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NUMERICAL AND ALGEBRAIC METHODS FOR COMPUTER-AIDED
DESIGN OF LINEAR AND PIECE-WISE LINEAR SYSTEMS

-ABSTRACT

A method is presented for linear control system
design using functional relations between system param-

eters and system response. The functional relations
are obtained by frequency domain evaluation of an inte-
gral performance criterion. The performance criterion

is defined as a correlation measure between the response
of a known reference system and the system to be
designed.

A method is also presented for obtaining algebraic
expressions relating the time-domain response of linear
and piecewise linear systems with system parameters By
means of a rational fraction approximation to the expo-
nential eSt and through use of a known technique for
evaluating time-domain convolution integrals, it becomes
possible to obtain the time-domain response without the
necessity of first having to determine.the poles of the
system. The time-domain response is obtained as a ratio
of polynomials in t with. the. coeffié¢ients as algebraic
functions of the system parameters.

The extension of the ‘linear.design theory to cover
nonlinear and multivariable systems is given. Several
examples are given to illustrate the.usefulness of the
proposed technique.
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ABSTRACT

A method is presented for linear control system
design using functional relations between system parameters
and system response. The functional relations are obtained by
frequency domain evaluation of an integral performance criterion.
The performance criterion is defined as a correlation measure
between the responses of a known reference system and the
system to be designed.

A method is also presented for obtaining algebraic
expressions relating the time-domain response of linear and
piece-wise linear systems with system parameters. “By»means-of

st and

a rational fraction approximation to the exponential e
through use of a known technique for evaluating time-domain
convolution integrals, it becomes possible to obtain the time-
domain response without the necessity of first having to
determine the poles of the system. The time-domain response
is obtained as a ratio of polynomials in t with the coefficients
as algebraic functions of the system parameters.

The extension of the linear design theory to cover
non-linear and multivariable systems is given. Several examples

are given to illustrate the usefulness of the proposed tech-

niques.
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1. INTRODUCTION

1.1 The Control Problem

The modern scientific approach to engineering in large
measure consists of the formulation of problems so that methods
éf mathematical analysis may be applied. Engineering design of
physical systems involving mathematical techniques have been
rapidly developed and extended during the past three decades.
One of the most important changes has been the broadening of
interest from the frequency characteristics to the performance
characteristics with the system excited by transient inputs or
by actual typical inputs described statistically.

1.2 Mathematical Models .

The analytical complexity that would result from a
more or less exact description of a control system is avoided
by simplified descriptions, called mathematical models, for the
physical devices making up the system. Feedback control systems
are conveniently classified in terms of the mathematical models
that are employed as linear systems and nonlinear systems. It

is in the field of linear systems that the greatest advances |
‘in design technique have taken place. However, in spite of the
advanced state of linear system design there appears to be room
for furthér development. =

1.3 Trial-and-—error Versus Analytical Design

More recently, control engineers have been exploring
areas of performance analysis and design beyond the trial-and-

error design of linear systems. Exploratory work is being done



in the fields of analytical design techniques to supplement
~ trial-and-error methods for the design of linear systems.

Analytical design techniques are in sharp contrast to
trial-and-error design methods since they proceed directly frpm
the problem specifications to the design without the need for
human intuition. The trial-and-error design procedure provides
no criterion for terminating the sequence of trials when diffi-
culty is encountered in meeting the specifications. There is
no way of knowing if the performance demanded in the specifica-
tions can be obtained or not. The ability to detect inconsis-
tent specifications is a great advantage for the analytical
design method. If the performance obtaiped by analytical
procedure is not satisfactory, the designer is certain that
either the performance specifications must be relaxed or some
of the other specifications must be altered.

The design of control systems by application of the
methods of mathematical analysis to idealized models which
represent physical systems employs a more or less elaborate
performance index as the basis on which the system performance
is judged. The objective of the performance index is to encom-
pass in a single number, a measure for the performance of the
system.

The specifications that form the starting point of
the analytical design procedure, in addition to the statement
of the performance index to be used, must include a statement
of the required property or value that the index must have for

the system to be considered satisfactory. The analytical design



3.
procedure requires no explicit statement concerning the degree
of stability of the over-all control system. All solutions
include the twin requirements that the over-all system be stable
and that it be physically realizable.

Ever since the suitability of functionals in engineering
dynamical investigations was recognized, many authors have pro-
posed various functionals as a quality measure of the performance
of a control system. The confrol system error, e(t), defined
as the difference between the actual and the desired value of a
controlled gquantity or defined as the difference between the input
signal and the feedback signal of a feedback control system was

used to form various functionals of the general form

Fy :Swf[e(t)]dt (1.1)
\O' |

where f[e(t)] is a function of e(t)

and e(t) is a function of time, t.

The minimization of such an integral criterion was proposed as

the basis of a procedure for the optimum design of a control

system.

Analog methods for the optimization of Eq.(1.1) have been
proposed by Bingulac and Kokotovic l. The sensitivity coef-
ficients, that is, the derivatives of Fl with respect to the
system parameters are obtained through the use of a parameter
influence analyser. The parameters of the system are obtained‘

by means of a best match with a second order reference model.

This thesis presents a method which can be used to obtain the



4.
sensitivity coefficients as algebraic functions of the sysfem
parameters.

The determination of the functional

o |
F, :,S\ e?(t)dt (1.2)

0
for the case where e(t) has a known Laplace transform which is
a ratio of polynomials was made by Phillips 2; he used Parseval's
theorem to replace the integral of Eq. (1.2) by a contour. .
integral and gave tables showing the value of functional F2 in
terms of the transform coefficients. Analytical design theory
has since been formulated to implement integral-square-error
performance index for transient signals and mean-square-error
performance index for stochastic signals. Westcott 5 used a
similar technique and gave tables showing the value of the

functional

)
F, =,§ te?(t)dt (1.3)
0
in terms of the transform coefficients. Talbot 4 gave a method

of computing functionals of the forms

00
F, =_S~ %2 (t)at ; n=0, 1, 2, «... (1.4)
0
[44]
and Ty Z‘SN t9%(t)y(t)at ; n=0, 1, 2, «... (1.5)

0



5.
where the functions x(t) and y(t) have known rational Laplace
transforms, showing how to determine the value of these func-
tionals in terms of the transform coefficients. He gave the
solutions in determinant forms.

A summary of the history of the performance index
measures as functions of error is giveﬁ in Table 1.1.

1.4 DPossible Design Methods

Instead of éstablishing some rigia criterion of per-
formance and applying it to the evaluation and design of all
systems, a more flexible criterion may be used which can be
adjusted to fit the particular application of each system. The
system error suitably weighted can be used to obtain such a
flexible criterion. The weighted error can be defined as some
function of the actual system error, the specific form of the
functional relationship depending upon the application of the
system.

A more flexible performance criterion can be established
by using the correlation function formed by the responses of
two systems, the characteristics of one of the systems being
known and taken as a reference. |

Based on the method of computing functionals of the
form F57 given by Eq. (1.5), it is possible to- make a transi-
‘bion. ff‘ém the frequency domain to the time domain and obtain
the time response -of the system in terms of system parameters
and -time. -

1.5 Statement of the Problem

This thesis deals with the development of analytical



Table 1.1 A Summary of the Performance Index Measures as
Functions of Error,

Performance
Index

Year
Proposed

5§ e(t)at
0
0o
j; e?(t)at
0
J{ $2e2(t)at
0

o0
S\ e2(%,7)dt
0

S te(t)dt
0

S te2(t)at
o

S- | e(t)|at
0

1942
1948
1949
1950

1943
1943
1949
1955

1949
1952
1953
1957

1949
1956
1957

1951
1952

1952
1953
1954

1952
1953
1953

Author

Obradovic 5

Oldenbourg and Sartorius
Mack 7
Stout ©

Hall E
Phillips 2
Mack 7
Rosenbrock 10

Mack 7

Fickeisen and Stout 11

Graham and Lathrop 12

13

Crow

Aigrain and Williams *%

Spooner and Rideout 15

Schultz and Rideout 16

Nims 17
. . 11
Fickeisen and Stout

Fickeisen and Stout 11

Graham and Lathrop 12

Westcott 3

Fickeisen and Stout 11
Graham and Lathrop 12
Caldwell and Rideout 18



Table 1.1 Continued

Performance Year
Index Proposed Author
00
g tle(t)] at 1953 Graham and Lathrop 1°
0 |
o0
5 +2]e(t)|at 1953 Graham and Lathrop +°
0] .
00
Jgi tneg(t)dt, n=0,1,2,.. 1954 Westcott 2
0 1959 Talbot 4
[>.0]
J[ le(t,7)|dt 1957 Schultz and Rideout 1°
0
% 2
5 [dgtt] at 1957 Babister 20
0
m .
5; lle(t)]%at, r=1,2,3,.. 1959 Fuller 2%

relations between system parameters and the time domain system
response. Two methods are proposed to determine analytical
relations suitable for design purposes. One method is based on
the use of a correlation function as a generalized performance
function. The system parameters are chosen to obtain a maxi-
mum correlation between its response and the response of a
reference system. Oneﬂbf the distinguishing features of this
approach compared with other techniques is that the reference
system has a specified configuration bu£ is otherwise arbitrary.
As a consequence, the use of this criterion does not place

undesirable constraints on the system pole-zero locations which



may be difficult to satisfy.

Also proposed is a generalized time domain design
method for linear and piece-wise linear control systems which
allows an easy and rapid transition from the pole-zero locations
or frequency domain to the time domain. The mathematical theory
has been applied to the design of linear control systems.

The application of the proposed methods to the design
of a certain class of nonlinear system and multivariable sys-

tems is given.



2. FUNCTIONAL, RELATIONS BETWEEN TIME DOMAIN RESPONSE
AND SYSTEM PARAMETERS
2.1 Outline
Figure 2.1 shows the block diagram of a feedback coh—
trol system configuration. This is a rather general block
diagram in the sense that more complex configurations can be
maﬁipulated into this form. As far as the control system designer
is concerned, he seldom has a completely free choice for the
system. Usually he is faced with a system that is partially

specified.

Actuating
Signal ‘ Actual Output
’ ' Ideal
Compensating Fixed — o + Output
Elements Elements
Feedback
Signal “Feedback Error
Elements

Figure 2.1 Block Diagram of a Feedback Control System.

It is a common practice in the design of practical.
systems to idealize it in one or more ways,'to reduce excessively
complicated mathematics, by a simpler model which retains some
of the more important features of the original specifications.

Invanalytical design methods using performance
indices based on system error, the error is defined as the
difference between the actual output and ideal or desired outputs

The concept of actual output and ideal or desired output will be
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used here to define a generalized performance index for the
analytical design of control systems using transient input
signals. As a first step towards the above objective, a
generalized performance integral will be derived.

2.2 Generalized Performance Integral

Let u=u(t) and v=v(t) be the actual and desired sys-
tem outputs, respectively, of a feedback control system. A4

functional F can be defined by the integral

w .
F :5 uvdt _ (2.1)
4 .

which is a measure of the correlation between u and v. By
introducing weighting factors F can be modified to a functional

I as follows

00 0o o
I =\J~ couvdt f;f“ cluvdt F oeeeenens +¢f~ c uvdt (2.2)
0

0 0
where Cor Cqs sosocnes ,'cn are functions of time. Defining the
weighting functions Cos Cps eeeceecsy Cp S follows
0 1, 2 '
CO = (qt) = l; Cl = _(qt) ; 02 =~ (qt) /2:; o 6 00 00 00
c, = (-1)™(gt)?/n!

where q is a positive number, Eq. (2.2) becomes

% oo n{%®n.n
I 25 uvdt -y qtuvdt + ...... oo + (=1) f gt uvdt/n!
0 |

0 0
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o] : .

0

=‘Jﬁbuvexp(-qt)dt , for large values of n (2.3)

0
The functional I is the generalized performance integral which
will be studied and it may be used to define other functionals.
Differentiating the right hand member of Eq. (2.3) with respect

to g the performance integral Il is obtained as

Il = dI/dq = —J/ﬁbtuvexp(-qt)dt (2.4)
0
Differentiating the right hand member of Eq. (2.3) with respect

to q k times the performance integral Ik is obtained:

I, = de/qu = (-l)kvfthkuv exp(-qt)dt (2.5)
0]
Eq. (2.5) is similar in form to the functional F5 given by
Eq. (1.5) of the previous chapter. It can be seen that Egs.
(2.3) and (2.4) are particular cases of Eq. (2.5) for values of
k equal to zero and k equal to 1, respectively. Egs. (2.3) and

(2.5) will be denoted in the following forms:

mn

wa%uv exp(-qt)dt = (u,v) = I (2.6)
0
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o _
k k
and (-1)-v/h t uv exp(—qt)dt = (u,v)k =T (2.7)
0
where the subscript k in_Imnk denotes the kth derivative of Imn
with respect to gq. The meaning of the subscripts m and n will
be explained later in this chapter. For k = 0, Eq. (2.7)

reduces to

;Jpahv exp(-dt)dt (u,v)O 

mnO
0 = (u,v) - '

(2.6)

mn
where, for reasons of convenience, the subscript zero has been
omitted. -

Though Eq.:(2.7) appears to be the moét general form
from which Eq. (2.6) :and other performance integrals having
various forms of time weighting can be obtained, Eq. (2.6) will
be considered as the equation giving the generalized performance
integral Imn‘ The reason for doing so will now be considered.

Linear system design is often carried out in the
domain of the complex frequencj variable s. The functioﬁs
considered are then the Laplace transforﬁs:U(s)‘and V(é),‘and‘in
the majority of cases, these are rational functions of s. The
integral forms can be evaluated by using Parseval's theorem
to replace the integral by one taken along the imaginary s-axis,
the integrand being a product of transforms. By using Parseval's

theorem, Bq. (2.6) can be written as
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00
I, =df\ uv exp(~-qt)dt

0
+ Jjoo
o U(s)V(-s+q)ds (2.8)
= 2x] 4 y
_jm
Since Imnk is the kth derivative of Imn’
+joo
k
k k d 1

Tk = 4 Imn/dq = E;E 523 U(s)V(-s+q)ds (2.9)

~ joo

Thus it is only necessary to evaluate qu,(z.é) to be able to
express Imnk in a suitable algebraic form in terms of the
coefficients of U(s) and V(s). Hence, I, is chosen as the
generalized performance integral instead of Imnk‘

When the integrand in Eq. (2.8) is in a symmetrical
form, the known properties of symmetrical functions make the
desired result poésible. This may be achieved by properly
selecting the contour of integration so that the integral taken
along the imaginary s-axis is replaced by one taken along a
contour C 2s4., This is justified as long as U(s) and V(s) have

poles in the left-half plane only. Thus, Imn can be written as

1
= E:I?J_ U(s+p)V(—s+p)ds (2-10)
where p = q/2.

It is now possible to derive standard forms by solving the inte-

gral Imn in terms of the coefficients of U(s) and V(s) and the
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parameter p for any given order of denominator polynomials of
U(s) and V(s) with the obvious réstriction that the order of the
numerators must be one less than that of the denominators.
Finally, performing the required operations on Imn’ Imnk is
obtained. The differentiations will now be performed with res-
pect to p instead of q.

If the Laplace transforms of the response functions

U(s) and V(s) are expressed as ratios of two polynomials

U(s) = (2.11)
where
m-1
A'(s) = a'ksk
k=0
(2.12)
m
C'(g) = % c'ksk
k=0
1
and V(-s) = B2 (2.13)
where
n-1
B'(s) = b'ksk
k=0
(2.14)
n
| 1 k
D (S) = % a kS
k=0

‘then U(s+p) and V(-s+p) can be expressed as

Uowp) = $rtEEE - & (2.25)




where

C(s) =

ak_

Ck._.

and |
V(-s+p) =

where

B'(s+p) =

D' (s+p) =

k=0
k+m-1
k+iN i
( i )ak+ip
1=0
k+m
k+iN i
i Cr41P

i=0

e
D'(s+p) ~ D(s

n-1
k
'
bk(s+p)
k=0
n
k
1
dk(s+p)
k=0

15

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)
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n-1
B(s) = bksk
k=0
(2.21)
n
D(S) = dksk
k=0
k+n-1
k+1 i
by = E < i,>bﬁ+ip
i=0
(2.22)
k4n
k+1N 5, i
%{:§ CiDap o
i=0

It is shown in Appendix A that the solution of the integral ImIl
is given by

I, = A'/cmA (2.23)

where A is the determinant of the (m+n)-rowed square matrix M
and A' is the determinant obtained from M on replacing its last

column by the column F, where

. M

. 4. 0

c T 1 )

1 . d

. o 0 ,

M=, . : ° (2.24)
C'm ° d.. .
n-..
0 0 -, .
Ch -dn

F = (fo, £1s oenes Ty 05 ones 0) (2.25)
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and where J

- £ 3£ -
fj = % aibj—i , for 0= j£&Enmn-2.
i=0
In the integral Imn’ the subscripts m and n denote the
orders of the denominator polynomials U(s) and V(s), respectively.

Letting v. = u in Egs. (2.6) and (2.7), yields

00
f u® exp(-qt)dt = (wu) = I__ = J_ (2.26)
0

(2]
: k k.2
and (-1) “J\ tu“exp(-qt)dt = (u,u)k = T = I (2.27)
0

Letting u = v in Egs. (2.6) and (2.7), yields

00
Jf\ v? exp(-qt)dt = (v,v) = I_ = K_ (2.28)
0
x (® .k 2
and (-1) ,;\ t v exp(-qt)dt = (V,V)k =T =K, (2.29)
0

The subscripts m, n, and k have the same meaning as before and
again for convenience the subscript zero in Egs. (2.26) and
(2.28) has been omitted. Using Parseval's theorem and properly
choosing the contour of integration, Jm can be represented in

the following symmetrical form

p+Jjoo
L
n = %3 U(s+p)U(-s+p)ds (2.30)
p-Jjoo
where p =q/2°

and Egs. (2.11), (2.12), and (2.15) to (2.18) hold for U(s+p);

and the solution of the integral Jm is obtained as (see Appendix A)
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J. = (-1)m+L A/ b | _ (2.31)

where A is the determinant of the (mxm) square matrix M' and
A' is the determinant obtained from M' on replacing its last

column by the column L, where

Fco 0 )
o |2 S
‘ ° %2 % %
Com-2 . . Chm-1
L _
and L = (LO, Loy eeeey L2m—2)
J
where 2Lj = Z(—l)j_iaiaj_i , for 0% j€m-1
i=0

m-1
E (—l)J_laiaj_i , for m&j£2m-2 ,

i:j -m+1
Since Jmk is the kth derivative of Jm with respect to q, replacing '
g by p and performing the required operations on Jm’ Jmk is
obtained. The solution of Kn has the same form as Jm where a
and ¢ are replaced by b and d, respectively.

Thus, there are three performance integrals, a gener-
alized performance integral Imn’ and two derived from Imn’ Jm
and Kn' Starting from these performance integrals other per-
formance integrals Imnk’ Jmk’ and Knk can be obtained. These

performance integrals when evaluated appear as algébraic func-

tions of system parameters,
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2.3 Generalized Performance Indices

In designing a feedback control system for a specific
application, the desigper usually has a definite goal in mind.
The control system is to perform some given operation subject
to physical constraints on its response. The designer is,
therefore, faced wifh the problem of translating this essentially
physical information into a mathematical definition of the
desired performance which then becomes a criterion for synthe-
sizing the system. There sometimes arises the problem of |
designing the best possible control system of a given order
of complexity to meet a given requirement. However, it is not
easy to give a precise criterion of best performance. If it is
desired to design a best (in some sense) possible controi sys-
tem, it is necessary to define mathematically a criterion of
performance. One commonly used criterion is the minimum inte-
gral of error-squared criterion for transient inputs. While
mathematically convenient, this criterion has the disadvantage
of giving too great an emphasis to large momentary errors.
‘However, for comparison of performance between widely dissimilar
systems, this comprehensive error criterion is likely to be much
more consistent than any empirical ones. The question then
arises of the possibility of devising a criterion of a compre-
hensive type that will correspond to the accepted empirical
criteria in straight forward cases, but will be available for
wider use as systems become more complicated and diverse. To
" be convenient to apply, such a criteriqn must also be capable

of allowing a simple algebraic representation of the error



20
measure directly in terms of system parameters. This is
possible for the generalized performance functionals chosen .
since they are all capable of algebraic representatioﬁ in the
desired form.

2.3%3.1 Generalized Performance Index Based on System Error

The performance integrals Jm and Kn and Jm and Kn

k k
~can be used as performance indices when u = u(t) and v = v(t)
are replacéd by the system error funcfion e = e(t). Then

Egs. (2.26) and (2.28) give the performance indices as quadratic
measure of error and Egs. (2.27) and (2.29) give the perfor-
mance indices as time-weighted measure of error. Any desired
performance index based 6n error measure can be obtained by .
proper choice of q and k. For the‘specific case of g=0, k=0
Egs. (2.27) and (2.29) reduce to the familiar form of the
quadratic measure of error, the integral-squared—error (ISE).
The time—weighted measures of error, the integral-time multiplied-
squared error (ITSE) and the integral-équared time multiplied-
squared error (ISTSE) are obtained for the cases q=0, k=1 and.
q=0, k=2, respectively. Since'Jm‘and Kn have similar forms,

it is sufficient to consider only one of them. The following
form of Jm is considered here as the generalized performance

index based on system error.

20

I =[ e2(t) exp(-qt)dt (2.32)
0

Minimization of Jm or its derivatives with respect to q can be

used as the criterion for optimum or best design.
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2.3.2 Generalized Performance Index Based on the Correlation
Between the Response of Two Systems

It has been shown that when u and v are replaced by the

system error, e, I Jm and Kn all reduce to the form given by

mn’
Eq. (2.32) and can be used as a performance index, the basis
on which the system performance can be judged. It will now be
shown that I, J_, and K , given by Egs. (2.6), (2.26) and'
(2.28), respectively, can be used to define a generalized per-
formance index based on the correlation between the response of
two systems.

Regarding Eqs. (2.6), (2.26) and (2.28) as the cor-

relation equations between (u,v), (u,u) and (v,v), respectively,

and using Schwarz's inequality yields

[(w,v)]% £ (u,w)(v,v)

or"(u,v)’ < J(u,u)(v,v) ) ‘ (2.33)‘

Rearranging Eq. (2.33), and defining . |

P = l(u,v)'/ j(ﬁfﬁ?????i £1 E (2.34)
a performance index relating Imn’ Jm, and Kn is obtained. The
performance index P given by Eq. (2.34) can be regarded as a
normalized measure of the correlation between the two responses
u and v. P can be regarded as a performance index in the best
match sense when maximization of P is considered as the design
objective. Maximization of P, therefore, is a méaningful ap-
proach and can be used as a basis for the optimum or best design
of a control system. When evaluated, P appears as an algebraic
function of the system parameters. By using a suitable maximi-
zation procedure, values for the unknown parameters which maxi-

mize P can be found. Using time-weighted forms (u,v)k, (u,u)k
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and (v,v)k, P takes the new form P given by

P = [(wv)y|/ (wuw) (v,v), 1 (2.35)

2.3.3 Minimization and Maximization Procedure

_ The perfbrmance-index, choéen on the basis of either
the error measure or the best match measure, when evaluated, will
be an algebraic function of the system parameters. In minimizing
or maximizing the performance index the usual procedure is to
differentiate the performance index with respect to each of the
k design variables, equating each derivative to zero. It is
evident from the form of Eq. (2.2%) that the derivatives, which
are the sensitivity coefficients, are expressed as algebraic
functions of the system parameters. That is, explicit relations
are obtained for the sensitivity coefficients which are determined
by analog means by the method of Bingulac and Kokotovic 1
However, the solution of the k simultaneous nonlinear equétions
for the parameter presents some computational difficulties. The
procedure selected here avoids the differentiation problem and
its assoclated difficulties and has the advantage of being an
automatic method for dealing with the problem of minimiéation or
maximization of the performance index with the aid of a digital

computerlzz.



3. A PERFORMANCE FUNCTION APPROACH TO LINEAR *
SINGLE VARIABLE SYSTEM DESIGN

3,1 Outline

| The following examples demonst:ate the use of the pér-
formance indices P and Jmk in the design of linear singlé input -
single output control systems. In the first example, a linear
third order system is designed on the basiS'of a response cor-
relation,with the resﬁonse of a known second order system. In
the second example, a comparison betWeen unweighted and time-
weighted error criteria is given for the case of a simple second
order system.

3,2.1 Design of g Third Order System

A position control servomechanism having two time con-
stants and én integration and compensated by a phase-lead net-
work, as shown in Figure 3.1, is designed on the basis of maxi-
mizing the cérrelation of its response with that of a reference

second order system for unit impulse input to both systems.

R(s) % a(1+Ts) . K o Lols) o
_ 1+aTs s(l+Tls)(l+T28)

Figure 3.1 Phase-Lead Compensated Position Control
' Servomechanism.

The closed-loop transfer function of the reference
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second order system is

w2

H (s) = < (3.1)
¢ s2 + Zgwcs + wg

where W, s the natural frequency of oscillation of the system in
rad./sec., and €, the damping ratio of the system, are known.
The closed-loop transfer function of the system shown

in Figure 3.1 is

KaTs + Ka
H(S) = 4 _ 3 P
(a1, T %+ {al(Ty41,) 40, T,}8” + (aT+T 4T,)s
(KaT+l)s + Ka} (3.2)

where Tl=4 secs. and T2=l sec. and X, a, and T are regarded as
the design variables with the constraint on a that a=0.1.

The values df X, a, and T are chosen to obtain the
maximum correlation between the two system responses for a unit
impulse input to both systems.

. Denofing the output response of the reference second
order system as V(s) and that of the unknown system as U(s),

for a unit impulse input, Egs. (3.1l) and (3.2) yield

w2
Tle) = s2 + 2?2 s + w2 (5.3)
c c
and U(s) = ) ale + Bo 3 2
[aTTszs +{aT(Tl+T2)+TlT2}s + (al+T,+T,)s
(KaT+1)s + Ka | (3.4)

The maximum correlation between the two system responses is
obtained by maximizing the performance index P such that

l(u,v)] <1 | (3.5)
[ (u,v) (v,v)

max
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where

00
(u,v) :/f\ uvdt
0
% 5
(u,u) =J{\ u dt
0

® 2
and (v,v) :J{\ veat
0

Using BEgs. (2.24) and (2.32) and regarding q = O, that is p = O,
(u,v), (u,u) and (v,v) can be written in the following determi-

nant forms.

2 2
o 0 wc 0 0] aowc
2
c c -2%w w 2
1 0 c c 0 aq W,
2
cy cq 1 —2€wc W, 0
Cx c, 0 1 —2€wc 0
04 c3 0 0 1 0
1 0 cy 0 0 0 0
(u,V) = C— 2
4 CO 0 wc 0 0 0
c c -2%w w2 0 0
1 0 c c
2
c, cq 1 2§wc Wy, 0
c c 0 1 -2%w wz
b] 2 c c
Cy Cx 0 0 1 -2€w
0 Cy | 0 0 0 1
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2
cH 0 0 a4
c c ¢ -a2
2 1 0 1
04 03 02 0
(u u) _ (-l) 0 0 04 0
’ - 204 CO 0 0 0
0

0 0] Cy Cx
2
(v,v) = (51) L0
W, o)
1 2€wc
where cy = Ka ; c, = (KaT+1) ; c, = (aT+Tl+T2)
cz = aT(Tl+T2) + TlTZ ;oCy = aTTlT2
ag = Ka ; a) = KaT

Results obtained by substituting (u,v), (u,u), and (v,v) in
Eq. (3.5) and maximizing P for various values of w, are shown

e used for

in Table 3.1. A brief summary of the method
maximizing P is given in Appendix B. This method avoids dif-
ferentiating P with respect to each of the design variables,
eéuating each derivative to zero, and solving a set of non-
linear algebraic equations. The method works directly with the
expression for P and searches for the maximum automatically on
a digital computer once the search is initiated 23. In terms

of the notations explained in Appendix B values of a« = 3.0,

B = 0.5 and € = 0.1 were used, along with starting values of



K =30, a=20.2, and T = 3.0, to initiate the search for

-maximizing P.
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Given in Section 3.3 are methods of obtaining;

approximate values of design variables to initiate a search on

the computer.

The method is fast and reliable especially when

a large scale digital computer is used.

The meaning of the

number of trials and the number of stages given in Table 3.1 is

explained in Appendix B.

Table 3.1 Values of K, a, T and Pmax for Known Values of W,

and €.

Yo © P No. of | No. of| Approx.
rad/sec _ max K a T Trials | Stages| Time of
, Solution

5.0 0.5 {0.070 2;917 0.100 | 0.235 1972 60 200 sec.
4.0 0.5 10.092 |11.936}| 0.100 | 1.860 1990 60 200 gec.
3.0 0.5 10.239 |52.827| 0,100 | 1.763 1738 60 175 sec.
2.0 0;5 0.505 | 24.609| 0.100 | 2.517 2231 60 235 sec.
1.0 0.5 |1.000 7.115] 0.156 | 2.825 223 7 25 sec.

The step response of the system illustrated in Figure

3.1 for values of K, a, and T corresponding to Pm
given in Table 3.1, is shown in Figure 3.2.
of the reference second order system for w,

is also shown in Figure 3.2.

ax

= 1.0, as

The step response

= 1,0 and e = 0-5

From the results given in Table 3.1 it can be ihferred

that the performance index P could be used to provide a flexible

criterion capable of being adjusted to suit system performance.

A performance index based on system error when minimized becomes

insensitive to parameter variation but the time domain response

of the system, such as the overshoot, could still be sensitive

to parameter variations.

The minimization of such a fixed
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o
{a
ol [
: Ab
=S g
() Compensated Third Order System Response
(b) Reference Second Order System Response
Figure 3.2 Unit-Step Responses of the System Shown in
Figure 3.1 and the Reference Second Order

System.
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performance index, therefore, cannot always ensure meaningful
results and can lead to system designs that are unstable or
physically unrealizable 23. Furthermore, it is usually more
important to minimize the time domain response sensitivity to
parameter changééﬂthéﬁ'it is to optimize the performance index.

To overcome these disadvantages, it is desirable to
allow a degree of flexibility in the choice of a performance
function. The performance function P used here, since it is
based on the response correlation with.a class of reference
systems, gives this flexibility. If « = (al, ceeees ooy an)
represents the parameters of the system to be designed and
B =(Bl, ........ ) Bm) represents the parameters of a reference

system having a known response, then it is possible to determine

the parameters a and B by the operation

Min S |Max P(«,B) (3.6)
{8}| {a}

where S represents some suitably chosen time-domain sensitivity
function for the system and where, in general, the parameters
Bk have specified upper and lower bounds. For example, S could
be the sensitivity of the maximum bverload with respect to
variations in K. Further improvement could be made if the
class could, for exampie; be the class of systems having a
delayed second order response for step inputs. The reference
system variables then become T, the time delay, ¥, the damping
ratio, and W, s the natural frequency of oscillation of the
system. The usevof this idea will be considered in the next

Chapter. By using a class of reference systems, it becomes
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possible to investigate the parameter sensitivity of the time
domain response, for example the overshoot to a unit step input.
Thus, instead of choosing the system given by Eq. (3.6), it may
be more meaningful to choose the system which has least

sensitivity to variations in its time domain response.

%3.2.2 Design of a System With and Without Time Weighting

To compare the merits of different performance
indices a second order position control servomechanism will
‘now be designed on the basis of an unweighted and two time
weighted error criteria. The system is shown in Figure 3.3.

The closed-loop transfer function of the system

is given by

c(s) _ 5 1 (3.7)
R(s) 8 +as +1
- B(s) 1| as)
R(s) / s(s+a) o
Figure 3.3 Second Order Position Control Servomechanism.

where a is regarded as the design variable. It may be noted
ﬁhat if the natural frequency of oscillation of the system is
considered as unity, a equals twice the value of the damping
ratio, §, of the system.

Consider that the system is subjected to a unit step

input and that the value of a is to be found so as to minimize
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the integral of error squared, J2, the first time moment of

error squared, le, and the second time moment of error squared,
J22, in that order.
The error transform of the given system for a unit

step input is given by

E(s) = =12 (3.8)
s + as + 1 ‘

Using the standard form from Table A.2, Appendix A, for p o,

J, = (1 + a2)/2a

J2 is a minimum for a = 1, when J2 = 1.
Using the standard form from Table A.3, Appendix A, for p = O,
4 2.
J5q= (2 + a")/2a
J21 is a minimum for a = 1.19, when J2l = 0,718.
Using the standard form from Table A.4, Appendix A, for p
6 2

Jpo= (a® - a% + &% + 4)/a°

0,

1l

J22 is a minimum for a = 1.3%4, when J22 = 1.737.

The results are summarized in Table 3.2

Table 3.2 Comparison of Unweighted and Time—weighted Error

Criteria,
Jmk Minimum value of Jmk a <
J2 1.000 1.000 0.500
J21 0.718 1.190 0.595
J22 1.737 1.334 0.667
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This example shows how the integral performance
criteria can be used to determine unknown system parameters.
In general, however, one weakness of these criteria is that
there is no direct relationship between the performance
integrals and the time-domain response. To overcome this
weakness a method for determining algebraic relationships
between system parameters and the time-domain response will
‘be developed in Chapter 4.

3.3 Methods of Obtaining Approximate Values of Design Parameters

The search procedure selected for miniﬁizing or
maximizing a chosen performance index on a digital computer
requires a starting value to initiate the search. While it is
possible to arrive at a reasoﬁable initial guess for simple
systems, the problem becomes increasingly difficult as more
complex systems are encountered.

The following sections deal with two methods of
arriving at reasonable starting values for the design
variables to initiate a digital computer solution. The methods
to be discussed use a comparison system and give relationships
between the design variables an? known parameters of the
system to be designed and the gbmparison system. The comparison
system is assumed to be a second order system. However, this is
not a restriction imposed on the method; other comparison
systems could be used. The theoretical development will be

illustrated by an example in Section 3.4.
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%3.%.1 Routh Array Approximation2

Consider the system of Figure 3.4 where K and KT are
regarded as the design variables. The method to be discussed
is based on choosing values of K and KT to give an optimum

correlation with respect to the response of the comparison

system
2
W
B (8) = ———S—p (3.9)
s + 2§wcs + W
R(s) n K c(s)

Figure 3.4 Third Order Control System With Tachometer
Feedback.

The closed-loop transfer function of the system

shown in Figure 3.4 is given by

1
H(s) =

- (3010)
L+7 .2 |

97 14K
12 83 + . T

+ s + 1

The Routh array for the characteristic equation of this
system is shown in Table 3.3, The,characteristic.equation is
obtained by equating the denominator of Eq. (3.10) to zero.
If an approximating transfer function, called an associated

function, of second order is constructed by using the last
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Table 3.3 Routh Array for the Characteristic Equation of the
Given Control System.

r——-—~——~-——— -~ ——-——-—- === =
| u
D 1% 1+Kn
I K K !
| i
| |
b+ 7 I
[ 1 "2

X 1
: I ;
|

| Ky T

l K Tl+Zé :

! |

|

| |

' 1 |

|

! l

e e e - = - - -

three elements of the first column of the Routh array, then
this transfer function will have the same integral squared
impulse response as the system transfer function,Bq. (3.10).
The integral squared impulse response is computed from the
last two elements in the Routh array. The associated function

is given by

A(S) = T ?' l A (3-11)
1*h o |1y 7T
s + - s + 1
K [ K 71 +%

- The natural frequency of oscillation of the system
given by Eq. (3.11) is the same as that of the system given by
Eq. (3.10). As a first approximation in designing the unknown

system, its natural frequency of oscillation is equated to
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that of the comparison system. Egs.(3.9) and (3.11) yield

As a first approximation, therefore,
2
K= (7] + Tz)wc . (3.12)

The energy ratio of the impulse responses of the two
systems H(s) and Hc(s) will now be considered. This ratio
is computed from the first order coefficients of H_(s) and

A(s) which yield the energy ratio

e 2§’/wc
1=
l+KT ) Ziié
K zi+2é

This ratio will be unity for a correlation match in the ideal
sense. Therefore, as a second approximation, the following

equation is obtained°

l+ =K_-+ 3’13
T Wy 7i+2é

Egs. (3.12) and (%3.13) are the required equations from which K
and KT are obtained in terms of the known parameters 2i, Zé, g,
and W,

Additional energy ratios can be defined between the
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elements of the first column of the Routh array and the

coefficients of the characteristic equation to obtain further
- relationships between the system parameters. These energy
ratios are listed in Table 3.4.

The energy ratio method is based on the concept of
obtaining a simple response approximation for a system by
comparing it with a known comparison system. The approximation
is restricted to systems described by a lumped-constant linear

differential equation whose transform is of the following form.

H(s) = 0

The response approximation is performed by placing a constraint
on the ratio between the integrated square of the system impulse
response and the corresponding integral of the comparison
system. |

Since the response of a second order system is'easy to
visualize it 1is convenient to choose a second order comparison
system. However, by means of a Pade approximation, a delayed
second-order response could also be used. Many systems of high
order have responses which can be accurately approximated by
such a delayed response.

3.%.2 Correlation Function Approximation

| For the two system transfer functions Hc(s) and H(s),
given by Egs. (3.9) and (3.10), the following three relationships

are obtained using Parseval's theorem.
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Table 3.4 Energy Ratios Defined From the First Column Elements
of a Routh Array and the Coefficients of the
Characteristic Equation.

Energy Ratio Routh Array
' e -
1
Byo =28, o/Rs ey Bpop  veee B Bg)
|
ooooooo |I an_l an_B e 0 e al }
Ll o o I R [ N N BN . /
11 e K
60000 0 | o ® P P /
! /
. /
By =ag/R 5  Bn2,1 By, ceee s
! /
|
B, =8By D Rpe1,1 Rpe1,2 7
| /
[ /
B, =a/R | Raya K
| /
L Rn+l,l Pl
+Jjoo
2 - ko H (s)H (-s) ds (3.14)
c ~ 2=nj c c '
—jDO
+Joo
T2 1
h -_—2—“3 H(s)H(-g) ds (3.15)
_joo
and +joo
— 1
hh, = 573 H(s)HC(—s) ds (3.16)
_joo

Each of the above three equations can be solved from a set of
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linear equations. Corresponding to Eq. (3.14) the set of

linear equations is

_ 4
W 2 = wc/2
2, + 25wz, = O (3.17)
where = £§
ZZ - c

Corresponding to Eq. (3.15) the set of linear equations is

Ky, = K2/2?12'2
(71 +'L’2)yl + (1+KT)y2 + Kys =0 (3.18)
0%y, + (T+2)y5 = 0
where _ y3 - h2

Corresponding to Eq. (3.16) the set of linear equations is

2 o 2
wcxl + Kx4 = ch
2
—2§wcxl + WX, + (1+KT) X, + KX5 =0
2
X, - 2§wcx2 + WoXg + (7i+?5)x4 + (l+KT)x5 =0
(3.19)
X, - 2§wcx3+ 712’2}(4 +(2'l+2é)x5 =0
where : X- = hh

5 c

In the above equations the variables Zl’ZZ’yi’y2’ etc., represent
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the coefficients of powers of s océurring in Eq. (A.9) in

Appendix A.

Agssuming that h2

il
[ay

that is, Vg = Zp = W /4

Egs. (3.18) and (3.20) yield

17 e
+ o

K., = K
1 + T = Zf7§ i

Solving for X from the set of Eq. (3.19),

AK + BK(1+KT)

(3.20)

(3.21)

X =
5 7 g2

+ EK + FR(14Kp) + G(1+Kp) + H(1+KT)2 +J

(3.22)

where
A= ot T (1-4€7) - 2502 (T +7)
T el 2 c' 1 2
2
B = —LOC
E = 2w§(71+7é)(2€2-l) + 2§w2212é(4§2-3)
P = 28w
c
¢ = 20t 7,(2€%-1) + 28w (T +7Z)
T c"1%2 e 1" 2
2
H = wc
6,2, 2 4 2 5
and J = wT75 + %:%f%) +2%b§%ﬁ§f%)

To maximize the correlation function given by Eq. (3.16), Eq.

(%.22) is differentiated with respect to K.

Equating the
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derivative to zero yields

[ avB(1agy) || -EPre (1441 % + 7] = 0
Therefore, either

A+ B(1+KT) =0

which is a trivial solution,

2

or K% = 6(1+Kp) + H(1+Kp)%+ J (3.23)

Substituting Eq. (3.23) in Eq. (3.22), yields

A 4+ B(l+KT)
X5 = (3024)
2K + E + F(1+Kp)
Assuming that Bh, = hS ,
X5 = w,/43 . (3.25)
Letting a =,wcziz§/(?i+2§) (%.26)

and substituting Egs. (3.21), (3.25) and (3.26) in Egq. (3.24)

yields 5
X ala - a,a ( )
— 3.27
a3a + a4
where 3
EhaZ (5€-12€2)
a, = -
1 T2 2
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3
(7,+7,)
172
a3 = 3¢
and a, =1 + 6?27’T
4 = 172

If w, of the comparison system is regarded as an
unknown gquantity, instead of assigning an arbitrary fixed
value to it, Eq. (3.27) can be used to obtain an approximate

starting value. From Eq. (3.27) it is seen that for K to be

positive,
a,& - a5 > 0
or oc>az/al
that is,
a>—§5—2—'——23 (3.28)
5€ - 12%

Eq. (3.28) provides the relationship between the known parame-
ters of the system to be designed and ¥, the known parameter,
and W, s the unknown parameter, of the comparison system. It
will now be shown how the results obtained in this and the
previous section can be used to obtain approximations to
system parameters which can then be used as initial estimates
for the digital computer solution.

3.4 Illustrative Example

Consider the system of Figure 3.4 for which the system

transfer function is given by Eq. (3.10). Let the comparison
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system be a second order system and its transfer function have
the form given by Egq. (3.9). It is assumed that the time
constants 27 and 2, in Eq. (3.10) and $ in Eq. (3.9) are known
and have the following values.

?1 =1.174 sec,
2& = 0.426 sec.
€ - 0.6

Based on these choices and considering K and KT as unknowns,
values of K and KT will be calculated using the approximation
methods described before.

%3.4.1 Routh Array Approximation

To.obtain a suitable value of W, consider that the
rise time of the unknown system is the same as that of the
comparison system and from physical considerations let this,
for example, be 2.02 seconds. Therefore, for the comparison

gystem, the maximum value of the impulse response is

hmax = l/(RlSG Tlme) = 0.495

In terms of S and Wgs R is given by

max

W -Te tan—l( l~€2/€) '
h o o= == exp - (3.29)
| 1-¢ 180 -

Substitution of the value of h __ into Eq. (3.29) yields

w, = 0.786 rad./sec.
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For this value of w,, EHgs. (%3.12) and (3.13) yield

K = 0.99

1+ KT = 1.82

Results obtained using these values of K and KT as initial
estimates for the design variables and maximizing the
correlation type performance index P are shown in Table 3.5.

The results correspond to the comparison system parameters

056

A

w

o = 0.786 rad./sec.

1l

3.4,2 Correlation Function Approximation
For €= 0.6, Eq. (3.28) yields

a > 0.392

From Eq. (3.27) it is seen that for « = 0.392, K = 0 and for
small values of «, K.is also small. For example, if a = 0.4

K = 0.0034, and Eq. (3.26) gives w, = 1.28 rad./sec. Choosing
a larger value of a, for example « = 1, Egs. (3.26) and (3.27)
yield

w, = 3,2 radfsec.

c

K =1.051

Substitution of these values of Wy and K in Eq. (3.21) yields
The negative value of KT’ as an initial estimate, is the result

of the choice of ?i and Zé and €. The value of W, also depends

on the choice of these parameters.
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Maximizing the performance index P for the above

initial estimates of the unknown parameters K, KT and w,, it is

found that the value of P increases as “b is reduced from the

estimated value of 3.2 rad./sec.

For comparison with the

Routh array approximation results, obtained in Section 3.4.1,

values of K and KT’ corresponding to We,

= 0.786 rad./sec.,

obtained by this method are given in Table 3.5.

Table 3.5 Results Obtained by Maximizing the Correlation Type
Performance Index P on an IBM 7040 Digital Computer.

Routh Array Correlation Function
Approximation | Approximation
Approximate Values
K 0.99 1.051
Kn 0.82 =0.277
w, 0,786 3.2
Maximum Correlation
Values
K 1.00074 1.00083
Kn 0.91208 0.91198
W, 0,786 0.786
Pmax 0.98733 0.98733

%3.4.% Remarks

Results given in Table 3.5 indicate that..irrespective

of the initial value used to obtain a maximum correlation

between the unknown gsystem and the comparison system the
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digital computer program yielded almost identical results.
It can, however, be seen that the Routh array approximation gave
initial estimated values closer to the.maximum correiation
values of the design variables. Furthermore, the correlation
function approximation method becomes difficult to handle as
the complexity of the unknown system increases. From this
point"bf view the Routh array approximation has an advantage

over the correlation function approximation.
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4. ALGEBRAIC EXPRESSIONS RELATING THE TIME-DOMAIN
RESPONSE WITH SYSTEM PARAMETERS

4,1 OQutline.

A continuing problem in systems design is to determine
the relationships between time-domain response characteristics
and system parameters. The root-locus and the parameterrplane
methods are graphical means of establishing numerical relation-
ships between the characteristic roots of linear time-invariant

systems and system parameters.25

Computer solutions of system
~differential equations, whether obtained by analog or digital
means, are essentially numericel in nature and can only Be used-
to detérmine empirical relationships between system parameters
and system response by curve fitting techniques. It has been
suggested that the initial value theorem and a Taylor series

could be used to obtain analytical relationships.26

'However,
little use has been made of this suggestion because of the poor
convergence of the Taylor series. Better methods for the eval-

27 and

vation of system response are the state-space approach
the use of moments and special sets of polynomials.28 Howéver,
these methods are again numerical in nature. The following
sections deal with a technique which determines algebraic rel-
ations between system parameters and the time-domain system
response which is superior to the Taylor series approach both
in the accuracy achieved with a given number of terms as well

as in its computational convenience. Application of this

technique to the analysis of piece-wise linear systems will be
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discussed in Chapter 5.

4.2 Generalized Time Domain Design Method

Congider the feedback control system of Figure 4.1

with the closed-loop transfer function having the general form

' a s
H(S) - n-1

- oon
© 0O & 8 6 0 0 06 8 8 6 0 0 0 0 6 8 0 0 c
c S + - + cqs + ¢

L1 K 1 T S O>
g;_ i s(l+Zis)(l+Zés)

FPigure 4.1 A Feedback Control System.

Taking the inverse Laplace transform of H(s) yields

n(t) = _1_§ H(s)exp(st)ds - - (4.1)
2m ] ‘C

N\

BEg. (4.1) is inconvenient in control system design
because of the fact that it does not yield any direct relation-
ship between system parameters and system response. One such
relationship is obtained by relating a Taylor series of H in

powers of 1/s in the frequency domain to a Taylor series of h
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in powers of t in the time domain26. The expansion of h in

the Maclaurin series form yields

h(%) = n(0) + th'(0) + $°B"(0)/2! + wuvenn
+ 50 (0) /s
"where h(0) = ay
h'(0) = a, - clh(O)
h(k)(o) = 8,7 - clh(kél)(o) - e ;.. - ckh(O).

The usefulness of this approach of time domain design is,
howéver, lost because of the necessity of employing a large
number of terms even for simple systems.

A new method for obtaining direct algebraic relations
between system response and éystem parameters through use of
Eq. (4.1) will be presented in Section 4.3. It appears from
BEq. (4.1) that if a system with a transfer function Hc(s) =
exp(-st) could be used, it would be possible to obtain h(t)
in terms of the system parameters and t following the procedure
for evaluating I in Eq. (2.23). This, however, requires
Hc(s) to be a ratio of polynomials in s, and that the denominator
of Hc(s) be a Hurwitz polynomial. The required representation
for exp(-st) can be obtained by means of a rational fractional
approximation. A Taylor series approximation to exp(-st) is
one such possibility. However, it is commonly accepted that
Padé approximationé are éuperior to a Taylor series approxi-

1
mation. Pade approximations for exp(st) are given by
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Fuv(st)
Puv = exp(st) = lim
(utv)—om M (st)
uv

where Fuv(St) 1. u(st) N u(u-l)(st)2 .
UV 21 (uav) (urv-1)
N u(u—l)......(@(l)(st)u
WUV ) e e v e eennnnnn (v+1)
2
and Guv(st) =1 - v(st) + v(v-1)(st) + oeeen
v+u 2! (v+u) (v+u-1)
N (_i)v V(v—l) ......... (2Xl)(st)v
VI(VHL) e v v vennnnn (u+l)

' : ’
Pade approximations of exp(st) for various values of u and v
are shown in Table 4.1.

4.3 The Derivation of Algebraic Relations Between System
Response and System Parameters

The technique to be discussed can be applied to time-
invariant linear and piece-wise linear systems and is based on

Parseval's identity

I8 v/ﬂwu(t)v(t)dt = _1 yjfyqa}(s)U(—s)ds - (4.2)
0 2n ] joo :

and on a method given by Talbot' for evaluating Bq. (4.2).
" Talbot's method requires that u(t) and v(t) be the output
response of stable time-invariant linear systems and is a
generalization of the well known technique for evaluating

- mean-sguare integrals.
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1
Table 4.1 Pade Approximations of exp(st) for Various Values of

u and v,
u v Py = exp(st)
2 st
1 1 2 ='8%
1 o 6 + 2st —
6 ~ 48t + 87t
> > 12 + 68t + 82t2
12 - 68t + s2t2
60 + 24st + 3s2t2
2 2 22 3.3
60 - 36st + 987t° - 5%
120 + 60st + 12s2t2 + 53t3
3 3 55 3.3
120 - 608t + 1287t° - st
3 4 840 4+ 360st + 608°t° + 4s %>
840 - 480st + 1205°%° - 16s°t° + sttt
A s 1680 + 840st_+ 1808°t> + 2080t 4 gtt?
1680 - 840st + 1808°t° - 20s°t° + sTt4
Let V(s) = A(s 3 U(-s) = B(s
(s D(s
where | m~-1 n-1 K
A(s) & aksk : B(s) & b, s
=0 =0 (4.3)
m n
C(s) 4 cksk : D(s) & > dksk
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and where C(s) and D(-s) are Hurwitz polynomials. The
evaluation of Eq.(4.2) could be performed by a partial fraction

expansion of the form
A%s%B%s; = 958% + Rés; (4.4)
C(s)D(s D(s C(s

R(s) = Ym" A(s))B(s, ) 1 (4.5)

C(s k=0 D(sk)C'(sk7' s-s)

and by completing'the path of integration along an infinitely

where

large semicircle in the left-half s-~plane. Thus,
B- A(s,)B(s,)
I=) EA Sy k (4.6)
— 1
k=0 D(s, )C"(s,)
= 1lim sR(s) (4.7)

s—o Cl(s
However, the evaluétion of I by Eq.(4.6) requires the numerical
determination of the characteristic roots, which can be avoided

if suitable use is made of Eq.(4.7). Let

- -1
R(e) =50 ek a(s) =§ 0, 5" (4.8)

+M—2 Kk
A(s)B(s) = £, s - (4.9)

F(s).
It follows from Eq.(4.7) that

I = Tm-1 (4.10)

and from Eq.(4.4) that

F(s) = Q(s)C(s) + R(s)D(s) (4.11)
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Substituting Eqs.(4.3) and (4.8) into Eq.(4.11) and

comparing like coefficients of é yields

Coqo + + doro = fo
¢4, + coql + + dlro + dorl = fl
. . (4.12)
. + dnro +
cmqo + = fm
°nip-1 * dnrm—l =0
where f;, = O if k>n+m-2. The system of Eq.(4.12) can be
solved for ro_1 and substituted into Eq.(4.10). Thus
I =14 (4.13)
Cn A
where
o dq
i 0 0
: c . d
. o .0 (4.14)
A = Cm . dn )
0 . 0
c " 34
m n

and where A' is obtained from A by replacing the last column by
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the right hand column of Eq. (4.12). The result given by

Eq.(4.13) expresses I in terms of system parameters. Consider
now the possibility of expressing I in terms of a time-domain
response. If u(?) = §(7-t), where §(t) is the unit impulse,
then

U(-s) = exp(st) ; (t >0) ‘ (4.15)
and Eq.(4.2) reduces to the conventional inverse Laplace
transform. However, Talbot's method does not apply for
Eq.(4.15). On the otherhand, it is known that Eq.(4.15) can
be approximated by means of rational fractions, for example,
29

1
the Pade approximation

(st) =60 - 24st + 3(st)2 (4.16)
60 + 365t + 9(st)% + (s%)°
may be used to approximate the ideal delay exp(-st). Let

Poz

umn(f) be the impulse response of a system whose transfer

function is‘Pmn(st). For the all-pass case where m = n,

u (%) = (-1)78(2) + 6, (T-t), (£>0) (4.17)
and for the low-pass case where m = n-1 )

w (T) =§_(T-t),  (£>0) (4.18)

It is a consequence of the Padé approximation that

Lin ., (7) =8(7T) (4.19)

For the all-pass case, let B(s) and D(s) be poly-
nomials in s which have no common divisor and which are defined
by

Pnn(—st).‘ = (-1)" + g 2) (4.20)

Substituting Eq.(4.17) and Eq.(4.20) into Eq.(4.2) yields
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+joo
| B
v (£) = ’z‘i—gf TS e (421)
= joo
where
0o
v (t) & j v(7) &, (z-t)a7, (t>0) (4.22)
0

For the low-pass case, let B(s) and D(s) be polynomials in s

which have no common divisor and which are defined by

B, (-st) = gg:g | (4.23)
Substituting Bgs.(4.18) and (4.23) into Eq.(4.2) yields

+joo B(s
vmn(t) = 5%7 VJA V(s)D - ds (4.24)
[

where

oo
JAY _ .
Vo (t) 8 f v(z) &, (T-t)dz, (t>0) (4.25)
0
The integrals in Egs.(4.21) and (4.24) can be expres-
sed in the form of Eq.(4.13), consequently
Vo (8) = E;‘% ’ (£>0) | (4.26)
m

It follows from Eqs.(4,l9), (4.,22) and (4.25) that

13 (%) = v(%) , (t+>0) | 4.27
nifaa vmn( ) = v( > ( )

Thus, Bq.(4.26) gives the desired algebraic relation between
the time-domain response of a system and its parameters.

4.3.1, Illustrative_Example

To illustrate the proposed method consider

V(s) = 28° + 3.58 + 1.75 = A(s (4.28)
s +_3s2 + 2.758 + 0.75 Cls
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and choose Eq.(4.16) so that Eq.(4.23) is used. The choice of
Eq.(4.28) is made so that a compafison can be made with the

state~space method proposed by Liou which is claimed to be

superior to classical methods. Eq.(4.14) yields
0.75 0 0 60 0 0
2.75  0.75 0 ~36% 60 0

R 2.75  0.75  9t° 36t 60

1 3 2.75  -t° 9%° -36t|  (4.29)
0 1 3 0 -4 92
0 0 1 0 0 -t

and Bq.(4.9) yields
£, = 105 , £, = 210 + 42%, £, = 120 + 8.4% + 5,252
£5 = 48t + 10.5t° £, = 62 £, =0 " (4.30)

The response v23(t), given by Eq.(4.26), is expressed
as the ratio of a fifth order polynomial in ¥ and a sixth order
polynomial in %. Table 4.2 compares the results given by Liou
with Eq.(4.26). A direct comparison is not possible. However,
Liou's method requires the computation of ninth-order matrix
products and is essentially based on a Taylor expansion which
includes terms up to the ninth order. For the initial portion
of the response Eq.(4.26) is not only a simpler representation,
but has the further advantage that system parameters enter in a
simple way. This is readily seen by replacing the numerical
entries in Eq.(4.29) by parameters. The response given by

Eq,(4,26) then consists of a ratio of polynomials in t with the
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Table 4.2 The Exact and Approximate Solutions of the System

of Eq.(4.28).

t = nT v(t) VQB(t) Exact
Solution

0 2.00000 2.000000 2.00000
0.1 1.76781 1.767809 1.76781
0.2 1.56775 1.567742 1.56774
0.3 1.39515 1.395146 1.39515
0.4 1.24604 1.246038 1.24604
0.5 1.11701 1.117022 1.11700
0.6 1.00515 1.005196 1.00515
0.7 0.907982 0.908084 0.907979
0.8 0.823383 0.823582 0.823379
0.9 0.749542 0.749889 0.749538
1.0 0.684914 0.685474 0.684912

system parameters entering in a simple algebraic manner. It is
evident from this representation that time-domain response
sensitivity to parameter variations can be readily evaluated.
This as well as other possibilities will now be discussed.

4.4 Applications to the Time-Domain Analysis of Linear Time-
Invariant Systems

Consider a feedback system whose closed-loop transfer
function is given by (Figure 4.1)

H(s) = K (4.31)

?’172s3 + (2’l+’52)s2 + (L+Eg)s + K

It is of interest to determine how the gain K and the tachometer
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feedback parameter KT affect the maximum overshoot for a unit
step input. ILet h(t) and g(t) be the unit-impulse and unit-
step response, respectively. The maximum overshoot occurs at
the first zero of h(t). This can be found from Eq.(4.26) by

choosing V(s) and, for example, U(s) = P23(st):

X 0 0 60 0 . 60K
14k, K 0 -36t 60 24K
C+7, 14K, K 9t°  -36t  3t°K
Lz, 747, 1K, -t° 9% 0
0 (L 7+z, 0 -7 0
0 0 7, O 0 0

by (%) = z;z“' (4.32)

12 1x 0 0 60 0 0

14K, K 0 -36% 60 0
7,47, 1+, K 9t° =36t 60
7,7, 7T, LK, -t 9% -36%
T A Z+z, 0 w0 9t?
0 0 2.7, O 0 -t

Equating the numerator determinant of Eq.(4.32) to zero yields-

6,2 5 4 3 " 2
t°K° - 8t”K(1+K;) ~ 128% K(?i+2é) - T44t7KT 7, + 2067 (1+K,)
- 840%° (14K,)2,7), + 120t3(l+KT)(Zi+Zé) + 1200t2(21+25)2

2 2
=0 (4.33)
+ 9600t(7i+?é)2ifé + 36OOZ;Z2

If Zi ,'Z2 and t = tm are specified, Eq.(4.33) is a quadratic

form in K and l+KT and shows how these parameters must be rela-
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ted if the meaximum overshoot is to occur at the instant tm‘
The maximum output amplitude g = g(tm) can also be expressed
in the form of Eq.(4.26). To obtain the desired result let
A(s) and C(s) be polynomials in s which have no common factor

and which are defined by

G(s) =1 +H(s) =1 = 1 + A(s ' (4.34)
)

S s C(s

If V(s) 4 A(s)/C(s), the inverse Laplace transform of
Eq. (4.34) yields ’

g(t) =1 +v(t) , (+>0) (4.35)
and from the previous discussion it follows that v(t) can be
approximated by Eq.(4.26). Thus

g, (t) =1 + v, (t); (t >0) (4.36)

is an approximation to the unit step response where

K 0 0 60 0 f

0
1+Kq K 0 =36t 60 1
7,42, 1+, K 9t? 36t 1,
nT, %4z, LK, -t 9% £5
0 2,7, 7+7, O -7 £,
0 0 7z, 0 0 £
Voo (t) = Zi%, ' (4.37)
K 0 0 60 0 0
14K, K 0 -36t 60 0
7,47, 14K, K 9t°  -36t 60
rnr, 4% K, -t 9t 36t
0 77, %%, 0 2 9t°
| o 0 77, o 0 42
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and where

fo = 60(L4ky) ; £, = -60(ey+7) - 24(14Kg) s
£, = ~602,7, - 24(7_l+?é)t - 3(1+KT)1:2' ;

fs = ~240 7, - 3(2‘l+2'2)t2 ;o Ty = -37172t2 ;
fo = 0.

Figure 4.2 illustrates the type of data that can be
obtained from Eqs. (4.33) and (4.36) where the choice 21 = 1.174,
Zé = 0.46 has been made. By choosing 1+KT and tm’ Eq.(4.33)
can be solved for K and Eq.(4.36) can be sol&ed for the maximum
output amplitude g The time-domain sensitivity of 8n and tm
to variation in K and KT can be determined from Figure 4.2.
The stability boundary (SB), defined by the values of K and Kj
which result in an unstable system, is also shown in Figure 4.2.
It is interesting to note that with suitable restrictions, the
proposed method determines the initial response of unstable
systems as shown in Figure 4.3. To discuss the method for an
unstable system, direct use must be made of the inverse Laplace
transform |

c+Jjoo
g(t) = 1 H(s) exp(st)ds ; (+>0) (4.38)
2| S :
..joa »
where the line c+jw is chosen so that all poles of H(s) are to
the left, Provided that the poles of Pmn(-st) are to the right
of this line, the exponential function in Eq.(4.38) can be

approximated by Pmn(-st) and the integral
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ct+joo
A
gn(t) & 'zij Eéﬁl P (-st)ds ; (£>0)
’ C-jOO (4039)

evaluated by the method of residues, that is, Egs. (4.6), (4.7)
and consequently Eq.(4.13) then remain valid and can be used as
an alternative method for evaluating Eq.(4.39).

Figure 4.4 illustrates a plot of Eq.(4.36) for the
case K = 1, KT = 1.7, compared with the exact response. The
closed~loop transfer function for this case is

H(s) = _ 2 (4.40)
2 4 3,48 + 2

&0 + 3.2s

The accuracy can be improved by choosing a larger
value of n. However, even for the choicem = 2, n = 3, it is
seen that reasonable accuracy is maintained up to the first over-
shoot.

4,5 Method of Residues

If most of the system parameters are specified numeri-
cally eq.(4.26) can be readily evaluated by a digital computer,
even for sYstems of high order. However, if most of the system
parameters are initially unspecified, the algebraic forms obtained
from Eq.(4.26) could become unwieldy. An alternative approach,
based on the method of residues applied to a form such as
Eq.(4.39), could then be considered. The conventional method
for evaluating Eq.(4.38) is to complete the path of integration
in the left-half s-plane and requires that the poles of H(s)

be determined. However, if Eq.(4.39) is used, the path of
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| tm7
400 ’
4.2
0.877 4.4
4.6
4t8
0.89 5.0
&m 0.937
1.044
!
1
0 , ) N $ L == l+KfT‘-
0 1 2 3 4 5 6 -

FPigure 4.2 The Gains K and KT as Functions of Time tm
of the First Maximum Amplitude 8 '
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Figure 4.3 The Exact and Approximate Unit-Step Responses
of the System Shown in Figure 4.1 in the Case
of Instability.
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integration can be completed in the right-~half s-plane and

yields g (t) =y Bz Bs
n -

i) - S (4.41)
k=1

D’(sk)

Sk

1-5‘

g(%)

O.SF

0 - i . . I I 1 -
o) 2 4 6 8 E

Figure 4.4 The Exact and Approximate Unit-Step Responées’
: of the System Shown in Figure 4.1.

where the form of Eq,(4°23) has been used and where Sy are the
poles of Pmn(—st). If, for example, n = 3 is chosen, Eq.(4.41)
contains only three terms irrespective of thé order of the
system. Figure 4.5 illustrates the response obtained from

Eq.(4.41) where H(s) is given by Eq.(4.40).
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1.25

1.0

0.75f

0.25}

0 - : L - . . N
0 2 4 6 8 10

Figure 4.5 The Exact and Appyoxiﬁéte Unit-Step Responses
of the System Shown in Figure 4.1.
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5. NONLINEAR SYSTEM DESIGN

5.1 Outline
a Any system with any number of loops and linear
elements can be reduéed to an equivalent system having the
block diagram representation shown in Figure 5.1 provided that
the system contains only one nonlinear element.
.The characteristic of the nonlinear element is taken

to have the form shown iﬁIFigure 5.2 so that it lies in the

N - G(s) ~C(s)

Figure 5.1 Noenlinear Control System.

/

N(x)

Figure 5.2 Characteristic of the Nonlinear Element
and its Linear Bounds.
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sector formed by the x-axis and the line
y:kx

where k > 0.

The linear part, given by G(s), in Figure 5.1 can be
designed on the basis of an optimum output correlation of the
closed loop system with respect to the output of a closed loop
comparison system where G is replaced by Gc. .The paramefers
of the comparison system are assumed to be known except for
the optimum gain K. X can, however, be expressed as a function
of the slope k and the parameters of the comparison system.

For example, for a second order system K could be expressed as

where €; is the damping ratio and W, is the natural frequency
of oscillation of the comparison system.

5.2 The Design Principle

Replacing the nonlinearity in Figure 5.1 by k and
the linear part by the comparison system Gc(s) the following

equivalent system of Figure 5.3 is obtained.

R(s) 1 Xl k WY G (s) > C(s)

Figure 5.3 Equivalent Linear System for the
System of Figure 5.1.
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In order to define the optimum gain in terms of

k and the known parameters of the comparison system, Popov's30
criterion for absolute stability will be used. Popov's criterion

for absolute stability for the system of Figure 5.3 requires

that Re [ (1+jwq) Gc(jw)] +1/k > 0 (5.1)
' ' *
Im [GC ( J m)]
|
/
/ / 0
W ()=—»00 W= * .
O A\\\\:://ﬁéiii\ =:Re[GC(jwﬂ
I
Popov line of / Locus of )
. *
slope = 1/q ~~—__ ! Gc(jw)

'*
Figure 5.4 ©Popov Line and Locus of Gc(jw).

where ¢, an arbitrary real parameter, determines the slope of

the Popov line shown in Figure 5.4. The system is stable pro-
vided that the locus of Gg(jw) lies to the right of the

Popov line passing through the point (-1/k,0). In Figure 5.4

the dotted line represents the tangent to the locus of Gg(jw)

at the critical frequency w, and

Re [Gg(jwﬂ Re[Gc(jwﬂ

and Iﬁi[Gz(jwﬂ = wIm[@c(jwﬂ'

If the arbitrary variable q is chosen so that the
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Popov line passing through the point (-1/k,0) is parallel to

the tangent to the locus of G’C‘(jw) at the critical frequency,
then the stability of the system in the Popov sense is ensured.
The above value of g when substituted in Eq. (5.1) will then
define a range of the optimum gain K of the comparison system.

5.2.1 Choice of g for the Popov Line and the Range of K

Consider the following comparison system given by

6 (s) = s (5.2)

‘ 2 2
(s+b) (s“+2 €chs_+u>c)

Substituting s = jw and separating the real and imaginary

parts yields

K l:bwi- oo2(b+2 5°cwc)]

Re [Gg(jw):l Re [Gc(jw)] =

' (w2+b2) [( wg—w2)2+4§§w§w2]

(5.3)

and

Koo [( w?-wi)-2 ’fcwcb]

In (6% ()] 'wIm[Gc(jw)] -——
(0w +b )[(wi—w2)2+4€iwiw2]

(5.4)

The locus of Gg(jw), shown in Figure 5.4, cuts the real axis

in the left half plane at w = w,., the critical frequency.

Equating Eq. (5.4) to zero yields
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The positive value of wolis taken since the locus of Gg(jw)
is plotted for positive values of w only.
The slope of the tangent to the locus of Gé(jw) at

w,. is given by the expression

0
2

W+ 2€wb

< c.< (5.5)

2§2w0+ b

Substituting the value for Gg(jw) into the inequality (5.1)

yields

K[bwi - wz{(b+2 Sw,) - q(w§+2 Qub) + qwz}]

eI

+=2>0

(w? +5°) [(wg—wz 24 4?2 wiwzlj
(5.6)

Choosing the slope of the Popov line equal to the slope of
the tangent to the locus of Gg(jw) at wy and using Eq. (5.5)

results in the following expression for q:

2% w_ + b

c C
Q=2 ?
wc + 2 cwcb

Substituting this value for g into Eq. (5.6) and evaluating

it at the critical frequency yields

-K
2
+2%w.b + b°%)

1
5 + % > 0

2 fcwc(wc

Thus the range of K is given by
2 2
0 <kk <2 8w (Wit 29w b + D7)
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where k, §E, W, and b are known quantities.
The linear part G(s) can now be designed on the
basis of an optimum correlation with respect to the

comparison system Gc(s) by maximizing the performance index P,

given by Eq. (2.35), where

U(S) = kG(S)
1 + kG(s)
and
kG
(s} o(s)
1+ ch(s)

The critical frequency Wy s the slope of the Popov
line %, and the range of the optimum gain K for several
comparison systems are given in Table 5.1.

The stability of a system designed by the above
technique cannot be unconditionally guaranteed. However, since
the responses of the linearized systems are similar which is a
consequence of maximizing P, it follows that G(jw) must
approximate Gc(jw) over a range in values of w. Thus if Gc(jw)
does not cross the Popov line it can be anticipated that G(jw)
will not cross the Popov line. Thi; approach cannot, therefore,
guarantee a suitable response in the time-dpmain° It does,
however, result in a comparatively simple way ~for choosing
system parameters. This method could be used to determine
suitable initial estimates for the time-domain approach

discussed in the following section.



Table 5.1 Critical Frequency, Popov Line Slope and Range of Optimum Gain
) in Terms of Known Comparison System Parameters.

Comparison System

Critical Frequency

Popov Line Slope

Range of Optimum Gain

Gc(s) Wy 1/q K
K 2 L KK < 00
2 L 2 %wc 0
sT o+ 2 %wcs + W, :
— X 5 w, w, /28 O<kK<2§CmC3
s(s® + 2§’chs + mc)
e wg + ZS%w b 5 5
5 : 5 W o+ 2§’cwcb 5T O<kK<2'§cwc(wc+2 %wcb+b )
(s4b) (s° + 2€ w s+w”) : “ %%
cPe" e
K bw, - .WJ2%%“” 2%%Pw&2%%bm)
s(s+b) (5212 Qu_s+u’) 2%We + P 28 (0242 Sw_b+b2)~bw . OIS (2% b)?
* e e" e cic e c - t
(a—b)m2+2€ w b -{(an—b)w‘2 2€ w b 2
K(s+a) TVC coC ,cz ce y 22§u>[w -1
R 2 ‘ 2 a = (b+28w_) “fa—-(b+28 w bfa—(b+2 ®w_)
(84b) (s +2?chs+coc) c"c i { c el 0<KE< { §w, }

[ (a&b)cpiaﬁ %wcb ."‘
+[ {a(b+2 ?cwc)]
“ifa-(b+2 ?Cmc)}

a-b - ZA%wC

TL
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5.3 Time-Domain Analysis of Piece-wise Linear Systems

Consider the piece-wise linear feedback system
illustrated in Figure 5.5 where the nonlinear element has a
- saturation type of characteristic. This type of non—iinearity
approkimates the saturation characteristics of many energy
conversion devices at high signal levels. The saturation level
in this example is taken as vy = 1.4. The method to be discussed
is, however, also applicable to the case of amplifier saturation

where the nonlinear element precedes the linear element.

147-

Vs s(L+s) . °

Figure 5.5 A Piece-Wise ILinear Feedback System.

Let v(0) = 0 = v(0) be the initial conditions and let the input

be a unit step. Let v, = v, v v. Before saturation occurs,

1
the state equations are

2:

(5.7)
v2 + V2 -+ lOVl = 10

Solving Eq. (5.7) by Laplace transform methods yields
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v, (1) h- +h h v, (0) 1-h_=h
1 _ 1772 1 1 + 172 (5.8)
v2(t) —thl h2 v2(O) ' thl
where
+Jjoo +jo t)“
hy A 2;‘] S exp(st) 4. hy = Z}L’jg S2eXD(S ds
o S t+S+10 —joo sA+s+lO
(5.9)
For the given initial conditions Eq. (5.8) reduces
to
vl(t) l—hl—h2
= , 0t £+4  (5.10)
v2(t) thl
At the instant tl of saturation, the state equations
change to
V) =V, = 0
o (5.11)
Vo + VY, =7
A
where y = lO(l—vs)

and where vS is the saturation level of the nonlinear element.
Solving Eq. (5.11) by Laplace transform methods yields

vl(t) 1 1-h vl(ti) y(t—l+h3)

5

v, (1) 0 hs/ \Vp (%) y(1-hy)
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where

n 8 L1
T

+ Jjoo
expgst)
3 = Bxj g s+1 98 (5.13)

At t = ts, the state equations are again given by Eg. (5.7)
and Eq. (5.8) can be used provided that vl(O) and V2(O) are
replaced by vl(tz) and v2(t2), respectively. The functions hq,

h h, can be evaluated to any degree of accuracy in the form

2’ 73

of Eq. (4.26) by means of a rational fraction approximat%on to
e_St° The choice of a rational fraction approximation is based
on a coﬁpromise between the desired accuracy over a given period
of time and computational simplicity. If, for example, P23(st)

is used and if v = 1.4, Eqg. (4.26) yields

~ 300t2-240t%-3780t° +360t2+3600t
1000t°+900t° +4500t4 +2640t7+2700t% +2160t+3600

. 5100t%+4804°-15660t°=1440t+3600

h, 2
2 T 10002490012 +4500t4 1264015427002 42160443600
2
h ; Et _2ét+6o (5,14)

3 7 42,9t24364+60

Figure 5.6 shows the response v(t) obtained from
Bgs. (5.8), (5.10), (5.11) and (5.14) compared with the exact
response. Since the matrices in Eqs. (5.8) and (5.12) are
state-transition matrices, it is seen that the elements of the
state-transition matrices can be represented in the form of
Eq. (4.26), that is, the elements can be expressed as the ratio

of polynomials in t with coefficients which are algebraic
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functions of the system parameters. By means of these
algebraic forms, the parameters of a piece-wise linear
control system can be directly related to its time-domain
response. The application of these forms to system design and
to the determination of response sensitivity to parameter
variations is similar to that given in Section 4.4 and will not

be discussed further.
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6. MULTIVARIABLE CONTROL SYSTEM DESIGN
6.1 Outline
The design of multivariable control systems utilizing
matrix formulation has been considered by many authors°31’32’33
While some of them have been concerned with the gquestion of
physical realizability, the problem of relating system parameters
to time-domain response and interaction in the time-domain are
not considered by these authors. Interaction within a multi-
variable control system may, in some applications, be
desirable; the interaction being controlled rather than
removed. Recognizing that the physical construction of a
completely noninteracting control system is impossible, a root-
locus design method34 applying the techniques of single-variable
system design has been suggested. However, the practical
advantage of the root-locus method applied to multivariable
control system design could be reglized only if a rapid
transition from the pole-zero locations to the time-domain
characteristics could be made. Two methods of designing
multivariable control systems, based on the methods of linear
single-variable control system design discussed in
Chapters 2 and 4, are given in the following sections.

6.2 Design Method Based on Performance Functionals

Consider the system of Figure 6.1 which represents
an interacting plant with facilify for compensation to be

and G,

inserted in as Gll 55
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Assume that Hy, = 1/(s+1), Hy, = Hyy = 1/(s+20),
Hy, = 1/(s+2),
Gyq = Kl(s+al)/(s+nlai), ny< 1
G22 = K2(s+a2)/(s+n2a2), n,< 1.

The group of design. variables Kl’ K2, Gy, 05y Nq and n, are
positive real numbers.

The equations describing the block diagram of the

system are _
o Gyt (I4Coplop) = By Gpoth oy , Je2tiop
1= A 1t T A B
o . Sufar, Coollop (14619 ) = GpGpofh oty
> = TE Ry 5 ' 2
where A = (1+G11Hll)(l+G22H22) - GGy 0, HH,y
-
B—=) G11 Hiq
Hop
/
— Fio

R, %?. - Gop Hoo

" Figure 6.1 Multivariable Control System.

Consider the case when R2: 0,

C A
—R-]‘:ﬁ'l'— (6.1)
1 11

where A, = Gll[Hll__H12H21{G22/(1+G22H22)B
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Eq. (6.1) can be represented by the block diagram shown in

Figure 6.2. Similarly, if R, = O,

| =
C A
ﬁg = 1 +2§ - (6.2)
> 22
where Apy = GppHyp = HypHy [Gh/ <l+G11H11>H

then the block diagram representing Eq. (6.2) is shown in
- Figure 6.3,

Considering Egqs. (6.1) and (6.2) as the transfer
functions of single variable systems it becomes possible to
determine two sets of parameters of the compensating networks

Gll and G22 by maximizing the correlations of Cl in Figure 6.2

+ _ +
B0 "un f1 — Q1

12721 |

22

Figure 6.2 Block Diagram Representation of Egq. (6.1).

and 02 in Pigure 6.3 with the output responses of two known
reference gsystems. The design technique has been described
in Section 20302 of Chapter 2. The choice of which set of

parameters to be used may be made on the basis of satiszing
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12721

Figure 6;5 Block Diagram Representation of Eq. (6.2).

a given interaction constraint34 such as

v
N
[

J i ‘
R.— 0 R.= O (6.3)

€
Il
O
€
il
O

or on the basis of minimizing a suitable time domain
sensitivity function for the system similar to that given
by Eg. (3.6) in Chapter 3.

6.3 Time Domain Design Method

If the design specifications are given in terms of
the transient response of the multivariable system then the
design ftechnique described in Section 6.2 cannot be
employed. A method will now be described which employs time
domain specifications for the design of a multivariable control
system.

Consider the following design specifications for

the system shown in Figure 6.1. Here u(t) represents the unit
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step and all initial conditions are zero.
1. cl(t) reaches a maximum

rl(t) =.u(t)
I‘Z('t) =0

overshoot of Xl% in tl seconds.

2, cz(t) ‘ reaches a maximum
rl('t) =0
rz(t) u(t)

overshoot of x2% in t2 seconds.

2] 1
R = 0 R,= 0
w= 0 w= 0
4- Cl('t:L) = 02(132) )
v, (£)<0 v (£)=u(t)
I'2('t):U.('t) I'2('t):O

where t. and t., are the times defined in (1)

1
and (2) above.

2

The last design specification defines an additional interaction

constraint. In the general form it is defined a834
c, £ e!., for j £ 1
* rj:f(t) 1J
r.=0
i

at some time, for example at the time for which the response

ci is a maximum.
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In terms of the above definition the last design
specification yields €i2 = Sél'
For the set of design specifications outlined above
the required design equations will now be obtained.
Recognizing that the time of maximum overshoot for a step

input corresponds to the time when the impulse response equals

zero, the design specifications (1) and (2) yield

joo
<
hl(tl) = 573 S Hl(s) exp(stl)ds =0
..jDo
(6.4)
joo
1
h2(t2) = mg H2(s) exp(stz)ds =0
_J‘oo

where Hl(s) and H2(s) are given by Egs. (6.1) and (6.2).

For the system under consideration Hl(s) and Hé(s) have sixth
order denominator polynomiazls and fifth order numerator polyno-
mials in s. Using Padé approximation of the desired order for
the exponential functions in Eq. (6.4) and evaluating

Eq. (6.4) two design equations, in terms of the known and
unknown system parameters ana real time, are obtained. The

interaction constraint defined by the design specification (4)

yields 1 joe ,
—_— L ]
cl(tl) = 373 [Hl(s)/%]exp(stl)ds < g,
_joo
joo (6.5)
L / L v
c,(t,) = 2an [Hz(s)/s]exp(stz)ds £ 521
_J’DO
where 8i2 = 8él° The design specification (3) yields the
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interaction constraint relations given by Eq. (6.6)

Z - -
2K n, =-s2lK2(2Onl+l9.9Kl)

(6.6)
2K n, £ 812Kl(40n2+19.9K2)

where €57 = 512.

The set of relations given by Egs. (6.4), (6.5) and (6.6)
constitute the required design equations for the evaluation
of the six design variables K., K2, “1"“29 Ny and Nye

The above method is also applicable to the design
of ﬁoninteracting multivariable control system by making
€., =0 and e€!. = 0. An illustrative example is given in
the following .section.
6.4 An Tllustrgtive Degign Example

Consider the system shown in Figure 6.4
where

H

11 -2/(s+1), Hy, = 5/(s41),

il

Hyp

4/(s+1), H,, (8s+2)/(s+1)

The equations of the system are

C, = (Rl+C )G, H + (RZ-CZ)G

17611817 oot o

G, H

C, = (Ry+C)G 2) G0t

178, + (RZ—C

In matrix form the above equations can be written as

© _ All A12 Rl (6.7)

Co \ A1 Ao/ \Rp
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where

Apy = [By9Hy ) (T4Gy H,0) - G11G22312H2i]/A
_ /
Ay, = (G H, ) /b
Ay = (GppHy0 )78
bop =[BopHpp(1-C1Hyy) + Gpy OppHly oty /8
and where A = (l—GllHll)( l+G22H22) + Gy 9 Gty SHo

Taking rl(t), rz(t) as impulses at time t=0 of areas r, and r,

respectively, the inverse Laplace transform of Eq. (6.7)

yields
o (81 /ey (%) ao(t) Ty
LA
B G11 Ay
iy
o
N .
B > b2 22

Fi e 6. Block Diagram of s Multivariable Control System.



where
6. H (14G,.H,.)=G. -G, H H
o 111177227207 11722712721 vy ag
11 = 2aj A P
...jm
s g
1 2212
8y, = EEESN -——Z———exp(st)ds
" _jm
(6.8)
5 . H
1 11721
ay = 5?3}; ——K———exp(st)ds
._jDO
L (g, (16 By g )+ @Gt Hyy
8nn = 5= — Ll =< L=oxp(st)ds
22 2% A
._jm
Let Gy = Kl'and G,, = K,, where K, and K, are the

design variables.

Substituting the values for G,; and G,, into Eq. (6.7)

yields
2 2
A = (a+bs+cs®)/(1+s)
A, = -2Kl(l+s)(l+8K2)/(a+bs+csz)
A, = 3K2(l+s)/(a+bs+os2)
5 (6.9)

Ay = 4Kl(1+s)/(a+bs+cs )

Ay, = 2K2{}l+8Kl)+s(5+8Kl{]/(a+bs+cs2)
where

a = l+2Kl+2K2+l6KlK2

b = 2(1+Kl+5K2+8KlK2)

c = l+8K2
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, :
Substituting Eq. (6.9) into Eq. (6.8) and using the Pade

approximation for exp(st),all, 8759 8575 and 85, Can be
expressed as ratios of polynomials in t with coefficients
as algebraic functions of the system parameters. Using the

N
fifth order Pade approximation

st 60 + 24st + 3s°t°
e = 22 33
60 —.36st + 98t - g7t

b

solving for a,, and a,; from Eq. (6.8) and equating the

results to zero, the following relations are obtained:

2 .2 >
720K2 A+BK1+CK2+DK1+EK2+FK +GK1K +HK K2
-0
3 2 3
+JK K +LK X, +MK K +NK1K
(6.10)
960K, [ A+BK. +CK, +DK2 +EK2 +FK2+GK. K, +HK. K2
1 1 +OK,+DE) +BRS +FR5 +GK, Ko +HK Ky
=0
3 2.2 . %
+JK1K2+LK1K2+MK K +NKlK2
where
= —0.0125t°- 0.1125t%+ 0.4t7+ 0.64°=3t-15
= =0,05t7= 0,55t%+ 0.6t°+4.24°+12t
= -0.15%°-1.05t%+7.8t241.8t%-1084-360

~ -0. 05t5—0 65t4 1. 4+7-34°

L4542 1. o5t4+35 447-11%, 442115242880
_ —Oe4t5+lq2t4+296t3+552t ~3840%-7680
= —0.9t°-9,%4%402,8474118. 84742881

H @ =5 H o Q@ O
I
i
O

= —4.8%7-43, 2454147, 247467212 4+2304 %
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_ —6.440-32t% 1844 . 86043302, 4+°+6144 %

= —1.2t°-15.6t%-33. 64 °-724°
~9.647-125.4t%-268.8t7-576+2

Z = B4y
Il

_ —25.61°-332.8t%-716.8t°-15361°

Figuie 6.5 illustrates the type of data that can be obtained
from Eq. (6.10). By choosing K, and %, Eq. (6.10) can be
solved for Kl and Eq. (6.7) can be solved for the maximum
output amplitude for specified inputs. The time-domain
sensitivity of the maximum output amplitude to variation of

Kl and K2 can be determined from Figure 6.5. This information

is similar to that obtained from Figure 4.2 of Chapter 4.

A{, and A,, in Eq. (6.9) can be expressed as follows:

-2K. (1+8K,)
A, - —Z 2
11 — 3K2 12
o 2K2(l+8Kl) . 8K, s
22 3K2 12 & + bs + 032
When A12= 0, All = 0, and
8K.s
2

A22 =

2
a + bs + cs

!
Solving for 8555 using the fifth order Pade approximation for

exp(st), and equating to zero yields

1 R ' 1212 31
24OOK2 A'4+B K1+C K2+D K1+E K2+F’K2+G KlKZ

2 3 2 ARl Ty Tl
+H'K1K2+J‘KlK2+L'KlK2+M‘KlK2+N_KlK2

(6.11)

=0
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Flgure 6.5 The Gains Kl and :KZ as Funotlions of Time %
for the System Shown in Figure 6.4,
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where
A' = 0.17t%4+0.16t°-2.88t°-9. 6412
B' = 0.68t%40.48t3-5.76t2-9.6%
' = 2.04t%42.4%7-51.841°-201.64+288
D' = 0.68t%40.32t°+2.4%°
B = 6.12t4410.2647-254.884°~1382.45+2304
F' = 5.44t%412.83t%412.831°-1209.64°-30721+6144

G' = 12.24t%49.617-138.244°-230. 4%
H' = 65.28t%461.4417-998.44°-1843.2%
J' = 87.04t%4122,8847-3870.72t°-4915, 2+
L' = 16.326%47.68t7457.6°
M' = 130.56t%+61.44t7+460.8t°
N' = 348.165%4163.84t°+1228.8t°

The relationship between K., K2 and the instant of
time when a,,= 0, given by Eq. (6.11) for t=5, is also shown

in Pigure 6.5. The point of intersection of the two curves

gives the values of Ki and K2 for which the impulse responses

8779 89ps5 8p7 and 250 reach zero value at t=5. In other.words,_'

the amplitude of the outputs for unit step inputs reach their
respective maximum values at that instant of time. This could
be considered a desirable effect in some applications. The
example discussed above only illustrates the principle of the
proposed design technique and the possibilities of getting
useful information from the algebraic relations.

In general, the output and input signals of a multi-

variable control system can be related by the following matrix
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representation.

ci(t) all(t) cevesens aln(t) ry

e, (%) a1 (8)  eeennn. ca (%) r

where the ci(t) are the outputs and the r; are the areas of
impulse inputs or the amplitudes of step inputs and where
each ajk(t) is a ratio of polynomials in t with coefficients
which are algebraic functions of system parameters.

It is interesting to note that the interaction

34

constraints Ejk and €5k’ discussed in Sections 6.2 and 6.3
can easily be expressed as ratio of polynomials in t with
coefficients which are algebraic functions of system
paramet‘érs° It, therefore, becomes possible to investigate
the interaction effects of a multivariable control system

with parameter variations in the time-domain along with a

sensitivity investigation.
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7. CONCLUSIONS

A method has been presented for obtaining algebraic
relations between system parameters and system response based on
the frequency domain evaluation of an integral performance
criterion. The performance criterion P, defined as a correlation
measure between the responses of a known reference system and
the system to be designed, provides a flexible criterion.

Unlike the minimization of performance criteria based on error
measures, this method allows a choice of different values of P

to be made. Within the class of systems defined by the maxi-
mization technique, the particular system with the smallest para-
. meter gsensitivity can then be chosen. This is often more
important than minimizing or maximizing a fixed performance
function.

A method has also been presented for obtaining alge-
braic relations between the parameters of linear and piece-wise
linear systems and their time-domain response characteristics.
Since the method is based on the solution of systems of linear
equations, the computations required are easily performed, and
the difficult problem of relating characteristic roots to several
system parameters is avoided. The algebraic relations obtained
or the systems of linear equations used are well suited for
time-domain sensitivity calculations by digital computer means.
As is done in the sensitivity analysis of networks 35, the
unspecified parameters can be tagged and derivatives with
respect to these parameters obtained by simply deleting the

parameters in the systems of linear equations. This is
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possible since the parameters enter the equations in a

linear manner. A graphical display of the algebraic relations
allows one to see the effect of several parameters on the
time-domain response. The method augments very effectively
other parameter plane methods since it avoids dealing directly
with the characteristic roots which is an essential feature

of these other methods.
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APPENDIX A
Evaluation of Performance Integrals Imn and Jm

A.1 Outline

The evaluation of performance integrals

1 .
I, = 573 U(s+p)V(=s+p)ds (A.1)
C
1
and J = TR U(s+p)U(-s+p)ds (A.2)
C

can be reduced to the solution of a system of linear algebraic
equations. The following derivations are based on a preof
given by Talbot4,4

A.2 Evaluation of Performance Integral Imn

When U(s+p) and V(s+p) are rational functions of s
vanishing at infinity, with the poles of U(s+p) all to the left
of the poles of V(-s+p), the contour C may be completed by an
infinite semicircle on either side of C., Taking it to the left
and expreséing U(s+p) and V(-s+p) in the form given by equatiéns
(2015)vand (2.19), respectively, equation (A.3) is obtained

from Cauchy's residue theorem.

I = }i [F(s)/c (2)D(s)] as, (4.3)

where F(s) denotes A(s)B(s) and where s; are the zeros of C(s).
Equations (2.16) to (2.18) and (2.20) to (2.22) give the numera-
tor and denominator polynomials of U(s+p) and V(-s+p), respec-

tively. Since all zeros of C(s) are to the left of the zeros of
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D(s), C(s) and D(s) have no common factors.

In order to evaluate Imrl in equation (A.3), the

following identity is considered:

F(s) R(s)
C(ST%(S) = C(:) + %%2% (A.4)

Since B(s) and D(s) have no common factor and the degree of

F(s), or A(s)B(s), is less than the degree of C(s)D(s), R(s)/C(s)
is the sum of those partial fraction:terms of F(s)/C(s)D(s), {:.

which belong to C(s); and similarly for Q(s)/D(s). Thus,

g%:; _ ;;::[F(s)/c (s)D(s)} (A.5)

S - Si- .S:Si

It follows that I 1is the coefficient of 1/s in

R(s)/C(s) if this is expanded in descending powers.of s, that

is,
1 _ 1im sR(s)
mn -~ s—oco C(s
Thus, if
R(s) = r sBL + T (A.6)
—_— m—l o &6 6 0 0 0 00 O . o
and Q(s) = ¢ %1 4 +q (A.7)
-_— n-,l 6 0 0 00 5 0 O O o
then
r
o o=-2=t (A.8)
m
BEquation (A.4) is equivalent to the polynomial
‘equation

- F(s) = R(s)D(s) + Qls)C(s) ’ (A.9)
By equating terms containing the same powers of & in equation

(4.9), a set of simultaneous equations are obtained for the
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coefficients in R(s) and Q(s) which may be written as
Mw="F (AolO)
where, w is the (m+n)-rowed column (qo, cer Gy s Tor e rm_l)
F is the (m+n)-rowed column (fo, coo T, 0, oo O)

k’
J
where, fj = E aibj—i , for 0 £ j £ m+n-2
i=0 : ’
and M is the (m+n)-rowed square matrix given by equation (4.11).
- X _
O o O 0
cq dl
CO ° l.d-
M = S 0 (A.11)
. a :
G ) n .
m. . .
0 “ch 0 dn
L .

The solution of Imn is given by

1

T - A

mn c_ A
m

(A.12)

where A is the determinant of M and A' is the determinant of
M on replacing its last column by F.

Egs. (A.8) and (A.12) remain valid even if the
zeros of C(s) are not all simple. The procedure above holds
for an arbitrary numerator F(s) and arbitrary denominator fac-
tors C(s) ard D(s) having né common factor, provided the degree
of F(s)-is less than that of C(s)D(s). The roles of U and V
may always be interchanged. A does not vanish since the poly-
nomials C(g) and D(s) have no common factor. C(s)”and D(s),

however, must be Hurwitz polynomials.
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A.3 Evaluation of Performance Integral Jm

To evaluate the integral Jm it is noted that equation

(A.3) becomes

I :E AgszAS—s2 (A.13%)
"’ C (S)C(_S) S=S.
i

1

and in place of equation (Aa9) equation (A.14) is obtained.
R(s)C(-s) + R(-8)C(s) = A(s)A(-s) = 2L(s) (A.14)
J is the coefficient of 1/s in R(s)/C(s), and if

2m-2

L(s) = L, 8 ¥ coecooce o (A.15)
- .
J - 2’1 (A.16)
m m
In terms of determinants the final solution is
1 A
m+
J, = (-1) =% ‘ (A.17)
m
where A is the determinant of the (mxm) square matrix
cH -0 ]
\ 2 °1 o | : )
M et o 9 Aola
¢z S ¢ S .
Com-2 - ’ ’ ®m-1

1 : f
A is the determinant of M on replacing its last column by

the column L = (LO9 Loy oo L2m~2)’

and where

] -
2Ly = 3 (-1)’ fagasy o, for 023 £ml |
=0 (4.19)
e -1 L ¢ |
= (-1) 35 o for m £ j £ 2m-2 .

I1=j-m+l



97
A.4 Table of Integrals

Solution of the integrals Imn for values of m from 1
to 2 and n from 1 to 3 are given in Table A.1. Solution of the
integrals Jm and their derived form Jmk are given in Tables
A2 to A.4 for values of m from 1 to 4 and k from 1 to 2. The

integral forms of Imn and Jm are

1 A(s)B(s
Imn = 5x \Sﬂ ds Cls)Dls (4.20)
C
X Als)A{-8 v
J. = 2:”5 ds Frator— (4.21)
C .
where
A(S) = am_lsm_l+ 6 a0 0006 o0 + ao
B(S) = bn_lsn_l + ocecococoeoae + bo
0 (A.22)
C(S) :Oms + 000 006e000000 +CO
and D(s) = a s™ + . + 4
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Table A.1 Values of Imn in Terms of the Transform Coefficients.

_ aobocO
11 cl(cldo—codl)

b

aO(clbo - ¢, l)

d

2

12 '
5 clcodl + cldO

C2
0

a;by(egdy - eqdg) + agbyleqd, - c2d1>]
+ (albo + aObl)(CZdO - COdZ)

22 C 2
(cod2—02do) + (cld2-02dl)(cldo—codl)

a_b e d d

105 eglegdy=cydy) = eq(eqdy-cqdy)
| 2.
+ (aob2+albl){cz(codl—cldo) - COdB}
2
+ (aobl+albo){cgdo-co(c2d2—cld3)}

Iyp = = - agbo{cl (cpd,=0qds) + cz(codB—-:Zd%)}_ ﬁ
co{czco(dz—dBdl) - c,0, (858, -d5d7) + c5(a7-dyd )

+ COdB(COdB_Cle) + d3dl(c§-0200)}

+ do{(cld3-02d2)(c200—c§) + 0201(00d3—02dl)

3
+ c2do} J

.
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Table A.2 Values of Jm in Terms of the Transform Coefficients

a2
I o= =2
1 2clcO
26 alc
81% * 20%
J2 = 2c.cC.C
27170
2 2 2
;o a5c, ¢, +'(_al - 2a2ao)0300 + 84C2C,
3 20300(-0300 + c2017
2 2 2
a3(-c300 + 020100) + (a2 - 2a3al)c4clco
2 2 2
;o + (al - 23230)048300 + ao(—c4cl + C4CaC,
4 - 2 )

2
20400(-c300 = C4C] + CzC50
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Table A.% Values of Jml in Terms of the Transform Coefficients

11

21 °

31

20
20%
ag _ 818 . aicg + aé@zco
20% ©1%0 i cicg
aé 8,8, + alaoc2/cO
2¢5 %% 7 3%
ag(c§+czco) + ag(cgco+cg)/co
+ (a§-2a2ao)(§3cl+c§
(czcl - 0300)2
28°¢ + a.a.Cc. + (a2—2a a-)c
370 37271 2 371772
+ (azal—BaBao)c3 + 2(a]2_—=2a2ao)c4
ag + alaO(CBCg_°4cl)/cO + ag(c402+c§)/co
203 '030201 - 0405 - c%co

(0301—4c4co+c§){a§c§ + (ag—233a1)c301
2 ~ 2
+ (al-ZazaO)c3
2
+ aO(C3CZ=C4Cl)€3/CO}
(cqgcrc, - C 2 - c2c )2
37271 4~1 370
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Table A.4 Values of sz in Terms of the Transform Coefficients

ale

J _ 0~1
12 03

0

2 2 2
5 aocl alco - Zalaoc:L + a002

= +

22 03 c c2

0 170

‘ 2 2 2
_ 4alaocz—4aoc‘/co . 4alcig
L2 3
°1% ©1
2.2 2 2 2
) {a2co + 2a2aoczco + alczcO + aoc2
aocl - 2alaoc2cl + 2ala00300

Jsp0 = =3 + - — 5

¢} 00(0201 - 0300)

2 3P L2 2
_ 4a2alco(c2+03cl) + 4alao(02+c3co) + 4agczc)

cnlcocy = cgcn)?
or72-1 370
2, 3 2 2 B\
4a2(czco+03020100+0300+03cl)

1.2 2 2
- 8a2ao(02+203c2co+c3cl)
+ 4al(cg+20§c2co+c§c§)

|+ 8ag(c§c§+c§c;fcg/co)

)3

(0201 = ¢3¢,
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Table A.4 (Continued)

8,20
01
Ig0 = =3

€0

P5a§clcg + 4a3a20205 + (5a§—6a3a1)0305 ]

+ 8(a2al—3a3ao)d4cg + (a§+2a2ao)(0302—c4cl)co
2 2
+ alao(4c4c2co+60300—20302cl+2c4cl)

2 2 2 2
+ ao(3040300+8c4§3?o-c4c2cl-cscl)

02(0 6.0 — c,02 — cfe )
o3 271 471 370

’(C§+0301—4C4CO){a§CO(2°3CO+402é1) + 33332030100

+ (ag-ZaBal)(4c4cl+30302)co

+ 3(a2a1-3a3ao)c§co

+ 10(ad-2a,8,) ¢ c5c

+ 3a1a003(0302—c4cl)

+ ag(604030200—4czclco+30§co
+cg—c§c2cl+c40301+c403¢2)}

2
+ (a2—2a3al)030100

2 2/
-2a2ao)0300 + aoc3(0302-c4cl)} i

2 2 2
00(030201 - 0401-0300)

403(c§+0301—4c4co)2{a§ci + (a§'2a331)030100
+ (a§~2a2ao)c§

+ 38(9302—0401)03/00}

L 2 2 3
. (c3c2 1 = €407 - 0300)
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APPENDIX B

MINIMIZATION AND MAXTMIZATION PROCEDURE
B.1 OQOutline o |

The search procedure used in this thesis leading to
the minimum or maximum value of the performance index, was
first suggested by Rosenbrock?2 and works with n orthogonal
directions in which the search progresses at each stage. A4
stage is defined as the set of trials made with one set of
directions and the subsequent change of these directions. Each
attempt to find a new value of the performance index is called
a trial.

Each stage is started with a step of arbitrary length
£, If the step is successful, € is multiplied by «, where
a>1l. If the step is unsuccessful, € is multiplied by -8,
where 0<B<1l. Success is defined to mean that the new value
of the performance index is less than or equal to the old value
when a minimum is sought or is greater than or equal to the old
value when & maximum is sought.

To change the direction of a vector V in which the
steps are taken the value of e is altered until at least one
trial is successful and one trial is unsuccessful in each of
the n directions.

Suppose that D, is the algebraic sum of all the

1
successful steps €1 in the direction Vl9'etc°, and if
+O o) 0
Al = DlVl + D2V2 + 6 06000000 + Dnvn
0 0
A2 = D2V2 + 9 6 0000 06 0 + Dnvn (B,l)
A = | D _vO

n nn



104
then Al is the vector joining the initial and final points ob-

tained by use of orthogonal unit vectors VO, Vg, ceooe 4 Vg,
A2 is the sum of all the advances made in directions other than
the first, etc. The orthogonal unit vectors Vi, V%, coey Vi,
are then obtained as follows:
Bl = Al
1
V] = Bl/lBll
1.1
B2 = A2 - A2 VlVl (B.2)
1
V5 = By/ I3,
n-1
B - A - A vivE
n n . n g ]
J:
1
Vn = Bn/an]

The above algorithm ensures that Vi lies along the
direction of fastest advance, V2 along the best direction which
can be found normal to Vl’ and so on. An obvious advantage of
this method is that no partial derivatives of the performance

index with respect to the design parameters need be calculated.

B.2 IBM 7040 Digital Computer Program

The computer program incorporating the above mentioned
ideas and written in the FORTRAN IV language for the IBM 7040
digital computer includes the evaluation of the performance
index from the determinant form. The overall flow diagram is

shown in Figure B.1l.
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«—— Input - output stage

VECTOR

MINMAX

+——— Performance index
minimization or
maximization stage

FUNXON Performance index

Orthonormal direction

finding stage

Determinant —— e
evaluation

stage by

Gauss' method

evaluation stage

DETUV

\

GAUSSB

Figure B.1l Overall Flow Diggram for Minimizing or
Maximizing the Performance Index on the
Digital Computer.,
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