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ABSTRACT

The motion of a gyroscope in a satellite orbiting the
earth is considered. The axis of rotation of the gyroscope
is assumed to be parallely propogated along 1ts world.line.
Taking the satellite's path to be an ellipse, and using
the true gravitatlonal potential of the earth,.including
higher harmonics, one calculates the precession of the axis
of rotation during one orbit of the earth with respect to

the coordinate frames.
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Introduction . - .

The motion of a gyroscope in an orbiting satellite is
an interesting problem. In the following we shall consider
a spherically symmetric gyroscope. From a Newtonlan point
of view, and assuming a spherically symmetric gravitational
: field,Athe satellite's path is an ellipse, and after the
completion of one orbit the gyroscope will have the same
orientation as it did at the beginning of that orbit. Even
if the gravitational field is not spherically symmetrid the
direction of the axis of rotation does not change in the
Newtonian approximation. If, however, we treat the problem
relativistically we find that the axlis of rotation undergoes
a slight precession. Thus the relativistic effects canbbe
separated from the Newtonlan ones and this experiment can be
used to test theories of'relativity and gravitation. (For
a further discussion see Reference 1).

The gravitational potential ¢ - &, of the earth is not

spherically symmetric. One may expand ¢ as an harmonic series;

da . n N

. ‘ » K m )
? -0 =T [ 1+ =, (+ = (C,p cOos mx + S sin m )

Prn(sin )]

nm

where r 1s the distance from the earth's centre of gravity.
¢ 1s the latitude
XA is the longitude from the Greenwich meridian |

a. 1ls the equatorial radius of the earth

. e
The first coefficients in this series have been evaluated by

Izsak2 and Guier3.
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The relativistic effect of the first few harmonic terms on an
orbiting gyroscope 1is considered in this thesis. The. precession
thus caused is compared wifh that predicted for a gyroscope
orbiting in a spherically éymmetric gravitétional field.

There are two methodsiof looking at the motion of a
gyroscope in a gravitationél field. The first may be called
the dynamical methdd, and is due to de Sitter, Papapetrou,

n

Corindaldesi, and Pirani. De Sitter' calculates corrections

to the Newtonian theory iﬁ the case of the moon. Papapetrou5
takes as his model of the gyroscope a '"pole-dipole particie"
defined by the properties of fhe'energy—momentum tensor in a
small world tube. He is then able to define a spin tensor

and to derive covariant equations for it's change along the
‘world line of the particle. To solve these equations sup-
plementary conditions are required. Corinaldesi and Papapetrou6
and Pirani” solve these equations using different supplementary
conditions. Schiff8 extends the work of Papapetrou by solving
his equations with the inclusion of effects of the earth's
rotation (he adds the Lense-Thirring components to the
Schwarzschild metric) and of non-gravitational constraining

- forces.

The second method of looking at the motion of a gyroscope
in’avgravitational field may be called the geometrical method.
The following argument is due to Fokker9. To describe the
motions taking place near the centre of the gyroscope we

define axes by an orthonormal tetrad of vectors such that the

time axis 1s always directed along the worldline and the origin
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of the axes falls with the gyroscope. Also we demand that
the tetrad of 6rthonormal vectors defining the axes remain
parallel to themselves in the geodesic sense. With such a
tetrad (which corresponds to a non-rotating framelo) we
may expect that near the origin, free particles will move
in straight lines under no forcé and that a top spinning around.
its axis of symmetry will keep its axis of rotation in a
fixed direction relative to the axes of refergnce. As the
latter are carried along the worldline parallel to themgelves,
the same is true for the axis of rotation. Because of the
curvature of space produced by the earth, we must expect the
axis of rotatioh of the gyroscope to precess in the course
of an orbit. Assuming a circular orbit and a Schwarzschild
field Fokker9 is able to derive an expression for the
orientation of the gyroscopic axis of rotation after one
revolution. Pirani7 shows that the methods of Papapetrou
and Fokker are equivalent if one adds to Papapetrou's equation
the supplementary condition that angular momentum is conserved.

Fokker's caléulation.assumes a circular orbit ih a
Schwarzschild gravitétional field. Since the relativisitic
effects predicted are rather small it is not clear whether.
or not the inclusion of the first few harmonic terms in the -
geopotential and the allowance for a non-circular orbit would
sefiously altér these predictions.

In this thesis we shall neglect the effects of con-

straining forces and the earth's rotation (Lense-Thirring

effect). We can then compare the precession of the gyroscope
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axis in the actual field with the precession in a sphérically
symmetric field. It turns out to be a good approximation to
replace the geodesics in both flelds by ellipses characterized
by eccentricity €. We can then calculate the above precessions
for several orbits using ¢ as a parameter.» Taking the
calculations to third order in %'(including the n=2 terms in
the geopotential) we can compare the relative sizes of these
effects.
In order to do the calculations we shall use a metric
with components: xm = Skm ©
Eux = Bgy = O
Sy = et
where f =é% (¢ - @,) and ® - ¢, is the Newtonian potential.

This metricll

will give the Schwarzschild field to a sufficient
approximation and will give the effects of higher harmonics

to the Newtonian approximation. This metric has the advantage
that it i1s directly determined from a knowledgé of the
gravitational potential. We shall assume fhat the path of

the gyroscope about the earth is a geodesic of this field,

and, after Fokker? that the gyroscope's axls of rotation
maintains a consfant orientation with respect to the spatial
triad of an orthonormal tetrad of vectors which is parallely
propogated along the world line of the gyroscope. 1In measuring

the rotation of this tetrad we use a co-moving observer to

eliminate the effects of aberration due to differing velocities.
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Chapter 1. Motion of the Satellite

In this chapter we shall find the equation of the
orbit, sSome conservation laws, and some identities which
will be needed in subsequent chapters.

The Newtonian potential ®-3, is defined so that the

- =
force F on a particle of mass m:is F = —W\V(§“I'J>-
Our metric is then written:

Sem e_ﬁ., ?‘Kq = 34,<=o, G4q = ef (1.1)

Fem =

where fs—z;_(g‘—fg) and §° 1s a constant chosen so that
c

€~>%, at spatial infinity. Coordinates with respect to
an earth fixed frame are denoted by ZP. (Greek letters have
the range 1, 2, 3, 4, while latin letters have the range

1, 2; 3). It is useful to have a list of the Christoffel

symbols for this metric:
[0 (2) = 2 (Smn 3 = Smxdnf = Onxdmf) |,

F44( (z2) = éak'p‘i‘

£ (1.2
Ty (2 =‘E/ez SRR (1-2)

qux(i') = /—'mqk(z’) =_/-'44¢(-2)=O

In the neilghbourhood of the earth we have

b N
Fe -2 (¥]2 Com cosmns Samtin mi)hn (o0 | (1.3)



V]
where b = 2655'9
-8
G = the gravitational constant = 6.670 x 10 cgs
Me. = mass of the earth = 5,983 x lO27 gm
| 8

Ao = equatorial radius of earth 6.378 x 10~ cm
C = speed of light : = 2.998 x 1019 cm/sec

©® = co-latitude (@+¥=L  wheredis the latitude)

and the first few coefficients are:2

n m Chm + S Shm

2 0 ~1.08 x 10-3 0

2 1 0 0

2 2 9.68 x 10~7 “4.00 x 1077

The coordinates of the satellite are given in terms of
a parameter s, the arc length along the world line.
27(s)  are the satellite coordinates.
- we denote ¢ by' . (es. 2’?5):%2”(5)‘)..

ds

Lagrange's Method to Determine the Orbit and Some Identitiesl2

. -1 L A
We set F(E(S),Z(S')')— Zﬁﬂ(,r_%(s)] 2'(s) 2'(s) (1.4)

Now the path of the Satellite 1s a geodesic of the field.
Therefore: S-S-S :?.'U(s) = O _ (1.5)
which implies |

d 5_':) _ °oF

as\ az’ 2z

d : - (1.6

ds([:[z(:),a(s).?) = 0 , (1.6)

Therefore F is a constant. For a timelike geodesic (the path

. |
of a material particle) FLz), 2] = - 2 (1.7)
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We assume that the gravitational field is time independent

P} 2
206 - RuF o

F
Then from (1.6) c\is(ba':z‘): O or = Ka constant.

> a2t

Evaluating of from (1.4), (1.1) we have

224
.y -fCzs)]
z'(s) = Ke _ (1.8)
_ 3. . f) '
. Then from (1.7) Wé‘(a"‘) =-1=-(k+e) (1.9)
N L f
and from (1.5) 2*(s)= ZK(S)RZ“\)*z"(“?*e)BKF (1.10)

Measurement of the Velocity of the Gyroscope

The velocity that an observer in an earth fixed frame
‘ K
would record cannot be equated with ¢ Zﬁ.; because the
metric is not Minkowskian. We define some new vectors by

- the equations: .
K K 4 PN 4
W =g, 42, W' = Vguy d2 » (1.11)

X 'R rA
Then Fis written F =2 (V4 (0 (wd)>(w))  which. is the
‘ 3

Minkowskian form.

K
c oW _ iC 3K
Therefore \“[z()] = ic %y = ';i (s) (1.12)
as usual we define
, , y
| K 3
¥z = [ - A2 (Vezedl]”

(1.13)
K.-‘;'_{ir_a(s)_']
= -1 Ke
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Determination of the Orbit

Here we assume that in the orbit calculation we can
3 l
- neglect terms of the order (&) but not of order (;) .- This
will be shown valid by an estimate of error in appendix 1.

We define new coordinates by

2'=rsmoe oA, ZZ=Y‘.S'YY\GS|'N\7\) 22 = Ve

fres]
Then Fle®),2s)]=1e ((\r) + &)+ s e(M+K) 2‘ (1.14)

SF 1 af Me LS (@ ' "~ »
and i—r\'isp\ =" z%ezmzﬂ( \‘f) %?B""“(C"S)[ Crminmd + Spmeomi]

= 0 to this order

>F o

Then by (1.6) N "2‘5‘”\9 re = /j = constant (1.15)

For our initial conditions we take @:E \ é: O . We now .
write the © equation for (1.6), noting that to this Qrd.er
- o '

Y-V ~

d

Alefw) - @ i YA Smeced = O

Therefore with the above initial condition we have

=T &= 0 for all s (1.16)
R S
: Then (1.15) becomes r*Ne = I/H (1.17)
¢
and (1.14) and (1.16) imply )+ "(dA = —(Kz-te)
We now divide by Pt CRY using (1.17)

L\'\ ] ) A-\B(i) + C(‘L) + .terms of order (_&)3 (1.18)
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where A = —-//7‘(\+KZ) B= —/lev;(|+2;<") C=-/u‘l:('§+2“z)

3 .
) and differentiate W vt. A

5 Ii—

We neglect terms in (
Z
E‘_L(l)+(t-c)(y',).—_-3- - which has the solution
dair 2 .
- —=
= b 1.1
‘ (+ € cosVi-c A =77 (1.19)
~ Order of Magnitude Estimate for C
-1 ’ '
b= 2,%'&&: 2.9 x 107" ~ |

To estimate K we note that speed of thé satellite 1s small

compared to C ie. g~ |. (1.13) then implies K~
To estimate // we take ¥~Qg and for a typical satellite
. -2 £

we have a period of 100 minutes. AlsoFV-‘% ~ 10 so e ~ |

o= o g o opvdf _Ked LT -
Then A = Js'/\ = 2' 50 S Yo et e 3.S xi0 3%

: f

I -
(1.17) gives = &= L1 .~ 5t
= T@ata T

'Therefore (Cn~ - Pt (2 + 2k %_ X 10 which is much

smaller than 1. Thus we can approximate the orbit by an

(o 3% .
elllipse. - = , ’ (1.20)
| 4+ € cod (A -No) )

S S YA
9 l'.',’

(20
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Chapter 2. Definition of, and Relations Between the Various
Observers and Their Coordinate Systems

In this problem there are three observers to consider.
There is the observer who is fixed on the earth (which is
assumed to be non-rotating), the observer who is fixed in the
frame of the gyroscope, and the observer who is in the
co-moving frame. In this chapter we shall derive relations
between there orthonormal basils tetrads.

The first coordinate system to consider is the earth-
fixed frame Je . This will be the reference frame used by an
earth-bound observer. (Note,vnwe do not consider the effects
of the earth's rotation). In this frame the coordinates are
2%S)and we are given the equations of motion of the satellite
in terms of the parameter s. fz”(573 We have a natural

basis for Se , the tetrad of vectors However this

.a.,l

ozt =

is not orthonomal. Indeed, 3(5@P| 1§2x| )==jpx(2) (2.1)
' X P 2

Intterms of this basis we may define an orthonomal tetrad

Y T 3
Sy(2) = “ZJ‘ e (2) b-z“Ia (v=42,2,4) (2.2)
where T \
e (2) = & (2.3)
(V’) v W

.which will also serve as a basis for Sia

We then have 3 C e (), ey ()] = &« (2.4)
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Now we are treating the motion of the gyroscope by the
geometric method. That is to say, we assume that the gyroscope's
axis of rotation maintains a constant orientation with respect
to the "spatial components" of a tetrad of vectors which is
parallely propogated along the world line of the gyroscope.

We therefore define an orthonormal tetrad Qf vectors
along the world line of the gyroscope and demand that they
be parallely propogated. They will define a reference frame

S% . We express these vectors in terms of the basis of Se
y
;\Un[ z2(s)] =°(Z_,\ /\(/,\(.() 2] ey L2(Y)] (2.5)

Orthonormality implies that
g[-ﬁ(l.ﬂc‘i(s)J" ?\(o&)ﬂ—t(S)JJ = g/JQ(

from which ALz ] /\TE 2(s)1 = 1 ’ (2.6)

A Lz(s)] defines a Lorentz transformation. To further
determine the matrix AL 28] we use the fact that the tetrad

is parallely propogated. The covariant derivative,

4 m
' Z Q

=0
T=1 02" la(s) (2.7)

2 r
which implies that <dS ?\(/,) EE(S)J) =0

To calculate this term we must expand %%)Eilﬂj in terms
of the basis §if of the tangent space.
T )
) { - 5_ Ny L2(s)] < \
/(,.:)Cz S)] = £ (f-') BZW i(s)

w ; L (2.8)
where 9\(,‘, [2(]) = Z /\(,,)(,,0 [2(5)] SN [2(s)]
(=
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- m .
2 - d 4 é
Then (dsﬂwfﬂm)— 7\(,,, a3 ;qzi/ [z(s)J Z (s) 7\(/,) Lz(D] =
Substituting in the values of V” Tracny (2.8) and of
ey [2()] (2.2) we find the result that
AC2()] = SALES)] = AC2(DIML2(S)]
where | ( 9)
1 C2s) (
29 5y g g - G e

We have not yet specified the 1n1t1al orlentatlon of the
tetrad ?\(,,s [2(s)] . However, apart from this the tetrad is
uniquely determined by the above differential equétion.

We now consider the problem of observing the orientation
of the gyroscope. If we look-:at it from the point of view of

an observer in the ground frame 5% as well as seeing real

)
effects due to a change in orientation we will also observe
special-relativistic aberration effects due to the difference
In velocities of the observer and the gyroscope. We therefore
have a co-moving observer measure the ofientation of the axis
of rotation. We denote the reference frame of this observer
by S; , and his orthonomal basis tetrad by XQU)[Z(S)],
We want the frame Sc to have a knowh orientation with respect
to .Sé . One way to partially define this orientation is to
demand that if an observer in Se measures the velocity of

Sc as'V°, then an observer in SQ measures the velocity of

S,

-
e as -V . We then have:

/)(E/,)C z1s)]l = Z. H(/,)(,Q Lz(s] €,L2()] (2.10)
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where13
yLze)-t & m
/'/(K)(m)[Z(s)J = SKM 4-(—\/—52&1};53,_ VA2V [z)]
- K
Hio @2 = - o [26] = L ¥L2] v Las)] (2.11)

Cc
Hay C29] = dL2()]

Then H[z¢s)] is also a Lorentz transformation.
T; —
ie. Hrzeyi H'Lz(Hd = ] (2.12)

we may now find a relation between the two reference frames

S} and Sc s, "attached" to the gyroscope..
7‘(/,) [2(s] = (QZ: /?(/,)(tg)fz(s)J X%)EE(S)J (2.13)

.where, from (2.10) and (2.5)

N[z2¢s)1 = RLz(] HCzs)] | (2.14)
also from (2.6), (2.12) Rlz(] RLz)] = T (2.15)
.Now we can uniquely determine the tetrad 7‘(,,3[2(5).7 by
demanding that at some point 7\=7\,' it coincide with the_
tetrad 'X(,q[é,(ﬂj : Using the definition (2.11) one can show
that X[ 2(8))=-it[2(s)] for all S, [tis the unit tangent
to the world line |} Therefore A4) 1s parallely propogated

and consequently 7((4)[;;(5)]-_- Ay L2(s)] for all S, (2.16)
.Then from (2.13) and {2.15) we conclude that

/e(q)(t)fils)J = ?(k)(A/)EZ"(S)J = O for all S .
- (2.17)
/?(4)(4) [z[s)J =) ‘ .for all S
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Thus '/?EE(S)J is a matrix corresponding to the rotation of the
"spatial" vectors of the two tetrads. We may now find a
differential equation for REiL(S).] . (We leave out the
arguments here, all understood to be -2(s) ),

from A=AM (2.9) and A<RH (2.14)

[ ] . .
N= PHM =(RH) = RH+ RH which implies that

[

R= P(um-H)HT <= B

(2.18)
. A
where B= (/—/M-—H)H
Properties of the matrix B
from (2.17) Ry =© =€Z_/R(¢)f(3) By = By = O
B+8T= ®TR)+ (R7&) = TR+ RTR = (k) =0 (2.19)

‘ie. is antisymmetric and Buyw) = B 4) = O (2.20)
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Chapter 3. Definition of Ahgular Velocity of Precession

We now have three reference frames defined. Since the
axls of rotation vector 1is assumed to have éonstant-components
along the spatial basis vectors of S? , and since the basis
tetrad of S«}- is relatled to the basis tetrad of Sc by a
spatial rotation, one can find the rotation of the axis of
rotation vector with respect to a co-moving observer by finding
the rotation of the "spatial.. triad" A L2(s)]  with respect
to the "spatial triad" X, [2(s)J . This will be determined

by the matrix AKL2(5)] and hence by BL2()J

Angular Velocity

We wish to calculate -Ef[z“lj, the angular velocity
(with respect to time) of rotation of the triad A Lzed
with respect to X [2()J . Instead of calculating 2 L=z2H3
directly we calculate ;f£?<ﬂj, the angular velocity (with

respect to arc length ) of rotation of these triads.

We then have _?ffi‘(s)] = 5‘-/9 w L2 (3.1)
2(s) ‘
3
Ay [2()] = Zg'?m(m)fz(su XewyL2is)J (3.2)"
ms=

. : C4 ‘ .
Using (2.18) Ricyimyl2(s+4)1 = 2 Ry l201 Yoo 5,67 (339,
P

where (to first order in 4 ) \(M(n)[s'“= Sfm.;.ABPmC 23 . (3.4)
One can show in flat space for the rotation ::[2(9.7 that

. 3 3
Proim (260 ] = 2 Riypyl2 01 (8pm + Athk[amJe»,m) (3.5)
p=1 )
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Therefore we interpret %XM)EE(J)J'—‘ 2/ W L2 ] €prpm (3.6)
r
Ffom (3.1) therefore

o) [29] = [323 [2(0], By [2(9)], 82 Eé(S)JJ (3.7)

Evaluation of the Matrix BEE(S)J

B [20l= 8Ll =0 (2.20)

Bioim [2(0] = [(HM= A)HT] 20, (2.18)
Then using the values of A from (2.11) and those forM from

(2.9) we have:

Bioim [2(0] = A[z(s)J(é/((S)Bmfl - "'(s)a,(,l’\z(s)) (3-8)

where ( 1, 8 _ (3.9)
ALz()] = vy 4)[_.2»: NE ],-2(5)

Using the approximation that -F is small and that é.ﬁ.‘l we have
. 3 ,

K~ v and ALz(D] = — n (3.10)

Therefore to a good approximation we have

3. :
Bioim [2(] = —:[ZK(S)aM't )zm — 2™(s) 3K4’|2m] (3.11)

: -
As a check of the above method we calculate 2 for a

Schwarzschild field. | 3 —
here f- "I’_/h B PART-WONA (3.12)
na)
L’_ 2GMe
= V==
é - M_'VM K (3.13)
B(\c)kh\) 4 YS\ [V Z ']lz(s)
(3.14)
-—b ’
_Q_ - 2 Glf—:\_'e' 'ljf'z Fx v . - This agrees with the value

calculated by Schifff.3
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Chapter 4. Precession In One Orbit

We have equations of motion for a gyroscope in a special
orbit about the earth <é=0, S“T-zr) . We shall now calculate
the rotation of the spin axis in the course of one revolution
about the earth.for this orbit. We calcul?te this rotation
with respect to the frame S. (with basis tetrad X L2 ).
It is convenient to change parameters from the interval S to
the longitude A . We'will, for ease, denote 2 LAY = 2(N)
while ° will still denote ai ie. 2(N) = szmcm.

After computing the calculations for this orbit if we
wish to find the result for any other orbit we may rotate
coordinate system until in terms of the new coordinates

(r;e',’/\') the orbit has e‘:‘“}z 6'=0 . Knowing how spherical
harmonics transform under a rotation, one can expand F in
terms of them.

Now Aty Lztn)) - me:,R(:)(m) [*l{\WJ'X(m\thi\\J (4.2)
from (2.13), (2.17)
-The observer in Sc will see the triad ‘A(K3[2(ﬂ\3 rotating and

he can compare it before and after one orbit.

3 _ '
Ay [2(n+2M)] = ; GL[z2),20 ] Ay L2A0T (4.3)
As mentioned in Chapter 2 we choose the two tetrads to coincide

at };=//\/

Therefore sm,qﬁﬂ

/4

d
C:sz,),znj oo = Sk + Lm) Renl2)] ds (b.)

3142/7'
A
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(4.5)

Since we have only one orbit it 1s a good approximation

to tak LzN]= L
o take R N ] )2

Thus QL2 27, o = Sy + j *_g Bieyeny L2127 /A (4.6)

We use the result. (3.11}) to do the integral. We therefore

- K
must calculate Z (A) and 3{?

a.
The orbit 1si given by V(A) = 7€ (A —72)
Thus z'¢A¥= F(A) oA = acoe)

. I+ € co (A=-No)
(N = FIDNINA = o SmA

EYIRI XN (4.7)
22(n) =
Therefore we have
. £lLz(A]
Z/(z) - - -gz:-—— [-jh\ﬂ +€Sh\;\ 7
. £L2(2)]
2 - [~ _ e N+ E MD7\0.J
220%) /J [ er - (4.8)
232 < 5
Now we need to calculate the terms BszLZ(MJ . We have
£=-2[1+ Z ()’ Z-th(mé)[Cnm omA+ShmSmmd]
It is convenlent to expand «# in terms of spherical harmonics.
) ‘A -imA
Com CoomA+SamSm m) = Aam e +Bnm e
_ / . :
where Anm = ;[C’)M - /S"MJ . (4.9)
Bnm = 2LChm +i0Sam]
We have the relat:i.onsl4
'm7)
r;)m (Cﬂe)el ! = Dr)m n)m/e/?‘)
”
- r»/
Pam (t08) €' L ) DnmVh-m (BN (4.10)

where ﬁﬂ‘(n-/m)"“
D hm "/(znw)(n m)!
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. Therefore we set /L/hm = ﬁnm'Dnm‘

Lnm= E')mgnm Dnm

; (4.11)
“and we have [’ Z (ae) [/'/nm%m/e,nw LamM, m/9 3)]]
NEPYFY- af Y a__/-’ ar

For the orbit e:g (from equation 4..7)

.2; = ¢oSA §—§'= 3 g—ﬁ;_‘I: —;’Jh\ﬁ

gJZ.z. SVV\A %’213 (@] §£1.= F‘{Cﬁsg\

> el _

$. =0 %= % g, =0 (4.13)
Setting [l = Hnm me(‘”‘é;%) +Lnm x’-m(ﬂ/ZIA)

Thim = Ham Yam(%2) = Lnm Ya-m (%, ) (4.14)
and Vam = //nmfbay"”'(a”)’ T 41/1”4 'Yn-m(&ﬂ)lézf/z_ |
we can write

_f —-L/LI4Z (qe>2 an]
n
2%?\— 'L/P‘Zn =2 ae) ZM-—B imFam _
PRy M 1
/b\r‘-_- L/rz[.l'i'zhzz(a?e\ Zm:o(h-mrﬁhm_] (.4 5)

Moo= = Trs (P57 N

Then from (4. 12) and (3. 13) we can find:

.téz’gB/Z[i(mJ [GJM(/'\a A)Zz(ae)z mem ‘_fl n:.
" By[zn] = (mA-uswa )Z (3" Vom

Eﬁ; Bs 2] = ~ (J‘m?\-feSmF\ o) Z (a":) -oVnm

. We are interested in the effects after one orbit.

MZ: 4/)/37»,}]
(4.16)

We therefore

set A=A+27. To do the integration (4.6) we carry terms to

2
order (;_‘) but neglect those of order (,‘f)s
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Doing the integration (4.6) to this order we find that
: 356 [i$) 2
GL2(AN),2T]z3 = “42 gn & Intazs

GLzM), 2)TJ3/ = \/817 ae Inta,
G[Z(zl), 2/7.7 12 = g'éa‘” +i€ 843\/_27461_2,'”,/, (4-17)
b
QZ_’ [ 20 Inty \/': Z tajae
_where:

—iN,
-I/Iizs = 77-[(/-/4 )(//ZI z/)'f'zc cdd;\ (//z/e - Lzle ‘ )]

Intsz) = /7[1("‘ )(//ZI“LZI)“ €S Ao (l‘/z/e o -ézfe'm ).7
[ J— l\o -277
Inf, = A 1€ 1] [/‘/22 eZ g -I-Lzze 2 1] (4.18)
0'\0 !
Inty = 3512][//22 20 Ly et A]

Now for this orbit we are given the values of //,,m
See (4.9), (4.10), and (4.11)
Substituting in (4 17), (4.18) we find:
G [2(A), 2n]z5 = 4a3 3 [(1+£°)c, + S ercons (Czyco0Mo +52/ShAs) ] @k
G Lza), enls = “Zéq- (5 )521 +5€*sm A (¢ C—Gao‘*sz/J'M/"o)]QG
GLany,zn), = ZF - g{czo(zwe*)q:
: ' 2
:—‘\/?Qé} Te* (G coho +5,23m% A, )ae

One can also determine the angle and the axis of rotation

(4.19)

 for this orbit. The method of'doing this is straight foreward
knowing § . If we denote the angle of rotation by ¢ and the
axis of rotation by ¥ we f£ind that Ye H[ng,éal) Gna]

where Sm @ = ;f = '\/(G,Z)Z.,A(Ga,)z,t(s,?;‘?

Now to this order we have (= §;, =0 . If we use the values

. -8
in Guier's 'paper3 they are of order /0 . Thus the

G2a and 63' terms are very small. and may be set=¢0 . In the
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Cs/z term we have three contributions 3%? which is largest,
6ae
3 E
(see 4.19) which is smaller by ﬂ) and can be set v O.

3
ﬁ&o&+3€z) which is smaller by /0 and the last term

To this approximation

Sm¢ = /—_//' = CIZ. /: B_é_ﬂ- - ié (a'—e> 77.C20(2 +3€Z)

—t>
X = (o,o HGr2) = (o,o,/)
The first term in the expression for 3n ¢ is the same as is

given by Fokker”? (see appendix 2). The rotation occurs about
the axis perpendicular to the plane of the orbit.

One may also do a similar calculation for other orbits.
An easy way to do this 1s to rotate coordinates. We effect
a rotation by Euler angles {k,f,kf— (First rotate about
the # aiis by angleg', then rotate about the new Y axis by
angleﬁ » then rotate about the new 2 axis by angle X )
to arrive at a reference frame with spherical polar coordinates
F o) 2" and such that the orbit is described by e'="4
We'may then expand

Yomlon) = 2,7 DL I 33114 Yoj(6]2)
where D[ {6,811 m

is a coefficient evaluated by Wignerl5.

Since we have a rotation k' Fr and in our new coordinate

[/ nooz(ae) Zm o[/’/hm Yam(e,2 ) "‘LhmYn,-m/e 7\')]]

To find Hnm and L'p, it is convenient to set

Kno = Hho +Lno ' Kho = Hho+ L'no
Knm = Hnm fm}/ - khem=Hom }M>/
l(/h,-h‘)‘-' Lnm /('n#m [hm
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£ = -f[/ + éz(?fz;:_nknm Yom(&,2)]

0 Ak .
= - é L1+ n2=‘z (af) Zm:-n '(/'ilm Xm(am')]
K‘:J = Zl:)a-h Dm[[*/lg/”]jm khm

i ' ,
We then can solve for /'/nm and Lam and use equations

(4.17), (4.18). to calculate precession for this orbit.
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Summary

"Neglecting the effect of the earth's rotation, we have.
been able to calculate the precession of the axis of rotation
of a small spherically symmetric gyroscope in the course of
one orbit in the earth's gravitational field. This precession
is almost entirely (to 1 part in 106)‘about an axis normal
to the plane of the orbit. The expression giving.the. angle’of
precession about this axis contains two main terms. The

9

largest is analogous to the factor derived by Fokker for

a circular orbit‘in a spherically symmetric field. The other
main term (103 smaller than the first) contains the effect

of the eccentricity and of one of the harmonics (Cog)
.of the gravitational potential of the earth.

In doing the calculation we have assumed that the orbit

was ah ellipse. This will affect the result by at most 2%.
If, however, we wish to include the effect of the earth's
rotation (itself one or two percent of the main precession
term, see Schiff8).this approximation is no longer valid.
Taking the above error into account we see that the effects
of both eccentricity of the orbit and of the inclusion of
harmonic terms in the geopotential do not seriously affect
the  result:.; calculated:. by Fokker for a circular orbit in a

spherically symmetric gravitational field.
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Appendix l.' Justification of an Approximation Made in the

Orbit Calculation

z

d =

Classically we have d—t"r= -v(z-3,) . We can write
r= %2 8" yhere ¥, is the elliptical part and &r is the
L
remainder. For the'elliptical part we have ;itv =V C
& a7 A’-
Thus © a7 = - o< vew\e a")ZP (we\[CnM‘“M’\
- {:7-),"}«4&7\ " +3 V\MSMN’\]

We now consider then=2 term to see the effect of neglecting

it in the calculation

> - 3'P2M(C-676)CC2MC@W)7\ 'i'szw\:;"\W\?\] 4y
2 - . . -
dclw-o ' Z + é sz(une) (_szuamA-rS;_mSmm’;\]ﬂ_

=0
Yomlen®) [—- Com SN Sz cormM] AN

3
fl

$n\e
—b

where ’1,,) '19 and 4;\ are unit vectors in direction of increasing

—bs

coordinate and ' X
T= Kze-u'ﬁ/'lz(ae)léw\e. ~ /-'L(“a)t § mhe_
' . C

- =

Using the same approximations as are used in Chapter 1, we

note that for this orbit 9="r/z_. and. that the only non-zero

coefficients are Csn, Cyys and Spp Writing
I)-:: 2607‘ 'f’j\Jh\ A .

e Ac- N
= 2SN+l em) .
& (for &= ﬂz. only)

and integrating twice we find

—

Ahz.n_z A)‘o -+ 27_277 QOJ .J.T[ 277 zz(-— ZFszJJ

We can take 47’0= 0 . The large term is the one containing

020 and is of order 3777 (;, ~ /30 Km. 242

We use the result (4.6) GLzm),27] = 8¢n +f/%L&KXn\£20\JdA
. Y
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and compare the result where we take r for an ellipse as
compared with r for the actual orbit. Using the approximation

(3.13) and the results (1.8), (1.17) we have

GLz),20)cn = Een - 34] L 1f[\/ m_ "3 K ] it

where £,y €. are the times for the start and end of the orbit.

£
As an approximation we take Fr ~a., e~/ so that

16[217")/27’-],(/) = Skn - [ (\/ Kgh_vNzk) dt

4a5
- ]
If we let A be the vector area of the orbit we have
4/4—.—_- _{(Fx 'v') . Therefore if NS are cyclic we have
7 ,
R
G[i“m,),zn](,, - 4—;1’; ,45 The difference between

Ggn for the real orbit and Gen for the elliptical orbit is
therefore proportional to their difference in area. We know

‘ the maximum difference in position ig 130 kM. . We let A be
the average area anda A be the difference between the area
of the actual orbit and the elliptical orbit. Since both
orbits are planar,4¢ and Az,are zero. Thus there 1s no error
in Q23 or 63/ due to taking the path eiliptical. The error
in Gz is of the order 3{4 . To find an estimate of the error
we take the case of two circles, the smaller of radius a,

touching at one point with a difference in diameter of ar

t 3 -
ah_ pla+ &) _mar_ ar 4_*)‘ ~ 2x0 %

Thus we can expect an error of about 2% in the precession
calculation. Were we also concerned with the effect due to

" the earth's rotation (Lense-Thirring effect) which contributes
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at most a few percent8 to the precession of the axis of rotation

this approximation would not be justified.
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~ Appendix 2. A Comparison With Some Previous Results for the
Special Case of a Circular OrBit in a Spherically

"~ Symmetric Field

In this appendix weAshall show that our results agree
with those calculated by Fokker and by Schiff for the special
case of a circular orbit in a spherically symmetric gravitational
field. Recall, for comparisoh that our c¢calculation predicts
a precession of angle ¢=%Z-262”-'§ Fad with axis in the direction
FxV (perpendicular to the orbital plane) after one revolution.
To show this agrees with Schif@'s result we use the
relevant term ggg(F&VV in his expression for the rate of

precession. (Equation 40, Page 879, Ref. 8). To calculate

" the angle of precession after one revolution we note that
¢
AP = 2T 3’;/;.3

- M . .
-377'3{-—& in one revolution. To convert to cd.g.s.

“unit we replace '& gg‘ﬂi to find that

—s
ap= 3. 2. C7c”:_e with axis in the direction A°xV

Agreement with the result given in Fokkers paper is
not so immediate (and is the reason for this appendix). He
uses spherical polar coordinates with basis vectors 5%15%>
:; ;lr.‘He then defines a tetrad of vectors Cﬂq) along .

the worldline of the gyroscope. These are parallely propogated

and

and begin (at A= o ) as a known set;4(*) which corresponds to
2
an orthonormal tetrad.( Au) in directiona';, /4(2) in

directionéa6 and thus perpendicular to the orbital plane,
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p)
and A(a)in direction g ). Using the condition that the set
U(q) 1s parallely propogated one can derive expression for

U(x)L 2] when the gyroscope has mowved through angle A . These

are given below. 4

8 2
U £73 = Z, U E7 330
We set L= 2—’%{1’5 - The initial components are
| ¥=0  ¥=1 =2 ¥=3
¥ Z o 1 B
Ao Voatss O o aVza-as
¥ =&
/
A (2) O O /&. O
Y L [2¢a-8)
Ag(a) (q_:;(za-eb) O‘ & A\/z a -3%

Then at angle A

¥=0 Y= ¥=2 Y= 3

, . Y
Uto)b'(” A(a)o @] o) Ao

. 2
U(,) X(;\) "Alg) 'Smﬁ/’\ Au)l 600/3 A o - A(a) 5!‘5!,37\
U(z.) g(7\) (@) o) A(z)z o

o /.. 3
U(a) (A) A(_-,) Caoéf\ Awy Sh',sﬁ o A(;) cao/g/’\
h e - & - 34
wher @ J/ E / ;5‘3_’_“
One can see that the vectors U,, (M), the unit tangent and
U‘,.)(A) the vector perpendicular to the orbital plané
do not change componenﬁs with respect to the basis CM:" aa’u]
in the course of the motion. This would be Pxpected We

also note that, relative to an observer in this frame &p‘a »d

2 2 '
de’ 34 ; the spatial parts of the vectors Uy  and 0(3)
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undergo a rotation of angle @/’\ (after the gyroscope has
= =
moved through angle 7\) in a direction = k¥ V . Thus .
if an external observer (say with "Cartesian" basis
(2,2 2 2 :
. at'ax)a')ﬂaz ) watches the process he will see the
. : ' -  mp

gyroscope precess..” . by angle ﬂ—ﬁ%' in direction. I'"y 12

as the gyroscope moved through angle 7. Thus .the total

precession after one revolution is &277[/-b]rada.

' 36 3T, &Gm
o, = = 3 e . . . .
obr RIT 4o z&z = radians in a direction

Ju—
Fox V.
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