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ABSTRACT

A continuous Markov process is examined for the pur-
pose of developing Monte Cérlo methods for solving partial
differential equations. Backward Kolmogorov equations
for conditional probability density functions and more
general equations satisfied by auxiliary probability den-
sity functions are derived. . From these equations and
the initial and boundary conditions that the density
functions satisfy, it is shown that solutions of partial
differential equations at an interior point of. a region
can be written as the expected value of :andomly-selected
initial and boundary values. From these results, Monte
Carlo methods for solving homogeneous and nonhomogeneous
eliiptic, and-homogeneous parabolic partial differential

equations are proposed,

Hybrid computer techniques for mechanizing the Monte
Carlo methods are given. The Markov proéess is simula-
ted on the analog computer and the digital computer is
used to control the analog computer and to form the re-
quired averages. Methods for detecting the boundaries
of regions using analog function generators and electronic

comparators are proposed.

Monte Carlo solutions are obtained on a hybrid system
consisting of a PACE 231 R-V analog éomputer and an
ALWAC TII-E digital computer. The interface for the
two computers and a multichannel discrete-interval binary-
noise source are described. With this equipment, solu-
tions having a small variance are obtained at a rate of

approximately five minutes per solution. - Example



solutions are given for Laplace's. equation in two and
three dimensions,: Poisson's  equation in two dimensions

and the heat equation in one, two and three dimensions.

GRADUATE STUDIES

Field of Study: . Electrical Engineering

Applied Electromagnetic Theory

- Electronic Instrumentation

G. B. Walker

F. K. Bowers

Network Theory A. D. Moore
Servomechanisms E. V. Bohn
Solid-State Electronic Devices M. P. Beddoes
Nonlinear Systems A. C. Soudack
Electron Dynamics G. B. Walker
Digital Computers E. V. Bohn
Related Studies:
Numerical Analysis I T. Hull

Computer Programming

Integral Equations

C. Froese

E. Macskasy



PUBLICATIONS

Beddoes, M.P. and Little. W.D., "Unilateral Para-
metric Frequency Converters with Nonlinear Conduct -

ance and Capacitaunce', Proc, IEEE, Vol. 52, Wo. 3,
p. 333, March, 1954.

Soudack, A.C. and Little, W.D., "An Economical
Hybridizing Scheme for Applving Monte Carlo Methods
to the Solution of Partial Differential Equations",
Simulation, Vol 5, No. 1, pp. 9-11, July, 1965.

Little, W.D., "An Electronic SPDT Switch", Simula-
tion,Vol. 5, No. 1, P. 12, July, 1965

Li;tle, W.D., and Soudack, A.C., "On the Analog
Computer Solution of First-Order Partial Differential
Equations'", Annales AsICA, October, 1965.

Kohne, H., Little, W.D., and Soudack, A.C., "An
Economical Multichannel Noise Source', Simulation,
to be published, November, 1965.



HYBRID COMPUTER SOLUTIONS OF PARTIAL
DIFFERENTTAL EQUATIONS BY MONTE CARLO METHODS

by

WARREN DAVID LITTLE

B.A.Sc., University of British Columbia, 1961
M.A.Sc., University of British Columbia,. 1963

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

in the Department of

Electrical Engineering

We accept this thesis as conforming to the

required standard

Members of the Department .
of Electrical Engineering

THE UNIVERSITY OF BRITISH COLUMBIA

October, 1965



In presenting‘this thesis in partial fulfilment of
the requirements for an advanced degree at the University of
British Columbia, | agree that the Library shall make }t freely
available for reference and study, | further agree that per=-
mission for extensive copying of this thesis for scholarly
purposes may be granted by the Head of my Department or by
his representatives, It is understood that copying or publi-
cation of this thesis for financial gain shall not be éllowad

without my written permission,

7
Department of W é’-ﬂ’

The University of British Columbia67
- Vancouver 8, Canada

vate Dl 2 s/v/ S




ABSTRACT

A continuous Markov process is examined for the”purpose
of developing Monte Carlo methods for.solving partial differ-
éﬁtial equations. Backward Kolmogorov equations for conditional
prqbability density functions and more general eQuations satis-
~ fied by auxiliary probability density functions are derived.

From these equations and the initial and boundary conditions
thatlthe density functions satisfy, it is showﬁ that solutions

of partial differential equations at an ihterior point of a
r¢gion4can be written as the expected value of randomly-selected
initial and boundary values. From these results, Monte Carlo
--methods for solving homogeneous and nonhomogeneous elliptic,and
homogeneous parabolic partial differential equations are proposed.

Hybrid computer techniques for mechanizing the Monte
Carlo methods are given.” The Markov process is simulated on
the analog computer and the digital computer is used to control
the analog computer and to form the required averages. ‘Methods
for detecting the boundaries of regions using analog function
generators and electronic comparators are proposed. |

Monte Carlo solutions are obtained on a hybrid system
consisting of a PACE 231 R-V analog computer and an ALWAC III-E
digital computer. The interface for the two computers and a
multichannel discrete-interval binary-noise sourcé'are deScriHed.
With this equipment, solutions having a sﬁail variance are |
obtainea at a ratée of approximately five,mihutes per solution.
ixample solutions are given for ILaplace's equationvin two and
three dimensions, Péisson's equation in two dimensions and the

heat equation in one, two and three dimensions.
ii '
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1. INTRODUCTION

1.1 Introduction

High-speed computing devices together with sophisticated
numerical methods are inadequate fo; solving many partial differ-
gntial equations encountered in the study of continuoué systems.l
Numerical methods called Monte Carlo methods are known for solving
many'functional equatibns including a class of partial differ-
ential equations,2 but when implemented on a digital compufer
‘* the methods have generally proven to be very;inefficiént.3 In
1960 a Michigan report4 outlined a Monte Caflo method using an
analog computer for solving a class of homogeneous elliptic
partial differential equations. In the Michigan study, solutions
were obtained with a slow analog computer at approximately the
same rate as that possible with a‘fast digital computer.

In this project, a hybrid computer is used to implement
new Monte Carlo methods that are developed for solving a large
class of both elliptic and parabolic partiai differeﬁtial equa-—
tions. Computing techniques are developed so that, unlike the
Michigan study, no special purpose eqﬁipment is required. With
the hybrid approach, many features, including the capacity to.
program an entire problem solving procedure and the capacity to
obtain automatic printout of éll solutione, are made possible .

Most computer methods for solving partial differential
equations depend upon approximating the equations by a set of
finite-difference equations.l’5 The number of difference

équations in the set depends geometrically upon the number of



independeht variables in the partial differential equation being
approximated and upon the.pfecisnﬁ1required in the solution.
For many problems the number of difference equations that are
required is such that storage and solution times in the case of
digital computétion, or equipment requirements for analog com-—
putatioﬁ, are entirely unrealistic. Other anélog me‘thods6 such
as solﬁing the set of difference equations with passive lumped
elemenfs, electrolytlc~tank simulafions and membrane analogies
are sultable for some problems, but inadequate for many others.
Monte Carlo methods are methods which involve the
sampling of'random proceSses* as a meané oanpproximating the
solutions of mathematlical problems. The random process is related
to the problem for which a solution 1s desired in such a manner:
that repeated values determined,by.the process cOnverge in a
gtatistical sense to the solution. For many mathemétical pro-. .
blems such a random process cannot be found, and for others;
'many araaknown. In the case of partiel differential equations,
stochastic processes** in the fofm of random Walks.can be used

to solve equatiohs that are ingéome way related to diffusion

* A random process is a process exhibiting variations from
observation to observation which no amount of effort or control
in the ¢dursse of a run'or trial cEn removee !

*¥* The term stochastic procsss is used to denote a random process
of a time-dependent nature. .



processes. Such partial differential equations include two of
the three linear second-order canonic types; namely, elliptic
(e.g. Laplace's equation) and parabolic (e.g. the diffusion
equation) equations. Partial differential equations‘of the
hyperbdlic type (e.g. the wave equation) are not amenable to
golution by the methods to be discussed.

In all partial differential equations to be considered,
the following procedure is used to obtain approximate solutions.
A large number of random walks are started'iq sequence at a
point for which a solution is desired, and eéch random walk is
terminated either at a predetermined time or when a boundary
is reached. A prescribed value, normally an initial or boundary
value, is selected according to the terminal position of eéch
walk, and the average of a large number of such values is deter-
mined. As will be shown, this average converges in a statistical
sense to the solution at the point where the random walks were
started. By this procedure,the solution at all points of inter-
est can be obtained. |

In this work,the random walks are generated on.the‘
analog computer as the response to random-noise sources. Elec-
tronic comparators and function generators on the analog computer
are used to determine the terminal positions of the walks. The
adjoining digital computer is used to control the‘analog computer
and to average the values associated with the terminal positions
of the random walks. This approach takes advantage of the speed
with which random walks can be generated on an analog computer

as well as the dynamic range and memory capabilities of a digital



computer.

1.2 Thesis Outline

Following this introductory chapter, partial differ-
ehtiél”équatiohsnare derived for certain cohditional probability
dengity functions of a class of Markov processes. In Chapter
3, these probability density functions are used to derive'Monte
Caflo methods that are proposed for solving a large.class
of homogeneous and nonhomogeneous elliptic,and homogeneous
parabolic partial differential equations. The convergence of
the Monte Carlo solutibns to the exact solution is also considered.

The use of a hybrid computer for SOlving partial
differential equations by Monte Carlo methods is discussed in
Chapter 4. Computingﬁtechniques, as Well‘as limitations imposed
by the equipment, are outlined. Novel methods for detecting
boundaries for problems with one, twoiand three spaﬁial'ﬁimen—
sions are also proposéd. | | | |

Experimental results are given in Chapter 5. The
éxamples in this chapter include solutions of Laplace's equation
and Poisson's equation in two and three dimensions,as well aé
solutions of the heat equation in one, two and three dimensions.

Five appendices follow fhe conclusions‘given in
Chapter 6. Included in these appendices aré the details of the
interface that was built to link the two coﬁputers8 and the de-
scription_of a new type of multichannel noise source that was

developed for this project_.9



2. TFUNDAMENTAL RELATIONS FOR MARKOV PROCESSES E

2.1 Introduction

In this chapter certain conditional probability density
functions of stochastic processes known as continuous Markov
processes are defined and éhown to be fundamental solutions of
a class of parabolic partial differential equations. The form
of the partial differential equations that are developed is
closely related to the form of the equations for the boundary-
value problems that can be solved by the proposed Monte Carlo
methods. In order that the methods apply to partial differential
equations of a very general form, a very general Markov process

that can be readily simulated on an analog computer is oonsidered.‘

2.2 Chapman-Kolmogorov Equations for Continuous Markov Pfocesses
within Bounded Regions ' B

To solve a boundary-value problem that is defined on
an open bounded region R and its boundary C, é continuous.Markov
" process ?(t),defined on R and C, is considered. In this ﬁork,

R is assumed to be a one, two or three-dimensional region, and
the vector r(t) is assumed to have components x, y and z in a
cartesian coordinate system.

A continuous Markov process can be defined as a sto-
chastic process h&ving theé -property thatofuture:ﬁalueé Qﬁmi,ﬁ;mw
fdepend upon a time~ordered ‘set of known valueS‘of.fmonlyﬁ

through the last available value,7



That is, if r is known to equal fo at time to,then the value of
r at some future time t2 is in no way dependent upon known values

of r at some earlier time t_l <:to. From this definition it

7

can be shown' that the conditional probability density function

f(I'.2’J.°2 Tor

to) completely describes the statistical properties
of r where f is defined as follows. |

Definition.

£(F,, %, |Foto)dry is the probability that the
random vector r is in dr, at time t, if at time.

r=r_.

t
o’ o)

The terms given in the definition are illustrated in Figure 2-1.
The differential dr2 that is used in the definition is an element
of generalized volume at the pbint defined by 52. That is, er

is either dx2, dxgyécn‘dx dyzdz2 depending upon the dimension

2
of R.

An elementary property of the conditional density
function f for a Markov process is that it satisfies the follow-

ing Chapman-Kolmogorov integral equation7

f(rz,F2| ro,to) = u/r\f(r‘?,tz' rl,tl)f(rl,tl ro,to)drl (2.1)

R

for all t < ) S;_t2.

This equation expresses the fact that a transition of r from ?O_



at to to T, at t2 occurs via some pglnt rl at time tl.
In addition to the conditional probability density

function f, the following conditional probability density func-

~tion g, is also defined.

Definition

g(rb,tbl ro,to)drbdtb is the probability that the

random vector r will reach boundary C within drb

between times tb and tb + dtb if at time to’
f’ = i: L
o}

The term drb in the definition is a differential elemenﬁ of

- generalized surface area about aipoint r. on C. (see Figure 2-~1)

b

v

dr

1l

‘Figure 2-1. Space Region Illustrating Defined Terms
' I
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From the Markov property and the fact that a random
walk from an interior point fo at to to a boundary point ;b at:
tb must pass through some fl'at time tl < tb’ it follows that
'g must also satisfy a Chapman-Kolmogorov equation; i.e.,

g(Ty by | Torty) = [ &(Ty,ty | Tyt E(F, %y | Tphtddry  (2.2)
R

for all to << tl 5;,tb

The Markov processes used for solving paftial
differential equations are initiated at time to at a point fo
Within Ryand are terminated either at a predetermined time |
t2 = to or whenever the random variable T reaches a boundary
poinf Eb on C. Hgnce, if a process is terminated due to a
boundary absorption, it occurs at a timg tb < t2. In view of
~these statements, f and g must satisfy the following initial

and boundary conditions.

A, Initial condition for f.

lim f(r2,t2| ro’to) = S(Ié - ro) : (2.3)
to—e>t2 o

where
8(r2 - ro) =0 for r, # r, and fg(rz - ro)dr2 = 1.

R



9
This condition expresses the fact that the point of termination
52 is the same as the starting point fo if the process is

terminated immediately after it is initiated.

B, Initial condition for g.

lim g(fb,tb |fo,to) =0 (2i4>
td—e>t2

That is, the probability of reaching a boundary point fb is zero
for a walk starting at an interior point fo when the walk is

terminated immediately after it is initiated.

C. Boundary condition for f.

lim  £(r,,t, l r ,t, ) =0 | (2.5)

This condition states that if the starting point fo approaéhes
a boundary point fb there is zero probability that r will be
in an interior region dr, at a time t, =1t . This is true
since the process will terminate immediately at the boundary

point Ty

D. Boundary condition for g.

Lin g(F,,ty, | Toit,) = O(F, - F) § (%, - 5,) (2.6)

= =
o—> I‘b

where

B(ro - rb) 8 OHD-tO) =0 wunless T = r, and b = t

O
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s
and fguq - 7,) O (4, - t,)drat, =1
t, C

As the interior starting point fo approaches a boundary point
fb, the process is certain to terminate immediately at the
point Eb‘ -

" In addition to these initial and boundary conditions,

the following integral relation must also be valid for all 50

and t_ _ ;
o _ o :
V/;(I'Z,t2 | I‘O,to)dr2 + ffg(rb,tb Iro,to:)drbdtb =1
R | ’ t, C : (2.7)

The first term of this equation is the probability that r is
within the boundary at time t2, and the second term is the pro-
bability that r has reached a boundary within time t2. Since
one of the two events must be true, the sum of the two terms
is unity.

In the following section the Chapman-Kolmogorov'inte—
gral equations'(Z.l) and (2.2) are converted to second-order

partial differential equations.

2.3 Backward Kolmogorov Partial-Differential Equations

The Chapman-Kolmogorov integral equations of the
previous section are converted to partial differential equations

by expanding a term in the integrands of the integral equations



11

in a Taylor series about the initial point fo, and then taking
a limit. ZFor a general Markov process all terms of th% Taylor
series are required in the expansions,'but for Markov processes
in which the random variable r changes by only a smgll amount
in a small time interval.[lt,only the first two terms of the
series contribute when the 1limit is taken. The resulting
second-order partial differential equations are called backward
Kolmogorov equations.lo ‘

Consider ChapmanFKolmogorov equation (2.1) for

t, =t + At; i.e.,

f(r2,t2| ro,ty) = ff(rz,t2| T oty +O8E(T 8 + At'ro,to)drl
R | - | . (2.8) .

For At small, the term £(¥y,t, + At | T ,t ) is the
incremental transition probability density of the prdceSS. It .
gives the distribution of displacements after a small time Zﬁt._
If after /At the displacement from fo is so small‘that the
probability of reaching a bouﬁdary is zero,'it'foliows froﬁ

equation (2.7) that

22.111;1*0 ff(rl,to + At I r,t )ar; =1 (2.9)

R

To convert equation (2.8) into a partial differential

equation,the term f(r,,t,| T ,t'-+Z§t) in the equation is
, * 2772 "1'%0
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expanded in a Taylor series about ro- For the expansion, all

variables but r are assumed to be flxed The expangion. .yields

f(rz,t2|r0,. /lj T, 2|ro,t + A1)

.\ %(fz,tzlfo,tcﬁ O t) (x-x,)
0 ‘ :

N %(r 2|Tort +At)(yl o)

(o)

+ %- i(?2’t2|ro’to+At) (zl_zo)

o)

azf(fzftg IFO’tO+At) (-Xl-xo) (Yl‘yo)

ERIRYA

) O%E(F 0, [Ty s byt OF) (7% ) (21 -2,)
SXOSZO
+ 6Zf(EQ’tZ -Eo’to+At)(yl-yo)(zl_zo) .
Syogzo .
o 1 0P8Ryt bk ) (1) x )2
2 E)Xi
+ % —6—35(52’t2,50’t0+at)(yl—yo)2
dys
+% 62f(r2, er t,+ Q) (2,-2 )2

dz’



If,

lim
JAN )

1im
JAN o)

lim
Nt—=0

lim
NAt-=0

lim
JAN 20)

gjp

tzl~

S

=

|\>|'_'
=
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+ higher-order terms f(rl,to+llt ro,to)drl

(2.10)

1. terms not involving'xl, Y1 or_zl are taken outside
the intégral,' | |

2. equation (2.9) is used,

3. all terms are divided by [St and the follow1ng

limits are assumed;

!
[\

ﬁxl-xo)f(fl,to+Atlfo,tojdrl = a (T ,t) (2.11)

R

v )E(T,t, +At|r t,)dr

l
[
N
~~
=
-
ot
o
~—
—~
N
-
N
~—"

l .

(z-z ) (T l,to+At|f~o,to)drl = a5(F,,t,)  (2.13)

1

It

(y,-v, )2 f(rl,t +At|r t)dry = by(r ,t ) (2.15)

b/f‘ —x )28 (F), b+ D[ F b )ary = by (F,b,) (2.14)
R



lim 5—15%- f( l—zo)zf( Tty +At|r t,)ar, = b3(f-o,to) (2.16)
A t—=0 A
R
1n f(xi-x )(yl-y HER RV ERLENEEN RN
At=0 | ,.
R (2.17)..
lin =% f (x9-x,) (20-2 ) B (T, b+ At [T, )dry = oy(Fost,)
Dt—=0 ‘ :

: R (2.18)
1im T%? f( -y, ) (2y-2, )2 (% l,t +At|r % )dr = 'c3(1-;o,_,.3co)
At-=0 .

' R (2.19)
1lim Z%¥ c‘/p(hlgher-order terms)f(rl,t +Z§tlr to)drl =AO
At-=0 -
R (2 20)
Lim f(fZ’#‘?lfortofAt‘) Atf(f'ZytZIfo’ f(rz, 2'1‘0,17 )
At—=0 ' ,
(2.21)

then equation (2.10) becomes

_ %%(();Z’t2l b ) (I‘ —g—x + a (I‘ t )% + a (rort )%‘

o Ji—% + b3(r t )45——

S \2
+ b (T t)ii+b(f~ £ )
1o’ 0 6x§ 270’ 6yb

O

( )-éi—g-zf ( >%T2f (r )I-g—?—zf
+ ¢, (r_,t + c,(>r_,t + e, (r ,t '
1*7o0’ o X,Q Y, 2 o’vo X, zo' 370’0 Y00 24

(2.22)
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This equation is known as a backward Kolmogorov equation. In'
Section 2.4 a particular Markov process for which the backward
Kolmogorov equation is valid will be considered.

Backward Kolmogorov equation (2.22) can be written

conveniently in terms of an operator L_ as
' r ,t:
0’’0o
- ﬁ(r'z’tzlro’to) =1  £(%,,t,|F ,t) (2.23)
o 2 1 fFertelforte (2.2
o’ o

where

L  =a (T t)%— + a, (T ,t.)% + a (T ,t )% '
g 1'7o? "o X, E 270’ o Yo ~3' 0’ o zo-

o’’o
(r )—2 (r ) 2 . (r ) °
+ b-{r ,t + b (r ,t + b (r ,t_ )
Lorto g2 T Paor ol e T s orto Ty g2

(o) (e}

] 5 , ) | 6 ,
cl(ro’to) Sxogyo * c2(ro’to) gxogzo

+

+

03 I‘O,‘to)wo A (2.24)

The subscripts ;o and to are used to indicate_fhat the operator
ig a function of Eo and to and that differential operations

are with respect to components X1, and-zO of the initial
position vector fo. The vector 52 and timeﬂf2 are parameters
in the partial differential equation. To clarify the notation,

equation (2.23) in one dimension is
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+ by (x, 928 (x5, 8 2|%o %0 (2.25)

6 2

By a procedure similar to that carried out above, the
Chapman-Kolmogorov equation (2.2) for g(fb,tb'fo,fo) éan be
converted to a backward Kolmogorov.equation. In this case
g(fb,tblfl,to+llt) is expanded .in a Taylor series about ;o'
Using the previously defined limits (2.11) to (2.21) and the

operator notation, it follows that

QT Lt |F,t) - _ -
—%% R R &(Ty by | Ty t,) (2.26)
o Tyt v _

0]

The partial differential equations that have been
derived will be used: in Chapter 3 to derive Monte Carlo methods
for solving boundary-value problems that are governed by
.equations ¢f e form similar to (2.26). However, before..
proceedingité Chapter 3, a Markov process that gives'rise to
limits (2.11) to (2.21) and a methbd for generalizing the

Kolmogorov equations will be considered.
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2.4 A Continuous Markov.Process fqr which Backward KOlmogorov

Equations are Valid

In the ﬁonte Carlo methods to be outlined, the coef-
ficients in the Kolmogorov equations coincide with the coef-
ficients in the partial differential equations for which the
methods are applicable. It is therefore necessary to consider
a Markov process for which the assumed limits (2.11) to (2.21)

are valid. A mathematical model of such a process is defined

by the following set of stochastic differential equations:

%% + A (x,5,2,t) = Bl(x_,y,z,t)Nl(t)_ o (2.27)
%% f.Az(Xay,Z,t) = Bz(x,y,z,t)Nz(t) | (2.28)
L+ a5(x,y,2,1) = B5(x,¥,2,%)N;(t) | ~ (2.29)

These equations can be written in matrix form as

+ A(T,t) = B(TF,t)N(t) (2.30)

18

The dependent variables x, y and z in this model arev
the components of the random vector r, for Which'density.func—_
tions f and g have been defined. The coefficients Ai and"Bi
are, in general, slowly varying continuous functions of x, y,
z and t. The driving terms Ni(t) are uncorrelated with each

other, and each term is stationary Gaussian white noise with .
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zero average. These properties of Ni(t) are expressed in the

following manner:

€i<t> =0 |  (231)
< = 2Di‘8 (t,-,) o (232)
< t)NJ(t> _o | | (2.33)
{(t N, ( C e Ni(t2m+l> | '

<t)N(t)...N(t) - (25)
- Z t)N(t)><\T(t)N(”G)

all pairs

Yd/

i
o

(2.34)_ |

In these equations the brackets <ii:>>51gn1fy an ensemble
average. S(t is the unit impulse function, and 2D 1is "the
power spectral density of Ni(t). Equatlons_(2.34)'and (2.35),
or similar equations, are required in order to show that the
limits of the higher-order moments (2.20) afe actuallj zerd.
The properties that have been assumed for the model‘imply‘fhat
each Ni(t) has a Gaussién distributed amplitude.ll In eqiation

(2.35),the sum is to be taken over the ﬁ%ﬁ%* possible ways
2 m.

that 2m points can be divided into m pairs.

To show that_the process defined by equation (2.30)
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is actually a Mérkov process, it is sufficient to show that,
given f(to) = ;o’ the statistics of“f(tl) are in no way afféctgd
by the additional information.. that E(t_l) = ;—1 where

t_ < to‘<: tl' From equation (2.30),

fEs@« N(E) - A(F, t):, a (2.36)

f‘(tl)

Since f(to) = 56 is fixed, the statistics of f(tl) depend only
upon the statistics of the driving.vector N(t) in the interval

(t,,t If the additional information F(t_,) = F_; is also

l)' l)

given, then

f[rt)N —Art):ldtzf'o—z_'_l.._ (2.37)
5

This condition on the integral provides information about N(t)
in the interval (t_l,to), but doeé'not give any‘infofmatipn.about
N(t) in (to,tl), since by equation (2.32), N(t) in thé‘two |
intervals is uncorrelated. The statistics of f(tl) therefore‘
do not depend upon the additional information f(t_i) = r;i.
Hence, r(t) is indeed a Markov process.

The limits (2.11) to (2.20) of the Markov process
given by equations (2.27) to (2.29) are calculated by integrat-

ing the equations between t = to and t = to + At and then
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taking the required ensemble averages and limits. Consider
equation (2.27) with the coefficients written in vector notation.

Integration gives

tO+At ‘ to+At ‘
.(xl—xo) = - f Al(f,t)d£ + f Bl(.f.,t)Nl(t)dt
t, ' t, -~ (2.38)

Under the condition that Al(f',t) and Bl(f',t) vary at a much slower

rate than N, (%), this équation can be written

t r At |
(x)-x ) = -~ A (T, 6 )D% + B (T ,% ) f Nl(tv)dt + o(At)

b (2.39)

where 1lim Qéééﬁl =0 (2.40)
. AT
At—>0 3
The ensemble average of the nth power of (Xl—xo)-is expressed

by the Binomiali Theorem as
|

él-xo)> =§ m_%_lﬂl l}Al(fo’to)At:] Bk [Bl(fo’tozl 5
| k=0 ' |

to+At

f . f Ql(tl)Nl(tg) .. .Nl(tk> dtqdt, . . ._'.dtkv+ o(At)
t | .

(2.41)



| | a1
where, for k = 0, the multiple integral is unity. L

From conditions (2.32), (2.34) and (2.35),

t + At | | | o - S . _
b/h M/[‘<:: C. Nl(tkz:> dtydt, . . .4t =0
_for‘k-odd - *(2;42) |
| k- k |
= QEké—— (2Dl)2(ﬁlt)2 for k. even. (2.43)
2k | | | |
2 (2).
Hence,

A

| e
2 _[Bl(fo’toﬂ _D]_At +°(At) R
. . formn =2 (2.45)

I

o{lﬁt)_  form 21'3'>(2.46)

The limits a)(F_,%,), by (F,,t,) and a higﬂef;Ordér'limi#ﬁaféff7ﬁ'&J'
obtained directly from thege eXpressionS'by dividihg by“ﬁst-
and.taking the limit. By aSimilar procedure, it‘followsfthat

all the llmltlng conditions that were assumed in Sectlon 2.3

are valld for the Markov process defined by equatlons (2. 27) to
(2.29). TFor completeness, all relatlonshlps between the llmlts,
or coefficients in the Kolmogorov equatlons, and the coefflclentsv

in the stochastic differential equations (2.27) to (2:29) are
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listed below:

8y (Tort,) = = A (F,%,) . R
a, (T ,t,) = = A (F ) | o (2.48)
as(Toit,) = = A(Te,t,) o (2.49)
bl(ro,to) Bl(ro,to) Dy | (2.50)
by (Fyat,) = |By(F b)) | D, (2.51)
_ - -2 o
by(Fo,ty) = [Bs(Fo,t) | D (2.52) "
ey (Fpoty) = cp(F,t) = cx(r st ) =0 R -(2_.53)_

The fact that coefficients ci(fo;to) are zerO‘ista. :
consequence of the assumption that the noise termslNi(t) are notj'“
correlated with each other. This_assumﬁtion is not-necéésary in®

‘theory, but in practice it would be extremely diffiéult.to"
realize noise sources with specified crosscbrreiatioh:asiWeli‘as
autocorrelation.

A Markov brocess giving rise to conditional_probability
density functions f and g that satisfy Kolmogorov partial,differ-
ential equations (2.23) and (2.26) has been discussed. 'In the
following section, auxiliary probability deénsity functions that
satisfy more general partial differentialAéquétions'than the,_

Kolmogorov equations will be studied.
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2.5 Partial leferentlal Equations Satisfied by Aux111arv

Probability Dens1tv Functlons

The second-order Kolmogorov equationS'thaf have.been
derived are the basis of Monte Carlo methods for Eélving
partial. differential equations. The Kolmogorov eqﬁations,
however, only contain terms in the derivatives of the density
functions f and g,which means that only problems yielding
partial differential equations of this form can be treated. An
extended form of the Kolﬁogorov equations cbntaining the depend-
ent Variable.itself can be obtained by considering auxiliary
density functionsl2 u and v defined below. These auxiliary
functions are obtained from the same Markov proéess as considered :
in the previous section by weighting the probability density
functions f and g. With this extension, partial differeﬁtial”equa-
tions containing a term:in the. dependent Variable_itself”can.be'solved.
The auxiliary probability densify funétibns-u,andiv"‘

are defined as follows:

T(t,)=T)

H

t,)

'y(r2,t2 Tor%o

v(rb,tb ro,to) = {exp -m(tb,

to)
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The term m(tz,to) is given by the functional

b2

m(t,,t,) =f dlz(t),t]at ' (2.56)

o]

where dA[T(t),t] is a continuous positive function of the random

vector r(t) and time t.

The brackets , : denote a

T(t,)=F

conditional expectation; that is, the expected value of the_func—b
tion within the brackets subject to the coriditions that

r(to) =r_  and r(t2) is in a small region drz about‘rz.
In a manner similar to that given by Darling and

Siegert}2 it will be shown that u(r Tys 2 |r t ) and v(r Ty bi t&

satisfy the following partlal differential equatlons

w(r,,t- | T ,t ) _ - _ s _ -
- ég% 2? 2| 0o’’0’ =1L_ u(rz,t2| ro,to) d(ro,to)u(r2,tzlro,tJ
(0] r ,-t .
0’’0o ,
(2.57)
dv(r ,t |7 ,%) - = . - - _
- ngo b | "0’ 0’ = L; i v(rb,tb| ro,to) -~ d(ro’to)v(rb”tb ro,to)
0’0

(2.58)
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From the identity-
t

2

exp -m(t,,t ) =1 -J/7 Q exp -m(t,,t,)dt . (2.59)
‘ 2’0o / Stl 2271 1
‘tO-

and the relation
Tg¥lm(t2,tl) =—d[r(tl?}tl] | (2.60)
it follows that

t2

exp —m(t2,to) =1 - ;/ﬂ d[r(tl),tl]exp_-m(tz,tl)dtl  _(2.61)

Jco
Taking the conditional expgctation of both sides of this equation,
multiplying by f(fz,té |fo,to) and applying definition (2.54),

gives
u(r,,t, Iro,to) = £(%,,%, | To,t,) -

Aty £(T,,t,|T )

l)’t ]eXp. -m(tZ’tl) 1

(2.62)



. 26
The conditional expectation, if §(tl) is,considefed fixed at

El’ can be written

F(4,)=F\

a[r(ty),ty Jexp -m(%,,%;) =

d(ry,t,)exp -m(%,,%;) r<t1)=fl p(Ty,t9| T ,t 5T, t,)dry

R E(to)=fo | (2.63)

gwhere p(rl,tl ro,to;r2,t2)drl is the probability that the
random variable r is in -the region_dri at tl if it is given
that T is at Eo and in the region dr2 at times to and t2 reépec-

tively. For a Markov process

p(rl,tl lro’to;r2’t2)f(r2’t2 lro,to) =

.(2.64_)

f(rl,tl] ro,to) f(r2,t2|.rl,tl)

‘Now, since Ei, within the conditional expectation,is
fixed, d(fl,tl) in the seCondﬁkmbertof'eqﬁationf(ég3)can be
taken outside the conditional expectation. Also, for r(t) é
Markov process, f(té) ig independent of f(to) when i(tl) =T
is given and t, > ti > t . The condition}f(to) = ;o can
therefore be deleted from the conditional expectation.
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Therefore,

r(t,)=T,
alF(t)),t, Jexp -m(t,,%;) | -
F(t,)=F
F(t,)=F)
a(ry,t7)  exp -m(t,,%;) .
R - r(t,)=ry

£,y | F,8)8(,,8, | 7,8 )ar)
f(r

(2.65)

o1t | Forty)

Substituting equation (2.65) back into equation (2.62), and
using the definition of u(r s, 2' ?l,tl) gives

w(Fy, by | Torty) = £(Fyt, | To0t) -

¥

V/F;/g(r t)u(T,, lrl,t )£(rq,t7 | T ot )dr dt, (2.66)

to R
If the order of integration is reversed and both gides of the.
equation are operated upon with the operator L_ + 3%¥ ,

' t o}

T
where from (2.23) 0’0
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L T T =
_— + %%¥O (r2,t2| ro,to) 0
o’’o
the following equation is obtained:
L_ *%‘ u(f,t|f',t>=
ro’to ;;> 2’72 o’ o

Lj/ﬁd(rl,to)u(rz,tz |;1,to)f(rl,to T,t,)dr; (2.67)

R

From equation (2.3), however,

lim f(rl,t:L ro%’to) = | 8 (rl - ro)
t—>t, '
Therefore,
_ Qulr,,t, | T, ) _ - = - L N= .=
i%ﬁ 2772 I o’ ’0’ = L_ u(r2,t2 ‘ro,to) - d(ro,to)u(r2,t2lro,t8
° ro’to _

, (2.57)
as was to be shown.
By a similar analysis,with p(T st | TostyiTorty)

replaced by q(fl,tl lfo,to;fb,tb),where
a(F1rty | FortoiTyrty)e(Tyty | Torto)=

£(Ty 5y | Tgrt)E(Ty 0y | Tp0%p) (2.68)
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it follows that V(fb,tb fo;to) satisfies equation (2.58).

It is important to ﬁote that the auxiliary density
functions 'u and v satisfy the same initial and boundary
conditions (2.3) to (2.6) as f and g respectively. This follows
from definitions (2.54) and (2.55).

The form of the initial and boundary conditions for
the partial differential equations developed in this chapter
suggests that the density functions f, g, u énd v can be.regarded
as fundamental solutions or Green's functions for boundary-—
value problems. This property will be studied in the following

chapter.
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3. MONTE CARLO METHODS FOR THE SOLUTIONS OF BOUNDARY-VALUE
' PROBLEMS

3.1 Introduction

In this chapter relationships between probability
density functions f, g, u and v and solutions @ of boundary-
value problems will be developed. The methods to be described
can be applied to problems governed by partial differential
equations of the same form as those for f, g, u and v in which
§ itself is given initially and on all boundaries.

In all problems to be considered, the solution at a 
point is obtained as the expected value of initial and boundary
values at the terminal points of random walks originating at the
'point for which the solution is desired. The expected value is
written in terms of the probability density functions f and g,
or u and v. An approximation to the expected value is determined
experimentally from a large number of random Walks simulated bn
an analog computer. The approximation converges in a statistical
sense to the true solution as the number of random walks increases.

The form of the partial differential equations in
Problems A and B is not standard in that a minus sign preceédS'
the time derivatives. This form is conveniént for the analysié,
and in no way restiicts the methods since the equations of an
actual problem can always be transformed to the required form by

defining a new time variable.

Methods for solving the various classes .of problems

will now be outlined.
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3.2 Solutlons of Boundar —Value Problems for Parabollc Partlal

Differential Eguatlons

The statement of the problem to be considered in this

~section is as follows.

Problem A Determine ¢(Eo,to) such that :
- Tg%<roeto. -1 B(F,t) (3.1)
.0 ro,to

is satisfied within a bounded region Rj
(2) .a piecewise continuous -initial condition'¢o(§o)

is satisfied within R; i.e.,
g (r,,0) = ¢o(ro); (3.2)

(3)»a piecewise continuous boundary condition

@ (7, ,t ) is satisfied on the boundary
c b’ o .

¢ of R; _»i.e. ’ ' '
B(F, b)) = B (Fp,b,) s | (3.3)

0
The boundaries and initialvénd boundary conditions of
a typical problem with one space variable'are shown in Figure
3- l. The time variable t that is shown in the figure is such
that #(T,,t,) is defined for t = O. "
To determine the solution @ of Probiem A at a point
(fo,to), random walks are started at point (fo,to). Each walk
is terminated as soon ags a boundary is reached or at t = O.
If a walk terminates on a boundary atv(fb,tb) the boundary value -

¢c(fb,tb) is recorded, whereas if a walk is terminated at t = O

with position 52, the initial value'q)(fz) is recorded. It
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will be shown that the expected value of the recorded boundary

and initial values is a solution of Problem A.
t

S
>

Xp1 (B)

bX

(x_,% )

Figure 3-1. Random Walks and Initial 'and Boundary Conditions

- of a Typical Problem with 1 Space Variable.
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The expected value of the initial and boundary values

can be written in terms of the probability density functions

f(r2,0| ro,to) and g(rb,tb| ro,to) as

(T, t,) =ﬁo(f~2)f(;~2,o | 7,0, dr,

R
0 ‘ . : :
+ V/[1J/%C<fb,tb)g(fb,tb| r .t )dr, dt, (3.4)
t, C |

where it has been assumed that the expected value is the solu-
tion. It must be proven that ¢(50,to) as given.by equation
(3.4) is acfually a solution of Problem A. |
To prove that ¢(?o,to) satisfies the partial differ-
ential equation of Problem A, operate on equation (3.4)‘with the
operator j%¥ + L . . Since the operator is with fespeét to
o Tor%o

50 and t_, the result is



—go ' Lfo’to ¢(r0’t0> i ¢O(r2) —é—to ' L;O,'t (rZ’OFIrO’tO)dTZ
| R | | |
0
+ V/G\J/%c(fi,tb) <§TEO + L} ;;%(Tb,tblio,to)drbdtb
o’
t, C . |

-fff‘c(f‘b’to)%(fb’toIf‘oztc))drb' -  Gus)
: |

The right side of equation (3.5) is zero by Kolmogorov equations

(2.2%) and (2.26) and initial condition (2.4). Therefore,

OB(F %) = T_

~To prove thatnﬁ(fo,to) as defined by equation (3.4).
also satisfies the initial and boundary conditons of Problem

A, consider
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lim @(r ,t,) =ﬁ552) lim £(7,,0 f*o»,to)_drz :

t—=>0 + -
o) t5->0
B

- 0
+ - . - -
b/(L/%C<rb’tb) lim g(rb,tb ro,to)drbdtb (3.6),
: t—=0 ,
t ¢ ° '

By equations (2.3) and (2.4), equation (3.6) becomes

lin §(F_,5,) = ﬁo@) § (5, - F)ar, = 6(5,) . (3.7)

t?o

Thereforé, ¢(fo,0) = ¢O(fo). | _ - (3.2)

Also,

lim @(r_,t,) =ﬁo(r2) _lim_‘f(rz,o r .t )ar,

R .
0 ' - |
+ \J/tj/%c(rb,tb)_lim_ g(rb,tb ro,to)drbdtb - (3.8)
. rs>Ty _
4 C = |

o
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By equations (2.5) and (2.6), this equation becomes

0
Lin G(F,,%,) = fﬁc@b,tb) S (5,7, & (h-t,)arat,

T—T
o b
tO C
= ¢c(fo’to) . (3.9)
Therefore, ¢(§b,to) = ¢c(§b’to)' . (%3.3)

Since all conditions of Problem A are satisfied, ¢(fo,to)
as defined by equation (3.4) is a solution of;the problemn.

The Monte Carlo solution of Problem A is obtained by
approximating the expected value ¢(fo,to)‘given by equation
(3.4) with the average ¢N(fo,to) of the initial and boundary

values ¢i that are recorded from a set of N random walks origina-

ting at'(fo,to). This average is

By(Tyrt,) = %'% N o - (3.10)

The convergence of ¢N(§o,to) to ¢(fo,to) is considered in

Section 3.5.



Problem B Determine $(7_,t ) such that :

(1) P _ _ _
_ g%(ro,to) = }Ll_p . p(r,t,) - alr ,t )8(r ,t)
o) o’ o

(3.11)

is satisfied within a bounded region R;
(2) .2 piecewise continuous initial condition is satis-
fied within R; i.e.,

#(z,,0) = B_(F) ; (3.12)

(3) a piecewise continuous boundary condition
¢C(fb,to) is satisfied on the boundary C of R;
i.e., :
B(F,, b)) = B_(F,5,) - (3.13)
The statement of this problem is the same as that for
Problem A except that @ satisfies the same partial differéﬁﬁial
equation as the auxiliary density functions u and v (Sectioh

2.5). Therefore, by analogy with the previous problem, the

solution is

¢(§o’to) =kj/go(;2)u(52,0'fo,to)drz
. .

+
t

5 o

k/[l/[%c(fb’tb)v(fb’tb fo,to)drbdtb . (3.14)
: _

(0]
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From definitions (2.54) and (2.55), equation (3.14) becomes

¢<zo,to>=f¢o<f~2> exp - fa[m),t]dt

o

R b
£(%,,0 | T .t,)ar,
0 ' by |
+fﬁc(fb,tb) exp—f afz(t),tlat
t, ¢ t
g(rb,tb ro,to)drbdtb | | | (3.15)

The expected value ¢(f‘o,to) given by equativoh (3.15) can be
approximated by the average ¢N(fo,to) of the product 7i¢i for

N walks originating at (f'o,to) where (Z5.1 is the initial or boundary
value at the terminal point of the ith walk and Yi is the value

of
T

Y = exp 1j/ﬁd[f<t>;t]dt - .k3'16)

%
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for the corresponding walk. The upper limit of integration,.
T, is O for walks terminating at t = 0, and tb for walks ter-

minating at a boundary. The Monte Carlo solution is therefore
¢N(r0’t0) = % % ’ylﬁl (3-l7> '

%.% Solutions of Boundarv—Value Prleems fof Elliptic Partial

Differential Equations

The boundary-value problems C, D and E to be discussed
arise in the study of steady—staté fields. Typical partial‘.
differential equations for these problems are the Laplace equation
and the Poisson equation.:

The gtatement of Problem C is as follows.

Problem C Determine ¢(EO) such that:
(1) T_ #(x ) - 0 is satisfied within a bounded ,
Yo < (3.18)
region Rj
(2) a piecewise continuous boundary condition ¢C(§b)

is satisfied on the boundary C of R. i.e.,
CPB(zy) = P (ry) - | (3.19)

The subscript ﬁolis deleted from operator IL_
| _ ro’to
to indicate that L_ is @ independent of time.
o)
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The solution of this problem is the steady-state

éolution of a problem of type A. Since L_ and the boundary

r
0

conditions are independent of to, the solution at fo'is the

expected value‘of boundary values at the terminal points of

random walks originating at io at time to = 0. The expected
value is written in terms of probability density function

g(f‘b’tb l E‘O’O) as

oo

g(r,) = b/ﬁ;/%c<;b>g<;b,tb r ,0)dr, dt, (3.20)

0 C

From equation (2.26) and boundary condition (2.6)'f0r g, it
follows that B(T.) as given by equation (3.20) is indeed &
solution of Problem C. '

Equation (3.20) can also be written as.

g(r,) =k]/;0<5b)G(;b| v )ar, (3.21)
]
where
oo _
G(fb‘ 7)) = ‘/[é(ib,tb lfo,o)dtb C (3.22)
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is the probability density that a random walk étarting at fo
at time to = 0 will eventually terminate in drb on the boundary
C. As for previous problems, the_expected value given by equa~-
tion (3.20) or (3.21) can be approximated by the average ¢N(fo)

"0f the terminal boundary values ¢i. That is,

| N
Py(ry) = L E g, (3.23)
i=1 :
is tﬂe Monte Carlo solution.
Problem D Determine §(r) such that: |
(1) T_ #(¥,) - a(F)P(¥,) = 0 within a (3.24)
r . . .

o
bounded region Ry
(2) a piecewise continuous boundary condition -

@ (fb) is satisfied on the boundary C of R; .

c
i.e.,
Operator L_  and coefficient d(fo) are independent of
T _
o)

time to’ but otherwise are as defined by (2.24) and (2.56).
The solution of this problem is the steady-state solution

of a problem of type B. Hence, by analogy with Problem C, the

solution is
o0

B(r,) = \J(J/%c(fb)v(fb,tb-l5O,O)drbdtb . (3.26)

|

o ¢
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For a large number N of random walks starting from'fé at time

t, = Oythe expected value ¢(fo) can be approximatéd by |
S i=1 ' ’ o | o
tb '

where 7{1 is the value of )Y = exp ij/ﬁ afr(t)]at

to,

for the i'h

of the ith walk.

walk and ¢i is the boundary value at the terﬁinal point

3.4 Solutions of Nonhomogeneous BoundarY—Value Probléms

The solutions of nonhomogeheous‘boundary—vaiue problems -
can be constructed from the solutions of a homogeneous'timé—
independent boundary-value problem and a homogeneous time-
dependent boundary-value problem. Poisson's equationbis a.
typical example for problems of type,E. The statement-of' 

Problem E is as follows.

Problem E Determine ¢(fo) such that:

(1) L_ #(¥,) = - H(T,) is satisfied within a
r
o

(3.28)

bounded region R, where H(fo) is a piecewise-
continuous functiony.

(2) a piecewise continuous boundary'condition ¢c(fb)
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ig satisfied on.the boundary C of R; i.e,5'

§(z) =8 (7)) . (3.29)

To determine the solution of Problem E, consider the
time-independent boundary-value problem of type C:‘_ _
(1) T_ ¢,(r,) = O within R, - (3.30)

r .

o)

(2) $,(¥,) = @,(F,) on the boundary C of R (3.31)

and the time-dependent boundary-value problem of type A: -

(1) - 6t B (r ,t,) = L} #,(r_,t ) within R, (3.32)

) » o
(2) 9,(F,,0) = H(T,) | (3.33)
C(3) By(F) =0 N C TS

The solution of Problem E is given by
#(r ) = @, (x)) + f ¢2(ro,to>qto I (3.35)

Proof Operate on ¢(fo) with I and use'(3.30) and.(3.32).

To

O .
S

) S5 $(Fyt,)at, (5.36)
0 o o

L 6
L #(r,) .

- 00 | ]
= §,(F,-00 - B,(F.,0) . . (3.37)



Since the boundary values for ¢2 are O, ¢2(ro,—Ci3_

Therefore, by (3.33),

L ¢(r) = - H(F
f‘o§25(ro (r.)

From (3%.35), for fo =T

‘b’
.
B(z) = B (F) + V/A¢2‘(f't.>’to)dto
| -

Therefore, by conditions (3.31) and (3.34),

#(z,) = 0 (F,)

c
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(3.28)

(3.38)

(3.29)

The solution ¢(f ) given by (3.35) satisfies all conditions of

Problem E, and is ‘therefore a solution.

" The Monte Carlo solution of Problem E is obtalned by

determining ¢ r ) and ¢2 r , b ) by the methods of Problems A

and C and then integrating ¢ (r t ) with respect to t_ by

some numerical technique.

Nonhomogeneous equations of the form

L #(r) - a(7 )@(T,) = - H(F)
r
o}

- (3.39)

are solved in the same manner as Problem E by considering

problems of type B and D.
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3.5 Bstimates of the Number of Random Walks for Monte Carlo
Solutions | |

%54 Convergence of Monte Carlo Solutions

Monte Carlo solutions of homogeneous partial differential

equations are giVen by

N

y(rorty) = 1 E s

i=1

where for problems of type B and D, ¢i is replaced-by ’y;¢i;
Let the recorded values §,, for a given (r_,% ) be'denotéd by
the random variable @. The variance of ¢N(§O;tb), which.ié'a.'v
measure of the fluctuations of values of ¢N(§O;to) obtainéd.on'_

different trials, is given by

var ¢N(ro',to) = % var ¢ | .(3;40)

From the Central Limit Theoremn, ¢N(fo;to) will be nearly normally_

distributed for N large. It therefore follows that the probability -
is approximately .05 that

- - var @ VAN

Iy(rooty) - Bt > 2/ =~ | (3.41)

Hence, the statistical convergence of ¢N(fo,to).to ¢(fb;tb)

is as V%:, To reduce the standard deviation /var ¢N(Eo,to) 

by a factor of 2, for example, it is necessary.to‘simulate 4N» '

random walks.
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- 3.5B Number of Random Walks for Homogeneous Partial Differential
Equations | '

An estimate of the number N bf random walks that are
required for a given tolerable error can be determined as follows.
If an error ¢N(fo9to) - ¢(§Ogto)l greater than € , occurring

with probability .05, is tolerable, then from inequality (3.41)

n> $pd (3.42)
is a sufficient number of random walks. For some special cases,
var @ can be calculated, so that for these cases condition

(3.42) gives a lower bound for N. When var @ cannot be calculated,

an -estimate for*N:éan.be obtdined by noting that

var g < g2 . (3.43)

max

where ¢max is the maximum value of @ . A pessimistic estimate

of the required number of random walks is therefore

G

N>
¢ 2

(3.44)

For example, if the partial differential equation is scaled so
that ¢max = 1, then for € = .05, N should be greater than 1,600;

whereas if € = .0l, then N should be greater than 40,000,
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%3.5C Number of Random Walks for Nonhomogeneous Partial‘

Differential Fguations.

The solution of nonhomogeneous partial differential” '

equations of type E is given by
t _)at (3.35)

For a Monte Caylo solution, ¢l(ro) is approximated.by gIN(ro)fv
and the integral is approximated by
M

I =§ Gy (i leg) (3us)

i=1

where the CLi depend upon the numerical ihtegration that is_ﬁséd;_
The subscript L indicates that each value of ¢2(fo,t6) is*tofﬁefg"
obtained using L random walks. The selection of numbers N and
L will now bé considered. Let the Monte Carlo»appquimatiOnfto_f'
¢(§6) be denoted by ¢NL(EO), then
M
= _ = 2 SN
var ¢NL(ro) = var ¢IN(rO) + g Q { var ¢2L(ro,1lﬁto),
i=1 - S R
L (3.46)
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If var ¢2L(fo,jZ§to) is the maximum value of wvar ¢2L(fo,i,4lt0%

i=1, .. . .M, and if a; are chosen by the trapezoidal rule;
il.e., A | _ | |
t ,
a - _ o - o
1= Gy = 5 | | (3.47)
a, = Ot i=2,3.. .M-1)
then

RN—

var ¢NL(5O) < var ¢1N(§O 2

= AL 2,0 .3y
+var Py (3,3 8%,) (Bt )°(M - 3)
(3.48)

Let ¢l and ¢2 be the random variables from which ¢IN(50)'and

¢2L(fo?jtho) are formed; then

2
var ¢14 = @

var @ .(r_) = = "¢ max R (3-49)[1;;_'
IN'"o N N , co : -
| - . var ¢ 72 | - B
var @0 (7 ,3A8) = 2 72 = "max . (3.50) .
T, T - R
¢c nax and HC max 2Ye the maximum absolute values of ﬁhg;bégndgryg

function ¢C(§b) and function H(fo), respectively, for the problem. -

It therefore follows that

\

2 2
var Py (r,) < —es . AR '(Ato)g(M - g-) (3.51)
The numbers N and 'L can be chosen to minimize the right-haﬁd

side of this expression subject to the constraint N+ML = Q,

Whére Q is the total number of random walks that are taken to



obtain a value of ¢(fo). The minimization gives

Rl i Uiaved I R

This results, when used with the Poisson equation in Sectidn'5.4,
gave I = 133 for N = 1,000 and M = 19. Thus, at least for this
example, the time required to obtain a Monté éaflo value of the
integral I was only about twice the time required to obtain a

value of ¢1N(fo). v
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4. COMPUTER MECHANIZATION OF MONTE CARLO METHODS FOR BOLVING : -

PARTIAL DIFFERENTIAL EQUATIONS

4.; Introduction

Based upon the equations given in Chapters 2 and 3 for
the Monte Carlo solutions of partial differential equations, a-
computing system for implementing the methods must perform the

following operations.

1. The stochéstic differential egquations of Section 2.4, namely

E 44 (x,5,2,t) = By (x,7,2,)N (1) (2.27)
S+ 4, (x,5,2,t) = By(x,¥,2,1)N,(%) (2.28)
32+ A5(x,3,2,8) = By(x,5,2,0)N,(t) (2.29)

with initial conditions E(to) = 50 must be simulated. In addition,
for partial differential equationsvthat contain @ itself, |

the functional

-
Y = exp - fd[f(t),t]dt (5.16)

tO

must be generated.
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2. The stochastic process must be terminated either at time
t = 0O or whenever the boundary C of a region R is reached.
This requires a method for storing and detecting boundaries.
%. The initial or boundarylvalues ¢i at the terminal points
of the random walks must be generated.

4. The average

=
=
K
o
+
@]
l
=] o
=
-

or

o
o}
=l

N
E 7%
i=1

for N very large must be obtained at each point (;o’to) for
which a solution is desired. |
5. The stochastic process must be initiated, terminated and reset
for each random walk. Automatic readout of ¢N(§o,to) and adjust-
ment of (fo,to) after each set of N random walks is also desirable.
In this chapter a computing system in which operations
l, 2 and 3 are carried out by an analog computer and operations
4 and 5 are carried out by an associated digital computer will
be described.
The experimental‘studies were carried out on an
Electronics Associates Inc. PACE 231 R-V analog computer and a

Logistics Research ALWAC III-E digital computer. The design
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and construction of interface equipment for hydridizing the two
computers was an integral part of the project. Details of this

aspect of the work appear in the literature8 and in Appendix I.

4,2 Simulation of the Stochastic Process on an Analog Computer

4,27 Analog Computer Setup

In the proposed Monte Carlo methods, the general sto-

chastic process defined by differential equations (2.27) to (2.29)
is simulated on the analog computer. These differential equations
are of first order, and in general they are coupled, nonlinear
and nonautonomous. For many partial differential equations of
engineering importance, however, the stochastic differential
equations reduce to independent, linear autonomous form. The
stochastic equations for Laplace's equation ., :72¢ = 0, and the
heat equation, (72¢'=-%%%, for example, only lnvolve integration
of the noise terms Ni(t)a

' An analog computer block diagram for simulating the
stochastic differential equation (2,27) in its most general form
is shown in Figure 4-1. The function generation indicated in
this figure can be realized simply with diode function generators.
and quarter-square multipliers whenever closed-form mathematical
expressions are known for the functions or whemever the functions

13

are of only a single variable. Specilal techniqueé are required
for generation of functions of a more general forme
Integrator A2 shown in Figure 4-1 1s used to "track and

hold" the random variable x. This track-and-hold feature is used



53

ol

“Al(X,y,Z,t)

F.G.1 — -2

=By (%,7,2,8) | pg.o [ ¥

-2

L

Figure 4-1. Block Diagram for Simulation of a Stochastic

Differential Equation
to hold the terminal value of the random vector T, and consequently
the initial or'bouﬁdary value ¢i generated from f; (Section 4.4)
at a constant value while ¢i or ('7;¢i) is read by the digital
computer. The mode-control signal c and its logical inverse c
synchronize the track-and-hold modes of integrator A2 with the
compute and initial-condition modes respectiVely of integrator
Al. The generation of these mode-control signals from electronic
comparators and the digital computer is discussed in Section 4.3.

For problems in which the functional 7V must be generated,
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the following implicit method is used;‘ From equation (3.16),

g-Z— =-Ya[F(+),+]
(4.1)

and Y(to) =1

An analog computer block diagram for these equations is shown
in Figure 4-2. 7/ is available at the output of integratér

A%. DNote that the mode of intégrator A3 is also controlled by c.

5]
Q

| 7«tO)T+1 | —]
aL -y

dt A%

Figure 4-2. Block Diagram for Generation of jV.
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4.2B. Noise Source Requirements

The uncorrelated Gaﬁssian white noise specified in the
theory (Section 2.4) must be approximated by noise sources that
are physically realizable. Noise sources with approximately
Gaussian distributions but with limited bandwidth QJN can be
derived from gas tubes, pseudo-random number generatorsl4 ete.
If the noise bandwidth Q)N is larger thah the bandwidth capabil=-
ities of the analog computer, then it can be assumed that any
errors resulting from finite bandwidths are caused by the
analog computer and not the noise sources. In the case of a

PACE 231 R-V analog computer, W, should be larger than 105.

N
radians/sec. to be above the bandwidth capabilities of the
computer. The effect of a limited-bandwidth amplifier within

the analog computer is considered in Section 4.2 C.

In addition to the bandwidth requirements, the statistics
of the noise sources must be stationary during the complete
problem solving time which for some problems could be several
hours. Without special precautions, many commercially available
noise sources fail to meet this requirement.4

To overcome noise-source bandwidth and stability limita-
tions that were encountered in this study, the multichannel noise
source described in Appendix IT was developed.9 This noise source
produces stable discrete-interval binary noise with levels
: 5.0 volts, and has an adjustable bandwidth that can exceed the
bandwidth of the analog computing elements. Approximately

Gaussian distributed noise can be obtained from this noise source

by low-pass filtering the binary noise?A'It was found in the
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experimental study,however,that good Monte Carlo solutions could
be obtained by using the binary noise directly. For good results,
the step sizé of the response must be extremely small compared

to the size of the region R. Under this condition, the change

in 7(t) during a small time At is small, so that the assumptions
made in Section 2.4 are approximated.

Some inherent advantages result from the use of binary
noise. One, the statistical properties of the noise are known
precisely and can be checked easily. Two, the discrete nature
of the response is helpful in scaling the stochastic differential
equations since the response can be monitored on an oscilloscope,
and the scaling adjusted until the step size is extremely sméll

compared to the size of the region R.

4.,2C., Effect of Finite Bandwidths on Solution Times

In theory, if infinite-bandwidth noise and analog comput-
ing elements (amplifiers etc.) were realizable; it would be
possible to time scale the stochastic differential equation to
‘obtain random walks at an arbitrarily high rate. Some insight
into time-scaling limitations due to finite bandwidths is
obtained by the‘following_means. Assume all computing elements
and the noise source shown in Figure 4-1 are idéél except inte-

grator Al. Let integrator Al have the transfer function15

T(s) = - Q Wo (4.2)
8 s + coo

where W is a measure of the bandwidth of 'the amplifier,and C
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is a time-scaling factor (gain). Under these assumptions, the

computer variable x satisfies the following differential equation:

503 d2i dx
(ﬁwo) d’f2 + aT + A:L(EX"V’Z’T) = Bl(X’y,Z,T)Nl(T) (4-3)

where T = (At is the scaled-time variable. For the statistics
of the computer variable x to closely approximate the statistics
of the response to stochastic differential equation (2.27), the
effect of the second derivative term must be negligible. Hence,
to ﬁinimize error (I should be kept small, but to reduce solution
time @ should be made large. The compromise that must be made
in choosihg A can best be determined experimentally. This is
done. by increasing (L until experimental values of the solution
of the partial differential equation deviate from solutions
obtained with (U small. 3By checking at several points, the larg-

est value of (1 for good results can be ascertained.

4.3 Detection of Boundaries

An analog computer simulation of the stochastic differ-
ential equations for the random vector r was discussed in the
previqus section. In this section, methods will be outlined
for terminating the stochastic process at a given time t = O or
whenever ¥ reaches a boundary C of a region R. The methods given
are novel in that only electronic comﬁarators énd diode function
generators are required. Hence, special purpose equipment such

4

as.an oscilloscope mask and a phototube detector’ is not required.
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Upon the detection of a boundary or at t = O, the mode-
control signal ¢ must be reversed in order to place all integrators
in the initial-condition mode. Since the track-and-hold empli-
fiers are controlled by €, the reversal of c¢ places these ampli-
fiers in the hold mode. In this state, the boundary point Eb
on C, or terminal point r(0) is held fixed while a terminal value
¢i or 7Vi¢i is transferred to the digital computer. Immediately
after the transfer to the digital computer, ¢ is reversed by
the digital computér, and a new random»walk is initiated.

The mode-control sighals c and ¢ are convenieﬂtly
generated from a mode-control flip-flop that can be triggered
from electronic comparators on the analog computer or from a
pulse from the digital computer. The triggering scheme for the

mode-control flip-flop is shown in Figure 4-3.

From boundary- 5
detection %
t
comparators ol | or
?gl_ Mode-
From %=0 -2 Control
comparator
FF1ip-Flop
2 -
e > C
From digital :

computer

Figure 4-3. Triggering of Mode—Controi Flip-Flop
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A pulse at input (1) terminates a simulation of the stochastic
differential equations, and a pulse at input (2) initiates a new
gimulation of the equations. With this scheme, the problem of
detecting boundaries and time t = O is reduced to the problem
of energizing electronic cdmparators whenever a'boundary is

reached or whenever t = O.

¢ from mode-control flip-flop

-1 4
>Co to OR gate of mode-
Comp. control flip-flop
0

Figure 4-4. Detection of Termination Time t = O

The use of an electronic comparator to detect time t =0
for random walks starting at time to is shown in Figure 4-4.
A signal o is obtéined from the comparator when t = 0. Note
that c controls the mode of the integrator that is shown in this
figure. Hence, this integrator is placed in the initial-condition
mode at t = O or when & boundary is reached, and in the compute

mode at © %

Oo
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4.%A Detection of Boundaries for Problems with One Space

Variable

For problems with one space variable x, and boundaries
at points Xp1 and Xpos the boundary detection comparators are
energized by comparing the random voltage x with voltages Xyq

and X ,. (see Figure 4-5),

from analog
circuit simulating

the stochastic — X
differential equations
c
| 2 5
Comp4 Comp to OR gate
of mode-control
flip-flop
C A
M 1
X X

bl b2

Figure 4-5. Boundary Detection for Problems with One Space
Variable.

When x reaches Xpq OF Xpos the mode-control flip—flopvis trig-

gered by either comparator output cq Or C,.
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4.3B Detection of Boundaries for Problens with Two_Space

Variablgs

Consider first the simple two-dimensional region R

with boundary C as shown in Figure 4-'6.

Y

Figure 4-6. Two-Dimensional Region

The boundary of this region is composed of two curves
C, = Cl(X) and C, = CZ(X),‘each of which is a single-valued
function of X. A typical random walk with instantaneous compon-
ents (x,y) is also shown in the figure.

It is clear from Figure 4-6 that a random walk reaches

a boundary whenever
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y = ¢ (x) |
, (4.4)
or , y = C2(X)
This boundary detection criterion is implemented on the analog
computer by comparing the random variable y with functions
Cl(x)_and CZ(X) that are set on diode function generators. A

block diagram of this simple boundary detection scheme is shown

in Figure 4-7.

X e
F.G. F.G.
Cl(x) Cz(X)
%2 1o OR gate of
Comp 4 Comp, ~ mode-control
° flip-flop
M > 1 '
P
v

Figure 4-7. Two-Dimensional Boundary Detection

Now consider a more general region R in which a
dividing line D can be constructed such that.Cl and 02 are
single-valued functions of U measured along D, (see Figure 4-8),
This type of region will be called a simple region. The region
considered previously in which U was coincident with X,is a

gspecial case of a simple region.
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L.
-

Figure 4-8. Coordinate Transformation used for Boundary

Detection of Two-Dimensional Simple Regions.

The boundaries of an arhitrary simple region are
detected by transforming the random variables x and y to new

variables u and v for which the boundary detection equations
v = Cl(u)

(4.5)
and v = Cz(u)

can be used. The new variables u and v are obtained from x
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and y by the transformation

u=x cosé} -y sin/? !
v = x sin[? +y cos[} -b

where constants a, b and zg are defined in Figure 4-8. Hence,

(4.6)

to detect this type of boundary, variables u and v instead of
x and y, respectively, are uséd with the boundary detection.
scheme of Figure 4-7.

For mo?e complicated regions R in which a dividing line
D cannot be fou%d, the region is divided into two or more
simple regions hl’ R2 . + +, and the exit of the random variable
r from each simple region is detected by the method given. By
combining the signals obtained from each simple region with an
AND gate, a signal is obtained when r leaves all the simple

regions Ri and hence the region R, -

In many engineering problems the boundaries are des-
cribed by a simple mathematical expression. When this is the
case, the boundaries can be detected by an even simbler-méthod o
than that given above. Consider, for examplé, an ellipti@al

boundary C defined by the equation

(X +a)° (Y +c)° _

b2 d2

1 .
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The function

£x,y) = &2 a)’ s lr e

02 a°

is generated with multipliers from the random variables x and.
¥, and compared to:1. Whenever f(x,y) = 1 the raﬁdom walk is
at the boundary. Hence, only two multipiiers and one comparator
are required to detect this type of boundary. Since the para-
meters a, b, ¢ and d of the elliptical fegion can be varied simply
by adjusting an analog voltage, problems in which a solution is
desired at some point, as a function of the parameters, can be
handled easily. (see example of Section 5.3). ’

The versatility of the boundary detectioﬁ methods that
" have been proposed is evident from the photogréphtShown:ih o
Figure 4-9. This photograph of a circular region withiﬁ‘a
simple region was taken by continuously eprsing an.oscilioscqpe*-'
display with the vertical axis driven by random variable'y_andv
the horizontal axis driven by random variablé X. Thé randomU 

walks (not visible) for this photograph wére‘started‘at'point$ _

uniformly distributed on a circle between the bdundariésfbffthéx : "Q

two regions. A dot was produced at the terminationgpdiht.of

each random walk.
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Figure 4-9. Photograph Illustrating a Detected Boundary

4.3C Detection of Boundaries for Problems with Three Spacé

Variables

The dividing-line method discussed in Section 4.3B can
be generalized to three-dimensiohal regions by using a dividing
plane such that the boundary surface above and below the.plane
is a single-valued function of position.on the plane. For
regions invwhich'simple mathematical expressions are knoWn for
the functions of two variables that define the.surface above and
below the dividing plane, this method is easy to apply. If this
is not the case, however, special purpose fuhction generation

13

techniques ~ would have to be used.
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The boundaries of three-dimensional regions with some
type of symmetry can often be detected by combining the methods
described for one-and two-dimensional regions. For pxample,
the cubic region of Section 5.6 is detected by using 3 pairs of
comparators in the same manner that a single pair is used for
one-dimensional problems. In addition, boundaries that can be
defined with a single expression, for example ellipsoids, can
be detected in the same manner as corresponding boundariés in

two dimensions.

4.4 Generation of Initial and Boundary Values

At the instant the terminal time t = O or a boundary
C is reached, the mode-control flip-flop is triggered from a
compérator by the methods that have been discussed. The trigger-
ing of this flip-flop places the track-and-hold amplifiers
(Figure 4-1) in the hold mode so that the terminal values of
the componenté X, ¥y, and z of T are available as constant
voltages on the analog computer. The‘initial and boundary values
¢i are generated with function generators from these components
of r.

The function generation prescribed above can be
carried out with function generators and multipliers whenever
the initial and/or boundary values are known as simple functions
of x, y and z or whenever they can be expressed as a function
of a single variable. For two-dimensional problems in which
a dividing line D is used for detecting the boundaries, the

houndary values are conveniently generated as a function of
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the variable u defined along the dividing line.

When the values ¢i cannot be generated conveniently by
analog computer techniques,they can always be;generated within
the digital computer. When the digital computer‘is‘used for
function generation,the components x, y énd z of the terminal
position vector r(0) or fb are read; then a table stored within
the computer is scanned, or some other method is used, to
determine the corresponding value of ¢i. Since more than one
value must be read by the digital computer and since additional
digital operations are required, this procedure with slow digital
equipment is more time consuming than analog function generation.
However, with fast digital equipment it is possible to store
the terminal components x, y and z of the ith walk with a
track-and-hold arrangement and read them during the (i + l)St
walk. Thus, if the conversion equipment and digital computer
are sufficiently fast’the values x, y and z can. be read and the

th walk can be carried out

t

digital function generation for the i
while the analog computer is simulating the (i + 1)5" random
walk. This procedure is very efficient in that essentially_no.
time is wasted between walks.

For prdblems in which voltages from more than one léca—
tion within.the analog computer must be read by the digital
bomputer,a gating arrangement is often necessary for multiplex-
ing to a single analog-to- digital convertér. By suifably |
patching an EAT amplifier equipped with electronic switching,
an electronic SPDT switch that is suitable for this purpose can

be realized. This switch is described in Appendix III.
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4.5 Operations PerformedAbzmthe Digital Computer 

The terminal values ¢i (or 7/i¢i) for each random
walk are generated by the téchniques that have been described.
The main function of the digital computer is to compute the
average of the terminal values and to control the analog com-
puter dﬁring the complete problem solving time. |

The average ¢N(fo,to) for each point (fo,to) at which
a‘solution is desired 1is formed by adding, in sequence, each
value ¢i @riji¢i) to a partial sum stored within the digital
computer. ‘A tally of the number of random walks that have been
completed is kept by the digital computer, and after N walks the
average is typed out. A digital computer, or at least a digital
method, is necessary for this operation because for N large
(1,000 - 40,000)’an extremely large dynamic raﬁge is required
to obtain the sum precisely.

The control functions performed by the digital computer
are carried out through the mode-control flip-flop (Section 4-3)
and by a group of logic lines (flags) running from the digital
computer to the memory and logic unit of the analog computer.
These logic lines control electronic switches and relays that .
are used for multiplexing, and other switching operations on
the analog computer. |

The complete hybrid system for implementing the Monte
Carlo methods is shown in Figure 4-10. Voltage levels on the
analog computer are converted to binary-coded decimal form by

the analog-to-digital converter of the EAT digital voltmeter.
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The interface, under control of the digital computer, transforms
the binary-coded infofmationh to a form that is compatible with
the input register of the digital computer. The entire procedure
for the transfer of data from the analog computer to the digital
computer is initiated, as has been described, by a signal from
the mode-control flip-flop. The operation of the interfacg is
described in Appendix T.

| Digital-to-analog conversion is achieved by driving
potentiometers with stepping motors. As explained in Appendix I,
a prescribed number of pulses are sent to a stepping:motor at a
rate of lOO pulses/sec, to cause the Wiper—érm voltage to
change in accordance with the number of pulses transmitted. This
rather slow, but economical, conversion scheme is adequate for
tﬁe Monte Carlo methods since digital—to—anaiog conversion_is> 
required only for adjustment of the starting points (fo,to) after
each set of N random walks.

The operation of the complete system ié clarified by
the detailed flow diagram (Figure 4-11) of a hybrid computer
program used for the Monte Carlo methods. In terms of this
flow diagram, the analog computer is equivalent to a subroutine
for the generation of terminal values ¢i (or '}Eﬁi),: A machine-
language program corresponding to the above flow diagram is
given in Appendix IV.

The hybrid computer methods that have been outlined
in this chapter are used in the following chapter tb demonstrate
the practicability of Monte Carlo methods for solving

a large class of partial differential equations.
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Start
\

Set T and t potentiometers to a
desir@d valu® by sending pulses to
stepping motors.

| N y .
Read the values of T, and t_ that
have been set on the analog '

computer and type out r and t.,.

[

Place analog computer in compute
mode by triggering the mode-control
flip—flop.

Y

Read @. (or .@.) from the analog
computer when thd mode-control
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all points (r ,t ) desired.
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S ; " Stop

1
1

Figure 4—li. Flow Diagram for a Typical Hybrid Computer Program
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5. HYBRID COMPUTER SOLUTIONS OF ILLUSTRATIVE PROBLEMS

5.1 Introduction

Hybrid computer solutions of a number of partial diff-
erentiai equations that were solved by Monte Carlo techniques
are given in this chapter. The illustrative problems were chosen”
to substaﬁtiate the new methods that have been put forward as
well as to indicate the type of results that can be expected
from the Monte Carlo:methods, The problems were also chosen so
that exact analytical solutions could be found for comparison

with the Monte Carlo solutions.

5.2 One-Dimensional Boundary-Value Problems

Three examples are given in this section. The first,
‘which is actually a special case of the second, demonstrates a
relationship between the duration of random walks and the power
spectral density of the noise source. The second and third
examples show, for various equation parametersvand boundary
conditions, that the Monte Carlo solutions are in close agree-

ment with the exact solutions.

Example 1.

g_z_sg=o f(-1) = - 1
dx, G(+1) = + 1

The stochastic differential equation that must be
simulated for this one-dimensional Laplace equation which is

of type C (Section 3.3) is

. dx _
at = (%)
Monte Carlo solutions of this problem are shown along the % =0

1
line jn Figure 5-1. To i1llustrate the variance of the Monte

+

I
O

Carlo solutions, numerous solutions that were obtained at X
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¢.
1.0 4
X
X
.6
.2
(
-.2 .
—Analytical Solutions
_ 3 x Monte Carlo Solutions (N = 1000)
X .
_.6 . D, = 1.72
X
~1.0 _.6 _.2 .2 6 1.0 %o

2
Figure 5-1. Solutions of D, &8 + g &0 _ 4.
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are listed ianable 5-2. The largest deviation in this set
of'splutions is only 2.41% of the boundary values. Deviations
of this order of magnitude are typical for solutions obtained
with 1,000 random walks.

This problem, which is triviai to set up, is extremely
useful for determining the power spectral densify 2Dl of a noise
source Nl(t). As is shown in Appendix V, the average duration
of a random walk starting at x = xo and terminating at x = Il
is related to the power spectral density 2Dl through equation

AV-10.

1 - Xg
T(x,) = 25,

Since T(XO), for any value of x_, is easily measured, D; can

1
be determined. For this example the average duration T(0) of

random walks starting at Xb = 0 was 290 ms. TFrom this value

D, = ET%_T ='l.72 unitsz/sec.
where 1 unit = 100 volts.
0.21 1.61 0.61
-2.19 0.41 -0.59
0.81 -2.39 1.01
-0.79 -0.98 2.41
2.41 -0.99 -0.59
-1.39 -2.19 -0.79

Table 5-2. Values of 1Q0 ¢N(O) obtained with N = 1000.
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As a check on the computer equipment and equation

AV-lO,'a_graph comparing theoretical values;agé;two‘setsvgfnmeasﬁred
values of T(xo), for D; = 1.72 units2/sec., was plotted. This
graph is shown in Figure 5-3. ]
Since the above problem is extremely simple to set
up and gince the impoftant parameter Dl can be easily determined
by measuring T(O), it is often worthwhile to run this préblem

prior to more complex problems,

1.0 2D T(x,) : o D, = 1.72

T TN
7 X

.2 S/ i
x Monte Carlo Solutions (N = lOQO)
— Theoretical Splution

-1.0 -.8 -.6 -4 -2 0 .2 .4 .6 .8 1.0

Figure 5-3. Average Time for a Random Walk used for the Solution
| of a One-Dimensional Laplace Equation.
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Example 2.

Il
1
—

1 + K QL =0 . ¢(-l) -
dXo ~0 F(+1)

il

+1

The stochastic differential equation for this example’of Problem

C is

o] foF

X -
: - K = N (t).

Solution curves for

£ -0, 0.5 ana 2.0

1
with Dl = l.72_unit2/sec,,(fpom Examplevl-)-are shown in Figure
' 5-1. ' s
:Example'B.

a2 2 CB(-1) = 1

- (1 L Xo)¢ = O ] )
dx_- .
o} ¢(+l) = A_

This is an example of Problem D, Section 3.3. The stochastic
) 3
differential equation is

ax _ ‘
3t = M (%) t ~

and the related functional is 7Y = exp _lej/“ (1 - xz)dt

tO
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x Monte Carlo Solutions
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— Analog Computer Solutions
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Figure 5-4, Solutions of
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The integral in the functional expression is scaled by Dl since
the noise.sourCe Nl(t) has power spectral demsity 2D; rather
than 2 as:implied by the problem equation. Two sets of Monte
Carlo solutions, for three values of A, are compared with direct

analog computer solutions‘in Figure 5-4.

5¢3 Laplace's Equation in Two Dimensions

This example demonstrates that Monte.Carlo methods are

" convenient for solving partial differential equations at a point.
The potential @ at the point x, = =75, y, = 0 of the region
shown in the centre portion of Figure 5-5 is determined as a
function of the centre position 4 of the inner circle. MNMonte
Carlo solutions for 1,000 and 10,000 random walks per solution
are shown in Figure 5-5., A time of approximately 2 minutes was
required for each 1,000 walks. In this example the boundaries
were detected by comparing x2 + y2 with 1 and (x - d)2‘+ yz
with (.25)?. The centre position 4 of the inner circle was

varied simply by adjusting a potentiometer.

5.4 Poisson's Ejuation in Two Dimensions

v 2 5 _
Poisson's equation, %%—g + ii—g = 2,is solved
- xS Oy -
B ' X2 2 :
with boundary condition ¢c =% + b . on the boundary C of
5 5 o

region R (see insert in Figure 5-6). The boundary condition ﬁas
chosen to satisfy the Poisson equation so that an exact solution.
2 2
g=7 *7

ta
(o]
]
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— Analytical Solution-
\ o Monte Carlo Solutions - (N

ek \K\ x Monte Carlo Solutions (N

1000)
10000)

™,

--1.0;_1\'

Figure 5-5. Solutions of Laplace's Equation as a Function of a
Boundary Position.
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could be found. Fdr this choice of boundary condition the exact
gsolution is actually independent of the shape of R. This,
however, cannot be predicted by the computer so that no loss of
generality results.

As outlined in Section 3.3, Problem E, the solution

of this problem is. given by

0
B(r)) =@ (r,) + b/[\¢2(50,t0)dt0 | (3.35)
e

where ¢l(fo), for this example, is the solution of Laplace's

equation
2 2
0% . ® 20 0
dx  dy°
o o}
with boundary condition
x2 y
S R
¢c ==+ on C of R.

T, is the solution o e heat equation
B,(T %) th lut f the heat t

NG ) A . 62¢2:_
Bto E)Xi 637(2)

with initial condition
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and zero boundary conditions on C of R;

The stochastic differential equations used for this

example are’

dx _
= N (P
ay _
o = Yot

x Monte Carlo Solutions
(N = 1000)

- Interpolated
Solution

3 | .
(4fiﬁAnalytical Solution

Figure 5-6. Solutions of Poisson's Equation and Laplace's
Equation in the Region Shown.
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- 0, @ x,=y,=-4

A
2.0
D=1.72
1.6 \\
1.2 A\
.8 | \\\
’ K\}\\ x Monte Carlo Solutions (L = 133)
-4 i —Interpolated Solution
O } w J- ¥ J,‘ >

80 160 240 - 320 ) —tc (ms.)

Figure 5-7. Solutions of the Heat Equation used in the Solution
of Poisson's Equation.

. _ L . ' . = . .
with D; = D, = D. Since the function ¢2(ro,to) is a function

of time, the computer time variable tc'must be scaled in accord-
; .

ance with D. The correct scaling is to = Dtc.

Monte Carlo solutions of ¢(§o) along the line X, =V,

‘are shown in Figuré 5-6. The solution @ at x_ =y

o = .4, for

O

example, is the sum of»Qﬁl at x_ = Vo = .4 and the integfal with

o

0]

¢l at x =y, = -4 is .44 . The integral of ¢2 at x =y, = .4,

_respect to to of ¢2vat xo =y, = .4. As given in Figure 5-6,

from a trapezoidal rule integration of the values of QZ given in

Figure 5-7 is -.27 . Hence, @ at X, =¥, = -4 is
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44 - .27 = .17 . This value is one of the values plotted in
Figure 5-6. .

For this problem, 1,000 random walks and 133 random
walks were simulated for each value of ¢l and ¢2, respectively.
These values, N = 1,000 and L = 133, were determined in accord-
ance with the analysis of Section 3.5 C. The total solution

time for each value of ¢(§O) was approximately 12 minutes.

5.5 Heat Equation in Qnei Two and Three Dimensions

Solﬁtions of the heat equation

R A

with initial conditions Qﬁo(f ) = -1, and boundary conditions

o
¢C(fb) = +1, at the centre of a line, a square and a cubic region
are shown in Figure 5-8. The three problems, which are eXamples
of Probiem A, Section 3.2, were solved using noise sources with
D = 1.72 unitsz/sec. and using two, four or six electronic
comparators to detect the boundaries. For these probleﬁs,it is
important to note that the average time'T(O) for a random walk
to reach a boundary decreases significantly'with.the dimension:

of the problem. In all cases T(0) falls within the bounds

established in Appendix V.
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0
A
1.0
.6
.2
—’02 — / ‘3
// x Monte Carlo Solutions (N = lOQO).
— Analytical Solutions
-6 T(0) = 286 ms. for line '
/// T(0) = 165 ms. for square
b T(0) = 127 ms. for cube
---.O : ’ f . ‘ S )
0 80 160 240 320 400 "t @S)

Figure 5-8. Solutions of the Heat Equation at the Centre bf
a Line, 2 Square.and a Cubic Region.
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5.6 Laplace's Fquation in Three Dimensions

The final example is of Laplace's equation, §72¢ = 0,
in the cubic region bounded by planes x = : 1, vy = I 1, and *° '
z = 2 1. Monte Carlo solutions along the line X, = V4 = 2, for the
bsundary condition

-y . ,2 2 2 2 |
Po(rp) = (xp = 2p) + (ry - 2y) + xp¥y, = T2y + %y,
are shown in Figure 5-9. The boundary condition was chosen to
satisfy the Laplace equation so that the exact analytical solution
is known for all x , y and 2z .
o} o o _

For this example, six electronic comparators were used
to detect the boundaries, and quarter-square multipliers were
used to generate ¢C(§b). Approximately 5 minutes were required

for each point solution.

5.7 Discussion of Rssults

In the examples given and in many other examples that
were set up during this study, the Monte Carlo solutions were in
close agreement with exact solutions. In all cases, gosd results
were obtained in a straight-forward manner without the need of
critical adjustments.

| For-most pqint solutions it was found that 1,000 random
walks gave results satisfactory for verifying the methods. An
average of about 5 minutes was required for each solution. This
time with a fast analog computer (20 mec bandwidth) coupled to a

fast digital computer could be reduced to about 1 sec;. .
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S
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1.0 -.8 -.6 -.4 -2 0 .2 .4 .6 .8 1.0 %oVo7%

Y

x Monte Carlo Solutions (N = 1000)
o Monte Carlo Solutions (N: = 2000)
— Analytical Solution

‘Figure 5-9. Solutions of Laplace's Equation in Three Dimensions.

t
¢
1

Even with siow computers, however, Monte Carlo solutions at a

few points can be obtained in about the same time that is required
for finite-difference solutions on a fast digital computer. With
finite-difference methods, however, solutions at many points are
obtainéd simultaneously.

The ease with which boundary positions can be changed-
was demonstrated in the example of Sectioh 5.3. Since the
position and shape of regions, as well as boundary and initial
values, can be altered very easily, it is suggested that this

unique feature of the Monte Carlo methods could be used to
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advantage in engineering design. For example, a Monte Carlo
solution of a des1gn problem in which a boundary or boundary

value must be found to glve a partlcular potentlal at a specified
point could be solved easily. This type of problem on a digital
computer, however, would require setting up a_new»finite-difference
grid and solving for a complete set of potentials for each trial

boundary or boundary value.
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6. CONCLUSIONS

Monte Carlo methods have been developed for obtaining
approximate solutions to homogeneous and nonhomogeneous elliptic,
and homogeneous parabolic partial differential equations. Hence,
‘equations of a much more general form than the class of homogeneous
elliptic equations treated in the Michigan report4 can now be
solved by Monte Carlo methods. Hybrid computer techniques for
implementing the Moﬂte Carlo methods have been proposed and
tested. The techniques use to advantage the high-speed parallel
operation of the analog computer as well as the memory and
dynamic range of the digital computer. Problems are easy to
program, and equation parameters, boundaries, and.initial and
boundary values are easily modified.

On the PACE-ALWAC hybrid system that was used to solve
the example problems, 1,000 random walks could be simuléted in
about 5 minutes. With a fast hybrid system however, 1,000
random walks could be simulated in about 1 sec. In nearly all
cases, the solutions that were obtained with 1,000 random walks
were within 5% of the maximum initial or boundary value of the
exact solutions. Thus, with 1,000 random walks, solutioné with
sufficient accuracy for many engineering problems are obtained
in a reasohable time.

In the méthods that have been developed, the solutions
are obtained in a point-by-point manner. The solution at one
point does not depend upbn the solutions at neighboring foints

or upon the total number of solutions that are obtained. For
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this reason the methods are particularly well suited to problems
that require solutions at only a few points. If solutions at |
many points are required, finite-difference methods are more
efficient. '

The Monte Carlo methods that have been proposed
require only a small hybrid computer whereas finite-difference
methods for solving partial differential equations require either
a large analog or a large digital computer. Hence, the Monte
Carlo methods that have been developed seem ideal for small hybrid
facilities where it would not be possible to employ other computing

methods.
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APPENDIX I

'INTERFACE FOR TRANSFER OF DATA BETWEEN THE PACE 231 R-V
AND THE ALWAC TII-E

A block diagram of the interface for transfer of data
from the PACE to the ALWAC is shown in Figure AI-1. The digital
voltmeter (DVM) of the PACE is used for analog-to-digital con-
version. The flip-flops that are shown in the figure are the
input flip-flops of the ALWAC that are noimally set from the
flexowriter,

The value of an analog voltage is transferred from the
PACE to the ALWAC in the following manner. The ALWAC is signal-
led, normally via the mode-control flip-flop, to read a value.
The ALWAC supplies a "hold" signal to the DVM. About 30 ms. after
the application of the hold signal a Sfdigit plus sign binary-
coded-decimal equivaleﬁt of the analog voltage is available at
the DVM output. The sign and each decimal digit are transferred
sequentially toAthe ATWAC flip-flops as follows. The ALWAC out-
puts a signal 8g which allows the sign from the DVM to enter FF4.
This éign is then transferred to the ALWAC accumulator. The
signal g, is then supplied. This allows the 10,000's digit (either
a 0 or 1) to enter FF1 on its way to the accumulator. The ALWAC.
next outputs g, which allows the binary-codedbl,OOO'S digit to
enter flip-flops FFl, FF2, FF3 and FF4. The data is then trans-
ferred to the accumulator, and the process is continued until

the 1's digit has been read. After all digits of the DVM Kave

*¥ For a more detailed descripfion of the interface, seé ré&ference

(8).
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Figure AI-1. Interface for Transfer of Data Between PACE and

ATWAC
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been read into the accumulator, the "hold" is released by a signal
from the ALWAC. The entiré reading operation reqﬁires about 10
ms.

The analog voltage that is transferred to the ALWAC
must be held at a constant value at least until the DVM has
registered the correct number (~/30 ms.). This is accomplished
conveniently by an analog track-and-hold circuit that is control-
led by the mode-control flip-flop (see Figure 4-10).

Data is transferred from the ALWAC to the PACE through
potentiometers driven by stepping motors. The stepping motors
are driven by pulses originating from dummy instructions in the
ATLWAC. A single pulsg'at one input of a stepping motor causes
a + 150 rotation while a pulse at the other input causes a —150
rotation. The motors are coupled to the potentiometers through
12-to-1 reduction gears. Therefore, if a 10-turn potentiometer
has ¥ 100 volts across it, 144 pulses are required for a 10-volt
change on the wiper arm. An example of a program to change the
voltage on a wiper arm by 20 volts is shown in Figure AI-2., By
this scheme, pulses can be sent to a stepping motor at a rate

of approximately 100 pulses/sec.
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Figure AT-2. Instructions for Activating Stepping Motor
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APPENDIX IT
MULTICHANNEL DISCRETE-INTERVAL BINARY-NOISE SOURCE*

Numerous channels of stable, Wide—band noise are re-
quired for Monte Carlo'methods. A block diagram of an economical
%-channel noise source With these properties is shown in Figure
ATI-1., The Schmitt trigger is triggered at an average rate of
"k" 0 —> 1 state changes/sec. by the éero-crossings of the low-
quélity noise source. A sharp pﬁlse from the ring counter is
applied cyclically to each AND gate at a rate of f| pulses/sec.
If k >> f, the outputs Nl(t), N2(t) and N3(t) are essentially
uncorrelated and the autocorrelation function of each channel

is essentially zero for ITI > f%

For output levels IE voltg, the autocorrelation function is
2 1
g (T) =8 (1-%_|T] ) ITlif—C
_ 0 | 7] >f—l (ATT.1)
c
The power spectral density <P (W) corresponding to this auto-

correlation function is

1 - cos (

o€

D (W) = 2ch2

(AII,2)

~

* For a more detailed analysis of this noise source see reference

(9)
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The Monte Carlo solutions given in Chapter 5 were
obtained with k = .4 mc/sec., £, = 20kc/sec. and E = 5 volts.
With these values the criterion k¥ > fc is met, and the band-
width of the noise channels is greater than the bandwidth capa-

bilities of the analog computer.
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APPENDIX IIT
AN ELECTRONIC SPDT SWITCH

By suitably patching a PACE 231 R-V amplifier equipped
with electronic switching, a fast SPDT switch can be realized.
The required patching is accomplished by placement of bottle
plugs as shownvin Figure AITI-1., This patching replaces the
feedback capacitor C with ayl "M  ohm resistor R and allows the
output Vout to be switched between - VIC and _.VIN under control
on the mode-control signal c. When ¢ = + 5 volts, transistor Tl
and the electronic gate conduct so that Vou = - V... When

t IC
¢ = 0 volts, transistor T, and the electronic gate are open.

In this mode Vout = - VIN'
For_VIC = + 100 volts and VIN= - 100 volts,the output
Vout will switch from - VIC to - VIN in»l6O fLsec. and from

- VIN to - VIC in 100 }Lsec.
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[ |LC .
— AV — Vo X F [ O
1 meg ! : Q0O
L AAAA
R=1 M : .
- ~--- connections made
from mode-
control replace C by R by bottle plugs
circuitry by patching as
shown

Figure AIII-1, Circuit and Patching for a SPDT Switch
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00| 8305
04| ££a0

08| 5703

Oc| 5705
10]4913
14| £9e0
187913
lc|6117

A PROGRAM FOR IMPLEMENTING MONTE CARLO METHQDS.

APPENDIX IV
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An AIWAC ITI-E program that carries out operations

to those indicated in the flow diagram of Figure 4-11,

4.5 is given below:

570%| 80
1704 84
118c|88
2800 8c
4917|90
£££0|94
£££0|98
£££0|9¢c

8fb649be

01| 4917
05| £9e0

09| f1e5

0d| ££e0
11]4913
15| 6117
19| eblb
1d|d580

£££0|81
£9e0|85
£££0|89
1320184
1714 |91
0600 |95
3200 |99
£5¢8|9d

02|af00
06|d10c
0a|1b08
oe|6d8b
12|448b
16|1116
1a|oooo
le |0000

4903 |82
dfda |86
2800 |8a
2400 |8e
1980 |92
0000 |96
0000 |9a
0000 [9e

03| 0001
07 |03e8
ob 0000
of |0090
1% |0000
17 |0000
1b |05£5
11 |0000

0000| 83
dooo|87
0013 8b
0000| 8f
0000/ 93
0000| 97
€100| 9
0000|9f

Immediately after the program is initiated, 144 pulses (contents

of Of) are sent to a stepping motor for adjustment of Eo' A

multiplex signal (flag #1) allows the: value of fo to be read.

Immediately after 50 is read, it is typed out. One thousand

numbers (contents of 07) are then read from a fixed terminal of

-the analog computéer upon signals from the mode-control flip-flop.

These numbers are added to a partial sum as they are read.

Affer

the 1,000 numbers have been read and added together,the sum is

typed out.

motor,and the process is repeated.

total of 19 times (contents of 8b).

Another 144 pulses are then sent to the stepping

The process is repeated a
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APPENDIX V
AVERAGE DURATION OF RANDOM WALKS

In this appendix a partial differential equation is
derived for the average Itime'T"(fo) that is required for a
random walk starting af~fo to reach a boundary for the first
time. The equation is solved for spécial cases to give the aver-
age duration of a random walk that is used for the solﬁtioﬁ of
Laplace's equation in a one, a two and a three-dimerisional general-
ized spherical region. The approach that is used is similar to,
but not as iﬁvolved as, the method of Wasow for calculating the
mean duration of discrete random Walks.l6
From the definition of g(fb,tb| fo,to) and from

Chapman-Kolmogorov equation (2.2) it follows that

fg(rb’tb| Torty)dry = L/fg(rb’tbl T),b)ar £(Fy,% | To,t,)ar)
K C '

C
(AV.1)

is the probability density for a random walk to reach a bound-
ary for the first time at t, if it started at (fo,to). The
average duration of a random walk starting at (50,t0) igs there-

fore given by
o0

T(ro,to) =-b/?tb - toij/qg(rb’tbl ro,to)drbdtb
-0 o C
=ﬁtb - % )fg(rb"tbl Tyt )Arydt f(Ty 8 | Tt )ary
R -oo .C

(av.2)
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o0
= fﬁtb ~t) f g(Ty sty | fl,tl)drbdtbf(f-l,tl l ?o,.to)drl
R -00 C
- | -
+ fﬁtl -t,) fg(Eb,tbl El,tl)drbdt;of(fl,tl' T ,t,)dry
R - 09 C ‘

(AV.3)
Therefore,
‘T(ro’to) = b/fa(rl,tl)f(ri,tll ro,to)drl
R
+ (5 - %) ff(rl,tll T, ty)dry
R | - (AV.4)

The last term follows from the fact that

R o
/ﬁ(rb,tb I ry,t))dr dt, =1 |  (AV.5)

- 00 ¢

for random walks that are certain to terminate at a boundary.

Now let t, =t _ + At and expand T(fl,to + A+t) in

a Taylor series about fo in the same manner that was done in

Chapter 2. If this is done and equation (2.9) and the limits
(2.11) to (2.21) are used, it follows that

_ BT (ro,'to) = L_ 'T(I‘o,'to) + 1 (AV.G)
r ,t
éto o’’0



- 103
If the operator LE % is independent of to’ then
?

(ORg e

T(fo,to) is also independent of t_ . For this case T(fo,to) can

be denoted by T(fo) and

‘ LEOT(EO) +1=0 (AV.7)

The boundary condition for T(fo) is T(fb) =0

If Lf is the operator that is usedvforvthemsolution._
0

of Laplace's equation,then

D21 (F,) 4120 (AV.8)
|

. . 1 . . ; -
For an n-dimensional |generalized sphere of radius "a", T(ro)

depends only upon rolz ]§0| , therefore,

D 1 a [z21 aT(r )
- "Tn-1 ar ar_°
r 0 "o
O /
T(a) = 0 (AV.9)
5
The ‘solution of the problem given by (AV.9) is.
2 2

B(ry) = —gmp (47.20)

This result shows explicitly how the duration of a random walk
depends upon the sgtarting radius Ty and the dimension of the
sphere. By enclosing any other shape of region with a general-

ized spherieal region,an upper bound on the average duration of
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a random walk can be obtained. A lower bound can be obtained
by enclosing a generalized spherical region by the region for
which the lower bound is desired. For example, the average
duration T(0) of a random walk starting at the centre of a square

region with gides 2a is

N

2 :
2
&5 < 100) < F5 - o (ava11)

The average duration T(0) of a random walk starting at the centre

of a cubic region with edges 2a is

N

(AV.12)

_dﬁg
(w! BN

85 < 20) <
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Addendum

~3ince the preparation of this thesis, the following
books have been brought to the author's attention:

. Dynkin, E.B., Markov Processes, Vol. I and Vol. II, Academic
Press Inc. Publishers., New York, 1965.

These books contain an'éxfénsiVe‘treétment of Mérkov
processes. In particular, Chapter 13 of Volume II has a theor-
etical discussion of prbblems similar to those discussed in

Section 3.3 of this thesis.



