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STEADY-STATE OSCILLATIONS AND STABILITY OF 
ON-OFF FEEDBACK SYSTEMS 

ABSTRACT 

Methods for studying the behaviour of on-off feed­
back systems, with the emphasis on steady-state periodic 
phenomena, are presented i n th i s t h e s i s . The two main 
problems analyzed are (1) the determination of the 
periods of s e l f and forced o s c i l l a t i o n s i n si n g l e - , 
double-, and multiloop systems containing an a r b i t r a r y 
number of on-off elements; and (2) the i n v e s t i g a t i o n of 
the asymptotic s t a b i l i t y - i n the small of single-loop 
systems containing one on-off element which may or may 
not have a l i n e a r region of operation. 

To study the periodic phenomena i n on-off systems, 
methods of determining the steady-state response of a 
single on-off element are f i r s t described. Concepts per­
tain i n g to the steady-state behaviour are then introduced: 
i n t h i s respect i t has been found that generalizations 
of the concepts of the Hamel and Tsypkin loci, and also 
of the phase c h a r a c t e r i s t i c of Neimark are useful i.n the 
study of s e l f and forced o s c i l l a t i o n s , 

Both the Tsypkin loci, and the phase c h a r a c t e r i s t i c 
concepts are used to determine the possible periods of 
s e l f and forced o s c i l l a t i o n s i n single- and double-loop 
systems containing an a r b i t r a r y number of on-off elements; 
these concepts are-also applied to multiloop systems. 

On-off elements containing a l i n e a r region of opera­
t i o n c a l l e d a proportional band, are then describedj 
both the transient and periodic responses are presented. 
An approximate method for determining the periodic 
response i s given. The concept of the Tsypkin l o c i i s 
used to determine the possible periods of s e l f and forced 
o s c i l l a t i o n s in. a single-loop system containing one on-
off element with a proportional band. 

The asymptotic s t a b i l i t y ' i n the small, or l o c a l 
s t a b i l i t y , of the periodic states of single-loop systems 
containing one ide a l on-off element has been considered 
by Tsypkin. In t h i s t h e s i s , Tsypkin 1s r e s u l t s have been 
generalized to include the cases on on-off elements 
containing a proportional band. The s t a b i l i t y of such 
systems i s determined by the s t a b i l i t y of equivalent 
sampled-data systems with samplers having f i n i t e pulse 
widths. F i n a l l y , t h i s s t a b i l i t y problem i s solved by a 



d i r e c t approach, one that makes use of the physical d e f i ­
n i t i o n of l o c a l s t a b i l i t y ; the r e s u l t s obtained by t h i s 
method agree with..those derived by the sampled-data 
approach. 

GRADUATE STUDIES; 

F i e l d of Study: E l e c t r i c a l Engineering. 
Servomechanisms 
Ele c t r o n i c Instrumentation 

. Network theory 

' E. V. Bohn 
F. K. Bowers 
A. D, Moore 

Related Studies: 
P r o b a b i l i t y and S t a t i s t i c s 
Numerical Analysis ' 
D i f f e r e n t i a l Equations 
Modern Algebra 
Real Variable 
Noise i n Physical Systems 
Advanced El e c t r o n i c s 
F l u i d Mechanics 

R. 
R. 

S. W.. Nash 
C„ Froese 

A. Swanson 
B, Chang 
D. Derry 

E a Burgess 
E„ Burgess 

R. W. Stewart 

PUBLICATIONS 

1. "An Investigation of the Performance of Barium. Titanate 
Sandwich Transducer Elements excited by High Power", 
Naval. Research Establishment Technical Memorandum. No„5, 
1959, ( T i t l e only u n c l a s s i f i e d ) . Also presented at the 
USN Underwater Acoustics Symposium, 1958„ 

2. "Comments on 'The Dependence of D i r e c t i v i t y Patterns 
on the Distance from the-Emitter' by J„ Pachner", Jour. 
Acoust. Society of America, 35, 1963, pp, 1666-67. 

3. "On the Determination of F a r - f i e l d D i r e c t i v i t y Patterns 
from N e a r - f i e l d Measurements", Naval Research E s t a b l i s h ­
ment Technical Report No. 1, 1964. 



STEADY-STATE OSCILLATIONS AND STABILITY 

OP ON-OFF FEEDBACK SYSTEMS 

by 

AUYUAB MOHAMMED 

B . S c , The Univers i ty of Manitoba, 1954 

M . S c , The Univers i ty of Manitoba, 1956 

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF 

THE REQUIREMENTS FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

i n the Department of 

E l e c t r i c a l Engineering 

We accept t h i s thesis as conforming to the 

required standard 

Members of the Department of 

E l e c t r i c a l Engineering 

THE UNIVERSITY OF BRITISH COLUMBIA 

A p r i l , 1965 



In p r e s e n t i n g t h i s t h e s i s i n p a r t i a l f u l f i l m e n t of 

the requirements f o r an advanced degree at the U n i v e r s i t y of • 

B r i t i s h Columbia, I agree that the L i b r a r y s h a l l make i t freely-

a v a i l a b l e f o r reference and study. I f u r t h e r agree that per­

m i s s i o n f o r extensive copying of t h i s t h e s i s f o r s c h o l a r l y 

purposes may be granted by the Head of my Department or by 

h i s r e p r e s e n t a t i v e s . I t i s understood that, copying or p u b l i ­

c a t i o n of t h i s t h e s i s f o r f i n a n c i a l gain s h a l l not be allowed 

without my w r i t t e n permission* 

Department of ^ ^ c t U . c ^ J i 7 ^ t j j ^ v J t - ^ 

The U n i v e r s i t y of B r i t i s h Columbia, 
Vancouver 8, Canada 

Date tPAoJUL, 2-1 } l̂ C-b 



ABSTRACT 

Methods for studying the behaviour of on-off feedback 

systems, with the emphasis on steady-state per iodic phenomena, 

are presented i n t h i s t h e s i s . The two main problems analyzed are 

( l ) the determination of the periods of s e l f and forced o s c i l l a t i o n s 

i n s i n g l e - , double- , and multi loop systems containing an arbi t ra ry 

number of on-off elements; and (2) the i n v e s t i g a t i o n of the asymp­

t o t i c s t a b i l i t y i n the small of s ingle - loop systems containing 

one on-off element which may or may not have a l i n e a r region 

of operation. 

To study the per iodic phenomena i n on-off systems, methods 

of determining the steady-state response of a single on-r-off element 

are f i r s t descr ibed. Concepts per ta ining to the steady—state 

behaviour are then introduced: i n th is respect i t has been found 

that general izat ions of the concepts of the Hamel and Tsypkin l o c i 

and also of the phase c h a r a c t e r i s t i c of Neimark are useful i n the 

study of s e l f and forced o s c i l l a t i o n s . 

Both the Tsypkin l o c i and the phase c h a r a c t e r i s t i c concepts 

are used to determine the possible periods of s e l f and forced 

o s c i l l a t i o n s i n single— and double-loop systems containing an 

a r b i t r a r y number of on—off elements; these concepts are also 

applied to multi loop systems. 

On-off elements containing a l i n e a r region of operation, 

c a l l e d a proport ional band, are then described: both the 

t ransient and per iodic response are presented. An approximate 

method for determining the per iodic response i s g i v e n . The 

concept of the Tsypkin l o c i i s used to determine the possible 

i i 



periods of s e l f and forced o s c i l l a t i o n s i n a s ingle - loop system 

containing one on—off element with a proportional band. 

The asymptotic s t a b i l i t y i n the small , or l o c a l s t a b i l i t y , 

of the per iodic states of s ingle - loop systems containing one i d e a l 

on-off element has been considered by Tsypkin. In t h i s t h e s i s , 

Tsypkin's resu l t s have been generalized to include the cases of on-

off elements containing a proport ional band. The s t a b i l i t y of such 

systems i s determined by the s t a b i l i t y of equivalent sampled-

data systems with samplers having f i n i t e pulse widths. F i n a l l y , 

t h i s s t a b i l i t y problem i s solved by a d i rec t approach, one that 

makes use of the physica l d e f i n i t i o n of l o c a l s t a b i l i t y ; the r e ­

sul ts obtained by t h i s method agree with those derived by the 

sampled-data approach,, 

i i i 
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1. INTRODUCTION 

The study of on-off feedback control systems having a 

single loop with one on-off element has been developed by many 

authors during the l a s t three decades. Many of the techniques 

for inves t iga t ing the steady-state behaviour of such systems 

resort to approximate methods, of which the best known is that of 
1 2 3 

the descr ibing f u n c t i o n . ' ' On the other hand, the best known 
4 5 6 exact methods are those of D . A . Kahn, B. Hamel, J . Z . Tsypkin, 

7 
and E . V , Bohn. 

Concerning the determination of the periods of se l f 

o s c i l l a t i o n s i n a s ingle - loop feedback control system containing 
g 

two symmetric r e l a y s , Tu Syui-Tan and Tei-Lui—Vy gave both an 

exact s o l u t i o n , using the method of the Tsypkin L o c i , and an 

approximate s o l u t i o n , using the method based on harmonic balance. 

A l s o , Y u . I . Neimark and L . P . Shilnikov studied the symmetric 

per iodic motions of a multistage relay system by means of 

Neimark*s concept of the phase c h a r a c t e r i s t i c . 

Nevertheless, to the knowledge of the author, no study of 

multi loop automatic control systems containing an a r b i t r a r y 

number of on—off elements has been attempted* The main purpose 

of the f i r s t two parts of th is thesis i s to investigate the 

complicated forms of o s c i l l a t i o n i n a s ingle - loop system con­

t a i n i n g a single on-off element and the simple symmetric modes 

of s e l f and forced o s c i l l a t i o n s i n s i n g l e - , and double-loop 

control systems having an a r b i t r a r y number, of on-off elements. 

Part I of t h i s thesis gives the fundamental concepts and 

formulae required i n the study of the various systems con­

sidered i n Part I I . The working p r i n c i p l e , c l a s s i f i c a t i o n , and 



2 

equations of on-off elements are reviewed i n Chapter 2. The 

response of these elements to an a r b i t r a r y input and to the 

general per iodic input , and the methods of c a l c u l a t i n g the 

response are given i n Chapter 3. Next, i n Chapter 4, the con­

cepts per ta ining to the per iodic response of on—off elements, 

namely, the concepts of the Hamel and Tsypkin l o c i (or 

hodograph), are reformulated so as not only to make evident 

the r e l a t i o n s h i p s ex is t ing among these concepts, but also to 

f a c i l i t a t e the study of s e l f and forced o s c i l l a t i o n s i n the 

multi loop systems considered i n Part I I . The conditions for 

the existence of s e l f and f o r c e d o s c i l l a t i o n s for the various 

multiloop systems are then determined with the help of these 

concepts. Methods of solving for the simple symmetric modes 

of o s c i l l a t i o n i n s i n g l e - , and double-loop systems are given 

i n Chapters 5, 6, and 7. 

Feedback control systems with proport ional bands are con­

sidered i n Part I I I . The problem of determining the per iodic 

states of feedback control systems having a single nonlinear 

element with a r b i t r a r y piecewise l i n e a r c h a r a c t e r i s t i c has 

received rigorous at tent ion i n the l a s t few years . M.A. 

Aizerman and P.R. G a n t m a k h e r " ' ' ^ ' s t u d i e d the piecewise 

l i n e a r c h a r a c t e r i s t i c consis t ing of segments p a r a l l e l to two 
12 

given s t ra ight l i n e s , whereas L . A . Gusev dealt with an 

a r b i t r a r y piecewise l i n e a r c h a r a c t e r i s t i c * Their methods of 

solving the problem d i f f e r , but i n both cases the solutions 

take into account a l l the harmonics. Part III deals with an 

exact method for the determination of the transient state i n a 
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system containing one nonlinear element having the saturation 

c h a r a c t e r i s t i c with h y s t e r e s i s . A simple method of solving 

the simple symmetric o s c i l l a t i o n s i n such a system i s 

presented. The method i s approximate, but s u f f i c i e n t l y accurate 

for systems possessing l i n e a r parts with a f i l t e r i n g a c t i o n . 

An exact s o l u t i o n i s then formulated i n the form of a set of 

l i n e a r V o l t e r r a in tegra l equations of the second k i n d . 

F i n a l l y , Part IV of the thesis deals with the s t a b i l i t y 

of the per iodic states i n control systems having one on-off 

element with or without a proport ional band. An exact so lut ion 

shows that the "asymptotic s t a b i l i t y i n the small " of such 

systems reduces to a consideration of the s t a b i l i t y of f i n i t e 

pulse width sampling systems with feedback. The resul ts 

obtained are a general iza t ion of those of T s y p k i n . ^ An 

approximate method applicable to systems with nonlinear elements 

having c h a r a c t e r i s t i c s other than the on—off type, with or 

without a proport ional band, i s also presented. In contrast 

to the sampled-data approach, a d i r e c t method of i n v e s t i g a t i n g 

the s t a b i l i t y of s e l f and forced o s c i l l a t i o n s i n s i n g l e - l o o p 

systems having one on-off element i s presented. This method 

i s d i r e c t l y re la ted to the physical d e f i n i t i o n of s t a b i l i t y : 

a disturbance i s appl ied , and the ensuing devia t ion from the 

state of equi l ibr ium i s s tudied . 
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2. ON-OFF ELEMENTS 

According to t h e i r working p r i n c i p l e , on—off control 

systems are e s s e n t i a l l y nonlinear . Therefore i t i s evidently 

impossible to analyze t h e i r behaviour by the well-known l i n e a r 

methods of the theory of feedback control systems. Neverthe­

l e s s , the s p e c i f i c p e c u l i a r i t y of on-off systems, namely that 

they are piecewise l i n e a r , permits t h e i r i n v e s t i g a t i o n by 

comparatively simple mathematical methods. 

In general , the on-off or re lay element may be regarded 

as consis t ing of the on-off component followed by a l i n e a r 

par t , which i s composed of the actual l i n e a r part of the 

relay plus the l i n e a r part fol lowing the r e l a y . Figure 2 i l 

gives the convention and notations for the re lay element. The 

symbol N represents the on-off (nonlinear) component, whereas 

On-off Linear 
Element Part 

x(t) N yet) H(s) 
vOt) N H(s) 

Figure 2*1. Conventions and notations 
for the relay element. 

H(s) denotes the t ransfer funct ion of the l i n e a r par t , where 

s i s the complex frequency v a r i a b l e . The quanti t ies x ( t ) , 

y ( t ) , and v ( t ) are respect ively the input to the on-off 

element, the input to the l i n e a r part , and the output of the 

l i n e a r par t , and are a l l functions of the time var iable t . 
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In the f i e l d of automatic control x(t) i s referred to as the 

control s i g n a l , and y( t ) as the correct ion s i g n a l . 

In on-off control systems the correct ion signal y ( t ) 

changes by jumps at every instant when the control s ignal x(t) 

passes through cer ta in f i x e d values known as the threshold 

values* Hence the l i n e a r part of the system H(s) i s sub­

jected to r e c t i l i n e a r pulses of f i x e d height , the s i g n , 

duration and r e l a t i v e d i s t r i b u t i o n of which depend both upon 

the external e x c i t a t i o n and upon the i n i t i a l conditions 

e x i s t i n g i n the l i n e a r part of the system. 

In general , on-off elements may be c l a s s i f i e d as 

symmetric or asymmetric with respect to the o r i g i n of the 

coordinate axes x and y , where x = x(t) i s the control s i g n a l , 

and y = y( t ) i s the correct ion s i g n a l . Furthermore, i n each 

of these two classes a dead zone may or may not be present. 

In addi t ion these elements may or may not possess hys teres is , 

that i s , y ( t ) may be a single or multivalued funct ion of x ( t ) . 

Table I gives t h i s c l a s s i f i c a t i o n of on-off elements. 

Equations and c h a r a c t e r i s t i c s of on-off elements 

The output y( t ) of the on-off symmetric component N i s 

a funct ion both of x(t) and i ( t ) , where i ( t ) = . Con­

sequently, the equation of the on-off symmetric component can 

be wri t ten i n the form 

y( t ) = <£> (x( t ) , x(t ) ) 

where <$) (x ( t ) , x ( t ) ) i s a nonlinear f u n c t i o n . For s i m p l i c i t y 

we w i l l use the notation 

y = <$(x) (2.1) 



TABLE I . CLASSIFICATION OF ON-OFF ELEMENTS 

ON-OFF ELEMENTS 

S y m m e t r i c A s y m m e t r i c 

Without 
Dead Zone 

With 
Dead. Zone 

wl Without With Without With 
Hysteresis Hysteresis Hysteresis Hysteresis 

o, 
* 3 JJ 

n: 

Without 
DectcL Zone, 

With 
Dead Zone 

Without Wrt hi Without With 
l 

Hysteresis Hysteresis Hysteresis Hysteresis 

r 1 7 

o 'x 
ON 
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The plot of y vs , x i s c a l l e d the c h a r a c t e r i s t i c of the on-off 

component N. 

In the case of asymmetric on-off elements the character­

i s t i c can be expressed i n the form 

y = y Q + <£>(x - x ), (2.2) 

that i.sf cj)(x - x ) i s symmetric with respect to the point 

( x a , y a ) » The c h a r a c t e r i s t i c s and corresponding equations for 

asymmetric on-off components are given i n Table I I . If the 

elements are symmetric we merely put x = y = 0, 

Prom Table II we observe that the f i r s t three 

c h a r a c t e r i s t i c s can be regarded as special cases of the four th . 

In f a c t , 

= 0 3 ( x - x a ) , 3>4 U " x a ) 

J X=l 

3>4 ( x - X a ) 

X=-l 

and f i n a l l y 

<P4U - x a ) = ^ l ( x " X a } 

J x = 0 o 

The l i n e a r part of the system can best be analyzed by 

means of the Laplace transform. In the case of zero i n i t i a l 

condi t ions , the output of the l i n e a r part i s determined by 

V(s) = H(s) I (s) (2.3) 

where 

V(s) = d ! [v( t ) ] and T(s) = ^ ( y ( t ) } 
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TABLE I I . CHARACTERISTICS AND EQUATIONS OP ON-OFF COMPONENT N 

Charac ter i s t i c Equation 

M 

y - y a
 = c ^ i ( x - x

a ) = M s i g n ( x - x
a ) 

->-x 

M 

M 
y - y a = 0 2 ( x - x a ) 

" M sign(x-x -x ) , for x>o 
£L O 

->-X ^ M sign(x-x +x ) , for x<o 
8/ O 

y 

T 
M 
JL. 

~? 

-*-X 

y - y a =cJ^(x-x o) 
a 

| [ s i g n ( x - x a - x o ) 

+ sign(x-x a +x Q ) ] 

M 
Jt— 

— T 
_ Jr. fM | ^sign(x-x a -x o )+sign(x-x a +Xx o)J 

for x>o 
sign(x-x +x )+sign(x-x ->x ) 

L a o a o-J 

f o r x < o 

Remarks* 1 N 1 N 

1 , for x > a, 
2» sign (x-a) = <{ o , for x = a, 

-1 , for x < a. 
i 

3s In the case of a symmetric c h a r a c t e r i s t i c 

put x a = y a = o. 



Equation ( 2 » 3 ) may be rewrit ten as 

V(s) = H(s) &(y& + Cj)(x - x a ) ] . 

Now suppose that non-zero i n i t i a l conditions exist withi 

the l i n e a r part H(s) . By means of the Laplace transform, the 

output V(s) can always be expressed as 

V(s) = H(s)T(s) + V Q ( s ) , 

where V o ( s ) i s the output r e s u l t i n g from the i n i t i a l con­

d i t i o n s w i t h i n H(s ) . Consequently, the e f f e c t of the i n i t i a l 

conditions may conveniently be referred to the output of the 

l i n e a r part i n the manner shown i n Figure 2*2, S i m i l a r l y , any 

external influence f ( t ) applied to the system may be referred 

Y(s) 
H(s) 

H(s)Y(s)^ 
H(s) 

VCs) = HCs)Y(s)-r-V CS) ^_ o 

>.-r 

V 0 (s) 

Figure 2*2. I n i t i a l conditions i n the l i n e a r 
part referred to the output. 

to the output of the l i n e a r p a r t . 
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3. RESPONSE OF ON-OFF ELEMENTS 

In on-off elements the correct ion signal y ( t ) changes by 

jumps at every instant when the control s ignal x( t ) passes 

through the threshold values with x ( t ) > o i n cer ta in cases and 

x ( t ) < o i n others . Consequently, the i n v e s t i g a t i o n of the 

response of on-off control systems i s reduced to the i n v e s t i ­

gation of the behaviour of the l i n e a r parts of the system to a 

sequence of r e c t i l i n e a r pulses , the parameters of which 

depend upon the form of the control signal and upon the threshold 

values of the on-off elements. Hence, the basic method of 

determining the response of the system i s through the a p p l i c a t i o n 

of the superposition p r i n c i p l e to the l i n e a r p a r t s . For any 

one on-off element, the response i s determined by the equation 

V(s) = H(s) ^ y a + c £ ( x - x a ) } + V q ( S ) . 

3.1 THE RESPONSE FOR AN ARBITRARY INPUT 

The most general on-off c h a r a c t e r i s t i c , that i s , the case 

of the asymmetric on-off element with hysteresis and dead zone 

i s represented by the equation: 

y - y a = ^ 4 U " x a } * 

Without loss of g e n e r a l i t y , and for d e f i n i t e n e s s , we w i l l assume 

that the control s ignal x(t) passing through the f i r s t 

threshold value at the instant i s decreasing, that i s 

X (T ^ ) < O . The general forms of the control and correc t ion 

s i g n a l s , together with the on-off c h a r a c t e r i s t i c are shown i n 

Figure 3.1. 
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3 =X+4>0s-X.) 

Figure 3*1.(a) On-off characteristic with dead zone 
and hysteresis; 

(b) Control signal x ( t ) ; (c) Correction control sign 
signal y ( t j . 

The switching conditions 

x(t, ) = x + (-1) x , k' a ' o' 

x ( t k ) ( - l ) K > o 
.(k = 1,2,...) (3.1) 

correspond to the switching instants t ^ , t2»«»«. along the 
/ \k threshold values x + (-1) x ; whereas the switching conditions £L O 

x(T t) = x + ( - l ) k + 1 \ x 
k a / o 

x ( T k ) ( - D K > o 

> (k = 1,2,...) (3.2) 
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correspond to the switching instants T -y »7~2» • • • along the 

threshold values x + (-l)^l+"'"Xx . It may happen that the 
£t 0 

switching instant t i s absent, i n which case the switching 

instant T w i l l also be absent. m+1 

The input to the l i n e a r part i s given by 
n 

y ( t ) = y a u ( t ) + M ^ ( - l ) 1 1 - 1 [ u C t - t ^ ) - u(t - T k ) ] , ( T n < t < t n ) 
k=l 

(3.3) 

= Right-hand side of (3.3) + M ( - l ) n u ( t - t ), ( t
n< t<'^ 1 + 1) 

(3.4) 

where t = o, and u(t-a) i s the uni t step funct ion i n i t i a t e d at 

the time t = a . 

Let g(t - a) be the response of the l i n e a r part to the 

uni t step u(t - a) , that i s 

2 ( g ( t - a ) ) = H i s l e - s a 

with the understanding that 

g(t - a) = o for t < a . 

Then the expression for the response of the on—off element to an 

a r b i t r a r y input with switching instants T-^jt^y 7-2*^2'"* * s 

n 

r v Q ( t ) + y a g ( t ) + M XI(-l)1""1 [s(*-^-l)~Z{t-\)] ' 

v( t ) =< 

k=l 
(T < t <t ) (3.5) 

n — n 

.Right-hand side of (3.5) + M ( - l ) n g ( t - t ), 
n 

<T N + 1) (3.6) 
where V Q ( t ) represents the response due to the i n i t i a l con-
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d i t i o n s ; that i s 

v ( t ) = < 

' v Q ( t ) + y a g ( t ) 

v 0 ( t ) + y a g ( t ) 

v Q ( t ) + y a g ( t ) 

v Q ( t ) + y a g ( t ) 

( 6 < t < T 1 ) 

( T 1 < t < t 1 ) 
( t 1 < t < T 2 ) 
( T 2 < t < t 2 ) 

v Q ( t ) + y a g ( t ) 

+ g(t 

+ M[ g ( t ) 

+ g(t 

g t t - r ^ - g U - t ^ 

T 2 ) + g ( t - t 2 ) J , 

( t 2 < t < T 3 ) 

In general , the response may be constructed g r a p h i c a l l y by 

means of the superposit ion p r i n c i p l e . 

the general case of an on-off c h a r a c t e r i s t i c represented by 

In the case of complicated forms of o s c i l l a t i o n s , s e l f or 

forced , the input to the l i n e a r part of the system y( t ) 

repeats i t s e l f , i n general , a f ter 2n commutations, where n i s 

an even i n t e g e r . In the absence of a dead zone there are, i n 

general , n commutations, where n i s even. The general forms 

of the per iodic control s ignal x( t ) and of the per iodic 

correc t ion s ignal y ( t ) , . c o r r e s p o n d i n g to the on-off charac­

t e r i s t i c under considerat ion, are shown i n Figures 3*2(a) and 

2(b), r e s p e c t i v e l y . 

3.2 THE STEADY STATE RESPONSE 

Various methods of evaluating the steady-state output 

response of the l i n e a r part of the system are now presented for 
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1 I I 

I I I I I 

J I L J L 

III I 1 

I i I I 
L j C<rn. 2-OT « ^ r i ) T | (<rn-i)T 

(b) 

T p+ 

Figure 3*2.(a) General Form of Control Signal x(t) 

(b) General Form of Correct ion Signal 
y ( t ) , i n the case of complicated 
o s c i l l a t i o n s . 

I t may happen that p^T i s absent. In such a case i t follows 

from the c h a r a c t e r i s t i c of the on-off element that C T + 1 T i s 

also absent. 

The correc t ion signal y ( t ) can be expressed as the sum 

of a f i x e d component y , and a sequence of r e c t i l i n e a r pulses 

r e l a t i v e to y and denoted by y, ( t ) ; that i s 
€1 -1-

y(t ) = y a + y x ( t ) , (3.7) 

where, l e t t i n g 

A u k , i = [ u ^ - v k + p ^ T ] - u [ t - ( k + q + 1 ) T ] J , (3.8) 



1-1 - o o n-1 

y i ( t ) =M[(-1) U [t-(m+ft)T] + X A u m , i + Zi 2 A u k , i ] 
1=0 k=m-l i=o 

(3.9a) 

(m+ /^)T<t<(m+q + 1)T, 

m=o, + 1 » + 2, ... , 

£ =o , 1, ... , n-1 ; 
l-l oo n-1 

= M [ E A V i + E Z!Auk,il (3-9b) 

i=o k=m-l i=o 

(m+Gf)T^t < ( m + p i ) T , 
m=o y + 1» + 2• ooo , 

•E —I • 2 « O O A « n» 

A l t e r n a t i v e l y , expressions (3.9a) and (3.9b) can be written as 
^ -<*> £-1 n-1 

Y l ( t ) =M[(-1) u [ t - ( m + p £ ) T ] + J ] ( X | A u k > i + 2 A u k - l , i > ] 
k=m i=o i=l 

(3.10a) 
(m+fy)T.<t <(m+CJ + 1)T; 

- o o H-l n-1 
y,(t) = M A u k , i + S A u k - l , i > • ( 3' 1 0 b> 

k=m i=o i=£ 

(m+<^)T <t <(m+ f^T, 

respectively. 
In the case of dead-zone only, the above expressions 

retain the same form, except that the CT's change values, 

whereas i n the absence of a dead zone we have A = -1 and 
X

01> o» s o "that we simply replace <j\ by p^ for a l l i . 

The output v(t) of the linear part of the system i s 



16 

determined as f o l l o w s . Let g(t) be the response to a unit step 

input i n i t i a t e d at time t = o i 

g(t) = < 
0 , t < o 

(3.11) 

Then the response of the l i n e a r part to the input y-^(t) i s given 

by 
-oo £-1 

-jtt) = M [ ( - l f g [ t - ( m + a ) T ] + E < E A ^ , i + E ^ - l . i ' J 
k=ra i=o i=d 

n-1 

(3.12a) 

(m +p^)T <t <(m+CT;+|T, 

m=o, + 1, + 2 , . . . 

I - 0, 1 , . . . , n-1 ; 
- o o £-1 n-1 

T i < * > = M Z < E A e k , i + E A « k - i , i > • 
k=m i=o i=l 

(m +OpT <t <(m+^)T, 

m=o, + 1, + 2 , . . , 

i = i » 2»• • •» n > 

(3.12b) 

where 

A g k , i = [g[t-(k+ft)T] - g[t-(k-K^ + 1)T]] (3.13) 

Since £ (g(t-T)) = H i s l e - s f 
s 

then 

* K , i ) = ^ <e"SplT - . " " ^ V * 1 , 
so that l - l 

^ ( t ) ) = Me" s m T S k i 

sT n-1 

1=0 

1 - e sT 
(3.14a) 
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(m +C£)T <t<(m+ p£)T, 
£-1 s T n-1 

( - D e ' L + 
1 - e s T 

(3.14b) 

(m +/C|)T <t <(m+OJ + 1)T , 

where |. = ( - l ) 1 (e r i - e 1 + 1 ) (3.14c) 

The response of the lin e a r part to a fixed component y 
a 

i n the steady state i s 
v a = y a

g ( o o ) = y a
H ( o ) » 0.15) 

which i s f i n i t e i f the linear part of the system i s stable. 

Consequently, the t o t a l output of the linear part of the system 

can be expressed as 

v(t) = v a + v 1 ( t ) 

T T / \ , M 0) H(s) x / \ —smT st , = y H(o) + j-_T y I (s)e e ds , 
a ^ J C, or C„ s 1 

1 2 (3.16) 

(m+0£)T<t <(m+p^)T, 

where i-1 ™ n-1 

V S ' = — : > < 3 - " > 

1 - e 

where C-̂  i s a path enclosing only the poles of H(s)/s, where 

i s a path enclosing only the poles of I^( s ) , and where the 

contour integrals along C^ and C^ are taken i n the mathematically 

positive and negative sense respectively; whereas 
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iliai x ( s) e-s™V t d s 

s 2 
C l 0 r C2 

(3.18) 

where 

(m+fy)T <t <(m+C^ + 1)T , 

(3.19) 

In general , v^(t) i s asymmetric, and 

v 1 (t+T) = v 1 ( t ) . (3.20) 

I f , however, the condit ion 

v 1 ( t + § ) = - v ^ t ) 

i s s a t i s f i e d , then the funct ion v^(t) i s said to be symmetric. 

This necessar i ly means that 

= odd integer , 

Pa 

Pn 
2 

+k 

1 
2 ' 

f * 

= | + P k » (k = 1» 2 , . . . , |) 

= 7 + C T t , . (k=l, 2 , . . . , § ) 

(3.21) 

Thus, i f we are considering the response v^(t) for 

mT <t < 

we get 

mT <t<(m+ ^ )T , then, subst i tut ing conditions ( 3 » 2 l ) into (3.17), 
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£ - 1 n-1 £ - 1 T 2 

i=o i=£ i=o i = £ I-i (s )— m — _m 
1 1 - e s i 1 - e S i 

_ i=o i=t 
= 1 + e s T / 2 

(3.22) 

Consequently, i n the case of symmetric but complicated forms of 

o s c i l l a t i o n s , the response of the l i n e a r part of the system i s 

given by 

v( t ) = y a H(o) + j S i f i l I ^ s j e - ^ 1 e s t d s (3.23a) 

C l o r C2 

(m+Cf)T<t <(m+^)T, 

m~o f + 1, . « . j £ = 1 j 2 , * . « , 2~ 

v ( t ) = y a „ ( 0 ) + i | » M [ ( - D V ' A ^ . ) ] . - » V * d . 

(3.23b) 
C l o r C2 

(m+^)T <t < ( m + C £ + 1 ) T , 

m=o, + l , . . . ; £ . = o , 1 , . . . , ^ ~1 

where I-^(s) i s now given by (3.22). 

Methods of Calcula t ing the Periodic Output Waveform 

So f a r we have set up very general expressions for the 

per iodic output v( t ) of the l i n e a r part of the system. Let us 

now turn our a t tent ion to the various methods of c a l c u l a t i n g 

the shape of the per iodic s ta te . We w i l l c l a s s i f y these methods 

as f o l l o w s : 
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1. The g-Method, which uses the unit step response g(t) of the 

l i n e a r part of the system; 

2. The C^—Method: We derived an integra l representation of 

v^(t) i n the form 

V l ( t ) = 2^J ^ I ( s ) e S + d s » ( 3 - 2 4 ) 

C l 

where i s a contour enclosing only the poles of H ( s ) / s . By 

the residue theorem, of the theory of functions of a complex 

v a r i a b l e , 

v , ( t ) = M X + Residues of ^ i s i l ( s ) e s t 

l — a x TJ / \ s 
Poles of 31*1 

(3.25) 

Thus, t h i s method uses the transfer f u n c t i o n , H(s) , of 

the l i n e a r part of the system. 

3. The Method: An alternate in tegra l representation of 

V-^(t) was found to be 

T i ( t ) = 2^3- $ ^ I ( s ) e S t d s » ( 3 - 2 6 > 

where i s a contour enclosing only the poles of l ( s ) . Thus, 

by the residue theorem, 

v, (t) = -M 2 Residues of l ( s ) e s t 

1 Poles of I(s) s 

(3.27) 

Since the poles of l ( s ) a l l l i e along the imaginary axis of the 

complex s—plane, we are e s s e n t i a l l y using H ( j « ) , the s o - c a l l e d 

frequency response of the l i n e a r part of the system, i n the 

evaluation of v ^ ( t ) . For th is purpose we w i l l f i n d i t more 
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convenient to rewrite H(jft)) as 

H ( j » ) - HQ(fl>) e j©(») 

where H
0( f l >) = JH(j<o) , and 0(<o) = arg H(j(o) • 

The g—Method of Determining the Periodic Output Waveform 

R e c a l l i n g that v (t) = y g(oo) 

we f i n d the t o t a l output v ( t ) , i n terms of g ( t ) , to be 

••(t) =y ag(«>) + ( .3.12a), (m+|^)T <t <(m+CJ + 1)T, 

I = o, 1 , . . . , n-1 ; (3.28) 

v ( t ) = yag(oo) + ( ,3.12b), (m+or)T <t <(m+p£)T> 

£ = 1, 2 , . . . , n (3.29) 

( m = o , ' + l , + 2 , . . . ) . 

Hence the construction of the per iodic state reduces to 

the superposit ion of the responses of the l i n e a r part of the 

system to pulses of height ( - l ) 1 M and of duration 

(d". - O. -, ) , i = l , . . . , n , plus the steady component y g(oo). 

This method i s convenient i f Ag, . — o as k—>-©o , 

that i s , i n those cases where the l i n e a r part of the system i s 

s t a b l e . 

The C^—Method of Determining the Periodic Output Waveform 

Let us suppose that the transfer funct ion H(s) i s a 

f r a c t i o n a l r a t i o n a l f u n c t i o n , i . e . 
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and that the degree of the numerator does not exceed that of 

the denominator. Furthermore, l e t us assume that H(s) has 

poles at 

S q = o of m u l t i p l i c i t y T Q - 1, 

s^ ^ o of m u l t i p l i c i t y r^,, (U= 1, 2 , . . . , p ) 

The sum of the m u l t i p l i c i t i e s of the poles i s equal to the 

degree of the denominator of H(s) , i . e . 

r - l + r . +r^. + . . . + r = N, say . 
o 1 2 P 

Let us put 

d ^ 

^ " (r, , - n-Dl Q(s)s ^ 
(3.30) 

- 1 s=s. V •* • t y " ds 

R e c a l l i n g that 

V a ^ = y a
g ( ° ° ) = y a H ^ ° ^ ' 

and using Eqs . (3.30) and (3.25), we get the t o t a l output of 

the l i n e a r part of the system i n the form 

P ^ L 1 CL, d^l(s,.)e 
^ ^ a G o o + M E E ^ — I s V 

^ a x v s ^ , e (3.31) 

1/ =0 (A=0 

Ve now evaluate specia l cases of ( 3 . 3 l ) . 

Suppose that H(s) has only simple poles* a l l d i f f e r e n t 

from zero . Then 

r Q = r± = . . . = r N = 1, p=N, u.=o , 

so that ( 3 « 3 l ) becomes 
N t 

v<*> = y a
c o o + M Z W V 6 ^ (3-32) 

i^=0 
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where 

C = , and C oo Q(o) ' 

Therefore, i n the case where y( t ) i s asymmetric, we have from 

(3.16), (3.17) and (3.32) 
N 

s,,t 
v ( t ) = y C + M y n C , 1 , ( 3 . , ) , (3.33) 

v ' J a oo Z i i/o 1 v V 

( G £ T < t < f y T ; |=1, 2 , . . . , n ) , 

and from (3.18), (3.19) and (3.32) 

N 
v( t ) = (y a + M ( - l ) ) C o o + M]TV0 I 2 ( 8 ) e 

s^t 

1^=1 
(3.34) 

In the simplest case where n = 2, and p ^ and CT^ are absent, 

I . e . the input has the shape shown i n Figure 3 » 3 , we obtains 

ft™ q T ftT.T 

Figure 3 » 3 . Form of y ( t ) for n = 2, with p i and 0 " 2 

absent. 
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N s ^ ( l - q ) T s t 

v(t ) = ( y a + M ) C o o + M 2 % 0
 1 " 6

 S „ T 6 " ( 3 ' 3 5 > 
l>0 ays 

V=l 1 - e " 

(o<t<CT 1 T), 

N - s ^ T g t 

V ^ = ^ a C 0 0 + M ^ C ^ 1 - 6
 s T e " (3.36) 

V=l 1 - e " 

(CT 1 T<t<T) . 

In the other simple case where dead zone is absent and n = 2 we 

have 

o-x =p l f cr2 =p 2 = 1, 

so that equation (3.34) reduces to 

v( t ) = ( y a + M ) C o o + 2M 2 <Vo " ° s?yT e 

V=l 1 - e U (3.37) 

(o <t<p xT) , 

N " V / ° L T s t 
v ( t ) = ( y a - M ) C o o + 2 M 2 < V o 1 " 6 s,yT e " <3-38> 

1̂ =1 1 - e ^ 

(P 2 T < t < T ) . 

Let us now consider the complicated forms of symmetric 

o s c i l l a t i o n s , the general formulas of which are given by 

(3.23a) and (3.23b). Special cases of these f o l l o w . 

Case Is H(s) has simple poles a l l d i s t i n c t from zero, so that 

r Q = r± = . . . = r N , p = N, |i = o . 

In th is case we get 
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N 

v ( t ) = y C + M y 1 C 
J a oo Z i i 

t-1 s,.-x 2 

i=o i=l  
T 

SI/ 2 
1 + E ( 3 . 3 9 ) 

e 

(07T<t< p T ; t =1, 2 , § ) , v - nt 
and 

v( t ) = M(-l) C + M V V ( - l ) e ^ ™ e ^ 

+ Right-hand side of Eqn. (3.39) 
(3.40) 

(p^T <t<CJ + 1 T; t =o, 1 , . . . , | - 1) . 

In the simplest case when ^ = 1 ( r e c a l l that ^ must be an odd 

number for symmetric o s c i l l a t i o n s ) , equations (3.39) and (3.40) 

reduce to 

= ^ o o + M X] %o 1 " 6 1 e ^ <3"41> 
^=1 ! + e

S ^2 

(CT 1T < t<iT = p x T ) , 

and 
N s ^ ( i -QJ)T g t 

v(t ) « ( y a + M ) C o o + M ^ f • " 

^ 1 + e V 2 

(3.42) 

(o <t <CT1T), 

r e s p e c t i v e l y . 

Case 2; H(s) has one pole equal to zero, and the other N-1 

poles are simple, i . e . 
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Then r = 2, = r 2 = . . . = r ^ = 1, so that from E q . (3.3l) 

ve obtain 

(t) - ( y a + K o ) ) C 0 0 + C 0 1 

st" N-1 V 
Js=o 1̂ =1 

(3.43) 

Computing E q . (3.43) i n the case of (3.23a) and (3.23b), i . e . 

for complicated but symmetric o s c i l l a t i o n s , ve obtain 
l-l — -1 

1=0 

e-i 
N-1 

M E ̂
=1 

Vo 

.=1 
T n _ 1 

2 W - e 8 ^ 2 2 y ; ^.(sj,) 
i=o i ^ T 

1 + e 
* V 2 

(3.44) 

( 0 - T < t < Q T ; £ =1, 2 , . . . , |) , 

N-1 
v ( t ) = M [(-1) C o Q + C o l ( - l ) ( t - f t T ) + 2 C ^ ( - l ) e "*.y J 

(3.45) 
^=1 

+ Right-hand side of Eq . (3.44) 

( P £ T<t<CT + 1 T; I =o, 1 , . . . , 

vhere 

C = oo ds 
s=o 

(3.46) 

Furthermore* i f ^ = 1, that i s ve have simple symmetric 
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o s c i l l a t i o n s , Equations,,, (3.44) and (3.45) reduce to 

N-1 " V ° i T 

v(t) = y .cA n +cwl ^ cr, I - e 
a oo 1 o l 2 w 1 ' " Z_J "i/o o T 

^=1 1 + e ^ 2 

e ^ (3.47) 

(CT 1 T<t<|) , 

and 

v( t ) = ( y a + M ) C o o + C o l M ( t - |oi) t M ^ t j 

^=1 

N-1 , , - l / i - O i T ) 
1+e  

Vo _ T 
V1 

1 + e 2 

( o ^ t ^ T ) . (3.48) 

Case 3; H(s) has two poles equal to zero, whereas the other 

N - 2 poles are simple, i . e . 

Then r = 3, r, = r_ = . 
1" x 2 

r N - 2 ~ 1 * Equation (3 ,3l) then 

becomes 

x l i l = + i(o))c + c n ̂ f l a 
M M ' oo ol ds 

st' 

s=o 

4 . J2l d 2 l ( s ) e s t 

9T 9 
2 * ds^ 

N-2 

+ 2 <Vo I (V> 
s^t 

-J s=o i/=l 
(3.49) 

The computation of (3.49) i n the case of (3.23a) and (3,23b), 

i . e . for complicated but symmetric o s c i l l a t i o n s , y i e l d s 

£ - 1 
T r v 

£ _ i 
2 1 

i=o i = £ 
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2. _ i 
t-1 2 

+ ¥ ( - i ) i ( a " i + i - / 3 i ) - z i ^ ^ t o i+i-Pi)] 
i=o i=Jt 

- -1 
t - 1 2 1 

+ ( f ) 2 [ E (-D> i - q + l)(2ft+ 2 C T i + 1 + l ) 
i=o 

i = £ 

- -1 

i^=l i=o i=i 

( O i T < t < a T ; ^ = 1, 2 , . . . , § ) , ( 3 e 5 ( ) ) 

whereas 

^=1 

+ Bight-hand side of Eq . (3.50) (3.5l) 

where 

oo 
_ 1 d f _ f F ( s ) -I _ d_ [P is ) I 

s=o s=o 

(3.52) 

C .= ^ l r , and n 

In the case of simple symmetric o s c i l l a t i o n s 9 i « e « 

n T 

TJT = 1, p n T = p^T = 2 > equations (3.50) and (3.5l) reduce to 
2 
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y j t l 
M 

y 
Coo + C o l 1̂ 1 + -f l^ i t 2 * - ¥2°i+ 1}] 

and 

N -2 
+ Z c 1 - e 

Po s, ,J_ 
^=1 1 + e ^2 

(3.53) 

M 

(C^T < t < § ) 

^ + ^Coo* c o i ( t - § ° i > + - ^ P - t T q - t f f c r . d - z c r , ) ] 

N -2 

+ 

s w ( i - C T J T , S P 1 + e ^ 1 SU% 

C,._ — r e 

Z =̂l 1 + e 
T~ (3.54) 

(o<t<O^T) . 

Cases 1, 2 and 3 dealt with above are the ones usual ly 

encountered i n p r a c t i c e . Other cases may be s i m i l a r l y 

evaluated by an a p p l i c a t i o n of equation ( 3 . 3 l ) . 

The C^—Method (or Frequency Response Method) of 
Determining the Periodic Output Waveform 

Here we apply formula (3.27) to equations ( 3 » 1 4 a ) and 

(3,14b). The poles of I-^(s) and ^ ( s ) , given by equations 

(3.17) and ( 3 « 1 9 ) , are the same, and occur at 

j k » , (k = 0, + 1, + 2, a = Zjji) 

Consequently, 

v x ( t ) = -M y ~ j 

+ 0 0 

k=-«» 

H(,jko) 
3^ ~~7ji 

i-1 n-1 

1=X 1=0 
-T e sT 

st 
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Nov 

sT n-1 

1 = 0 

- T e sT 

n-1 

1 = 0 

) 

Let us put 

n-1 

ikn Z _ l v 

jk27tpi -jk2ixc^ + 1 

jkn 
i=o 

and substitute 

- e ) = ^ 

H(jtt) = H q(W) e j © ( » ) 

(3.55) 

(3.56) 

where 

Then 

H ( « ) = H(jtt) , and 0(co) = arg H(jtt) . 

v*> = S ^^(ktt) j [kttt-<^+ ©(ktt)] 

k=-oo 

which can be rewri t ten as 

r x ( t ) = | C o H o (o ) + 2 | C
k | H o ( k t t ) c o s [ k t t t - « ^ + ©(kt t ) ] 

k=l 
(3.57) 

If v^(t) has the addi t ional property of symmetry, then 

from equation (3*22) 

n 
T 2 

s 77 

-1 T 
S 

S 5 , = [ ! ] ? , - • • 5 

i=e i = 0 i=* 
1 = 0 

so that the poles at 
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are e l iminated . Hence, i n the case of symmetric o s c i l l a t i o n s 

v^(t) becomes 

0 0 / 
V j f t ) = 2 | C k| E

0 ^ ^ cosjlaot - < £ k + 0 ( k » ) ] (3.58) 
k=l 

where >̂ j means the summation with respect to odd numbers 

only . Also C .̂ i s now given by 

S -1 

) 
1 = 0 

Equation (3.58) may be conveniently rewrit ten as 

r i ( t ) = 2 l ° 2 k ~ l | H o ( ( 2 k - l ) w ) c o s[(2k - l)i . t - ^ 2 M 

0 ( ( 2 k - l ) « ) ] (3.59) 
k=l 

+ 
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4 . CONCEPTS PERTAINING TO THE STEADY-STATE RESPONSE 

OF ON-OFF ELEMENTS 

Before proceeding to the study of s e l f and forced o s c i l l a ­

t ions i n on—off feedback control systems, we w i l l f i r s t introduce 

concepts per ta ining to the steady-state response of such systems. 

In t h i s respect , the Hamel and Tsypkin l o c i (or hodograph, or 

c h a r a c t e r i s t i c ) ^'^haye been formulated to f a c i l i t a t e the s o l u ­

t ions of per iodic o s c i l l a t i o n s i n s ingle - loop systems containing 
q 

one on—off element. Furthermore, Neimark used the concept of the 

phase c h a r a c t e r i s t i c to determine the simple symmetric s e l f -

o s c i l l a t i o n s i n a s ingle - loop system containing an a r b i t r a r y 

number of on—off elements, but no mention was made as to how 

i t may be adapted to the problem of forced o s c i l l a t i o n s . 

In t h i s chapter we redefine the above—mentioned concepts i n 

order ( i ) to include the effec ts of i n i t i a l conditions and of 

external i n f l u e n c e s , ( i i ) to show the re la t ionships ex is t ing 

among these concepts, but moreso ( i i i ) to extend t h e i r sphere of 

a p p l i c a t i o n to the so lut ion of the possible per iodic motions i n m u l t i ­

loop control systems, containing an a r b i t r a r y number of on-off 

elements. 

For t h i s purpose i t w i l l be convenient to regard any given 

system as a composition of simple uni t systems, or sub-systems, 

shown i n Figure 
41(a) 

the charac ter i s t i cs of which can be r e a d i l y 

ascer tained. Let us assume that the c h a r a c t e r i s t i c of the on-off 

element i n Figure 4,1 (a) i s symmetric with hysteresis and dead zone, 

as depicted i n Figure 4.1(b), The i n i t i a l conditions are referred 

to the output of the l i n e a r part and are designated by v ( t ) , 
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Linear 
HCs) v(t) 

fCt) 
On-off 

-r 
xCt) 

Part 
N — 

Element 
v0Ct) - — M 

(a) (b) 

Figure 4*1(a) Block diagram of uni t system 

(b) Charac ter i s t i c of on-.off element 

whereas f ( t ) accounts for any external a c t i o n . 

Let the input to the l i n e a r part of the system be a steady 

per iodic waveform of symmetric rectangular pulses as shown i n 

Figure 4 .2(a) .Then the output v ( t ) of the l i n e a r part w i l l also 

be a per iodic waveform with the same p e r i o d i c i t y as the input 

y t ( t ) . 

- 2 T 
J 

-T 0 
— M i 

2.T 3T ' 

(a) 

-> ocT [< T v 

H ~T >- L 

(b) 

Figure 4 » 2 ( a ) Input to l i n e a r part of F i g . 4*1 (ft), 

(b) Output of on-off element of F i g . 4.1 (a) . 
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In fac t 

s ( l-p x)T 
f_M_ j H M 1 + e ^ e s t d g j ( 0 < t < p i T ) 

(t) = • 

2itj 
r _ P 1 + e " 
C l o r C2 

^ 2TXO 
r- J n 1 + e ^ 
C l o r C2 

(4.1) 

where i s a contour enclosing only the poles of H ( s ) / s , where 
s T 

C 2 i s a contour enclosing only the poles of l / ( l+e ), and 

where the contour integra ls along and are taken i n a 

mathematically p o s i t i v e and negative sense r e s p e c t i v e l y . 

Now the input x(t) to the on-off element i s given by 

x(t) = f ( t ) + v ( t ) + v Q ( t ) (4.2) 

In the case of simple symmetric per iodic responses, that i s 

y(t+T) = ~*y(t), the only switching conditions are 

x [(cc+k)T] = ( - l ) k x Q = £ x [ (a+p+k)TJ (4.3) 

x [ ( a + k ) T ] ( ^ l ) k > o > x [ ( a+p+ k ) T ] ( - l ) k (4.4) 

(k=o, + 1 , + 2 , •••) 

where a i s taken as>0 and 0<p<l. Consequently $ the output 

of the on-off element i s also per iodic with half period T ; 

i t has a pulse duration pT which i s i n general d i f f e r e n t from the 

pulse duration p^T of the input y ^ ( t ) ; and i t i s s h i f t e d to the 

r i g h t by an amount ocT. The condit ion expressed by Eq.(4 .3) i s 

referred to as the condit ion for the proper switching i n s t a n t s , 
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whereas that given by Eq»(4.4) i s the condition for the proper 

d i r e c t i o n of switching. 

If a dead zone i s absent then we put A — — 1 » 0 = 1 so 

that the switching conditions reduce simply to 

x [(a + k)T] = (-l) kx 

* [ ( a + k)T] (-l) k>o J (4.6) 

(4.5) 
> (k = O j -1, -2,...) 

D k > o J 

Furthermore, i f hysteresis i s absent then X q i s set equal to zero, 

4.1 GENERALIZED CONCEPTS OP THE HAMEL AND TSYPKIN LOCI 

From the above we note that the quantities x(ctT) and 

x(ocT), together with x [(a +/3)TJ and x [ ( a + JO)TJ i n the 

presence of a dead zone, completely charaterize the parameters 

Y = <a, the frequency of the-periodic response* p the r e l a t i v e 

pulse duration, and a the s h i f t to the right r e l a t i v e to y^(^) 

of the output of the unit system. Hence we are led to the 

following concepts of a " c h a r a c t e r i s t i c " of a unit system of the 

type shown i n Figure 4*1s 

1. Generalized Hamel Loci. The generalized Hamel Loci are 

defined by 

3-1 (a,<a) = x(aj) + j x(aj) (4.7a) 

and 

CH,(a,p,W) = x [(a +p)J] + j x [(a + p ) j ] (4.7b) 

2. Generalized Tsypkin L o c i . The generalized Tsypkin Loci are 

defined by 
3(a,«) = + 3 *(«J) (4.8a) 

and 

J («,p..) - J i [ (« + p)jf ] + 3* [ (a • p)j] 



where J-t(oc,p,tt) and J (oc,p,«) . are required i n addi t ion to 

J-t(oc,«) and £T(oc,G>) i n the case of a dead zone. It i s 

i n t e r e s t i n g to note that for a given <a as a var ies from 0 

to 1 , the quantity Im J ( a , « ) or ReJ{(oc,fl>) determines the 

per iodic waveform x ( t ) , since t i n x(t) takes on a l l 

values between 0 and T; s i m i l a r l y , the quantity Re J(oc,a>) 

weighted by the factor l/a or ImJ-((cx,a>) determines the 

der ivat ive x ( t ) . 

The Hamel and Tsypkin l o c i are convenient graphical 

representations of the input s ignal conditions at the switching 

i n s t a n t s . They are therefore useful i n the study of per iodic 

phenomena i n on—off systems. 

Sketches of the general form of the Hamel and Tsypkin 

l o c i are shown i n F i g . 4*3. 

Rett 

CH(.rf.,cO)-plane 

Im J 

J<C«=<-iP)U))-plane ^ ( o c ^ u ) ) - plane 

Figure 4 .3 . Sketches of general form of the Hamel and Tsypkin L 
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Quite obviously, the Hamel and Tsypkin l o c i are equivalent 

except that Hamel's x i s replaced by i n the case of Tsypkin 

and that the coordinates are interchanged, 

Hamel*s c h a r a c t e r i s t i c i s advantageous from the point of 

view that ( i ) i t uses the phase-plane var iables x and x which 

describe the system's behaviour, and ( i i ) a der ivat ive control 

introduced into the system i s very e a s i l y s tudied . On the 

other hand, the Tsypkin representation i s generally very close 

to the t ransfer locus H (j<») i n the high frequency region. 

4.2 CONCEPT OF THE PHASE CHARACTERISTIC 

In the preceding sect ion we observed that the output 

has the same general features as the input y ^ ( t ) . In f a c t , 

i t has the same p e r i o d i c i t y , but i t i s s h i f t e d to the r ight by 

an amount ocT as shown i n Figure 4*2* The curve ocT vs T w i l l 

be referred to as the phase c h a r a c t e r i s t i c of the uni t system. 

To emphasize the fac t that ocT i s a funct ion of T* we w i l l denote 

i t by O(T) . 

C l e a r l y the instant ©(T) of switching from -M to +M that 

i s c losest to the instant t = 0 i s a non-negative root of 

the equation 

x(t) = X Q (4.9) 

Obviously, the phase c h a r a c t e r i s t i c represents the information 

concerning the switching instants given by the i n t e r s e c t i o n 

of the Hamel l o c i with the s traight l i n e X q , o r , a l ternat ively# 

by the i n t e r s e c t i o n of the Tsypkin l o c i with the s traight l i n e 
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The Hamel and Tsypkin l o c i are very convenient concepts 

i n the study of the s ingle - loop system containing one on—off 

element^ but are very cumbersome i n the case of s ingle or 

multiloop systems with more than one on—off element* It w i l l 

be seen l a t e r that the phase c h a r a c t e r i s t i c i s better suited for 

determining the periodic modes of o s c i l l a t i o n s i n multi loop 

systems containing an a r b i t r a r y number of on—off elements* The 

i n v e s t i g a t i o n i s considerably s i m p l i f i e d i n those cases where an 

analyt ic expression for the phase c h a r a c t e r i s t i c i s a v a i l a b l e . 

In the case of on-off elements with dead zone i t i s neces­

sary to know pT, the duration of the output pulse corresponding 

to a f i x e d input pulse duration £^T» Consequently, i n such cases 

the concept of the pulse duration c h a r a c t e r i s t i c * which i s a 

curve of pT vs T with p^ as the parameter* has to be introduced. 

We now proceed to the computation of the phase character­

i s t i c ©CT) f o r a few simple systems, i n which a dead zone i s 

absent* We f i r s t l i s t formulas f o r v ( t ) * the output of the 

l i n e a r part of the system? for commonly encountered specia l cases 

of H (s)s 

Case Is H(s) has simple poles , a l l d i s t i n c t from zero* Then 

T ( t ) = 2 M x [ - f + £ « V « , 2 - = ? ] < 4 ' 1 0> 

where 

C__ = Trfy , and C, 

V=l 1+e " 

( o < t < T ) 

* ( s „ ) V 
oo Q(o) * *Vb 

Case 2.8 H(s) has one pole at the o r i g i n , and the remaining 

N—1 poles are simple, that i s , 
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Then 

N-1 Sjyt _ 
T ( t ) = M [ C O O + C o l ( t - f ) + 2 - ^ . J (4.11) 

(o <t <T) 

where 

G 
oo ds 

P 'P(s) 1 p P (o) , n  

Q^TtyJ > C o l = Q^ToT > a n d ° W = Q M s )s • 
s=o 

Case 3 8 H(s) has a second order pole at the o r i g i n , and the 

remaining N — 2 poles are simple, i . e . 

H(s) =£14 = ^ 1 - . 
s Q 2 ( s ) 

Then 

v ( t ) = M ^ o Q + C o l ( t - § ) + C o 2 t ( t - , T ) $ 

N-2 s^t (4.12) 

ZA=1 l+e ^ 

( e < t < T ) 

where 

n 1 • r p ( s ) 1 p d rp(s) i n p(o) 
c o o = .2 "Tr [o^TtTJ ' c o i = dT [ ^ T s T J > Ge2 = ^ T o T * 

s=o s=o 
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and 

Case 4s H(s) has a second order pole at s^(^ o) j and the 

remaining N — 2 poles are simple and d i s t i n c t from zero, i « e . 

H( 8 ) = m = — — 
2 ( s ) ( S - S l ) 2 Q 3 ( s ) 

Then 

r s i T s i t 

t<*> - 4 ° o . + ( c i o + °ii* - c n 2 H ] X -
l+e l+e 

N-1 s^t 

+ 
^ 1 f/O S j . 

W=2 l+e 

( o < t < T ) 

where 

s=sx 
oo ~ QTOT * U l o ~ ds [s Qjll) ] ' u l l ~ F~QjR7J ' 

P(s..) 
<Vo = i - # ( ^ y 

We now turn our at tent ion to the computation of the 

phase c h a r a c t e r i s t i c 0(T) for a few systems* 

System Is x (t) = -fv(t)t hysteresis and dead zone absent 
in_JI 

This system i s shown i n Figures 4<*-4 (a) & (b) . 
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(ft-1) 
H(s) S 0 ^ N —>— 

(a) 

M 

o 

M 

o 

- M 

(b) 

Figure 4.4 (a) Block diagram of System Isx(t) = v ( t ) 

(b) Charac ter i s t i c of N i n F i g » 4 « 4 ( a ) # 

Let us consider the fol lowing representations fpr H(s )« 

(1) H(s) = - s We use E q . ( 4 . 1 l ) . Here Vtf)\ = 1, so that — >L_ y^\.s; 

C = o, C _ = 1, C = o ( a l l u) oo o l ' l/o 

Hence x( t ) = M^( t - | ) . 

Sett ing x(t) = X q = o we get 

the phase c h a r a c t e r i s t i c 

0(T) = ? 

Figure 4* 5« Phase character­

i s t i c f o r H(s) = l / s . 

(2) H(s) = l / s ; We use Eq» (4.12). The only non-zero 

c o e f f i c i e n t i s C ^ which i s equal to 1. 
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M, 
Hence x(t ) = ( t -T) t , 

( o < t < T ) 

Thus 

©(T) = T 

Pigure 4»^6. Phase character­

i s t i c f o r H(s) = l / s 2 

(3) H(s) == l / ( X s + l ) : Ve use E q . (4.10)* Here C 
s x = - l / T . 

Therefore 

( o < t < T ) 

Set t ing x(t ) = o we get 

© ( T ) = f £ n 2
? f 7 f 

1+e 7 

oo 
1* C 10 = -1, 

Pigure 4*7* Phase character­

i s t i c f o r H(s) = l / (Ts+l ) 

(4) H(s) = l / ( T s - l ) s Referring to case (3) above we simply 

replace T by — f and H(s) by -H(s) to get 

t / T 

-1+e 
(o <t <T) 
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Therefore 9CT) 

O(T) = Tin 1+e 
T/T 0 ( T ) = f £ n - L ± ^ 

/ ^ - S l o p e =1 

Pigure 4*8, Phase character­

i s t i c for H(s) = l / ( T s - l ) 

(5) H(s) = l/Cs(s+a)!]: Ve use E q . ( 4 . 1 l ) . Here 

_ c _ I 
2 ' o l ~ a 
a 

Therefore 

C o o - " ~2 ' C o l = a ' C l o = \ * s l - -a . 

x ( t ) = M £ [ - ^ + l ( t - i ) + 
1 2 e - a t I 
a 2 l + e - a T J 

( o < t < T ) 

No analy t i c expression can be found for © ( T ) . 

But given a, we can solve for 0(T) g r a p h i c a l l y or numerically, 

(6) H(s) = 
(s+a)(s+ p ) 

( i ) Suppose a ^ 0 , a ^ o, |3 ^ o. Using E q . (4.10) we 

get 

x ( t ) - Mt [k + A ( i fr^r ~ JT 
( o < t < T ) . 

( i i ) Suppose a = p ^ o. Then, using E q . (4.13), we get 
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(t) = 2 + ( - % 
t , T e - a T 

a a 1 + e - a T 

(o<t<T) 

2e -at 

l+e -aT 

No analytic expression i s available for 0(T) for this case. 

But, given a and p, we can solve for 0(T) either graphically or 

numerically. 

(7) H(s) = ( s + * ) { a +Qy. 

( i ) Suppose a p ^ o. Then, using Eq. (4.13) we 

get 

Hence 

x(t) = M,(t - Te -aT, 

r) 
2e -at 

J v " , -aT y - -aT ** l + e 1-4- e 

( o < t < T ) . 

©(T) = Te -aT 

l + e 

T 

-aT 

l + e aT 

Figure 4.9. Phase characteristic 

for H(s) 
(s + a ) 2 ' 

a and p pure reals 5
Q< = (3 =£0. 

( i i ) Suppose a ^ p, a ^ o , p ^ o , & a and p pure r e a l s . 

Then, using Eq. (4.10), we obtain 
2M. r e - p t e - a t -j 

( t ) = <* - > L i T F ? 1 " 7 7 7 ^ J 
( o < t < I ) . 
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Putting x(t) = o we obtain 
1 - 1 + e ~ P T 

OCT) 

©(T) = tn a - 3 i 
K l + e 

which may be rewritten as 

-aT ' 

0(T) = tanh -1 sinh—^-T 

x 

e 
° L_±_1 T 

2 + cosh S-f-^T 
] 

oc-(S l+-e - a r 

This phase c h a r a c t e r i s t i c i s 

plotted i n Pig. 4.10 for 

the case a > P > o . 

Figure 4.10. Phase character­

i s t i c for 
H ( s ) = (s + a ) U + B 

where a, p are reals,-

a ^ p, a >B> o>. 

Ciii) On the other hand,, i f a and P are complex then they are 

complex conjugates* Let 

a = a+jb, then P = a-jb, 

and 
a - g a + 8 

In t h i s case we get 

sinbT 

e m 

9(1) = I t a n - i [ - a i a W L - 1 . 
b U a T+cosbTJ 

F i g . 4.11 shows a sketch of t h i s 

phase c h a r a c t e r i s t i c . 
o 

9 (T ) = X t a n - | r ^ n b T 1 
b L e~ T_ hcosloTJ 

2.TT 

Figure 4.11. Phase character-

i s t i c for H(s) = ( s + a ) ( s + p) 

where a and P are complex 

conjugates. 
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(8) H(s) = e - ^ 

Obviously x(t) = y^ (t -7") 

Hence the phase characteristic 

i s given by 

O(T) = T — [ £ ] 2T 

where {[^rjj denotes the 

integral part of T/ ( 2T). 

' i 

Figure 4*12* Phase Character-

i s t i c f or H(s) = e • 

System I I : x(t) = - v ( t ) ; hysteresis and dead zone absent i n N, 

This system i s shown i n Figure 4.13. 

<flrO 
HCs) 

v f t U . x c t ) H g ) — > N ->-

M 

O 

M 

O 

*x *x 

(b) 

Figure 4-13. (a) Block diagram of system I I . 

(b) Characteristic of N i n F i g . 4.13(a). 

Let O j ( T ) be the phase char a c t e r i s t i c of system I . 

Let © J J ( T ) be the phase char a c t e r i s t i c of system I I , corresponding 

to system I , i . e . same H(s) and same N but with the change 

x(t) = - f ( t ) . Then* i n terms of the phase char a c t e r i s t i c of 

system I , O J ( T ) , the phase ch a r a c t e r i s t i c of system I I i s given by 

G N ( T ) = ©j(T) + T - ( [ 1
 2 T

+ T ] 2T , (4.14) 
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where |£ Jj denotes the integral part of i t s argument. 

As i l l u s t r a t i o n s consider the following cases: 

(1) H(s) = l / s : Ve obtained Oj(T) = T/2. Therefore, by 

Eq, (4.14) t 

O j j d ) = 3T/2 

(2) H(s) = l / s : In t h i a case ©j(T) = T f so that 

Oj j l T ) = 2T - [||] 2T = o. 

System I I I : x(t) = +v(t); N has hysteresis, but no dead-zone, 

This system i s shown i n Figure 4.14. 

Cp £ - 0 
H(s) ^g) •* 

(a) 

N y(t) M 

A X 0 O 

(b) 

Figure 4 .14. (a) Block diagram of System I I I ; (b) characteristic 

of N. 

For t h i s p a r t i c u l a r system, the phase characteristic i s 

found as the least positive root of the equation 

v(t) = x Q. 

Ve now compute 0(T) for the cases of H(s) considered i n connec­

ti o n with system I. 
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(1) H(s) = ± 

Putting v( t ) = M t ( t - § ) = x ( 

we get 

0(T) T 
2 + M £ 

where i t i s understood that 

Figure 4 » 1 5 * Phase character­

i s t i c for H(s) = l / s . 

(2) H(s) = \ 
s_ 

In t h i s Instance we have 

M 

x(t) = f- t (t - T) = -x Q 

Provided that x < x ( t ) 
o max 

i . e . 
*0<\T 

commutations w i l l occur. 

The phase c h a r a c t e r i s t i c 

i s given by 

©(T) = 

r 0 8x 
3^ - [T 2 - - j f ] 

Figure 4.-16, Phase characteris­

t i c for H(s) = l / s 2 . 
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(3) H(s) Ts + 1 

Here 
r " t / T i x(t) = M< L1 - f+r^J 

( o < t < T ) . 

Provided that 
T 

x < x(t) = M ntanhTn= o max £ 2T 

commutations w i l l occur . . The 

phase c h a r a c t e r i s t i c i s given by 
2 

0(T) = Tin 

(1 + . - * / » - ) (1 

v a l i d for T > 2 T t a n h 
-1 __o 

M„ 

©CT) 

!6W=rJ n 

( l + e T / T ) 0 - ^ ) 

zTtanK" 1 -** 
M 4 

Pigure , 4*17«»Phase character­

i s t i c for 

H(s) = l / ( T s + 1) . 

4.3 CONDITIONS FOR THE EXISTENCE OF PERIODIC 

OSCILLATIONS IN SINGLE AND MULTILOOP SYSTEMS 

Let us f i r s t examine a single—loop system containing an 

a r b i t r a r y number of n on-off elements. The system under considera­

t i o n i s shown i n Figure 4.18. 

——*~o< N, 
3 , 

N 2 N, A N 2 

(a) 

Figure 4.18. (a) Single loop 

system containing n on-off elements; 

(b) c h a r a c t e r i s t i c s of N . . 

H„<s) 

I - * o i 

C 

O L 

For the purpose of inves t iga t ing the possible periods of 

o s c i l l a t i o n s , s e l f or f o r c e d , we decompose the above system into 

n sub—systems or uni t systems as shown i n Figure 4.19. The 
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HL(s) 
x L + i „ 

' V . HL(s) ' V . 

( i = i , a , ...5YI-I) 

Hn(s) Vn Tt Hn(s) 

-f 

N, if i 
—> 

e.cr) 

Figure 4 .19. Decomposition of system i n F i g . 4.18 into 

.n sub-systems. 

phase c h a r a c t e r i s t i c associated with the system containing the 

on-off element N. i s denoted by © . ( T ) . 
I J I 

Let ' 

©*(T) 4 ; | O.(T) - [ i = 1
2 T

1 ] 2T (4.15) 

n The quanti t ies £ 0 . (T) and ©*(T) w i l l be refer red to as the t o t a l 
i= l 1 

phase c h a r a c t e r i s t i c and the reduced phase c h a r a c t e r i s t i c respec­

t i v e l y of the open-loop system (opened at any connection between 

and E L ( s ) ) . C l e a r l y , the closed-loop system w i l l exhibi t simple 

symmetric o s c i l l a t i o n s with h a l f - p e r i o d T i f the reduced phase 

c h a r a c t e r i s t i c i s equal to zero, that i s , 

©*(T) = o, (4.16) 

and i f 

[ © . ( T ) + kT] = (-1)1 

0 1 
( i = 1, . . . , n ; 

(4.17) 

*1 [°i< T ) + k T ] ( ~ 1 ) k >° J k = o, - 1 , . . . ) 

are the only switching conditions s a t i s f i e d i n the separate 

subsystems. Equations (4.16) and (4.17) are the conditions 
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required for the existence of per iodic o s c i l l a t i o n s i n a s i n g l e -

loop system containing n on-off elements. 

In the simplest case where n = 1, i . e . the s ingle - loop 

system contains only one on-off element, the conditions for the 

existence of per iodic o s c i l l a t i o n s reduce simply to the f a m i l i a r 

expressions 

*-(kT) = ( - D k x , I I o l 

X l ( k T ) ( - l ) k > 0 

(k = o, - 1 , . . . ) (4.18) 

In the more general case of multi loop systems the require 

conditions fo l low n a t u r a l l y from the above. Suppose that the 

system under consideration has S. loops, where the mth(m = 1, 2 , . . . 

loop contains an a r b i t r a r y number n of on-off elements. Some or 
m 

a l l of these loops may have elements i n common. Furthermore, 

assume that a l l the on-off elements are without dead zone. Let 

x.. m be the input to the i t h nonlinear element ( i = 1, 2, nm) I ,m 
i n the mth loop (m = 1, 2, . . . , £ ) . Ve consider each loop i n 

t u r n . Let ©*(T) be the reduced phase c h a r a c t e r i s t i c of the mth 

m 

open loop . Then the multi loop system w i l l exhibi t simple 

symmetric o s c i l l a t i o n s with h a l f - p e r i o d T i f the reduced phase 

c h a r a c t e r i s t i c s of a l l the loops are simultaneously zero, that i s 

G*(T) = o , (m = 1, 2, I ) (4.19) 

and i f the proper switching instants and switching di rec t ions are 

also sa t i s f ied? 
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x< ™ m
( T ) + k T l = ( " l ) k x . - ; m l ( i = 1, 2, n ; itm |_ i ,m J oi ,m m 

ra = 1, 2, £ s 
i$m L l,jn J K = o, — if •*•) 

(4.20) 

where ©. (T) i s the phase c h a r a c t e r i s t i c associated with the 
a. >m 

subsystem containing the i t h on-off element i n the mth loop, and 

x . i s r e l a t e d to the hysteresis width of t h i s on-off element, oi ,m 

Another way of s ta t ing the conditions expressed by Eqs. (4.19) and 

(4.20) i s that the existence conditions expressed by Eqs. (4.16) 

and (4.17) must hold simultaneously for each loop of the multi loop 

system. 



P A R T I I 

O N S E L F A N D F O R C E D O S C I L L A T I O N S 

I N O N - O F F F E E D B A C K C O N T R O L S Y S T E M S 
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5. SINGLE-LOOP SYSTEM CONTAINING AN ARBITRARY 
NUMBER OP ON-OFF ELEMENTS 

Let us f i r s t consider the system shown i n Figure 4.18, 

that i s a single loop system containing n on-off elements without 

dead zone, and investigate the possible half-periods of self and 

forced o s c i l l a t i o n s . 

S e l f — o s c i l l a t i o n s 

A simple graphical procedure for ascertaining the 

possible half-periods of s e l f o s c i l l a t i o n i s as follows* 

( i ) the phase characteristics0.(T) VS T of the individual 

sub-systems ( i = 1, 2, n) are f i r s t evaluated; 

( i i ) 
n 

the t o t a l phase c h a r a c t e r i s t i c , £ vs T, i s then 
i=l 1 

plotted; 

( i i i ) f i n a l l y , we apply the condition (4.16) that the reduced 

phase char a c t e r i s t i c must equal zero; thus, the values of 

T at which the straight l i n e s 

0 = 2kT, (k = o, 1, 2, ...) 

intersect the t o t a l phase char a c t e r i s t i c curve give the 

possible half-periods of s e l f o s c i l l a t i o n . 

The construction i s shown i n Figure 5.1. 

.Sft(T)J 
Figure 5.1. 

Graphical procedure for determining 

possible half—periods of s e l f 

o s c i l l a t i o n s . 

T^, T^, T^, •*« represent the 

possible half-periods of s e l f 
o s c i l l a t i o n . 
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Forced o s c i l l a t i o n s 

Let us assume that the input f ( t ) to the system, shown i n 

Figure 4.18, i s simple symmetric with h a l f - p e r i o d equal to T q , i . e . 

f ( t ) = - f ( t + T Q ) . 

R e s t r i c t i n g ourselves to the consideration of simple symmetric 

o s c i l l a t i o n s , and excluding the case of sub-harmonics, the system 

var iables 

y i ( i = 1> •••• n) , v n 

w i l l eventually a l l be per iodic with h a l f - p e r i o d T Q . 

Consequently, the phase c h a r a c t e r i s t i c s of the i n d i v i d u a l 

u n i t systems 

e i + l ^ o 5 * ( i = l f 2> n _ l ) 

which are real non-negative q u a n t i t i e s , are known (or can be 

calculated by the methods presented e a r l i e r ) . The only var iable 

at our disposal i s 0 ^ ( T Q ) which i s a funct ion both of the " a m p l i ­

tude" of f ( t ) and of the "phase s h i f t " T of f ( t ) r e l a t i v e to v n ( t ) . 

Let us write 

f ( t ) = Af ( t - T ) 
o 

A = max J f ( t ) j 

max I f (t - T) I = 1 o ' 

, o < T < 2 T Q (5.1). 

Thus, given A and f Q ( t ) , the sought—for quantity i s the value (or 

values) of T that w i l l permit forced o s c i l l a t i o n s to occur i n the 
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system. 

The procedure for determining the values of T that permit 

forced o s c i l l a t i o n s to occur i s as follows? 
n 

( i ) The t o t a l phase c h a r a c t e r i s t i c £ 0 . ( T ) between points 
i=2 1 

A and B ( in Figure 4.18a) i s computed. 

( i i ) The reduced phase c h a r a c t e r i s t i c between A and B, namely 

n IT .§_©, (T ) 1 

Q * <To> = 2 A ( T o ) " L 1 2T ° J 2 T o ( 5 ' 2 ) 

i=2 o 

i s evaluated. For forced o s c i l l a t i o n s to occur, the 

reduced phase c h a r a c t e r i s t i c of the entire loop must equal 

zero . Let us define the complementary phase charac ter i s t i c 

of ©*(T ), with respect to 2T , as 2T - ©*(T ) , for ©*(T ) >o 
O 0 0 

. o , for © * ( T Q ) = o 

Then forced o s c i l l a t i o n s may occur i f the phase character­

i s t i c of the f i r s t sub-system (between B and A ) i s equal to 

the complementary phase c h a r a c t e r i s t i c ©* between A and 

B % that i s , 

V T o > = 9 c ( T o>-
( i i i ) The phase c h a r a c t e r i s t i c © q ^ ^ ) i s a funct ion of T and w i l l 

be denoted by ©, (T T") : i t i s determined as the smallest 
JL 0 y 

non—negative root of the equation 

X l ( t , r ) ] T = T = A o f H - r ) . - v n ( t ) ] T = T = x o l 

o o 

(5.3) 
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(iv) The values of T s a t i s f y i n g © x ( T o T) = © * ( T o ) give r i se to 

forced o s c i l l a t i o n s , provided that the only switching 

conditions are 

x, ["©*•(T ) + kT I = ( - l ) k x , 1 L c o o J o l 

|~©*(T ) + kT 1 ( - l ) k > o 1 L c o oJ ' 

(k — o, -I,•••) 
(5.4) 

and 

( i = 2» 3 , . . . , n ; x. TO. (T ) + kT 1 = ( - l ) k x . ' i L i o oJ ' o i I 

* i [ W + k T o l ( ~ 1 ) k > ° ' k =• ° » * ! » • • • ) 

(5.5) 

and these can be v e r i f i e d from plots of x^(t) and x^(t) as 

functions of t . 

The construction corresponding to steps ( i i i ) and ( iv) 

above i s shown i n Figure 5.2. 

e,CT0) 
= e,(T0JT) 

»-T 
Figure 5 » 2 . On the determination of possible values of T that 

permit the occurrence of forced o s c i l l a t i o n s o 

Another method for determining the values of T that may 

permit forced o s c i l l a t i o n s u t i l i z e s the Tsypkin approach i n the 

l a t t e r part of the procedure. The steps i n the procedure are 

as follows? 
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( i ) As above, the reduced phase c h a r a c t e r i s t i c © * ( T ) between 
o 

points A and B ( in Figure 4.18a) i s f i r s t computed, and then 

the complementary phase c h a r a c t e r i s t i c © * ( T Q ) i s found, 

( i i ) For forced o s c i l l a t i o n s to occur at a p a r t i c u l a r value 

of T , two conditions must be s a t i s f i e d : f i r s t , 

X l ( t ) ] t = ©*(T ) = A f o ( t " T ) - V n ( t ) ] t = ©*(T ) 

C O C O 
(5.6) 

= x o l 

for the proper switching i n s t a n t s ; then 

x l ( t ) ] t = ©*(T ) > 0 

c o' 

for the proper switching d i r e c t i o n s . The Tsypkin plane 

J = i k + jx 

can be used to represent these two conditions graphica l ly 

i n the f o l l o w i n g manner. 

( i i i ) The contributions - v n [ © £ ( T
Q ) ] and - v n [ © j ( T Q ) ] to x± 

and x, r e s p e c t i v e l y , are f i r s t p lot ted on the 3—plane; 

these are denoted as coordinates (a ,b) , as shown i n Figure 

5.3 . 

(iv) The remaining contributions A f Q [G*(T
Q) ~ T ~ \ a n d 

A f Q ^ © * ( T Q ) — TJ to x^ and x^, . r espec t ive ly , are added to those 

of part ( i i i ) . These contr ibut ions , however, are functions 

of T and therefore , as T var ies between o and 2 T q , they 

give r i s e to a curve ^ Ê Ĉ Ô 'T] ' c a ^ ^ e d the hodograph 

of f [©J(T

0)]» about the point (a ,b ) , where 

3i[e*(To),T] = f (t _T) + ( t _ T )] _ 
C O 
(5.7) 
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(v) To s a t i s f y the condit ion of the proper switching i n s t a n t , 

the hodograph <3? must in tersec t the s t ra ight l i n e j x ^ * 

A l s o , to obtain the proper switching di rec t ions [ j ^ (^0 il^0» 

the points of i n t e r s e c t i o n must l i e i n the r i g h t - h a l f 

CT—plane. Furthermore! the values of T at these points of 

i n t e r s e c t i o n ( of 3* with jx Q ^) w i l l allow forced o s c i l l a ­

t ions to occur, provided that there are no a d d i t i o n a l 

commutations i n the i n t e r v a l ©*(T ) < t < © * ( T ) + T . 
c o c o o 

Im Z 

J - pi a 

Hociograpn o"f 

using O'as origin 

Figure 5 . 3 . On the determination of possible 
values of T that permit forced o s c i l l a t i o n s . 

It i s obvious from E q . (5*7) that the non-negative r e a l 

quantity A , c a l l e d the "amplitude" of f ( t ) , i s a s ca le - fac tor 

f o r the hodograph of 3f|©*(T O), T J g that i s , the r e l a t i v e shape 

of t h i s hodograph remains the same for various values of A ? and 

an increase or decrease i n the value of A merely magnifies or 

contracts the curve of <ffr[©*( T q ) ,TJ about 0 T as o r i g i n . Hence the 

value of A, i n general , determines the number of values of T 

at which forced o s c i l l a t i o n s may occur. 

The e f f e c t of varying A i s i l l u s t r a t e d i n Figures 5.4 (a) 

to ( f ) . In Figure 5.4 (a) the value of A i s too small to allow 
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forced o s c i l l a t i o n s with h a l f - p e r i o d equal to T q . In th is case 

sub-harmonic o s c i l l a t i o n s are p o s s i b l e . As A i s increased to the 

c r i t i c a l value A - ^ c r the l i n e J X q ^ becomes tangent to the hodograph 

of <3« ( T Q ) fTJ i n the r i g h t - h a l f J - p l a n e . A further increase 

i n A brings us to Pigure 5.4 (c) for which forced o s c i l l a t i o n s 

may occur at T= (for the hodograph as drawn). For very 

large values of A forced o s c i l l a t i o n s w i l l be possible at the one 

value of T, namely T = i n Figure 5.4 (d) . In Figures 5.4 (e) 

and ( f ) , 0* l i e s i n the l e f t - h a l f J - p l a n e . At A = A 
2cr the 

hodograph of ^ [ ^ ( ^ Q ) 7"J passes through the i n t e r s e c t i o n of the 

j Im2T—axis and jx .. whereas a further increase i n A may allow 
o l , 

forced o s c i l l a t i o n s at the one value as shown i n Figure 5.4 (f) . 

For A = A ^ c r j w e have from Figure 5.4 (b)s 

Im ^ [ 0 ; ( T o ) , T o l ] b - x ol 
By using E q . (5.7) the above equal i ty can be wri t ten as 

l c r = | fo [ eJ<V - T o l ] | 
S i m i l a r l y j from Figure 5.4 (e) we have 

M ^ V ' To2.1 I = V a 2 + ( b - x n 1 ) 2 

(5.8) 

o l ' 

and by using E q . (5.7) we obtain 

2cr 

. a 2 + (b - x o l ) 2 

-2- f (O*(T ) - T J j + If (O*(T ) - r J J _ 
•% o c o o2 - J L o c o o2 J 

1/2 

(5.9) 
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with A<A Icr 

(a) 

jlm J 

Re J 

Cb) 

w i t h A=Aj c r 

,1m J 

.0' Re? 

vyitb A>A l c r 

CO 

ilm J 

"* 

Î ĈelC-r̂ rl ' with A»A lcr 

Cd) 

$01 

I m J 

To2 

with A-A 2cr 

i I m j f 

V7* + / 

1 d 1 Retf 

w'.+h A>A2cr 

Remarks? 0* = (a,b) : hodographs ^£(©*(T ) j-T) drawn about 0' 
c o 

as o r i g i n . 
Figure 5.4. Influence of A upon the number of values of T t h a t 

may permit forced o s c i l l a t i o n s . 
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Obviously, for A > A l c r or * h e d e s i r e < * v a l u e s o f T can be 

determined from the equal i ty 

b - x 
I f o [ W -T]l= A "' < 5 - 1 0 ) 

or, by making use of Equation (5.8) and (5*9), t h i s equal i ty 

becomes 

I f o [eJ<To> _ T] I = " A ^ I f o IW ~Tol] I «'•») 

f o r A > A 1 C J . 

and 

P 2 -N1/2 • [ ' . ^ V - To2>] " l l - ] (5-l2) 

A 2cr 

for A >A_ 
2cr , 

r e s p e c t i v e l y . 

In the specia l case where f Q ( t ) = s i n « t , we have 

f (t - T ) = s i n « ( t - T ) , £ f Q ( t - T ) = cos » ( t - T ) , 

so that the hodograph of (T
Q) » r ] i s given by 

$ [ ° S ( T o ) < T ] = A [ C ° S <°o [ G J ( T o ) " T ] + j S i n "o [ 0 ? ( T o } - T ] ] 

jto r© * ( T ) - r l 
= A e 0 L c 0 J (5.13) 



62 

where «>O = T T / T q . Hence the hodograph of ^ | © £ ( T O ) rj i s a c i r c l e 

of radius equal to A. By making use of E q . (5.13), e q u a l i t i e s 

(5.11) and (5.12) become 

s i n <o fo*(T ) - r l I = -7 
0 L c 0 J I A cr s i n « o [ e * ( T o ) - f o l ] | 

(5.14) 

for A >A, , l c r ' 

and 

s i n « |~0*(T ) - r l I = iSZIZ 
0 l_ c o J I A (5.15) 

for A >A 2cr, 

r e s p e c t i v e l y . 
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6. DOUBLE-LOOP SYSTEM CONTAINING AN ARBITRARY NUMBER 
OP ON-OPF ELEMENTS 

Ve mentioned e a r l i e r that i n more complex systems the 

a p p l i c a t i o n of the Tsypkin method to the determination of the 

possible periods of simple symmetric o s c i l l a t i o n s becomes very 

cumbersome. In th is chapter we f i r s t show that the Tsypkin 

approach can be used i n the study of the double-loop system 

i n which each loop contains one on-off element. This p a r t i c u l a r 

case points out the d i f f i c u l t i e s that would be encountered i n 

any contemplated extension of the Tsypkin method to the study of 

systems with three or more on-off elements. We then indicate 

how the possible periods of simple symmetric o s c i l l a t i o n s i n a 

double—loop system, containing an arbi t ra ry number of on-off 

elements, may be determined by the phase c h a r a c t e r i s t i c method. 

6.1 APPLICATION OP TSYPKIN'S METHOD TO A DOUBLE-LOOP 
SYSTEM WITH TWO ON-OFF ELEMENTS 

•Ht)-t-x x, 

The system under consideration i s shown i n Figure 6 . 1 . 

2i 
N , 

/ — 

^2. 
H?fe) 

v^Ct) 

H 3 « 
-*oL 
\ X . 'x, 

OL * 

Cb) Ca) 

Figure 6.1 (a) Double-loop system containing two on-off elements, 

(b) Charac ter i s t i cs of N-̂  and N,>. 

In the case of simple symmetric o s c i l l a t i o n s , the outputs 

of N^ and N 2 are, i n general , as shown i n Figure 6 . 2 . In f a c t , 

the expressions for y-^(t) and y 2 ( t ) are 
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-2T - T 

M , 

O 

- M , 

E T 

Ca) 

ocT cpH-iyr 

- M a . 
Cb) 

Eigure 6*2. (a) and (b) Outputs of and Ng. 

y x ( t ) = 2MX I ( - l ) k u(t - k T ) , for - «* < t <(n+l )T 
k=-eo 

y 9 ( t ) = 2M, f ( - l ) k u f t - (a + k ) T l , for - o o <t<(n+l+a)T, 
* ^ k=-oo L J 

where i t i s assumed that 

a > o and o < a < 2. 

From the resul ts of Chapter 3 the response of the l i n e a r 

part H^(s) i s 

2M 

1 C l 0 r C 2 

1 $ H l ( s ) ( - l ) n e - s n T . s t 
sT 1 + e 

( n T < t < ( n + 1)T, n = o, - 1 , - 2 , , . . ) 

e s x d s + K± (6.1) 

where i s a constant re la ted to the i n i t i a l condi t ions . 

S i m i l a r l y , the outputs of the other l i n e a r parts are given by 

T i ( t ) 
1^2 § M i l ( - D e - 5 ' " " ' 1

 e s t d s 

2id „ J „ s , . sT e as + 
^ C l o r C 2 1 + e 

K i (6.2) 

for (a + n ) T < t < ( a + n + l ) T , 

i = 2, 3, 4; n = o , - 1 , - 2 , . . . , 

where 



65 

L 2 ( s ) = H 2 (s ) 

L 3 ( s ) = H 2 ( s ) H 3 ( s ) 

L 4 ( s ) = H 2 ( s ) H 4 ( s ) , 

and K are constants related to the i n i t i a l condi t ions . 1 

The conditions for symmetric o s c i l l a t i o n s of the above type 

are 

and 

x l = x o l ' x i ( ° ) > 0 

x 1 ( t ) > - X q 1 for o < t < T 

x 2 (aT) = X q 2 , i 2 ( a T ) > o 1 
x 2 ( t ) > - x Q 2 for aT <t <(a + l ) T 

Self O s c i l l a t i o n s 

(6.3) 

(6.4) 

Following Tsypkin's method, we introduce the Tsypkin l o c i 

J ^ o c . T ) = | X l ( o ) + j x1(o) 

J 2 ( a , T ) = | x 2 (aT) + j x 2 (aT) 
(6.5) 

Using a as the parameter (o<oc<2) and T as the v a r i a b l e , we 

construct these l o c i as shown i n Figure 6.3. The straight l i n e s 

J'X q ^ and J X q 2 are next inserted on the J ^ - and ^ " " P l & n e s » respec­

t i v e l y . The points a^, b^ , c ^ , . . . of i n t e r s e c t i o n of the 

•3^(oc,T) l o c i with the s t raight l i n e j x ^ i n the f i r s t quadrant 

of the 3^— plane correspond to pairs of values (oc,T) that s a t i s f y 

the conditions x^(o) = X Q ^ , X^(O)>O: s i m i l a r l y , the points 
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i^i Coc.T)-plane X ^ O C ^ T ) - plane 

Figure 6.3. The Tsypkin l o c i ^ ( o c , T ) , J 2 ( a , T ) . 

a 2 , b 2 , c 2 , , . . i n the f i r s t quadrant of the J 2 - p l a n e correspond 

to pairs of values (oc,T) that s a t i s f y the conditions x 2(aT) = 

X q 2 , x 2(aT) > o * We now plot these points of i n t e r s e c t i o n as 

curves of a = f-^T) corresponding to the points a^* b ^ , c ^ , . . . 

of the plane* and a = f~(T) corresponding to the points 
1 2. | 

a 2 , b 2 > c 2 * . « » of the O^-plane. Any pai r of values (<x,T) at 

the i n t e r s e c t i o n of the curves f-^T) and f 2(T)> such as (a*, T*) 

shown i n Figure 6.4, may give r i s e to s e l f o s c i l l a t i o n s . 

C C 

Figure 6.4. Curves of a = f (T) and a = f « ( T ) . 
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Forced o s c i l l a t i o n s . 

Let the input to the system, f ( t ) , be per iodic with half -

period equal to T Q = The conditions for the existence of 

forced o s c i l l a t i o n s are again expressed by equations (6.3) and 

(6.4) with T set equal to T q , but now, instead of 

x x ( t ) = - v 4 ( t ) , 

we have 

X ]_(t) = f ( t ) - v 4 ( t ) . 

A l s o , instead of a and T the sought-for quanti t ies are a and 

<f> where <p i s the phase s h i f t of f ( t ) r e l a t i v e to some a r b i t r a r y 

reference phase ^>q. For convenience, we write 

or 

f (tt t) = A f (tt t - d>) 
o 0 0 0 ~ 

f ( t ) = A Q f o ( t - T) 

where T = <̂>/<o , 

A = max o f ( t ) | and max f (t) = 1. 

From the curve of a = f ^(T!) w e l 0 0 8 - ^ 6 "the value a = a Q 

at which T i s equal to T q . ¥e next inser t the point 

0 ' = - ^2. v ( 0) _ v ( 0 ) 1 
TC 4 ' 4 a = a , 

o ' 
T = T 

o 

on the «J^~plane . With the point 0 ' as o r i g i n , we construct the 

hodograph of 

as T v a r i e s from 0 to 2 T q i n c l u s i v e l y , as shown i n Figure 6.5. 
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Hodograph o"f 
CT) w i t h O' 

Rs J, 

~-plane 

The value(s) of T corresponding 

to the i n t e r s e c t i o n of the 3^(T) 

l o c i with the s traight l i n e jx Q ^ 

and l y i n g i n the f i r s t quadrant 

of the CT^-plane, together with 

the value of a determined above, o ' 

are the sought-for value (s) of (oc,T) 

which may allow the occurrence of 

forced o s c i l l a t i o n s . 

Figure 6,5. On the determina­

t i o n of the values of T 

that permit forced o s c i l l a t i o n s . 

The conditions x, (t) >-x for o <t <T and x (t)">-x 0 for 

a T < t <(a + 1 )T must be v e r i f i e d . 

o o o • -o 

In p r i n c i p l e , the Tsypkin approach can be applied to 

the study of the periods of o s c i l l a t i o n s i n a double-loop 

system containing an a r b i t r a r y number of on—off elements. But 

the extension to cover the cases of more than two on—off elements 

i s d e f i n i t e l y awkward. Such complicated cases are best solved 

by the method of the phase c h a r a c t e r i s t i c . 
6.2 APPLICATION OP THE PHASE CHARACTERISTIC METHOD TO A 

DOUBLE-LOOP SYSTEM CONTAINING AN ARBITRARY NUMBER OP ON-OFF 
ELEMENTS 

Consider the double-loop system containing an a r b i t r a r y 

number of on—off elements as shown i n Figure 6.6 (a) . Assume 



•fct) *> 
V4 

* 2 . * n , n.+i 

A -

-Xoi 
t 

* >-X . 

Cb) 

'n<ti 

N, V 

H. 

Ca) 
H 

Figure 6.6 (a) Double-loop system containing an a r b i t r a r y number of 
on-off elements; (b) Character is t ic of i t h on-off element. 

Unit No. 
I 1 

H, ryH 

i _ . 

Input 

Un i t No.in.-t-2. 

'n,-H N 

. J 

r 

U n i t No. r » 2 + ) 

l _ 

i 

T 
j 

Uni t " No. T n 3 + i 

H, 
L 

Unit No .n, 

Unrr i 
N O . Ylj+I j 

r 
u 

n 3 
1 ^"s l 

V 3 ^ — 
n 3 ' A f" 

U n i t No. 1 

l _ 

V I 

N, 

U n i t No.a 
1 
1 i 

N 2 1 1 N 2 

I 

-1 

I 

U n i t 
1 

N o . m 

Figure 6.7. Open-loop system as a composition of uni t systems. 

http://No.in.-t-2
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that the c h a r a c t e r i s t i c of the i t h on-off element has the form 

shown i n Figure 6.6 (b), i . e . with or without hysteresis so 

that x . > o « 
01 — 

S e l f — o s c i l l a t i o n s . 

In order to determine the possible periods of s e l f 

o s c i l l a t i o n , we open the system i n Figure 6.6 (a) at the point 

0. The r e s u l t i n g open-loop system can be regarded as a composi­

t i o n of uni t systems as shown i n Figure 6.7. The i t h uni t 

(or sub—system) consists of the i t h on-off element and the 

l i n e a r system or systems immediately preceding i t . Let 0^(T) be 

the phase c h a r a c t e r i s t i c of the i t h sub-system. The functions 

©^(T) for i = 1, 2, n^ except for i = n^ + 1 (we are 

assuming a t o t a l of n^ on-off elements i n our system) are a l l 

known, or can be calculated by the methods indicated i n Chapter 4, 

We now evaluate the t o t a l phase c h a r a c t e r i s t i c s , © ^ 

a n d , between the points 0 and A and between 0 and B, 

r e s p e c t i v e l y , i n Figures 6.6 and 6.7: 

3 n^ + 2 n-̂  + 3 n 2 + 1 3 

® i = ° T 1 , o + © . ,+ . . .+ ©„ + ©„ , , + . . . + © „ } (6.6) 1 n^ + .2 n^ + 5 xv^ n-j + 1 n^ 

+ 0.. +...+ Q 

1 n. 

where, for s i m p l i c i t y , we have wri t ten 0^ for © ^ ( T ) . Next we 

determine the reduced phase c h a r a c t e r i s t i c s 
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© * 3 = © 3 " fl^] 2T 

©*! = ©! " I ^ J 2 T 

(6.7) 

Sketches of possible plots of © , © * ^ > ©3* ©*3 a s functions 

of T are given i n Figure 6.8. Observe that O<(H^< 2T ( i = 1 ,3) . 

Figure 6.8. Sketches of possible plots of 

®!» © V © 3 > ©* 3-

Consider now the n^ + 1 th sub-system. Figure 6.9 

i l l u s t r a t e s the general forms of the inputs and output of th is 

uni t system. Since the functions (H)*^ and are known, we 

can therefore compute 
©*, 

2M. 
(t) = 1 

H n . ( s ) ( - l ) V < k + T 1 ) 1
 B t 

~ ^ - 7p e ds 
2 ^ C 1 o r C 2

 S 1 + e s T 

(6.8) 

( i = 1,3| © J + k T < t < © * + (k + 1)T; k = o, - 1 , . . . ) . 
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Consequently, 

\ + l ( t ) = v l ( t ) " v 3 ( t ) 

Hn3 h 

-M. 

H 

"rt,+i —>-

Figure 6.9. Relationships i n the n^ + 1 th 

sub—system. 

can be determined for any time i n t e r v a l . In p a r t i c u l a r , we 

can determine the time @ * = © * ( T ) , o ^ © * < 2 T , at which the 

output y . >r (t) of th is uni t system f i r s t jumps from -M . , 

to + ^ i n f a c t , @ * i s the least p o s i t i v e root of the 

equation x , , (t) = x . The quantity © * = © * (T) n-̂  T x o 9 u^ *r J-

i s the reduced phase c h a r a c t e r i s t i c of the entire open—loop 

system i n Figure 6.7. Hence the values of T f o r which © * ( T ) = o 

are the possible h a l f - p e r i o d s of s e l f o s c i l l a t i o n of the 

closed-loop system. 

The method described above automatically guarantees 

that the condi t ion expressed by Eqs. (4.19) and ( 4 » 2 0 ) are 

s a t i s f i e d ? that i s , that the reduced phase c h a r a c t e r i s t i c of 

each loop i s zero . 
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Forced o s c i l l a t i o n s 

The procedure for the determination of the conditions that 

permit forced o s c i l l a t i o n s i s as f o l l o w s : 

Let T = T t / « > o be the h a l f - p e r i o d of forced o s c i l l a t i o n . 

The t o t a l phase c h a r a c t e r i s t i c between 0 and B ( in Figure 6.7), 

minus the contr ibut ion due to Unit No- 1, i s denoted by © 2 ( T ) 

and the corresponding reduced phase c h a r a c t e r i s t i c by © * ( T ) so 

that 

® 2 ( T ) = © X ( T ) - 0 X (T) 

and 

©$(T) = ©,(T) - IL—|T—J 2 T 

(6.9) 

The reduced phase c h a r a c t e r i s t i c between 0 and A i s denoted by 

© * ( T ) . For per iodic phenomena of h a l f - p e r i o d T q > the 

quanti t ies © ^ ^ o ^ a n ( * © f ^ 0 ^ a r e f i x e d non-negative numbers 

less that 2T » o 

Forced o s c i l l a t i o n s of h a l f - p e r i o d T q may occur i f the 

N element switches over at time t = o and i f the slope of 

the input to t h i s element i s p o s i t i v e at t h i s i n s t a n t : that i s , 

x , , (o) = x , i and x , ( o ) > o n + 1 o,n^ + 1 n^ + 1 

Because of the reduced phase s h i f t of © * ( T q ) between 

0 and A , the input to H at point A i s s h i f t e d to the r ight by 
n 3 

© * ( T q ) r e l a t i v e to the input at point 0. Referr ing to Unit 

) 
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No. 1 to which the f o r c i n g funct ion f ( t ) i s a p p l i e d , we l e t 

f ( t ) = A Q f ( t - T) 

where T i s the phase s h i f t of f ( t ) r e l a t i v e to the input to H n . 

4 
The phase c h a r a c t e r i s t i c of Unit No. 1 i s a funct ion of T and 

i s denoted by 0,(T T ) • Therefore the phase c h a r a c t e r i s t i c l o» 

between 0 and B i s also a funct ion of T • i t i s determined by 

<S>l ( T o, T ) = © * ( T O ) + 0 L ( T 0 T ) 

Thus, r e l a t i v e to the input at 0 , the input to H n i s s h i f t e d 

to 

i s 

the r i g h t by © (T T ) . Consequently, the output of N , 

x n x + l ( t ) = " V 3 ( t " ® 3 ) + v l ( t ~ ® 1 ) 

where v (t) and v , ( t ) are the outputs of H and H when 
3 ^3 

there i s no phase s h i f t of the waveforms between 0 and A and 

between 0 and B r e s p e c t i v e l y . 

The conditions that x -. (o) and x , (o) s a t i s f y 

can be represented on the Tsypkin J q + ^—plane 

T 

J n± + 1 ~ % X n 1 + 1 + + 1 

F i r s t the contr ibut ion due to -v^ i s p l o t t e d : i t i s the point 

°' = - \r V - ® 3 ( T o ) : ) " d v 3 ( - ® 3 ( T o n 

which i s independent of T . Next the contr ibut ion due to -v^ i s 
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added to the point O 1 ; th is contr ibut ion depends on Tand there­

fore y i e l d s the curve 

T 

^ i ( T ) V - ® * ( T
0 , r ) ) + J v i ( - ® J ( T O T ) ) 

with the point 0* as i t s o r i g i n , a s T v a r i e s from 0 to 2T Q. 

Figure 6.10 shows the "3 , -p lane and the two contributions 
n^ T J. 

to k , , and x . , . n^ + 1 n^ + 1 

<3*(T) loci with 
O'as origin 

n,-H 
v . —-

Figure 6.10. J , , - p l a n e . 

n^ + 1 

The values of T l y i n g i n the f i r s t quadrant of the 

J " n + -j^-plane and corresponding to the points of i n t e r s e c t i o n 
of the l o c i of <^(T) with the s t ra ight l i n e J X Q N + ^ § determine 

the conditions that are necessary for forced o s c i l l a t i o n s . 

I l l u s t r a t i v e Example of the A p p l i c a t i o n of the Phase Character­ 
i s t i c Concept to the Determination of the Periods of Self  
O s c i l l a t i o n s i n a Double-Loop System 

A double-loop system containing two N elements i s shown 

i n Figure 6.11. The method ( of solving for the possible 

half—periods of s e l f o s c i l l a t i o n ) given i n sect ion 6.2 i s used: 

that i s , the phase c h a r a c t e r i s t i c of the system i s evaluated 
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and the points of i n t e r s e c t i o n with the s t raight l i n e s 0 = 2kT(k 

o, 1, 2 , . . . ) give the possible ha l f -per iods of s e l f o s c i l l a t i o n s . 

N. 

—4 k 

KCS) N. 

-H — k, 
-i S 

v 3 

HaC6) 
+1 

- 1 x 
Hte) 
3 

k 3 s 

Figure 6*11* A double-loop system containing two 

N elements. 

As indica ted i n Figure 6.6 and 6.7, the double-loop 

system i s opened at the point X, and the system i s redrawn as 

shown i n Figure 6.12* The open-loop system consists of two unit 

systems, one (unit n o . l ) of the type shown i n Figure 4.13 and 

Unit No.2 

X 
Unit N o . l 

r H2Cs) HACs) 
kj, k 4 

X 

r- • 

"1 

rUs) rL(s) 

H,(s) 
+1 1 1 K, 

— - 1 1 1 
J 1_ 

V. 

+1 

-1 

Figure 6*12* Open-loop system of Figure 6.11 showing 

unit systems. 

the other (unit no.2) of the type shown i n Figure 6.9. 

From E q . (4.11), the output of ^ ( s ) H^(s) i s given by 
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V4 (t) = k 2 k 4 |^ -T 2 + (t - § ) + 2T 2
 e _ T y ^ ] , o < t < T (6.10) 

1+e 

Let the smallest non—negative value of t for which v^(t) = o be 

denoted by t * Therefore the phase c h a r a c t e r i s t i c 0 , (T) of o 1 

uni t no. 1 i s 

' t , i f v . (t ) <o o 4 o 

^ ( T ) = J (6.11) 

. t Q + T , i f v 4 ( t Q ) > o 

From E q . (4.10) and Figure 6.9, the output v^(t) of H^(s) i s 

determined by 

_ ( t + T - t o ) / T 

v ^ t ) = ± k x | " l -— zfjr ' ] ' ° < t < t
0 (6.12a) 

1+e 1 

where the plus sign before k^ i s used when v 4 ( t Q ) > o , and the 

minus sign when V . ( t ) <o: and 
4 o 

v x ( t ) = H & i ^ 1 - ^ _ ° y T j , t Q < t <T (6.12b) 
1+e 1 

where the minus sign before k ^ i s used when v 4 ( t Q ) > o, and the 

plus sign when v 4 ( t Q ) < o . The output v,j(t) of H ^ s J l L ^ s ) i s 

determined by E q . (4.10): 

- t / T 2 

V 3 ( t ) = k 2 k 3 |̂ 1 -
 2e_T/r j , o < t < T (6.13) 

1+e 2 

The t i m e © * ( T ) , o < ® * ( T ) <2T, at which the output of uni t no.2 

f i r s t jumps from —1 to +1 and at which v^(t) - v 3 ( t ) = o, i s the 

phase c h a r a c t e r i s t i c of the open-loop system. The values of T 
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for w h i c h © * ( T ) = o are the possible h a l f - p e r i o d s of s e l f 

o s c i l l a t i o n of the closed-loop system. 

For reasons of s i m p l i c i t y , the parameters k^, k 2 k 3* a n d 

71 are kept f i x e d * the values used are 

Three d i f f e r e n t values of 7^, 7^ = 0*125, 0.25, and 0»50, are 

used to i l l u s t r a t e the e f f e c t of the parameter 7^ on the phase 

c h a r a c t e r i s t i c © * ( T ) of the system. Figure 6.13 shows the p l o t 

of © * ( T ) vs T f o r the above-mentioned values of k^ , 2̂̂ 3* 7*2' 

and also shows the e f fec t of varying T-^. The possible h a l f -

periods of s e l f o s c i l l a t i o n are 

= 1 = 1 

T = 0.725 for T-L = 0.125, 

T = 0.925 for Tn = 0.25, 

and T = 1.025 for 7-, = 0.50. 



shown i n Figure 6.12. 
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7. MULTILOOP SYSTEMS 

In the preceding chapter we presented a method using 

the phase characteristic concept for the determination of the 

possible periods of symmetric; o s c i l l a t i o n s i n a double—loop 

system containing an arbitrary number of on-off elements. 

This method may also be applied to any multiloop system, 

containing any number of on-off elements, and i n which a l l the 

loops can be opened simultaneously by opening the system at 

one point. If there exists no one point which can open a l l 

the loops usimultaneously, then an e n t i r e l y new method of attack 

must be developed. 

This chapter w i l l be devoted to systems composed of the 

three types of unit systems shown i n Figure 7 . 1 » Methods of 

finding the phase characteristic of the basic units designated 

HCs) N 

T y p e I 

-»j HCs) |-^g)^[Nn[->-

Type II ^ 

T y p e i l l 

Figure 7*1. Basic unit systems under consideration. 

type I and type II are indicated i n Chapter 4. The manner of 

describing the phase characteristic patterns of the type III 

basic unit w i l l now be discussed. 

If a l l the on—off elements are without a dead zone, 

then the general forms of the inputs to and output of the type III 
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unit system are as shown i n Figure 7.2 . , Let YT be the phase 

lag of y.j("k) v i t h respect to y ^ ( t ) . C l e a r l y , as Y varies between 

the l i m i t s o < Y < 2 we generate the possible s i tuat ions that 

- T 

M 

Mi 

ST* . % Hi 

YT 
=77 

N, 
M, 

+T> 
V 7 % 

4 f 
Figure 7.2. Phase c h a r a c t e r i s t i c notations and 

conventions for the type III uni t system. 

w i l l occur i n the presence of simple per iodic phenomena with 

h a l f - p e r i o d T . Let 0^(T ,Y) be the phase c h a r a c t e r i s t i c of the 

output y^ of r e l a t i v e to the input y^ to, H . ; s i m i l a r l y , 

G^(T,Y) w i l l denote the phase c h a r a c t e r i s t i c of y^ r e l a t i v e to 

y . . For any f i x e d value of Y i n o < Y < 2 we can determine 
J 

©?;(T,Y)« Since the phase r e l a t i o n s h i p between y . and y . i s 
K 1 J 

given, t h i s means that e£(T ,Y) i s known once 0^(T,Y) has been 

determined. In f a c t , 

' e j ( T , Y ) 

o j ( T , Y ) = < 

. e k (T ,Y) 

- Y t , for ©£(T ,Y) >YT 

- YT + 2T, for © £ ( T , Y ) < Y T 

(7.1) 
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Consequentlyj by allowing Y to take on f i x e d values i n the 

i n t e r v a l o ^ K < 2 we can determine the phase c h a r a c t e r i s t i c s 

for both © ^ ( T , Y ) and ©jjj.(T,Y) with Y as the parameter. For 

def ini teness we w i l l use the notation 6^(T,Y"^) to represent the 

phase c h a r a c t e r i s t i c of y, r e l a t i v e to y. when y . lags y. by YT. 
K 1 J 1 

Having examined the phase re la t ionships i n the type III 

uni t system, we can now determine the possible periods of 

s e l f o s c i l l a t i o n for the double-loop system i n Figure 6.6 (a) 

by the fol lowing new approach. 

For s e l f o s c i l l a t i o n s of h a l f - p e r i o d T to occur, the 

reduced phase c h a r a c t e r i s t i c of each loop must be zero s i m u l ­

taneously. The new approach uses the information concerning 

the reduced phase c h a r a c t e r i s t i c s of a l l the loops . 

The system i n Figure 6.6 (a) consists of basic units 

of type I and one basic uni t of type I I I . (The various basic 

units are shown i n Figure 6.1.) The phase c h a r a c t e r i s t i c s of 

the i n d i v i d u a l u n i t s , namely 

©^(T) for a l l units except i = n^ + 1 

and 

n 1 n, n » n 
G / ... i (T ,Y ) and © ^ . , (T,Y ) for values of V 

* x 3 1 3 

i n the range o < Y < 2, are determined by the methods presented 

i n Chapter 4. 

With both the inner and outer loops (of Figure 5.6 (a)) 

open at A and B, the t o t a l phase c h a r a c t e r i s t i c of the inner 

loop i s 
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n~ 

1 3 • • .« 
(T) 

i ^ + 2 

and that of the outer loop i s (7.2) 

© 2 ( T , Y ) = 
n 2 n 4 n l ' 

°n' + i (« .Vj ' + I Z M 1 ' + g , ° i ( T ) + g e i< T > 
i ^ + 2 i=n3+l 

where o < Y < 2TQ . The corresponding reduced phase charac ter i s t i cs 

are then evaluated: 

n-©, (T , V)-n 
© * ( T , Y ) = © i ( T f t ) - { - ^ J 2T, ( i = 1, 2) (7.3) 

The values of Y and T at which the reduced phase character­

i s t i c s ©*(T ,Y) = O ; are now plot ted on a Y-T plane as curves of 
i ' 

Y= f i ( T ) , ( i = 1, 2) , as shown i n Figure 7.3. The reduced 

phase c h a r a c t e r i s t i c s of the two loops are simultaneously zero 

f o r values of T at the i n t e r s e c t i o n of the f -^T) and f 2 ( T ) 

curves. These values of T are possible h a l f - p e r i o d s of s e l f •> 

o s c i l l a t i o n f o r the closed-loop system. 

yC—Y--F((T) — y 

/ / 1 
/ / 1 

/ 1 

>— 

Figure 7.3, Curves of Y= f ^ T ) and Y= f 2 ( T ) 
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Possible periods of self o s c i l l a t i o n i n a more complex system 

As the multiloop system increases i n complexity, so does 

the procedure f o r the determination of the possible periods of 

o s c i l l a t i o n s . Nevertheless, a solution i s possible i n every 

case provided that we are w i l l i n g to carry out the necessarily 

increased labor. For i l l u s t r a t i v e purposes we consider the 

four-loop system as shown i n Figure 7»4, 

The steps i n the determination of the sought-for values 

of T are as follows: 

( i ) Ve f i r s t decompose the system into unit systems of the 

types I, II and I I I , 

( i i ) The phase characteristics of these unit systems are then 

evaluated. Let these be denoted by 

^ ( T ) for i = 1, 2,..., n g but i ^ nj+1, n 3+l, n 5+l , 

n, n, n_ n, n_ n 0 n K n 0 

e „ ' + l < T ' \ 3 > ' •n'+l<*'\j>' •nj+l<*'\*>' <>n|+l<*.*n*> • 

5 7 5 7 

Instead of a single value of Y (the quantity Y i s 

the r e l a t i v e phase s h i f t between the two inputs to a 

type III unit system), as i n the case of the system of 

Figure 6.6 (a) with one type III unit system, we now have 

three values of Y because there are three type III unit sys­

tems, Ve therefore proceed thus: 

( i i i ) Ve open loops 1, 2, and 3 at A, B, and C, as shown i n 

Figure 7,4. The t o t a l phase characteristics © n ( T , Y ) , © 2 ( T , Y ^ 



N , 11-^. H, 
X , * n . H, 

Loop 4 

Loop I 

"3 IN 

-xoi X̂  

Characteristic, erf i+h 

on-off element 

( i s i , 2 , . . . , n g ; 
-n, < n 2 < • • • < n 8 ) 

N, H, N, H, 

Loop 2. 

N. 
V 1 

H_. — -X N . 

H. 5L 
l - O O p 3 ^ 

H. 

e 7.4. Pour-loop system containing an a r b i t r a r y number of on-off elements. 
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and ©j(T,V) of the open loops 1, 2, and 3, respectively, 

are determined, with the input phase s h i f t variable 

Y (b <Y< 2) as a parameter i n each case* 

n n n3 

1 3 i =n-̂  +2 

n . 

©_(T ,Y) = ©* 5
+,(T , Y * 2 ) + * * i ( T ) 

^ n 3+i n 5 i = n 3 + 2
 x 

n„ 
© O ( T , Y ) = QI\AT,)L4) + I 7 © (T) 

n 5 + i n ? i = n 2 l 
5 

(7.4) 

(iv) 

Prom these we obtain the reduced phase characteris­

t i c f o r loops 1, 2, and 3* 
i r© (T , Y ) - n 

©*(T ,Y) = © ^ (T,Y) - [ 1
 2 T J 2T , ( i = 1, 2, 3) 

(7.5) 

If we now open loop 4 at D and close loops 1, 2, 

and 3, then the values of T corresponding to the zeros of 

©*(T,Y)» ( i = 1» 2, 3), may permit periodic o s c i l l a t i o n s 

to occur i n loops 1, 2, and 3 simultaneously. The problem 

remaining i s to determine from these values of T those that 

w i l l allow periodic o s c i l l a t i o n s to occur simultaneously 

i n a l l loops when loop 4 i s closed. We solve this 

problem as follows: 

The pairs of values (Y,T) corresponding to the zeros of 

the reduced phase characteristics ©*(T ,Y) of loops 1, 

2, and 3 are plotted as curves of Y= f ^ ( T ) , ( i = 1, 2, 3), 

as shown i n Figure 7.5. 
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2. •• 

An i n t e r v a l of f over which Y= t'^(T) exists 

simultaneously for i = 1, 2, 3» 

Figure 7 . 5 » Curves of Y = f ^ T ) for i = 1, 2, 3 showing 

range of possible h a l f - p e r i o d s of o s c i l l a t i o n s 

i n loops 1, 2, and 3. 

Ve consider only those i n t e r v a l s of T ( in Figure 7 » 5 ) for which 

a l l f^(T) ex is t simultaneously; th is means that on any 

v e r t i c a l l i n e through the Y-T p l o t , there exis ts a t r i p l e t 

of Y that determine a value of T such that o s c i l l a t i o n s are 

possible i n loops 1, 2, and 3. However, i f at a p a r t i c u l a r 

value T , the quanti t ies Y, = f (T ), Y 0 = f~(T ) exist but 

Y.j = f ^ ( T Q ) does not, then o s c i l l a t i o n s of half—period T Q 

are possible i n loops 1 and 2 but not i n loop 3. 

) Sequences of values of T, say , l ^ , . . . , T m , c o v e r i n g the 

i n t e r v a l s of T i n which f^(T) exis t simultaneously for i = 1, 

2, 3 are se lec ted . At each value of T . ( i = m) we 
n. n. n. 

r e a d o f f the c o r r e s p o n d i n g t r i p l e t Y " * " , Y 2 , a n d Y ^ from 

Figure 7«5» From the s e t o f phase c h a r a c t e r i s t i c ' s o b t a i n e d 
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i n step ( i i ) we f i n d the values of the phase charac ter i s t i cs 
n n, n_ n_ 

of three type III unitss namely ©„ , , ( T , V ), ©„ M , ( T , Y ) 
r, 1 3 3 5 

and © ^ , ( T , Y ) for the above T. and t r i p l e t s of Y . n^ + 1 ' n ^ ' I ^ 

( v i i ) Ve now open loop 4 at D and form the t o t a l phase character­

i s t i c of t h i s loop for the above !L\ and t r i p l e t s of Y t 

®4<Ti> + , V l " ' . ^ * ° » 5 « ( , » ^ ) 

n 2 =4 "6 n 8 
+ E V T i ' + z ; W + E V V + E W 
k=n1+2 k=n3+2 k=n^+2 k=n^+2 

(7.6) 

At t h i s stage we know that o s c i l l a t i o n s of h a l f -

period T (where T belongs to the above-chosen i n t e r v a l s ) 

are possible i n loops 1, 2, and 3. Prom among these 

values of T, we f i n d those that w i l l make the reduced phase 

c h a r a c t e r i s t i c © ^ ( T ) of loop 4 equal to zero; s e l f o s c i l l a ­

t ions may occur at such values of T for which © £ ( T ) = o, 

when loop 4 i s c losed. 

Forced o s c i l l a t i o n s 

The possible periods of forced o s c i l l a t i o n s are determined 

i n p r e c i s e l y the same manner as the e a r l i e r indicated methods. 

More complicated systems may be studied by the above-

mentioned method or s l i g h t modifications of i t . 



P A R T I I I 

O N - O F F E L E M E N T S W I T H P R O ­

P O R T I O N A L B A N D 



8* ON-OFF ELEMENTS VITH PROPORTIONAL BAND 

In Parts I and II we considered ideal on-off elements. 

Let us now turn our at tention to on-off elements with a propor­

t i o n a l band. Examples of some of the c h a r a c t e r i s t i c s of such 

elements are shown i n Figure 8.1 . 

(c) (d) 

Figure 8.1* Charac ter i s t i cs of some on-off elements 

with proport ional band. 

(a) Vithout hysteresis and dead zone. 
(b) V i t h hysteresis and without dead zone. 
(c) Vithout hysteresis and with dead zone. 
(d) V i t h hysteresis and with dead zone. 

8.1 TRANSIENT RESPONSE OF A SINGLE-LOOP SISTEM 
CONTAINING ONE ON-OFF ELEMENT VITH PROPORTIONAL BAND 

The system under consideration i s shown i n Figure 8.2. 
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-PC*) xCt) 

_N_ 
1ST 

—;> 

0K+) 

S l o p e s A 

Figure 8*2* Block diagram of s ingle - loop system contain­

ing one on-off element with proport ional band. 

Suppose that the error s ignal x(t) remains i n the l i n e a r 

regions for a l l times t i n the i n t e r v a l s 

T < t < T + h ,,,(11 = 0,1, 2,...) 

n— — n n + 1 

where, without loss of g e n e r a l i t y , we take T q = o, and stays i n 

the saturat ion regions for the remaining i n t e r v a l s 

\ + h n + x < t < T n + 1 , (n = o, 1, 2,...) 

Let the transform of the i n i t i a l conditions referred to the out­

put of the l i n e a r part H(s) be denoted by V Q ( s ) . Then, an e q u i ­

valent system, shown i n Figure 8.3, consists of a number of samplers 

operating i n p a r a l l e l ; the number of samplers depends on the number 

of times the error s ignal passes through the l i n e a r region of N. 

The samplers that correspond to operation i n the l i n e a r regions 

have inputs denoted by X n ( s ) , where X n ( s ) = X(s) for n = o, 1, 2, 
. . . , ; t h e sampler with input X n ( s ) i s closed during the i n t e r v a l 

T < t < T + h , and open otherwise. The quanti t ies X (s) are n — — n n+r ^ np v ' 

the p-transforms of ^n(s)*"'"? The sampler with input —M is 

closed during the saturat ion i n t e r v a l s and open otherwise; 
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A n p(s) i s the p—transform of the output of t h i s sampler. 

l T " 2 

Figure 8 .3 . System equivalent to that of Figure 8.2. 

Let us now evaluate the response of the above system for 

the d i f f e r e n t time i n t e r v a l s (T , T + h _,_ , ) and (T + h , 
n n n + 1 n n + 1' 

T n i^» ( n = °> 1» 2 , . . . ) . Figure 8.4 gives the equivalent 

system for the time i n t e r v a l o < t < h ^ . (Note that T q = o.) 

The input X q ( S ) to the sampler i s given by 

X Q ( s ) = F Q (s ) - C o (s) 

that i s , 

= F q ( S ) - X o ( s )AH(s ) ; 

F D ( s ) 
X o ( s ) = 1 + AH(s) ' o < t < h r 
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V0C9> 

Fes) t F0&t X„Cs) Xp/O 

V 0 CS) 

AH(s) 
VCs) — v -

Figure 8 . 4 , Equivalent system for the i n t e r v a l o < t < h , , 

Now at t = h^ the sampler i s opened and the input to H(s) i s 

equal to zero for t > h ^ , i . e . we can define 

( x Q ( t ) , for o < t < h 1 

* o p ( t > = < 

k o , for t > h 1 

Therefore 

op 
(t) = x Q ( t ) [u(t) - u(t - 1^)] , for t > o . 

Using the complex convolution i n t e g r a l we get the Laplace t rans­

form of x ( t ) j 
Jr 

X (s) = ^ \ X (V) 
op 2-rc.T *J o 

- ( s -v ) h x 

2 i r j s - y 
dV 

where C i s a contour enclosing a l l the poles of X Q ( v ) or 

j- - ( s - v ) ^ - . 

|_1 - e J / ( s - V ) i n a mathematically p o s i t i v e or negative 

sense r e s p e c t i v e l y . Using the p-transform notation of the theory 

13 
of sampled-data systems, namely 
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T +h -(s-v)T -(s-V>) (T +h , ) n n+1 ,_ _ , A l p x / n n n+1 , . , e - e dy PT ^ [E(s)] = IE(J)  
n C 

(8.1) 

we get the transform of the component of the output from the 

f i r s t pulses 

C o ( s ) = X o p ( s ) A H ( s ) =AH(s) P J [1 ' ^ j , ) ] , t > o . 

Consequently, the output of the system i s 

V(s) = V Q ( s ) + AH(s) P* [ 1 /1H(!)] ' ' o r O S t ^ y 

For the duration h ^ < t < T , we have the addi t ional 

component 
, „ / \ - s h , - s T , 

B (s) = ±M S i s i ( e 1 - e 1 ) , for t > h , o s ' 1 

due to the saturat ion e f f e c t . Hence the t o t a l output of the 

system i s 
h, r F (s) - i 4. r w A - s h , - s T , 

V(s) = V o ( s ) + AH(s) Pj [ , + ° A H ( s ) ] - M ^T1 ( e " e 

h 1 < t < T 1 (8.2) 

or , i n shorter notat ion, 

V ( s ) = V q ( S ) + C Q ( s ) + B q ( S ) , h 1 < t < T 1 

= D ( s ) s a y . o 

Since F ( s ) , H(s) are known and V q ( S ) i s known or can be 

determined, the output v( t ) may be evaluated from the inverse 

of V(s) for the i n t e r v a l i n quest ion. 
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Let us now consider the output for the duration T ^ < t < T ^ 

+ h^* The equivalent system for this period i s shown i n 

Figure 8.5. 

I>0Cs)= V0Cs)+C.cs)+Vs) 

AHCs) C.Cs) 

Figure 8 .5 . Equivalent system for the i n t e r v a l T^< t<T^+h2< 

Since the sampler i n Figure 8.5 i s open during o < t <T^, the 

input f^(t ) = *C ^F^(s)J to th is sampler has no e f f e c t on the 

output component c^(t) for o < t < T ^ . We can therefore replace 

f^( t ) by a new funct ion f ^ ( t ) : 

, for o < t < T l f 

L f ^ t ) , , for t > T 1 , 

f n ( t ) = i 

which may also be wri t ten as 

f x l ( t ) = f 1 ( t ) u(t - T±). 

In terms of the p-notat ion , the Laplace transform of f ^ ( t ) i s 

P l l ( s ) = ^ ^ ( 8 ) ] = ? T I [ F ( s ) - D 0 ( S ) ] 

Consequently, the error for t h i s durat ion, namely 

X ; L ( t ) = f x ( t ) - C ]_(t) 
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may likewise be replaced by 

x n ( t ) = f n ( t ) - c 1 ( t ) , 

which states that the ef fec t ive error may be regarded as zero 

for the equivalent system during the i n t e r v a l o < t < T ^ » 

In order to calculate X^^(t) conveniently, we l e t t^ 

represent a new time axis such that 

t x = t - T 1 # 

Therefore 

f 11 
(t) = f n ( t x + T x ) , c x ( t ) = c 1(t ]_ + T x ) 

X l l ( t ) = x n ( t 1 + T x ) , x l p ( t ) = x l p ( t 1 + T x ) . 

The int roduct ion of the new time axis t^ renders the s i t u a t i o n 

i d e n t i c a l to that of the equivalent system for the i n t e r v a l 

o < t<h^; that i s , the input f ± ^ ( t ) i s sampled for the period 

o<t^< and i s fed to a system with zero i n i t i a l condi t ions . 

Consequently, 

X ( c l ( t ) ) . ^ . ^ [ j ^ & ^ i . ] . 

By making use of the r e l a t i o n s h i p 

3 ! ( g ( t ) ) = X{g(\ + T x ) ) , 

— s T 

that i s , G(s) = e 1 ^ [ g ( t 1 ) ] , 

and replacing F ] _ 1 ( s ) by P° T [ P ( S ) - V q ( S ) - C Q ( s ) - B q ( S ) ] = 1 
OO i -P T i [ P ( s ) - D o ( s ) ] 
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we f i n a l l y get the Laplace transform of the component c^(t) of 

the output to be 
sT 

1 \ [ * < • > - 3 > 0 < - > ] 
i + AH(s) 

- s T , h0 

C.(s) = e 1 AH(s) P* 

The t o t a l output transform for the i n t e r v a l T ^ < t < T ^ + h^ i s 

V(s) = V (s) + C (s) + B (s) + CL(s) . 
O O O l 

For the duration T^ + h 2 < t < T 2 we have the a d d i t i o n a l component 

+ r -s(T,+h ) - s T -j , 
B 1 ( s ) = ±M Le 1 2 - e 2 J , t ^ + h , , 

due to the saturat ion e f f e c t . Thus the t o t a l output transform 

i s 

V(s) = V o ( s ) + C Q (s) + B Q (s) + C ^ s ) + B 1 ( a ) , 

for T x + h 2 < t < T 2 . 

The genera l iza t ion to the t o t a l output transform for 

any time i n t e r v a l i s now obvious. In f a c t , 
n n-1 

2 Ms) + £ B t ( s ) , f o r T n < t < T T i + h 

V(s) = V o ( s ) +i 
k=l 

n 

k=l n n+1 

(8.3) 

2 C k (s ) + B k ( s ) , for T n + h n + 1 < t < T n + 1 

Lk=l 

where V o ( s ) represents the i n i t i a l conditions referred to the out­

put of the o r i g i n a l system under considerat ion, where the 

component C^(s) i s given by 

C k (s ) = e 
-sT, 

AH(s) 

x P Ts+l 
sT, 

P T [ F ( s ) - V o ( s ) - C o ( s ) - B o ( s ) - . . . - C k - 1 ( s ) - B k_ 1(s3 

1 + AH(s) 
(8.4) 
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for t > T k t 

and where the saturat ion component B^(s) i s given by 

for t > T k ( 8 i 5 ) 

Analogous equations can be developed for the t ransient r e ­

sponse i n the case where the nonlinear element incorporates a dead-

zone. 

We have demonstrated above how the superposit ion p r i n c i p l e 

(as applied to the l i n e a r part of the system) and some properties 

of the p-transform can be used to evaluate the exact response of 

the system under consideration by means of a step-by-step 

a n a l y s i s . 

8.2 PERIODIC OSCILLATIONS IN A SINGLE-LOOP 
SYSTEM CONTAINING ONE ON-OFF ELEMENT WITH 

PROPORTIONAL BAND 

The determination of the per iodic states i n automatic 

control systems having a single nonlinear element with piecewise 

l i n e a r c h a r a c t e r i s t i c has already received wide at tent ion i n 

the l i t e r a t u r e . 
10 11 

M. A . Aizerman and F» R» Gantmakher r determined 

the per iodic states i n nonlinear s ingle - loop systems with a 

piecewise l i n e a r c h a r a c t e r i s t i c consis t ing of segments p a r a l l e l 

to two given s t raight l i n e s * In making use of t h i s method i t i s 

necessary to integrate the equations of a l l the l i n e a r systems* 

into which the system under consideration can be decomposed. 
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The per iodic solutions are then constructed with the help of 

these i n t e g r a l s , 
12 

L . A , Gusev also dealt with the determination of the 

per iodic states of a broader class of s ingle - loop nonlinear 

control systems, namely, those with nonlinear elements having 

an a r b i t r a r y piecewise l i n e a r c h a r a c t e r i s t i c . His method does 

not require the i n t e g r a t i o n of the respective l i n e a r equations 

into which the system may be decomposed. The per iodic solutions 

are determined i n the form of a complete Fourier series without 

neglecting harmonics. The problem here i s reduced to solving 

a set of simultaneous transcendental equations that determine the 

behaviour i n each segment of the c h a r a c t e r i s t i c . 

In t h i s sect ion we w i l l r e s t r i c t our a t tent ion to a c o n s i ­

derat ion of simple symmetric o s c i l l a t i o n s i n the system as shown 

i n Figure 8.2 . We w i l l present two new methods of solving the 

per iodic states i n such systems: 

1. an approximate method which i s v a l i d for the s u f f i c i e n t l y 

large class of systems i n which there i s some f i l t e r i n g 

ac t ion by the l i n e a r part of the system. I t has the 

advantages of being just as simple as but much more 

accurate than the descr ibing funct ion method i n the 

majority of cases of p r a c t i c a l i n t e r e s t . 

2. the second method i s through the s o l u t i o n of l i n e a r 

V o l t e r r a i n t e g r a l equations. Reasonably accurate 

solutions may be found by the method of successive 

approximations• 
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1. The "Trapezoidal" Approximation* 

Assume that the system i n Pigure 8.2 has attained a 

simple symmetric steady state such that x(t) i s i n the lin e a r 

regions of the saturation characteristic (with or without 

hysteresis) for durations of length hT as shown i n Pigure 8.6 (a). 

Figure 8.6. (a) Exact output of N i n Figure 8.2 i n the case 
of simple symmetric o s c i l l a t i o n s $ 

(b) Corresponding approximation when H(s) has 
a f i l t e r i n g action. 

If the f i l t e r i n g action of the linear part of the system H(s) i s 

good and the system input f ( t ) has a predominant fundamental com­

ponent, then we can replace the portions of the waveform y(t) i n 

the intervals n T ^ t < n T + h(n = o, —1, ...••) by straight l i n e 

segments as shown i n Figure 8*6 (b). 
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The precision of this approximation can be best judged 

by comparing i t with that made by the describing function method,' 

For this purpose, assume that the input to the nonlinear element 

i s sinusoidal* Then the t y p i c a l output y(t) i s a clipped 

sinusoid as shown i n Figure 8,7, where i t i s assumed that M<1, 

The exact output of N i s 

Input to N i 
~" = sin cot 

M 

\-T 0 

Approximate 
Output erf N 

2J... . 

Input to N i 
~" = sin cot 

M 

\-T 0 
/ \ /1 1 V / 
' i i \T / 

Approximate 
Output erf N 

2J... . 
•• -2T hT 

Exact 
Outpu'tof N. 

V 

Figure 8,7* Exact and approximate outputs of N f o r 

a sinusoidal input, 

f s i n wt, for (n - h) T < t ^ (n + h) T 
y = < (n = o, -1, -2,»»*) 

v ( - l ) 1 ^ = (sin u h ) ( - l ) n , for (n + h ) T < t < ( n + 1 - h) T 

and i t s Fourier series expansion i s 

, \ ~ n«t 
L n-1 + n+1 J i 

n odd 

2 T sln(n-l)-n:h , sin(n+l)-rch 1 s i n nfl)t / Q ,\ 
y = n

 Z, L n-1 + n+1 J n ( 8 - 6 ) 

n=l 

The approximate output, using straight l i n e segments^ i s 

described by 
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' ( - l ) n sin_2ph ( t _ n T ) 9 f o r ( n _ h ) T < t < ( n + h ) T 

(n = o, i l , . , , ) 

. ( - l ) 1 ^ = ( - l ) n s i n Tth , for (n+h) T < t < ( n + l - h ) T 

and i t s Fourier ser ies expansion i s 

y a p 
4 s i n un 

r c 2 h 
S 
n=l 
n odd 

s i n nTch s i n nttt 
n n 

(8.7) 

The f i r s t few terms of the expansions (8.6) and (8.7) for 

various values of h are 

y = 0.944 s i n » t + 0.046 s i n 3ttt - 0.028 s i n 5 « t ^ 

y = 0.916 s i n ttt + 0.000 sir* 3 « t - 0.036 s i n 5 » t +*••, 

6b p 
y = 0.817 s i n cot + 0.106 s i n 3 » t - 0.021 s i n 5 » t +••• 

y = 0.814 s i n fi>t + 0.091 s i n 3 « t - 0.032 s i n 5 » t +**• 

y = 0.475 s i n « t + 0.128 s i n 3a>t + 0.047 s i n 5«ot + . . . 

h = 

8 

ap 
0.475 s i n a t + 0.128 s i n 3fi>t + 0.046 s i n 5 « t +..• 

(8.8) 

The descr ibing funct ion method ignores a l l the harmonics and 

considers only the fundamental component. The trapezoidal approx­

imation, however* takes a l l the harmonics into considerat ion . 

An inspect ion of Equations (8.8) indicates that the l a t t e r 

approximation i s superior to that of the descr ibing funct ion 

method for inputs c l ipped to about eighty-seven percent of 

t h e i r amplitudes* 
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Let us now analyse the per iodic states of the system 

for the shape of the per iodic output and the possible periods 

of o s c i l l a t i o n * Consider y ( t ) as shown i n Figure 8*6 (b) . 
approx 

Let 

Then 

y o ( t ) l )M [u(t) - u(t - hT)] 

y x ( t ) = M [u(t - hT) - u(t - T ) ] 

f I y o ( t + n T ) ( - l ) n + 2 y ( t + n T ) ( - l ) n 

n=o 0 n=l 1 

for + <o <t <hT * 

approx = < 

2 ( - l ) n T y Q ( t + nT) + y } ( t + n T ) ] 

for + hT<t<T 
n=o 

Now 

!(>„<*>) - I„(.) = T ^2 [4 - (2 H- shT)( l • .-•>*)] 

and M8.9) 

X ( y i ( t ) ) = I x ( s ) = f(e 

so that the output v ( t ) i s given by 

-shT -sT\ — e ) , 

i £ Y (s)-I,(s)e s T , 
v( t ) = 9 H(s) i-^Tf e s t ds , f o r o <t <hT 

7 1 3 C l o r C 2 l + e sT 

, r T (s)+T 1(s) , 
W ^ J „ H ( s ) ° * ds , 

H8.10) 

C l 0 r C 2 

for hT <t <T 
l + e 

where C ^ encloses only the poles of H ( s ) ^T q (S) - Y^(s )e S ' * ' J or 
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H(s) [[^ 0( s) + ^ i ^ s ^ J * a n ^ ^2 e n c - L o s e s o n l y the poles of 
s T 

l / ( l + e ) . The contour in tegra ls along C^ and are evaluated 

i n a mathematically p o s i t i v e and negative sense r e s p e c t i v e l y . 

This w i l l be implied f o r a l l contour integra ls occurring i n this 

chapter. Since ^ Q (s) and Y-^(s) are known (Eq. (8.9) ), and H(s) 

i s given, the per iodic output i s determined by (8.10)* 

Consider the c h a r a c t e r i s t i c s i n Figures 8,1 (a) and 

8.1 (b) . The conditions for the existence of per iodic o s c i l l a ­

t ions are, under the assumption that t = 0 as shown i n 

Figure 8.6 (a) , 

x [(n + h ) T J = ( - l ) n x c = x [ ( n + 1)T] (8.11a) 

x [(n + h)T] ( - l ) n > o > x [(n + 1 )T ] ( - l ) n (8.11b) 

(n = o , — l , —2,...) 

i n the case of saturat ion without hysteresis or dead zone, and are 

x [(n + h)T] = ( - 1 ) % , x [(n + 1 )T ] = ( - l ) n ( - X l ) 
(8.12a) 

x Rn + h ) T l ( - l ) n > o > x [(n + 1 )T ] ( - l ) n 

L J L J (8.12b) 

(n - o, - 1 , —2,...) 

in the case of saturat ion with hysteresis and without dead zone. 

In order to determine the possible h a l f - p e r i o d s of 

o s c i l l a t i o n , we introduce the concept of the Tsypkin l o c i . 

These are defined by 
J(T) = J x(T) + jx(T) 1 

% I (8.13) 

a n d J(M)= I x(hT) + jx(hT) J 

Since x(t) i s determined by x(t ) = f ( t ) - v ( t ) , as shown i n 

Figure 8.2, and v ( t ) i s a funct ion of h and T, as given by Eqs. 

(8.9) and (8.10), i t follows that the Tsypkin l o c i J (T) and 

J(hT) are each functions of h and T. 
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Two Tsypkin l o c i are required because the system i n 

Pigure 8.2 has two switching instants wi thin the half—period T . 

The imaginary parts of the Tsypkin l o c i determine the switching 

i n s t a n t s , and the r e a l parts determine the switching d i r e c t i o n s . 

The proper switching instants occur at the intersec t ions of the 

Tsypkin l o c i with the l i n e ; jx ( in the case of saturat ion 

c 

without hysteresis and dead zone); a l s o , from Pigure 6*6 (a), 

the proper switching d i r e c t i o n s must be i n the left—half plane 

f o r the J ( T ) l o c i f and the r i g h t - h a l f plane for the CT(hT) l o c i . 
Self o s c i l l a t i o n s i n the case of the saturat ion c h a r a c t e r i s t i c . 

The Tsypkin l o c i are p lo t ted with the help of Eqs . (8.10). 

possible h a l f - p e r i o d s of s e l f o s c i l l a t i o n . 
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Using h as the parameter and T as the variable. The straight 

lines jx are next inserted on the J(hT) and J(T) planes* 
c 

The values of h and T corresponding to the points of intersection 

of these l o c i with jx are then plotted on the h-T plane. The 
c 

construction i s shown i n Pigure 8 . 8 . Any pair of values, such 

as (h , , T ,) and (h T „), occurring at the intersection of o l ' o l o2 7 o2 1 & 

the resulting curves i n the h-T-plane may give r i s e to se l f 

o s c i l l a t i o n s . 

Self o s c i l l a t i o n s i n the case of saturation with hysteresis. 

The construction i n this case proceeds i n precisely the 

same way as the above, except that instead of the straight lines 

j x Q we introduce the straight lines - j x ^ and j x 2 on the J(T) and 

3(hT) planes respectively, as shown i n Figure 8 . 9 . 

Figure 8 .9. Construction for the determination of the possible 
half—periods of se l f o s c i l l a t i o n i n the case of 
saturation with hysteresis. 
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Forced o s c i l l a t i o n s i n case of saturation* 

In the case of s e l f o s c i l l a t i o n s x(t) = -v ( t ) and the 

unknown quanti t ies are h and T. But i n the case of forced 

o s c i l l a t i o n s x(t) = f ( t ) - v ( t ) , T q the h a l f - p e r i o d of o s c i l l a ­

t i o n i s known, and the sought-for quanti t ies are now h and the 

phase s h i f t T of f ( t ) r e l a t i v e to v ( t ) . As i n E q . ( 5 « l ) , we l e t 

f ( t ) = A o f Q ( t - f ) 

where A = max 
o 

f ( t ) , and max f ( t ) = 1. 

The procedure for determining h and T i s as f o l l o w s . As 

mentioned e a r l i e r , the imaginary parts of the Tsypkin l o c i deter­

mine the switching instants of x(t) and the rea l parts the 

switching di rec t ions A ( t ) » We now have two contributions to 

x(t) and x(t)> because x(t) consists of two par ts , -v ( t ) and 

f ( t ) , where v( t ) i s determined by E q . (8.10). The h parameter, 

o < h < l , i s v a r i e d by choosing a sequence of values , o<h^<h2 

. . . < h n = 1. 

The contr ibut ion of —v(t) to x(t) for a f i x e d h a l f - p e r i o d 

T q and for h = h^ appears as the points 

T 
0 T . = - - ° - v(T ) - Jv(T ) i n the . J (T) -plane, 

1,1 % o o 

and the points 
T 

° h T , i = ~ "T ^ r ( h T o ) ~ 3 ' v ( h T
0 ) i n t h e J (hT) -plane , 

f o r i = 1, 2 , . . . , n . Using the points 0̂ , ^ and 0̂ ,̂ ^ as o r i g i n s , 
we next add the contr ibut ion due to f ( t ) = A f (t - f ) : these 

v ' o o ' ' 
contr ibut ions , denoted by 
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appear as closed curves, as T v a r i e s over the range o < T < 2 T Q » 

The pairs of values (h,7") at the inters e c t i o n of the 3*— curves 

with the straight l i n e s jx , (such pairs must be i n the l e f t - h a l f 

J(T)-plane and i n the right-half J(hT)-plane to s a t i s f y the 

proper switching instants and switching directions) may give rise 

to forced o s c i l l a t i o n s * The (h,T) values are plotted i n the 

h-Tplane, as shown i n Pigure 8,10, to give two curves corres­

ponding to each of the $-planes. The points of intersection 

of the h-T curves y i e l d pairs of values (h,T) for which forced 

o s c i l l a t i o n s may occur. 

Pigure 8*10* Construction to determine values of h and 

T that may give r i s e to forced o s c i l l a t i o n . 
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We observe that we may get more than one h— T curve 

from each J—plane, depending upon the complexity of f ( t ) . 

An analogous procedure can be used to determine pairs 

of values (h, 7") that may give r i s e to forced o s c i l l a t i o n s i n 

the case of the saturation characteristic with hysteresis. 

2. The Integral Equation Approach. 

Referring to the exact output y(t) of the nonlinear 

element, l e t 

y 2 ( t ) = A x(t) [u(t) - u(t - hT)] 

Then the Laplace transform of the output of the linear part of 

the system, V(s)j has, by an argument analogous to that used i n 

deriving Equation (8*10), the form 

V(s) = 1 

fp 2 (s) - Y ^ s ) e s M 
M J H(s) , for o<t<hT 
L 1 + e 

rl (s) + T (s) I 
M ± _ H(s) , for hT<t<T 

. L 1 + e 

I (8.14) 

where 

and 

Let 

T 2 ( s ) = A ^ [ x ( t ) [u(t) - u(t - h T ) ] ) 

v / s M / -shT - S T N T 1 ( s ) = - ( e - e ). 

2 * j C l o r C 2 1 + e s T 6 * 

where i s a contour which encloses only the poles of H(s)Y^(s) 

s T 
and C 0 encloses only the poles of l / ( l + e ). This expression 
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for v^(t) can be evaluated by the methods described i n Chapter 

3. Furthermorej l e t 

«<*> = ^ J | e s t ds 
C 1orC 2 l + e s x 

where C^ encloses only the poles of H(s) and encloses only 

sT 
the poles of l / ( l + e )• Recall that 

v(t) = f ( t ) - v ( t ) . 

By using the real convolution i n t e g r a l , and the expressions 

f o r t i f ( t ) , v(t) and ^ ( s ) above, the inverse Laplace transform 

of Eq. (8.14) y i e l d s * upon rearrangement of i t s terms, 

t 
x(t) = f ( t ) + v^t+T) - A J * x(T) [u(t) - u(t-hT) J«(t-T)dT 

(8.15) 

o 
for o <t <hT, 

t 
x(t) = f ( t ) - v x ( t ) - A ^ x(T) [u(t) - u(t-hT) ]«(t~T)dT 

for hT<t<T. 

These equations are l i n e a r Volterra integral equations of the 
/ \ 14 second kind with x(t) as the only unknown. Such equations 

are readily solved by Picard's process of successive approxima­

tions. P r a c t i c a l solutions of such equations may be found 
15 

by means of a repetitive d i f f e r e n t i a l analyzer. 



P A R T I V 

T H E S T A B I L I T Y P R O B L E M 
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9. STABILITY OF PERIODIC STATES IN ON-OFF SYSTEMS 
WITH OR WITHOUT A PROPORTIONAL BAND 

The investigation of the possible periods of the periodic 

states, including both self and forced o s c i l l a t i o n s , was 

considered i n the preceding chapters. Now the question of the 

s t a b i l i t y of these periodic states acquires considerable importance. 

Only when stable can these periodic states be observed i n systems 

ph y s i c a l l y . Before investigating the s t a b i l i t y problem, l e t us 

f i r s t review the concept of s t a b i l i t y that w i l l be used* 

9.1 THE CONCEPT OF STABILITY OF PERIODIC STATES 

In t h i s study we w i l l consider the concept of s t a b i l i t y 

i n the sense of Lyapunov,^^ and i n particular asymptotic s t a b i ­

l i t y i n the small, or> as i t i s sometimes c a l l e d , l o c a l s t a b i l i t y . 

Let x(t) define a periodic state, the s t a b i l i t y of which is 

to be investigated. According to A. M. Lyapunov, we determine 

the s t a b i l i t y of the periodic state by studying the behaviour of 

the neighbouring non—periodic states. The non—periodic states 

close to the periodic one are excited by the introduction of 

a s u f f i c i e n t l y small disturbance; such a non-periodic state may 

be represented by 

x(t) = Sc(t) + $ ( t ) , (9.1) 

where £(t) i s the deviation from the periodic state* 

D e f i n i t i o n 1. If the deviation 2j(t), after the removal 

of the s u f f i c i e n t l y small disturbance, approaches zero 

asymptotically as time increases, that i s 

lim ^ ( t ) = o, (9.2) 
t~>-oo 
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then the periodic state investigated i s said to be 

asymptotically stable i n the small or i n the sense of 

Lyapunov* This means that as time increases a l l s u f f i ­

c i e n t l y close non-periodic states approach the periodic 

state asymptotically. 

I f * however, under the above-mentioned conditions 

|^(t) increases i n d e f i n i t e l y as time becomes i n d e f i n i t e l y 

large, then the periodic state under consideration i s said to 

be unstable* 

D e f i n i t i o n 2* In this case we consider any non—periodic 

state; a l l states other than the periodic state investigated 

are referred to as non-periodic states. The quantity £(t) 

i s now the deviation (from the periodic state) caused 

by any disturbance, regardless of s i z e . If |^(t)j approaches 

zero as time increases, no matter what the disturbance may 

be, then the periodic state investigated i s said to be 

asymptotically stable i n the large or globally stable. 

In this thesis we w i l l be concerned with only the problem 

of asymptotic s t a b i l i t y i n the small. For s i m p l i c i t y , whenever 

we speak of s t a b i l i t y i n the remainder of this chapter we sha l l 

always mean asymptotic s t a b i l i t y i n the small. 

To investigate the asymptotic s t a b i l i t y i n the small of 

the on-off systems considered, we w i l l use one of the c l a s s i c a l 

methods of Lyapunov* In this method we form the equation of motion 

with respect to the deviation £(t) by replacing, i n the general 

equations governing the behaviour of the system, the periodic 

solution x*(t) by x(t) = x(t) + £(t) and rejecting i n these 
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equations a l l terms containing powers of £(t) exceeding the f i r s t * 

Consequently, a li n e a r equation i n £(t) i s obtained; this equa­

t i o n i s referred to as the equation of the f i r s t approximation 

or the v a r i a t i o n a l equation. Moreover, i n the case under 

consideration this equation has periodic c o e f f i c i e n t s * 

According to a theorem of A. M. Lyapunov, i f the solution 

^ ( t ) of the v a r i a t i o n a l equation approaches zero as time 

approaches i n f i n i t y * then the periodic state investigated i s 

asymptotically stable, regardless of the nonlinear terms 

neglected i n the i n i t i a l equation. In the case of an unbounded 

increase o f |$(t)| the periodic state i s said to be unstable. 

It may happen that the solution £(t) of the v a r i a t i o n a l 

equation neither approaches zero nor approaches i n f i n i t y i n 

absolute value as time increases i n d e f i n i t e l y , but merely remains 

bounded i n absolute value. In such cases i t i s impossible, i n 

general, to ascertain the s t a b i l i t y or i n s t a b i l i t y of the 

system by means of the v a r i a t i o n a l equation. But i n the 
IT 18 

systems under consideration, a theorem of I. G. Malkin * 

shows that i n thi s c r i t i c a l case the v a r i a t i o n a l equation s t i l l 

gives an answer to the s t a b i l i t y problem. 

Lyapunov 1s method applies to equations containing con­

tinuous nonlinear and linear functions. On—off systems, however, 

are usually described i n terms of discontinuous functions. Hence, 

a rigorous investigation i n such cases requires that a l l arguments 

be conducted with continuous functions which approximate the 

discontinuous functions with any degree of accuracy* and uses 

the l i m i t i n g process to obtain the behaviour of the system 

described by discontinuous functions. 
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Without claiming mathematical r i g o r , we w i l l use a 

method which makes use of the uni t step and del ta functions for the 

systems under considerat ion . This method, besides leading to the 

very same r e s u l t s as the rigorous but cumbersome approach, 

possesses the advantage that , from the physical point of view, 

i t i s very graphic , 

9.2 VARIATIONAL EQUATION FOR SINGLE-LOOP SYSTEM CONTAINING 
AN ELEMENT WITH A SATURATION CHARACTERISTIC 

For the purpose of i n v e s t i g a t i n g the s t a b i l i t y of a 

given per iodic state i n a single—loop system containing an 

on-off element with a proport ional band, l e t us f i r s t form 

the, v a r i a t i o n a l equation. Without loss of g e n e r a l i t y , we 

assume that the nonlinear c h a r a c t e r i s t i c (y = ( £ ( x ) ) i s an 

odd f u n c t i o n . 

Let us suppose that 

Sc(t) = f ( t ) - v ( t ) (9.3) 

corresponds to the per iodic state of frequency a .. The quantity 

x( t )* d e f i n i n g the per iodic control s ignal to the nonlinear 

element, s a t i s f i e s the equation 

j ( x ( t ) ] = l ( f ( t ) ) - H ( s ) X ( ^ ( x ( t ) ) ) (9.4) 

Suppose that somewhere i n the system at time t = o, there 

ar ises a s u f f i c i e n t l y small disturbance (for example, a change 

i n i n i t i a l condit ions , or the a p p l i c a t i o n of some external 

a c t i o n ) , which breaks the per iodic state x(t ) and excites the 

neighbouring non-periodic state x(t ) = x(t) + £ ( t ) . The small 
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•fc-to 

On-erf 
Element 

L Lnear 
P a r t 

N 
Sfct) 

HCs} N HCs} 
v(t) 

W l ith "Proportional 
Band 

Figure 9.1. A s ingle - loop system containing one on-off 

element. 

disturbance can be t ransferred to the input of the system, 

where i t w i l l be designated by f ^ ( t ) . Equation (9.4) now 

becomes 

£ ( x ( t ) +$(t)) =X[f ( t ) + f d ( t ) ) - H ( s)X ( ^ [ x ( t ) + $(t}]) . 

(9.5) 

The difference between Equations (9.5) and (9.4) gives 

the equation for the devia t ion $(t) from the per iodic states 

I($<*0' = l [ f
d

( t ) ] - H(s )X(cJ ) [x(t ) + $<t)] - <£(*(t))). 

This equation i s nonlinear i n X^§ ( ^ ) ) • Assume that £ ( t ) 

i s s u f f i c i e n t l y small ; then 

4>[s?<t) +?(t)] - <p(5E(tj> * ^K(t) + ||t|] -WW) 5 ( t ) 

= [x(t)] £ ( t ) + higher order 

terms, 

where cj>'. denotes the der ivat ive with respect to i t s argument. 

Disregarding terms i n £ ( t ) of degree higher than the f i r s t , we 

obtain the v a r i a t i o n a l equation for the system under considerat ion: 

l [ j ( t ) ) = l ( f d ( t ) ) -H(s)2(<|>' [x(t)J | ( t ) ) (9 .6) 
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This equation i s l i n e a r i n £ ( t ) and has periodic c o e f f i c i e n t s 

by v i r t u e of the presence of <J>' j"x(t)J . As indicated e a r l i e r , 

the behaviour of the solut ion of t h i s equation determines the 

asymptotic s t a b i l i t y of the per iodic state 5c ( t ) . 

In the general case of an a r b i t r a r y 4>(x) the i n v e s t i g a t i o n 

of the exact solutions of t h i s v a r i a t i o n a l equation meets with 

insurmountable d i f f i c u l t i e s . By v i r t u e of the s p e c i f i c charac­

t e r i s t i c s cj)(x) under considerat ion, i t i s possible to carry 

out the i n v e s t i g a t i o n of the s t a b i l i t y of the per iodic states 

by comparatively simple and well-known methods. 

Let us f i r s t consider the case 

where cj)(x) i s the saturation 

c h a r a c t e r i s t i c , as shown i n 

Figure 9.2 (a) . The derivat ive 

of t h i s c h a r a c t e r i s t i c i s 

c£>'(x) = A [u(x+xc) - u(x-x c )] 

(9.7) 

so that 

<J? [x*(t)] = A [ u ( x + x c ) - u ( x - x c ) ] 

where x = x(t) i s a per iodic 

solut ion of frequency t O Q . 

>-x 

Figure 9.2. (a) Saturation 
c h a r a c t e r i s t i c , 

(b) Its d e r i v a t i v e . 

The expression for (J)' £x(t)J i s e a s i l y and g r a p h i c a l l y 

determined by means of the transfer diagram with the help of 

(jy ^x j as shown i n Figure 9.3. Furthermore, l e t us assume that 

x( t ) i s a simple symmetric p e r i o d i c state of hal f "^period T» With 
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no loss i n generali ty* we can choose the time axis t such that 

x(o) = -x and K* (o )>o . Let x(t) be equal to x at t = h < T . 
c c 

Then 

[x(t)] = A 5 [ u (t " k T ) " At - kT - h) ] (9.8) 

where u(t) i s the unit step f u n c t i o n . 

A<£>'Cx) 
lO 'CxCt)] 

O h T T+h 2-T 2T+h 3T 3T+h 

Figure 9.3. Transfer diagram 

for the graphic determina­

t i o n of c £ [ £ ( t ) ] when 

x(t) i s a simple symmetric 

per iodic o s c i l l a t i o n of 

h a l f - p e r i o d T . 

Consequently, the v a r i a t i o n a l equation for the system under 

consideration becomes 

X = l ( * d ( * > ) - AH(s) T(5 ( t ) ^ [u(t -kT)-u(t -kT-h)]) 

(9.9) 
k=o 
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Using the notation 

X($(t)) = H(s) , X [ f d ( t ) ] = P d ( s ) , 

X($(t)]T [u(t -kT) - u ( t -kT-h) ] ) = P h, T[H(s)] , 

k=o 

where the symbol ^ «p[ J represents the p-transform notation 

used by Parmanfarma and J u r y , ^ * Eq.(9 .9) takes the form 

H(s) = F d ( s ) - P h ) T [H(s)] AH(s) . (9.10) 

¥e now make the observation that equation (9.9) or (9.10) 

corresponds to the l i n e a r feedback f i n i t e pulse width sampling 

system, as shown i n Figure 9.4, i n which £ ( t ) i s sampled 

p e r i o d i c a l l y with period T for f i n i t e durations of length h and 

then fed to the l i n e a r t ransfer funct ion AH(s) . Hence the 

asymptotic s t a b i l i t y of the periodic state x(t) can be deduced 

^ XT 
kT 

AH(s) 

Figure 9.4. Linear system equivalent to Equation 

(9.9) or (9.10). 

from an i n v e s t i g a t i o n of the s t a b i l i t y of the equivalent f i n i t e 

pulse width sampled—data system depicted i n Figure 9.4. The 

s t a b i l i t y of the l a t t e r system i s well-known, and an excellent 

19 

discuss ion of th is topic can be found i n Farmanfarma and i n 

Jury . 
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The above solut ion of the (asymptotic) s t a b i l i t y problem i s 

a genera l iza t ion of that given by Tsypkin. It i s of in teres t 

to consider the l i m i t i n g cases of the above system: 

1. h = T, In t h i s case u (t) = £ Tu(t-kT) - u( t -kT-h) 1 
p k=o L 

becomes the uni t step funct ion u ( t ) . This means that opera­

t i o n i s confined to the l i n e a r port ion of the c h a r a c t e r i s t i c , 

and the problem i s reduced to a consideration of the 

s t a b i l i t y of a simple l i n e a r feedback system. 

2. h = o and u^(t) has any f i n i t e amplitude. 

In t h i s case ^£|\ip(t)J = o, so that the sampler 

output i s zero , and the system remains at r e s t . This 

case would be possible i f x(t) were a square wave of 

amplitude >x c with h a l f - p e r i o d T. 

3. h = o but u (t) becomes c* T ( t ) , a sequence of unit impulses. 

Under these condit ions , x = o, and the nonlinear 
' c ' 

c h a r a c t e r i s t i c <J)(x) becomes the ideal on-off element 

without a proport ional band. This i s the case considered 

by Tsypkin. We now obtain 
& [x(t)]= 2M£ [ £ ( ! ) ] . 

Since 

u [x-(tj] = | ( - l ) k 5(t - k T ) , 
k=o 

and 

u [ £ ( t ) J =S [ x ( t ) ] 5f(t), 
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i t follows that the de l ta funct ion of a per iodic argument 

can be expressed as 

JK.—O 

where kT (k = o, 1 , . . . ) are the roots of the equation 

x(t) = o, assuming, of course, that x(o) = o. Because of 

the p e r i o d i c i t y of x(t) we have 

it—0 

= |*(T) | ^ T ( t ) . 

Consequently, E q . (9.10) reduces to 

H ( s ) = F d ( s ) - r f f f j - f H * ( s ) (9.11) 

where 

5»(s) = i ( $ ( t ) S T ( t ) ] . 

Hence, the problem of the asymptotic s t a b i l i t y i n 

the case of the simple on-off c h a r a c t e r i s t i c i s reduced to 

a considerat ion of a simple l i n e a r feedback sampled—data 

system corresponding to the system i n Figure 9.4, but i n 

which A i s now replaced by l/|x*(t)|. 

4. h i s small compared to the time constants of the system. 

This s i t u a t i o n ar ises i f T > > h , i . e . the magnitude 

and p e r i o d i c i t y of x(t) are such that , e f f e c t i v e l y , the 

nonlinear c h a r a c t e r i s t i c possesses an exceedingly narrow pro­

por t ional band. The output of the n o n l i n e a r i t y , due to the 

input over t h i s durat ion, can be approximated by replacing 

the f i n i t e pulses by impulses of equivalent area . Let us 
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remark that i f H(s) has a discontinuous impulse response the 

modified ^.—transform, and not the ^- t ransform, may be 

used to give a true approximation of the component of the 

response for the time duration nT + h < t < ( n + l ) T a r i s i n g 

from the input component 5(t) [u ( t - nT) - u(t - nT - h)J ; 

whereas i f H(s) has a continuous impulse response, we may 

use e i ther the ^—transform or the modified ^—transform 

for t h i s purpose* But the true approximation of the response 

during the i n t e r v a l n T < t < n T + h cannot be estimated. On 

the other hand this e f fec t w i l l be n e g l i g i b l e when h i s 

s u f f i c i e n t l y small and H(s) has a continuous impulse response, 

The exact behaviour, however, can be evaluated by means of 

p-transform methods. 

So f a r we have considered only the case of the saturat ion 

c h a r a c t e r i s t i c shown i n Figure 9.2 (a) . Let us now consider the 

(asymptotic) s t a b i l i t y problem for various types of saturation 

c h a r a c t e r i s t i c s * The other types of c h a r a c t e r i s t i c s considered 

and t h e i r der ivat ives are shown i n Figure 9.5. 

Slope=A 
^rX 

- X , O X , 
X 

.NI 

o / h ^ P f . 
X, x 2 

•NI 

A<£> 3 <X) 

A r - i 

A x 

- X^ -X , O X, X a 
-*-x 

-x z-x i 

A K-

4 V 

-H A K-

X, x 2 

Slope = A 

X a - A 

x 

Figure 9*5* Form of der ivat ives c£>' (x) for various types 

of saturat ion c h a r a c t e r i s t i c s . 
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Case of(J>2(x) 

For the saturation c h a r a c t e r i s t i c with h y s t e r e s i s , 

i l l u s t r a t e d i n Figure 9.5 (a), we have 

3>»(x) = 
A [\i(x - x )̂ - u(x - x )̂ J , for i >o 

A £u(x + x 2 ) - u(x + x )̂ J , for i < o 

(9.12) 

The t ransfer diagram for the determination of c£>2 £ x ( t ) J 

Figure 9.6. Transfer diagram for 

the graphic determination 

of (£> 2 [ x ( t ) J when 

x(t) i s a simple symmetric 

periodic o s c i l l a t i o n of 

h a l f - p e r i o d T . 

gives (p'2 [ x ( t ) ] = AJ? [ u ( t - t Q - k T ) - u ( t - t Q - k T - h ) ] (9.13) 
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Since the choice of the i n i t i a l time instant i s a r b i t r a r y , then 

the displacement t does not influence the form of the v a r i a ­

t i o n a l equation, which i s thus given by 

Equations (9.10) and (9.14) are the same, except that the values 

of h are, i n general , d i f f e r e n t . Hence, the s t a b i l i t y of, the 

system containing a c h a r a c t e r i s t i c with saturat ion and hysteresis 

can again be deduced from the behaviour of the simple feedback 

sampled-data system with f i n i t e pulse width. 

Cases ofc£5i(x) and<$>.(x) 

without hysteresis w i l l y i e l d v a r i a t i o n a l equations of the same 

form - just as the cases of c h a r a c t e r i s t i c s without dead zone 

and with or without h y s t e r e s i s . Consequently, i t i s s u f f i c i e n t 

(9.14) 

The cases of c h a r a c t e r i s t i c s with dead zone and with or 

for x >o 
(9.15) 

u(x - x + A ) for x<o 

By subst i tu t ing A = o i n E q . (9.15) we getcj)^(x) 

In t h i s case 

(9.16) 
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i . e . ( J ) ^ £"5c(t)] corresponds to the sum of two sequences of 

pulse f u n c t i o n s . The p e r i o d i c i t y of each sequence i s the same 

and i s equal to T the h a l f - p e r i o d of the per iodic state x(t) 

(we are assuming simple symmetric o s c i l l a t i o n s for x( t)X The 

second i s displaced r e l a t i v e to the f i r s t by a f i x e d time 

i n t e r v a l YT. The geometric transformation into the indicated 

sequences of pulse functions i s shown i n Pigure 9 . 7 with the 

help of the der ivat ive of the c h a r a c t e r i s t i c <J>^ (x) . By an 

appropriate choice of the i n i t i a l time instant (set t = o) , 

-*-x 

- T 

"5 ""I o L Vl x X x * xT x "x x 
Sift) 

-*-YT 

T 

Figure 9 . 7 . Transfer diagram for 

for the determination of 

Cj54 [x(t)j when £ ( t ) i s a 

simple symmetric per iodic 

o s c i l l a t i o n of h a l f -

period T . 

the v a r i a t i o n a l equation for t h i s p a r t i c u l a r c h a r a c t e r i s t i c 

Cj>4(x) has the form 
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~ (s ) = p ( s) - AH(s) X($(t) I Tu ( t -kT) - u(t*-kT-h ) 
^ k=o 

(9.17) 
+ u(t-kT-<fT) - u ( t - k T - Y T - h 2 ) ] ^ 

Using the p-notat ion 

P h , T [ H ( s ) ] = X ( 5 ( t ) 1 [ u ( t - k T ) - u ( t - k T - h . ) ] ) , 
x k—o 

E q . (9.17) can be rewri t ten as 

H ( s ) = F d ( s ) - AH(s) [H ( s ) ] + ^\2y: [ H ( s ) e s Y T J 

(9.18) 

Equation (9.17) or (9.18) corresponds to the l i n e a r f e e d ­

back f i n i t e pulse width sampled-data system i n Figure 9.8. It 

consists of two samplers i n p a r a l l e l and a feedback l i n k con­

t a i n i n g a l i n e a r t ransfer funct ion AH(s) . The samplers close 

synchronously and t h e i r outputs have uniform pulse widths h^ 

and h 2 » However, the second sampler operates with a delay YT 

with respect to the f i r s t . Even though t h i s system contains an 

kT-t-h, 

( k + W 
AHfe) 

(k-rX)T+-k 

Figure 9*8* Linear system equivalent to Equation (9.17) 

or (9.18). 

a d d i t i o n a l sampler* as compared to that for the case without 

dead zone 9 the analysis of the behaviour of the former i s no 
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more d i f f i c u l t than that of the l a t t e r , because of the f a c t 

that the samplers operate synchronously. 

The Case of More Complicated Forms of Per iodic O s c i l l a t i o n s , 

The method described above can be extended e a s i l y to the 

study of the s t a b i l i t y of any given complicated form of per iodic 

o s c i l l a t i o n . As a example, l e t us consider the case of the simple 

saturat ion c h a r a c t e r i s t i c , Without deducing the v a r i a t i o n a l equa­

t i o n i n £ ( t ) , we make use of the t ransfer diagram shown i n 

Figure 9*9. The der ivat ive of the per iodic funotion S(t ) of 

period 2T now consists of n sequences of p u l s e s . The duration 

of the pulses i n the successive sequences, i n i t i a t e d at times 

o, Y 1 2T, Y 2 2 T , , * * , * n - i 2 T w i t h respect to the f i r s t , are i n 

general d i f f e r e n t , and are denoted by h Q , h ^ , h ^ , , , , * n

n . i ]_ 

r e s p e c t i v e l y . 
carton 

L L 
<k 2 T 

--t 

Figure 9.9. Transfer diagram for 

the determination of 

c£)T £ x ( t ) J where ($)(x) i s 

the simple saturat ion 

c h a r a c t e r i s t i c , and x(t) 

i s a complicated per iodic 

waveform of period 2T. 
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C l e a r l y , the l i n e a r system corresponding to the v a r i a t i o n a l 

equation i n t h i s case w i l l consist of n samplers i n p a r a l l e l of 

uniform pulse widths h Q , h ^ , h b-n_^ and a feedback l i n k 

containing the l i n e a r t ransfer funct ion AH(s) . The samplers 

close synchronously with p e r i o d i c i t y 2T, but are not i n phase. 

This system i s shown i n Figure 9.10* 

2.kT-+-h, 

(zk-rY,)T-th, AHCs) 

Figure 9.10* Linear system determining the s t a b i l i t y of 

a complicated per iodic state 3c(t) f o r the 

sa turat ion c h a r a c t e r i s t i c cj)(x). 

9.3 AN APPROXIMATE SOLUTION TO THE ASYMPTOTIC 
STABILITY OF PERIODIC SOLUTIONS 

In the preceding sect ion we formulated an exact method, 

which reduces to well—known solved problems i n sampled—data 

systems, for the determination of the asymptotic s t a b i l i t y of 

per iodic states* We now present an approximate s o l u t i o n to the 

above problem but without resor t ing to the sampled—data approach. 

Let us assume that the l i n e a r t ransfer funct ion H(s) i s 

a f r a c t i o n a l r a t i o n a l f u n c t i o n , which may be wri t ten as 
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and that the degree of P(s) i s less than that of Q(s ) . Then the 

v a r i a t i o n a l equation (9.6) can be expressed i n d i f f e r e n t i a l 

equation form thus: 

Q(p) |(t) +P (p) d>» |"x(t)l £ ( t ) = Q(p) f (t) . 
a (9.19) 

where p = ^ » and P(p) and Q(p) are d i f f e r e n t i a l operators. 

Since the der ivat ive of the c h a r a c t e r i s t i c Cj5* |>(t)] 

i s per iodic with period T, we can write i t as an exponential 

Fourier series thus : 

& [ x ( t ) J = fc ^ , 

I =-oo 
where 

°i = T [*(*)] e _ ; j l f l , t d t (c = constant) 

•(9.20) 

and 
(6 = 2n/T 

We now seek a general s o l u t i o n of the homogeneous equation 

Q(p) 5(t) + P(p)0 ' [ x ( t ) ] § ( t ) = o (9.21) 

of the form 

£ ( t ) = 5 B e ( a + J * " * * , (9.22) 
k=-oo 

where the B*s aire the complex amplitudes and a i s the so—called 

c h a r a c t e r i s t i c exponent which i s to be determined. C l e a r l y , i f 

the r e a l parts of the values of a are found to be negative, then 

the system i s asymptotically s t a b l e . 

Subst i tut ing (9.20) and (9.22) into (9.21), we obtain 

[Q(P) + C O P ( P ) ] l\-ia + ^ H 

+ P ( P ) I f k B ^ e ^ ^ ^ ^ t C B J o c + j ( k - 0 « ) J t". = o # 
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This l a s t equation can be rewrit ten as 

[U<P> +C oP(p)] 1 B k . < « + J h " > t -

+ ? ( p ) l i J L M-*°-t B^ e < a + ^ H = ° ( 9 - 2 3 ) 

By using the r e l a t i o n 

P(p) e 5 t = e 5 t P(S) , 

and equating the c o e f f i c i e n t s of l i k e frequency components, we 

obtain 

A + c o p ( s k > ] + | ,
 + c - e B k + J p ( V = 0 

(9.24) 
(k = o, - 1 , - 2 , . . . ) 

where 

5fc = a + jktt 

Equation (9.24) i s an i n f i n i t e system of equations, each of 

which contains an i n f i n i t e number of terms i n B .̂ (k = O J *1, - 2 , . . . ) . 

The c h a r a c t e r i s t i c equation of the system i s obtained by equating 

the determinant of E q . (9.24) to zero . As i t stands, t h i s 

c h a r a c t e r i s t i c equation i s of I n f i n i t e degree i n a . 

Let the roots of the c h a r a c t e r i s t i c equation be oc^(i = 1, 

2 , . . . ) . Then a necessary and s u f f i c i e n t condit ion that the 

system be stable i s that the rea l parts of ou l i e i n the l e f t -

hal f s -plane . 

A P r a c t i c a l Approximation. 

In prac t ice* the l i n e a r parts of the systems considered 

are such that the frequency components l y i n g outside c e r t a i n 

f i n i t e bandwidths can be regarded as n e g l i g i b l e . This can 
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always be achieved by choosing the pertinent bandwidths s u f f i c i e n t l y 

l a r g e . Let us assume that a l l frequency components larger than 

(A are n e g l i g i b l e . Then a l l complex amplitudes for which c 

+ « c < I m S± < - « c (9.25) 

may be neglected. Unfortunately, the values of are unknown. 

However, by choosing s u f f i c i e n t l y large values of k i n S = 

a + jkw, say |k| > M , condit ion (9.25) can usual ly be f u l f i l l e d . 

Thus a l l complex amplitudes for |k|>M may be neglected. 

Consequently, i n place of the i n f i n i t e system of equations (9.24), 

each containing an i n f i n i t e number of terms, we now r e s t r i c t 

our a t tent ion to the fol lowing f i n i t e system of equations, each 

containing a f i n i t e number of terms: 

J a i k B k = 0 ( i = o, - 1 , . . . , -M) 

where 
(9.26) 

< Q(S.) + CQP(5 ) , for i 

a i k = < 
C k - i P ( 5 i } , for i ^ k 

The c h a r a c t e r i s t i c equation i s now given by the determinant of the 

system (9.26), i . e . 

a_.,_| = o , I k | 

which i s polynomial of degree 2M + 1 i n a . If a l l the roots 

( i = o, - 1 , . . * * ^M) of t h i s polynomial l i e i n the l e f t - h a l f 

s-plane, i . e . they a l l have negative r e a l parts, then the periodic 

state under consideration i s stable. 
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In the case of the saturat ion c h a r a c t e r i s t i c , with or 

without hysteresis and without dead zone, <Jp' £ x ( t ) j has the form 

Cj>1 [ x ( t ) J = A 2 [ u ( t - t -kT) - u ( t - t - k T - h ) ] 
k=o 0 0 

when x(t ) i s a simple symmetric per iodic o s c i l l a t i o n of half 

period T . The Fourier series for t h i s sequence of rectangular 

pulses i s 

where tt = 2TI/T* By choosing t Q - ^ = o, the exponential form 

for t h i s series i s 

& [x(t)] = n Z j ^ ^ ^ 

Similar expressions for the saturat ion c h a r a c t e r i s t i c with 

dead zone can be found* 

When the c h a r a c t e r i s t i c of the nonlinear element <J>(x) 

ceases to be of the on-off or saturat ion type, the question of 

the s t a b i l i t y of the per iodic states cannot, i n general , be 

reduced to a consideration of the s t a b i l i t y of sampled-data 

systems. Under these conditions the present approximate method 

can s t i l l y i e l d an answer to the s t a b i l i t y problem i n most 

cases of p r a c t i c a l i n t e r e s t . 
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9.4 A DIRECT APPROACH TO THE STABILITY PROBLEM 

The method to be presented below w i l l be c a l l e d the d i r e c t 

approach, i n contrast to the sampled-data approach, because i t i s 

d i r e c t l y related to the physical d e f i n i t i o n of s t a b i l i t y ; that 

i s , a disturbance i s a p p l i e d , and the deviat ion from the state of 

equil ibr ium i s s tudied. If the deviat ion dies out the system i s 

said to be s table ; otherwise, i t i s unstable. This approach w i l l 

be applied both to forced and s e l f o s c i l l a t i o n s i n the system shown 

i n Pigure 9.11. 

N Hcs) N Hcs) 

Figure 9.11. A s ingle - loop system containing one on-off 

element. 

Let f ( t , T ) be the per iodic input with h a l f - p e r i o d equal to 

T, i n the case of forced o s c i l l a t i o n s . Let y ( t , T ) and v ( t , T ) be 

the corresponding outputs o f J and H(s) , r e s p e c t i v e l y . The input 

to N i s denoted by x ( t ) . 

S t a b i l i t y of Forced O s c i l l a t i o n s 

The system i n Figure 9.11 i s assumed to be i n a state of 

forced o s c i l l a t i o n s with half—period equal to T» Let a random 

disturbance AT"Q occur i n the zero—crossover at t = o as shown i n 

Figure 9.12, so that the response v ( t , T ) for t > o i s modified 

to v ( t ) . We take AT <<T, and neglect higher order terms m I o I 
i n A7T. 



Let y (t) be the modified output of N, and l e t i t s 
m 

devia t ion from y(t*T) be denoted by y^("t): that i s 

y d ( t ) = y r a ( t ) - y ( t , T ) . 

+1 

ytt) /-3fCtjT) 

m 

T 2 . T 

+4 K 

3 T 

Figure 9.12. Per iodic and modified outputs of N. 

2 T t 2 

A T , 

- 2 

T I T , 

AT 0 

->1 K-

3 T t 'a 

Figure 9.13. Deviation i n the output of N. 

The quantity y^(t) consists of a series of impulses as 

indicated i n Figure 9.13. The devia t ion i n the system response, 

v , ( t ) = v (t) - v ( t , T ) f i s the response of H(s) to y ^ ( t ) . 

Let y m ( t ) = 0 for t = t Q , t^f 1*2* *"•*"' 

and o < t < 00 

AT = t - n T , n = o , 1, 2, . . . 
n n 
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The quanti t ies AT^(n = 1, 2, •••) are now determined i n terms 

of A T . 
o 

The change i n the f i r s t crossover past the o r i g i n , AT^, 

can be found by solving 

f ( t 1 , T ) - v m ( t 1 ) = o (9.27) 
where 

v m ( t ) = v ( t , T ) - 2h(t) A T (9.28) 

and h(t) i s the u n i t impulse response corresponding to the 

t ransfer funct ion H ( s ) . Subst i tu t ion of (9.28) into (9.27) gives 

f ( t .T) - v ( t , T ) = -2h(t) A T (9.29) 

A Taylor series expansion of (9.29) about t = T y i e l d s 

f (T,T) - v ( T , T ) + [f (T,T) - v ( T , T ) ] A ^ = -2h(T)AT Q , 

where 

f ( T , T ) 4 ^ 1 and v(T ,T) k 
5 t Jt=T d t Jt=T 

But 

f ( T , T ) - v ( T , T ) = o, 

so that 

A T = 7 ] h(T) A T Q 

(9.30) 

where 

TJ = 2 ( - f ( T , T ) + v (T ,T) ) _ 1 (9.31) 

The change i n the next crossover A T ^ i s determined by 

f ( t 2 , T ) - v f f l ( t 2 ) = o (9.32) 

where v m ( t ) i s now given by 

v m ( t ) = v ( t , T ) - 2h(t) A T q + 2h(t-T) A ^ (9.33) 
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Substitution of (9»>33) into (9.32), and expansion about t= 2T y i e l d 

f(2T,T) - v(2T*T) + [f(2T,T) - v(2T,T)] A T 2 

= -2h(2T) A T q + 2h(T) LT± (9.34) 

Since 

f(2T,T) - v(2T,T) = o 

and 
f ( t , T ) - v(t,T) = - f(t-T,T) + v(t-T,T) , 

equation (9.34) y i e l d s 

A T 2 = Y| [-h(2T) A T + h(T) A T J (9.35) 

This equation for A T - may be written i n terms of A T using (9.30) 
o 

but t h i s i s not necessary as w i l l be shown later. 

In general, the expressions for A T N are given by 
A T 1 = 1 [h<T> A T o ] 

A T 2 =y) [-h(2T) A T q + h(T) A T ^ ] 

A T 3 = 1) |h(3T) A T - h(2T) A ^ + h(T) A T 2 ] (9.36) 

A T 4 = 1 [~ h( 4 T) A T
0 + h(3T) A T - h(2T) A T 2 + h(T) A T ^ J 

etc . 
The deviation i n the response i s 

L ( t ) = -2h(t) A T q + 2h(t-T) A T ^ - 2h(t-2T) A T , + . . . V 

or 

V d ( s ) _ . -Ts ^ \ ^ -2Ts A T 2 -3Ts A T 3 , 
-2H(s) A T - 1 ~ E A T + 6 A T " A T ~ + * * * 

o o o o (9.37) 
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S u b s t i t u t i o n of (9*36) into (9.37) y i e l d s 

zsJSr; - i - T^'[h(.)] 

+ *1 e " 2 T s [-h(2T) + h(T) ^ ] 
o 

- TJ e " 3 T s [h(3T) - h(2T) ^ + h ( T ) - | ^ ] 
o o 

+ ... 

- 1 - r , [ f h(nT) ] ( ! - . - * • £ £ • e " 2 1 ^ - . . . ) 
n=l o o 

(9.38) 

From (9.37) and (9*38) there resul t s 

-2H(s) AT 
V d ( s ) = - 2 (9.39) 

1 +nf h ( n T ) e - n T s 

*n=l 

where Y| i s given by E q . ( 9 . 3 l ) . 

S t a b i l i t y requires that a l l the poles of (9*39) l i e i n 

the l e f t - h a l f s-plane or that a l l the zeros of 1 +Tj ^ h(nT)d 
n=l 

l i e i n the left—half s—plane. Equivalently- . i f we substi tute 
Ts 0 0 / \ —n 

z = e , s t a b i l i t y requires that a l l the roots of 1 +TI £ h(nT)z = o 
' n=l 

are inside the u n i t c i r c l e , with centre at the o r i g i n , i n the 

z—plane• 

Comparison with the sampled-data approach: 

As mentioned by Tsypkin, the study of the above 

s t a b i l i t y problem i s equivalent to the study of the s t a b i l i t y 

of the l i n e a r sampled—data feedback system shown i n Figure 9.14, 
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tTT 
T] H(s)=G(s) 

Figure 9 » 1 4 * Equivalent sampled-data system f o r the 

s t a b i l i t y problem. 

The ^-transform of G(s) = T J H ( S ) i s 

G(z) =-T|H(z) = if] X h(nT) z ~ n , (z = e T s ) 
n=o 

The sampled-data feedback system i s stable provided that a l l 

the roots of 

- n 1 + G(z) = 1 + nr) V h(nT) z = o 
n=o 

(9.40) 

l i e inside the u n i t c i r c l e i n the z -plane . The r e s u l t s of the 

d i r e c t and sampled-data approaches d i f f e r : the term Y)h(o) i n 

(9.40) i s absent i n (9.39). The sampled-data r e s u l t i n (9.40) 

was derived on the assumptions that ( l ) x^(t) has small average 

amplitude as compared to x ( t , T ) and (2) the time der ivat ive of 

X^(t) does not take too large values . These assumptions imply 

that h(t) must not be discontinuous at t = -o, or , equivalent ly , 

that h(o+) = o. Consequently, the r e s u l t derived by the 

sampled-data approach should be used only i n cases where h(o+) = o; 

but i t does not say what should be used when h(o+) ^ o» The 

r e s u l t derived by the d i r e c t approach, E q . (9.39), i s v a l i d both 

for h(o+) ^ o and h(o+) = o. 
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S t a b i l i t y of Self O s c i l l a t i o n s 

A s l i g h t modification of the previous arguments w i l l 

give the desired r e s u l t for the s t a b i l i t y of self o s c i l l a t i o n s . 

Let the half-period of s e l f o s c i l l a t i o n be T . Let the system 
o 

i n Pigure 9.11 be undergoing forced o s c i l l a t i o n s of half—period 

T, T = T q , up to t = oy after which the input f ( t , T ) i s removed and 

the ensuing o s c i l l a t i o n periods are compared to T Q » 

The modified response i s 

v m ( t ) = v(t,T) - 2h(t) A7\ ( o < t < t 1 ) (9.41) 

Since 

v (t,) = v (T + AT. ) = o and v(T ,T ) = o, mv 1 m o 1 oy o ' 

a Taylor series expansion of (9.41) about ( T O , T q ) y i e l d s 

where 

and 

AT, = - aAT + ?ih(T ) AT (9.42) 1 > o' o 

A T = T - T Q , YJ = 2 | > ( T Q , T o ) J _ 1 (9.43) 

A V W a — v(T ,T ) o 1 o 

and where 
V„(-T *T ) = ^ v j ^ T ^ ] t = T and T = T T o ' o dT -1 o o 

For the next i n t e r v a l t ^ < t < t 2 > 

v (t) = v(t,T) - 2h(t) AT + 2h(t - T ) AT. . m o o 1 

Since 
v ( t j = o = v (2T + AT_) and v(2T ,T ) = o, m 2 m o 2 oT o ' 
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then 

A T 2 = -.aAT + f) [-h(2T Q ) A T q + h(T Q ) A T ^ ] . 

In general . 

AT = -aAT + r\ £ h(mT ) AT ( - l ) m + 1 (9.44) n 1 , - 0 n—m m=l 

n = l , 2, 3, . . . 

The devia t ion i n respbnse i s 

v d ( t ) = v m ( t ) - v ( t , T d ) 

= v ( t , T ) - v ( t , T Q ) - 2h(t) A T Q + 2h(t-T Q ) A T 

- 2h(t-2T ) A T + . . . 
0 £ 

^ v _ ( t , T ) AT - 2h(t) A T + 2h(t-T ) A T T o o o 1 

- 2h(t-2T Q ) A T 2 + . . . (9.45) 

The f i r s t term on the right-hand side of (9.45) i s per iodic with 

an i n f i n i t e s t i m a l amplitude and therefore can be neglected. 

Subst i tut ion of (9.44) into the Laplace transform of (9.45) 

y i e l d s 
—T s —2T s —3T s 

*-2H(s) f AT +aAT(e 0 - e " ° +e 0 - ...)1 
V , ( s ) = - =L ( 9 . 4 6 ) 

oo -nT s 
1 + *1 X h(nT ) e 0 

n=l ° 

Consequently, the condit ion f o r s t a b i l i t y i s the same as that 

found i n the case of forced o s c i l l a t i o n s except that Tj i s given 

by (9.43). 
oo - T s 

The zeros of 1 + Tj £ h(nT Q )u , u = e 0 , w i l l be 
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discussed further. Let 
so 

P(u) 4 (1 + YJ h(mTo) um)/T| (9.47) 

Now i n the case where H(s) has n simple poles a l l d i s t i n c t from 

zero 

n P ( B . ) Q
S k T o 

(-l) m + 1h(mT ) (9.48) 
m=l 

so that (9.47) can be written as 

P(u) -J^hirnT) [ u m + ( - l ) m + 1 ] 

m=l 

A zero of P(u) i s at u = -1, so that 

F(u) = (1 + u) G (u) . (9.49) 

The form of G(u) i s derived as follows: 
^ -mT s v L i p ( s 1 ) mT (s,-s) 
^ h ( m T o ) e o. =X! S - Q T X T T " ° K 

m=l 0 m=l k=l u v t V 

e 

n T , / \ -T (s-s, ) 
_ p ( y e 0 k 

" t~i Q' (s. ) -T (s-s. ) k=l * k , o k 1-e 

Now 
-, -mT s 

• (1 + u) G(u) - P(u) = ± +2_J h ( m T
0 ) e ° 

' m=l 

_ P ( s k ) . r e ° k , u e 0 k 1 
= fcl L , , T 0 s k T o s k J l+e " 1-u e 

so that 
^ P ( s J V k . 

G(u) = Z J Qtftj £ - f - s 7 W (9.50) 
k=l * k . o k , ok k l+e " " 1-u e 
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Since 

1+e 
s k t 

and since the ^-transfprm of e i s given by 

s, t- T s, T s, o k i o k z-e 1-u e 

i t follows that 

8 ( u ) . j ( | v ( t , I o ) ) (9.51) 
o 

The following p a r t i a l f r a c t i o n expansion i s v a l i d * 

m=l 

In the f i r s t term on the right hand side of (9.52), u = —1 

corresponds to periodic o s c i l l a t i o n s . Hence, the s t a b i l i t y depends 

on the zeros of G(u) = G(z~^), and these zeros should be within 

the unit c i r c l e i n the z-plane. The s t a b i l i t y question may 

therefore be answered by a Nyquist p l o t . A necessary condition 

i s that G(-l)> o. 

Additional notes on the function G(u) are as follows: 
n v T s, 

• ^ - i P(s ) o k , 

ThusT]G(o) = 1, which i s the value for s — > - o o . 

From rn 
^ P ( s J p

T o S k 
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1 , - e T ° S k 

and 
, ^ » P ( s J V k 
| v ( T ,T ) = 2j QTTf-T T s 

^ 0 0 k=l U V S V , A o k 
1 + e 

i t f o l l o w s t h a t 

G ( - l ) =H VT ( Tof To } + * < V T o } ] ( 9 ' 5 3 ) 

Thus 

f | G ( - l ) = 1 + a 

where a i s g i v e n by (9.43), Now 

^ - 1 P(s, ) T o s k r T s, 2T s, _ 
0(+D = E QTrH 6

 T . [ l + 2e 0 k + 2e 0 k + ...] 
k = 1 2 U k ^ (1 + e 0 k ) 2 

Therefore 

t} G(+l) = 1 - a + b (9.54) 

where 
0 0 

b = - 2 2 V ^ o ' V 7 ^ ( T o ' T o ) 

m=2 

I f b i s s m a l l , then Eq. (9.54) i n d i c a t e s t h a t the *y]G(u) — p l o t 

does not enclose the o r i g i n f o r l a I < 1. This c o n d i t i o n i s 

much stronger than the previous one where G ( - l ) > o . 

I l l u s t r a t i v e Example 

Consider the simple case where H(s) = l / s . In t h i s case, 

h ( t ) = 1, t > o + , and h(o+) = 1. 
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The sampled—data equation (9.40) should not be used i n 
this case because i t i s not v a l i d when h(o+) ̂  o. 

The use of (9.39), however, yie l d s 
1 + T) [H(Z) - h(o+)] = 1 + = 0 (9.55) 

Thus 

z = 1 - y\ 

and s t a b i l i t y requires that 

o <Tf|< 2 (9.56) 
In the case of forced o s c i l l a t i o n s , 

y) = 2 [- f(T»T) + v(T,T)] - 1 

Since v(T,T) = 1, the condition for the s t a b i l i t y of forced 

o s c i l l a t i o n s y i e l d s 

o <-f(T,T) < «> (9.57) 

For this example, the quantities appearing i n Figure 9«11 have 

the following description! y(t,T) i s a square wave as shown i n 

Figure 9.12; v(t»T) i s the integral of the square wave y(t,T) 

and i s therefore sawtooth i n shape; the waveform f( t , T ) i s 

such that 

x(o) = x(T) = o 

x(o)>o, x(T) <o 

o <-f (T,T) < « , 

and, provided that there are no more switchovers i n the 

interval o < t < T / the shape of f(t , T ) i s otherwise arb i t r a r y . 
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CONCLUSIONS 

Techniques and concepts for studying periodic phenomena 

i n on-off feedback systems have been developed. 

Three methods f o r evaluating the periodic response of the 

lin e a r part of the on-off element have been presented* the 

f i r s t method uses the impulse response of the l i n e a r part of the 

system; the second method i s i n terms of the residues at the 

poles of H(s)/s» where H(s) i s the transfer function of the 

l i n e a r part; the t h i r d method i s i n terms of H(j«). the frequency 

response of the l i n e a r part. 

Concepts pertaining to the steady-state response of on-

off elements are then examined* generalizations of the 

concepts of the Hamel and Tsypkin l o c i and of the phase character­

i s t i c of Neimark have been introduced. These concepts have been 

found to be useful i n the study of s e l f and forced o s c i l l a t i o n s 

i n on-off feedback systems* they have been used to determine 

the possible periods of s e l f and forced o s c i l l a t i o n s i n single-, 

double-, and multiloop systems containing, i n general* an a r b i ­

trary number of on-off elements. 

The behaviour of on-off elements possessing a proportional 

band has been considered* The response of a single-loop system 

containing one such element has been determined by means of 

equivalent sampled-data systems, i n which the samplers have 

f i n i t e pulse widths* However, i n the study of the periodic 

o s c i l l a t i o n s i n such a system, an approximate method* ca l l e d the 

trapezoidal approximation, has been used; i n general} th i s 

approximation i s more accurate than that of the describing 
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f u n c t i o n , and i s V a l i d when there i s s u f f i c i e n t f i l t e r i n g act ion 

by the l i n e a r p a r t . The concept of the generalized Tsypkin 

l o c i has also been found useful i n the determination of the 

possible periods of s e l f and forced o s c i l l a t i o n s of such 

systems. 

The resul ts found by Tsypkin on the asymptotic s t a b i l i t y 

i n the small of single~*loop systems having one on-off element w i t h ­

out a proport ional band have been generalized to include the case 

where the on-off elemen't contains a proport ional band. The 

inves t igat ions of the s t a b i l i t y of .these systems have been 

reduced to a consideration of the s t a b i l i t y of equivalent sampled-

data systems i n which the samplers have f i n i t e pulse width: 

mult iple samplers i n p a r a l l e l that close synchronously, but not 

i n phase, have been found to enter i n the case of h y s t e r e s i s , 

dead zone and complicated forms of per iodic o s c i l l a t i o n s . F i n a l l y * 

a d i r e c t approach to the s t a b i l i t y problem has been presented: 

the d i r e c t use cf the physica l d e f i n i t i o n of asymptotic s t a b i l i t y 

i n the small has given resul ts that agree with those obtained by 

the sampled-data approach. 



145 

REFERENCES 

1, G i l le,< J . C«, P e l e g r i n , M. J . , Decauline, P.., Feedback 
Control Systems r McGraw-Hill Book Company, I n c . , 
New York, 1959, 

2, Kochenburger, R« , "A frequency method for analyzing and 
synthesizing contactor servomechanisms", Trans* AIEE, 
V o l . 69, Part I, 1950, pp. 270-284* 

3, West, J . C , A n a l y t i c a l techniques for nonlinear control 
systems, The E n g l i s h U n i v e r s i t i e s Press L t d . , London, 
1960. 

4» Kahn, D. A o , "An analysis of relay servomechanisms", Trans-. 
AIEE . V o l . 68* Part I I , pp. 1079-1088. 

5. Hamel, B . , "Etude mathematique des systemes a plus ieurs 
degres de l i b e r t e d^cr i t s par des equations l i n e a i r e s 
avec un terme de commande d i s c o n t i n u " , Proc . Journees  
d T Etudes des V i b r a t i o n s , AERA., P a r i s , 1950* 

6. Tsypkin, J . Z . , Theory of r e l a y type automatic control 
systems« Gostekhizdat, Moscow, 1955 3 (Russian). 

7. Bohn, E . V . , " S t a b i l i t y Margins and Steady-State O s c i l l a t i o n s 
of ON-OFF Feedback Systems", Trans. IRE, PGCT - 8, 
No. 2,1961, pp. 127-130. 

8. Tu Syui -Yan* , Tei L u i - V y , "Sel f o s c i l l a t i o n s i n a s i n g l e -
loop automatic control system containing two symmetric 
r e l a y s " , Avtomatika i Telemekhanika. V o l . 20, No. 1,. 
1959, pp. 90-94, (Russian). 

9. Neimark, Yu. I . , S h i l n i k o v , L . P. "On the symmetric 
per iodic motions of multi-cascade re lay systems", 
Avtomatika i Telemekhanika, V o l . 20, No. 11, 1959, 
pp. 1459—14669 (Russian). 

10. Aizerman, M« A . , and Gantmakher, F . R . , "On the determination 
of the per iodic states i n nonlinear dynamic systems 
with piecewise l i n e a r c h a r a c t e r i s t i c " , P r i k l . Mat. Meh. , 
V o l . 20, 1956* pp. 639-654, (Russian). 

11* Aizerman, M. A . and Gantmakher, F . R . , "Determination of the 
per iodic states i n systems with piecewise l i n e a r 
c h a r a c t e r i s t i c , consis t ing of l i n k s p a r a l l e l to two 
given l i n e s " , Avtomatika i Telemekhanikao V o l . 20, 
Nos. 2 and 3, 1957, (Russian)* 

12. Gusev, L . A . ? " D e t e r m i n a t i o n of per iodic behaviour of 
automatic control systems having nonlinear part with 
a r b i t r a r y piecewise l i n e a r c h a r a c t e r i s t i c " , Avtomatika  
1 Telemekhanika, V o l . 19, No... 10, 1958, pp. 931-944, 
(Russian)• ~ 

i 



146 

13. Jury, E . I . , Sampled-data control systems, John Wiley & Sons, 
I n c . , New York, 1958, 

14. R i e s z , P . B . Sz-Nagy, Functional A n a l y s i s , Frederick Ungar 
Publ ishing C o , , New York, 1955. 

15. Tomovic, R « , Parezanovic, N . , "Solving i n t e g r a l equations 
on a r e p e t i t i v e d i f f e r e n t i a l analyzer% Trans. IRE, 
E C - 9 , No. 4, I960* pp. 503-506. 

16. Lyapunov, A« M«, Probleme g^ne'ral de l a s t a b i l i t e du mouve-
ment, Princeton Univers i ty Press , Pr ince ton . 1947. 

17. M a l k i n , I . G . , " 0 n the s t a b i l i t y of the per iodic motions of 
dynamic systems", P r i k l . Mat. Meh. , V o l . 8, No. 4, 
1944, pp. 327-331, (Russian). 

18. M a l k i n , I . G.*$ Theory of s t a b i l i t y of motion* Gostekhizdat, 
Moscow,' 1952$ (Russian). 

19. Farmanfarma, G . , "General analysis and s t a b i l i t y study of 
f i n i t e pulsed feedback systems", Trans. AIEE, V o l . 77, 
Part I I j 1958, pp. 148-162. 


