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- ABSTRACT

This dissertation is divided into two parts. In
Part I, a method is developed for determining the opti-
mal control laws for-a class of aerodynamical systems
whose dynamics are linear in the thrust and nonlinear in
the lift and thrust angle. Conditions under which the
ad joint variables can be eliminated from the control
equations are derived, and expressions for the thrust and
rate of change of lift and thrust angle are obtained
which depend only-6n state variables and a small number

of time invariant parameters. The optimal values of the
unknown parameters are determined by a direct search in
parameter space. It is shown that the proposed tech-

nique is considerably simpler than standard gradient
techniques which require a separate search in function
space for each component of the control vector. Further-
more, since the controls are generated by the direct
solution of differential equations, the method appears
suitable for use with in-flight guidance computers.

Tn Part II, a three stage numerical algorithm is
developed for a general class of optimal control prob-

lems. The first two stages of the algorithm are based
on a gradient search in the parameter space of initial
Lagrange multipliers. The first stage.attempts to

satisfy the given end constraints without regard to
system performance, and the second stage attempts to im-
prove the system performance while simultaneously main-
taining the end constraints set by the first stage. The
final stage of the algorithm is based on either a modi-
fied method of matching end points, or a method of
determining the optimal step size for the gradient
method of the second stage. Either combination results
in a three stage algorithm which has good initial con-
vergence, good final convergence, and which requires
storage at terminal points ‘only. s
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ABSTRACT

In Part I, a method is developed for determining the
optimal control laws for a class of aerodynamical systems whose
dynamics are linear in the thrust and nonlinear in the 1lift and
thrust angle. Due to the presence of the linear thrust control,
a singular subarc exists alohg which it is often possible to
eliminate the Lagrange multipliers from the control equations.
Conditions under which this elimination is possible are derived,
and expressions for thrust and the rate of change of 1lift and
thrust angle are obtained that depend only on state variables
and a small number of time-invariant parameters. The optimal
values of the unknown parameters are determined by a direct
search in parameter space for that set which minimizes the
system performance function. As a result, the proposed method
is considerably simpler than standard numerical techniques
that require a separate search in function space for each com-
ponent of the control vector. Furthermore, since the control
vector is generated by the direct solution of differential
equations, the method appears suitable for use with in-flight
guidance computers. Several numerical examples are presented
consisting of one, two, and three dimensional control. In each
case, it is shown that the search in multi-dimensional function
space can be replaced by an equivalent search in the parameter
space of initial conditions.

In Part II, a three stage numerical algorithm is
developed for a general class of optimal control problems.

The technique is essentially a combination of the direct and

ii



indirect approaches. Like the indirect approach, the control
law equations are used to eliminate the control vector from the
system and adjoint equations. However, instead of trying to
solve the two point boundary-value problem directly, the aug-
mented performance function is first considered to be a func-
tion of the unknown initial conditions and is minimized by a
gradient search in the initial condition space. It is shown
that it is sufficient to search over the surface of any sphere
for the intersection of the line ux:, where h: is the classical
solution of initial values. As a result, this first approach

is not dependent on a good initial estimate of the optimal tra-
jectory, and is therefore used in the first two stages of the
proposed algorithm to provide the property of rapid initial con-
vergence. The property of rapid final convergence is obtained
by employing either a modified method of matching end points,

or a method of determining the optimal step size for the gradient
method of the first two stages. Either combination results in

a three stage numerical algorithm that has good initial con-
vergencé, good final convergence, and whiéh requires storage at
terminal points only. Several examples are presented consisting

of both bounded and unbounded control.
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I, INTRODUCTION
1.1 The Indirect Approach

The classical theory of the calcPlus of variations was
developed nearly two-hundred years ago by Euler and Lagrange.
Recently, a more complete and mathematically rigorous treatment
of optimal control theory was presented by Pontryagin in the
form of the maximum principle [l]. Both techniques are essen-
tially equivalent and form the basis of the indirect approach
to the solution of optimal control problems.

The indirect approach is based on establishing a set
of conditions which are necessary but not sufficient for an
extremum. The ;olution to the optimal control problem is then
taken as aﬁy trajectory along which these:ﬁebessaryAconditions
are satisfied. As a result, the second vériation may have to
be computed to insure a true extremum of the solution and not
merely a stationary point. Although this approach often allows
some analytical information to be obtained about the optimal
trajectory, a complete analytical solutions is usually not pos-
gible and; therefore, numerical techniques are employed in associ-
ation with the indirect approach. However, these numerical
techniques usually require a high-capacity digital computer and
usually need a good initial estimate of the optimal trajectory
before the solution will converge. On the other hand, once a
trajectory is found which is in the neighbourhood of the extre-
mum, very rapid final convergence is realized.

Typical examples of numerical techniques based on
the indirect appfoach are the two-point boundary-value problem

[?, j], the successive sweep method [4], and the min-H strategy



)

1.2 The Direct Approach

A further computational scheme available to solve
optimal control problems is the method of steepest descent
(or ascent) which is based on a standard hill-climbing approach.
In contrast to the indirect approach, which satisfies the
necessary conditions for an extremum, this hill-climbing tech-
nique seeks directly that trajectory along which the system
performance is an extremum. As a result, the method of steepest
descent is known as a direct approach to the solution of optimal
control problems. However, unlike most hill-climbing techniques,
which are based on a gradient search in parameter épace, this
approach is based on an iterative scheme for improving the con-
trol function by means of a gradient search in function space.
Consequently, as these control functions must be stored at many
points along the trajectory, the resulting memory requirements
of the computer may become excessively large. Furthermore,
since the technique is predicated on a gradient method, the
convergence slows down as the extremum is approached and it is
not known when the search should be terminated. On the other
hand, a main advantage of the direct approach is that the solu-
tion does not depend upon a good initial estimate of the optimal
trajectory. In fact, once a nominal solution is obtained, initial
convergence is guaranteed.

Typical examples of numerical techniques based on the
direct method are the method of gradients by Kelly,[6] and the

method of steepest descent by Bryson and Denham [7].



1.% The Dynamic Programming Approach

The third approach to the solution of optimal control
problems is the dynamic programming approach recently developed
by Bellman [8], This approach is based on the principle of
optimality which states that "an optimal policy has the property
that whatever the initial state aﬁd initial decision are, the
remaining decisions must constitute an optimal policy from the
state resulting from the first decision". ZEmploying this
principle, the dynamic programming technigue works backward
from the desired final conditions and evaluates the optimal
controls at discrete points in the entire space of permissible
states. This flooding of the solution throughout the state
space has, in principle, three main advantages. First, the
technique is capable of handling a very general cbntrol problem
including problems with bounded state and/or bounded control
variables. Second, the solution is good for any set of allowable
initial conditions, and; third, as the optimal controls are known
at all points in state space, the solution is useful for real-
time optimal control. However, for all but the simplest cases,
the computer.memory that is required to store the complete
solution is prohibitively large [9}. This severe restriction
is what Bellman calls “the curse of dimensionality". Some
techniques have been récently developed that significantly
reduce this problem of dimensionality; however, the dynamic
programming approach is still limited to relatively simple
problems Plﬁ . Due to this limitation, the emphasis in this

thesis will be placed on the use of the direct and the indirect
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approaches with an aim of developing techniques that reduce some

of the difficulties currently experienced with these methods.

1.4 The Proposed Technigues

The optimization techniques developed in this thesis
are primarily a.combination of the direct and indirect approaches.
Two classes of problems are studied, and since the results are
essentially unique, the material is presented in two parts.

In Part I, a method is developed for determining the
optimal control laws for a class of aerodynamical systems of
which the dynamics are linear in the thrust and nonlinear in the
1ift and thrust angle. Due to the presence of the linear con-
trol, a variable thrust or singular subarc exists along which
the maximum principle cannot be applied. To overcome the dif-
ficulty associated with the singular control, a method is devel-
oped to eliminate the unknown Lagrange multipliers along this
variable thrust subarc. Conditions under which this elimination
is possible are derived and expressions for thrust and rate of
change of 1lift and thrust angle are obtained which depend only
onh state variables and a small number of scalar time-invariant
parameters. The unknown parameters are then determined by a’
search in parameter space, based on a direct approach, for the
set which minimizes the performance function. The proposed
method is considerably simpler than the standard numerical
techniques which require a separate search in function space
for each component of the control vector. Furthermore, since
the control vector is generated by the direct solution of

differential equations, the method appears suitable for in-flight
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guidance computers; that is, either the control law is obtained
as a feedback law involving state variables only, or it can be
generated from state variables and a small number of scalar
parameters. Several numerical examples are given illustrating
this téchnique.

In Part II, a numerical algorithm is developed to solve
optimal control problems which do not contain singular control.
The technique is based on replacing a gradient search in func-
tion space by an equivalent search in parameter space through
the use of the necessary conditions of the indirect approach.

To accomplish this, the control law equations of the calculus
of‘variations are used to eliminate the control vector from the
system and the adjoin%ﬂequations. However, instead of trying to
solve the resulting tﬁé point béﬁndary—value problem, the aug-
augmented performance function is considered to be a function

of all unknown initial conditions and is minimized by a gradient
search in the pareameter space of these initial conditions. It
is shown that it is sufficient to search over'any sphere for the

*
, where A\ is the classical solution

intersection of the line pK:
of initial values. As a result, the proposed method is not
dependent on a good initial estimate of the optimal trajectory.
However, since the technique is based oh a8 gradient search, the
final convergence slows down as the optimum is approached. To
provide improved final convergence, three techniques are devel-
oped. The first is based on the method of matching end points

which uses an optimal scale factor for the Lagrange multipliers

such that the error in transversality is a minimum at each step
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in the iteration. The resulting algorithm is independent of

the initial scale factor for the Lagrange multipliers and, hence,
can be conveniently used with the proposed gfadient.technique.
The other two method are based on determining the optimal step
size for the gradient technique oncevin the vicinity of'the
optimum. One approach uses a second variation of the augmented
performance function, and the other uses a method of curve
fitting. It is shown that by dombiﬁing these techniques, a
three stage algorithm can be developed which has good initial
convergence, good final convergence, and which requires storage
at terminal points only. It is also shown that a similar
approach can be used to improve the final convergence properties
of the gradient search in function space. Several examples are

presented, consisting of both bounded and unbounded control.



PART 1
OPTIMAL CONTROL LAWS FOR A CLASS OF
AERODYNAMICAL SYSTEMS



2. GENERLL ANALYSIS

2.1 ‘Optimal Centrol of Aerodynamical Systems

Miele hés'given a general variational theory for opti-
mal flight paths of aerodynamical systems and derived general
expressions for the Euler-Lagrange equations {iﬂ . In special
cases, these equations are usefﬁi in deriving analytical results
concerning the nature of optimal flight paths E?]. However,
‘with the exception of these few particular cases, numerical
techniques are required to solve optimization problems and, as
mentioned earlier, these techniques usually require the gtorage
capability of a large-size general purpose, digital computer
[EB—lE]. However, it has been shown that in the special case
of the sounding rocket, the Eulér—iagrange;equations can be
used to selve the synthesis problem and the optimal thrust is
expressed in closed form as a function of state variables only

Eé], A more compleé'and mofe interesting problem is the

general case of a miséile movihg within the earth's étmosphere
under the control of thrusf, thrﬁst angle, and 1ift éuch that a
specified performance fﬁnction is a minimum° This is an example
afmulti—dimensiénal control, and the sfandard numerical techniques
are time consuming to apply since a separate search in function
space must be performed fbr each component of the control vec-
tor. It is the purpose of Part I of this thesis to exteﬁd the
techniques, used to solve the sounding. rocket problem, to the

case of multi-dimensional control.

2.2 Problem Statement

The class of flight systems to be discﬁssed are those
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which can be represented by the following state vector differen-

tial equation:

X = GO(X,L) + qu(X»B)‘ (2.1)
where
.Xl
X = i = n - vector of state variables
n
dx

X = X Genotes the time derivative of x
GO(X;L)-z n - vector of functions g, of x and L
Gl(x,ﬁ) = n - vector of functions 811 of x and B

and where the dynamics are linear in the thrust u and non-

linear in the 1ift L and thrust angle B. (See Figure 2.1.).

T

mng

» X

Figure 2.1 The Motion of a Rocket Within the Earth's Atmosphere
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The derivation of (2.1) for the case of a missile moving in the

earth's atmosphere is given in Appendix A. Consider now the
problem of determining the set of controls (u, L, B) which
takes the system (2.1) from some initial manifold defined by
the k-vector constraint

H(x(to), t5) =0 ' (2.2)

to some final manifold defined by the p-vector constraint

G(x(tp), te) =0 _ (2.3)

where u is subjedt to the constraint

-0 (2.4)

u(umax. -u) -«

and where the performance function

P = P(x(tf), te) (2.5)

is to be minimized. The constraints (2.2) and (2.3) are vec-
tor equatiohs whose dimensions are equal to or less than n.
The stated problem is of the Mayer type and can be solved by
introducing the augmented function [;g

rd *TE‘ - g, - u(};’ . E‘(“max. - ) - ail (2.6)

Here A\ is an n-vector of Lagrange multipliers, xT is the trans-
pose of x.and'xn+l is the (n+l) - th Lagrange multiplier.  The

Euler~Lagrange equations obtained from (2.6) are

. aG oG,
A= - [E;EQ)T +,u(§§l£ﬂ7\ (2.7)

0 = kp | » : (2.8)
0 = ukB (2.9)
0=k +A , (2u-u__) (2.10)



lo.

0 = oA (2.11)
oG
where  ky 2 (—2) Ty (2.12)
oL
lel
k& ()T (2.13)
B ag
AL T, | L
k=6 (2.14)
and where the following abbreviated notation is used:
98071 . 9801 |
X axl X,
G. L[] L]
0 A .
a3x - . . (2.15)
agOn,. . agOn
5xl axn“J
EEN
5 oL
G L[]
0 A .
gfl— = . (2.16)
SSOn
-—IJ -t

Since Go and Gl are formally independent of t, a

first integral

(x)Th = ¢ ’ (2.17)
exists, where ¢ is a constant of integration. Substituting
(2.1) into (2.17) yields

T
GO A+ uG

T
1

A= c (2.18)
The transversality condition for the stated problem
is

£
g2 + Vae + (ax)™h - cat)f-o0 (2.19)
0
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where dx and dt must be consistent with the terminal constraints

(2.2) and (2.3) and where V is a p-vector of constant Lagrange

multipliers which are introduced to account for (2.3).

2.3 Discussion of the Necessarv Conditions for an Optimal
Trajectory _

‘Because the system (2.1) is linear in u, and because
of the constraint (2.4), the optimal trajectory will in general
consist of maximum thrust subarcs where u = — variable
thrust suberes where O<:u<:umax.' and minimum thrust or
coesting subarcs where u = 0. The variable thrust subarcs are
also known as singuler subarcs since the Hemiltonlen is then
independent of u end, consequently, the maximum principle
cannot be appliéd to determine u. It follows from (2.4) that

= 0 elong meximum and minimum thrust subercs and hehoe (2.11)
is satisfied., Along the veriable thrust eubarc 1t follows
from (2.11) that My,1 = O end hence (2,10) yields

k, = 0 (2.20)

The method to bg‘disodssed requires & knowledge of the
sequence of.subarps. Thié can be determined from the Legendre-
Clebsch condition end the Erdmenn-Welerstrase corner conditions.
The Legendre-Clebsch condition épplied to (2.6) requires that

2% 8112 + L Sp)2 +§—2-§ Gw? + %i—l-;- G2 20

u

oL d .
P (2.21)

where Su and Oa are related by (2.4). Substituting (2.6) and
(2.10) into (2.21) yields
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GgLLK (SL)2 lBB (83)2 + F—— u [@Su +G5a)g]> 0

max.
(2.22)
where the following abbreviated notation is used:
2 ]
d 801
314
A . '
Gorr.= | . (2.23)
2
3 E0n -
2.
aL
As SII 83 and.SULale 1ndependent, it follows from (2.22) that
¢t A0 | C(2.24)
orL™ — ¥~ y
T aNo | . ‘ (2.25)
18R : 5

everywhere along the optimal trajectory and that

ku> o 9 (u:umax . )

k =0, (O<u<u ) (2.26)

u aX,

ku<O’ (u—O)

Due to the ErdmanneWeierstrass_corner conditiéns,
the Lagrange multipliers and the first integral (2.18) are
continuous along the optimal trajectory. éﬁbstituting<(2,l4)
into (2.18) yields |

T

Gy

- It follows from (2. 27)-and‘the Erdmann-Weierstrass coerner
conditions that a discontinuity in u is possible prov1ded that

(e ). = (k,), = (2.28)

where the minus and plus subscripts denote evaluation of. the
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brackets just before and jﬁst after each switching point res—
pectively. Hence, ku is a continuous function which vanishes
at each switching point (see (2.26)). For this reason, k,
will be defined as the switching function. The switching func-
tion is a fundamental importance in determining the allewable
sequence of subarcs. To investigate the properties of ku’
(2.14) is differentiatéd with respect to time. Using (2.1)

and (2.7) to eliminate x and A yields

- Do, Do Do, DT
ku=[}o Gx — & Wm;h‘*uEl Gix — G %xjk

+ ékB (2.29)

It is seen that the coefficient of u in (2.29)vis identically

zero. Furthermore, the term Bk, is zereo, since either uf0 and

B
kB:O (see (2.9)) or if u=0, the thrust angle can be defined

to be constant so that B=0. Hence (2.29) yields
k =K\ : (2.30)

where

G1x % 7 fox &1 (2.51).

li>

K

It follows from (2.30) and the Erdmann-Weierstrass corner con-

ditions that at the corners of the optimal trajectory

(k,)_ = (k) (2.32)

The condition (2.32) can be used to determine. the possible
sequences of subarcs. Expanding ku in a Taylor series in t

at the switching instant ts yields

k (b + 0%) = k (t)) + ﬁu(té)At Foenen (2.33)
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Substituting (2.28) and (2.3%3) into the condition (2.26), and

choosing At so that second and higher order terms are negligible,

yields the conditions

[t'}t a2 0 (2.34)

‘ S

which apply for maximum thrust, variable thrust, and zero thrust

respectively.
Table 2.1
u(t, - Ot) k (t,) = KA u(ty + At)
(1) uw=0 (1a) ZTA> 0 (1la) u = umaxL"ku:>o
k <O . (1b) KA =0 (16) u=ult), k, =0
(2) w=u__ (2a) ®™<0 (2a) u =0, k <O
K, >0 (2b) K™ =0 (26) w = u(t), k, =0
= u(t) (38) KA = O (38) w=0)\.n ./
7 1; =uo (3:;- k% = 0 ) Eu>o}lf ulg)=0
L= -
(3b) = Ynax. b if
x,<0 u(ty)
= Ynax.

~Table 2.1 illustrates the possible sequences of sub-
arcs which satisfy the Legendre-Clebsch condition. The sign of
k, defines the state of u(see (2.26)). The instants of time
where ku ﬁanishes defines the swifching points ts. The sign
of KTxJat't = ts determines the state of u after switching.
The symbolism (1a),....,(3b) used to denote these states will
be made use of later in obtaining a sequence diagram. It will

be shown by means of examples that an analytical study of the

system and its constraints can eften,provide the necessary
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information to determine a unique sequence of subarcs by use of

(2.,28) and Table 2.1.

2.4 The Contrel BEquations fqr Thrust, Thrust Angle and Lift

To determine
desirable to eliminete
equations relating the
these equations do net
a feedback control law

be possible.

suitable control equations, it is

the Lagrange multipliers and obtain

state variables and u, B and L only.

If

invelve time derivatives of u, B and L,

is obtained.

However, this may not always

It is the purpose of this section to determine con-

ditions under which a feedback law can be directly obtained and:

to develop suitable alternatives when these conditions are not

satisfied.

The elimination of the Lagrange multipliers is

advantageous since the magnitudes of the control variables

are usually known approximately while the magnitude of the

Lagrange muitipliers are unknown.

‘To eliminate the Lagrange multipliers, (2.8) and (2.9)

arve first differentiated with respect to time. ZEliminating x

and A by means of (2.1) and (2.7) yields

L = LO.+ u Ll
and B = BO + u Bl
where
. T ., T T, T
- (Go1, Gox - GO..GﬂJX)_)\ .
0~ Y
OLL
f 7 T . T
- (Gop, @1y = G Gory)
1= T
G A

(2.35)

(2.36)

(2.37)

(2.38)



16.

T ., T T ., T
. (G % Gas = G G g,)k
By S B o T N (2.39)
188 '
T . T T ., T
A (GlB Gz = G GlQXZA |
Bl = 5 il N v (2.40)
188
and where the following abbreviated notation is used:
- ]
2 2.
980 .. ...98&n
3T9%, T,
GoLx © : ) (2.41)
2 2
d fon . . . . . d €0n
aLaxi aLgxn

If the inequality sign holds in (2.21), it follows from (2.24)
T : T e
and (2.25) that the division by GOLL A aanGlBB A 1s.p§rm1s31ble.
Along the variable thrust subarc ku is identically
zero (see 2.20). Thus the time derivatives of ku are also

zero. It follows from (2.30) that during variable thrust

. T
k, =K y =0 | (2.42)
K o=k o+ kS A = 0 (2.43)

Using (2.%1) to evaluate K and eliminating x, A,

L and B by means of (2.1), (2.7), (2.35) and (2.36) yields

T T _ T T ﬂ

[% Gox = % Kg -~ B o %A

U= T T 7T T T (2.44)
Fi R, - KG, +B Ky + D KL—IK

If A can be eliminated from (2.35), (2.36) and (2.44),

equations are obtained for u, L and B in terms of state variables
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only. These equations can then be used to investigate the

possibility of optimal and sub-optimal feedback laws which hold
during the variable thrust subarc. The elimination of N is pos-
sible if a sufficient number of linear_independent equations
between the components of A can be found. There are five such
linear equations given by (2.8), (2.9), (2.18), (2.20) and
(2.42). It may be possible to augment these five equations by
further linear equations obtained by a direct integration of the
Buler-Lagrange equations. Let m be the total number of such
linear equations. These equations can be written in the matrix
form |

A =D E (2.45)
where A is a mxn matrix, where
,Cij

.

>

(2.46)

C
m

— -

are integration constants. If b £ 0, (2.45)

and where the Cy
can be used to determine A uniquely : in terms of the ¢y pro-

vided that

rank (A) = n € m (2.47)
(It should be noted that for the case m>n, the integration
constants Cye cannot be independently specified.)

If b = 0, (2.45) is a set of linear homogeneous

equations in xl,..., xn and if

rank (A) =n -1 =mn (2.48)
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it is possible to obtain a unique non-trivial solution of (2.45)

in the form

Moo= Qg A

(ifk) (2.49)
so that all A, (i£k) are expressed in terms of one Lagrange

multiplier A Introducing (2.49) into (2.37), (2.38), (2.39),

K’
(2.40) and (2.44) then yields the control equations of u, L
and é in terms of state variables alone. Conditions (2.47)
and (2.48) therefore serve as a test to see if it is possible
to eliminate the Lagrange multipliers during a variable thrust

subarc. Several examples will now be given to illustrate var-

ious possibilities which can occur.
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3. THE SOUNDING ROCKET PROBLEM

2.1 Derivation of Optimal Control Law

The derivation of the feedback control law for the
Variable thrust subarc has been given in [ié]. However, the
use of the theory outlined in Chapter 2 can be used to prove
the existence of feedback controi laws for more general cases
and, also, to provide a more systematic means for obtaining
analytic expressions for control laws which are a function
of the state variables only. The terminal conditions for

the sounding rocket problem are

ty = 0
y(0) =0
v(0) = v, - (5.1)
m(0) = m,
v(tf) =0
m(ts) = mg

and the final altitude Ve is to be maximized for a given

amount of fuel. The performance function P = ~Ve is to be
minimized. Appendix B gives the analysis associated with
this problem. The transversality condition (B-11l) yields

i

It follows that b = 6wCsee (2.46) and (B-13%)), and since n = m
= 3, condition (2.48) requires that rank (A) = 2 if a feedback

control law is to exist. To determine rank (4), (B-12) can
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be triangularized yielding the matrix

E & _ 2 0
v mv
m.
B= [0 1 -5 (3.3)
e
_O 0 fs_~
where

r 2 mg - (D + YD) (3.4)
s Ve

and where rank (A) = rank (B).
It is seen from (3.3%) that the condition (2.48) is

satisfied along the variable thrust subarc if
£ =0 | (3.5)

Substituting the first integral (B-10) into (B-9) yields the

time-derivative of the switching function.

. v A
kK = == [ﬁk -2 f ] (3.6)
u - mv u m s
During a variable thrust subarc, it is seen from (3.6), (3.5)
and (2.26) that ku = 0.as required. The function fs’ which

is a function of state variables only, can be used to. determine

the optimal feedback control law. The time derivative of fS is

%s - —ull + N (3.7)

where
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2V
Még+§(3+—v—e-) (3.8)
N & (g + g)(%g + 32) +aDlv (1 + %—) (3.9)
e e

(For the definition of a see (B-4).)
It follows from (3.5) that fs = 0 along a variable
thrust subarc. Equation (3.7) can then be solved for the

optimal control law.

c
il
==

(3.10)

To determine the control law for the complete tra-
jectory requires additional information abbut the sequence
of subarcs. Consider first the case where the maximum thrust
subarc is one of impulsive boosting (umax. = 00). Since
M>0, it follows from (3.7) that %s<:0 along the maximum thrust
subarc. The sequence of possible subarcs can be obtained with
the aid of the sequence diagram illustrated in Figure 3.1
which is a graphical represenfation of the five possible
states associated with the signs of ku’ ku and condition
f, = 0. BEight gates, (1a), (1b) to (4a), (4b) are provided
to indicate the allowable change in state. The position of
gates (la), (1b) to (3a), (3b) for all problems of the type
discusséd in Section 2.1 are determined by the use of Table
2.1. From (2.26) and (2.42), it is seen that regions 1 '
and II in the sequence diagram are regions of maximum
thrust, regions I1I.and IV:are regions.of zero thrust,

and -region V is a region of variable thrust where
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éu)O

iu-O

ku¢0

ku €0 k_u=0

la
fs(to)(Q ‘\

Ut

fs(to)=0

B

FINAL POINT

@

4a

fs(to)) 0

@

U=0, fs)0

U=UMSX, fs €0

FPigure 3.1 Sequence Diagram for the Sounding Rocket with

Impulsive Boosting
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u is given by (3.10). The positions of gates (4a) and (4b) are
not given by Table 2.1 and must be determined by further analysis
of each particular problem. Consider, for example, the case of
the sounding rocket. To determine the position of gate (4b)
the sign of Eu must be determined at theiinstant"Where?%u»z'O.
Differentiating (3.6) with respect to time and evaluating Qu

when k_ = O and u = 0 yields

ko= - 22 £ | (3.11)

From (3.7) it is seen that during coasting (u = 0)
f, = N>0 (3.12)

In Appendix B it is shown that K3:>O glong the interior of the
optimal trajectory. It then follows from (3.12) and (3.11)

that Ed<20 when ku = 0 and gate (4b) must thereforé open down
as shown in Figure 3.1. The determination of the position of

gate (4a) proceeds in a similar manner. Differentiating (3.6)

with respect to time and using u = W ax yields
AV 2v £ D
ko e D e ¥y _ s
K, =2 Elmax‘m(4+v+v) N+mv] (3.13)
m-v e e

It follows from (3.13) and h3:>0 that during maximum thrust,

the condition for iéu>o is

f D
N - = .
P Mg
umax.> D 'f’2ve Y (%.14)
D (44221

e

In this example, it is assumed that umag*-c<>, and hence (3.14)
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is satisfied. Gate (4a) must therefore be directed up as shown.

The sequence diagram for the sounding rocket is now
complete and the optimal sequence for any set of terminal con-
straints can be determined. It is proven in Appendix B that for
the end constraints (3.1) the final subarc must be a coasting
subarc. Also, from (3,7), it is seen that

£

s =0 (3.15)

AllV

for the cases of a coasting, a variable thrust, and a maximum
thrust subarc respectively. Combining this information with
the sequence diagram permits the evaluation of an acceptable
sequence of subarcs. Several possibilities are illustrated in
Figure 3.1. The type of initial subarc is determined from the
initial value of fs as shown. This initial subarc is maintained
until either fS vanishes or until all fuel is consumed. The
vanishing of fs indicates a switch to the variable-thrust sub-
arc where u is programmed according to (3.10), and the instant
of burn-out indicates a switch to the final coasting subarc,
It is seen, therefore, that (3.4) and (3.10) completely define
the optimal control as a function of state. Also, for any
system satisfying condition (3.14), there can be at most three
gubarcs in the optimal trajectory.

The case of umaxf:CXD is of particular interest.
If (3.14) is not satisfied at the instant when ku vanishes,
then it follows from (3013) that gate (4a) must be changed to
the down position as illustrated in the sequence diagram shown

in Figure 3.2. Assuming that this be the case, it is seen

that a closed loop in the sequence diagram can exist whose



ku¢ 0 ku=0 ' ku) 0

® G

la

[
. fs(to)<¢ 0 \
kul0 so) -

ku=0
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fs(to))0
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@ @

U=0 . fs)0 U=U MAX

Figure 3.2 Sequence Diagram for the Sounding Rocket with
Finite Maximum Thrust
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sequence is ...., U = U .o..0(case

max.’ O<u<umax.’ u=1u

max.,’
Ia). This closed loop presents no analytical difficulty as
switching to a maximum thrust subarc is defined when u given by

(3.10) equals u

max. ’ and switching back to a variable thrust

subarc occurs when fs vanishes. However, difficulty does arise
if the initial subarc is a coasting subarc. For this case, the
first switching may be to a maximum thrust subarc (case IFIIb)
or to a variable thrustvsubarc (case IIIa), depending on the
value of ku when ku = 0. To avoid the use of ku’ which con-
tains unknown Lagrange multipliers, the first switching instant
ts, where ku vanishes, can be introduced as an unknown parameter..
Let Té be the instant where fS vanishes which determines the
switching instant to a variable thrust subarc.  If ts<;1g the
control switches toﬁaimaximumIthrustksubarcxgnd<if ts = Ty the
control switches to a variable thfust subarc. To determine ts,
the performance function P can be considered to be a function of
ts and a search over the interval 0 = ts = T, can be performed

to determine the minimum of P. A numerical example of this

type of search is given in [12] .
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4. THE MAXIMUM RANGE PROBLEM

4.1 Derivation of Optimal Control Laws for the Case L = O,

B =0
Consider the problem of maximizing the range for a

given amount of fuel when the terminal constraints are

tg = 0 6(0) = &,
x(0) =0 m(0) = m, (4.1)
y(0) =0 y(t,) = 0
v(0) = v, m(ty) = mg

where the control constraints B = O, L = O are applied, and
where the performance function

P = -x, (4.2)

is to be minimized. Appendix C gives the analysis aséociated
with this problem. It is assumed that the initial conditions
for the rocket are obtained by means of a launching platform.
Also, it is assumed that Uoox. =CO is a good approximation to
the maximum thrust subarc. These assumptions do not impose
any restrictions on the control laws derived for the variable
thrust subarc. However, they do simplify the numerical compu-
tation and attentien can thus be focused on the derivation of
the control laws and their application in determining optimal
trajectories.

The first step, in obtaining these control laws, is
to evaluate the transversality condition (C-14) according to
(4.1) and (4.2) which yields

A 0 A

3f = 1f = '
(4.3)
7\ 0 C = 0 Co

4f
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Taking ¢ = O in the first integral (C-13) and substi-
tuting into (C-12) yields

. v A E 2\

k, = E% (- _%_g - —;é g cos © + uku) (4.4)
where

f, = mg sin 6 - D(l+v/ve) (4.5)

Substituting (4.3) into (C-16) it is seen‘that b £ 0.
As (C-15) is a 4 x 5 matrix where m = 4, n = 5, the condition
(2.47) is violated. Hence, a feedback control law, in terms of
state variables only, cannot be obtained directly and a modified
approach must be adopted. During a variable thrust subarc,
equation (2.26) must be satisfied. Substituting (C—ll) into
(2,26)”yié1ds

A
x -3 5 o (4.6)

u m 5

Substituting (4.6) into (C-33) and equating Ku to zero gives

2N g cot 8 + AN
g = —E 2 - (4.7)
! |

where M and N are given by (C-34) and (0-35) respectively.

As AB 4 0 along a variable thrust subarc (see Appendix C),
division by XB is permissible. With the aid of (4.6), therefore,
it is possible to write (4.7) in the form

225ve g cot 6/m + N
u = T (4.8)

where:
A

Differentiating (4.9) with respect to time and using (4.8) and
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(C-10) yields

1<

‘% = (%‘ - u) (4.10)
e

which is valid for all values of xl. Equations (4.8) and (4.10)
give the optimal control law for this problem; As a result of
(4.10), an unknown parameter Xé is introduced which is the
initial value of 8 at the beginning of the variable thrust
subarc. One other unknown parameter exists, however, and that
is the instant of switching Yé to the variable thrust subarc.
This instant is bharacterized by the vanishing of the switching
function kuo However, using ku to define T; involves the use of
the unknown Lagrange multipliers. To avoid determining the
Lagrange multipliers, an alternate approach is adopted. The
unknown switching instant T; is replaced by an unknown switching
velocdty Vo Consequently, the unknown parameters for this
problem are Kg and Ve The proposed technique, for obtaining
the value of any unknown'parameter.ak, is to consider the per-
formance function as a function of thé‘parameters and then solve
the minimization problem ’

Miny (2] v (4.11)

by a direct search in parameter space.
Using (C-3) and a sequence diagram, it can be shown

that acceptable sequences for this problem are given by

(1) V< Vg s W = Wy, Ogu\<um'éX° , u=20
(” V92V , w=0 O<u<%mx, y u=0
(3) Vo = Vg s O<§'u<§:umax. , u=0
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In case (1), vo<vS and hence the initial subarc must be a maxi-

mum thrust subarc along which vy increases to Ve In case (2)
VO>VS and hence the initial subarc must be a coasting subarc
along which vy decreases to Vs; When Vo = Vg the thrust
SWitches to variable thrust until all the fuel is consumed.

As an illustrative numerical example, consider the
following data
35.0 slugs

B
o
It

me = 10.0 slugs

o
QO = 45
vy = 1000 ft/sec (4.12)
v, = 5500 ft/sec
-1
a = (22000 ft)
Ka _ 1074 slug/ft (see (B-4))

In this example, vy is a relatively small initial velocity and

hence the sequence associated with case (1) results. As

umax’:=c>c>is assumed, (C-1) to (C-5) can be integrated over
the maximum thrust subarc using (4.1) from v = Vo £0 Vv = vy to
yield

sto

yszo

GS = 90 (4.13)

m = moexp((vo-vs)/ve)

The integration along the variable thrust subarc is now per-

formed using (4.13) as initial values. The unknowns are v, and
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XS as m, can be obtained from vy through (4.13). The performance
function to be minimized is P = -Xf(vs’ Xs), The computation
was performed on an IBM 7040 digital computer using the following
algorithm:

1. Select a set of values (Vs’ Xs)°

2. Solve (4.13) to obtain m, .

3, With u and 8 given by (4.8) and (4.10), integrate
the system equations (C-1) to (C-5) and determine

xf(vs,xs)°

4, Repeat 1, 2, 3 and carry out a direct search in

parameter space (vs, Xs) for the maximum X,.

The values for the state variables at the switching

points along the optimal trajectory are shown in Table 4.1.

Table 4.1
Initial Point | End of Burnout Final Point
| Max. Thrust .

t(sec. ) 0 O+ 26.5% 288,11
x(ft,) 0 {1 0 90560 1470000

L (£4.) 0 0 74870 0
v(ft/sec.) 1000 3045 6670 4970

P (deg. ) 45 45 . 36.6 | -41.0
m(slug) 35 24,13 10.0 10.0

Figure 4.1 illustrates X, 28 a function of vy for the optimal
value of 58, and X, as a function of Xs for the optimal value
of v,. The graphs of u(t) and B(t) for the optimal trajectory

are shown in Figure_4,2.4
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4.2 Derivation of Optimal Control Law for the Case L = O

The zero lift.case where u and B8 are the control

variables is a two dimensional control problem. Appendix D
gives the analysis associated with this case. If P is inde-
pendent of time, the transversality condition (D-15) yields

¢ = 0. The class of problems for which ¢ = 0, ¢ £ 0, will
be discussed in this section as the maximum range problem is
a particular example. For this class of problems, it follows
that b £ O (see D-18). Furthermore, if the first row of
matrix A given by (D-16) is‘interchanged successively with
the second and then with thebthird row of A, the resulting

matrix can be triangularized yielding the matrix

[ 0 0 0 0
o sin 6 + D/m cot ©
0 1 - .- - gcot®d 0
v sin © 2
v
B- |0 O 1 - ot B 0
0 0 0 1 _ mv sin B
Ve
0 0 0 0 f4
L _
(4.14)

which has the same rank as A and where

fB A ng sin2(9+B) - D sin 0(1 + z_%gg_ﬁ) + D cos 6.
, e
.sin B cos B : (4.15)

For the case where fB £ 0, (2.47) is satisfied_(rank (4) = rank
(B) =5 =m). It then follows that the Lagrange multipliers
can be eliminated from (2.39), (2.40), and (2.44), yielding
equations for u and é in terms of state variables only.

Substituting (D-16) and (D-18) into (2.45) yields a set of
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linear non-homogeneous equations in A. This set of equations
can be used to express all lagrange multipliers in terms of
c, for the case that c £ 0. However, to obtain a control
law which is more generally applicable, and which includes the
special case cy = 0 for which b = 0, it is more convenient
to expfess all Lagrange multipliers in terms‘of AB, Conse-
quently, a set of equations of the form (2.49) is obtained.
The triangularized form given by (4.14) is useful in obtaining
these relationships. Substituting (D-19), (D-25) and the

relations (2.49) into (2.36), (2.39), and (2.40) yields

’ 1 . - .
B = — 2mg ‘cos © - cot B <ﬁ(l + %; cos B) - mg sin é)

- veu sin ?} | (4'16)

Comparing (2.30) and (D-12) yields

sin © sin B - cos © cos B
-cos B sin 6 - sin B cos ©
2D

2D D L& |
== cos B + v, + 2 sin B cos 6| (4,17)

By
I
5|

- g§ cos © cos B + —25 sin B

v mv
0
The matrices
=Y .
akl o o o o o ° L) o akl
axl ax5
K = ' (4.18)
8k5 dk
Xm [ L] . L] o . X5
L _
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and

Q)‘

k|

B

@

ak5
3B

— -

are now evaluated where k .0y K. are the elements of XK.

1’ 5
Substituting (4.17), (4.18), (4.19), and (D-19) into (2.44),
eliminating the Lagrange multipliers by use of (2.49), and per-

forming a series of algebraic manipulations yields

u = N/M (4.20)
where
M 2D |2v(cos B+ =)+ v_(2 + sin®B) + XE] (4.21)
- cos B e Ve *
D(1 + L2928 8) _ g sin o 2
v A _ cos B ’ e _ Ing cos ©
- sin 8 cos B
+ mD(1 + %— cos B) [%(2 cos © sin B + 3 sin 9)
e .
, 2Y° sin © D D, (4 - av®) cos © s
cos B m cos B + mv, t 18 cos sin B
. 2
+ gg;%égg—ﬁ (% cos © sin B - sin ©) (4.,22)
e

Equations (4.16) and (4.20) are the desired control laws which
are valid for all problems where ¢ = O.
An illustrative numerical example of (u, B) control

will now be presented. To allow a comparison with the case
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where B was constrained to be zero, the maximum range problem
of Section 4.1 will be solved, with the addition of B control.
For the maximum thrusf subarc, equations (D-34), (D-37), and
(D-40) apply for Vo<V, (The subscript s denotes the
values of the variables ég\the instant Té which terminates the
maximum thrust subarc.) The unknown parameters in this problem
are BO and Vo Note that although there has been an increase
in control dimension, there has been no increase in the number
of unknown parameters. The computation was carried out on an
IBM 7040 digital computer using an algorithm similar to that
in Section 4.1.

The values for the state variables at the switching

points along the optimal trajectory are given in Table 4.2,

Table 4,2

Initial Point | End of Burﬁbut Final Péint'

Mex. Thrust

t(sec. ) 0 ot 30,32 331.9
x(ft.) 0 0 80533 1545400
y(£t.) 0 0 83440 0
v(ft./sec.) 1000 2357.4 6727.0 5252
G(dego) 45 45 4301 -4'6095
m(slug) 35 27.29 10.0 10.0

Figure 4.3 illustrates X, 88 a function of Vg for the optimal
value of Bo, and Xp a8 a function of ﬁo for the optimal value
of Vo The optimal controls resulting from these parameters
are shown’in Figure 4.4. TFor purposes of comparison, a bal-
listic trajectory from the same initial conditions is presented

for which all the fuel is consumed during the boosting subarc.
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The graphs of the optimal trajectories for the u control,

(u, B) control, and the ballistic trajectory are shown in

Figure 4.5. The final ranges for these three cases are:

1. u=0, B =0 (ballistiq), Xy = 1,050,000 f%.
2. B=20 y Xp = 1,470,000 ft.
3. B £0 » Xp = 1,545,400 ft.

(4.23)
The sequence. boundary, shown in Figure 4.3 and.
subsequent figures, represents the locus of all points at which

u = 0 at burnout. For points.on the other.side’ of ‘this-boundary,

the variable thrust goes to zero before all the fuel is con-

sumed, and a sequence is required of the form u = Upax. ?

9 O\<U.\<U. . u:o’ 6 0 00

Os;u<;umax_, u=0,u=u, max.

ax.
However, as a true extremum was obtained for the acceptable

RQRY!

max.? & = 0, other possible sequences

equ e u = u
sequenc max. ’

"were not investigated.

4.3 The Maximum Range Problem with Control of Firing Angle
Consider the maximum range problem of Section (4.1)

when the terminal constraints are

»tO =0 m(0) = 50.0 siug
X(O) = 0 y(tf) =0

y(0) =0 m(t;) = 10.0 slug | (4.24)
v(0) = >0

In this problem, the firing angle, 6(0) = 8y, is free and hence,
the transversality condition (C-14) yields
A (0) = hyg =0 (4.25)
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The initial velocity is assumed to be zero. However, to keep

é finite during the boosting stage, the initial velocity is
taken equal to a small non-zero value €. For this case, as
e—»0, the first subarc must be a maximum thrust subarc. It
cannot be a coasting subarc for the system would remain at rest
for v(0) = 0. TFor a variable thfust subarc, k (see C-11)

and éu (see (4.4)) are both zero. Therefore, if the conditions
(4.24), (4.4), and (4.5) are evaluated at t = O, and if con-
dition (4.25) is used, it is seen that ku(o) = 0 only if x3(o)
= 0. However, it is seen in Appendix C. that h3 4 0 along a
variable thrust subarc. Consequently, the only remaining
possibility is that the first subarc be a maximum thrust
subérc, It theﬁ follows from (4.25) and (C-9) that at the

end of the maximum thrust subarc for umai—#»c<>

K4S'¥ K4O =0 (4.26)

Substituting (4.26) into (4.4) and evaluating k, at the start
of the variable thrust subarc yields

. v A, T

k () = - 2228 - 0 (4.27)

u s -

n “v
s 's :

Hence, as Mg 4 0 along a variable thrust subarc (see Appendix C),
7% is determined as the instant f_ vanishes, which from (4.5)

yields
m.g sin 8 - Ds(l+vs/ve) =0 (4.28)

By use of a sequence diagram, an acceptable sequence is found

to be



u =

u 4
max.

O"<u‘<umax.’

0,

o<t<2;
TS <Y
7:5< t\<tf

43.

where 7; is defined by (4.28) and'Z% is the instant of burnout.

The control laws for the problem are still given by

(4.8) and (4.10).

Purthermore, it is interesting to note that

the free firing angle does not result in an increase in the

number of unknown parameters as Xs and Gs can be taken as the

two unknown parameters with 90, Vo and m being obtained from

(4.28) and (4.13).

The performance function to be minimized is

then P = -xf(Xg, GS) and an algorithm similar to Section (4.1)

is used.

The resulting values for the state variables along

the optimal trajectory are shown in Table 4.3.

Table 4.3
Initial Point | End of Burnout Final Point
Max. Thrust -

t(sec.) 0 o* 30,035 378.8
< (£, ) 0 0 86000.,0 2014212.0
v (£t.) 0 0 92000.,0.. 0
v(ft./sec.) ) 2410 7731.0 5995.6
o(deg.) 53,2 53.2 43.9 -47.1
m(slug) 50.0 32,26 10.0 10.0

The variation of xf in the

neighbourhood of the optimum is

shown in Figure 4.6 for x, as a function of @ with,xé optimum

and in Figure 4.7 for X, as a function of Xs with GS optimum.

The resulting optimal control, u(t), is shown in Figure 4.8.
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It is interesting to note that the optimal firing angle for
this case is about 530; whereas, the optimal firing angle of a
ballistic missile in a vacuum is 45°.

This same problem was also studied with the addition
of thrust angle control similar to the problem in Section 4.2,
However, it was found that with the freedom to select an opti-
mal firing angle, the B control was extremely small and that the
resﬁlting increase in range was insignificant.

(1) =0, x 2,014,272 f+.

f =
(2) B £o0, X, = 2,014,425 f%.

The insignificant increase in range indicates that, if the

firing angle is free, it is impractical to employ B control to
maximize range. However, if the firing angle is fixed, a signi-
ficant improvement in range can result through B control.
Furthermore, the use of thrust angle control could be extremely
important for optimal trajectories requiring some maneuverability
of the rocket during flight.

4.4 The Fixed Fnd Point Problem

An interesting variation of the type of problem handled
in Section 4.3 is that of minimizing the fuel to deliver a
rocket between two fixed points in space. For this example it
is agssumed that the initial mass is given“éa@ that the final
mass is to be maximized. As a result,,there}exists an additional
unknown parameter’f% which is the instané'gf burnout. However,
the addition of T% does not result in a three dimensional search
for the extremum of the performance function as one of the

unknown parameters must be used to insure that the desired
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final conditions are met. To illustrate this example, consider

the following data:

t, =0 m(0) = 50 slugs
X(O) =0 X(tf) = 2,000,000 ft.
y(0) = 0 y(ts) =0 (4.29)
V(O)v: €>O

The performance function to be maximized is P =mf(Xé, OS) and
the parameter T is used to insure that (4.29) is satisfied
for each set of parameteré (Xs, GS). The computational pro-
cedure is otherwise the same as Section 4.3.

The resulting state variables at the switching points
The

along the optimal trajectory are given in Table 4.4.

variation of m, in the neighbourhood of the optimum is shown in

f
Table 4.4

Initial | End of Burnout | Final Point

Point Max. Thrust
t(sec.) 0 ot 29.99 376.3
% (ft.) 0 0 85889 2000000
y(£t.) 0 0 91630 0
v(ft./sec.) e¥ 0 2408.0 7703.0 5977.0
o(deg.) 53,3 53,3 43.3 -46.8
m(slug) 50.0 32.27 10.05 10.05

Figure 4.9 for me as a function of GS with Xé optimum, and for

m

is similar in form to that of Section 4.3.

4,5 The Direct Search by the Modified Relaxation Method

r @8 2 function of‘Xé with GS optimum. The optimal trajectory

The direct search employed in these examples deals
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with the problem of finding the extremum of a function

P = P(ay) (4.30)

over a set of parameters'ak for which the functional relation-
ship (4.30) is not known explicitly. In this part of the
thesis, the search is accomplished through the use of a modi-
fied relaxation method.

In the standard relakation technique, one parameter
at a time is varied while the remaining parameters are held
fixed. The optimal value of the parameter being varied is
determined by a one dimensional search procedure as that value
which maximizes P. The parameter then maintains this optimal
value while the next parameter in the sequence is varied and
so on, The technique is iterative and the cycle is repeated
until 211 the parameters converge to an optimal value. The
one dimensional search procedure used at each step in the itera-
tion is based on finding a parabolic:approximation to the curve
P(w,) in the vicinity of the optimum (see Figure 4.10). From
an initial guess ai, the parameter o is varied in steps of
Aak in the direction of increasing P until a value of o is

found which yields a larger value of P than for points on either

side of oy o Assume that the following inequalities hold

Pla 1)< P(a™) >P(a ) (4.31)

k

As shown in Appendix E, the three points with coordinates

n+l)
n=-1’ "k k

determine a parabolic approximation to the cufve of the form

(P x can be used to

« n—l)’ (Pn, akn), and (P

n+l?

2 .
P =a + bak + ca (4.32)
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Figure 4.10 One Dimensional Search Employing a Parabolic
Approximation
The optimal value of o is taken to be the value of o that
maximizes (4.3%2). It is shown in Appendix E that this value
is
%(opt) = %k * A:k ((in'—-l - l;%*li T ) (4.33)
p n-1 n n+l :

For most problems, this standard relaxation approach
is a convenient means of accompiishing the direct search in
parameter space. Howevef, the speed of convergence is depen-
dent on the nature of the surface‘P(ak) and often the conver-
gence slows down long before the true optimum is reached. A
good example of this difficulty is illustrated by the search

over the (Bo, vs) plane for the maximum range problem of
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Section 4.2. It is seen in Figure 4.11 that from an initial

guess (BO, vs) = (0.3, .2400), the standard relaxation technique
appears to converge to a solution in the vicinity of (0,24 y
2400) . However, the true extremum is at (0.1908, 2357.4).
The cause for this "apparent" convergence is that the contours
of P(Bo, vs) in the (BO, Vs) plane are very nearly ellipses
with a common major axis tilted at approximately 45° to the
coordinate axis. As the extremum is approached, the eccentri-
city of the ellipses becomes increasingly smaller which causes
the solution obtained by the relaxation method to oscillate
very rapidly, thus giving the impression of convergence.
However, it can be observed that if the major axis were parallel
to one of the coordinate axes, the search technique would be
fairly independent of the eccentricity. Indeed, if the con-
tours were true ellipses with a major axis parallel to one of
the coordinate axes, then one step convergence would result.
To benefit from this property, a modified relaxation method
was developed. The technique is based on rotating the coordi-
nate axes such that the search is along a new coordinate which
is perallel to the direction of the major axis at that point.
As this "major axis" 1s the projection of a ridge on the
P(ak) surface onto thé ak’hyperplane, it is generally not a
straight line and hence the directidon of the new coordinate
axls has to be recomputed several times during the search
procedure. - In essence, the procedure is as follows:

(1) Carry out one complete cycle of the standard

relaxation technique to establish a point<<a£>l

on the ridge of the P(ak) surface.
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(2) Starting from <§£>}, carry out one more complete
cycle of the standard relaxation method to establish

another point <Fk>? on this ridge.

(3) Using <gk>} and <§k>? determine the direction of
_this ridge. Carry out a one dimensional search

along this direction until an extremum of P is found

at <§ﬁ>opt°

(4) Repeat steps (1), (2), and (3) from«<ak;%pt

until the solution converges.

(5) Investigate the surface P(ak) in the neighbour-

hood of the solution found by the above procedure to

prove that a true extremum has been obtained.

The above technique is called the modified relaxa-
tion method and the resulting improved convergence is illus-—
trated in Figure 4.12. It can be observed that since the search
is carried out in a finite dimensional parameter space, it is
possible to prove whether or not the solution is a true extre-
mum (see Figure 4.11 and 4.12). This fact is further illus-
trated by Figure 4.13 which is the contour map resulting from
step (5) of the above method. Note that such a contour map
cannot be obtained when the search is carried out in function
space since a function can only be exactly represented in a

space of infinite dimensions.
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5. PROBLEMS FOR WHICH cq = 0

5.1 Introduction

In Chapter 4, the problem of maximum range was studied
using combinations of thrust and thrust-angle controls. In
this chapter the three dimensional control problem is intro-
duced which consists of thrust, thrust-angle, and 1ift control.
The analysis associated with this case is given in Appendix A.
Problems consisting of one, two, and three dimensional control
are studied for which the terminal conditions are independent
of range and, hence, the transversality conditions yield
kl = cl = 0. The maximum altitude problem, for the two dimen-
sional control of thrust and thrust-angle, is studied in detail
to show that the assumption Woox, = oo is valid for most cases,
and to illustrate that optimal solutions obtained by the pro-
posed techniques do indéed satisfy all the necessary conditions
of the calculus of variations. Subsequently, a problem of
maximizing a performance function at burnout is investigated
using one, two, and three dimensional control. It is shown
that this problem is equivalent to the maximum altitude pro-
blem if burn-out occurs outside the earth's atmosphere and
' that, in all cases, the search in multi-dimensional function
space is reduced to a search over one time-invariant parameter.

5.2 The Three Dimensional Control Problem

The -development of the optimal control laws for the
three dimensional control problem proceeds in a similar manner
to that of the two dimensional control case in Section 4.2.

Consider the case where the final time is unspecified. The
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transversality condition (A.21) yields

¢ =0 o (5.1)
Using (A.16) and (A.17) in (A.22), it is seen that for a non-

trivial soelution for K3 and A4

tan B = Dy (5.2)

Due to (5.2), the first two rows of matrix A are not indepen-
dent and hence the first row of A may be eliminated. Rearrénging
the remaining rows of (A.23), the matrix A can be triangularized

to yield the matrix

1 O 0 0 0
_£ _ D L_ _ g cos®
0 1 v mv sin @) (mv v )/V sin © 0
B= |0 O 1 - cot B/v 0 .
0 0 0 1 ' _ v sin B
_9 0 0 0 . fL
(5.3)

where B has the same rank as A and where‘

f; = mg sin®(o + B) - D sin © (sin2B - cos2B + vV cos B/ve)

+ D cos © sin B cos B - v DV sin © coszﬁ - L sing-

(2 sin © cos B + sin B cos 6 - v sin O/ve)
(5.4)
For the case fg 40 and ¢ £ 0, (A.24) provides b £ 0.
It then follows from (5.3) that (2.47) is satisfied (rank,
(A) = rank (B) = 5 = m) and hence, the Lagrange multipliers can
be eliminated from (2.37), (2.38), and (2.44) yielding equations
for u and i ih terms of state variables only. Equation (5.2)

is used to define B. Substituting (A.23) and (A.24) into
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(2.45) yields a set of linear, non-homogeneous equations in A.

This set of equations can be used to express all the Lagrange
multipliers in terms of cl for the case cq £ 0. However, to
obtain a solution which is valid for Cq = O the Lagrange
multipliers are expressed in terms of x3 to obtain a set of
equations of the form (2.49). Consequently, the optimal con-
trol laws derived from this set of equations will be valid for

all c Following the proceduré of Section (4.2), the desired

ll
optimal control laws obtained are

. VU [ o D
L=X4+7Y/sin B - mg {_SIn g + DVL cos q} (5.5)
LL Lv cos™ B LL

B = tan™l(D;) | (5.6)

% = N/M (5.7)

where

X = = [5(————-2 €08 O, .sin © tan p) + 2—can B

DLL v '“cos2 8 nv
_p Zlen ?] + 1 [%_ v _ 2 )
v m DLL mv v, COS B cosZB
-D._vesin 6 + D._(g sin 0 - D)
‘ Ly Lv'& m
D
_ cos B |8 44 D __D v
T-= "D vy Sin © + mv mv_ cos B m
LL
N = —=—— |D. 00528 YP| + v sin 6 |v D__ cos B
- L2 LL ' vy
sin~ B
_ 81n .
- Dy(cos B - cos - v/v {J s1n [& Y D g,
. 2z Licos B _ 2 g sin o
cos B + P(V cos © + m( v, _v)), + P(V sin ©
D_cos B
‘cos B + Dcos 8 _ ¥ ) + & (sin © + 2 cos ©°

mv . 2l v
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. _g.___z_ tan By _ - + D,
tan B) +3 (== 2L =—=) - (g sin 6 + )

\ Ve vV, COS B v'cos B Ve

. | -
,[_}_3_,+D__LSIDE +D(ﬂn__ﬁ+17._) +VDVV COS'B:|

, o
+ (%; - 5_983 Q)%é(gisin 6 sin B + cos 9(§%§‘§§

' . 2
- cos B)) + D sin B -'L—§£E——§J + X(—ig—ﬁ +vD I

cos.B COS B

«cos B) + Y/coszﬂ - Dy v sin B cos ©

- . 2
u ‘2[_ 5 gin 2 8 3ve sin”™ B ]_ v Dv,
T om

cos B f v - ;; m

v_cos B

1% cos B+ z (3 sinf ?J [ﬁ_ﬁ;&_ﬁ_

- 2 sin B + %ﬂ (2 Sin B cos B - Sin3 B/cos B{]

va Ve sin B
- vy XX cos? 8 + D ( 5— + D

e m 1L v cos” B

Iv cos B)"

‘(§;Q§§— + v D cos B)

cos” B
1 sin2 B8
E = mg sin (0 + B)»+ D(cos B - cos B~ v/ve)
_ +(¥_sin B _ <
v D cos B+ L(ve cos B 2 sin B)
P 2 . Ly
P-mg sin 6 + D/cos® B - D_ cos B/¥_ =-v D_ - =
v e v v,
,sinS ,
cos® B

5.3 The Class of Problems for which ¢, = 0

For all rocket problems considered in this thesis, it



61.
is seen that the final transversality condition yields Kl =

cq = O whenever the final range is unspecified. Two examples

of this type of problem are considered in this chapter. The
first is that of maximizing ‘the final altitude . for:a given amount
of fuel. The second, which is an approiimation to the first and
which eliminates the final coasting subarc, is that of maxi-~
mizing the function

. 2
G = : (v_sin 8)
(v + T

at burnout. This function is derived from the energy equation

Eyb = m gy, + -l-mb(vb sin Gb)2 (5.9)

by dividing by the constant m, g. (The subscript b denotes
evaluation at the burnout instant T%.) The kinetic energy

term in (5.9) is associated with the y component of velocity.
Assuming that burnout occurs outside the earth's atmosphere,

all aerodynamical forces are zero and the conservation of energy
must apply. Consequently, (5.8) is constant during the coasting
subarc and maximizing (5.8) at burnout is equivalent to maxi-
mizing the final altitude at (v sin G)JG _ t£ = 0. Therefore,
whenever burnout occurs at a relatively high'altitude (say above
75,000 ft. for this case), the problem of maximizing G,: at
burnout is a goqd approximation to the maximum altitude problem. .
Both of these problems have cq = O and the resulting analysis

for the various cases is given in the following sections.

5.3.1 The Case of Thrust Control Only

For the thrust control case of Section (4.1)

X: xl/x5 (5.10)
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However, as Ay = ¢y = 0, (5.10) yields ¥ = O and hence by

1
equation (4.8)
u=N/M (5.11)

where M and N are given by (C-34) and (C-35) respectively. It

the optimal control law reduces %o

is seen, therefore, that for cl‘= O the optimal control law
(5.11) is a function of state variables only. It can also be
shown that for the special case 6(0) = 90°, (5.11) reduces to

the optimal control law for the sounding rocket [;% .

5.3.2 The Case of Thrust and Thrust 4ngle Control

The optimal control laws developed in Section (4.2)
are valid for ¢ = 0 and all values of ci.' However, note that
(D-18) demands that b = O when ¢ = ¢, = 0. For this case,
condition (2.48) requires that rank (A) = rank (B) = 4 and

hence from (4.14) it is seen that

fB =0 (5.12)

is required everywhere along the variable thrust subarc where
f[3 is defined in (4.15). This function fB is analdgous to the
switching function‘fs for the sounding rocket case, (see (3.4)).

0

Also note, that for the special case 6(0) = 907, fB reduces

to fs-

5.%3.3 The Case of Thrust, Thrust-Angle, and Lift Controls

The optimal control laws for this problem are given

by (5.5), (5.6) and (5.7). However, for the case ¢ = c; =0,

(A.24) gives b = O and condition (2.48) demands that rank
(4) = rank (B) = 4. From the definition of matrix B in equation
(5.3), it is seen that condition (2.48) is satisfied if every-

where along the variable thrust subarc
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;=0 (5.13)
where fL is defined in (5.4). The function fL is the switching
function for the three dimensional control problem. Note that

1 (5.4), reduces to f
case L = 0 and 6(0) = 90°,

for the case L = 0, f (4.15), and for the

B’ ,
f; reduces to f_, (3.4). The function
fL is, therefore, the general switching function from which the

. other switching functions can be derived.

5.4 The Maximum Altitude Problem for the Case of Thrust and
Thrust-Angle Control '

Consider the two dimensional control problem with

terminal constraints

t, =0
x(0) =0
y(0) =0 -
v(0) = 1000 ft./sec.
6(0) = 70° | 8(ty) =0
m(0) = 41.69 slugs m(tf) = 10 slugs (5.14)

The performance function to be minimized is

P =-y(ty) | (5.15)

Substituting (5.14) and (5.15) into the transversality equation
(D-15) yields
Ay = C =0

1 1

c =0
(5.16)

x2(tf) -1

AB(tf) =
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As ¢ = c = 0, the optimal control laws (4.16) and
(4.20) apply, and condition (5.12) must be satisfied everywhere
along the singular subarc. Using the assumption that Uoox.
equations (D-34), (D-37), and (D-40) completely define the

:OO,

system during the maximum thrust subarc. Hence the problem is
solved up to the unknown parameter B(0) = B+ It is desired,
however, to test the accuracy of the B contrel generated by
(D-37) against the exact solutien for the case of u. . Tfinite.
To obtain fhe exact solution it is necessary to generate the
Lagrange multipliers during the maximum thrust subarc and to

programme B according to (D-31) which is
. A ‘
B = tan™ (—5) (5.17)
3 .

Let Té be the instant of switching to the variable thrust sub-
arc and let x_ = x(?é) where X is any variable which depends on

time. Then using the matrix B in (4.14) and the fact that

b = fB'= 0, it is seen that at 1;
[ﬁz
Mg = |3 (g + D/m 8in © + g cot © tan B) ¢ =T,
(5.18)
and
Ax V
e
Ae. = |—2—0 (5.19)
5s [m cos,BJ
t = Té ,

For this problem it is convenient to scale the Lagrange multi-
pliers such that hB(O) é KBO = 1. After fhe optimal solution is
obtained, the Lagrange multipliers can be rescaled to yield the

classical solution x2(tf) = 1. The computing algorithms for the
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approximate and exact solutions are given in the following sec-

tions.

5.4.1 Approximate Solution for Unax Finite

(1) For a given value u = w ... end the initial
conditions (5.14), select a value for B(0) = B, and
using (D-37) to define B, integrate (D-1) to (D-5)

from t+ = 0 until f_, vanishes which defines’té.

B
(2) Use (4.16) and (4.20) to define B and u res-

pectively, and continue integrating until m(T%)': me.

(3) Let u = B = 0, and continue integrating until
@(tf) = O which defines t.. Record y(tf).
(4) Return to (1) and perform a one dimensional search

over B, for the maximum y(tf).

5.4.,2 The Exact Solution for Uy ox Finite

(1) TFor each value of Uy » use the value of B_

found by the approximate technique as the initial esti-
mate. With KBO = 1, select values for KZO and X50°
Using these values, solve (5.17) for Mo+ Integrate
(D-1) to (D-10) from (5.14) until fq vanishes which
defines T%.

(2) 1In general, kz(T;) and’AB(Yé) will not satisfy
(5.18) and (5.19) respeéctively. Return to (1) and

select as an improved set of values

xzo(new) = Kgo(old) + Npg = Ké(?é)

KSO(new) = ABO(old) ¥ hgg - KB(T;),
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where A, and Ay are found from (5.18) and (5.19),

ahd;x2(2;) and XS(Z;) are the actual values obtained.
Repeat (1) and (2) until (5.18) and (5.19) are satis-
fied. |

(3) Use (4.6) and (4.20) to generate é and ﬁ respec—

tively, and continue integrating until m(?%) = M.

(4) Set u=28-= 0 and continue until G(tf) = O which

defines tf.

(5) -Return to (1) and perform a one dimensional search
over Bo‘for the maximum y(tf) starting with the values

of X2O and KSO found by the previous iteration.

(6) Rescale the Lagrange multipliers such that
xz(tf) = 1.

5.4.3 Comparison of Exact and Agproximate Solutions

Table 5-1-illustfates the exact and approximate valﬁeé
of the variables at the end of the maximum thrust subarc for
W .. raenging from 2.0 slugs/sec. to infinity. It is seen that
thevapproximate solution for B given by (D—37) is'accurate to
within one percent and that the difference in final range is

insignificant for all values of u greater than 10 slugs/sec.

max.
It can be concluded, therefore, that the use of (D-37) to pro-
gramme B during the maximum thrust subarc is justified for all
medium and high thrust rocket engines.

5.5 Testing the Necessary Conditions of the Calculus of
Variations '

It was previeusly shown that the calculus of varia-

tions could be used to ebtain: v(a) analytical forms for the



Table 5.1

Exact

max. Approx. Ts Xs I Vs 94 Dy Bs Ve
(Slug/Sec) |% Error | (Sec) (feet) (feet) ft/sec) |(rad.) |(slug)|(rad.) (feet)
| E - .
Sl ? 0 0 0 2621,%2 [1.445%|30.82 |0.1339 |1026330
(1] :
c B | 11x1077 [3.6%1072 0.018¢ 2621.28 [1.4453|30.82 |0.1339 |1026330
10 A .11x1077 [3.6x10 0.0189 2621.28 [1.445%|30.82 |0.1339 |{1026330
e 0 0 0 0o 0 0 0
s “-E'—~‘;11x10:§ 3.6xlo:§ 0.188 | 2621.28 [1.4453|30.82 |0.1339 |1026330
10 A .11x107" |3.6x10 0.188 | 2621.28 [1.4453%|30.82 [0.1339 {1026330
L %e o 0 0 o o 0 0 0
i ~-E- - {.11x10_ .36 1.88 | 2621.38 [1.4453130.82 |0.13389|1026330
10 ‘A .11x10 .36 1.88 | 2621.3%8 [1.4453{30.82 |0.13389|1026330
e 0 0 0 o [ 0 0 0
5 ~B---{.11x1077] - -3.6 - 18.81 | 2622.0 [1.4454|30.815(0.13385|1026330
10 A .11x10 3.6 18.81 | 2622.0 [L.4454|30.815(0.13385|1026330
%e 0 0 0 0 P 10 0 0
RCE R RN A 1 36.68 1 -189.5 | 2628.44 1.4458|30.756(0.133381026328
10 A 11 36.67 | 189.3 2628.50 %.4460 30.775|0.13355|1026328
%e 0 0.027 0.100 0.0060.004 | 0.003{0.13 0
b B {22 - ) -73.074 |- 38T | 2635.78 1.4462]30.69 |0.13287|1026322
50 ) .22 73.71 381.7 26%6.00 [L.4460|30.69 [0.133%20|1026320
e 0 0.04 0 0.01 [0.012 | © 0.28 0.0002
ceeeee b Be - {SELEST -} 38648 - |-2040. - | 2699.09 [1.4498}30.12 |0.12857|1026320
10 A 1.157 386.1 20.40 | 2699.20 [1.451 |30.12 |0.12999{1026319
e 0o 0.12 | -0 |~ 0.0040.06 0 1.09 0.0001
o - B---|-8:05 | 2647.0 - |16230. 3301.74 {L.475 |25.585[0:09886(|1026317
2 A 8.05 2599.0 |16250. 3301.0 [L.481 |25.580(0.1602 |1026315
- %e | O 1.8 0.125 0.0220.38 | 0.02 [7.3 0.0002

L9



68.
optimal control laws, (b) the correcttsequences of subarcs,
(c) switching functions of state-variables only, and (d) infor-
mation about the initial values of the state variables. In
most cases, once thiswinfbrmation was obtained, the adjoint sys-
tem could be completély disregarded and the optimal solutien
could be found by a search in the parameter space of initial
conditions. It is nOWJdesired to_show that the solution ob-
tained in this manner iS'a true extremal of the calculus of
variations as manifested-byvthe fact that along this trajectory
all the necessary cgnditioﬁé are satisfied. Using the two
dimensienal control problem of the previous sections as an
- example, these necessary conditions are

(1) frqm;(ZEQ)hdddifD%13)~

_ v A, cos B i
KB = Eg (K3 sin B - —4—;———f) =0, for u £ 0

(2) from the Legendre-Clebsch conditions (2.26) and
(p-11).

<

u v

A, sin B o
K, = 2 (A5 cos pl+ T4 T 7 2

for u =

u b4
max.

Og(u<:umaxa, u = O respectively.

(3) from the transversality condition (5.16)

>\1=Cl=0
:Az(tf) =1
x3(tf) =0

c =0

(4) from (5.16) and the first integral (D-14)
N (tg) =0
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(5) from equations (5.12) and (5.4)

fB{=JO , for o<u<u

max.
(63 and, from the Erdmann-Weierstrass corner condi-
tions, all Lagrange multipliers, state variables and
thé constant of integration are continuous functions
of time.
Toftest these conditions, an approximate solution was
first obtained for U =50 slugs/sec, (see Section 5.4.1).
Using -this trajectory, equations (D-6) to (D-10) were integrated
and the correct initial conditions for the Légrange multipliers
were determined as iﬁ Section 5.4.2. The resulting search over
Bo is shown in Figure 5.1 and the associated optimal controls
for u and B are illustrated in Figure 5. 2.‘ It is seen from
Figure 5.5 and Figure 5.4 that all the necessary: condltlons (1)
to (6) are satisfied along this tragectory and, hence, it can ”
be concluded' that the solutions obtained by the proposed tech-

nique are true extremals of the calculus of variations.

5.6 The Problem of Maximizing the Function G, at Burnout

In this section, the problem of maximizing

is investigated using one, two, and three dimensional control.
For this problem the final time is the instant of burnout T%.
The terminal conditions are

70°

il

t, =0 | 0(0)

i

0 m(0)

x(0) . 41.69 slugs (5.20)

It
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Y(O) 0 . m(tf) = mf

v(0) = 1000 ft/sec.

and the performance function to be minimized is

. 2
Pz_B*ﬂﬂiﬁL@_]t . (5.21)

f

A value of Uy - 50 slugs/sec. is used during the maximum

ax.
thrust subarc. The computing algorithms for the three cases

studied are given in the following sections and the acceptable

sequence u = u oL uLg x.» W =0 is assumed.

u
max.’ ma

5.6.1 Computing Algorithm for Thrust Control Only

(1) Select a value for v, which represents the velo-

city at the switching instant 2% between maximum
thrust and variable thrust. Starting from (5.21)
integrate (C-1) to (C-5) with u = uoo. . until the

velocity increases to Vg which defines 2;.

(2) Programme u according to (5.11) and continue

‘integrating until m = Me. Record Gb'

(3) Return to (1) and perform a one dimensional

search over vs for the maximum Gb.

Figure 5.5 illustrates the search over Vg for the
maximum Gb and Figure 5.6 illustrates the associated optimal
thrust.

5.6.2 Computing Algorithm for Thrust and Thrust-Angle Control

(1) Using u = W ... end defining B by (D-37), select

a value for B and integrate (D-1) to (D-5) from

(5.21) until f_, vanishes which defines Qé.

B
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(2) Programme B and u according to (4.16) and (4.20)

and continue integrating until m = M. Record Gb.

(3) Return to (1) and perform a one dimensional search

over Bo for the maximum Gb.

Figure 5.7 illustrates the search over BO for the
maximum Gb and Figure 5.8 illustrates the resulting optimal con-
trols for u and B.

5.6.3 Computing Algorithm for Thrust, Thrust-Angle, and Lift
Control '

It is assumed that for the case where 1lift is non-

zero, the drag force D(y,v,L) is of the form Efﬂ

D = Kavze_ay + K'Leaysz_2 (5.22)
where K = 1074
KL = 500
and & = (22,000 £1)7%
During the maximum thrust subarc u = oo 1s assumed. The

max.
equation for 1lift is found by substituting (5.22) into (5.2)

L = E%E (v2e_ay tan B) | (5.23)

Using (A-1) to (A-5), (A-10) to (A-14), and (5.23), it is seen
that

Lo=1 Cos
B =sin™" (v  sin B,/ V) (5.24)

along the maximum thrust subarc. Under these assumptions, the
resulting computing algorithm is
(1) For u = Woox.? select a value for Bo“ Define L
and B by (5.23) and (5.24) respectively, and integrate
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(A-1) to (A-5) from (5.14) until f; vanishes which
defines 7%. '

(2) Programme L, B, and u according to (5.5), (5.6),
and (5.7) respectively, and continue integrating until

m = Me. Record Gb.

(3) Return to (1) and perform a one dimensional

search over po for the maximum Gb'

Figure 5.9 illustrates the one dimensional search over
BO for the maximum of Gb,,and the optimal controls are shown
in Figure 5.10.

5.6.4 A Comparison of the Three Cases

Comparing these three cases with the case of a bal-
listic trajectory for which all the fuel is consumed during

boosting, it is found that

(1) Ballistic ) G, = 681,000 ft.
(2) wu control , G, = 895,000 ft.
(3) (u,B) control , @ = 1,033,400 £t.
(4) (u,B,L) control , G, = 1,036,400 ft.

As predicted by theory, the value of Gb increages with an in-
crease in the control vector. In particular, significant
increases are realized between cases (1) and (2), and between
cases (2) and (3). The increase between cases (3) and (4) is
relatively small; however, it can be observed from Figure 5.8
and Figure 5.10 that the demand on B control is reduced when
1ift control is added. This may be an important feature since,

in all practical cases, there will be an upper and lower bound
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on B which could be violated by case (3) and not by case (4).

Furthermore, it may be economically advantageous to reduce
control at the expense of 1lift control. The answers to sﬁch
problems of course will depend on the particularbsystem under
study and the type of trajectory desired. Certainly those
trajectories which require much maneuverability would favour

the use of both B and 1lift controls.
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6. SUBOPTIMAL CONTROLS |

6.1 Introduction

It is sometimes economically advantageous to trade off
a loss in system performance for a simplification in the design
of the optimal controller. This type of,consideratioh leads to
the area of suboptimal control: By definition, a suboptimal con-
trol is any contrel, other than the optimal, which takes the
system from a given initial manifold to a given final manifold.
This type of control always experiences a loss in system per-
formance. However, as shown ih this chapter, under certain
conditions this loss may be insignificant. For an example, the
maximum range problem is studied and two means of generating
suboptimal controls thch are functions of state variables only

are presented.

6.2 Eliminating ¥ from the Control BEquations

B Consider the optimal control problem of Section 4.3.
For this problem, a value Xé ~ 0.8x107° is found to be the
optimum value of ¥ at t = 7;. During the remainder of the
trajectory ¥ is generated from the differential equation (4.10)
using\xs as the initial value. However, this solution is
valid only if no disturbances occur during flight. Should a
disturbance odcur at t ='tl, the optimal trajectory for
T&§§t<§tf requires that a new optimal value of X%i Q'X(Ta)
be found. To illustrate this prqperty, disturbances to the
velocity and path inclination are provided at various times
during the optimal trajectory faind in Section 4.3. Three

cases are studied. First, the new optimal value of X is found,

second, no change in the value of X is made; and third, X is
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kept equal to zero throughout the trajectory. The results are

shown in Table 6.1 and it can be observed that for perturbations
in state variables up tb 10%, the resulting difference in final
range for the last two cases is less than 1% of the optimum.
Furthermore, since X is localized to zero for all disturbances,
the case for which g is kept equal to zero appears to be a good
choice for the thrust control equation. Using ¥ =0 in4.8),
a suboptimal control of the type

Ug oy = N/M (6.1)

is developed where N and M are given by (C-34) and (C-35)
respectively. Note that the suboptimal control (6.1) is a
function of state varigbles only. |

6.3 Using B8 = Q in the Two Dimensional Control Case

In Section 4.2, the optimal controls for the two
dimensional control problem were found to be (see (4.16) and

(4,20))

P | _cos B | v_ _ :
B =5v |2 mecos e - ix 3 <®(l + v, cos B) - mg sin é}

- v, u sin ?] : (6.2)
and u = N/M (6.3)
where N and M are functions of state variables only as given by
(4.21) and (4.22) respectively. The object here is to reduce
this two dimensional control problem to a one dimensional con-
trol problem by forcing B to be identically zero. This requires

that (6.2) vanish. Defining

R 2 @(l + %— cos B) - mg sin é]/sin 8 (6.4)
e ,

and evaluating (6.2) for B = O, it is seen that B is zero only if



SCATE: v(ft/sec), 6(rad), y(ft), and X; A X;pt

o] Bhee I [met ROhGap et o [t o mmerls sor
5D [om [vep o] 8w, 8o | T St [t |¥20 ot | 4
et 1 1 1 0‘\*1 et , 0‘'“1
0 |pa10. | .8960| -- - — .8 — 2014212| --  |2014027| - —- | .009
512752.4 -— | 3000 — | 9.1, - |.7345 .:LX_'I.O_4 2139186 [2140092 [213%96%8| .0425 .0212
50752.4] -- |2500 | -=|-9.1, - |.734 | .5x107% | 1886340 |1888260|1885098| .1020 | .168
5| —— |.8960| — | .92 -, 3.4 |.734 |-.1x107% | 2009796 |2010262 |2010239| .0425 | .0204
5| —— |.8960| — | .86| -, -3.4 |.734 | .5x107% | 2006504 |2009293|2005132| .139 | .207
10 |3200.6| -- |3500 —— |10, 0. |.662 | .1210720| 2164927 2165166 |2165166| 011 | .00
10 |3200.6] -- |3000 | --|-6.66, -|.662 | .5x107* | 1915000 (1915257 |1914524| .010 | .0250
10| o= |.sers| — | .93|-, 8.1 |.662 |-.1x107% | 1986387 [1987732 (1086951 | 068 | .0405
10] -- |.s613| — | .85] -, -1.17].662 | .1x10™* | 2013959 |2014105 |[2013721| .0073 | .0241
10 [3200.6| .8113{3000 | .9 | -6.7,5.0|.662 | .1x1072°| 1908300 (1908576 [1908576| .010 | .000
20 Ja646.8] -- |5100 | --|10.08, -|.487 |-.1x107% | 2240427 |2240541|2240541| .005 | .000
20 l4646.8] -- |4200 | —-|-9.8, - |.487 | .5x107% | 1802958 |1803487 |[1802773| .029 | .0%38
20| -- |.s043] — | .88|-, 10.0 |.487 |-.52107* | 1987371 1988354 1987438 .0495 | .0461
20| -- .|.8043 —= | .72| -, -10.0|.487 | .1x107° | 1988129 |1990283 |1987753] .108 | .127
 Table 6.1

"8



2mg cos © = R | (6.5)
Substituting (6.5) and B = 0 in (6.3) yields

Ugop = No/Mo (6.6)
where
N, = -m2g2 cos® © + E%; + mD[El + %;)(Bg sin @ + av®
'sin 6 + %ﬂ‘ (6.7)
and Mo = D[A,v + 2Vle + v2/v; ' (6.8)

Equation (6.6) is the desired suboptimal control. However, for

B =0, (6.4) yields a finite R if and only if

D(1 + %;)4- mg sin © 2£__ = 0  (6.9)

Differentiating (6.9) with respect to time and using (D-1) to
(D-5), it can be shown that (6,9) is satisfied if

‘U. = NO/MO = Uu (6.10)

“s02
which is consistent with (6.6).

6.4 Comparison of Suboptimal and Optimal Controls

The maximum range problem of Section 4.3 was solved
using the suboptimal controls (6.1) and (6.6). Comparing with

the optimal control, the results are:

(1) u optimal , Xp = 2,014,425 ft.

(2) 2,014,212 ft.

Hh
fl

u
so2 ’

(3) X 2,014,156 ft.

Ysol ’ £
It is seen that the suboptimal controls are excellent approxi-
mations to the optimal. Also, the advantage of the suboptimal

controls, Us o1 and Ug o2 is that they are functions of state
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variables only and hence can be generated by standard feedback
techniques., Ug oo hés the added advantage that the function fso'
in (6.9) must be identically zero during variable thrust and
'hende the thrust can be generated by (6.9) and a high gain
anplifier [9]. It can be concluded, therefore, that since the
suboptimal controls are simpler to implement, and since the loss
in system performance is negligible, the use o£ (6.1) Qr»(6.6)
to generate the thrusf is justified in this case. In a similar
manner, suboptimal controls for other cases»could be generated
and tested. As the true optimum for each case is known, a

performance measure can be assigned to any candidate for sub-

optimal control.
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7. OPTIMAL CONTROLLERS DURING SINGULAR SUBARC

7.1 Introduction

| For the purpose of synthesizing optimal controllers,
the various optimal control laws developed in the previous
chapters can be separated into three cases: (1) the case
for which the control is a function of state variables only,
(2) the case for which one control is integrated from a dif-
ferential equation, and (3) +the case for which a function of
state and control variables exists which is to be zero through-
out the variable thrust subarc. The form of the optimal con-
froller for each of the three cases is different as illustrated
in the following sections.

7.2 Direct Feedback Control

For the optimal control law in (5.11), and for the
suboptimal controls (6.1) and (6.6), the controller is obtained
by standard feedback techniques as illustrated in Figure 7.1.
7.3 Hybrid Optimal Controllers

For the second type of controller, one parameter
exists whose value must be up-dated along the trajectory to
account for disturbances to the system during flight. The
class of problems which réquire this type of controller are
those for which cq is not equal to zero and one of the controls
is generated from a differential equation, (see Chapter 4).

The resulting controller is of the hybrid computer variety which
uses an analog simulator to perform high-speed trajectory com-
putations and a hill-climbing digital computer to carry out the

one dimensions search [9]. FigureA7.2(a) shows the controller
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for the case of thrust only, and Figure 7.2(b): shows the con-

troller for the two dimensional control of uw arnd B.

7.4 Implicit Function Generation

The third type of controller deals with those cases
for which a function of state variables and at most one control
variable exists which must be zero throughout the singular
subarc. In general, the control cannot be solved explicitly
from this function and an implicit solution is required. Fig-
ure 7.3 shows the case of the sounding rocket and the subopti-
mal coﬁtrol of Section 6.3. Figure 7.4(a) shows the case of the
two dimenéional control of Section 5.3.2, and Figure 7.4(b)
shows the case of the three dimensional control of Section
5343,
7.5 Conclusions

It has been shown that for systems whose dynamics are
linear in control u, it is possible to derive control equations
for u, é, and i which are functions of sfate variables only for
& variety of optimization problems. Furthermore, these control
equations are convenient for the study of optimal and suboptimal
feedback control laws which can be implemented by direct feedback,
up-dating the pafameters.through hybrid computation, or by
implicit solution of a switching function to obtain the desired
control., All unknown parameters o which enter into the problem
are found by a direct search in a parameter space for the minimum
of the;performancesfungﬁiqqumuw-It was shown that a modified
relaxation method is a‘suitable technique for accomplishing

this search and that, since the search is carried out in a
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parameter space of finite dimensions, thé solution can be

easily tested to insure that it is a true extremum and not
merely a stationary point... The control components u, B, and L
can then be generated from the state variables and the optimal
parameters.

For the class of systems given by (2.1), the proposed
technique is considerably more convenient than standard numeri-
cal procedures which require not only a search in multi-dimensional
function space but are also‘unsuifable for real-time control by

in-flight guidance computers.



PART II
NUMERICAL ALGORITHMS
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8. NUMERICAL TECHNIQUES

8.1 Intreduction

In Part I of this thesis, the optimal control laws
for a class of aerodynamical systems were obtained as a func-
tion of state variables and, at most, one time-invariant para-
meter. These control laws provided an efficient means. of gener-
gting the optimal trajectories and allowed the possibility ef
implementing real-time contrel. In general, however, such
ahalytical forms for the optimal centrols cannot be obtained and
1t becomes necessary to employ numerical techniques for the
éolution of the optimization problem. As mentioned previously,
these numerical methods are basically iterative schemes which
require the use of large size digital or hybrid computers.
AAlthoﬁgh some success has been realized with these téchniques,
problems still exist‘in the areas of initial and final conver-
gence, computer storage requirements, and computational algor-
ithms. In this part of the thesis, numerical algeorithms are
Qiscussed which are essentially a combination of the direct and
indirect approaches and which alleviate some of these present
difficulties. It is shown that the concepts used to develop these
new algorithms can also be used to improve the properties of
‘existing techniques. ‘Essentially, thére are three basic con-
cepts used:

(1) a first variation approach applied to the aug-

mented performance function which results in a

gradient search in the parameter space of initial

Lagrange multipliers,
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(2) a second variation approach applied to the aug-~

mented performance function which determines the opti-

" mal step size for the gradient approach in (1), and

(3) an approeach which determines the optimal scale

factor for the Lagrange multipliers Such that the

error in final transversality is a minimum at each
step in the iteration.

It is shown that for algorithms based on (1), the
scale factor for the Lagrange multipliers is arbitrary, and
instead of searching over the entire Ao—space, it is sufficient
to determine the intersection of a line with any sphere
koTko = constant. Consequently, the initial convergence does
not depend on a g0®dvestimate’of the optimal trajectory.
Furthermore, as the gradient search in (1) is performed in
parameter space, computer storage is required at the terminal
points only. A disadvantage to (1) is that, since it is a
gradient technique, the cenvergence slows down as the optimum
~ is approached and it is not known when the gsearch should be
terminated. To overceme this difficulty, (2) and (3) are used
to determine the optimal step size for the gradient technique
in the vicinity of the extrémum. Concepts (2) and (3) are also
applied to the method of steepest descent and the indirect methods
based on matching end points. It is shown that some of the ‘
undesirable properties previously associated with these tech- -
niques can be significantly reduced.

In this chapter, the fundamental concepts of numerical

methods will be discussed and some of the existing numerical
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techniques will be presented.

8.1.1 The Direct gnd Indirect Approaches

The direct and indirect approaches are iterative

schemes which start from some initial.estimate of the optimal
trajectory and generate a series of trajectories that eventually
converges to the optimum. Each trajectory in the series is ob-
tained by a search in the neighbourhood of the previeus trajec-
tory, called the nominal trajectory, for that trajectery which
best satisfies the search criterion. As a result, the new
trajectory in the series is, in some sense, "better" than its
predecessor and is therefore closer to the optimum. This
procedure is repeated until the search criterion is satisfied.
Thus, it can be observed that there are three basic features

of these numerical techniques. These features are based on the
manner of‘aefining (1) the nominal trajectory about which the
search is conducted, (2) the spacé in which the search is
carried out, and (3) the criterion upon which the search is
based. The method of generating the neighbouring trajectories
is common to all techniques and is based on a technique of
linearization about a neminal trajectory. This technique will
be discussed in the following sections beginning with a review
of linear'system theory.

8,2 Linear Time-Varying Differential Systems [;@

To begin, consider the zero input response and the

forced response of systems described by

x(+) = A($)x(t) + B(t)u(t) (8.1)

where A(t) is an n x n matrix of scalar functions assumed to
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be continuous for all t; similarly, B(t) is assumed to be an

n x m continuous matrix, x(t) is the state vector, and u(t) the
input.

8.2.1 The Zero Input Response

Theorem 1: Let @(t,to) be an n x n matrix which is
the solution of the matrix equation

d ﬁ(t,to)

e = A(t) 8(%,t,) (8.2)

where Q(to, to) = 1

Then the zero-input response of (8.1)

x(t) = A(B)x(t) ,  =(t) = x, - (8.3)

is given by

x(t) = Q(t,to)x(to) VAR AR (8.4)

Proof: By the definition of §(t;to),-observe that
(8.4) reduces the x,at t =t . Finally, (8.3) is
satisfied by differentiatiﬁg (8.4). The matrix
é(t,to) is called the state transition matrix for the
system (8.3).

8.2.2 The Forced Response

Theorem 2: Let Q(t,to) be defined by (8.2). Then the
forced response of (8.1) which goes through X, at to

is given by

‘ t
x(t) = 8(%,5,)%, +f§(t,c1)B(a)u(a)da (8.5)
t
o

‘v’t,on
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Proof: The proof is immediate by direct verification
of initial conditions and direct substitution of (8.5)

into (8.1). To effect this substitution note that

o fo¥

—t-f (t+,)B(@u()ad = B(t)ul(t) + A( t)fﬁ(t a)
t, t,

,-B(a)u(a)da  (8.6)
In practice, the particular solution which is given
by the integral in (8;5) is obtained by solving
(8.1) with xovidentically zero. Also, the 18 oolumn
of &(+t, to) is obtained by finding the zero input
solution to (8.1) with xi(to) equal to unity and the
remaining_initial conditions equal to zero.

8.2.3 The Adjoint. System

For the input response of (8.1)

x(t) = A(+)x(%) (8.7)
the system defined By . |

72(4) = -aT(%)z(%) (8.8)
is called the adjoint system. According to Theorem 1, a state

transition matrix‘?(t,to) exists for the adjoint system such

that
& ¥(t,4 ) = - AN ()5, 5) (8.9)
dt 170 .
where Ot ,t ) =T
(0] (e}

As s result, the solution of (8.8) which passes through zZ, at

to is given by

2(t) = H(t,%,)2, Y,V 2, (8.10)
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The following lemmas, which relate the system and adjoint systen,

will be stated without proof: (see [16])

. 1 ‘

Lemma 1: P(ty,t)) = @ H(t,,t;) (8.lll)
. o

Lemma 2: @& (tl’to)y(tl’to) =1 (8.12)
. T

Lemma 3.‘ @Kto,tl) = @ (tl,to) (8.13)

Lemma 4: .X?(t)Z(t) = constant (8.14)

8.3 Linearization About a Nominal Trajectory

In optimization problems, the system to be controlled
is generally described by a set of nonlinear differential equa-

tions of the form

x(t) = £(x,u) (8.15)
where x is the state vector of n components, u is a control
vector of m components, and f(x,u) is an n x 1 vector whose
components are continuous functions of x and wu.

‘fg$ﬁ€unominal trajectory R(t) of (8.15) be defined by
some control O(t) and é set of initial conditions %(to). It is
desired to examine the effect of perturbing the initial state

by'axo and perturbing the control byéSu(t). Equation (8.15)

can be expanded in a Taylor series about the nominal trajectory

to yield

SX - A(t)gx + B(t)gu (8.16)
where

av) 285, B(w) &t
and Sx(to) ,—;gxo

and where the partial derivatives are evaluated along the
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nominal trajectory. Applying Theorem 2 to the linear time-

varying system (8.16) yields

| t | |
Sx(t) - az(t,to)&co +fa§(t,a)3(a)5u(a)da (8.17)

t
o]

where G(t,to) is the state transition matrix of the zero input

response of (8.16). The trajectories given by

x(t) = 2(t) +Ox(%) (8.18)
are the trajectories in the neighbourhood of the nominal trajec-
tory and they are functions of Sxo and gu(t) as given by (8.17).

8.4 The Optimal Coentrol Problem

To illustfate the basic principles of the various
numerical techniques and because there is no loss in generality,
a somewhat simplified»optimal control problem will be used as
an example. Extension of the techniques to problems involving
free final time, additional end constraints, bounded controi,
etc., may be obtained by consulting the references given in each
section. .The problem will be to find that set of controls u(t)
which will minimize the system performance function

J = #(x(T)) (8.19)

subject to the constraints

f(x,u) | (8.20)

M.
I

x(0) = X, _ (8.21)

" oveTrthe fixed time interval

0L t <1 . (8.22)

8.4.1 The Necessary fonditions for a Local Extremum;E%g .

The constraints (8.20) are adjoined 'to the perfor-
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mance function (8.19) by means of an n x 1 vector of Lagrange
multipliers A to yield the augmented performance function

T

%(1)) +f A Tx-H)a (8.23)

0

where ¥ 2 \T¢ | (8.24)

is the variational Hamil_tonian. ‘The problem of minimizing J
is thus transformed to a problem of minimizing Ja‘ Taking the

first variation of (8.23) yields
T
8Ja _ Og(x(T)) +f(8>\T§c + 2 Bx - O)at (8.25)
O ' | :
where 8¢(X(T)) _Sx ,'.f._._. a (8.26)
oF - SuH +8x H, +8x H, (8.27)

and

P BV : -
f\T_ xdt =5xTx]O —fngxdt (8.28)
0 0

Substituting (8.21), (8.26), (8.27) and (8.28) into (8.25) yields

T
gJa :SXfT [ijf + Kf] —ﬁguTHu +8XT(I?X;‘+ )\)

+5>\T(HK - x) } at ' (8.29)
where the subsci‘ipt f denotes evaluation at the final time T.
Hence, for Ja to be a minimum, it is hecessary that gJa be

zero. Bquating (8.29) to zero, for independent variations in

Su, gx, and gh, provides the following set of necessary con-
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(1)

(2)

(3)

(4)

(5)

99.

the system equations,

X = H = £(x,u) | (8.30)

the Euler-Lagrange equations,

A = -H_ ——f_Ta (8.31)
- X T X

the gradient condition (control equatidn),

0 = Hu = fu A ' (8.32)

the initial conditions,

x(0) = x (8.33)

‘and, the final conditions (transversality),

N = Bre (8.34)

where the short-hand notation

and

f

e

1x

AR .flx#
: (8.35)
e ¢ o o s e s e » ;fv.
1 nxn
[ 8, (D)
: (8.%6)
g, (1)
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is used to denote partial derivatives of vectors and scalars
~respectively.

A solution which satisfies the above necessary condi-
tions is called an extremal solution. Such a selution is a
candidate for optimality but is not necessarily the global
optimum since the’conditions‘(B.BO) to (8.%34) are (1) local in
nature and (2) generally not sufficient. An additional test,
such as a second vafiation test, is required to separate the
local optima frem the.extremals, and, subsequently, a search over
all local eoptima is needed to defermine the global optimum.
However, for the present argument, it is tacitly assumed that
the local optimum and the extremal are unique so that only ‘the
conditions (8.30) to (8.34) need be considered. Based on these
assumptions, the general approach to obtain a numerical solution
is as follows:

(1) select a nominal trajectory which satisfies as

many of the necessary conditions as posgsible,

(2) determine the space over which the search is to

be conducted by selecting those parameters and/or

functions which will be perturbed to generate the

neighbouring trajectories, and,

(3) select as a search criterion a direct approach

(most improvement in systems performance) or an indi-

rect approach (most improvement in meéting the neces-

sary conditions not satisfied in (1)).
To illustrate this approach, several of the more common numeri-

cal technigues will be presented in the following sections.
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8.5 The Method of Steepest Descent {E’,j’

For the method of steepest'descent, the search is
carried out in the function‘Space of the control vector u(t).
An initial controel G(t) is selected to define the nominal
trajectory. The system equations (8.30) are integrated forward
from (8.3%) at t = t, until t = T. The Euler-Lagrange equations
(8.31) are integrated backward from the fihal conditions (8.3%4)
using the values of Z(t) obtained in the forward integration.
As a result, only condition (8.3%2) is not satisfied and hence
equation (8.29) reduces to |

T
o7, = J(SuTﬁu)dt (8.37)
0 o . _

The method of steepest descent is based on the direct approach
and g neighb@uring trajectory is sought which results in a
minimum of (8.37). Using Schwarz's inequality,éSJa is'a

minimum when
. A ;
Ou(t) = ki | (8.38)

. A
where k is a positive constant and Hu is evaluated along the
" nominal trajectory. To insure that the linearity requirements

are not violated, a constraint on.gu(t) is imposed such that

ﬁuT(t)Bu(t)dt :512 (8.39)
Y |

whereg;l2 is chesen arbitrarily small. The new nominal trajec-

tory is

w(t) :ﬁ.+8uﬁﬁ (840)
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where wu(t) is defined by (8.38) and is subject to the constraint

(8.39). This process is repeated until.gu(t) goes to zero.

It is seen from (8.38) that this condition will occur when H
is identicaily zero and hence the remaining necessary condition
(8.32) will be satisfied. -

The main advantage of this method is that initial con-
vergence does not depend on a good initial estimate of the
optimal cogtrol u*(%). The disadvantages are that computer
s%orage is!required at many points élohg the trajectory and
that the convergence slows down as the optimum is approached,

In Sectioen’ (10.4), a second variation technique is developed .
which determines the optimal value or the parameter k in the
vicinity of the extremum. This medification to the steepest
descent teéhnique provides a means of improving final conver-
gence. without significantly increas}ng.the computational require—
ments., | |

8.6 The Min-H Sy;gtegy'[ﬁ]*

The min-H strategy is similar to the method of steep-
est descent except for the criterion upon which.gu(t) is
selected. In this process, agu(t) is found which drives H
closer to zero. Conseguently, as the'techniqﬁe is baged on
satisfying the remaining necessary condition (8.32), the min-H
strategy is an indirect approach. The name "min-H" is derived
from the fact that Hu is zero when H is a mimimum (condition
(8.32)). For the neminal trajectory, ﬁu will in general not be

zero. Expanding Hu in a Tayler series yields

Hg = ﬁu + ﬁudgu +.ﬁu£5K + ﬁuigx (8.41)

*Correctly, the cheise of sign in (8.34) makes this "Max-H".
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where the partial derivatives are evaluated along the nominal
trajectory. Equating (8.41) to zero such that condition (8.32)

is satisfied, the desired variation.if;gu(t).becomes
AT A A '
Ou(t) = Eﬁufgx + B On + ] . (8.42)
Expanding (8.30) and (8.31) in a Taylor series and replaCing
Su(t) by (8.42) yields

Xu uu u

Ox () Ox(t) a(t)
. = € (%) N (8.43)
Sx(t) - Sk(t) e(t)
where
[ A A A 21 A )
f. - f H ATA =1 A
X u o uu ux -fu Huu fu
¢ =
o}
A ATA =14 AT pA Ta =1 AT
“Hex * Bux Hau  Hux Tx + By Huu T
— —
(8.44)
) A A =1 A .
a(t) = -f H " H, (8.45)
and
e(t) = =+ A f -1 2 (8.46)

and where all partial derivatives are evaluated along the
nominal trajectory. As 6}(0 = 0, ag)\o must be determined that
will preserve the desired final condition (8.34). Expanding
(8.%34) about the nominal trajectory yields the desired change
inéSKf

: gxf = _8xxf-gxf ' o (8f47)
This desired change in final value can be transferred (or

"swept") back to the initial point by means of the Riccati
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transformation.

ON(t) = P(t) Ox(t) + W(i) ~ (8.48)
Substituting (8.48) into (8.43) yields

S = (a+BPYx + BV + a . (8.49)

Stz (0-a"2)x - % + o | (8.5‘0)'

where a=% -f -8 B “tE (8.51)

- -£TH T2 ~ (8.52)

and c--H_+8/ T8 TH_ | | (8.53)

| | v
Differentiating (8.48) with respect to time and using (8.49)

gives
8)» - (1.D + PA + PBA) Sx} PBW + Pd + W (8.54)
Equating (8.54) to (8.50) for Ox arbitrary yields

P - -PA - PBP - AT

P+C , B =- g (D) (8.5

W = -PBW-Pd-ATW +e ,  W(T) =0 (8.56)
Substituting (8.48) into (8.42) gives

( A ] A AN ANN '
Sut) = B, T [(H, + B, B0x + B0+ 8] (857

where va is determined from

Ox = x(t) - R(t) (8.58)
The procedure is repeated until Hu is driven to zero»apd‘hence
all the necessary conditions are satisfied. The initial conver-
gence for this technique is not as good as the method of steepest
descent. However, this'_approach offers good final convergence;
~in fact, the speed of convergence increases as thé extremnum is

approached. The computational algorithm, however, is much more
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complex and computer storage is required at many points along

the trajectory.

8.7 The Newton-Raphsen Technigue [?J

For the Newton-Raphson technique, the search is carried
out in the funcfion space of the state variables'x(t) and the
adjoint variables A(t). An initial guess at the time functions
x(t) and A(t) is made such that the boundary conditions (8.33)
and (8.34) are satisfied. The control u(t) is determined by
solving the control equation (8.34). It is assumed here that
(8.32) can be solved explicitly for u iﬁ the form

u = u(x,\) : (8.60)
This assumption hewever, is not a restrictioﬁ on the numerical
techniques and the case where (8.60) cannot be found explicitly
is covered in Section (9.7). As a result of (8.60),4thg49nly
necessary conditiens which are notvsatisfieq are the Staté
equations (8.30)‘and the Buler-Lagrange equations (8.31). The
search criterien is to find the neighbouring trajectory for
which (8.30) and (8.31) are more closely satisfied. Substituting
(8.60) into-(8.30) and (8.31) yields two functions of the form

x - £(x, u(x,.;}x) £x - r(x, V) ~ (8.61)

i

h(+)
p(t) = & + £ 2(x, u(x, ) B R = s(x,2) (8.62)

and hence the necessary conditions (8.30) and (8.31) can be
replaced by the ceonditioens
n(t) =0 (8.63)

and p(t) =0 _ (8.64)

everywhere along the extremal trajectory. Expanding (8.61) and

(8.62) in a Taylor series about the nominal trajectory yiélds-



h(t)

i

% +0x - ?XS;; - ?}\Sx _' (8.65)

p(t) = p +Oh - {gxgx - 50\ | ~ (8.66)

where h(t) and p(t) are the values of h and p aléng the neigh-
bouring trajectories. Substituting (8.63) and (8.64) inte (8.65)
and (8.66) yields '

Ox
On = ¢(4) Ox - aAT(£)On - B
where A, B, and C are defined in (8.51), (8.52) and (8.53)

A(£)0x + B(t) Or - b |  (8.67)

1l

respectively. In an identical manner to that used in the Min-H
strategy, the desired changes in final values are swept back to
the initial point by means of the Riccati transformation (8.48).

The final result is

H

8x = (a+BE)Y3x + BW - B, Ox_ =0  (8.69)

S =Bz + W ‘ (8.70)

where P--PA-PBP - ATP + ¢, P(T) = ~g_ (1) (8.71)
W= -pmi + PR - ATw - B, W(D) = O (8.72)

Hence, the desired néighbouring trajectory is
x(t) = R(t) +Ox(t) (8.73)

A = A O (8.74)
where Sx énd 8>\ are defined by (8.69) and (8.70) respectively.
The process is continued until (8.63) and (8.64) are satisfied.

The characteristics of this method are very similar
to those of fhe Min-H Strategy in that the initial convergence

is fair and the final convergence is very good (quadratic).
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Also, the computing algorithm is fairly complex and storage is

~ required at many points along the trajectory.

8.8 The Method of Matching End Points [;L_;%]

- In the previous technigues, the iterative search
proéedure was performed in function space and, as a result,
the desired changes in these functions had to be domputed and
- stored at many points along the trajectory. The present method
is ah example of a technique for which the iterative search
procedure is performed in a parameter space and storage is
required at the terminal poiﬁts only} For this technique, the
initial trajectory is determined by-selegting a set of initial
Lagrange multipliers %(0). The control equation (8,32) is used
fo obtain u'in the form of (8.60). The systém and Buler-
Lagrange equations (8.30) and (8.31) are'integrated forward
. from t = O with x(0) satisfying (8.33) and the assumed values
for xé.' Consequently, the only necessary condition which is
not satisfied along this nominal trajectory is the final condition
(8.34). Expanding (8.30) and (8.31) in a Taylor series about
thé nominal trajectory yields\

Ox Ox
= ¢ (%) | (8.75)
On On |

where C_ is defined in (8.44). Equation (8.75) can be solved
by means of a state transition matrix & such that (see Section

(8.2.1))

Sx(t) SXO

- &(t,0) " | (8.76)
|On(2) O

(o}
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Evaluating (8.76) at t = T and be = 0 yields

| Ox, = @12(50,0)8.,\0 .. (8.77)
and 5xf = 622(T,O)81>\0 | (‘8.78).
where

e SR P |
& = . ' (8.79)
Y |

7

.

and where the subscript f denotes evaluation of time\%\z T.

The necessary condition (8.34) can be expressed in the form

E (8.80)

g =he +0p
such that

E. =0 ‘ (8.81)

for the optimal trajectory. Expanding (8.80) in a Taylor

series about the nominal trajectory and using (8.81) yields

<xf Sxf =0 (8.82)

A
BT +8}\f + 9
Substituting (8.77) and (8.78) into (8.83) and solving for
8%0 yields

A ) =1 ~n ' ‘ '
O = - L 3. s 80d) [P + 8“:] © (8.83)
As a result, the desired neighbouring trajectory becomes
A0) =R +5>\o 4 . (8.84)

wher%egxo is obtained from (8.83). Using (8.84) to define the
new neminal trajectory, the procedure is repeated until.gxo
goes to zero. This condition occurs when (hf+¢xf) in (8.83)

vanishes, and hence condition (8.3%4) is satisfied.
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In the equation (8.83), O and © may be obtained

1l2f 22f
by n forward integrations of the linearized system of equations
(8.75) (see Section (8.2.2)). Alternatively, n systems of (8.75)
may be used in parallel, from appropriete sets of initial con-
ditions, to provide lef and @22f after one forward integration.
In either case, computer storage is required at terminal points
only.

The final convergence properties of this approach
are exceptionally good in the vicinity of thé*opfimum;“however,
the initial convergence depends on a good estimate of the
optimal trajectéry. The computing algorithm associated with
this technique is relatively complex and can involve much
matrix inversion.

A modification to this method, proposed by Knapp and
Frost [j], suggests placing the desired end constraints in a

penalty fuhction of the form

n
E 2 2
P = K, ["if-.,* ¢xif'_] (8.85)

i=1
and using a direct approach to find the minimum of P. Comparing
(5034) and (8.85), it is seen that, when P attains its
minimum value bf zerb, the desired finél conditions of the
Lagrange multipliers are satisfied. The technique used to
minimize P is based on a gradient search in the parameter space
of initial Lagrange multipliers. As a result, the low memory
requirement of fhe computer is preserved and the computational

algorithm is relatively simple. However, as the technique is
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based on a gradient method, the final convergence slows down as

the optimum is approached; and, as the technique is based on
matching the final values of Lagrange multipliers, the initial
convergence depends on a good estimate of the optimal trajectory.
"It is shown in Section (10.1) that the initial convergence
properties for these techniques can be improved by selecting an
optimal scale factor for the Lagrange multipliers such that the

error in final transversality is kept at a minimum,
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9. AN ALGORITHM BASED ON A FIRST VARIATION

9.1 Introductipn

The method to be discussed is essentially a combina—
tion of the direct and indirect approaches. The state, co--
tate, and control variables are generated for each trajectory
from the necessary conditions developed for the indirect
approach. However, instead of attempting to match end condi-
tions, the augmented performance function Ja is considered to
be a function of the unknown initial values of the Lagrange
multipliers, and a direct search for the minimum of Ja isl
carried out in the initial conditions space. The result is
altechnique which has good initial convergence and which is
suitable for a digital or hybrid computer of limited memory.
The method also brings out an interesting point concerning the
arbitrary scaling of the Lagrange multipliers and helps to
expiain the difficulties, often encountered in applying the
indirect method, if the initial estimate for the optimal trajec-
tory is not a good one. The analytical relations necessary for
formulating a computational algorithm are derived in the next
section. To avoid unnecessary difficulties the control problem
in Section (8.4) is used. In subsequent sections, it is shown
that the technique can be extended to problems with bounded
control, fixed terminal constraints, and free final time.

9.2 The Proposed Algorithm Es]

From (8.29) the first variation of the augmented

performance function is
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SJa = SixfT QSxf +8'xfT>\f - {SuTHu +8.XT(HX+>.\)
+ O\ (7, -x)) 4t (9.1)

The conditions necessary for an extremum are given by equations
(8.30) to (8.34). In this technique, the state equations (8.30),
and the Euler-Lagrange equations (8.31), are integrated from the
initial point given by’ (8.33) and an assumed set of values
Q(O). During this integration, the controls are generated
according to (8.60)'which satisfies the necessary condition
(8.32). The neighbouring trajectories are then generated by
perturbing the initial'Lagrange multipliers byzgxo. The resulting
linearized equation for (8.30) and (8.31) are given by

gi I " Sx

= C (%) _ | (9.2)

On O\
where C_ is defined by (8.44){ The solution of (9.2) with
SXO = O is given in (8.76) to be

Sx(t) = 3, (4,000 - (9.3)

ON(t) = 922(t,0)5>\0 (9.4)

where le and 622 are defined in (8.79). The linearized form

of (8.30) can also be written as

Taking the transpose of (8.31)
e o
AT o= AL (9.6)

it follows from (9.5) and (9.6) that
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< (1 Ox) = fouSu - Hngu (9.7)

However, as (8.32) is satisfied along the nominal trajectory,

then fou = 0 and (9.7) reduces to

T
d(l‘-aé—xl =0 (9.8)
and hence
hqu = constant = O (9.9)

where the constant in (9.9) is zero siﬁcg Sxd =-0.by (8.33),
Substituting (8.30), (8.31), (8.32), (9.3) and (9.9) into
(9.1) yields

DA T |
SJa =8>\O 2.,7(1,0) QX(T)' (9.10)

along thé neighbouring trajectories generated by this approach.
BEquation (9.10) is the desired expression relating the incre-
mental'change in system performance to the incremental change
in initial Lagrange multipliers. As mentioned previously, it is
desired to find thai:SAO which yields the greatest decrease in

J .

. that is, which makes SJa a minimum. Using Schwarz' ine-

quality
T T T
(x'y)° = (%) (37y)
and noting that equality holds only if y is prbportional to x,

it is seen that gJa is a minimum when

8 = -k 8T (2,008, (1) (9.11)

where k>0 is & constant which determines the step size.
Equation (9.11) gives the incremental change in Ko which

produces the largest decrease in Ja. The matrix QlZT(T,O)
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can be obtained by n forward integrations of (9.2) (see Section

(8.2)) or it can be obtained by one backward integration of the

adjoint system to (9.2)
. T .
Z =-0.()z (9.12)

Solving (9.12) backwards in time for the state transition

matrix W defined by

z2(0) =¥(0,1)Z(T) (9.13)
and partitioning \®:
- A
1 Yo
Y = _ (9.14)
Z,
__21 §@2

the relationship‘éél(O,T) = alzT(T,O) is obtained by Lemma 3,
Section (8.2). Substituting this relationship into (9.11)

yields
87‘0 = -k &,,(0,T) QX(T) | (9.15)

The vector E@l(O,T)@X(T) in (9.15) can be obtained from one
backward integration of (9.12) with
[ A

(1)
Z(T) = (9.16)
0

The valuvues of Z at t = 0 are defined as
Y _

1) . .
Z(0) = ' (9.17) .
Z¢ '

where the last n components of (9.17) are given by (9.13) to be

—

Zg = ¥, (1,0) B (1) | (9.18)
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Substituting (9.18) into (9.15) yields the desired change in

the initial lLagrange multipliers

6&0 - -kzy (9.19)

To insure that the linearity requirements are not violated, a

constraint on‘Sxo is imposed of the form

Or B =812 (9.20)
o) o)
WhEITBSl? is chosen arbitrarily small. The desired neighbouring

trajectory is

A
Ao = g +8>\O (9.21)

mherfegko is given by (9.19) subject to (9.20). Equation (9.21)
becomes the new nominal trajectory and the procedure is repeated
until Sko goes to zero. A comparison of this technique with the

techniques discussed in Chapter 8 is given in Table (9.1).

9.3 Extension of the Pfopgged Technique

In thé previous section, the basic principle of the
first variation approach was presented for a somewhat simple-
fied problem. This approach will now be extended to include
problems with fixed terminal constraints and free final time.
The assumptions are still made that the control is unbounded
and that an explicit solution for the control can be obtained
in the form of (8.60). However, it will be shownin 'subsequent
examples that these assumptions are not a restriction on the
applicability of the proposed method.

Consider the problem of determining a control vector.

u(t) in the free time interval O £ t £ t., so that the per-

f’

Tormance function



Table 9.1

Necessary Conditions| Steepest |Min - H Newton - |Matching Proposed Techniques
of the Calculus of Descent Strategy Raphson {End Points|First Combined .
Variations : ' Variation |Algorithhs
’ i
% = f(x,u) X X X X X
. or ,
N=-57 M= h(x,\,u) X X X X X
o8 _ A, X X X X
ou u- T
Ae = =(@_ +g- V) X X X
 f Sg Sy |
SXT"” ........... . o ' .
(O)A(0) =0 X X X X X
x(0) =X X X X X
g(X(tf),‘tf) =-0" X
s(x(tf),tf)‘z'O' X X X X X X
Search Over | u(t) | u(t) NS A(0) A (0) A (0)
- ’ SJ <0 aH»o (%-f)—0 A=A oJ <0 &g <0 or A »xﬁ
Search Criterion a Ju . £ t a a £ '
g-=0 g-0 {A-h)-=0 g->0 g-=0 g-0
Computer -Storage - -lalong along along -at end at end | at end
trajectory (trajectory |trajectory | points points points
nitial Convergence good fair fair -pdor good good
Final Convergence - - poor good - good good poor good

‘9TT
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J = ¢(xf,tf) S (9.22)

is a minimum. The state vector x is subject to the constraints

x = £(x,u) (9.23)

x(0) ='x6 (9.24)
g(xf’tf) =0 ' (9-25)
S(xp,t) =0 ' (9.26)

where x is an n x 1 vector of state variables, f is an n x 1
vector of continuous functions, g is a p x 1 vector of terminal
constraints, and S is a scalar function of terminal values.

The terminalvconstraints (9.25) and the dynamical constraints
(9.23) are adjoined to the system performance function (9.22)
to yield |

te

T T
Iy = ¢(Xf!tf) + g (Xf’tf)L’ fy/f‘(h x - H)at  (9.27)
0]
T
where H = A f(x,u)
and V is a p x 1 vector of constant Lagrange multipliers. The
function (9.26) is used as a stopping function to define tee

Taking the first variation of (9.27) yields

07, =0p(x,,t,) + O(e"Cxgr 1))  (9.28)
t ‘
+f\f (Ou + &\ + 2 Boat + (\x - B,
0]

where

O, = ax."d_ + 8.0t (9.29)



o(g") = dxf%gXTV + 8

T , T T
SH = Su I-Iu +8x be+8)\ H)\

te

N f A Oxat =5xT>\:]t§ —fngidt

0.

Using (9.26) to define gtf- yields

SS = deTSX + S't Stf =0
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(9.30)
(9.31)

(9.32)

(9.33)

(9.34)

After substituting (9.29) to (9.34) in (9.28), the expression

for gJa is

8Ja =8Xle(¢sf + gszV) -

. t.
’+8>\T(H>\ - x))dt +8xT>\_-_| ‘;)f + KfT(

where {
A L]
¢sf = ¢xf - Sxf (é>f
o\
T A T g
Bsr = Bgr ~ Sgf ('s )e

x - f)

&, &P

Ot

£oUf
(9.35)

(9.36)

(9.37)

As in the previous case, the necessary conditions (8.30),

(8.31), (8.%2) and (8.33) are satisfied along the nominal

trajectory and }\qu = 0 along all neighbouring paths. As a

result, using (9.3) to define Sxi, equation (9.35) reduces to
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T2~ T AT
Sa_ =OnT 6" B, + &0V (9.38)
T ,4 A T
=8xf (Bgp + 85p V)
for the neighbouring trajectories. In a manner identical to

that of the previous section, it can be shown that the minimum

of 8Ja occurs when

Shgy = k(2 + 2.D) (9.39)

e

A T
where Z¢ QlZf ‘@sf
A A T
g = 1orT Bgr

e

Z

The vector Z¢ is found from the last n components of

Z(O) when

ST

-¢sf

zZ(T) = (9.40)
. 5 |

- -
and the ith column, Zgi’ of the matrix Zg is found from the ..

last n components of..Z(0) when
A
Eisf
zi(t) =
0]
. . th
where gy 1s the i component of g.
- In general, the boundary constraints (9.25) will not
be catisfied along the nominal trajectory. If g were
small for the nominal trajectory, ango could be chosen such
that Sg = —-g. Thus, )\O +8>\o would result in g +8g = 0 as
required. However, this choice could violate the linearity

requirement and thus, in order to keep the error small,



120
g = -a8 | (9.41)
is chosen where a is an arbitrary small positive quantity,
0£a<1. Equation (9.41) imposes a constraint on 8}‘0 which

can be determined from the incremented equation
_ (5 - (B)AT
Og = (g, (é)§X )fgxf (9.42)

Substituting (9.3), (9.41), and using the definition of zg

from (9.39), equatlon (9.42) becomes
dg ?SK - -ad | - (9.43)

To insure that the linearized equations are valid, a further

constraint
SAOTBKO ~ 912 (9.44)

is imposed where 812 can be chosen arbitrarily small. The
evaluation of V, k and 8)‘0 is carried out in Appendix G and
yields

~ 7 A T, 7L, T -,
SKO = -aZg(Zg zg) g + (zg(zg zg) zg Zg - z¢)

Sl - 2/\T ) \
—— (9.45)
T -1, T
Z¢ Z¢ ~ Z¢ g R4 Zg Z¢

9.%3.1 An Algorithm for Numerical Computation

-1

8
2

An algorithm for numerical computation based on (9.45)
can now be formulated.

(1) . Select an initial &o and integrate (8.3%0) and

(8.31) from (8.33) at t = O until S = O, which

defines t,. During this integration (8.3%2) is used

f
to define u.
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(2) With the aid of the nominal trajectory determined
in step (1), compute (9.40) and (9.41). Integrate
(8.30) and (8.31) and (9.12) backwards p + 1 times
and find Zj and 2 e .

(3) Select a and O12 and calcﬁaﬁe 012 - aZQT(ZgTZg)-lé.

If this quantity is less than zero, adjust a to make

it zero. If this.quantity is greater than zero, no

change need be made in a. (Note: 0Z£a £1)

(4) Compute 8}\0 using (9.45).

(5) Select a new trajectory using &o +—8Ko and

repeat steps (1) to (5).

A considerable simplification in the computation can
be achieved.if_thg,end constraints are considered in a penalty

s function of the form

i=1

where the Ki are assigned weighting factors. In this case,
Zg is a vector and can be determined by one backward integra-
tion. In theory, the weighting factors Ki approach infinite
values as the g; &0 to zero. However, in numerical computa-
tions, it is not possible to have infinite values for the Ki
and, as a result, spurious eitremals may be introduced. For
most caées reported, however, this characteristic has not
caused any restriction on the use of (9.46).

It can be noticed that this proposed algorithm re-
guires a minimal amount of computer memoxry since only the

initial and final values need be stored. The elements of
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COT can be determined by function generation using the values
of x and A found from (8.30) and (8.31).

9.4 The Arbitrary Scaling of the Lagrange Multipliers

In the classical theory, the transversality condition

for the problem of Sectien (9.2) is

* T
A+ 8, + 8, D+ 8 vozl= 0 (9.47)
‘ t=ty
and . (-fTh* + ¢t + gtTLT+'Stléﬂ =0 (9.48)
t=t,

for an unspecified tf. However, if Sfis used to define tf,
then the final transversailty conditions can be modified.
Solving (9.17) and (9.48) forflé yields

Y = - -]S= (% + &™), (9.49)

Substituting (9.49) into (9.47) yields

H
i

-__(¢sf' ) | ' (9.50)

_ s, ()
(¢, X<S>)f

e

gr 2 (g - 5E s

* .

and where A is the Lagrange multipliers for the classical
case., In the present approach, however, it is seen from
(9.38) that a trajectory is sought for which any increment

8KO results in

0, =Ox," (Byp + 8gp D) = O (9.51)

Hence, the vector (¢Sf + gszV) is normal to the hyperplane
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formed by the Sxf. From (9.9)

SXfof -0 - (9.52)

and hence hf is also perpendicular to the variation.gxf.
Since gxf is an arbitrary vector in the hyperplané, it can
be concluded from (9.51) and (9.52) that Ay is colinear with

(¢Sf + gsf%))for the optimal trajectory. Hence at optimality

Ne = wl@ e + gSfTV) (9.53)

*
£ only if p = -1.” This choice

for u is actually an unnecessary restriction. Since (8.31),

Note that by (9.50), N = A

(8.32), (9.47), and (9.48) are linear in A, it is seen .that
if Ko* results in a tfajectory which extremizes ¢ with
g =S = 0, then, pxo* Wiili:esult in a trajectory which
extremizes p@ with pg = uS = 0. However, the control variable
u is the same in both cases and it is u which is desired.
Thué, instead of searching for a‘point xo*, as is done in
the classical approach, it islsufficient to search for the line
Ay = pxo* (see Figure 9.1). It is shown in Appendix H; that
a value of Ja is associated with each radial line through the
origin in the Ko—space. If the initial estimate xo' results

1 ’ .
in Ja = Ja:>Jmi

face of a sphere

n’ 2 search can be carried out over the sur-

T T,

S (D ' (9.54)
for the minimum J_ (J = ¢
.x.

pxo intersects the sphere. As the search is conducted over

which occurs when the line

amin. min.)

a sphere, it is convenient to define»BI? in (9.44) to be


http://can.be
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124.

BoA

on

*
Figure 9.1 The Sclution Line pko
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8§12 = 8e?n T (9.55)
0 (0]

where Sa is the angular incremental rotation pf the ko vector
resulting from the incremented displacement Sxo. For this
choice of<512 it is seen in Appendix H that forvxg = cxo,
where ¢ is any non zero scalar, them.axo' = GSAO results from
(9.45).

Hence the speed of convergence for this. technique is
independent of any initial scale factor. It is evident from
this result and Figure 9.1, that the initial convergence is
not dependent on a good first estimate of xo*.

9.5 Example 1

Consider a system of the type illustrated by the

.state transition flbw graph of Figure 9.2a. The reaction

kinetics are

. 171
x2 - klxl + k2x2 =0
n B oox kb X3
O > O - O
(a)
'x2 k2 x3

O—p— O

(o)

Figure 9.2 (a) Transition flow graph for example 1.
(b) Transition flow graph for example 3.
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ne

-E, /RT
kl G1© "1

e, D g o By/RT

2 2

where the absolute temperature T(t) is to be found such that

xz(tf) is a maximum, where tf is fixed and where
ty =0 E, = 18,000 cal/mole

tf = 8 min E2

R = 2 cal/mole/° Gy

30,000 cal/mole

10.535 x 10* /min

G, = 0.461 x 1018/min

For convenience, the control variable is taken.as u = kl and
is considered unbounded. The matrix —CoT is (see (8.44) and

(9.12))

(ho=ry) (pmy)
1+p -(1+pAy/A5) D+ FNE AT
X (Ao=Aq)  (As=Aq)
1 A R A R |
-pxl/x2 ﬁx2(1+Phl/K2) -F X, p X, X,
i
€, =u Xy X,
'le/(K2—Ll) TXZ:XIT Kl/Kz -(1+p) p;;
| “PX Moo —Xp  PA
M Ao h) Ty ()7 Ty g (D)

where p = El/(EZ_El) and n ; E2/El° An initial estimate
X2O = 1.0 and AlO = 0.1 was arbitrarily selected. Table 9.2
illustrates the numerical results. Note that the classical

' ¥* *
theory requires that A =0, App =1.0 (since @ :-Xzf).

1f
The final values for the initial trajectory are -8210 and 133,
respectively, and are grossly in error. However, after five

iterations using (9.45) and the proposed algorithm, it is



Table 9.2

45)

Combined Algorithm with F1

e First Variation (9 Combined Algorithm with F2
Me o rer | Zor | Mg Mg | Zof Mg Mot X1

o [=8210.  |133.3 ]0.02005 || -8210. 133.3 [0.02005 |[-8210 135.5  ]0.02005
1| -7407. 122.3 [0.02144]| -1019.0 26.58 |0.072622 || -1019.0 26.58 |0.072622
2 | -1825. 40.58 [0.05160|| -64.92 4.882|0.274662 || -64.92 4.882 |0.274662
3| -317. 12.10 |0.1348 ~0.2057 1.103}0.679878 ~0.2057 1.103 |0.679878
4l -33. 3.52 |0.3472 .0.01645 1.002]0.681691 ~0.00%409 | 0.9253|0.681707
5 -0.874 1.2140.6626 ~0.0001526 | 1.000|0.681707 -0.000005 | 1.0000(0.681707 |
6| -0.3896 | 1.123]0.6761 0.0000004 | 1.000|0.681707
7. -0.1665 1.075(0.6304
8 ~0.6952 | 1.053|0.6815
9 ~0.02866|" 1.04%3|0.6817

10 ~0.01174| 1.039[0.6817

11 ~0.00930| 1.037]0.6817

12 ~0.00196| 1.037}0.6817

13 ~0.00079| 1.036(0.6817

T T

*L2T
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seen in Figure 9.3 that the Lagrange multipliers have converged

*
very close to line pko .

As the optimum is approached, the

rd
/,
z
-1

—
1 1 1 1

- | A A

65 06 07 08 09 10

&\ 2j

-
02 03 04

Figure 9.3 Iteration Path in the Initial Conditions

Space of Lagrange Multipliers

rate of convergence of the gradient method slows down and it

is not known when the search should be terminated.

In the

next chapter, methods of improving this final convergence are

discussed.

The first approach is based on the method of

matching end points in which the Lagrange multipliers are

continually

re-scaled to maintain a minimum error in final
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transversality. As a result, it is shown that this method

of matching -end points can be used in the final stages of the
proposed technique to provide the property of rapid final
convergence. Another technique discussed is a second varia-
tion method which determines the optimal step size for'gko

as the extremum is approached. The effect of using these two
techniques is shown in Table 9.2.; Note that for these last
two methods, the solution conve;ées to the classical solution,
yet for the first variation approae?;’the scale factor p =
1.036 results. Figure 9.4 and Figure 9.5 illustrate the T and
X5 profiles for various iterative cycle;ﬁ The iteration path
is illustrated in Figure 9.3, and Figure‘9.6 illustrates the
time variations of Xys Xoy Kl’ xz, and T for the optimal path.
To plot these quantities on.ohe graph, the following ordinate

scales are used:

y = (T-326)/2 y =10(-r; +1)
y = 10x, y = lO(—)\2 + 1)

9.6 Example 2

To illustrate how the proposed method can be used if
u is bounded, consider the equation of constraint

Y(u___ -u) = o (9.57)

(u_umin. max.

Due to this constraint, (8.32) has the form

0 =H + KB(umax. U, - 2u) (9.38)
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where A must be introduced because of (9.57), and is determined

by

O = }\,33. ’ (9-59)
Thus, when w = u . oru=1u__ , & - 0 and (9.59) is satis—
fied. If W <udu o, AB = 0 and (9.58) reduces once

more to (8.32). If @ is to be a minimum, the Legandre Clebsch
condition yields
2H_(Su° + &)

u u .. =2u
max.+ min.

20 | (9.60)

and hence Hu<:O when u = u

max;"Hu>>O when u = u_. and Hu =0

min,
it Pmin< u<_umax. ‘
. Consider the case of Example 1 where T has the

following upper bounds:

(a) Tm = 345
(o) I, = 342
(e) T, = 340
(@) T =338

In this problem it is knewn that u = umax.fg?'ps;tsgts, and

u<u o for t ,<tLt,. The instant t  is determined when B,

vanishes. After this instant, u is computed as in the

unbounded case. For tt,, the elements in C_ (see (8.44))
Jdu Ju

change, since_§§ = 3% = O when u = u

° H i
max. owever, this change

is readily carried out in the backward sweep by storing the
value of ts found during the forward'sweep. With this slight
modification, the computation is the same as in Example’l.
The temperature profiles for cases (a) to (d) are illustrated

in Figure 9.7. In Figure 9.8, the ordinate scales used are:
g



Flgure 9 8 The Time Variations for the Opti- Figure 9.9 The Time Varlatlons for the
mal Path (Ex. 2) _ Optimal Path (Ex.’

*eeT
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10A

y = T - 331 y =3 L 4 10
100H, + 10

y = y = 5(-h, + 2.4)

y = le2 y = lOXl

9.7 Example 3
It is not always possible to use (8.32) to obtain

an explicit analytical expression of the form (8.60) for u
as a function of x and A. This would complicate the computa-
tion since (8.3%2) would have to be used to determine u implicitly.

Note, however, that (8.32) yields the linearized equation
A 2], A
du = -H., (Huigx + Huﬁgx) (9.61)

To avoid the implicit computation of u, note that (8.32) can
be differentiated with respect to time to yield
w= 8 THE x o+ H, A (9.62)
where the right hand side is a function x, A, and u. The
initial value of u, can be found by an implicit solution of
(8.32) at t = 0. With u_ known, (8.30), (8.31) and (9.62)
can be used to computé.u for the nominal trajectbry during the
forward and backward sweeps. The procedure is otherwise the
same as before.

To illustrate this modification, consider the batch
reactor problem of Example 1 where there is an extra unwanted

by-product X, (see Figure 9.2b). The equations are

Xl = —(kl+k3)xl
(9.63)

il

Kyx) - k%,

X0
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Let u = L In this case (8.32) has the form
,l'l'?l n—l
H, = (l+n3G3 u 3;#9 + ?\2(-xl+n2G2 X U 2%y
; | - (9.64)
A rA no
where n, = B /El ) Ny = g /El y Gy = G2/Gl ,
A n »
G3 = GB/Gl 3. Hence
= N/M S (9.65)
|n ;'l O 'nrlo
: B _ . 24
where N = -()\l(l+n3G3 w ) - No)Ey = xZnZG2 u X,
|n-1 . 1 n 1
o A 2
-xl(l+n3(}3 u )xl ( xl+n2G2 ou )xz
!n,‘2 n 2
3. & ' 2Te
M = A ¥ 0 3(n )G3 u + KZ 2(n -l)G2 X,

Figure 9.9 illustrates the computed results for the case where
B. - 18,000 cal/mole, G, = 0.535 10%%/min

1 1
E, = 30,000 cal/mole, G, = 0.401 10"%/min
E5 = 27,000 cal/mole, Gz = 0.500 108 /min
The ordinate scales used in Figure 9.9 are
y = T-330, | y = 10(1-A;)
y = 10xq, y = 10(1.1-x2)
y =\\‘ 10x

2"



136.
10. TECHNIQUES FOR IMPROVING FINAL CONVERGENCE

10.1 Matching End Points Using an Optimal Scale Factor [?é]»

Consider the optimal control problem in section (8.4)
which is to determine the control u(t) over the fixed time
interval 0Kt T such that the system performance function

J = #(=(T)) (10.1)

is a minimum. The constraints on the state variables are

x = f(x,u) (10.2)

x(0) = X, (10.3)

As in section (8.4), the constraint (10.2) is adjoined to the
system performance function (10.1) by an n x 1 vector of
Lagrange multipliers A. However, since it was shown in Chapter
9 that the scale factor for the Lagrange mﬁltipliers is arbi-

trary, the augmented performance function is taken as

T
I, = #(x(T)) + uf(hm;c - H)at (10.4)
| 0 |

where g 2 ,Ts

and where u is introduced as the arbitrary scale factor. For

this case, the transversality condition (8.34) is

bhe + Bs =0 ‘ (10.5)
Substituting (10.5) in (8.80) yields

N /\ A .

Br = phy + B (10.6)
where Ef,= O on the optimal trajectory. Expanding (10.6) in

a Taylor series about the nominal trajectory yields

OF, = Oy + By Ox,
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5 &
Using;gEf = -E;, and substituting for gxf and OA, from (9.3)
and (9.4) yields

On, = ~[iynp + Brye 12@] [8x + B (10.7)

which differs from (8.33) by the scale factor p. A4s Sko is
proportional to ﬁf, u is selected such that the square of the
error in final transversality is a minimum and hence SKO%SK
is minimized for each iteration. From (10.6), the square of
the error is

N D A Tia N DA A N A
[Bel® = BB = wAphe + 200 00 + Bre” frp

(10.8)
Differentiating (10.8) with respect to p and equating the
derivative to zero yields

AN TA A A
28, hp + 2R, 0 o = O | (10.9)

Hence the value of p which minimizes the final error in trans-

versality is

" = - IR (10.10)
opt N T “

Substituting (10.10) into (10.7) yields the desired incremental

}\f']j /;\ Ta . o
8"o = '[; i + 8xxf 13;} [: & T ST fff46x§
£ M Ao

(10.11)

change

It is shown in Appendix H that, using (10.11) to define SKO,
the rate of convergence is independent of the initial scale

factor, and that the procedure converges to the solution line
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pho*, This fact is illustrated in Figure 10.1, for the problem
of Example 1 in Section (9.5). It is seen that a "cone of
convergence ", region Rc’ exists about the solution line uxo,
Within Rc’ any initial estimate for xo will converge to the
solution line independent of the initial scale factor. The
number of steps required for convergence is indicated on the
radial lines. For an initial estimate which falls outside the
cone of convergence, region Rnc’ an unacceptable trajec%ory
results. For this particular example, matrix CoT in (9.56)
contains terms which are divided by (xz-xl) and which become
infinite if }2 = Kl. Therefore, should this situation exist,
the trajectory is unacceptable. To find an initial estimate
which lies inside the cone of convergence, a random search
can be e%ployed or a method of relaxing the final constraints,
as done by Isaacs et al [;é], can be used. If it is desired
to have the procedure .converge to:the CIaSSical'sblutionﬂ§;%,
then it is shown in Appendix H that the neighbouring trajectory

should be taken as

Mo = Hopp(ho +ON) (10.12)
where %o is defined by the nominal trajectory, “opt is defined
py (10.10) and Sxo by (10.11). The effect of using (10.12)
for the solution of Example 1 of Section (9.5) is illustrated
in Figure 10.2. PFor any initial estimate of ho which lies
inside the region Rca’ the first step in the iteratien estab-
lishes the initial conditions on the solution curve Ca‘
Once on this solution curve, xo meves along the curve until

*

KO is reached. If.the initial-estimate lies in region Rcb’
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the first step in the iteration establishes the initial condi-
tions on the line Cb which is in region Rca' The procedure
is then the same as before.

For the technique developed by Knapp and Frost,
(Section (8.8)), a similar improvement in initial convergence
can be obtained when the penalty function in (8.85) is replaced
by
n
P= ) K2(uho+8..)° (10.13)
= i ‘Hhe T Pxif y
i=1

In this case p is selected to minimize P and hence the optimal

S(K 1f x:Lf)

pMOp‘t )

value for u is

(10.14)

Using (10.14) in (10.13), it can be shown that the technique
is then independent of the initial scale factor, and hence the

rate of initial convergence has been improved.

10.1.1 Extension of the Method of Matching End Points
! :
Consider the control problem in Section (9.3) and

let the augmented functienal be

iz

, T T:
I, = P(xerte) + & (x4, 8000 + pf (A\x - H)dt

0
(10.15)

where p is the scale factor for the lLagrange multipliers. As

before, the final time is defined by

4 0 (10.16)

S(Xf, f) =
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and the variation in final time for the neighbouring trajectory
is defined from (10.16) to be

S

Stf:=-8xfT gﬁi | (20.17)

f

Using (10.17) to define gtf, the first variation of J_ in
(10.15) is

83, =8x."(Bp + e ,T) + WOx, Dy + (Vx - B) O,

a
t
-8XOT7\O_ + pf {—SuTHu +:87\T(}°c - H')\) + Sx?

O N
(A + Hx)}dt, | © (10.18)
where Bop = Pye — Syr (é)f
TA T g
and 8sr = Bxr _Sxf'(é )¢

The transversality'condition for this case is
T

Therefore, for the neminal trajectory, the error in transver-
sality is defined as

A A ~ A T

Ep = php + (¢Sf + Byp V) (10.20)
Expanding Ef in a Taylor series about the nominal trajectory

yields
8Ef = LLSK:E * 8ssfgxf + Ig\ssf%)gxf + é\szSV (‘10.21)

where
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ssf — XX S2 f
T* T
T A ( T . _ 2SXV Ex Skag X )
8ssf V = \Exx V : "2 f
’ S S
A T A
‘?¢ = (x ¢Xi X +\2X o) £+ ¢tt)f

°T ° ‘T T, . T
Yy = gxx%)x* 2X7 gy V + By V)e
Substituting fOI’SXf and Sxf from (9.%) and (9.4), and using

JAY
gEf_: --Ef yields

A ‘ A ’
g, Or, + & OV = - B (10.22)
where
A A A A T A
%) = ok + (ass + gSS-V)QIZ
Solving (10.21) for'gxo yields
] -1 ALy 5
Ohg = 07" (B 8y + By) (10.23)

From (9.25), it is required that g be zero on the neighbouring
trajectory. Expanding (9.25) in a Taylor series about the

’

- nominal trajectory and using (9.3) yields

: A

Og = g O, Sxo (10.24)
Substituting (10.23%) into (10.24) and'using;gg = —g yields

AN -1 ,A T A A ‘
& 0, 07" (& JV + E.) = -8 (10.25)

Equation (10.24) can be solved for gb’to provide

t

-1
noD N T] [_A AN -1 A7
oV = '%? 2, & T &g g = 8 95 9 T 5 Lo

J L | (10.26)
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‘Replacing OV in (10.23) by (10.26), the desired incremental

change becomes

N

5}‘0 =8xoo +8xol | (10.27)
where
A -1 A T (A & -1 Ta
8)\oo = -0 7 &y [%sf ®12f o) "~ Egr J €r
Snobfala T2 b 8Ls T)_l" o, . ot
ol = [*n  8st ‘Bgf “12f “A  Esf / Bgf “12f "\
~1 A
R
Note that for"Sxo-inoo, equation (10.24) becomes
‘ o | -1
S A Al -1 o T ja) -1 AT A
O = By Bpp 3,7 &y Bs 228 &), &

- ,_gf (10.28)
and hence 8%00 is that component ofésxb which attempts to
satisfy the end constraints (9.25). Using Sxo .=8>\ol in
(10.24) yields

A Y ' -t
A -1 A~ T[A & -1 AT A A
| Ot = 8¢ 3 5s o 7 8t [gs %2 % & Jf st P10t
-1 A i.,\ A -1 A
o 7 Be - &gt d§1_2f o, By |
V=0 - (10.29)

and hen‘cé 8)\01 is that component of Sxo which attemp’ts to satisfy -
the transvérsaiity condition without affecting the end constraints
set by'gxoé. Equation'(lO,27), therefore, provides the desired
incremental 5hange in xom Howevér, to evaluate Ex»(equatiOn
(10.22)), values of p and V are required. As in the previous
section, theSe values are selected to minimize the square ofv

the error in transversality. By (lQ,ZO) this error is
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42 T T DT B D R
Be |7 = Bp By = Bip B + 20 Y, Bop + V"W, BV

; ;(10.30)
where q)T

S8 e e
L

Differentiating (10.30) with‘respect_toi7, and‘equating the

e

and = %

TS

derivative to zero yields . f
2T g 4 2¥TY Do o - - (10.31)
TP st v Vo T | *
The optiﬁal values for the augmented vector Y is found from

(10.31) to be -

- -[wte] el e (10.32)
Vot = 7| %y Y st e :

~As a result, the desired neighbouring trajectory becomés
. L A . E

where 8%0 is defined by (10.27), b and L%pt are defined by

pt
A
(10.3%2), and KO is defined by the nominal -trajectory.

10.1.2 Computing Algorithm F1 using ﬁatching,End Points
(1) From.&o, which defines the nominal trajectory,
and (8.33), integrate (8.30), (8.31) and (9.32) from
appropriate initial conditions until S = 0, which
defines t.. (Note: n systems of (9.32) are inte-
grated in parallel from the initial conditions given

in Section (8.2.2)).

(2) Test ngal<<€l and/or lg | <e, for exit, where g

and €, are chosen to provide the desired degree of

2
accuracy.
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(3) Compute p %,

ot 808 Sxo by (10.33) and (10.27)

opt’
respectively.

(4) Replace %o by (10.33) and repeat from (1).

10.2 Determining Optimal Step Size for the First Variation
Approach

In Chapter 9, the incremental change in xo based on

a first variation approach was shown to be (see (9.45))

Sxo - a SAOO + kg"ol (10.34)
. ' T -1 A
where Sxoo = —zg(zg Zg) g
T, =17, |
8}‘01 = 2,(8,°2,) V2 2y - 24
12 - .a?é?(z T2, N
. L~
z¢T Zg - z¢ z (z Tz y1g Tz¢

g &8 & g
and 0<agl |
It was further shown that sinée the resulting seérch is
carrled out over the surface of a sphere, it is convenient to

define 81. as (see(9 55))

>12 = 3% T A (10.35)

o 0

where 8& is the angular incremental rotation of the xo vector
: reshlting from the incremental displacement 8%0. The vector
Sxo in (10.%34) is a linear combination of the vectors Sxoo and
Sxol,- It is shown in Appéndix F that 8Koo is the component
of 8xo which attempts to satisfy the end conditiems (9.25),
and that Sxol is that component of Sko which attempts to mini-
mize Ja without affecting the end conditions set by 87\00

The relative emphasis placed on these two effects depends on
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the values selected for the parameters a and k. From (10.34),

it is -seen that these values are subject to the constraints

' ~N
S AT A (1-a2/p7) |
ZQS Z¢ - Z¢ Z (Z Z ) Z "Z,
| Tg'%e g g ¢
| N\
L FER TR
where b = —— (10.37)

AT T, y=1a
Z_ % v
g (2,72,) "¢

As a result of (10.%6) and (10.37), two sets of values can be

assigned to a and k depending on the value of b... The two cases

are:

(1) for b1 , a =band k =0

(2) for b>1 , a = 1 and k is defined in (10.36)
For the first case, the error in the final end conditions is
large and full.émphasis is placed on minimizing this error.
For the second case, the error in end constraint is small and,
within the step'ga, it is possible to reduce Ja while also
satisfying the desired end conditions. To take advantage of
the good -initial convergence properties of this gradient tech-
nigque, a three stage algorithm can be developed that uses the
gradient technique in the first two stages to rapidly locate
-.the region of the optimum. However, as the final convergence
of the gradient method is relatively poor, a third stage is used
which has good final convergence properties and which can be
used with the gradient method. An example of such a technique
is the modified method of matching end points of Section 10.1.

Aiso, in the next sections, two techniques are developed which
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_hdetermine'the optimal step size for the gradient method as
‘fheloptimum is approached. The first is based on a second
variation approach, and the second is based'on a method of
curve fitting. Combining these téchniques, therefore, the
three stage algorithm is as f0116ws: (see Figure 10.3)

(a) Pirst stage: if bggl; a and k are defined by

Case (1) and hence

Sxo - beoo:

This region is called the Rg region since full
emphasis is placed on satisfying the end conditions,
g = O. Thebsearch is carried out over the surface of
a sphere:with a constant rotation 8& until b >1
which defines the second stage.

(b) Second stage: if b>1, a and k are defined in
Case (2) and hence

Sh, =On_ + kaol_

This region is called the RJa region since the

o

emphasis is now on reducing Ja without affécting

the end conditions set by~8x00° The search continues
on the surface of the sphere with a constant rotation
8@ until Ja increases which defines the third stage.
(c) Third stage: At the point before Ja increases,
it can be concluded that the rotation 8& was too large
and the region of the optimum was overstepped. This
region, called the Ra region, lies in the interior

of a cone-shaped surface which has a maximum angular
*

width SQ and which contains the solution line uxo .



Lad,

CONE OF CONVERGENCE

ITERATION
PATH

Figure 10.3 The Regions Rg, RJ&’ and Ra About the Solution
*
i LA
Line u o
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Within this region one.of the techniques with good

final convergence properties is used to complete the
search procedure.

10.2.1 The Second Variation Method of Determining the Optimal
Step Size

Taking the variation of Ja defined in (10.15) and keeping

all terms up to second order yields
T T , T
8Ja =8xf (stf"'gszV) + ']"Sxf (¢ssf+gssf V)Sxf
by

. L f SuT, SuriduH _Sx +8xTHxx8x+8;\THM8>\)dt
0 ' ‘ .
e
+. uf(&\ (x-H +8xT(>:+Hx) +:8uTHu)dt
%

tf -‘ |
+ E’Ti‘}ﬂ fStf + u\fS}\T(SJ‘C-HA@x_HKuSu)dt
0o

e .
+-8xT;]o (10.3%8)

T N ~
where Est. 1 ¢sf’ Egst V and ¢ssf are defined in (10.18) and
(10.21) respectively. Using the first variation approach
developed in Chapter 9, the following relations.hold for the

nominal trajectory:

(1) x=-H =0, from (8.30)
(2) A +H =0, from (8.31)
(3) H =0 , from (8.32)

(4) H, =0 -, from (8.24)
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(5) Ox - HMSX - Hm&l -0, from (9.5)
(6) =x(0) = X, , from (8.3%3)
(7) Sxfof -0 . from (9.9)

Substituting (1) to (7) into (10.38) yields

T T PN T -
gJa = gxf (¢sf+gsf V) - _ngf (¢SSf+gSff V)gxf

Ty

- % f (SQTHuQSu .+ ZSuTH uxgx-fngHXXSX)dt

0
(10.39)

From (9.61) the variation in u for the'neighbouring trajectory

is given by

A -1 /A ‘ A

Su = -H_ (Huxgx + Hw\gx) (10.40)
For SXO = O, the value of Sx(t) and 87\(1:) can be obtained from
(9.%3) and (9.4) in terms of the submatrices @, and Ty

Using (9.3), (9.4), and (10.40) in (10.39), SJa becomes

T 1 T, A o N T A
o7 =&, (2g42,0) + 100, T (B 5 (B pugs V)8 IO

te
_ " T TA } TA. N; A T N
5 8}.‘0 [f (D7H,,D+2D7H 8 ,+2) , ﬁXXQIZ)dt 8}‘0
0 |

(10.41)
' A A T
where Z¢ = lef asf
- A A T A T
zg = Qor Egr
A N _l N A N A
and D= -H,— (Hy @, + Hy 255)

Ry the first variation approach, equation (10.34), the value

<xfgho that minimizes Ja subject to the constraint Sg = -é
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: (a = l) is
O, =, + O, | (10.42)
By (G-2), the value for Vwas found to be
Yo
e 4 .
V=1 +Y (10.43)
where Lé = (Z Ty )_lA
vz "2 ) Ty
1= ~(2g78y) T2 2y

For this problém, the error in final transversality is.

A A N A T . :
B, o= php + (Bpreye V) (10.44)
Substituting (10.43) into (10.44), and determining p as that

value which minimizes EfTEf yields

b
b= ey | (10.45)

where By = = Ap gsf V/Ne Ag
A T T
For this approach, it is desired to find the value for k in

(10.42) which causes gJa to be a minimum. Substituting (10.42),

(10.43), and (10.45) into (10.41) yields

SJ Y WO + (200 Tw On 0 T 58 )

~ k 00 00 o0 47701 oo 2 00
b kB, S S, S + S, WS,
(10.46)
where iy 24 812fT(6ssf+§s5fT7’i)$12f
Wy 248, (Begr 1 )Q12f
v, 2 _%;/gf (0% D+2D"H Q12+812Tﬁxxal2)dt

0.
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e

W4 ~I+ W, + pOW3

ne>

W5 2(Wl+plw3)
As (10.46) is a function of k only, the minimum of gJa occurs

when the derivative of (10.46) with respect to k is zero.

This yields the cubic equation

kj + pk24+_r =0 (10.47)
where {
T
L8 I WO +ON wggx
- T
( Agp W Ay 1)
and

’ (8%01W58K01

Using Cardan's cubic feormula for the real root of (10.47)
yields

| o 1/3
- 2 (24(1+ %E) / ) (10.48)

Y

Kopy =

It is shown in Appendix H that the rate of convergence for the
approach based on (10.48) is independent of the initial scale

factor. As a result, this approach can be used within the

Ra region as a means of providing improved final convergence.

The associated neighbtouring trajectory is given by
A
Ny = Bopt (xo +-5xo) (10.49)

where &o is defined on fhe nominal trajectory, Sxo is defined

by (10.42), k is defined by (10.48) and Upnt by (10.45).
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10.2.2 Computing Algorithm F2 using Second Variation

(1) From the nominal trajectory defined by Qo.and
(8.33), integrate (8.30), (8.31) and (9.32) from
appropriate initial conditions until S = 0, which

defines t.. (Note: n systems of (9.32) are inte-

grated in parallel from the initial conditions given
in Section (8.2.2)).
L

and e, are selected to provide the desired dégree of

accuracy.

(2) .Test IJa|<:gl and/or |g L(eZ for eXit,‘Where 3

(3) Calculate k. from (10.41) and use (10.42) %o

pt
define 8%0,
(4) With A ‘defined by (10.49) return to (1) and

repeat.

10.2.3 A Curve Fitting Technique to Determine the Optimal
Step Size ‘ .

In the first variation procedure of Section 10.2, |
the ko vector is swept through the initial condition space at
a constant angular rotation 8& until‘Ja increases. At this
final step ((n + 1)-th), two points on the curve I, = JaGSa)
have been established, where ga is defined as the angular
rotation in the gradient direction from the n-th step. The two
points are (Jao’ 0) and (Jal’ 8&), where J_  is the value of

Ja at the n-th step, and Ja is the value of Ja at the (n + 1)-th

1
‘step. As the rotation from the n-th step is in the gradient
direction, an optimal rotation.gaopf must exist which provides

the maximum decrease in Ja and whichyisrwithin the. range
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0g5%pt< o4 (10.50)

An approximation to'g“opt can be conveniently obtained by

approximating the curve Jaﬁga) by a parabola of the form

Ja = a + bSa +c 8a2 (10.51)

To sdlve for the coefficients a, b, and ¢ in (10.51), only one
extra point on the curve Ja(ga) is required. For convenience

this point is selected as (Ja%’ 83/2). (See Figure 10.4)

O%)

(J

al’

)

:

| |

I I

I |

[ |
g | A -
O O Oa

opt

Figure 10.4 The Graph of Jaﬂga) in the Neighbourhood
of the n-th Step

Substituting these three points into (10.51) yields the

matrix equation
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I 1 0 0 a ]

Ty | = |1 108 &8&2 b (10.52)
'J,l’ 1 O &° c

& ] L , JL

The value for gaopt is taken as . that value of 8« which mini-
mizes (10.51). Differentiating (10.51) with respect to 80&
and equating the derivative to zero yields

-8“0pt = -b/2¢c ' - (10.53)

Solving for b and ¢ from (10.52) yields
Qa2 (Jal - 4y + 39, )

b= -0k V% O - (10.54)
\ A |
A (I, - 2] J_)

o = -20§ —&k 8&%% MIT: -~ (10.55)

Substituting (10.54) and (10.55) into (10.53%) yields the

desired value

5“opt i rT_a" - 2Ja£_ n Jj'%‘ (10.56)

" The value for 8& is replaced by Sabpt and the procedure is
repeated until the desired degree of accuracy is obtained.

10.2.4 Computing Algorithm F3 Using a Curve Fitting Technique

(1) Let Ioo be a large positive number.
(2) Use the first varistion approach of Section 10.2
with 8(1 = 8&; /
(3) If |Ja|<:sl and/or [g|<(52 exit, where e, and
€, are chosen to provide the desired accuracy.

. 3 N o
(4) If Ja<:Jao, set J, = J_  and store the flna;
values for this trajectory. Oompu‘te:g?\o by (10.34)
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and return to (2).

(5) 1If Ja;;J , replace Sa by %8& and, using the final

ao

values of the previous trajectory, compute k; from
2

(10.36) and store (Note: a = 1 in Rea).

A
(6) Replace &o by (&o + (k%-k)éﬁol) and integrate

(8.30) and (8.3%1) forward to obtain Ja%'

(7) Compute Saopt from (10.53). Replace 80: by

gaoﬁt and, using the stored final values, compute

k from (10.3%6).

opt
A A
(8) Replace A, bY (Ko + (kop

to (2).

N
t-k%)gkol) and return

10.3 The Combined Computing Algorithm

In this section a combined algorithm is presented
which uses thebfirst vafiation approach to initiate the search
procedure and to locate the Ra region. Once in the Ra region,
one of the computing algorithms Fl,‘F2, or F3 is used to pro-
vide the final convergence. A flow graph of the combined
algorithm is shown in Figure 10.5.

10.3.1 Examgle 1 |

As a first example, the problem of Section 9.5 is
solved using the combined algorithm with F1 and F2 as the final
stage., The results are shown in Table 9.2. It is seen that
the combined algorithms provide the desired improvement in final
couvergence over the algorithm based on first variation alone.
A further comparison between Fl and F2 is illustrated in
Table 10.1 and Table 10.2 for which the search procedure is
initiated from different points in the initial conditions

space. It can be observed that, for this example, the computing
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NO

Ja ¢ Jao

YES

Jao = Ja Y
d Ao =d \oo+k d Yol

!

Y

USE F1, F2,0R F3
7O CALCULATE

e

3\0 =;\\o+c/ /10

-7

l)\(o =/)\10+J/\o *

STOP

Figure 10.5 Flow Chart for the Combined Algorithm
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Table 10.1
P2 - Second Variatidn on k F1 - Matching End Points
STER X, My Nog X ¢ Myt Mg
0 | 0.166528| =197.1 8,869 [0.166528 -197.1 8.869
E“ 1 | 0.56796 -4,459 [1.627 [0.56796 -4.459 |[1.627
(2 |0.659119 0.412810.8804 |0.659119 0.4128 | 0.8804
% | 0.676695:=0.3273.. 1,006 |0.677784 |-0.2944 1.039
s | 4 |0.681707 | 0.00262 0.83%79(0.681636 |-0,03482 1.004
= |5 | 0.681707 |-0.000004% |1.001 |0.681707 |-0.0006664 1.000
6 | 0.681707 | 0.0000003866| 1.000q
Table 10.2 |
F2 ~ Second Variation on k F1 - Matching End points
ST Xor M Mog For L M Mog
.0 | 0.0063%79 |-85020. 1113, 0.006379 |=85020. 1113.

1 |0.011924 |-36610. 529, . 10.011924|-36610. 529,
hﬁwz 0.029196| -9714. 175.3 |0.029196| -9714. 175.3
. m 3 00094367 -13408 50.61 00094367 -1348. 40-61

4 o=339618 -76088 ! 7o783 00339618 -76088 70783
5 | 0.670167 10,7321 2,036 |0.670167 0.7321 2,036
6 |0.680692]-0.1371 1.007 0.680782(-0,1%318 1.017
5| 7 | 0-681707|-0.002836 0.9509 (0.68170%|-0.008%96 |1.001
18 |0.681707|-0.00000391f 0.9993 |0.681L707|~0.00003993 |1.000
9 ' 0.681707! 0,00000057 |1.0000
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algorithm F2, which is based on a second variation approach,
appears to provide the best final convergence. For both Fl and
F2, however, the convergence is essentially quadratic.

10.3.2 Example 2
Consider the problem for which the control u(t) is to
be found over the time interval 0Ltg{4.2, such that the system

performance

>
J = (2x + X)) (10.57)
1 3442

is a minimum. The equations of constraint are

Il
(@

2
X, = (l—x2 )xl - X, +u , xl(o)

X, = % , x,(0) = 1.0 (10.58)
£3 = Xlz + x22 + ul , XB(O) =0
and g = X2(4,2) =0 . (10.59)
The associated Euler-Lagrange equations are
Ay = A (1mx,®) = Ay, - 2Agx) (10.60)
Ny = A (142xy%,) = Ay = 2hg%y
Ay = 0
Hu = -Kl - 2k3u =0

For the classical approach, the final transversality conditions

are
A (4.2) = -4x (4.2) (10.61)
M(4.2) = -V
= -1.0

N5(4.2)
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where Y is defined by the augmented performance function

1 5
J = (2%, + X,V + Xg) (10.62)
a 1 7 72 3 $=4.2

This problem is an example of a problem with final end con-
straints. The solution is'bbtained using the combined algorithm
with F1, F2, and F3 and the final stage. The optimal trajec-
tory and optimal control u(t) are shown in Figure 10.6. The
associated Lagrangé multipliers are illustrated in Figure 10.7.
0) = 0.5, A

The values A 0) = 5.0, and kB(O) = 1.0 were

X o
arbitrarily selected as anlinitial estimate. It can be ob-
served in Table 10.3 that this initial estimate is in the
region Rg since b = 0.3<1. An incremental rotatiom.ga = 0.005
radians is used during the first variation approach. Table
10.3 illustrates very clearly the region Rg (steps O to 7)

in which a = bl and k = 0, the region RJ (steps 8 to 15)

1 and k¥ £ 0, and the region Ra (final steps) in

in which a
which 8“0p1:< 8%, - Notice that in region Rg, full emphasis is
placed on.reduciﬁg g, and in region RJa the emphasis is trans-
ferred to reducing Ja while maintaining g close to zero. The
interséction of the Ra region is manifested by the increase in
fJa at the 16-th step. Once in R«, Fl1, F2, and F3 are used to
prrovide the final convergence. It can be observed that, for
this example,- F1 and F3 provide more rapid convergence than F2.
The convexity of Ja in the neighbourhood of the 15-th step is
shown in Figure 10.8. Note that the method of curve fitting,
F3, estimates quite accurately the minimum of Ja’ and that the
corresponding estimate by the second variation approach, F2,

is slightly'in error. It is believed that this error is caused
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3-0F
X3
2.0}
1.0 y
X
0 = re.
X
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TIME (SECONDS)

Figure 10.6 The Optimal Trajectory for Example 2
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Figure 10.7 The Optimal Lagrange Multipliers for Example 2



Table 10.3

- - 5
STEP J I g b k. v |2 |
-0--141.353554 = - =0.879200 0.302 0 - -
1 [27.258678 ~— ~0.687343. 0.207 0 - -
2 [19.727938 ~ ~0.588630 0.186 0 - -
Rg | 3 [20.036128 - ~0.86092 0.223 0 - -
4 [7.422018 ~— ~0.382174 0.281 0 - -
5 [7.310112 | ~- -0.278221 0.382 -0 - -
6 [14.493840 | ~ -0.174874 0.601 0 - -
7 R4.140386 | 17.540385 ~0.072850 1.421 | 0.000062 -46.67 - | 2244.0
8 | 8.642633 | 10.201530__ ~-0.071281 2.700 | 0.000195 -21.87 512.0
9 | 7.006617 7.058201 ~0.004519 50.0 0.000290 -11.42 154.0
10 | 5.183%621 .| "5.305702 ~0.021428 14.1 0.000514 -5.697 46.7
11 | 4.193642 4.219338 ~0.007691 47.0 0.000770 =3.341 19.64
RJ_ |12 | 3.508284 |- 3.521721 ~0.,006890 58.8 0.001218 -1.950 8.33
13 | 3.096564 | 3.101889 ~0.00480 90.7 0.002195 -1.109 3.403
14 | 2.902321 2.904174 -0.00339 134.0 0.006832 -0.5452 1.402
15 | 2.899740 2.900013 ~0.002182 | 214.0 0.007452 -0.1250 1.189
16| 2.903164 { 2.904198 -0.001860 - - - -
- | F2 - Second Variation on k| . F3 - Curve Fitting "I F1 - Matching End Points
, » : - : Z
SIER - J, --|- -& . | k. |SIEP ,.J8;< g . k I, g |E¢)
1712.884124 |-0.000907|0.005334( 17 |2.879017 [-0.000420[0.003551{2.879007 |<0.000371|0.001054
18 |2.88012%{-0.000257{0,00458%3| 18 }2.878982 |-0.000387 | . 2.8789811-0.00002 |0.00000L
19 |2.879259 [-0.000055 |0.005135 | 19 {[2.899972 |-0.000506 [0.003986 [2.878981| 0.000000 |0.000000
: 20 [2.879046 |-0.000014 {0.005179 {12.884135 [-0.000122 |} = _
Ra 21 [2.878997 |-0.000003 [0.005160| 20 2.878981 | 0.000000
- 22 [2.878985 |-0.000001 [0,005173 | 21 ;{2.878982 | 0.000001
23 2.878982 |-0.000001 |0.005168 112.878981 [.0.000000
24 12.878981 [-0.000000 |0.005170 1 R
25 |2.878981 |-0.000000

V9T
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Figure 10.8 Ja in the Neighbourhood of the n-th Step
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by the uncertainty in the value for V on the nominal trajectory
of the F2 approach. By (10.43), it is seen that Y is a function
of the future step size, and ﬁence Ja oh fhe nominal trajectory’
can only be computed éfter the future step has been specified.
This type of problem is not present with Fl and F3 since for Fl,
V is precisely specified onvthe nominal trajectory as that value
which minimizes the error in transversality (10.32), and for
F3, the actual curve Ja(ga) is used.

10.4 The Second Variation Technigue Used with the Method of
Steepest Descent

A second variatioh approach can also be used to
determine the optimal parameter k for the method of steepest
descent in function space. Consider the optimal control problem
in Section (8.4). Using (8.23), the variation on J, up to terms

of second order is

T
o |
O, =8x. 0 o + 1%, Ox, &ﬂo -—;f SulH_ Su)at
: 0 '

e | L
-1 f (2&1THuX8x +8xTHxX5x)dt -3 f (&THMSA)dt
.0 i 0

T T
id/ﬂ(8u¢Hu+8xT(Hx+i) +-8KT(HK—§)dt ~%b/ﬂ(gxlu

0 0
—(Si-HMSX -ngu)dt (10. 6 )

For the method of steepest descent developed in Section (8.5),

the following relations hold for the nominal trajectory:



(1) x-H =0 , from (8.30)
(2) AN+H =0 , from (8.31)
(3) H, =0 . from (8.24)
(4) =(0) =x, from (8.33)

(5) Ap + gr =0, from (8.34)
6 Sx-% Sx-m Suco

Using (1) to (6) in (10.63) provides
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from (9.25)

T ,

' T T,

SJa = -fgu Hdt + %&cf ¢xxtsxf
0

7 _
-4 f (SuTHuugu + ZSuTH uxgx + §XTHXX8x)dt
0

From (8.38) the desired value for Su is
Ia)
811 = kH

(10.64)

(10.65)

The incremental variation Sx(t) which results from this incre-

mental change Su, is given by (9.5) to be

Sx = H Ox + H
Substituting (10.65) into (10.66) yields

A
kH

. N N

Let

SX:kZ

and hence, using (10.68) in (10.67) results

A A

a A
Z = H)\XZ + HXqu.

(10.66)

(10.67)

(10.68)
in

(10.69)
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which is independent of the parameter k. The solution to
(10.69) for‘gxo = 2(0) = 0 is given in Section (8.2.2) in
terms of the state transition matrix &:

.
2(%) =f 8(t,Q) f{m(a)_ ﬁu(a)da (10.70)
- |

Using (10.65) and (10.68) in (10.64) provides
T

- )
A TA k T4 .
SJa - _kau Hat + = 2, B e Be

5

7
2
T4 N DA A
5 f( " uu _ 2Hu HuXZ + 2 HXXZ)dt
0

(10.71)

~

FOI‘SJ to be a minimum with respect to k, SJ' must vanmsh and

hence
T .
2 A TA
&I, = -f.Hu H +kW =0 (10.72)
A |

where

7, T4 A T T
22,79 .2, f( BB sel Rz o+ 2'H_2)at

Solving (10.72) for kopt yields
T

fﬁTﬁdt
u - u

0. ‘
opt = T (10.73)
C

k

and hence, from (10.65) and (10.73),
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T

A T/\ .
fHu H_dt)

du(t) = L — ﬁu(t) (10.74)

w
o)

is the desired variation for'gu.in the vicinity of the extremum.
Using a preselected value for'812 in (8.39), the value of k for

the first variation approach is
T 1
AT z
k =81/(\([Hff{@) (10.75)

The method of steepest descent ié carried out as before with k
defined by (10.75) until the situation exists where kopt\<k.
When this eccurs, the secohd variation approach of (10.74) is
used for the remainder of the séarch to determine the variation
gu(t). In a menner similar to that of the previous sections,
this approach can be extended to cover problems with free final
time and additional terminal constraints.

10.5 Conclusions

An algorithm for the numerical solution of optimal
control problems has been developed which 1s baged on a
combination of the direct and indirect approaches. The method
is similar to the indirect method in that trajectories are com-
puted using differential equations and the known and computed
irditiel values. However, instead of matching end conditions
as 1s done in the classical indirect approach, the augmented
performance function Ja is congidered to be a function of the
tunknown initial values. The minimum of Ja is found by gradient
search in the initial condition space based on the first

variation. Unlike the indirect approach, convergence does not
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depend on a good initial estimate of ko. It has been shown that

the normalization of the Lagrange multipliers xo*, as carried
- out in the classical approach, is not essential. Thus, instead
of a search over the complete ho-space, it is sufficient to
determine the intersection of the line pho* with the sphere
&oT&o = constant. Also, it has been shown by means of examples
that the method is applicable to the case of bounded control,
and that it can be applied without computational difficulty to
the case where u cannot be determined as an explicit function of
X and Né In the case of bounded control, some prior knowledge
of the éequence of arcs is required. Information of this type
can be determined with the aid of the Legendre~Clebsch condition.
A disadvantage of the gradient technique, based on the
first variation only, is that the convergence slows down as the
optimum is approached. It is desiréble, therefore, to use the
gradient technique to initiate the éearch, and then to use a
technique with good final convergence properties to complete the
search. In this respect, a three stage computing algorithm was
developed which is based on a systematic search in the initial
condition space of Lagrange multipliers. The firsf two stages
are steepest descent techniques which result in a search over
the surface of a sphere, at a cohstant sweep angle, until the
region of the optimum is overstepped. At this point, the third
stage comes into effect to provide a rapid final convergence.
For this third stage, three algorithms were developed. The
first approach is based on a method of matching end points in

which the Lagrange multipliers are continuously re-scaled to
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provide a minimum error in final transversality. The other two

approaches are based on finding the optimal step size for the
method of steepest descent used in the second stage. One
approach uses a second variation of the augmented performance
function and the other uses a curve.fitting technique to
estimate the optimal step size. It is easily observed that
these techniques vary in computational difficulty and in the
rate of convergence. For the method of matching end points,
some matrix inversion is required which may introduce computa-
tional difficulties. TFor this technique, however, it was
demonstrated by examples that the rate of convergence is essen-
tially quadratic. The method of curve fitting, on the other
hand, requires no extra equipment when used with the steepeét
descent approach. Hoﬁever, one extra forward. integration is
required for each iteration. For this approach the rate of
convergence was shown to be very satisfactory. In the second
variation:approach, no matrix inversion and no extra forward
integrations are required, and the rate of convergence appears
to range between linear and quadratic. The parti¢ular approach
to.use, theréfore, will depend on the problem under study and
the size and type of computing facilities available. A common
feature of all these techniques is«that storage:is requikred at
the -end point&iornly-and; as such, these techniques are suitable

for use with digital or hybrid computers of limited memory.
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The equations of motion for a missile moving in the

~earth's atmosphere are (see Figure 2.1, for simplicity, a flat

earth and motion in the xy-plane is asSumed);

Here D é.D(y,

engine thrust

X

y =V sin 0
vV =
e =

v
m = =-Uu

v cos ©

-g sin 6 - ot

m

mv

VU cOos B

vou sin B

is given by the ideal equation T = veui

(A-1)

(A-z)

(A-3)

(A-4)

(4-5)

v, L) is the drag and it is assumed that the

Equations (A~1) to (A-~5) .can be written in the form (2.1) by

choosing X) = Xy Xy = § x3 =7, X = e, Xg = I as the state

variables and by taking

0x

lie>

>

— —

v cos ©

v sin ©
, D.
-g gin © ~ =

g cos © + L

o
e

cos

v mv
0 ‘
Tt follows from (A-6) that
0 0 cos
0 0 sin
. Ez; D,
o & -
0 0 (m
0 0 0

>

9-L)/mv2

-v sin ©

v cos ©
-g cos ©

g sin 8/v

-L/m2v

(A-6)

(A-7)
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0 0 0 0] 0
0 0 0 0 0
e.. 2 1o 0 0 0 -v_ cos B/m2
1x — e
0 0 -v, sin B/mv2 0 -v, sin B/mzv
_ O 0 0 0 0 B
(A-8)
o0 ] . 0 )
0 | 0
e & | op /m e. 2 |y sin 8/m (A-9)
0L — L ¢ 18 ~ e :
1/mv : v, cos B/mv
Lo B 0 )
The Euler-Lagrange equations are
7\1 =0 . (A-10)
. AD |
_ 2 -
Ny = 2 | (4-11)
X | ; A3 -
K3 = -\, cos e - A, sin o + - Dv - x4 v2 cos ©
N,
+ —55 (L + v u sin B) (A-12)
mv
i4 = hlv sin 6 - KZ v cos © + KB g cos © - h4 % sin ©
(A-13)
. Mg SR _
My = = 3 (D - v u cos B) + 5 (L + v u sin B8)
m n~v
(A-14)
\
Equation (A-10) yields
M o= o (4-15)

where ¢y is a constant of integration. Substituting (A-6) and

(A-9) into (2.12), (2.13) and (2.14) yields
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k=3 (g D - 3 (4-16)

kB-= 59 (KB sin B - %i cos B) | (A-17)

k= %9 (A5 cos B + %4 sin B - %: Ag) (A-18)
substituting (A-6)‘into (2.18) yields

MV cos 8 + A,V sin O'- X3‘(g sin 0 + %)

+ x4 v § cos ©) + u k,=¢ - (A-19)

W

Evaluating (2.30) with the aid of (A<6), (A-7) and (4-8) yields

iu = 59 [Esin © sin B - cos © cos B)Al - (cos B sin © + sin B

v

D L 8 gj
.cos G)h2 +<(Dv cos B'+ - )m_+ - sin B cos Q}AB

+<g‘§§-cos~9.cos g +‘D Pl sin B + =3 (COS B - =) ;}

mv
(A-zo)

The transversality condition is

: %
[gr £ Aq8x + Aydy + A5dV + 4,46 +A dm - cdf] f_o (A-21)

3 4 5
26,

During a variable thrust subarc (2.45) representé

the following system of equations

ky = 0
kK = 0
8
}\lzcl
e = ¢ (A=22)



It follows that

and

where

—

0]
1

Vv cos ©

e

e

ne

>
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0 EL - L_ 0
m mv
, Ve v,
o) - Sin g v cos B 0
0 0 0 0
i i D L__=&8
v sin © -g sin Q—m e cos © 0]
Vg Ve
0 oo cos B v Sin B -1
252 253 254 ° |
| (4-23)
-
0
cy (4-24)
c
0
0
sin © sin B - cos © cos B
-(cos B sin © + sin B cos 9) "
- (A-25)
L D_ g .
m,(Dv cos B + Ve) + 2 sin B cos ©
_-g§ cos © cos B + —2§ sin B + —L§ (cos B - %—)
v mv mv e
Appendix B

In the case of vertical flight, the missile is con-
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strained so that 6 = n/2, B = 0, L = O and the system dynamics

(A-1) to (A-5) simplify to the form

v = v (B-1)
P vV _u

V=g~ (B-2)
I;l = =1 . - (B—B)

Uging a standard drag function of the form

2 _—-ay
D = Ké e

(B-4)

where_Ka and a are constants, results in the following Euler-

Lagrange equations

Ny, = - —— ' (B-5)
) 27D

hg = Ay + —= (B-6)
. A |

k5 = - ;g (D—veu) (B-7)

The switching function and its time derivative are given by

_ 2 _ (B-
Ky = ™ Ng ‘ (B-8)
. ALV A 2v
2e 3 —& : -
k, =-—=24+—=D (1 +—=2) (B-9)
m
The first integral is
D
AoV = AB(g + m) +uk, =cC (B-10)
The transversality condition is
' f
EiP + A dy +>\3dv +>\5dm— cdt] =0 (B-11)
. : to

The matrix A and the vector b are given by (see (2.45) andv(2,46))
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r_‘ =\
v -8 - 3 0
Ve
-V 2v
‘e D e
— == (l+—=) 0
| o m2 v |
¢
b = O (B_lB)
0

In Chapter 3, .use was made of the fact that x3 >0
in deriving the sequence diagram. To prove this‘assertion,note
that during a variable thrust subarc (ku = 0) or during a

coasting subarc (u = 0), (B-10) reduces to
AV - Aalg +2) =0 | (B-14)
oV T Azi& + ) =V

after substituting the condition (3.2). It follows from (3.1)
and (B-14) that at the final time

A (B-15)

3¢ = O
If x3'= 0 at any inStant auring the variable thrust or coastihg
subarc it follows from (B-~14) that A, = 0, and from (Bf5) and
(B-G) it can then be concluded tha% A3 = 0, A, = O everywhere,
violating the terminal condition for x2f (see 3.2). Congider

now & maximum thrust subarc. Substituting ¢ = 0 and (B-10)

"into (B-6) yields

° }\. :
_ 2 - -
KB = uku + == (D - mg) \ (B-16)
If k3 = 0 at any instant ts during a maximum thrust subarc, it
follows from k >0 and (B-16) that x3:>o and consequently

x3:>o for ts<:t Z % From (B-5) it is then seen that

fo

\)
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A, <O | | (B-17)

for ts<:t<;tf. Evaluating (B-10) at t = t, yields

uk
0

A - == <0 ' | (B-18)

2 =
Conditions (B-17) and (B-18) require that A< 0 for t <ty
which violates the terminal condition x2f = 1. Thus KB £ 0
for tO<:t<:tf. To prove that h3:>0 it is sufficient to note

that if (B-4) is used to evaluate (B-6) at t = tf, it yields

K3f = -1 (B-19)

and thus the final value of A, is approached through positive

3
values, since x3f = 0 (see B-15).

From (B-2) it follows that §:>O during an impulsive
thrust subarc. The final subarc, therefore, cannpt be an im-
~ pulsive thrust subarc. From (3.1), (3.2) and (3.6) it follows
that

ku(t

v |
f) = - I—ﬂ-§<o | (B-20)

which violates the condition (2.42) for a variable thrust sub-

N,

arc. Thus the final arc is a coasting subarc.
Appendix C
The system dynamics for flight with the cqntrol con-

gtraints L = 0, B = O are

X = v sin © (c-1)

v cos © | (c=2)
v_u

: : 2, L -
v -g sin © - o (C-3)

y

il
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o= - é cos © (C-4)

m = -u B (C-5)

The Euler-Lagrange equations are

N =0 ' (C-6)
. ahD

R N -
Ay = — (C-7)
. A2D

_ - - ; 2 _ ) 8 -
AB = -y cos © xz sin 0 + —= K4;2 cos 6 (C-8)
C . _ _ g
k4 = xlv sin © k2 v‘cos e + ng cos © x4 7 sin )

(C-9)

Lo
x5 = - =3 (D-Veu) (C-10)

m

The switching function and its time derivatives are

AV
__2e _ - .
k = =2 KS (C-11)
v A D
_ e _ - - 2 (24
ku =z [ xl cos © kz sin © + o '(2+Ve )
- k4 55 cos 9} (C-12)

The first integral is

A

. , D
le cos 6 + X2V sin 6 - KB (g sin © + E) - ;é g cos © + uku = C
(C-13)
The transversality condition is
e
[%P +‘Kldx + Ady + x3dv + 2440 + Agdm - cdt]t =0 (C=-14)

The matrix A and the vector b are given by (see (2.45)

and (2.46))



1 0 0 0 0
. . D g
v cos © v sin © -g sin 9-5 -5 cos ) 0
Ve
A = 0 0 o 0 -1
; D v £
- cos © - sin © mv(2 + -55 cos 6 0 _
- e v -
(0-15)
[ oy ]
c
b = (0_16)
0
._O »
where Kl = ¢y = constant follows from (C-6).

A proof will now be given of the fact that s £ 0, on
a variable thrust subarc. During variable thrust (4.6) is valid.
Substituting (4.6) into (C-10) yields

. e
A = - 53; (D-v _u) (C-17)

If x3 becomes zero at any instant tl on a variable thrust sub-

3 and KS then remain

zero for the remaining time interval tl <t £ t2 of the variable

arc, it follows from (4.6) and (C-17) that A

thrust subarc. From (C-8) and (C-13) it follows that since

A, and ku are zero

b

. _ g _
Klv cos © + KZV sin Q K4 - cos 6 =0

(C-18)
. g_ _
Kl cos © + xz sin 6 + x4 v2 cos 9,‘ 0
) . .
for tl < t £ t2. Hence x4 = 0 and
N, COS 6 + L, 8in 6 =0 | (0-19)

From (C-6) and (C-=7) it is seen that Ay = const., A, = const.
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This implies that & = const. for tl <t £ t2 which contradicts
(C-4). Hence Mg £ 0 for the variable thrust subarc.

To determine an expression for k , (4.4) is first

written in the form

<

k, = 5% £ (C-20)

where

AT
8 wk - =5 _ 25 cos © (c-21)

t u m 4 v

Substituting (C-13) with ¢ = O into (C-8) and using (C-20)

yields
. . o . K D .
Ay =8 - =2 (c-22)
3 Ve 4 mv
Substituting (C-13) with ¢ = O into (C-9) yields
NP - Decos 6 _ , &g ~ -
k4 = ST 5 (klv KB - x4v + uk_ cos o) (C-23)

Differentiating (4.5) with respect to time and using the system

equations (C-1) to (C-5) yields

o= uw + N (C-24)
where
D .
Doy o Ve~ 3y i,
M, = -g sin 6 - == (2 + Ve) (C-26)
N, 2 - mg” cos” o + 2 (g sin © + 2)(2 + 29 (C-26)
1~ v v '8 m Vo
Differentiating (C-21) with respect to time yields
? = ﬁk uﬁ - i fé - A £§ - A 28 0C080 + 7, 28 gin o é
- u T u 5 m 3m 4 v 4 v .

+ Ny %%1 cos © (C=-27)
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The term ﬁku in (C-27) isvalways zero since u = O when u is at
its bounds of ku.= O when u is variable. Eliminating the time
derivatives in (C-27) with the .aid of (C-3), (C-4), (C-22),
(C-23) and (C-24) yields

) . 2av kg 2 K
e u> cos~ 6  —u
f=u [Fu + ABMZ + A4mv2 cos & - " Sin 6 - Ve L4
+ KBNZ + K4N3 - Kl2g cot é] : (c-28)
where
2v ' .
AD_ —e X .
M2 = =5 (4 + = - (c-29)
m e
£ D 2 2 2
A ts 2Dg cos® 8 . g5 cos“ 6 D_ : D,
N2 =2 * Thv sin © v T mv (g sin © + m)
mv, :
(2 + 21) _ aDv sin © (1 + 1_) (0=30)
v m v
e e
y. A 2g cos © cos? 9 — sigz e _ D | (c=31)
3 V2 € sin © S om|

Evalvating Eu when ku equals zero yields

v

K ==2 ¢ | (0-32)

Substituting (C-28) into (C-32), using (4.5) and taking k, =0

yields
2
. ve u"ku.ve g D
k'.u o= IIl_'V T - uku(v sin © + E) + )\,BUM - >\.3N - )\lZg cot ©
(C-33)
where
madlo5 . e + ) - 22 sin g (C-34)
-2 v v mnv - ‘
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. 2
N 2 _g_§£§_§‘[é + %X - (3 +_%—) cot® 6 + 2

©omv , 2
e e Somv
2 2 .2 o
(3 4 %z + X 2) _& stn 9 ., abv ;ln e (l%%_ﬂ
e v e . e
(C-35)
Appendix D

The system dynamics for flight with the control con-

straint L = O are

"X =V sin © | (D-1)
y =V cos 6 (D-2)
. _ | v u
v = - g sin 6 -~ = +—=—cos B (D-3)
. g v u
6 = -5 cos 0+ sin B (D-4)
m = -u (D-5)

The Euler-Lagrange equations are

7.\ =0 | (D_6)

1
iz = -\ 1%9 (D-7)
iB = -\, cos 6 - A, sin 6 + 2k3§ - 3% (g cos © - ziz sin B)
(D-8)
i4 = xlv sin © - A,V cos e + ABg cos 6 - x4 é sin © (D—é)
i5 = - 3% (D - v u cos B) + Ny E%E sin B | (D-10)

The equations for the switching function, its time

derivative and kB are
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v A
k. = EQ'CKB cos B + ;i sin B - %; x5) o (D-11)

. v :
k. = —9 [}sin @ sin B-cos 9 cos p)xl - (cos B sin ©

+ sin B cos G)K +<:—— (2 cos B + %—) + s1nB
. D
ecos DA, + <£. cos © cos B + —= sin >> }
g+ K5 -
(D-12)
T
kg = o= (A5 sin B‘- =+ cos B) (D-13)

The first integral is

; ; 2 8 . _
AV sin © + A,V cos 6 - Mg (g sin © + m) - A 5 cos e +uk =

1
(D-14)
and the transversality condition is
23
AP + Aqdx + A4y + A4V + A,d6 + A.dm - cdt =0 (D-15)
1 C 5 4 5 t, |

The matrix A and the vector b are given by (see (2.45)

and (2.46))

— v v
£ _ & N
0 0 sin B - COs B 0
1 0 0 0 0
A= | v cos 6 v sin © -g sin © - = - &8 cos 6 0
Ve Ve
0 0 —= cos B o sin B -1
! 252 253 254 0
(D-16)
where

gy é sin © sin B ~ cos © cos B



and

8.522
A D _
853 = v (2 cos B +
A g
a = -
54 v2
0
¢
b = C
0
0

¥

ve) A

4 - (cos B sin © + sin B cos)

+ - sin B cos 6

cos © cos B + —25 sin. B

where Al =C = qonstant;

Ox

1x —

mv

For zero-lift flight, (A-6) to

v cos © ]
v. sin ©
. D

-g sin 6 = = ’
- é cos ©

L 0 _

[0 0 cos ©
0 0 sin ©
o a8 _2D

m mv
0 0 gg cos:'©
V .
0 0 0
__
0 0 0
0 0
0 0 0
v
0 0 - -QE sin B
mv-
| O 0 0

QA
I

—~—

0
0

B

cos

=
< B

©

m
L -1
-v‘sip e

sin

|
-V CcOS ©

- g cos ©

é sin ©

185.

(D=17)

(D-18)

(A-9) take the forms

——

B
B

-

(D-19)

(D-20)

(D-21)
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Differentiating (D-21) with respect to B yields

18x ~

L

Differentiating (D-23) with respect to B yields

0 =

e .
o Sin B

v
e
oo COs B

S

- —95 cos B

0]

0

- —J

For the case where U

186.

(D-22)

(D-23)

(D-24)

(D-25)

=00, 1t is possible to

derive a control law for B for the maximum (impulsive) thrust

subarc. Equations (D-3), (D-4), (D-8), (D-9) and (D-10) for
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u—e00, take the form

v .m

v ¥ - —%— cos B (D-26)

o |

6 ¥ - IF sin B (D—27)

. A vei

AB ~ o —4?5— sin B (D-28)
mv '

. A v u

M ™o —25—— cos B (D-29)
m

The remaining state variables and lLagrange multipliers do not
change during the infinitesimally small interval of time in

which the impulsive thrust occurs. Thus

K4 = const. (D-30)

during the impulsive thrust subarc. It follows from (2.9)

and (2.1%) that kB = 0 and hence

A
tan B = 4 (D-31)
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Differentiating (D-31) with respect to time and noting (D-28)
and (D-30) yields

v ﬁ sin B?
e
o : (D-32) .

-'m °
P4

Adding (D-27) and (D-32) yields

B+o0 (D=33)

Integrating (D-33) yields
B+ 0% B, + 6, = const. (D-34)

Substituting (D-32) into (D-26) yields

; ~ —Vé cos B ‘ (D—35)

sin B

Integrating (D-35) yields
A . N .
c, = Vg 81n_BO ¥ v sin B (D-36)

where s is an integration constant. Hence

B ¥ arc sin[:ZQ sin B-] (D=-37)
v 0
Equation (D-37) gives the control law for B during impulsive
boosting. Substituting (D-3%6) into (D-32) yields
° 22 1
€ z
Vo= o= (1 - V2 )

(D-38)

Separating the variables in (D-38) and integrating yields
L . 1
2 2)2 2 2)2

(c2 - v - (02 - v, - —-v_ 1n & (D=39)

e mg
Substituting (D-36) into (D-39) and solving for m yields

v, cos B, - V cos ?J
0 0 .
m = m, exXp [j v, | (D-40)

Eguations (D-37) and (Df40) hold during the impulsive boosting
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subarc.

Appendix B
After the n + l-st step in.the.ongé:dimeénsional:search

procedure, assume a condition ekists of the form
n-1 Ny S n+l _
Play, ) <P(ay ) >P(a ) (E-1)

and, hence, the optimal'value of o is located in the region
(see Figure 4.10)

n-1 +1

n
R S D

(E-2)

To determine “kopt approximately, the region in the vicinity

of the optimum is represented by a parabola of the form

P=a+ ba, + cak2 (E-3)

k

. . -1
Using the three coordinates (Pn_l, “kn ) (Pn, akn)’ and

(Pn+l’ “kn+l) in (E-3) yields
— —_ — " . 2 1 7]
Pn+l 1 akﬁﬂ-l ( akl’l-i-l ) a
1 R T e .(akn)zv b (E-4)
n-1 n-1,2
Fp-1 1 % (o) c
- J _ J L)

from which the values of a, b, and c can be established. From

ordinary calculus (%%— = 0), the extremum of (E-3) is located at
k

x —
kopt — 2¢c

Substituting for b and ¢ from (E-4), and noting that

n-1 n
“k = ak - Ax

n+l : n (E_S)
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yields
Chops - %+ Py (30
P n+l n' T n-1 n
Appendix F
The optimal value of‘gko is given in (10.34) to be
O, = aOr , + kS;Ol (F-1)
where
Sno -z (22 s (F-2)
oo = "% ‘%g g’ &
~1
T T :
= 2 Z Z Z "2y - 2 F-
Ohgy = Z, (B, 2,) B, 74 - Zy (F-3)

From (9.43), the variation 8g for the neighbouring trajectory is

It is desired in this appendix to determine the effect of
87\00 and'g)\ol on gg. Using (F-2) in (F-4) yields
-1

Og =2,0(-2,(2," 2) B) = -4 (F-5)

Hence, by (F-5) it can be concluded'ﬂun:gxoo is the component
of(gxo concerned with satisfying the desired end conditions.
Using (F-3) in (F-4) yields

-1
S T T T
= Z Z (2 Z Z 24 -~ Z4) =0 F-6
g = 2y (2,02, 2,) 2 Zg - Zg) (F-6)
Therefore, by (F-6), it can be concluded that 8%01 attempts to
minimize the system performance without affecting the end

conditions set by SKOO,
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Appendix G
To find V, substitute (9.39) into (9.43). This yields

ab = X ng(z¢ +2) (G-1)
Hence
ve (%2 @2-2%z) (6-2)
g g 'k g ¢ |
To find k, substitute (9.39) into (9.44). Noting that

T
- -1
ﬁng z,) 1 _ (ng z,) , and using (G-1) snd (6-2) yields

2 oaD o L A
512 - a g (2. 2. ) g

T T T
Zg Ty - By Bo(B. Zn) L. Zg

k =

The result (9.45) is obtained by substituting (G-3) and (G-2)
into (9.39).

Appendix H

‘For the first variation approach, the differential

equations used are

x = f(x,u) ,  from (8.30) (H-1)
X = ngx . from (8.31) (H-2)
x x |
= ¢ (%) (H-3)
A O
The solutien of (H-3) is given by (9.3) and (9.4) to be
Ox(t) = B ,(+,0) O o (E-4)

ON(t) = 8,,(%,0) O (H-5)
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It is desired in this appendix to determine the effect of

multiplying all Lagrange multipliers by a non-zero scale factor

c. Let the primed quantities represent the values obtained when

1
A = cﬁo, and let the unprimed quantities represent the values

o)
obtained when A = %o' From (H-1) and (H-2) it is seen that

x () = x(t) (H-6)

and x'(t) en(t) (B-7)

From (H-6) and (H-7), and the definition H = hTf, it is seen

that
1
H- = CH
1
HU. = CHU.
H
Hh = Hk
t
H_ = cH_ % (H-8)
' !
H = CH .
uu uu
]
Hux\ = cHuX
1
HXX - CHXX
gty —+m?
Tuu c Tuu

From equations (9.2), (9.3), (9.4), and the relations (H-8),

it can be determined that

! 1
@lz(t,o) == @lz(t,o)
2,,(t,0) = B,,(%,0) (H-9)
Ox' (t) = Ox(%)
and S (5) = ¢ ON(t)

Using (H-9) in (9.39) yields
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z¢ . (H-10)

and Z = Z

g
From the definition of 012 in (9.55), and (H-10), it is found

ol ol

from (G—B) and (G-2) that .

(812) = 02 812

k - c4K (E-11)

v' _ v
Hence, from (H-11) and the definition of Ja in (9.27) and<gho

in (9.45), it is seen that

Ja = Ja (H-12)

and 6%5 = cgko _ (H-13)

The result of (H-12) is that a value of J, is associated with
each radial line cﬁo in the initial condition space of Lagrange
vmultipliers, and the result of (H-13) is that the rate at which
the first variation technique converges to the line uxo* is
independent of the initial scale factor.

Using (H-6) to (H-10) in (10.47) of the second vari-
iation approach, it is found that |

r - c6r
and p' = cp (H-14)
from which it can be determined by (10.48) and (10.42) that

1
2
kopJG ¢k

opt

and Sko = ogho (H-15)

Note that by (H-14) and (H-15), if the neighbouring trajectory
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ko is taken to be

Mo

B +ON) (B-16)

then

-1

Mo = Mg (H=17)
*

ﬂence, instead of converging to the line pxo, the sequence will
converge to the classical solution k: since this point has the
minimum error in tranéversality on.the solution line. The use
of (H-16), however, is merely a means of obtaining the classi-
cal solution and does net provide an improvement in convergence.
Using (H-6), (H-7) and (H-11) in (10.27), it can be
shown that by using the modified method of matching end points

then
Oh,, = c O (H-18)

From (H-18) it is seen that the rate of convergence for the;
modified method of Section 10.1 is independent of the initial
scale factor for the Lagrange multipliers. As a result, this
modified approach has impreved initial convergence, and can
be conveniently used with the combined algorithm of Section

10.3 to provide the property of rapid final convergence.
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