (or Frequency Response Method) of
Determining the Periodic Output Waveform

Here we apply formula (3.27) to equations (3.14a) and
(3.14b). The poles of Il(s) and IZ(S)’ given by equations

(3.17) and (3.19), are the same, and occur at

S:j'z'%ﬂ:jk‘o9 (k:o’il’ _‘t2, coo;‘o=_2_1Tt) 'Y
Consequently, i 2-1 n-1
' ('t') = =M Z H(Jk‘o) 1= i=t GSt i .
1 oL 210 sT
Jk —— -T e
k-_—-co T
Y
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Now

4_1 n=1

T
E ;gi + e® E Eéi n-1 )
i=o0 1= . - i fakzﬁﬁi —Jk2n01+1

Let us put

n-1 . .
-jk2n0. -jk2ng;
M J Iol i+ly _ -;jc}S
Tin (e - e ) =C, = ICk| e k ,
i':O (3.55)

and substitute-
H(jo) = H (o) &390 (3.56)

where

H (0) = [H(jo)

, and O(w) = arg H(jeo) .

Then oo

v, (t) = ng B (ki)e i oottier g(k“)]
k=-c0 .

which can be rewritten as

ACEE TENSED SN ERTAE PR RS
k-——l
(3.57)

If vl(t) has the additional property of symmetry, then

from eqﬁation (3.22)

-1 n-1 £-1 I 3 -1 LI
Dot et D8 =[D0Ee 2 2 8 ]ae Y,
1=0 ={ i=o0 i=1

so that the poles at
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are eliminateds Hence, in the case of symmetric oscillations

vl(t) becomes

v (t) = i/lck| H (ko) cos[kcot -P,+ e(km)] (3.58)
k=1

/
where E: means the summation with respect to odd numbers

only. Also Ck is now given by
n

5 -1 . R
c, = ZZ: (_l)i(e":’kz“loi _ e“sz"oiﬂ) .
k Jkn

1=0

Equation (3.58) may be conveniently rewritten as

v, (%) =i |C et | Bo((26-1)0) cos[(2k-1)ot ~p,y .
k=1

+ e((zk-l)m)] (3.59)



32

4. CONCEPTS PERTAINING TO THE STEADY-STATE RESPONSE
OF ON-OFF ELEMENTS

Before proceeding to the study of self and forced oscilla-—
- tions in on-off feedback control systems, we will first introduce
concepts pertaining to the steady-state response of such systems.
In this respect, the Hamel and Tsypkin loci (or hodograph, or
characteristic) 5’6hévé been formulated to facilitate the solu-
tions of periodic oscillations in singlé—loop systems contﬁining
one on-off element, Furthermore9 Neimark9 used the concept of the
phase characteristic to determine the simple sjmmetric self-
oscillations in a single-loop system containing an arbitrary
number of on=off elements, but no mention was made as to how

it may be adapted to the problem of forced oseillations.

In this chapter we redefine the above-mentioned concepts in
order (i) to include the effects of initial conditions and of
external influences, (ii) to show the relationships existing
among these concepts, but moreso (iii) to extend their sphere of
application to the solution of the possible periodic motions in multi-
loop control systems, containing an arbitrary number of on-off
elementss

For this purpose it will be convenient to regard any given
system as a comébsition of simple unit syétems, or sub-systems,
shown in Figure 4Ka)2 the characteristics of which ban be readily
~ascertaineds Let us assume that the characteristic of the on-off
element in Figure‘hl(a)is symmetric with hysteresis and dead zone,
as depicted in Figure 4sl(b).. The initial conditions are referred

to the output of the linear part and are designated by vo(t),
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) W

Linear On-off M (
N2 va) G x@) _—'ID y) —Xo —WK I 1

5. > > > ) N
> H® fqg_ N | | of A%, x, "X
Part . - E lement 0 I_m

Vo ()

(a) | (b)

Figure 4.1(a) Block diagram of unit system

(b) Characteristic of on=off element

whereas f(t) accounts for any external action.

Let the input to the linear part of the system be a steady
periodic waveform of symmetric rectangular pulses as shown in
Figure 4.2(a).Then the output v(t) of the linear part will also

be a periodic waveform with the same periodicity as the input

yl(t)‘
Y, )
)
N%
-2T _T T~ 4
0 -e—lT—-,i T 2T 37T
— -+ -—Mz btttt—
(a)
}.y(t)
T T k__;r ‘
— <—f> —>] — -
|<———T—-——»—<——(7T—>-‘
(b)

Figure 4. 2(a) Input to linear part of Fig. 4&1(%):

(b) Output of on-off element of Fig. 4. (a)e
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In fact

( M H(s) 1 + e . st

3 . T, .57 e”"ds, (o<t <plT)
Cl or 02

v(t) =<
( ) - £T
M His) 1 - e st

\ 210] § S 1 + esT e” "dsy (PJLT-—<—+’<T)

C1 or 02

(4.1).

where C, is a contour enclosing only the poles of H(s)/s; where
C, is a contour enclosing only the poles of 1/(1+eST), and

where the contour integrals along Cl and C, are taken in a

2
mathematically positive and negative sense respectivelys

Now the input x(t) to the on-off element is given by
x(t) = £(t) £ v(t) £ v (%) (442)

In the case of simple symmetric periodic responses, that is

y(t+T) = ~«y(t), the only switching conditions are
X [(oc-i-k)T:l = (—l)kx0 = %— x[(oc+p+k)T:| (4.3)
% [(a)T] (<1)* >0> % [(at o+ BT (1) (4.4)

(k.=0, i 1,i 29 ooo)

where a is taken as>0 and 0<p$1, Consequentlyy; the output

of the on-off element is also periodic with half period T ;

it has a pqlse durafion.pT which is in general different from the
pulse duration F%T of the input yl(t); and it is shifted to the
right by an amount oT. The condition expressed by Eq.(4.3) is

referred to as the condition for the proper switching instants,
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whereas that given by Eq.(4.4) is the condition for the proper
direction of switching;
If a dead zone is absent then we put A = =1, P=1 so

that the switcehing conditions reduce simpiy to

x [(@+101] = (-1 | C (4.5)
(k = oy 11, ¥2,...)
£ [(x+10)T] (-1)5>0 (4.6)

Furthermore, if hysteresis is absent then x is set equal to zero.

4,1 GENERALIZED CONCEPTS OF THE HAMEL AND TSYPKIN LOCI
From the above we note that the quantities x(aT) and
%(al), together with x [(x +0)T] and % [ (a + P)T] in the
presence of a dead zone, completely charaterize the parameters
% = @, the frequency of tpe~periodic response,F)the relative
pulse duration, and « the shift to the right relative to'yz(t)
of.the output of the unit system. Hence we are led to the

following concepts of a "characteristic" of a unit system of the

type shown in Figure 4+l1:

1. Generalized Hamel Loci. The generalized Hamel Loci are

defined by

H (a,0) = x(%%) + in(a%) (4.72)

and :
Hwpw) =x [0 +PE] +35 5 [@+@Z]  (4.70)

2., Generalized Tsypkin Loci. The generalized Tsypkin Loci are

defined by
~ — = w(o ; yy
J (ay0) = b x(ag) + 3] X(ocw) | (4.8a)

and

J(ayp,w) = i—x [(oc +P>£] + jx [(a’ +P)(%J (4.8b)
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where Jﬂ(a,ﬁ%w) and ;](a,Fbw)4are required in addition to
H(a,0) and J(x,0) in the case of a dead zone. It is
interesting to note that for a given @ as o varies from O
to 1, the quaﬁtity Im J(x,0) or ReH(a,0) determines the
periodic waveform x(t), since t in x(t) takes on all
values between O and T; similarly, the quantity Re J(a,w)
weighted by the factor 1/w or ImH(«,0) determines the
derivative x(t).

The Hamel and Tsypkin ioci are convenient graphical
representations of the input signal conditions at the switching
instants. They are therefore useful in the study of periodic
phenomena in on-off systems.

Sketches of the general form of the Hamel and Tsypkin

loci are shown in Fig. 4+3,

A -
4In\}( Im
&>
(e} ReXH . ReJ
o -
H (o,w)-plane Jexyw)- plane
AIm K ImJ
\ \ \ Jo  ReX Re J
e
JH (¢, p5w) -plane ' (e, pyw)-plane

Figure 4.3s Sketches of general form of the Hamel and Tsypkin Loci.
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Quite obviously, the Hamel and Tsypkin loci are equivalent
except that Hamel's x is replaced by %& in the case of Tsypkin
and that the coordinates are interchanged.

Hamel's characteristic is advantageous from the point of
view that (i) it uses the phase—plahe variables x and % which
‘describe the system's behaviour, and (ii) a derivative control
introduced into the system is very easily studied. On the
other hand, the Tsypkin representation is generally very close
to the transfer locus H(jw) in the high frequency region.

4,2 CONCEPT OF THE PHASE CHARACTERISTIC

In the preceding section we observed that the output
has the same general features as the input yz(t). In fact,
it has the same periodicity, but it is shifted to the right by
an amount oT as shown in Figure 442, The curve oT vs T will
be referred to as the phase characteristic of the unit system.

" To emphasize the fact that aT is a function of T, we will denote
it by €(T).

Clearly the instant @(T) of switching from -M to +M that
is clésest to the instant t = 0 is a non-negativé root of

the equation

X('b) = X (4.9)

o

Obviously, the phase characteristic represents the information

concerning the switching instants given by the intersection

of the Hamel loci with the straight line X s OTy alternatively,
by the intersection of the Tsypkin loci with the straight line

Ix e
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The Hamel and Tsypkin loci are very convenient concepts
in the study of the single-loop system containing one on-off
elementy but are very cumbersome in the case of single or
multiloop systems with more than one on—off element. It will
be seen later that the phase characteristic is better suited for
determining the periodic modes of oscillations in multiloop
systems containing an arbitrary number of on-off elementss The
investigation is considerably simplified in those cases where an
analytic expression for the phase characteristic is available,

In the case of on-off elements with dead zone it is neces-
sary to knew f)T, the duration of the output pulse corresponding
to a fixed input pulse duration'fiT. Consequently, in such cases
the concept of the pulse duration characteristicy which is a
curve of pT vs T with Pl as fthe parametery, has to be introduced.

We now proceed -to the computation of the phase character-—
istic ©(T) for a few‘simple systems, in which a dead zone is
absents We first list formulas for v(t), the ocutput of the
linear part of the system for commonly encountered special cases
of H(s)s

Case 13 H(s) has simple poles, all distinct from zero., Then

c N %/t

00 e )
v(t) = ZMI[T +ZCI/0 ——SI;T} (4410)
V=1 l+e
(o <t<T)
where (s.)
i P(s

c = %9% ; and C = —K

00 Qo /o Q'(S )S
V'tV

Case 23 H(s) has one pole at the origin, and the remaining

N-1 poles are simple, that is,



39

_ P(s) __ P(s)
iis) = Q(s) =~ s 0,(s) °
Then
N-1 sbﬁ
v(t) = Mll:co" + Col(t - g) + 2 Z CVO i—:s;T:l (4,11)
V=1
(o <t <T)
where
c d_ [P(s c P(o C P(ﬁ/) ,
‘00 ~ ds [Ql s ] ! Yol T Q, (o) * and G, = Q’zsyjsu ¢

S=0

Case 3% H(s) has a second order pole at the erigin; and the

remaining N ~ 2 poles are simple, i.e.

ols) = S292(S)
Then
T . i
v(t) = Mz[coo + Col(t-— '2') + Cozt(t —'T) #
N-2 st (4.12)
2 e
* EE: %/o s T ]
V=1 l+e
(e <t <T)
where:
C _14% [e(s) c . -4 [B(s ¢ _ R
oo .2 ds2 Qz(s) t Yol T ds 92 S ] ¥ 02 = 92 o) #
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and
P(SV)
C, 6= :
o Q’(sujsu ®

Case 43 H(s) has a second order pole at sl(é‘a), and the

remaining N — 2 poles are simple and distinct from zero, i.ea

His) = Pis - P(s)
() 5&% (s—s1)293(S)

Then
v($) = ME) +(c, +C,.t ~0C,, & es-]LT) ze»srlt
~ 3l o0 lo 11 11 slT siT
l+e 1+e 7'
N-1 th :
2 e
* > Co “om ] (413)
V=2 1l+e
(o <t <T)
where
c - Pé._o,g, c. -4 [_P(s . P(sy)
oo ~ Qo) * “lo ~ ds |s Q4 (s R b B 8193(51; '
. S=8]
P(SV)

We now turn our attention to the computation of the

phase characteristic ©(T) for a few systemsa

System I: x(t) = +v(t)s hysteresis and dead zone absent

g

This system is shown in Figures 4+4 (a) & (b).
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J A
M
%) ] V) 4 X() Y&)
| H(s) Q) > N |—— o >
(A=1) %
-M
(a) b

‘Figure 4.4 (a) Block diagram of System Izx(t) =’v(t)

(b) Characteristic of N in Fig. 4+4(a)s

Let us consider the following representations for H(s).

(1) H(s) = % : We use Eq. (4.11). Here %L%%T =1, so that

1
C,p = Os Col.z 1, €, =o (all p)
. .
Hence x(t) = M, (t- =).
¢ 2 o(
Setting x(t) = X, =0 we get I?
the phase characteristic
T
e(T) = 5

>-T1

o)

Figure 4.5s Phase character-

istic for H(s) = 1/s.

(2) H(s) = 1/52: We use Eqe. (4.12)s, The only non-zero

coefficient 1s‘CO which is equal to 1.

2
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M tlqp]
Hence x(t) = Ei (t-T)t , A
(o< t<LT)
oM =T
Thus
6(T) =T
0 > T
Figure 4.6s Phase character-
istic for H(s) = 1/s2
(3) H(s) = 1/(Ts+1): We use Eq. (4.10). Here C _ = 1, Cio = =1y
8 = '-'-1/7_'5
Therefore
e~ t/T e(T)
x(t) =M I:]_ - ———TT_] A
)/ 1+ /T
| Tin2 _ _ ___ _____
(o <t <T)

Settin t) = e t
g x(t) = o we ge K oer) = T bn—2

'1+—€J7r

+e

o(T) =1ln ﬁ?

>T .

Figure 4+7s Phase character—

istic for H(s) = 1/(Ts+l)

(4) H(s) =1/(Ts=1): Referring to case (3) above we simply

replace T by —~Tand H(s) by -H(s) to get

e ¥/T
x(t):le—W-l]y

(o<t <T) .
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Therefore | Yer) _ //

! 7
T/T o (4T /
o(T) = Tin -1—““-3— . o(m=TInEE2— —y/

/ .
/ {LSlope =1
7/

/ 5>
0 >T

Figure 4.8, Phase character-

istic for H(s) = 1/(Ts-1)

(5) H(s) =1/[s(s+x)]s We use Eq. (4.11). Here

R S _ 1 _ 1 - -
Coo= = o2’ Cor =% 1 C107 2! S
Therefore
t
1 1 T 1 2072
x(t) = M [} f— = (t -3+ J
1| 2%a 2/ ¥ 77 [ oo
(o <t <T)

No analytic expression can be found for ©(T).

But given a, we can solve for ©(T) graphically or numerically.

(6) H(s) = —= :
_ (s+a) (s+8)

(i) Suppose a #B, o« # 0, B # o. . Using Eq. (4.10) we
get

x(8) =y [&E = R e

1 2 1 e %t 1 BY )]

(o <t <T) .

(ii) Suppose a = B # o. Then, using Eq. (4.13), we get



44

(o<t <T)

No analytic expression is available for ©(T) for this case.
But, given o« and B, we can solve for ©(T) either graphically or

numerically.

(7) H(s) = G + GS)LS - B)=

(i) - Suppose « =B # o. Then, using Eq. (4.13) ve

get
: -aT -at
Te x 2e
x(t) = M,(t - —) —
: i vl+eaT 1-+eaT
(0 <t<LT).
Hence OJ(T)
‘ - T
Te x
e(T) = T o T
' ' <o T e
p—1g T Y
1l + e“T
x>0

Figure 4.9. Phase characteristic

for H(s) = —&— ,
(s + oc)2

« and B pure reals,x=p 0.
(ii) Suppose o #B, « # 0, B # 0o, & « and B pure reals.

Then, using Eq. (4.10), we obtain

x(t) =EM_:Z«__[_9_-_BE._ - _e_-ixt_ ] ,

=BT Pt T

(0 _<_t<T)o |



Putting x(t)
1 _enl-fe_

= o0 we obtain

e(T) =

wvhich may be rewritten as

o(T) = 5 E p.ta.nh"]‘[sinhg--'z-'-g’l‘
i
* &% By

e 2 + cosh E—%—ET

This phase characteristic is
| plotted in Fig. 4.10 for
the case « >B>o0.
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»-T

o

Figure 4.10. Phase character-
istic for

H(s) = Ts + a;(s + B

wvhere a, B are reals,

«x £ B, a>3v> O

(iti) On the other hand,. if a« and B are complex then they are

complex conjugatese. Let

« = a+jb, then B = a-jh,
and
In this case we get
6(T) ='%tan"l[7x%-iLbL]._ |
e “+cosbT

Fig. 4.11 shows a sketch of this

phase characteristic.

(™)

N

- taﬂJ[ sinbT ]
b o“T—k cosbT-

S

o T /b 217§T

" Figure 4.11. Phase character-

istic for H(s) = s+ a?(s )

wvhere « and f are complex

‘conjugates.
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(8) H(s) = =T

, o(T)
Obviously x(t) = yh(t ~T) 4
Hence the phase characteristic CTr - == ;{"“—‘_’
, , 71 '
is given by ' x : s I
. ) ‘;L. , |
o(m = 7- [F] 2 | 7

‘ .
where II:-ZIT]] denotes the /el — —— ! ' I
. T/4|——~ - | {
integral part of T/(2T). ‘ﬂ%::‘ YA |
- o o a‘\: to\! !

°-%%% % -z

Figure 4.12. Phase Character-—

- =8T
istic for H(s) = e ®.

System II: g(t) = —v(t); hysteresis and dead zone absent in No

This system is shown in Figure 4.13.

><Y

Y (t) e v(-t:)..8 X(t) EW Y) 0
(Pg=1) LI

@) (b)

Figure 4-13. (a) Block diagram of system II.

-(b) Characteristic of N in Fig. 4.13(&L
 Let O (T) be the phase characteristic of system I.
Let OII(T) be the phase characteristic of system II, correspondlng
to system I, i.e. same H(s) and same N but with the change
x(t) = «v(t). Then, in terms of the phase characﬁéristié of

system I, 0, (T), the phase characterlstlc of system II is given by
+ T:[I
II(T) = 04(T) + T - [_ 2T , (4.14)
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vhere [ :ﬂdenotes'the infégrdl part of its argument.
As illustrations consider the following cases:
(1) H(s) = 1/s: Ve obtained OI(T) = T/2; Therefore, by
Eqe. (4.14);
OII(T) = 37/2
(2) H(s) = 1/52: In this case QI(T) =T, so that

6, (T) = 2T - [[g—,f]l 2T = o.

‘System IIIs X(t) = 4v(t); N has hysteresis, but no dqu-zone.

This system is shown in Figuré 4.14,

| I
V2 V&) o X() y(t) M
‘ N =X R
b= 3 He) D.! '- ‘ & - ¥ >
: ¥
@)
(b)

Figure 4.14. (a) Block &iagram of System III; (b) characteristic
of N.
For this particular system, the phase characteristic is
found as the least positive root of the equation
V(t) = xo.

We now compute @(T) for the cases of H(s) considered in connec-

tion with system I.
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(1) H(s) =<
: T e(M
Putting v(t) =M (t - 3) = x
gv(t) =M, =D =% Y ot
we get
T X0
O(T) = "2" + M—
L
where it is understood that
T
x0<M!.2
Figure 4.15. Phase character-
istic for H(s) = 1/s.
(2) H(s) =15
s

In this Instance we have

. Ml :
x(t) = 5— t (t - T) = -xo eA(T)
Provided that xo{x(t)max
. 2
i.e. T
x0<M&8
commutations will occur. ‘ ‘skgg
M
The phase characteristic :
1s given by ,.
37 - 12 - gi]i/a
e(T) = — 5

Figure 4.16., Phase characteris-

tic for H(s) = l/s2.
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1
() #16) =757
oM
Here ' / 4
-t /T
Xo
: 2e TQn[Z/(l-"—)]
x(t) =M |1 - —7—] ______ M2 _
; ¢ 1+ e VT L
( 0<Lt<T).
Provided that i ‘ :efn=7&n( Tﬁi .
- L I+ e /1) (1 -22)
xo< x(t)max = MﬂtanhZ’T : ‘l ‘ Mg'r
0 _ 7
commutations will occur.. The ZTfaM\t%ﬁ

P

phase characteristic is given by ‘Pigure .4s17.Phase character—

2
o(1) = Tin “1/rv;. - %o - istic for
(1L + e (1 - ﬁ—)
X 2 H(s) = 1/(Ts + 1).
valid for T>2T tanh ' =2
)

4,3 CONDITIONS FOR THE EXISTENCE OF PERIODIC
OSCILLATIONS IN SINGLE AND MULTILOOP SYSTEMS

Let us first examine a single-loop system containing an
arbitrary number of n on-off elements. The system under considera=

tion is shown in Figure 4.18.

FO 4, %, f Y, Xz =T X Xn | N v,
. > N, = He 2o N, 3 Ho——— HI N, 1'15, H, (&) 2
@) o/
' ' ¥
Figure 4,18, (a) Single loop . Yol M
.. M | O X .t ,xi
system containing n on-off elements; i ot
‘ X

(b) characteristics of Ni' (b)

For the purpose of investigating the possible periods of
oscillations, self or forced, we decompose the above system into

n sub—systems or unit systems as shown in Figure 4,19. The
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N , Y. —

L,Hi@) Xivy - Ni+,‘——'y>‘;"' Bt (RN Hn(s) N, 7
(i:l, 2-, 0">n‘|) | |
Quch)‘ < 8,cr) >

Figure 4.19. Decomposition of system in Fig. 4.18 into

.n sub-systems.

phase characteristic associated with the system containing the

on-off element Ni is denoted by Oi(T).

Let 0
. 5. 6y(m)
ox(T) & o () - [ isL—___f2r (4.15)
ML 3 om) [=; ] v

n .
The quantities E:Oi(T) and 0%(T) will be referred to as the total
| i1

phase characteristic and the reduced phase characteristic respec-—
tively of +the open—loof system (opened at any connection ﬁetween

Ni and Hi(s)). Clearly, the closed-loop system will exhibit simple
symmetric oscillations with half-period T if the reduced ﬁhase

characteristic is equal to zero, that is,

0x(T) = o, .(4u16)

and if

X [Qi(T) + kT]l = (—1)kx0i (i = 1,004, nj
(4.17)
ii [Oi(T) + kT] (-1)k:$o K = 0, ¥1,00.)

are the only switching conditions satisfied. in the separate

subsystems. Equations (4.16) and (4.17) are the conditions
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required for the existence of periodic oscillations in a single-
loop system containing n on-off elements.

In the simplest case where n = 1, i.e. the singlé—loop
system contains only one on-off element, the conditions for the
existence of periodic oscillations reduce simply to the familiar
expressions

x, (6T) = (<)%
(k = 0, ¥1,044) (4.18)

%, (61) (-1)%>0

In the more general case of multiloop systems the required
conditions follow naturally from the above. Suppose that the
system under consideration has [ loops, where the mth(m = 1, 2,...,L2)
loop contains an arbitrary number n of on-off elements. Some or
all of these loops may have elements in common. Furthermore,
assume that all the on-off elements are without dead zone. Let

X m be the input to the ith nonlinear element (i = 1, 2, eee, nm)
’

in the mth loop (m =1, 2, «e., £ ). We consider each fboﬁ in

turn. Let Og(T) be the reduced phase characteristic of the mth

open loop.’ Then the multiloop system will exhibit simple
symmetric oscillations with half-period T if the reduced phase

characteristics of all the loops are simultaneously zero, that is

O;(T) =0, (m=1, 2, vea, ) : (4.19)

and if the proper switching instants and switching directions are

also satisfied:
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(kK o .
X{ n [°i,m(T) + kT] = (-1) Xoi m (i =1, 2, eey n_;

k m =.1,>2, c'.o,z;
.xiim [Oi,m(T) + kT] (-1)">o0 k = o, tl; ..")'
(4.20)

where Oi-m(T) is the phase characteristic associated with the

subsystem containing the ith on-off elemént in the mth loop, and

X0i o m is related to the hysteresis width of this on—off element.
?

Another way of stating the conditions expressed by Eqs. (4.19) and
(4.20) is that the existence conditions expressed by Egqs. (4.16)

and (4.17) must hold simultaneously for each loop of the multiloop

systema



PART II

ON SELF AND FORCED OSCILLATIONS
IN ON-OFF FEEDBACK CONTROL SYSTEMS
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5. SINGLE-LOOP SYSTEM CONTAINING AN ARBITRARY

NUMBER OF ON-OFF ELEMENTS

Let us first consider the system shown in Figure 4.18,

that is a single loop system containing n on—-off elements without

dead zone, and investigate the possible half-~periods of self and

forced oscillations,

Self-oscillations

A simple graphical procedure for ascertaining thé

possible half-periods of self oscillation is as follows:

(i) the phase characteristicsOi(T) vs T of the individual

sub-systems (i = 1, 2, ¢es, n) are first evaluated;

(ii) the total phase characteristic, E:O (T) vs T, is then

=1
plotted;

(iii) finally, we apply the condition (4.16) that the reduced

phase characteristic must equal zero; thus, the values of

T at which the straight lines

6 =2kT, (k =0, 1, 2, ees)

intersect the total phase characteristic curve give the

possible half-periods of self oscillation, -
The construction is shown in Figure 5.1.
n
,L?.'Gi(T)/k
Figure 5.1.
Graphical procedure for determining
possible half-periods of self

oscillations.

T T

T sses represent the

1’ "2’ 73

possible half-periods of self

oscillation.
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Forcedgoscillations

Let us assume that the input f(t) to the system, shown in

Figure 4,18, is simple symmetric with half-period equal to To’ iees

f(t) = =f(t + To).

Restricting ourselves to the consideration of simple symmetric
oscillations, and excluding the case of sub-harmonics, the system
variables

X0 ¥y (1 =1y eeey n) , v

will eventually &ll be periodic with half-period To.
Consequently, the phase characteristics of the individual

unit systems

9 (To), (i =1, 2, ssey n =1)

i+ 1

which are real non-negative quantities, are known (or can be
calculated by the methods presented earlier)., The only variable

at our disposal is Gl(To)ﬁwhich is a function both of the "ampli-

tude" of f(t) and of the "phase shift" T of f(t) relative to vn(t).

Let us write

£(t) = Af (t =T) 3
A = max | £(t) | L, o < T< 2T, (5.1)
max ' fo(t -~ 7) , = IJ

Thus, given A and fo(t), the sought—for quantity is the value (or

values) of 7 that will permit forced oscillations to occur in the
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system.

The procedure for determining the values of 7 that permit

forced oscillations to occur is as follows:

(i)

(ii)

(iii)

n i
" The total phase characteristic 2 Oi(To) between points

i=2
A and B (in Figure 4.18a) is computed,

The reduced phase characteristic between A and B, namely

To) _ [l: 12201'.(To“)

0, ( 5T
(o]

1

MB

o* (1)) = 2T, (5.2)

i=2

is evaluated. For forced oscillations to occur, the
reduced phase characteristic of the entire loop must equal
zeroes Let us define the complementary phase characteristic
of 0*(To), with respect to 2To’ as
— g% *
2T - @ (TO) , for @ (To):>o
* -
GC(TO) =
0 . , for G*(To) =0

Then forced oscillations may occur if the phase character-
istic of the first sub-system (between B and A) is equal to
the complementary phase characteristic Og (To) between A and
B 3 that is,

6, (1)) = e* (T ).
The phase characteristic QI(TO) is a function of T and will
be denoted by Ql(To,T) : it is determined as the smallest

non-negative root of the equation

| xl(t’T)]T _ TO = Aof(tcﬁ T) - vn(t)]T - To — xo]_

(5.3)
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(iv) The values of T satisfying 91(1‘0 T) = eg(TO) give rise to
, 3
forced oscillations, provided that the only switching

conditions are

x; [6x(T ) + kTo] = (-1)%‘x01 .

. k (k=°9 "19--0)

%, [ox(T) + kTO] (-1)E >0 (5.4)
and

xy [Oi(To) + k1] = (—1)kxoi (i =2, 3,000, Dj

5‘1 [Gi(To) + kTO] (—1)k>o K =0, T1,000)

(5.5)
and these can be verified from plots of xi(t) and ii(t) as

functions of t.
The construction corresponding to steps (iii) and (iv)

above is shown in Figure 5.2.

8T,
='9,(7;,‘T) 9,(1’03’7‘) vs T |
L !
| | |
| | |
| ! !
| | L
O ‘ T ‘ To 2T, T

Figure 5+.2. On the determination of possible values of T that
permit the occurrence of forced.oscillations.
Another method for determining the values of T that may
permit forced oscillations utilizes the Tsypkin approach in the
latter part of the procedure. The steps in the procedure are

as follows:



(1)

(ii)

(iii)

(iv)
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As above, the reduced phase characteristic G*(To) between
points A and B (in Figure 4.18a) is first computed, and then
the complementary phase characteristic Og(To) is found.

For forced oscillations to occur at a particular value

of T, two conditions must be satisfied: first,

x, ()] _ ox(1 ) = Af (¢ - T) - vn(t)]t = 6%(1) = o1
(5.6)

for the proper switching instants; then
xl(t)]t _ °§(To)>°

for the proper switching directionses The Tsypkin plane

Jd= % X + jx

can be used to represent thesg two conditions graphically
in the following manner, |

The contributions —Gn [Og(TO)] and -v_ [Qg(To)] to il
and x, respectively, are first plotted on the J-plane;
these are denoted as coordinates (a,b), as shown in Figure
5036 |

The remaining contributions Afd [O:(TO) —‘T] and

Afo [Qﬁ(To)—7j'to il and x,, respectively, are added to those

19

of part (iii). These contributions, however, are functions

of T and therefore, as T varies between o and 2TO, they

give rise to a curve -éP[pg(To),T], called the hodograph

of f [O:(To)]’ about the point (a,b), where
T .
Flox(r), 7] =a[2 4 (¢ -7T) + e (¢ -T)] , _ 0% (1 )
. c o

(5.7)
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(v) To satisfy the qondition'of the proper switching instant,
the hodograph K must intersect the straight line Jx qe
Also, to obtain the proper switching directions %1 [93(Toﬂ>°’
the points of intersection must lie in the right-half
3;plane.‘ Furthermore; the values of T at these points of
intersection ( of'a?with jxol) will allow forced oscilla=
tions to occur, provided that there are no additional

commutations in the interval O:(To)<t<og(To) + To.

ImU‘

A
+
J-plane 140. Re T
© (a,b)

Hodosraplw of
FLOF(T),T]

using 0'as origin

Figure 5434 On the determination of possible
values of T that permit forced oscillations,

It is obvious from Eqe (5.7) that the non-negative real
quantity A, called the "amplitude" of f(t), is a scale-factor
for the hodograph of 3’[0‘2:"-(T0),”T] ¢ that is, the relative shape
of this hodograph remains the same for various values of A,and
an increase or decrease in the value of A merely magnifies or
contracts the curve oféﬂég(To),71about 0' as origin, Hence the
value of Ay in general, détermines the number of values of T
at which forced oscillations may occur.

The effect of varying A is illustrated in Figures 5.4 (a)

tp (f)e 1In Figure 5.4 (a) the value of A is too small to allow
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forced oscillations with half-period equal to To. In this case
sub-harmonic oscillations are possible. As A is increased to the
critical value Alcr the line ;jxo1 becomes tangent to the hodograph
of & Og(To)’T] in the right-half J-plane. A further increase

in A brings us to Figure 5.4 (c) for which forced oscillations.
may occur at T = T ,T2_ (for the hodograph as drawn). For very
large values of A forced oscillations will be possible at the one
value of T, namely T = T, in Figure 5.4 (d). In Figures 5.4 (e)
and (f), O' lies in the left-half J-plane. At A = A2cr the

hodograph of 3[02:"(T0) 'T'] passes through the intersection of the
?

j ImJ-axis and jx wvhereas a further increase in A may allow

ol,
forced oscillations at the one value T, as shown in Figure 5.4 (£).

For A = Ay _,ve have from Figure 5.4 (b.):

IIm 3[0:(T0),T01]| = Ib—x01| *

By using Eqe (5.7) the above equality can be written as

A - I b = xolI (5.8)

ler I fo [O‘g(To) —‘7‘01:”

Similarlys; from Figure 5.4 (e) we have

2 2
]3«[0906.('1‘0), 7-02] | = \/a + (b - xol) !
and by using Eqes (5.7) we obtain

a2 4+ (b - xol)2 :|1/2
A = .

2cr T, f"o(gg(To) _7_02)_'| 2 + [fo(O‘(’:“(To) —7'02)]2

(5.9)
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ImJ JImJ
i A
B Tor
T
/\ )‘Vbl S / )W(OI = a
. i ‘01
F[Ox),™] FLeER,7]
with A< Aer with A=Ay,
€:)) (b)
A f
\
/ \
[} \
/ \,
| | %
0 ‘v Ol .
. ov o’ RE.J
\ FLoro
\ 1 with A>7A
\ ' icr
\ !
() ()
i iim
Toz2 x //\\4}
X
o / \ . Yo / \ >
. L Red .y ReJ
o' o
\/ F [. eﬁ(-\;)sﬂ K/ 3'[6:(-\;)5’]_]
with A""Aacr with A>A2cr-
)

@

Remarks: O' = (a,b) : hodographs ;P(Gg(To);77 drawn about 0!

Figure 5.4.

as origin.

may permit forced oscillationss

Influence of A upon the number of values of T that
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Obviously, for A>Alcr or A2cr the desired values of T can be

de'termined from the equality

I £ [Og(To) _T] |= 'b ; XOI (5.10)

or, by making use of Equation (5.8) and (5.9), this equality

g, [oxtry - |- 2 | o, [oxmy -7,,]| a0
for A>A1cr
and

lfo [Og(To) "-T:I | = %}; [[ TEE‘Q- i‘o(g.c)f(To) -'Toz)] °

‘ 5 2 ~1/2
* - - a,
+[fo(Oc(To) 7—02)] X ] (5.12)
2cr
for A>A
2cr ,
respectivelys
In the special case where fo(t) = sin wt, we have
£ (t ~T) = sino(t -7) , %fo(t-‘r) = cos @(t =T) ,

so that the hodograph of J[6%(T ), T| is given b
*(T, g y

A [cos @ [Og(To) -7‘] + j sin © [ Og(To) —T]:]

o, [ox(r,) -]

3&[0:(1‘0).’ T:I

= A (5.13)
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where @ _ = n/To . Hence the hodograph of ‘glég(To)’Tﬂ is a circle

of radius equal to A. By making use of Eq. (5.13), equalities
(5.11) and (5.12) become

| sina, [02x) -7] | <= [sino, [ox(r) - 7,]]
(5.14)
for A.>Alcr,
and A2 5
|sin e, [o*(1) - 7] | = 2°rA— . (5.15)
for A>A20r,

respectively.



63

6. DOUBLE-LOOP SYSTEM CONTAINING AN ARBITRARY NUMBER
OF ON-OFF ELEMENTS

We mentioned earlier that in more complex systems the
application of the Tsypkin method to the determination of the
possible periods of simple symmetric oscillations becomes very
cumbersome, In this chapter we first show that the Tsypkin
approach can be used in the study of the double-~loop system
in which each loop contains one on-off elements This particular
case points out the difficulties that would be encountered in
any contemplated extension of the Tsypkin method to the study of
systems with three or more on-off elements. We then indicate
how the possible periods of simple symmetric oscillations in a
double=loop system, containing an arbitrary number of on-off
elements, may be determined by the phase characteristic method.

6.1 APPLICATION OF TSYPKIN'S METHOD TO A DOUBLE-LOOP
SYSTEM WITH TWO ON-OFF ELEMENTS '

The system under consideration is shown in Figure 6.1.

TW 4o X,

v, (.t) % ————— N
- N, S, H,6)| : \PY e Hyte) lLSt) %4
V(%) : >
M —Xoi| N
H 3(5) & xQ . Y
_ i
H @ (b (i=1,2;
@ X520)

Figure 6.1 (a) Double-loop system containing two on-off elements.

(b) Characteristics of N1 and N2.

In the case of simple symmetric oscillations, the outputs
of N1 and N2 are, in general, as shown in Figure 6.2. In fact,

the expressions for yl(t) and y2(t) are
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™, _
M, —
21| T of 7| ev . &-T| e-0Tlol T |7 |ea)r
> t
— -™,
(ad : (b)

Figure 642+ (a) and (b) Outputs of N; and N,.

yl(t) = 2M; ﬁ (-1‘)k u(t - kT), for ~eo <t <(n+15T

k:-ﬁo

y(t) =2, 5 (-1)Fu [t - (x + K)T] , for e <t <(n+l+a)T,

=—00

| where it is assumed that
a2 o0 and o <a<2.
From the results of Chapter 3 the response of the linear
part Hl(s) is

Hl(s) L_l)ne—snT st
T 2n] s sT ©
1 C.orC 1 + e

ds + K, (6.1)

(nT<t<(n + 1)T, n = o, 1, ¥2,...)

where K1 is a constant related to the initial conditions.

Similarly;‘the outputs of the other linear parts are given by

2M L. ( -s(a+n)T
2 ¢ 1:) (-1)e”” :; ) e%las + K, (6.2)

v.(t) = —%
i 271]
ClorC2 1l + e

for (¢ + n)T<t<(ax + n + 1)T,

i:2, 3, 4; nIO, -—I-]., i2,000’

where
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L2(s) = H2(s)

=
[OV)
—~—~
)]
~—
|

= H2(s)H3(s)

=
N
7
g
|

= Hy(s)H, (s),
and K, are constants related to the initial conditions.
1 .

The conditions for symmetric oscillations of the above type

are

xl(o) = X1 J’(l(o)>o
(6.3)
xl(t)>-—- X, for o<t <T
and
xz(aT) = X 59 kz(aT)3>o
(604)

xz(t)>—xo2 for aT <t <(a + 1)T

Self Oscillations

n

Following Tsypkin's method, we introduce the Tsypkin loci

Jl(oc,T) = il(o) + xl(o)

(6.5)

A A

Jz(cx,T) = )'cz(ocT) + xz(oc’l‘)

Using o as the parameter (o <a<2) and T as the variable, we
construct these loci as shown in Figure 6.3. The straight lines
Ix and jx 5 are next inserted on the Jl-.- and Jz-jplanes, respec-—

tively. The points ays b Cprese of intersection of the

1’

Jl(oc,T) loci with the straight line ix, in the first quadrant

1

of the Jl-—plane correspond to pairs of values (u,T) that satisfy

the conditions xl(o) = X 10 J'cl(o)>o; similarly, the points
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0 ol 0 Red,
Ji(.T)-plane Jo(x,T)-plane

Figure 6.3. The Tsypkin loci Ji(a,T),:Iz(d,T).

8y b2, Chysee in the first quadrant of the Jé—plane correspond
té pairs of values (a,T) that satisf& the conditions xz(aT) =
X 59 }'cz(ocT) >0e We now plot these points of intersection as
curves of a = fl(T) corresponding to the points ags bl’ Cyrees
of the Jl-—fplane_, and o = f2(T) correspond?ng to the points[

ays b,y Chyese of the Jz—plane. Any pa,ir§ of values (a,T) at

the intersection of the curves fl(T) and ?fz(T),- such as (a¥, T#)

shown in Figure 6.4, may give rise to self oscillations.

oM

j
|
i
|
!
Q T*

Figure 6.4. Curves of « = fl(T) and a = fz(T).
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Forced oscillations.

Let the input to the system, f(t), be periodic with half-

period equal to T0 = n/wo. The conditions for the existence of

forced oscillations are again expressed by equations (6.3) and

(6.4) with T set equal to T » but now, instead of
x (8) = v, () ,

we have

£(t) - v, (t).

x, (+) X

I

Also, instead of « and T the sought-for quantities are « and
¢ where ¢ is the phase shift of f(t) relative to some arbitrary

reference phase ¢%. For convenience, we write

flo t) = Aofo(mot_ - )
or f(t) = Aofo(t -T)
where T =¢/¢oo ,
A = max |£(t)| and max |f0(t)l - 1.

From the curve of o = fz(T) wve locate the value a = ao

at which T is equal to T . We next insert the point

T
. ¢ R -
T=T
)
on the Ji—plane. "With the point 0' as origin, we construct the

hodograph of

FO =a [2F (1451 (]

as T varies from 0 to 2 T0 inclusively, as shown in Figure 6.5.
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The value(s) of T corresponding

Hodograph of to the intersection of the F(T)

F (1) with O

/ ) as origin loci with the straight line Ix g
0 .
/ J; // // and lying in the first quadrant
[/
T, T2 of the J,-plane, together with
AN/ / ~1
ol / / / / .
e value of « etermined above,
J L / th 1 f o det d ab
Ok"'//// / ReJ|
K= are the sought—for value(s) of («,T)
N

S-plane which may allow the occurrence of
forced oscillationse
Figure 6.5. On the determina-

tion of the values of T

that permit forced oscillations.,

The conditions xl(t) >—x0 for o<t <TO and xz(t)>—x02 for

1

xa T <t<(x + 1 )T must be verified.
0 o o )

In princeciple, the Tsypkin approach can be applied to
the study of the periods of oscillations in a double-loop
system containing an arbitrary number of on-off elements. But
the extension to cover the cases of more than two on-off elements
is definitely awkward. Such complicated cases are best solved
by the method of the phase characteristic.
6.2 APPLICATION OF THE PHASE CHARACTERISTIC METHOD TO A
DOUBLE~LOOP SYSTEM CONTAINING AN ARBITRARY NUMBER OF ON-OFF
ELEMENTS

Consider the double-loop system containing an arbitrary

number of on—off elements as shown in Figure 6.6 (a). Assume



M %2 Xa In Midon ot Insti *n Yn
H, S N"l :B‘k H"l A N"‘\'H /‘" Hnn'l T N"z l_—é- an >
V3 0
In Xng In+t )
1\

—Xoj h{/\“ N
&"1- Yot T N X N X

L Ny E“ﬂ'——— “ngt! gt
b (l.. = \,v-v,h+) Hn4_ Nn4_ - H rEH N“QH

(b) X1 20 (3)

Figure 6.6 (a)
~on-off elements; (b)

Unit No. nr2 Unit No. n 41
1 [ =77
H [ L
1> Nnr\z " —|>' Hn?_ Nr\g\ —r‘ -
_______ | (I
Tnput
pt| -0
.‘ln,+.' Untt No.m+2 Unit No. g+
- - - == T l— A |
| |
Hn|+| - N“ﬂ'z_r——_ | Hn, N"s'“_T_ T
______ A I |

Figure 6.7,

Double-loop system containing an arbitrary number of
Characteristic of ith on-off element,

N Jnt
unit 1 Lo T Toutput
Nmnﬁl: No+1 |
Unit No.mg L=
r--- - Ty M= £"n.+u N BV R
I t Vng | V3 V) | Yoy | i
—|>- H“s" N“s PA H".s SOy H“l A B! ‘N"I i
e o - — — d Jd R :
Uni‘t': Hn‘_, i
No. 0, |
Unit No. s Unit No.2 O
r— ________ 1 |
—H, = N, - L, —>-"NZ SR
i 4 +, | | | )
S | S | L

L

Open-loop system as a composition of unit systems.
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that the characteristic of the ith on-off element has the form
shown in Figure 6.6 (b), i.e. with or without hysteresis so

that x_; >o.

Self-oscillations.

In order to determine the possible periods of self-
oscillation, we open the system in Figure 6.6 (a) at the point
0. The resulting open-loop system can be regarded as a composi-
tion of unit systems as shown in Figure 6.7. The ith unit
(or sub—system) consists of the ith on-off element and the

linear system or systems immediately preceding ite. Let Oi(T) be

the phase characteristic of the ith sub-system. The functions

Oi(T) for 1 = 1, 2, ceey n, except for i = n, + 1 (we are

assuming a total of n, on—off elements in our system) are all

known, or can be calculated by the methods indicated in Chapter 4.
We now evaluate the total phase characteristics, ()3

and()l, between the points 0 and A and between 0 and B,

respectively, in Figures 6.6 and 6.7:

@ :g +0 +uoo+g +g +o.."'g
3 n; + 2 n, + 3 n, n2+1 n3 W
®, =8 + 0 +ees+ 8 + 0 Foeat 6 2 (6.6)
1 n, f_2 n, + 3 n, n, + 1 n,
+ 0. +.e.e+ O )
1 n1

where, for simplicity, we have written Oi for Oi(T). Next we

determine the reduced phase characteristics



71

@3 - ﬂ:g}_:ﬂ 2T

®
®% =0, - [[ﬁ'l']] 2T

®@*,
(6.7)

Sketches of possible plots Of'()l’ C)*l, C>3f ()*3 as functions

of T are given in Figure 6.8. Observe that °S@)§< 2T (i = 1,3).

Y =T 0 ' ‘ T

Figure 6.8. Sketches of possible plots of
®pr @ @3 @3-

Consider now the n, + 1 th sub-system. Figure 6.9

illustrates the general forms of the inputs and output of this
unit systeme Since the functions ()*1 and ()*3 are known, we
can therefore compute

O
oM, By (s) (cnlemster )T
L ST e” "ds (6.8)

v, (t) —_—
i 21 s
ClorC2 l +e

(i =1,3; ®F + kT<t <@% + (k + 1)T; k = o, T1,...).
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Consequently,
xnl + 1) = v () - v3(t)
yna(‘t)
ol
n d _t)
;t —on§->- Hn == y"\ﬁ'l(
0 T > A 3 4
Vg M1 (——
-1 x N =T =
i’\n‘('l') Qb ‘n.-n—\ [ et o .
_ Ma I 3;“ “ — M|
T >~ Cﬁ#
In <
0 >‘E | Hn =
B \
'Mn
R
Figure 6.9. Relationships in the n, + 1 th
sub-system.
can be determined for any time interval. In particular, we
can determine the time @* = @*(T), o <@*<2T, at which the
output ynl + l(t) of this unit system first jumps from —Mnl + 1
to Mnl + 13 in fact, @* is the least positive root of the.
. _ i * — @*
equation xnl + l(t) = 3%’n1 + 1+ The quantity @O* = @* (T)
is the reduced phase characteristic of the entire open-loop
system in Figure 6.7. Hence the valuesof T for which @%*(T) = o

are the possible half-periods of self oscillation of the
closed-loop system.

The method described above automatically guarantees
that the condition expressed by Eqs. (4.19) and (4420) are
satisfied: +hat is, that the reduced phase characteristic of

each loop is zero.
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Forced oscillations

The procedure for the determination of the conditions that
permit forced oscillations is as follows:

Let T = n/wo be the half-period of forced oscillation.

The total phase characteristic between 0 and B (in Figure 6.7),

minus the contribution due to Unit No. 1, is denoted by @2(T)
and the corresponding reduced phase characteristic by ()S(T) S0
vhat

®,(1) = @ (1) - 6,(1)
and (6.9)

®, (1)
o%(m) = @,(1) - [Z2—=] 2

The reduced phase characteristic between O and A is denoted by

C);(T). For periodic phenomena of half-period T , the
quantities C)ﬁ(To) and ()§(To) are fixed non-negative numbers
less that 2To»

Forced oscillations of half-period To may occur if the

N element switches over at time t = o and if the slope of

n1+1-

the input to this element is positive at this instant: +that is,

Xn. + 1(0) =%

. n, o+ 2rd x5 (0)>0

1 1

Because of the reduced phase shift of GD;(TO) between
0 and A, the input to H at point A is shifted to the right by
3

C>§(To) relative to the input at point O. Referring to Unit
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f(t) = Aof(t -T)
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where T is the phase shift of f£(t) relative to the input to H .

The phase characteristic of Unit No. 1 is a function of 7T and

is denoted by Ol(To T ). Therefore the phase characteristic
’

between O and B is also a function of 73 it is determined by
= Q)*
@ (T, T) = @%(T) +0,(T, T)

Thus, relative to the input at 0, the input to H is shifted
1

to the right by @1('.1‘0 T). Consequently, the output of N,
! 1

is
xnl +1(t) = vt -GF%) + v, (¢t -©%)

where v3(t) and vl(t) are the outputs of Hn and Hn when

3 1
there is no phase shift of the waveforms between 0 and A and

between 0 and B respectively.

The conditions that X4 l(o) and X

1 1
can be represented on the TsypkinJn + 1~Plane

. l(o) satisfy

4

+1

T
= 9 5 ;
Jnl+1_n xn1+l+']xnl+1
First the contribution due to ~V4 is plotted: it is the point
o ))
v o =2y - ¥ - 5 — (R)¥*
0t = T v3( <>3(To~/ Jv3( C)3('1‘0;))‘

which is independent of 7 . Next the contribution due to -V

is
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added to the point O'; this contribution depends on Tand there-

fore yields the curve

T .
Fy (1) = =2 ¥, ( -®F(1, 7)) + jv, ( ~@F(T, 7))

with the point 0! as its origin, as Tvaries from 0 to 2To.

Figure 6.10 shows the jn —plane and ﬂhe two contributions

1 + 1
to x and x °
n1 + 1 n, + 1
v Im Jn T
) ' F (1) loci with
] - .
| /O as origin
/ /
/ /
//
!y
V,nlﬁ // //
0 'r:/l,’ \ﬁe :r.
- n+1
~ . -

Figure 6,10. :Inl " l-plane.

~The values of T lying in fhe first quadrant of the
J

n -plane and corresponding to the points of intersection

1+1

of the loci of 3&(77 with the straight line jxo + 14 determine

'
the conditions that are necessary for forced oscillationse.
Illustrative Example of the Application of the Phase Character-

istic Concept to the Determination of the Periods of Self
Oscillations in a Double-Loop System

A double~loop system containing two N elements is shown
in Figure 6411, The method ( of solving for the possible
half-periods of self oscillation) given in section 6.2 is used:

that is, the phase characteristic of the system is evaluated
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and the points of intersection with the straight lines 8 = 2kT(k =

0y 1, 2,ees) give the possible half-periods of self oscillations.

N, H,(® N, Ho(e)
+ % T Y ]k V) + X | T 32_33,7& k2 .
__EE 1 I+T7,S - vy — X s(1+T9)
Hg»
H,( kgs [<
k, <

Figure 6411 A double-loop system containing two

N elements.,

As indicated in Figure 6.6 and 6.7, the double-loop
system is opened at the point X, and the system is redrawn as
shown in Figure 6,12 The open-loop system consists of two unit

systems, one (unit no.l) of the type shown in Figure 4,13 and

e Unig Ne2
I- Kakg
1 1+ T8
Y : Hie) Ha®) _
> Unit No.4
X rmging — o~ - T
| H® Hue N, (| ()
_|r KoKy [Na—o X T |1 Ky
s (I+ T8 % s T BT AR
= T ==
'V;':O

Figure 6,124 Open-loop system of Figure 6.11 showing

unit systems,

the other (unit no.2) of the type shown in Figure 6.9,

From Eqe (4411), the output of H2(s) H4(s) is given by
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T t/12
v = - - = €
4(t) = k2k| [ ‘I'2 + (¢ 2) + 2T2 ————7— _ Tz l y 0<t<T (6.10)
. 1+e

Let the smallest non-negative value of t for which v4(t) = o be
denoted by to. Therefore the phase characteristic Ol(T) of
unit no. 1 is
b ', if v,(t ) <o
6, (1) = (6.11)
t, + T, if 64(to)>o

From Eq. (4.10) and Figure 6.9, the output vl(t) of Hl(s) is

determined by

-(t+T-t )/7y
-+ 2e '
vl(t) = --k1 [1 - ‘ "T/Tl :| , oﬁt(to . (6+12a)
l+e -
where the plus sign before k

| is used when v4(to)>-o, and the

minus sign when Vv (to) <o; and
-(t=t_)/T,
(t) = Tx 1 - 28 ° ] t <t <T (6.12b)
vl = + 1 - —T/Tl ! Yo— *
. l+e
where the minus sign before k

4

1is used when v4(t0)> o, and the

»plus sign when V4(to)<(o; The output v3(t) of Hz(s)H3(s) is

determined by Eqe (4.10):
-t/T

2
2e
V3(t) = k2k3 l:l - ——:WT—2] y 0 <t<T (6.13)
l+e

The time @*(T), o < ®*(T) <2T, at which the output of unit no.2
first jumps from ~1 to +1 and at which vl(t) - v3(t) = 0, is the

phase characteristic of the open-loop system. The values of T
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for which@*(T) = o are the possible half-periods of self
oscillation of the closed-loop system.
For reasons of simplicity, the parameters kl’ k2k3, and

7} are kept fixed: +the values used are

Three different values of T

1, Tl = 0‘125, 0025, a;nd 0050’ are

used to illustrate the effect of the parameter T, on the phase

characteristic ®@%*(T) of the system. Figure 6.13 shows the plot

of @*(T) vs T for the above-mentioned values of ks k2k3, Too
and also shows the effect of varying Ti. The possible half-

periods of self oscillation are

T = 0725 for T = 0.125,

=
i

00925 for T]. 0.25y

and T

1.025 for T]. = 00500
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0.125

T1=

0.5

357

3.01

2.5t

20+

—~— (L)y®

.51

1.0+

0.5+

Phase characteristic of the system

Figure 64134

shown in Figure 6.12.
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7. MULTILOOP SYSTEMS

In the preceding chapter we presented a method using
the phase characteristic concept for the determination of the
possible periods of symmetric. oscillations in a double-=loop
system containing an arbitrary number of on-off elements.

This method may also be applied to any multiloop system,
containing any number of on-off elements, and in which all the
loops can be opened simultaneously by opening the system‘at

one point. If there exists no one point which can open all

the loops.simultaneously, then an entirely new method of attack
must be developeds

This chapter will be devoted to systems composed of the
three types of unit systems shown in Figure 7.1l. Methods of

finding the phase characteristic of the basic units designated

—_

— Yi
(HEO— N [~ >HoR0—N [~ ZHe
Type I Type 11 N
Type Il

Figure Tel. Basic unit systems under consideration.

type I and type II are indicated in Chapter 4., The manner of
describing the phase characteristic patterns of the type III
basic unit will now be discussed.

If all the on—off elements are without a dead zone,

then the general forms of the inputs to and output of the type III
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unit system are as shown in Figure 7.2.. Let ¥T be the phase

lag of yj(t) with respect to yi(t). Clearly, as ¥ varies between

the limits o< ¥< 2 we generate the possible situations that

A
—— 5
-T| © ] - P
-Mi <Mk ——
o e T > o
ﬁ% T t
MJ' —
e T > -Mk
Q [
I Lkl O e ok
M)

Figure 7.2. Phase characteristic notations and

conventions for the type III unit system.

will occur in the presence of simple periodic phenomena with

half-period Te. Let O;(T,Y) be the phase characteristic ofvthe
output Yk of Nk relative to the input Y5 to:Hi; similarly,
gi(T,X) will denote the phase characteristic of Vi relative to
yj. For any fixed value of ¥ in o0 < ¥< 2 we can determine
Qi(T,Y). Since the phase relationship between y; and y:j is
given, this means that Oi(T,Y) is known once Oi(T,Y) has been

determined. In fact,

0, (T,Y) - YT, for 6. (T,¥) >YT
o) (1,Y) = | o (7.1)
0L(T,¥) - ¥T + 2T, for 0, (T,¥) <¥I
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Consequently, by allowing Y to take on fixed values in the
interval o:;“<:2 we can determine the phase characteristics

for both O;(T,Y) and Oﬂ(T,Y) with Y as the parameter. For

definiteness we will use the notation Gi(T,Yg) to represent the

phase characteristic of Yy relative to ¥y when yj lags ¥ by ¥T.

Having examined the phase relationships in the type III
unit system, we can now determine the possible periods of
self oscillation for the double-loop system in Figure 6.6 (a)
by the following new approach.

For‘selfwoscillations of half-period T to occur, the
reduced phase characteristic of each loop must be zero simul-
taneously. The new approach uses the information concerning
the reduced phase characteristics of all the loopse.

The system in Figure 6.6 (a) consists of basic units
of type I and one basic unit of type III. (The various basic
units are shown in Figure 6.1.) The phase characteristics of

the individual units, namely

Oi(T) for all units except i = n, + 1
apd
n n n
1 n
Onl + 1(T’X£;) and'Qni + l(T;Yﬁi) for values of ¥

in theA range o <¥< 2, are determined by the methods presented
in Chapter 4.

With both the inner and outer loops (of Figure 5.6 (a))
open at A and B, the total phase characteristic of the inner

loop 1is
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) il -
O (1Y) =02 (1Y) o, () R
3 i=n, +2
1.
and that of the outer loop is >(7.2)
n n n, J
n1 n, 1
®,(T,Y) = onl . 1(T,¥n3) + 0,(T) + o, (1) +Zoi('r)
i=n1+2 i=n3+l 1i=1

where o SEX<:2T5. The corresponding reduced phase characteristics

are then evaluated:

®, (T,Y)
(1Y) =@, (1,0 - [Zm—]2r, i =1,2) (7.3)

The values of ¥ and T at which the reduced phase character-

istics ()*(T;X) = 0. are now plotted on a ¥-T plane as curves of
i : | »
Y= fi(T) , (i =1, 2) , as shown in Figure 7.3. The reduced

phase characteristics of the two loops are simultaneously zero

for values of T at the intersection of the fl(T) and fz(T)

curves, These values of T are possible half-periods of self .

oscillation for the closed-loop system.

¥

A

24

B

0

Figure 7.3. Curves of Y= £ (T) and Y= fz(T);
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Possible periods of self oscillation in a more complex system

As the multiloop syétem increases in complexity, so does
the procedure for the determination of the'possible periods of
oscillationss Nevertheless, a solution is possible in every
case provided that we are willing to carry out the necessarily
increased labor., For illustrative purposes we consider the
four-loop system as shown in Figure 7.4.

The steps in the determination of the sought—for values
of T are as follows: |
(i) We first decompose the system into unit systems of the

types I, II and III,

(ii) The phase characteristics of these unit systems are then

evaluateds Let these be denoted by

Oi(T) for i =1, 2,..0, ng but i £ ny+l, ny+l, ng+l ,
ol 3 ) 5 )
o (1, x ), o, 1(T Y ), u +1(T X, ), 0, 71 (Ts¥, )
1 3 nyt
(1,¥.4) T
T, , and 0 T,
ns*l Dy gt ny

Instead of a single value of ¥ (the quantity Y is
the relative pha§e shift between the two inputs to a
type III unit system), as in the case of the system of
Figure 6.6 (a) with one type III unit system, we now have
three values of Y because there are three type III unit sys-
tems. We therefore proceed thus:
(iii) We open loops 1, 2, and 3 at A, B, and C, as shown in

Figure 7.4. The total phase characteristics ()l(T,Y), ()2(T,Yl



. In
Loop 4

X neriff 1 Xt

—Xoj

le >

'?4, Xoi. =%
4

r %

%ei 2°©

Characteristic of ith
on-off element

(L=|,2, LAY nss

MmNy Loy )

O n X“E At xn.,'H
IO [ A g o

Figure 7.4. Four-loop system containing an arbitrary number of on—off elements,

68
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and ()3(T,X) of the open loops 1, 2, and 3, respectively,

are determined, with the input phase shift variable

¥ (o <Y¥< 2) as a parameter in each cases

@, (1Y) = n+1(T‘6 )+z o, (1) )

0y i=n, +2
®,(1,%) =0, o5 (1, Yi) + §n3+ LM e (1)
®,(1,Y) = n5+1<T ) + §n5+z° (1)

From these we obtain the reduced phase characteris-
tic for loops 1, 2, and 3:

X
@H(T,Y) = ®,(T,Y) - I[M]] 2, (i =1, 2, 3)

(7.5)

If we now open loop 4 at D and close loops 1, 2,
and 3, then the values of T corresponding to the zeros of

C);(T,X), (i =1, 2, 3), may permit periodic oscillations

to occur in loops 1, 2, and 3 simnltaneously. The problem
remaining is to determine from these values of T thosé that
will allow periodic oscillations to occur simultaneously
in all loops when loop 4 is closed. We solve this
problem as follows:
(iv) The pairs of values (Y¥,T) corresponding to the zeros of
the reduced phase characteristics GD{(T,Y) of loops 1,
2, and 3 are plotted as curves of ¥ = fi(T), (i =1, 2, 3),

as shown in Figure 7.5.
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o T T . .
An interval of T over which ¥ = fi(T) exists

simultaneously for i =1, 2, 3.

Figure 7.5 Curves of ¥ = fi(T) for i =1, 2, 3 showing
range of possible half-periods of oscillations
in loops 1, 2, and 3.
We consider only those intervals of T (in Figure 7+5) for which
all fi(T) exist simultaneously; this means that on any

vertical line through the ¥-T plot, there exists a triplet

of ¥ that determine a value of T such that oscillations. are

 possible in loops 1, 2, and 3. However, if at a particular

(vi)

value T _, the quantities Yi = fl(To)’ Yé = fz(To) exist but
Y; = f3(TO) does not, then oscillations of half-period To

are possible in loops 1 and 2 but not in loop 3.

Sequences of values of T, say Tl’ Tz,..., Tm,covering the

intervals of T in which fi(T) exist simultaneously for i =1,
2, 3 are selected. At each value of Ti(i = lyseegm) we

n, n, n,
read off the corresponding tripletY A ,andx' from
"3 Bs o7

Figure 7.5. From the set of phase characteristics obtained
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in step (ii) we find the values of the phase characteristics

n
of three type III units: namely @ 1 (T Y ), e "2 (T X 2%
n i3

n
and 0 4 (1, Y’4) for the above T, and trlplets of ¥ .
: 5 g
(vii) We now open loop 4 at D and form the total phase character-

istic of this loop for the above Ti and triplets of Y s

n n n
M 1 2 o Y ny
®,(1,) = °n1+1(Ti,Y£3) + gn3+1(Ti,Y ) +0 5+1(T’ 7)

+ZZ: 8, (T,) +:i§ o (T, )-+§£: o, (T )-+zzj 0, (T,)

k_n +2 k_n3+2 k=n +2 k_n

(7.6)

At this stage we know that oscillations of half-
period T (where T belongs to the above-chosen intervals)
are possible in loops 1, 2, and 3. From among these
values of T, we find those that will make the reduced phase
characteristic C)Z(T) of loop 4 equal to zeroj self oscilla-
tions may occur at such values of T for which C)Z(T) = o,
when loop 4 is closed.

Forced oscillations

The possible periods of forced oscillations are determined
in precisely the same manner as the earlier indicated methods.
More complicated systems may be studied by the above-

mentioned method or slight modifications of it,



PART III

ON-OFF ELEMENTS WITH PRO -
PORTIONATL BAND
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8+ ON-OFF ELEMENTS WITH PROPORTIONAL BAND

In Parts I and II we considered ideal on~off elements.
Let us now turn our attention to on-off elements with a propor-
tional band. Examples of some of the characteristics of such

elements are shown in Figure 8,1.

y
f !
M L+ M
i ' /

A i . X2 AEd Lo
Y I E/-i,o; X%
{ t

+-M =4
(a) (b

(c) ()]
Figure 8.l¢ Characteristics of some on-off elements

with proportional band.

(a) Without hysteresis and dead zone.
(b) With hysteresis and without dead zone.
(c) Without hysteresis and with dead zone.

(d) With hysteresis and with dead zone.

8«1 TRANSIENT RESPONSE OF A SINGLE-LOOP STSTEM
CONTAINING ONE ON-OFF ELEMENT WITH PROPORTIONAL BAND

The system under consideration is shown in Figure 8.2.
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Jt, v)
) > H(s) >

Slope=A

Figure 842s Block diagram of single-loop system contain-

ing one on-off element with proportional band.

Subpose that the error signal x(t) remains in the linear

regions for all times t in the intervals

TnStSTn + hn (n = 0, l, 2,...‘)

+ 1’
where, without less of generality, we take T° = o, and stays in
the saturation regions for the remaining intervals

T o+h 1 <t<T L (m=0, 1, 2y..0)

Let the transform of the initial conditions referred to the out-
put of the linear part H(s) be denoted by Vo(s). Then, an equi-
valent system, shown_in Figure 8.3, consists of a number of samplers
operating in parallel; the number of samplers depends on the number
of times the error signal passes through the linear region of N,

The samplers that correspond to operation in the linear regions

have inputs denoted by Xn(s), where Xn(s) = X(s) for n =0, 1, 2,
«seyjthe sampler with input Xn(s) is closed during the interval
TnStSTn + hn+1’ and open otherwise. The quantities an(s) are
the p-transforms of x;(s).lﬁ The sampler with input iM is

closed during the saturation intervals and open otherwise;
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Anp(s) is the p—transform of the output of this sampler.

i M 91;'+hn+‘ (n:o,l,z)...)

V()

AN

Figure 8.3, System equivalent to that of Figure 8.2.

Let us now evaluate the response of the above system for

the different time intervals (Tn, T +h 1) and (Tn +h oo

T, o+ 1), (n =0y 1, 2y4+.). Figure 8.4 gives the equivalent
system for the time interval o <t<h,. (Note that T = o.)

The input Xo(s) to the sampler is given by

Xo(s) = Fo(s) - Co(s)

F (s) - X (s)AH(s);

that is,

F (s)
%,(s) = T3 mTsy » 0 <E<hy



92

Vo (&)

Fs) 4 C9) \(s)

? ;T X(S)X e [N —2)r

Y, (8)

Figure 8.4. Equivalent system for the interval ogt<hl.

Now at t = h, the sampler is opened and the input to H(s) is

equal to zero for t:>hl, i.e. we can define
xo(t) , for oSt(hl
0 , for t>h1

Therefore
x P(t) = xo(xt) I:u(t) - u(t - hl)] , for t>o0.

Using the complex convolution integral we get the Laplace trans-

form of Xop(t):

-(SfV)hl

l-e
Xop(s) = 21” J X (v) p— dy

where C is a contour enclosing all the poles of XO())) or

[1 - e _] /(s=V) in a mathematically positive or negative

sense respectively. Using the p-transform notation of the theory

of sampled—-data systems,13 namely
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Tathas 1 -(s-W)T -(s=vw) (T _+h_..)

PTn: l:E(s)] 5%3 S E(U) e - e ‘n n+l dy

s -V

(8.1)

we get the transform of the component of the output from the

first pulse:
h, F_(s)
Cols) = X, (o)as(s) = ans) 7 | 72ogrey)y v20-

Consequently, the output of the system is
hl [ FO(S)
= S
V(s) = V_(s) + AH(s) By [1=—Szy |, forost<h,

For the duration h1§;t<:T, we have the additional

component

—sh -sT
Bo(s) = I ﬂsi)-(e 1 _ e l), for t>h,;

due to the saturation effect. Hence the total output of the

system is
h F (s) —-sh. =sT :
1 + (s)
V(s) = Vo(s) + AH(s) P [T_:QIﬁTETJ_M HSS (e 1l-e 1),

h, <t<Ty (8.2)
or, in shorter notation,

V(s) =V _(s) + Co(s) +B_(s) , h, <t<Ty
= Do(s) say.

Since F(s), H(s) are known and Vo(s) is known or can be

determined, the output v(t) may be evaluated from the inverse

of V(s) for the interval in question.
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Let us now consider the output for the duration T1§:t<:Tl
+ h2. The equivalent system for this period is shown in

Figure 8.5.

Do(8)= Vy(8) + C () + B,s)

_
FO 40 FO o %@ X
r

T+h,

X, p(s) C\(®

: V
AH®G r@ > (S)

D
Figure 8.5. Equivalent system for the interval Tls;t<(T1+h2.
Since the sampler in Figure 8.5 is open during o<<t'<Tl, the
input fl(t)::drd'(Fl(s)) to this sampler has no effect on the

output component cl(t) for o'<ﬁ'<T1. We can therefore replace

fl(t) by a new function fll(t):

o , for o<t<Tl,
£11(%) =

£,(t),, for t>T,,
which may also be written as
fll(t) = £,(t) u(t - 1)),

In terms of the p-notation, the Laplace transform of f (t)Ais

11
o o0
Consequently, the error for this duration, namely

xl(t) = fl(t) - cl(t)
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may likewise be replaced by
xll(t) = fll(t) - cl(t),
which states that the effective error may be regarded as zero
for the equivalent system during the interval 0‘<t<:T1.
In order to calculate le(t) conveniently, we let tl
represent a new time axis such that
-tl:t-Tl.

Therefore
£,(¢) = fll(t1 + Tl) » oy (t) = cl(tl +T,)

t) = x, (b +T,), x

xll( (t) = xlp(tl + Tl) .

1p
The introduction of the new time axis tl renders the situation

identical to that of the equivalent system for the interval

o~<t<<h1; that is, the input fll(t) is sampled for the period
o<<tl<:h2 and is fed to a system with zero initial conditions.

Consequently,

2(ey0) = 32 [ )

By making use of the relationship
T(e®) = 2(elt, + 1))
—sT1
e tx(et)) .
and replacing Fll(s) by PT1 [FWS) - Vo(s) - Co(s) - Bo(s)] =

5;1[;9(5) - D_(s)]

that is, : G(s)
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we finally get the Laplace transform of the component cl(t) of

the output to be

1 2
C,(s) =e AH(s) P T+ &H(s)

(o]

»eSTl P, [F(s) - D (s):]
—gT h [ Tl ‘ 0 J

The total output transform for the interval TISt <T1 + h2 is

V(s) =V0(s) + Co(s) + Bo(s) + Cl(s) .

For the duration T, + h2 St<T2 we have the additional component

1

-s(T,+h,) -sT ¢
B s)=i’M-is(§)-[e 1727 _ 2],t>'1‘1+h2

1 (
due to the saturation effect. Thus the total output transform
is

V(s) =V _(s) +C_(s) +B_(s) + ¢, (s) +By(s),

for T, + h2_<_t< T, .

The generalization to the total output transform for

any time interval is now obvious. In fact,

. n n-1
k2=:l C, (s) + kzl B (s) , for T <t¢<T +h

+1

V(s) =V _(s) +< (8.3)
n

Lk_z=1 C.(s) +B. (s) - , for T +h . <t<T

where Vo(s) represents the initial conditions referred to the out-

put of the original system under consideration, where the:
component Ck(s) is given by
- =sT
C.(s) =e K AH(s)

o | o
 hen [e B [F<s)-vo(s)5co(s)_Bo(s)_..._ck_l(s)_Bk_l(sﬂ}
o -

1 + AH(s)

(8.4)
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for t>Tk 3

and where the saturation component Bk(s) is given by

B (s) = %y H(s) [e_s(Tk ) Tk + 1]
k = s -

for t>Tk + hk +1 (8.5)

Analogous equations can be developed for the transient re—
sponse in the case where the nonlinear element incorporates a dead-—
Zone.

We have demonstrated above how the superposition principle
(as applied to the linear part of the system) and some properties
of the p-transform can be used to evaluate the exact responsé of
the system under consideration by means of a step-by-step

analysis.

8.2 PERIODIC OSCILLATIONS IN A SINGLE-LOOP
SYSTEM CONTAINING ONE ON-OFF ELEMENT WITH
PROPORTIONAL BAND ‘

The determination of the periodic states in automatic
control systems having a single nonlinear element with piecewise
linear characteristic has already received wide attention in
the literature,

M. A. Aizerman and Fs R¢ Gantmakher 10, 11

determined
the periodic states in nonlinear single—loopvsystems with a
piecewise linear characteristic consisting of segments Parallel
ta two given straight linese In making use of this method it is

necessary to integrate the equations of all fhe linear systemsy

into which the system under consideration can be decomposed.
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The periodic solutions are then constructed with the help of
these integralss

L. A, Gusev12 also dealt with the determination of the
periodic states of a broader class of single-loop nonlinear
control systems, namely, those with nonlinear elements having
an arbitrary piecewise linear characteristic. His method does
not require the integration of the respective linear equations
into which the system may be decomposed. The periodic solutions
are determined in the form of a complete Fourier series without
neglecting harmonics. The problem here is reduced to sol#ing
a set of simultaneous transcendental equations.that determine the
behaviour in each segment of the}characteristic.

In this section we will restrict our attention to a consi-
deration of simple symmetric oscillations in the system as shown
in Figure 8.2, VWe will present two new methods of solving the
periodic states in such systems: |

l. an approximate method which is valid for the sufficiently
large class of systems in which there is some filtering
action by the linear part of the systems It has the
advantages of being just aé simple as but mueh ‘more
accurate than the describing function method in the
majority of cases of prﬁctical intereste.

2. the second method is through the solution of linear

Volterra integral equations. Reasonably accurate

solutions may be found by the method of successive

approximations.
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l, The "Trapezoidal" Approximation.

Assume that the system in Figure 8,2 has attained a
simple symmetric steady state such that x(t) is in the linear
regions of the saturation characteristic (with or without

hysteresis) for durations of length hT as shown in Figure 8.6 (a).
\

YD)

G .
'\ =(-RT o /E 1:\ (T 2T '
LD

-T \E ¢ hT T \: ;/ P
(a)

J &)
1 approx.

ML - o
L\ = (-hT (o] /i :'\ (+h)T 2T '
I

L

—t
- ' " N \1__/ e
{ |
N / .

(b)

Figure 846+ (a) Exact output of N in Pigure 8.2 in the case

of simple symmetric oscillationsj

(b) Corresponding approximation when H(s) has
a filtering actions

If the filtering action of the linear part of the system H(s) is
good and the system ‘input £(t) has a predominant fundamental com-—
ponent, then we can replace the portions of the waveform y(t) in

the intervals nT<t<nT + h(n = o, ¥1,....) by straight line

segments as shown in Figure 8.6 (b).
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The precision of this approximation can be best judged
by comparing it with that made by the describing function method.3
For this purpose, assume that the input to the nonlineaﬁ element
is sinusoidale Then the typical output y(t) is a clipped
sinusbid as shown in Figure 8.7, where it is assumed that M<1.

The exact output of N is

A

InputtoN 4 _ _
= SPi.n wt F :

Mt~ Approximate

' | Output of N
=T O : : TJ[_ ZT see t
vee =27 T O-WT -
Exact . y
Outputof

Figure 847+ Exact and approximate outputs of N for

a sinusoidal input,

sin 0wty for (n = h) T<t<L(n + h) T
y = (n = 0y i-l, 12,“‘)

(-1)™™ = (sin 7h)(-1)", for (n + h)T<t<(n +1 - h) T

and its Fourier series expansion is

o0 - . - . .
y = % 5 [ sin(n-1)zh + sin(n+l)rnh sin not (8.6)

=1 n-1 - n+l n
n odd

The approximate output, using straight line segmentsy is

described by
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(-1)™ S2.IR (4_n7) , for (n-h) T<t<(n+h) T

+
yap= . (n=0) -"1,000)

L(=1)™ = (-1)" sin nh , for (n+h) T <t<(n+l-h) T

and its Fourier series expansion is

_ 4 sin gh sin ngh sin nwt
Yap = 2y . n n (8.7)
™ n=1
n odd

The first few terms of the expansions (8.6) and (8.7) for

various values of h are

y = 0.944 sin wt + 0.046 sin 36t - 0.028 sin 560t +ees

<
|
~
(=2
I
Wi

ap = 0.916 sin @t + 0.000 sin 30t - 0.036 sin 50t +ees)

y = 04817 sin @t + 0.106 sin 30t - 0.021 sin 50t +ees)

1
L h = 4
Yap = 0.814 sin @t + 0.091 sin 30t - 0.032 sin 50t +eés )
y = 0.475 sin @t + 0.128 sin 30t + 0.047 sin 50t +ees 1
, _ b=t
Yap = 04475 sin @t + 0.128 sin 30t + 0,046 sin 50t +eese
(8.8)

The describing function method ignores all the harmonics and
considers only the fundamental component. The trapezoidal approx-—
imation, howevery takes all the harmonics into consideration.

An inspection of Equations (8.8) indicates that the latter
approximation is superior to that of the describing function
method for inputs clipped to about eighty-seven percent of

their amplitudess
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Let us now analyse the periodic states of the system
for the shape of the periodic output and the possible periods

of oscillations Consider y(t) as shown in Figure 846 (b).
approx

Let

7o (8) =(& - D [u(t) - u(t - nD)]
v [

yp (8) =M [u(t = bT) - u(t - 1) ]
Then
( E: Y, (t + nT)(- 1)n + E:yl(t + nT)(-1)"
n=o - n=l
for + o <t <hT ,
Yapprox = '
nzo(—l)nv [yo(t +nT) +y,(t + nT):l
) for + RT<t<T '
Now
i(yo(t)) = Y (s) =T;1'—1:5 [4 - (2= shT)(l. + o=shT)|
and | , ._ >(8.9)

L(r,(8) =1y(s) = BT - =T, ,

so that the output v(t) is given by

T

Y (s)-Y (s)eS

v(t) = 3=~ § H(s) =2 1 oSt ds, for o <t <hT
and C,oxrC 1 + eST
1 2 ‘
()4, (s) (8.10)

Y (s)+Y. (s ‘
v(t) = e @ H(s) = L St ds, for hT <t<T
: 2n] ClorC2 1 + eST

where C1 encloses only the poles of H(s) [Yo(s) - Yl(s)eST] or
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H(s) [Yo(s) + Yl(s)J » and C, encloses only the poles of

ST)

1/(1 + e . The contour integrals along C. and C, are evaluated

1 2
in a mathematically positive and negative sense respectively.
This will be implied for all contour integrals occurring in this
chapter. Since Io(s) and Yl(s) are known (Eq. (8.9)), and H(s)
is given, the periodic output is determined by (8.10).

Consider the characferistics in Figures 8.1 (a) and
8,1 (b)s The conditions for the existence of periodic oscilla-

tions are, under the assumptibn that t = o as shown in
Figure 8.6 (a), '
x [(n+n)1] = (1) = x [(@ + 1)1] (8.11a)
x [(n + h)T] (-1)">o0>% [(n + 1)T] (-1)™  (8.11b)

(n = 0, i'-]., i2,.oo)

in the case of saturation without hysteresis or dead zone, and are

x [(n+m)T] = (1), x [(n + 1T] = (-1)%(x,)
(8.12a)

£ [+ m)T] (-1)">0>% [(n + DT] (-1)" (51209

(n =0, %1, 22,...)
in the case of saturation with hysteresis and without dead zone.
In order to determine the possible half-periods of
oscillation, we introduce the concept of the Tsypkin locie

These are defined by
J(1) =

Aalm3

x(T) + jx(T) (3.13)

and J(nT) = % x(hT) + jx(hT)

Since x(t) is determined by x(t) = f£(t) - v(t), as shown in
Figure 8.2, and v(t) is a function of h and T, as given by Egs.
(8.9) and (8.10), it follows that the Tsypkin loci J(T) and

J(hT) are each functions of h and T.
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Two Tsypkin loci are required because the system in

Figure 8,2 has two switching instants within the half-period T.

The imaginary parts of the Tsypkin loci determine the switching

instants, and the real parts determine the switching directions.

The proper switching instants occur at the intersections of the

Tsypkin loci with the line:

ix, (in the case of saturation

without hysteresis and dead zone); also, from Figure 646 (a),

the proper switching directions must be in the left-half plane

for the J(T) lociy and the right-half plane for the J(hT) loci.

Self oscillations in the case of the saturation characteristic.

The Tsypkin loci are plotted with the help of Eqs. (8.10).

3Im J(T)

X

|n/hz/// 5

J(T)-plane

FRe 7D

From J(hT)-loct

/

éIan(HT)
J(hT)-plane

7))/

o [/ /S [/ [ |

X
XC
1

Re J(RT)

»hJT'Etane

I -T

Figure 8.8,

i
]
Toz

Construction for the determination of the

possible half-periods of self oscillation.
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Using h as the parameter and T as the variable., The straight

lines jx  are next inserted on the J(hT) and J(T) planes,

The values of h and T corresponding to the points of intersection

of these loci with jxc are then plotted on the h-T plane. The

construction is shown in Figure 8.8. Any pair of values, such

as (h Tol) and (hoz’ T02)’ occurring at the intersection of

ol’
the resulting curves in the h-T-plane may give rise to self

oscillationse .

Self oscillations in the case of saturation with hysteresis.

The construction in this case proceeds in precisely the
same way as the abovey, except that instead of the straight lines

jxc we introduce the straight lines —jxl and_sz on the J(T) and

J(hT) planes respectively, as shown in Figure 8,9,

J3Im M JImIKT)

J(hT)-plane
9y ReIM h

hy, h '
7777 3 i /

P )y Y
YL/ v LSS

2 hy -..

J(M-plane

e JhT)

h)
h

o2

Figure 8.9. Construction for the determination of the possible
half-periods of self oscillation in the case of

saturation with hysteresis.
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Forced oscillations in case of saturation.

In ‘the case of self oscillations x(t) = -v(t) and the
unknown quantities are h and T. But in the case of forced
oscillatio#s x(t) = £(t) = v(t), T, the half-period of oscilla-
tion is known, and the sought-for quantities are now h and the

phase shift 7 of f£(t) relative to v(t). As in Eq. (5.1), we let

£(t) = Aofo(t -T) |
where A, = max lf(t)l , and max If(t)| =1,

The procedure for determining h and'f is as follows. As
-mentioned earlier, the imaginary parts of the Tsypkin loci deter-
mine the switching instants of x(t) and the real parts the
switching directions x(t)e We now have two contributions to
x(t) and x(t), because x(t) consists of two parts, -v(t) and
£(t), where v(t) is determined by Eq. (8.10). The h parameter, .
0<h<1l, is varied by:choosing a sequence of values, °<hl< h2
ses<h =1,

The contribution of —v(t) to x(t) for a fixed half-period
To and for h = hi appears és the points

OT,i = - = V(To) - JV(TO) in the J(T)-plane,
and the points

0 = - n—o v(hT ) - jv(hT_) in the J(hT)-plane,

hT,i
for i =1, 25e0syn. Using the points OT,i and ohT,i as origins,

we next add the contribution due to f(t) = A fo(t - T); these

contributions, denoted by
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, T
o 2 .
3¢_(TO,T) = A [n £, (T, =T) + j£ (T -T) J,
appear as closed curves, as T varies over the range o ST<2T0'

The pairs of values (h,T) at the intersection of the JF—curves
with the straight lines jx;, (such pairs must be in the left-half
J(T)-plane and in the right-half J(hT)-plane to satisfy the
proper switching instants énd switching directions) may give rise
to forced oscillations. Thé (h,T) values are plotted in the

h- T plane, as shown in Figure 8,10, to give two curves corres-—
ponding to each of the J—plqnes. The points of intersection

of the h-T curves yield pairs of values (h,T) for which fofced

oscillations may occur.

jImJ(T)
_ 3 jImJhT) :
T~ =N ? JhT)-plane
@/@ @ 0 ReJ(T) )
y / T
A
onNc”__7 . / Re J(KT)
— J .
N~ _ ~ , Loct of
N o - ~ F(T,,7)
h A
hoz"—"—_ - T —
From J(hT)-Lloct
| h-7 plane

Fr}om J(T)-loct

L ' =T
0 Tor Toz

Figure 8.104 Construction to determine values of h and

T that may give rise to forced oscillatioh.
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Ve observe that we may get more than one h— T curve
from each J-plane, depending upon the complexity of f£(t).

An analogous procedure can be used to determine pairs
of values (hy 7) that may give rise to forced oscillations in
the case of the saturation characteristic with hysteresis.

2. The Integral Equation Approach.

Referring to the exact output y(t) of the nonlinear

element, let |
y,() = & x(+) [u(t) - u(t - n1) ]

Then the Laplace transform of the output of the linear part of
the system, V(s); hasy; by an argument analogous to that used in

deriving Equation (8410), the form

~

Yz(s) — Yl(s) eST

] H(s) , for o <t <hT

' - 1 +‘eST
12(s) + Yl(s)
—= ] H(s) , for hT<t<T
sT -
\ L 1 + e
where
Ty(s) = & I(x(t) [u(t) - u(t - wD)] )
and
Yl(S) - % ( é-ShT - e—ST).
Let
. H(s) Y, (s)
vy (1) = El_ __lT St as,
<y ClorC2 1 +e° ‘

where C1 is a contour which encloses only the poles of H(s)Yl(s)

and C2 encloses only the poles of 1/(1 + eST). Thispéxpression
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for vl(t)vcan be evaluated by the methods described in Chapter
3« Furthermore; let
| 1
w(t) = 5 (ﬁ ngT) oSt 4.
ClorC2 l+e
where C1 encloses only the poles of H(s) and 02 encloses only

Ty, Recall that

the poles of 1/(1 + e°
v(t) = £(%) - v(t).

By using the real convolution integral, and the expressions

for 2w (t), v(t) and Yz(s) above, the inverse Laplace transform

of Eq. (8.14) yields, upon rearrangement of its terms,
t

x(t) = £(t) + v  (++1) = A  x(7) [u(t) - u(t-hm)]«o(t--r)dr
o)

for o <t <hT, (3 )
. - 15

S t '
x(8) = £(8) = vy (8) = & | x(1) [u(t) - u(t-n1) |we(t=T)aT

for hT <t<T.

These equations are linear Volterra integral equations of the
second kind with x(t) as the only unknown.14 Such equations
are readily solved by Picard's process of succeséive approxima-—
tions. Practical solutions of such equations may be found

by means of a repetitive differential ana,lyzer.15



PART IV

THE STABILITY PROBLEM
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9. STABILITY OF PERIODIC STATES IN ON-OFF SYSTEMS
WITH OR WITHOUT A PROPORTIONAL BAND

The investigation of the possible periods of the periodic
states, including both self and forced oscillations, was
considered in the preceding chapters. Now the question of the
stability of these periodic states acquires considerable importance.
Only when stable can these periodic states pe observed iﬁ systems
physically« Before investigating the stability problem, let us
first review the concept of stability that will be used.

9.1 THE CONCEPT OF STABILITY OF PERIODIC STATES

In this study we will consider the concept of stability
in the sense of Lyapunov,16 and in particular asymptotic stabi-~
1lity in the small, or, as it is sometimes called, local stability.
Let X(t) define a periodic state, the stability of which is
to be investigated. According to A. M. Lyapunov, we determine
the stability of the periodic stafe by studying the behaviour of
the neighbouring non~periodic states. - The non-periodic states
close to the periodic one are excited by the introduction of
a sufficiently small disturbance; such a non-periodic state may

be represented by
x(t) = %(t) +E(t), (9.1)

where £(t) is the deviation from the periodic states
Definition 1. If the deviation E(t), after the removal
of the sufficiently small disturbance, approaches zero

asymptotically as time increases, that is

lim g(t) = 0, | (9.2)

t—> o0
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then the periodic state investigated is said to be
asymptotically stable in the small or in the sense of
Lyapunovs This means that as time increases all suffi-
ciently close non-periodic states approach the pefiodic
state asymptotically.
Ify however, under the above-mentioned conditions

I;(t)| increases indefinitely as time becomes indefinitely

large, then the periodic state under consideration is said to

be unstable.

Definition 24 In this case we consider any non-periodic
states gll states other than the periodic state investigated
are referred to as non-periodic states. The quantity ;(t)
is now the deviation (from the periodic state) caused
by any disturbance, regardless of size. If |§(t)| approaches
zero as time increases, no matter what the disturbance may
be, then the periodic state investigated is said to be
asymptotically stable in the large or globally stable.
In this thesis we will be concerned with only the problem
Qf asymptotic stability in the small. For simplicity, whenever
we speak of stability in the remainder of this chapter.we shall
always mean asymptotic stability in the small.
To investigate the asymptotic stability in the smdll of
the on-off systems considered, we will use one of the classical
methods of Lyapunovse In this method we form the equation of motion
with respect to the deviation §(t)_by replacing, in the general
equations governing the behaviour of the system; the periodic

solution %(t) by x(t) = X(t) + E(t) and rejecting in these’
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equations all terms containing powers of ¥%(t) exceeding the first.
Cbnsequently, a linear equation in ¥(t) is obtained; this eQua—
tion is referred to as the equation of the first approximation
or the variational equation. Moreover, in thé case undér
consideration this equation has periodic coefficients;>
According to a theorem of A; M. Lyapunov, if the solution
Z(t) of the variational equation approaches zero as time
approaches infinitys then the periodic state investigated is
asymptotically stable, regardless of the nonlinear terms
neglected in the initial equation, In the case of an unbounded
increase of |§(t)| the periodic state is said to be unstable.

It may happen that the solution &(t) of the variational
equation neither approaches zero nor approaches infinity in
absolute value as time increases indefinitely, but merely remains
bounded in absolute value. In such cases it is impossible,vin
general, to ascertain the stability or instability of the
system by means of the variational equation. But in the’
systems under consideration, a theorem of I. G. Malkinl7? 18
shows that in this critical case the variational equation still
gives an answer to the stability problem.

Lyapunov!s method applies to equations containing con-
tinuous nonlinear and linear functions. On-off systems, however,
are usually described in terms of discontinuous functions. Hence,
a rigorous investigation in such cases requires that all arguments
be conducted with continuous functions which approximate the
discontinuous functions with any degree of accuracys and uses
the limiting process to obtain the behaviour of the system .

described by discontinuous functions.
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Without claiming mathematical rigor, we will use a
method whicﬁ makes use of the unit step and delta functions for the
systems under considerations This method, besides leading to the
very samé results as the rigorous but cumbersome approach,
possesses the advantage that, from the physical point of view,
it is very gfaphic.

9.2 VARiATIONAL EQUATION FOR SINGLE-LOOP SYSTEM CONTAINING
AN ELEMENT WITH A SATURATION CHARACTERISTIC

For the purpose of investigating the stability of a
given periodic state in a single—loop system containing an
on~off elememt with a proportional band, let us first férm
th& Vgriati§nal equation, Without loss of generality, we
assume that the nonlinear characteristic (y =d (x)) is an
odd functione |

Let us suppose that
R(t) = £(t) - 7(b) - (9.3)
corresponds to the pefiodic state of frequency @ e The quantity

f(t); defining the periodic control signal to the nonlinear

element, satisfies the equation

1) = I1FW) -a) L eEe))  (9.4)

Suppose that somewhere in the system at time t = o, there
arises a sufficiently small disturbance (for example, a change
in initial conditions, or the application of some external
action), which breaks the periodic state %(t) and excites the

neighbouring non-periodic state x(t) ='§Kt) + é(t). The small
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On-off Linear
Element . Part
£ % Jet) )
T pe X M > Hes >
with 'ProPor'tionaL
Band

Figure 9.1. A single-loop system containing one on-off

element.

disturbance can be transferred to the input of the system,
where it will be designated by fd(t). Equation (9,4) now

becomes

;c(sc’m +20) =2(Z) + 2, (1) - aOR® 5] .
(9.5)

The difference between Equations (9.5) and (9.4) gives

the equation for the deviation &£(t) from the periodic state:

(3] =X(r,(0) -aHI(PFE®) +5(+)] - D &()).

This equation is nonlinear in (t) ]| « Assume that B(t)
q $

is sufficiently small; then

OR(1) +3(1)] - D(R(s)) 5 BEELE ML DRI 5(y)

=@ [i(t)} E(t) +.higher order

terms,
where (' denotes the derivative with respect to its argument,
Disregarding terms in £(t) of degree higher than the first, we

obtain the variational equation for the system under considerations

1(3) =1, 0) - mI(@ [2®)] 50) ©.6)
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This equation is linear in E(t) and has periodic coefficients
by virtue of the presence of @' [%(t)] . As indicated earlier,
the behaviour of the solution of this equation detérmines the
asymptotic stability of the periodic state i(t).

In the general case of an arbitrary P(x) the investigation
of the exact solutions of this variational equation meets with
insurmountable difficulties. By virtue of the specific charac-
teristics P(x) under consideration, it is possible to carry
out the investigation of the stability of the periodic states
by comparatively simple and well-known methods.

Let us first consider the case

‘CID(X) where PD(x) is the saturation:
hA:Ade (. characteristic, as shown in
|
-Xe 0 : —x Figure 9.2 (a). The derivative
: X '
: Slope= A of this characteristic is
1-M
(a) D (x) = A [u(X+xc) - u(x—xc)]
L P = - | - (9.7)
A so that
& [£(0)] = & [ uEex )-uGEx )]
o —x where X = X(t) is a periodic
—Xe Xe o '
(b) solution of frequency © .

Figure 9.2. (a) Saturation
characteristic,
(b) Its derivative.

The expression for @@ [i(t)] is easily and graphically
determined by means of the transfer diagram with the help of
D' [x] as shown in Figure 9.3. Furthermore, let us assume that

%(t) is a simple symmetric periodic state of half-period T. With
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no loss in generalityy; we can choose the time axis t such that
X(0) = X, and X'(0)>o0. Let X(t) be equal to x, at t = h<T.
Then

@' [#(1)] =4 F [a(t - k1) - u(t - kT - n)]  (9.8)

k=0

where u(t) is the unit step function.

. ;Kﬁﬁd . D'I%@)]
A» : A
—L — X, i w—t
e 0 Xe o h T ™h 2T 2Tth 3T 3Tth
—Re 0 Xo > X ()
N
T Figure 9.3. Transfer diagram
=1+ '
for the graphic determina-
tion of CID'[i(t)] when
2j<i$jii %(t) is a simple symmetric
-f — —
periodic oscillation of
half-period T.
3T} -

Consequently, the variational equation for the system under

consideration becomes

;ﬁ(;(t)) - I(fd(t)) — AH(s) 1(§(t) i [u(t—kT)-u(t-kT-h)D
© k=0

(9.9)
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Using the notation

I(x®) = B, ;I[fld(t)] = Fy(s) ,
I(E(t)i [u(t—kT) - u(t—kT-h):D =Py g [E(s)] ,
k=o :

wvhere the symbol Ph T[ J represents the p-transform notation
. ’

used by Farmanfarma and Jury, Eq.(9.9) takes the form

E(s) = Fy(s) - Py o [E(9)] aH(s)e  (9.10)

We now make the observation that equation (9.9) or (9.10)

corresponds to the linear feedback finite pulse width sampling

system, as shoﬁn in Figure 9.4, in which §(t) is sampled

periodically with period T for finite durations of length h and

then fed to the linear transfer function AH(s). Hence the

asymptotic stability of the periodic state X(t) can be deduced
U

f,@ )
3 i X, —>— AH(e)
Fy - == ki+h Ph,T[':(si\

V

Figure 9.4. Linear system equivalent to Equation

(9.9) or (9.10).

from an investigation of the stability of the equivalent finite
pulse width sampled—data system depicted in Figure 9.4 The

stability of the latter system is well-known, and an excellent

19

discussion of this topic can be found in Farmanfarma
13

and in

Jury.
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The above solution of the (asymptotic) stability problem is
a generalization of that given by Tsypkin. It is of interest

to consider the limiting cases of the above system:

Z [u(t-kT) - u(t-kT-h) |

1, h = T. In this case up(t)
becomes the unit step function u(t). This means that opera-
tion is confined to the linear portion of the characteristic,
and the problem is reduced to a consideration of the

stability of a simple linear feedback system.

2. h = o and up(t) has any finite amplitude.

In this case I[Pp(t)) = 0, so that the sampler
output is zero, and the system remains at rest. This
case would be possible if X(t) were a square wave of

amplitude >X with half-period T.

3. h = o but up(t) becomes ST(t), a sequence of unit impulses.

Under these conditions, X, = 0, and the nonlinear
characteristic P(x) becomes the ideal on—off element
without a proportional band. This is the case considered

by Tsypkin.6 We now obtain
D' [7(1)] = M8 [%()] .
Since
2 [R(6] =5 (-1)F §(+ - k1),
o [%()] =F (1" s )
and

i [gw)] -s[xw)] %,
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it follows that the delta function of a periodic argument

can be expressed as

srw)] =% Himt-

k=0

where kT (k = 0y 14...) are the roots of the equation
%(t) = o, assuming, of course, that X(o) = o. Because of

the periodicity of %(t) we have

$[x()]= mrayT | 2 Z §(t - k)

-] S

Consequently, Eq. (9.10) reduces to

H(s) = Fa(s) - [htety Ex(s) (9.11)

Ex(s) = Z(3(6) (1))

where

Hence, the problem of the asymptotic stability in
the case of the simple on-off characteristic is reduced to
a consideration of a simple linear feedbagk sampled~data
system corresponding to the system in Figure 9.4, but in
which A is now replaced by 1/|%(t)].

4, h is small compared to the time constants of the system.

This situation arises if T>>h, i.e. the magnitude
and periodicity of X(t) are such that, effectively, the
nonlinear characteristic possesses an exceedingly narrow pro-—
portional bands The output of the nonlinearity, due to the
input over this duration, can be approximated by replacing

the finite pulses by impulses of equivalent area. Let us
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remark that if H(s) has a discontinuous impulse response the

modified %~transform, and not the 3-transform, may be

used to give a true approximation of the component of the

response for the time duration nT + h<t<(n + 1)T arising

from the input component Z(t) [u(t - nT) - u(t = nT - h)] ;

whereas if H(s) has a‘cogtinuous impulse response, we may

use either the P—transform or the modified %—transform

for this purpose. But the true approximation of the response

during the interval nT <t<nT + h cannot be estimated. On

the other hand this effect will be negligible when h is

sufficiently small and H(s) has a continuous impulse response.

The exact behaviour, however, can be evaluated by means of

p-transform methods.

So far we have considered only the case of the saturation

characteristic shown in Figure 9.2 (a). Let us now consider the
(asymptotic) stability problem for various types of saturation
-characteristics. The other types of characteristics considered

and their derivatives are shown in Figure 9.5.

B0 AP0 D0
™M , ™ M1 A
...;(2 : x| ; F 5|0P6=A _xz_xl O / i :SlOPG-T-xA _,xz _x‘ O ) ; ; N x
: =% [0 i X J i

~ | K Xz : < &?1-
- opeé =
Y/ oM / ﬁ 'Zﬂ% P

-M o> A

-. ASD'Z(JO B0 A

O ooron.

=X, =X O X)Xy -Xz7X, O ¥, X . XK, A O  AXX
2™ ! 2. 2 12 2.7 _ 2.
Xira X p-A

Figure 9.5 Form of derivatives P'(x) for various types

of saturation characteristics.,
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Case of Cbz(x)

For the saturation characteristic with hysteresis,

illustrated in Figure 9.5 (a), we have

JA [u(x - xl) - u(x - x2)'] , for x>o

Cbé(x) = (9.12)

IA [u(x + x2) - u(x + xl)J , for x<o
The transfer diagram for the determination of @) [i’(t)]

Py A D L]

R A e B} %
t\
=Ko =X; DO X Xo N (-]
2 L+,_- : > K(+)
T’%ﬂ--.\
T
-/_L/:é Figure 9.6. Transfer diagram for
the graphic determination
[] Vord
\\\ of Cbz [x(t)] when
- | %(t) is a simple symmetric
periodic oscillation of
// half-period T.
z/gﬁ:
P ——-It

gives P2 [i(t)] = Aé. [u(t—to—k'l‘) - u(t—to—kT-h)] (9.13)
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Since the choice of the initial time instant is arbitrary, then
the displacement to does not influence the form of the varia-

tional equation, which is thus given by

S(s) = Fy(s) - AH(s) By o [E(s)] . (9.14)

Equations (9.10) and (9.14) are the same, except that the values
of h are, in general, different. Hence, the stability of. the
system containing a characteristic with saturation and hysteresis
can again be deduced from the behaviour of the simple feedback
sampled-data system with finite pulse width.

Cases of Cp'3 (x) and CI)4 (x)

The cases of characteristics with dead zone and with or
without hysteresis will yield variational equations of the séme
form - just as the cases of characteristics without dead zone
and with or without hysteresis. Consequently, it is sufficient
to consider the case of(ih(x).

Clearly, from Figure 9.5 (c),

(A [u(x - xl) - u(x - x2)

- A) - u(x - A). f X >o
+ xl ] or 6;.15)

B! (x) + u(x + X,
* j A [u(x + x2) - u(x + xl)

\ +ulx = x, +4) - ul(x - x_ + A)J for x<o

1 2

By substituting A = o in Eq. (9.15) we getqpé(x)
In this case

) E t)] = A z [u(t-t_-kT) -u(t- b —kT- h,) (.16

+ u(t-to-kT—‘sT) - u(t—to—kT—XT—hz)J
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i.e. db& [§(t)] corresponds to the sum of two sequences of
pulse functionse The periodicity of each sequence is the same
and is equal to T the half-period of the periodic state X(t)
(wve are assuming simple symmetric oscillations for X(t)) The
second is displaced relative to the first by a fixed time
interval ¥T. The geometric transformation into the indicated
sequences of pulse functions is shown in Figure 9.7 with the
help of the derivative of the characteristic<iﬁ(x). By an

appropriate choice of the initial time instant (set b, = 0),

. J R aled
A — 2
L1 | > X, ] ] Lt
F 1 aa%qaq t 2 ‘Ehl“
o - t‘ +.o Ll X )2‘ '
XX XX K X LT >
AN I 2 SRS
™~ e T ——
|- P>
tMh [ —~>i>
T+ ;,/’//
T
T Lt Fi 9.7. Transfer di £
44---—¢°+14h. igure 7 ransfer agram for
< for the determination of
N )
SRR, Dj [%(t)] when %(¢) is a
TN
=i ”5\:> simple symmetric periodic
/; oscillation of half-
L] |
r,v period T.
pegt
,/. -t

the variational equation for this particular characteristic

q%ﬁx) has the form
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Hle) = Fy(a) = ale) L(5(0) 5 [u(t-kD) - ult-ietn))

o (9.17)
+ u(t-kT-¥T) - u(t—kT-XT—hz)])

Using the p-notation

Phi‘T [5(5)] = ;[(;(t)éo [u(t—kT) - u(t-kT-hi)D ’

Eqe (9.17) can be rewritten as

=(s) = Fd(S) -~ AH(s) [Phl,T [E(S):I + e-SXTthg- [E(S)esxﬂ
| (9.18)

Equation (9417) or (9.18) corresponds to the linear feed-
back finite pulse width sampled-data system in Figure 9.8: It
consists of two samplers in parallel and a feedback link con-
taining a linear transfer function AH(s)., The samplers close

synchronously and their outputs have uniform pulse widths h1

and h2. However, the second sampler operates with a delay YT

with respect to the first. Even though this system contains an

KT
X y P _I=@]
kT-I'h, hb
AH®) >~
(k+¥)T +
e [=@e
(k+¥)T+h, 3

Figure 9.8+ Linear system equivalent to Equation (9417)
or (9.18)0
additional samplers as compared -to that for the case without

dead ibnég £he analysis of the behaviour of the former is no
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more difficult than that of the latter, because of the fact

that the samplers operate synchronouslys

The Case of More Complicated Forms of feriodic Oscillations,

The method described above can be extended easily to the
study of the stability of any given complicated form of periodic
oscillation., As a exémple, let us consider the case of the simple
saturation characteristic, Without deducing the variationallequa-
tion in 2(t), we make use of the transfer diagram shown in
Figure 9.9. The derivative of the periodic funation ﬁ(t) of
period 2T now consists of n sequences of pulses. The duration
of the pulses in the successive sequences, initiated at times

o, ¥ 2T, WéZT,tyb; Y, 12T with respect to the first, are in

general differenty; and are denoted by ho, hl’ h2,.;,; hn__il

respectively.
1
‘ DL
o P Py hitehpe o hgge oo it > by
; x i ” ves I—l ﬂ 1 r'l;
% 0 X | ¥2T 2T %2eT ¥l
e 0 Fe LK@ 1< 2T >
A
hol =
v )
=X, 2T
I | |
%21+ 21 Figure 9.9. Transfer diagram for
:::> the determination of
1 o~ o
/Z.XSZTH@, 2T | D [x(t)] where P(x) is
e . ' the simple saturation
T . characteristic, and %(t)
Yol 2TE= :? . isié complicated periodic
" A{T‘_"'hn—o » ' ' . T
<:\$M2J v waveform of period 2T,
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Clearly, the linear system corresponding to the variational
equation in this case will consist of n samplers in parallel of

uniform pulse widths ho, hl’ hz,..., hn—l and a feedback link

containing the linear transfer function AH(s)« The samplers
close synchronously with periodicity 2T, but are not in phase.

This system is shown in Figure 9.10.

2kT

-
(2 k'P‘DT
ﬁ__/

.
. - — —

2k+%,_)Ts
(2k+¥,_YT+h,_,

(k=°,|,-.-)

2kT+h,

LA H(s)

Y

(2k+X)T+h,

— — -

Figure 9,104 Linéar system determining the stability of
a complicated periodic state X(t) for the
saturation characteristic P(x).

9.3 AN APPROXIMATE SOLUTION TO THE ASYMPTOTIC
STABILITY OF PERIODIC SOLUTIONS

In the preceding section we formulaﬁed an exact method,
which reduces to well-known solved problems in sampled—data
syétems, for the determination of the aéymptotic stability of
periodic statess We now present an appro#imate solution to the
above problem but without resorting to the sampled—data approach,.

Let us assume that the linear transfer function H(s) is
a fractional rational function, which may be written aé

P(s)

H(S)ZQS y
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and that the degree of P(s) is less than that of Q(s)« Then the
variational equation (9.6) can be expressed in differential

equation form thus:

2p) 31) + ) B[R] 3) - 02 £, 4

where p = E%’ and P(p) and Q(p) are differential operators.

Since the derivative of the characteristic > [i’(t)]
is periodic with period T, we can write it as an exponential

Pourier series thus:

v [ee _ 2 Jhot \
o [%(1)] -, 257,
where . | \(9420)
c+ .
CQ, =% D! [S'c(t)] e-J{"otdt (¢ = constant)
s
and | 7
' 6w = ZTE/T

We now seek a general solution of the homogeneous equation

a(p) 3(t) + 2(p) @ [%(+)] 5(t) = o (9.21)

of the form

(c + jho)t
'

£(t) = é B, e (9.22)

where the B's are the complex amplitudes and o is the so—called
characteristic exponent which is to be determineds Clearly, if
the real parts of the values of a are found to be negative, then
the system is asymptotically stable.

Substituting (9.20) and (9.22) into (9.21)4 we obtain

) + ¢, P(p)] 5 Bole k)t
+ P(p) E °z° [Csze [d+j (k+£)m]t_'_.c

B e[oc+j (k-2)0] t] — o.
£=]1 k=-oo -7k
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This last equation can be rewritten as

[Q(p) +C P(p)] z Bke(a"'jk“’)t-

__w

+ P(p) gl IE ”[CaBk_ +C_yB e

o (atiko)t _ (9.23)

By using the relation

F(p) egt = St F(3)

and equating the coefficients of like frequency compdnents,'ye

obtain _— A

B, [0(5) + O RG] + Z [L ket * CooBian [ B = 0
(9.24)

(k = o, i'l, i2,...)
where
S, =« + jlw

Eqﬁatioh (9.24) is an infinite system of equations, each of

which contains an infinite number of terms ih Bk (x = Oy :1, 12,...1

The characteristic equation of the system is obtained by equating

the determinant of Eqe (9.24) to zero. As it stands, this

éharacteristic équatidn-isfofuinfinitewdegree in ae

Let the roots of the characteristic equation be ai(i =1,

2y40¢)s Then a necessary and sufficient condition that the
system be stable is that the real parts of . lie in the left-
half s-plane.,

A Practical Approximation,

In practicey the linear parts of the systems considered
are such that the frequency components lying outside certain

finite bandwidths can be regarded as negligible. This can
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always be achieved by choosing the pertinent bandwidths sufficiently
large. Let us assume that all frequency components largef than

@, are negligibles Then all complex amplitudes for which

+o <Im . <-6 (9.25)
may be neglected. Unfortunately, the values of 5 are unknown,

However, by choosing sufficiently large values of k in & =

a + jke, say |k|:>M, condition (9.25) can usually be fulfilled.
Thus all complex amplitudes for |k]>M may be neglected.
Consequently, in place of the infinite system of equations (9.24),
each containing an infinite number of terms, we now restrict

our attention to the following finite system Jf equationsy each

containing a finite number of terms:

a. B (1:0, i‘l,...’ iPI)

ik'k = 0

W
]\t

M

where
(9.26)

(%) + cor(;i) , for i = k
Bik = |
- Le; P(E) , for i £ k
The characteristic equation is now given by the determinant of the
system (9.26), i.es
|oak| =0
which is polynomial of degree 2M + 1 in a. If all the roots

a; (i =0, I1,40ey IM) of this polynomial lie in the left—half

s~plane, i.e. they all:-have negative real parts, then: the periodic

state under consideration is“stable;
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In the case of the saturation characteristic, with or

without hysteresis and without dead zone,Cb'[ (ti] has the form

& [%(4)] =4 é [u(t-t_-kT) - u(t—to‘-kT—h)]

when X(t) is a simple symmetric periodic oscillation of half
period T. The Fourier series for this sequence of rectangular

pulses is
0

[ (t)] = A[ %Z sin E_gb_ cose(o(t b= —)]
where @ = 2n/T+ By choosing to - % = o, the exponential form
for this series is

~ A 2 1, . behy jlet
| i s
lap) [x(t)] = = £=_°°I(51n 2 ) e .

Similar expressions for the saturation characteristic with
dead zone can be founds

When the characteristic of the nonlinear element P(x)
ceases to be of the on-off or saturation type, the question of
the stability of the periodic states cannot, in general, be
reduced to a consideration of the stability of sampled-data
systems. Under these conditions the present approximate method
can still yield an answer to the stability problem in most

cases of practical interest.



131

9.4 A DIRECT APPROACH TO THE STABILITY PROBLEM

The method to be presented below will be éalled the direct
approach, in contrast to the sampled-data approach, because it is
direcfly related to the physical definition of stability: that
isy a disturbance is applied; and the deviation from the state of
equilibrium is s£udied. If the .deviation dies out the system is
said to be stable; otherwise, it is unstable. This approach will
be applied both to forced and self oscillations in the system shown

in Figure 9.11.

. t
TN vy I el v

Figure 9,11, A single-—-loop system containing one on-off

element,
Let £(t,T) be the periodic input with half-period equal to
T, in the case of forced oscillations. Let y(t,T) and v(t,T) be
the corresponding outputs of N and H(s), respectively. The input
fo N is denoted by x(t).

Stability of Fofced'Oscillations

The system in Figure 9411 is assumed to be in a state of
forced oscillations with half-period equal to T. Let a random

disturbance A7B occur in the zero-crossover at t = o as shown in

Figure 9,12, so that the response v(t,T) for t>o0 is modified
to Vm(t). We take 'A7;|<S<T, and neglect higher order terms

in Aﬁ}
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Let ym(t) be the modified output of N, and let its

deviation from y(t,T) be denoted by yd(t)z that is

yq(t) = y () = y(¢,1).

pY® /IET)
+ g €)
Y m
2T T o e, [ [t 2T [ 21 fea
-> > < > e > e
At AT, AT, AT,

Figure 9.12.. Periodic and modified outputs of N.

AT, AT,
42§5 - . > i
+21 . m F—
o| t, 2T to o+t
Tt ' aT +,
-2 | a
> .o =
AT, AT,

Figure 9.13. Deviation in the output of N.

The quantity y,(t) consists of a series of impulses as
4 d

indicated in Figure 9+13. The deviation in the system response,

vd(t) = vm(t) — v(tyT); is the response of H(s) to yd(t)‘

Let Ym(f) = 0. for t = to’ tlf-tzfv*:é

"and o<t < oo

AT =1 - nT, n = o, 1, 2, sew
n n
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The quantities ATh(n =1, 2, «v.) are now determined in terms
of ATO.

The change in the first crossover past the origin, AT&,
can be found by solving

f(tl,T) - vm(tl) =0 (9.27)

where
v (t) = v(t,T) - 2n(t) AT (9.28)
and h(t) is the unit impulse response correspopding to the
transfer function H(s)s Substitution of (9.28) into (9.27) gives
f(t\,T) - v(t,T) =-2h(t) AT : (9.29)
A Taylor series expansion of (9.29) about t = T yields

f(T,T) =~ v(T,T) + [i"(T,T) - w'r(T,T)] AT1A= -2h(T)ATO,

where
f(r,7) & oLLtLT and +(1,1) 2 2{t,T)
ot _ ot _
t=T - J4t=T
But v
£(T,T) - v(T,T) = o,
so that
- (9.30)
AT, = 1 h(T) AT,
where
m 22 (-#(1,7) +v(r,1) )! (9.31)
The change in the next crossover A7é is determined by
£(t,,1) - v (t,) = o (9:32)

where vm(t) is now given by

vm(t) = v(t,T) - 2h(t) AT + 2h(t-T)'AT1 (9.33)



134

Substitution of (9433) into (9.32), and expansion about t= 2T yield

£(21,1) - v(21,1) + [E(21,T) - w(21,m) | AT,

= =2n(2T) 4T, + 2n(T) OT, (9.34)

Since

£(2T,T) - v(2T,T) = o

and
£(t,T) = v(t,T) = - £(¢-T,T) + v(¢+-T,T) ,

equation (9.34) yields

AT, = m[-h(2) AT, + n(T) AT ] (9.35)

This equation for AT, may be written in terms of AT_ using (9.30)

but this is not necessary as will be shown later.

In general; the expressions for ATh are given by

a7, = 7 [b(T) ATo]
5T, =m [h(21) T, + n(T) A'Tl]
ATy =17 [0(3T) AT  ~ h(2T) 47 + h(T) ATZ] (9.36)'
AT, = 7 [~h(4T) AT+ h(3T) AT, - h(2T) AT, + h(T) AT3]
etc.
The deviation in the response is
vd(t) = =2h(t) AT, + 2h(t-~T) AT, - 2h(t-2T) AT, + eee
or ,
\' ’ -
als) 1o Is A come ATy o3ms AT
-2H(s) AT~ AT, A AT T °tT
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Substitution of (9.36) into (9.37) yields

V. (s) _
rﬁﬁ?;ﬁ:==l" ne™* [n(m)]

+m e~ [n(2m) + n(m)

0
AT, AT
; -3Ts -1 o 2
~Me [h(3T) - h(2T) i, + h(T) 37:']
+.o‘oo
- , AT. NG
=1 —n[z h(nT) e nTS] (l—e TSZ‘.’T]; + eVZTSZTf-g' - 000)
n=1 . o 0
(9.38)
From (9.37) and (9.38) there results
| -2H(s) AT,
Vy(s) = (9.39)
Q. -nTs
1 +n3 h(anT)e

n=1 -
where M is given by Eqe. (9.31).

Stability requires that all the poles of (9¢39) lie in

=2 -nTs
the left-half s—plane or that all the zeros of 1 +7 3 h(nT)d
_ | LN
lie in the left—half s-plane. Equivalently, if We substitute
w - ——
z = e'S, stability requires that all the roots of 1 +1 3 h(n®)z 2 o
n=1

are inside the unit circle, with centre at the originy in the .
z—-plane. |
Comparison with the sampled-data approachs: |
As mentioned by Tsypkin,6 the study of the above
stability problem is equivalent to the study of the stability

of the linear sampled-—data feedback system shown in Figure 9.14.
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r+

X,(8) '
d ﬁf)—»—n H©)=G(E) >

Figure 9.14; Equivalent sampled-data system for the

stability problem,
The %Ptransform of G(s) =1]H(s) is
L e _
G(z) =1!H(z) =" 2 h(nT) z o (z = eTs)
n=o0

The Sampled—data feedback system is stable brovided that all
the roots of

1 +G(z) =1 +ﬂ S h(al) 27" =0 (9.40)

n=0

lie inside the unit circle in the z-plane. 'The results of the
.direct and sampled—data approaches differ: the term'qh(o) in
(9.40) is absent in (9.39). The sampled-data result in (9.40)

was derived on the assumptions that (1) xd(t) has small average

amplitude as compared to x(t,T) and (2) the time derivative of

x&(t) does not take too largé values; These asSumptions imply

that h(t) must not be discontinuous at t = o, or, equivalently,
that h(o+) = o. Consequently, the result derived by the
sampled-data approach should be used only in cases where h(o+) = o;
but it does not say whaf should be used when h(o+) # o« The
result derived by the direct approach, Eq. (9.39), is valid both
for h(o+) # o and h(of) = 0, |
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Stability of Self Oscillations

A slight modification of the previouS'argﬁments will
give the desired result for the stability of self oscillations.

Let the half-period of self oscillation bé'To. Let the system

in Figure 9.11 be undergoing forced oscillations of half-period

T, T=T , up to t = oy after which the input £(t,T) is removed and

the ensuing oscillatidn‘periods are ComP%redftq-T;;

The modified response. is
v (t) = v(+,T) - 2n(t) AT, (o <t<t;)  (9.41)
Since

vm(t1)<= vm(To + ATi) = 0 and v(To,To) = 0,

a Taylor series expansion of (9.41) about (TO,TO) yields

Aﬁ_=aaAthhﬂb)AQ (9.42)
where
AT =T =T, n= 2[?(TO,TO)] -1 (9.43)
and
vT(TO’Td)

ne

i ’
v(To,To)

and where

A ov(t,T) v _
vT(To,TO) = ST !].t = ro and T = T
For the next interval tl <t _<_t2 ’

vm(t) =v(t,T) - 2h(p) AT+ 2h(t - To) ATy W

Since
vp(ty) = o = v (2T + AT,) and v(27,T ) = o,
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then

AT, = =alT + 7 [—h(ZTO) AT, + h(T ) ATy ] .

In general,

AT = =aAT 12’ h(n® ) AT (--'1)m+1 | (9.44)
n " ol Vo_ n-<m ' .

n=1, 2, 3, Y

The deviation in response is

<4
o
~—
o+
g
{

= v () = v(5,T)

v(t,T) - v(t,To-) - 2h(t) AT+ 2h(t-To) ATy

- 2h(t—2To) ATé + eve

_'-'-_’-.VT(t,TO) AT ~ 2h(t) AT+ 2h(t—To) AT

- 2h(t—2To) AT, + «. (9.45)

The first term on the right-hand side of (9.45) is periodic with
an infinitestimal amplitude and therefore can be neglected.
Substitution of (9.44) into the Laplace transform of (9.45)

yields
—Tos fZTos —3Tos
g2H(s)[:ATs+aAT(e -e +e - ...)]
v,(s) = (9.46)
oo -nT s »
1+ 3 h(nT )e °
n=1 °

Consequently, the condition for stability is the same as that

found in the case of forced oscillations except that Y is given

' o0 n A —Tos
The zeros of 1 + 7 > h(nTo)u ,uZe , Will be
n=1
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discussed further. Let

A : ® ) m E
F(u) = (.»1 + 1 2 h(nT) u )/ (9.47)
Now in the case where H(s) has n simple poles all distinct from
zero
T
n__ P(s,) k"o
1 1l . k e
i V(T T ) =,Z -
2 ‘0?70 ' Q' (s, ) -5, T
1 =1 Y j4e B o
o
= Z;(—l)m+1h(mTo) (9.48)
m=1 .

so that (9.47) can be written as
. o0
F(u) =) b(nt ) [o" + (-1)"™* ]
m=1 ‘

A zero of F(u) is at u = -1, so that

F(u) = (1 +u) & (u) . (9.49)

The form of G(u) is derived as follows:

= -mT s P(s mT (s, -s)
%:_ih(mTq) e o =Z ZW——T o7k "7

m=1
D p(s ) -T, (s-s )
e
= = 9 (s 7 l_e-To(s-sk)
Now
-mT_
w1+wemy;mw_—+§jmm)em ’
P(s u eTosk. ]
Q (s ) T Sy u eTosk
so that n T
P(s,) 0°k
G(u) = - k e 1 .
(u) kZ=1; Q (Sk) Tosk Tosk ' .(9 50)
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Since

P(s, ) Sy b
1 . k
EV(t’To) =z Q:(S‘k) £ Tos
l+e

s, t
and since the %-transfprm of e k- is given by

k

(eskt) =z __1
% - T sk - T S
Z—e o l-u e o
it follows that
1 >
G(u) = (—v(t,T )) (9.51)
%. 2 o t = To

The following partial fraction expansion is valid:

f(u
G(u

+ (9.52)

1 1

_ = “qG6(-1) 1 +u
1+1 2> h(nT) o" )
In the first term on the right hand side of (9.52), u = -1
corresponds to periodic oscillations. Hence, the stability depends
on the zeros of G(u) = G(z—l), and these zeros should be within
the unit circle in the z-plane., The stability question may
therefore be answered by a Nyquist plot. A necessary condition
is that G(-1)> o.

Additional notes on the function G(u) are as follows:

n T s
P(s, ) o k
k e 1l .
G(o)=§: : == v(T_,T)
o (sk7 1+eTosk 2 o’ o
Thus 1)G(0) = 1, which is the value for s—soo.
From .
n T s
P(s. ) ok
6(-1) = 2 Ty T
k=1 k'(] 4+ e © K2
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n T s

vglrn,) = 20 qriy —=
" o k=1 k (1 + o k)2
and

n T
bota,n,) = 2y
2 0’7o’ T {7 Q'(sy) 1 0°k

- + e

it follows that
6(-1) = % [vo(T,,T,) + e(Tq,To)] (9.53)
Thus
nG(-1) =1 +a
where a is given by (9.43). Now

n T s

T s o7

P(s,) o°k ‘ s ’
G(+1) = :E: ,(k ) £ T s [l + 2 ° k +2 ¢ k + ..J
k=1 Q Sk (1 + e Q1k)2
. e o

-1 : _ - - -

= 3 [vT(TO,To) + v(To,To)] vp(T sT) = vp(2T 4T ) - ..o
Therefore

MNG(+1) =1 -a + D ’ (9.54)

where

o0
b=-2 :/_,:2 vo(mT ,T )/ ¥(T_,T )

If b is small, then Eqs (9.54) indicates that the %G(u)-plot
does not enclose the origin for la}l < 1l. This conditidn is
much-stronger than the previous one where G(-1)>o.

Illustrative Example

Consider the simple case where H(s) = 1/s. In this case,

h(t) =1, t >0+, and h(o+) = 1,
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The sampled—data equation (9.40) should not be used in
this case because it is not valid when h(o+) # o.

The use of (9.39), however, yields

1 +7][H(z) -h(o+)] =1 +z"’_‘1 =0 (9.55)

Thus
z =1 - n
and stability requires that | »
0 <M< 2 o (9.56)
In the case of forced oscillations,
y =2 [-#nD) +¥(r,n]
Since ¥(T,T) = 1, the condition for the stability.of forced
oscillations yields _ _ |
o <-#(T,T) < = - (9.57)
For this example, the quaﬁtities appearing in Figure 9.1l have
the following descriptions y(t,T) ié a square wave as shown in
Figure 9.12; v(t,T):is th; integral of the square wave y(t,T)
and is therefore sawtooth in shape; the waveform f(f,T) is
such that
x{o) = x(T) = o
k(o) >0, x(T) <o
0 <~£(T,T) <oo,
and, provided that there are no more switchovers in the

interval o<t <Ty the shape of £(t,T) is otherwise arbitrary.
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CONCLUSIONS

Techniques and concepts for studying periodic phenomena
in on-off feedback systems have been developed. o |

Three methods for evaluating the periddic-response»of the
linear part of the on~off eiement have been‘presented; the
first method uses the impnlse responsevof.the 1inear part of the
system; the second method'is in terms ofvthe‘residues at the
poles of H(s)/s, where H(s) is the transfer function of the
linear part; the third method is in terms of H(Jo), the frequency
response of the linear part.

Concepts pertaining to the7steady—etate'response of on-
off elements are then examined: genefelizations ef:thev
concepts of the Hamel and Teypkin loci and of the_phdse character-
istic of Neimark have been introdncedg These concepts haﬁe been
found to be useful in the study of self and forced'bscillations
in on-off feedbeck systeme: they heve been'used,to determine
the possible periods of self and-forcedvosCiliatiens;in singleQ,
double=, and multiloop systems centaining, in general,-an arbi-
trary number of on-off elements,

The behaviour of en-off‘elements poesessing a proportional
band has been considered.s The resppnee of a singie—lbop system
containing one such element has been determined_py'means of
equivalent‘sampled—dataISystems, in which the samplers have
finite pulse widthss However, in the study of the periodic
oscillations. in such a system, an approximate.mefhody cailed the
trapezoidal approximationzﬂhas been used; in generai, this

approximation is more accurate than that of the describing
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function, and is valid when there is sufficient filtering action

by the linear parts The concept of the generalized Tsypkin

loci has also been found useful in

the determination of the .

possible periods of self and forced oscillations of such

systems,

The results found by Tsypkin on the asymptotic stability

in the small of single~loop systems having one on-off element with-

out a proportional band have been generalized to include the case

where the on-off element contains a proportional band. The

investigations of the stability of

these systems have been

reduced to a consideration of the stability of equivalent sampled-

data systems in which the samplers
multiple samplers in parallel that
'in phase, have been found to enter
dead zone and COmpli@ated.forms of

a direct appreach to the stability

have finite pulse widthj

close synchronously, but not

in the case of hysteresis,
periodié oscillationss Finallys

problem has been presented:

the direct use ¢f the physical definition of asymptotic stability

in the small has given results that agree with those obtained by

the sampled-data approach.
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