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NUMERICAL AND ALGEBRAIC METHODS FOR COMPUTER-AIDED 
DESIGN OF LINEAR AND PIECE-WISE LINEAR SYSTEMS 

ABSTRACT 

A method i s presented for l i n e a r control system 
design using functional r e l a t i o n s between system param­
eters and system response. The fu n c t i o n a l r e l a t i o n s 
are obtained by frequency domain evaluation of an inte ­
g r a l performance c r i t e r i o n . The performance c r i t e r i o n 
i s defined as a c o r r e l a t i o n measure between the response 
of a known reference system and the system to be 
designed. 

A method i s also presented for obtaining algebraic 
expressions r e l a t i n g the time-domain response of l i n e a r 
and piecewise l i n e a r systems with system parameters. By 
means of a r a t i o n a l f r a c t i o n approximation to the expo­
nent i a l e s t and through use of a known technique for 
evaluating time-domain convolution i n t e g r a l s , it -becomes 
possible to obtain the time-domain response without the 
necessity of f i r s t having to determine.the poles of the 
system. The time-domain response i s obtained as a ratic 
of polynomials i n t with. the. c o e f f i c i e n t s as algebraic 
functions of the system parameters. 

The extension of the linear.design theory to cover 
nonlinear and mu l t i v a r i a b l e systems i s given. Several 
examples are given to i l l u s t r a t e the.usefulness of the 
proposed technique. 
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ABSTRACT 

A method i s presented for l i n e a r control system 
design using functional relations between system parameters 
and system response. The functional relations are obtained by 
frequency domain evaluation of an i n t e g r a l performance c r i t e r i o n . 
The performance c r i t e r i o n i s defined as a correlation measure 
between the responses of a known reference system and the 
system to be designed. 

A method i s also presented for obtaining algebraic 
expressions r e l a t i n g the time-domain response of l i n e a r and 
piece-wise l i n e a r systems with system parameters. "By means of 

s t 
a r a t i o n a l f r a c t i o n approximation to the exponential e and 
through use of a known technique for evaluating time-domain 
convolution i n t e g r a l s , i t becomes possible to obtain the time-
domain response without the necessity of f i r s t having to 
determine the poles of the system. The time-domain response 
i s obtained as a r a t i o of polynomials i n t with the coefficients 
as algebraic functions of the system parameters. 

The extension of the l i n e a r design theory to cover 
non-linear and multivariable systems i s given. Several examples 
are given to i l l u s t r a t e the usefulness of the proposed tech­
niques . 

i i 
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1. INTRODUCTION 
1 

1.1 The Control Problem 
The modern s c i e n t i f i c approach to engineering i n large 

measure consists of the formulation of problems so that methods 
of mathematical analysis may be applied. Engineering design of 
physical systems involving mathematical techniques have been 
rapidly developed and extended during the past three decades. 
One of the most important changes has been the broadening of 
interest from the frequency characteristics to the performance 
characteristics with the system excited by transient inputs or 
by actual t y p i c a l inputs described s t a t i s t i c a l l y . 

1.2 Mathematical Models 
The a n a l y t i c a l complexity that would result from a 

more or less exact description of a control system i s avoided 
by s i m p l i f i e d descriptions, called mathematical models, for the 
physical devices making up the system. Feedback control systems 
are conveniently c l a s s i f i e d i n terms of the mathematical models 
that are employed as l i n e a r systems and nonlinear systems. I t 
i s i n the f i e l d of l i n e a r systems that the greatest advances 
i n design technique have taken place. However, i n spite of the 
advanced state of l i n e a r system design there appears to be room 
for further development. 
1.3 Trial-and-error Versus Analytical Design 

More recently, control engineers have been exploring 
areas of performance analysis and design beyond the t r i a l - a n d -
error design of l i n e a r systems. Exploratory work i s being done 



2 
i n the f i e l d s of a n a l y t i c a l design techniques to supplement 
trial-and-error methods for the design of l i n e a r systems. 

Anal y t i c a l design techniques are i n sharp contrast to 
trial-and-error design methods since they proceed d i r e c t l y from 
the problem specifications to the design without the need for 
human i n t u i t i o n . The trial-and-error design procedure provides 
no c r i t e r i o n for terminating the sequence of t r i a l s when d i f f i ­
culty i s encountered i n meeting the specifications. There i s 
no way of knowing i f the performance demanded i n the s p e c i f i c a ­
tions can be obtained or not. The a b i l i t y to detect inconsis­
tent specifications i s a great advantage for the a n a l y t i c a l 
design method. I f the performance obtained by a n a l y t i c a l 
procedure i s not satisfactory, the designer i s certain that 
either the performance specifications must be relaxed or some 
of the other specifications must be altered. 

The design of control systems by application of the 
methods of mathematical analysis to idealized models which 
represent physical systems employs a more or less elaborate 
performance index as the basis on which the system performance 
i s judged. The objective of the performance index i s to encom­
pass i n a single number, a measure for the performance of the 
system. 

The specifications that form the s t a r t i n g point of 
the a n a l y t i c a l design procedure, i n addition to the statement 
of the performance index to be used, must include a statement 
of the required property or value that the index must have for 
the system to be considered satisfactory. The a n a l y t i c a l design 
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procedure requires no e x p l i c i t statement concerning the degree 
of s t a b i l i t y of the over-all control system. A l l solutions 
include the twin requirements that the over-all system be stable 
and that i t be physically r e a l i z a b l e . 

Ever since the s u i t a b i l i t y of functionals i n engineering 
dynamical investigations was recognized, many authors have pro­
posed various functionals as a quality measure of the performance 
of a control system. The control system error, e ( t ) , defined 
as the difference between the actual and the desired value of a 
controlled quantity or defined as the difference between the input 
signal and the feedback signal of a feedback control system was 
used to form various functionals of the general form 

roo 

F]_ = I f [ e ( t ) ] d t ( 1 . 1 ) 
0̂ 

where f [e(t)J i s a function of e(t) 
and e(t) i s a function of time, t. 
The minimization of such an i n t e g r a l c r i t e r i o n was proposed as 
the basis of a procedure for the optimum design of a control 
system. 

Analog methods for the optimization of E q . ( l . l ) have been 
proposed by Bingulac and Kokotovic 1. The s e n s i t i v i t y coef­
f i c i e n t s , that i s , the derivatives of with respect to the 
system parameters are obtained through the use of a parameter 
influence analyser. The parameters of the system are obtained 
by means of a best match with a second order reference model. 
This thesis presents a method which can be used to obtain the 



s e n s i t i v i t y coefficients as algebraic functions of the system 
parameters. 

The determination of the functional 

P -2 ~ e 2 ( t ) d t (1.2) 
0 

for the case where e(t) has a known Laplace transform which i s 
p 

a r a t i o of polynomials was made by P h i l l i p s ; he used Parseval' 
theorem to replace the i n t e g r a l of Eq. (1.2) by a contour 
i n t e g r a l and gave tables showing the value of functional F 2 i n 
terms of the transform c o e f f i c i e n t s . A n a l y t i c a l design theory 
has since been formulated to implement integral-square-error 
performance index for transient signals and mean-square-error 
performance index for stochastic signals. Westcott ^ used a 
simi l a r technique and gave tables showing the value of the 
functional 

0 
i n terms of the transform c o e f f i c i e n t s . Talbot 4 gave a method 
of computing functionals of the forms 

(1.3) 

(1.4) 
0 

and n=0, 1, 2, (1.5) 
0 



5 
where the functions x(t) and y(t) have known r a t i o n a l Laplace 
transforms, showing how to determine the value of these func-
tionals i n terms of the transform c o e f f i c i e n t s . He gave the 
solutions i n determinant forms. 

A summary of the history of the performance index 
measures as functions of error i s given i n Table 1.1. 
1.4 Possible Design Methods 

Instead of establishing some r i g i d c r i t e r i o n of per­
formance and applying i t to the evaluation and design of a l l 
systems, a more f l e x i b l e c r i t e r i o n may be used which can be 
adjusted to f i t the pa r t i c u l a r application of each system. The 
system error suitably weighted can be used to obtain such a 
f l e x i b l e c r i t e r i o n . The weighted error can be defined as some 
function of the actual system error, the s p e c i f i c form of the 
functional relationship depending upon the application of the 
system. 

A more f l e x i b l e performance c r i t e r i o n can be established 
by using the correlation function formed by the responses of 
two systems, the characteristics of one of the systems being 
known and taken as a reference. 

Based on the method of computing functionals of the 
form P^, given, by Eq. (1.5), i t i s possible to make a t r a n s i ­
t i o n from the frequency domain to the time domain and obtain 
the time response '©f the system i n terms of system parameters 
and - time. -
1.5 Statement of the Problem 

This thesis deals with the development of a n a l y t i c a l 
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Table 1.1 A Summary of the Performance Index Measures as 

Functions of Error. 

Performance Year 
Index Proposed Author  

) e(t)dt 1942 Obradovic 5 

n 6 
1948 Oldenbourg and Sartorius 
1949 Mack 7 

1950 Stout 8 

) e 2 ( t ) d t 1943 H a l l 9 

0 1943 P h i l l i p s 2 

1949 Mack 7 

1955 Rosenbrock ^ 
roo 

) t 2 e 2 ( t ) d t 1949 Mack 7 

0 1952 Fickeisen and Stout 1 1 

12 
1953 Graham and Lathrop 
1957 Crow 1 5 

OO 
P 14 e (t,7)dt 1949 Aigrain and Williams 

15 
16 

Jr\ 15 
1956 Spooner and Rideout 

OO 

• 00 

1957 Schultz and Rideout 

17 \ te(t)dt 1951 Nims 
0 1952 Fickeisen and Stout 1 1 

\ t e 2 ( t ) d t 1952 Fickeisen and Stout 1 1 

i_ 12 
1953 Graham and Lathrop 

1954 Westcott 5 

e(t)|dt 1952 Fickeisen and Stout 1 1 ^ 1953 Graham and Lathrop "1"2 

1 8 
1953 Caldwell and Rideout 
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Table 1.1 Continued 

Performance 
Index 

'0 
t |e(t)| dt 

0 0 

4) 
t 2 | e ( t ) | d t 

oo 

Jo 
t n e 2 ( t ) d t , n=0,l»2,-.. 

oo 

Jo 
| e(t,r)|dt 

' 0 0 

J0 
'de(t)' -i 2 
dt dt 

Year 
Proposed 

1953 

1953 

1954 
1959 

1957 

1957 

Oo 

Jo 

Author 

Graham and Lathrop 

Graham and lathrop 

12 

12 

Vestcott 
Talbot 4 

19 

Schultz and Rideout 16 

Babister 20 

[|e(t)|Jrdt, r=l,2,5,.. 1959 F u l l e r 21 

relations between system parameters and the time domain system 
response. Two methods are proposed to determine a n a l y t i c a l 
relations suitable for design purposes. One method i s based on 
the use of a correlation function as a generalized performance 
function. The system parameters are chosen to obtain a maxi­
mum correlation between i t s response and the response of a 
reference system. One of the distinguishing features of this 
approach compared with other techniques i s that the reference 
system has a specified configuration but i s otherwise arbitrary, 
As a consequence, the use of t h i s c r i t e r i o n does not place 
undesirable constraints on the system pole-zero locations which 



8 
may be d i f f i c u l t to s a t i s f y . 

Also proposed i s a generalized time domain design 
method for l i n e a r and piece-wise l i n e a r control systems which 
allows an easy and rapid t r a n s i t i o n from the pole-zero locations 
or frequency domain to the time domain. The mathematical theory 
has been applied to the design of l i n e a r control systems. 

The application of the proposed methods to the design 
of a certain class of nonlinear system and multivariable sys­
tems i s given. 



2. FUNCTIONAL RELATIONS BETWEEN TIME DOMAIN RESPONSE 
AND SYSTEM PARAMETERS 

2:1 Outline 
Figure 2.1 shows the block diagram of a feedback con­

t r o l system configuration. This i s a rather general block 
diagram i n the sense that more complex configurations can be 
manipulated into t h i s form. As far as the control system designer 
i s concerned, he seldom has a completely free choice for the 
system. Usually he i s faced with a system that i s p a r t i a l l y 
specified. 

Actuating 
Signal Actual Output 

Input 
Compensating 

Elements 
Fixed 

Elements 

Ideal 

Feedback 
Signal "Feedback 

Elements 

+ Output 

Error 

Figure 2.1 Block Diagram of a Feedback Control System. 

It i s a common practice i n the design of practical-
systems to i d e a l i z e i t i n one or more ways, to reduce excessively 
complicated mathematics, by a simpler model which retains some 
of the more important features of the o r i g i n a l s p e c i fications. 

In a n a l y t i c a l design methods using performance 
indices based on system error, the error i s defined as the 
difference between the actual output and i d e a l or desired output«-

The concept of actual output and ide a l or desired output w i l l be 
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used here to define a generalized performance index for the 
a n a l y t i c a l design of control systems using transient input 
signals. As a f i r s t step towards the above objective, a 
generalized performance i n t e g r a l w i l l be derived. 
2.2 Generalized Performance Integral 

Let u=u(t) and v=v(t) be the actual and desired sys­
tem outputs, respectively, of a feedback control system. A 
functional P can be defined by the i n t e g r a l 

which i s a measure of the correlation between u and v. By 
introducing weighting factors F can be modified to a functional 
I as follows 

where c n, c-, , c are functions of time. Defining the 

(2.1) 
0 

(2.2) 

weighting functions c 0' c as follows 

c Q = (qt) =1; c± = - ( q t ) 1 ; c 2 = (qt) 2/2 

c = ( - l ) n ( q t ) n / n l 

where q i s a positive number, Eq. (2.2) becomes 
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or I = S 00 

*Oo 
uvexp(-qt)dt , 

uvdt 1 - qt + 

for large values of n (2.3) 

+ (-i)Vt n/n:] 

0 
The functional I i s the generalized performance in t e g r a l which 
w i l l be studied and i t may be used to define other functionals. 
D i f f e r e n t i a t i n g the right hand member of Eq. (2.3) with respect 
to q the performance i n t e g r a l I-, i s obtained as 

0 
Di f f e r e n t i a t i n g the right hand member of Eq. (2.3) with respect 
to q k times the performance i n t e g r a l I, i s obtained: 

Eq. (2.5) i s s i m i l a r i n form to the functional given by 
Eq. (1.5) of the previous chapter. It can be seen that Eqs. 
(2.3) and (2.4) are par t i c u l a r cases of Eq. (2.5) for values of 
k equal to zero and k equal to 1, respectively. Eqs. (2.3) and 
(2.5) w i l l be denoted i n the following forms: 

(2.4) 

(2.5) 
0 

r-ca uv exp(-qt)dt = (u,v) = I. (2.6) 
J mn 
0 
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and (-l ) k J r V*'t kuv exp(-qt)dt = (u,v) k = 1 ^ (2.7) 
0 

where the subscript k i n I , denotes the kth derivative of I ̂  
mnk mn 

with respect to q. The meaning of the subscripts m and n w i l l 
be explained l a t e r i n this chapter. For k'= 0, Eq. (2.7) 
reduces to 

J™uv exp(-qt)dt = (U,V) q ; .=. I ^ Q 

0 = (u,v) : = 1 ^ (2.6) 

where, for reasons of convenience, the subscript zero has been 
omitted. 

Though Eq. (2.7) appears to be the most general form 
from which Eq. (2.6) :and other performance integrals having 
various forms of time weighting can be obtained, Eq. (2.6) w i l l 
be considered as the equation giving the generalized performance 
i n t e g r a l I . The reason for doing so w i l l now be considered. 

Linear system design i s often carried out i n the 
domain of the complex frequency variable s. The functions 
considered are then the Laplace transforms'U(s) and V(s), and i n 
the majority of cases, these are r a t i o n a l functions of s. The 
int e g r a l forms can be evaluated by using Parseval's theorem 
to replace the int e g r a l by one taken along the imaginary s-axis, 
the integrand being a product of transforms. By using Parseval's 
theorem, Eq. (2.6) can be written as 
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roo 

0 

= 2^j\ u(s)V(-s+q)ds (2.8) 

Since I , i s the kth derivative of I , mnk mn' 

W = d k lmn/ d^ = j E 2 i j | U(e)V(-s + q)ds (2.9) 

Thus i t i s only necessary to evaluate Eq.,(2.8) to be able to 
express ^•rm̂ . i n a suitable algebraic form i n terms of the 
coefficients of U(s) and V(s). Hence, I i s chosen as the 
generalized performance i n t e g r a l instead of I ^ ^ * 

When the integrand i n Eq. (2.8) i s i n a symmetrical 
form, the known properties of symmetrical functions make the 
desired result possible. This may be achieved by properly 
selecting the contour of integration so that the in t e g r a l taken 
along the imaginary s-axis i s replaced by one taken along a 
contour C ̂ » 4. This i s j u s t i f i e d as long as U(s) and V(s) have 
poles i n the l e f t - h a l f plane only. Thus, I can be written as 

Znm = g i j T U ( s + P ) V ( - s + P ) d s (2.10) 

C 

where p = q/2. 

It i s now possible to derive standard forms by solving the i n t e ­
g r a l I i n terms of the coefficients of U(s) and V(s) and the 
to ^ 
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parameter p for any given order of denominator polynomials of 
U(s) and V(s) with the obvious r e s t r i c t i o n that the order of the 
numerators must be one less than that of the denominators. 
F i n a l l y , performing the required operations on I , • ^ - M N ] £ ^ S 

obtained. The di f f e r e n t i a t i o n s w i l l now be performed with res­
pect to p instead of q. 

If the Laplace transforms of the response functions 
U(s) and V(s) are expressed as rat i o s of two polynomials 

U ( S ) = f f f } (2.11) 

where 
m-1 ^ * k A'(s) = > a' ks 
k=0 
m 

C'(s) = ) c ' k s k 

and 

where 
n-1 
• * 

B'(s) = 
k=0 
n 

D'(s) = ) 

(2.12) 

k=0 

V(-s) = (2.13) 

(2.14) 

k=0 
then U(s+p) and V(-s+p) can be expressed as 

°<-+p> - * H f $ = ( 2 - 1 5 ) 
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where 

and 

where 

m-1 
A.1 (s+p) = ) a^ (s+p)" 

C(s+p) 

A(s) 

k=0 
n 

y, 
k=0 
m-1 

r 
k=0 
n 

c k(s+p)' 

a ks 

C ( B ) = c, s k 
k 

a, 

k=0 
k+m-1 

E 
1=0 

k+m 

1 = 0 

Trf \ B' (s+p)' B(s' 

n-1 
B' (s+p) = ) b» (s+p)-

k=0 
n 

D'(s+p) = > d k(s+p) 
k=0 

(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 
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B(s) = 
n-1 

k=0 
n 

b ks 

(2.21) 

D ( B ) = d ks 

b, = 

k=0 
k+n-1 

L 
i=0 

k+n 

k+i P" 

(2.22) 

i=0 
It i s shown i n Appendix A that the solution of the inte g r a l I 
i s given by 

I = A'/c A (2.23) mn ' m 
where A i s the determinant of the (m+n)-rowed square matrix M 
and A' i s the determinant obtained from M on replacing i t s l a s t 
column by the column F, where 

M = 

'0. 
'1 

m 

0 "0 ' • . 0 

'0 0 
(2.24) 

n 
0 0" 

m n 

(2.25) 
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and where i 

f . = > a.b. .. , for 0 = i^m+n-2 
i=0 

In the int e g r a l I , the subscripts m and n denote the 
orders of the denominator polynomials U(s) and V(s), respectively 

Letting v = u i n Eqs. (2.6) and (2.7), yields 

j u 2 exp(-qt)dt = (u,u) = 1 ^ = J m (2.26) 
"0 

X oo 

t ku 2exp(-qt)dt = (u,u) k = 1 ^ = J m k (2.27) 
u 

Letting u = v i n Eqs. (2.6) and (2.7), yields 
roo 

v 2 exp(-qt)dt = (v,v) = I = K (2.28) 
no 

r~oo 

and ( - l ) k j t kv 2exp(-qt)dt = ( v , v ) k = I n n k = K n k (2.29) 

The subscripts m, n, and k have the same meaning as before and 
again for convenience the subscript zero i n Eqs. (2.26) and 
(2.28) has been omitted. Using Parseval's theorem and properly 
choosing the contour of integration, <J"m can be represented i n 
the following symmetrical form 

rV+i00 

J m = 2^\ U(s+p)U(-s+p)ds (2.30) 
P-J°° 

where p = q/2 
and Eqs. (2.11), (2.12), and (2.15) to (2.18) hold for U(s+p); 
and the solution of the in t e g r a l J f f l i s obtained as (see Appendix 



J = ( - l ) m + 1 A'/c A m ' m 
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(2.31) 

where A i s the determinant of the (mxm) square matrix M1 and 
A' i s the determinant obtained from M' on replacing i t s l a s t 
column by the column L, where 

and 

M1 

'0 
'0 

'2m-2 

(L Q. L 2f » L2m-2^ 

0 

'1 '0 
'm-1 

where 

Since J 

2L. = 
3 

(-1) 3 1a.a. .. , for 0^ i ̂ m-1 
i=0 
m-1 

(-1) 
i=j-m+l 

a. a . • , for m = j =2m-2 . 

mk i s the kth derivative of J m with respect to q, replacing 
q by p and performing the required operations on J , i s 
obtained. The solution of Z has the same form as J where a 

n m 
and c are replaced by b and d, respectively. 

Thus, there are three performance integrals, a gener­
alized performance in t e g r a l I , and two derived from 1 ^ , J m 

and K . Starting from these performance integrals other per­
formance integrals 1^^' m̂k' a n d *Sik c a n ^ e Grained • These 
performance integrals when evaluated appear as algebraic func­
tions of system parameters. 
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2.3" Generalized Performance Indices 
In designing a feedback control system for a s p e c i f i c 

application, the designer usually has a d e f i n i t e goal i n mind. 
The control system i s to perform some given operation subject 
to physical constraints on i t s response. The designer i s , 
therefore, faced with the problem of translating t h i s e s s e n t i a l l y 
physical information into a mathematical d e f i n i t i o n of the 
desired performance which then becomes a c r i t e r i o n for synthe­
s i z i n g the system. There sometimes arises the problem of 
designing the best possible control system of a given order 
of complexity to meet a given requirement. However, i t i s not 
easy to give a precise c r i t e r i o n of best performance. I f i t i s 
desired to design a best ( i n some sense) possible control sys­
tem, i t i s necessary to define mathematically a c r i t e r i o n of 
performance. One commonly used c r i t e r i o n i s the minimum i n t e ­
g r a l of error-squared c r i t e r i o n f or transient inputs. While 
mathematically convenient, t h i s c r i t e r i o n has the disadvantage 
of giving too great an emphasis to large momentary errors. 
However, for comparison of performance between widely d i s s i m i l a r 
systems, this comprehensive error c r i t e r i o n i s l i k e l y to be much 
more consistent than any empirical ones. The question then 
arises of the p o s s i b i l i t y of devising a c r i t e r i o n of a compre­
hensive type that w i l l correspond to the accepted empirical 
c r i t e r i a i n straight forward cases, but w i l l be available for 
wider use as systems become more complicated and diverse. To 
be convenient to apply, such a c r i t e r i o n must also be capable 
of allowing a simple algebraic representation of the error 



measure d i r e c t l y i n terms of system parameters. This i s 
possible for the generalized performance functionals chosen 
since they are a l l capable of algebraic representation i n the 
desired form. 
2.3*1 Generalized Performance Index Based on System Error 

The performance integrals J and K and J , and K . r to m n mk nk 
can be used as performance indices when u = u(t) and V = v(t) 
are replaced by the system error function e = e ( t ) . Then 
Eqs. (2.26) and (2.28) give the performance indices as quadratic 
measure of error and Eqs. (2.27) and (2.29) give the perfor­
mance indices as time-weighted measure of error. Any desired 
performance index based on error measure can be obtained by 
proper choice of q and k. For the sp e c i f i c case of q=0, k=0 
Eqs. (2.27) and (2.29) reduce to the fa m i l i a r form of the 
quadratic measure of error, the integral-squared-error (ISE). 
The time-weighted measures of error, the integral-time multiplied-
squared error (ITSE) and the integral-squared time multiplied-
squared error (ISTSE) are obtained for the cases q=0, k=l and. 
q=0, k=2, respectively. Since J f f i and K have si m i l a r forms, 
i t i s s u f f i c i e n t to consider only one of them. The following 
form of J i s considered here as the generalized performance 

m o x . 

index based on system error. 

J = e 2 ( t ) exp(-qt)dt (2.32) 
0 

Minimization of J f f i or i t s derivatives with respect to q can be 
used as the c r i t e r i o n for optimum or best design. 
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2 . 3 . 2 Generalized Performance Index Based on the Correlation  
Between the Response of Two Systems 

I t has been shown that when u and v are replaced by the 
system error, e, 1^, J f f l and a l l reduce to the form given by 
Eq. ( 2 . 3 2 ) and can be used as a performance index, the basis 
on which the system performance can be judged. It w i l l now be 
shown that I , J , and K , given by Eqs. ( 2 . 6 ) , ( 2 . 2 6 ) and mn' m' n' to J ^ ' 
( 2 . 2 8 ) , respectively, can be used to define a generalized per­
formance index based on the correlation between the response of 
two systems. 

Regarding Eqs. ( 2 . 6 ) , ( 2 . 2 6 ) and ( 2 . 2 8 ) as the cor­
r e l a t i o n equations between (u,v), (u,u) and (v,v), respectively, 
and using Schwarz's inequality yields 

[(u,v)] £ (u,u)(v,v) 
or (u,v)| £ J (u,u)(v,v) . ( 2 . 3 3 ) 

Rearranging Eq. ( 2 . 3 3 ) , and defining 
P = |(u,v)| / J(u,u)(v,v) £ 1 ( 2 . 3 4 ) 

a performance index r e l a t i n g I , J , and K i s obtained. The * to mn m n 
performance index P given by Eq. ( 2 . 3 4 ) can be regarded as a 
normalized measure of the correlation between the two responses 
u and v. P can be regarded as a performance index i n the best 
match sense when maximization of P i s considered as the design 
objective. Maximization of P, therefore, i s a meaningful ap­
proach and can be used as a basis for the optimum or best design 
of a control system. When evaluated, P appears as an algebraic 
function of the system parameters. By using a suitable maximi­
zation procedure, values for the unknown parameters which maxi­
mize P can be found. Using time-weighted forms (u,v) k, (u,u) k 
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and ( v , v ) v , P takes the new form P. given by 

P k - (u,v) k|/ J(u,u) k(v,v) k i 1 m (2.35) 

2.3.3 Minimization and Maximization Procedure 
The performance index, chosen on the basis of either 

the error measure or the best match measure, when evaluated, w i l l 
be an algebraic function of the system parameters. In minimizing 
or maximizing the performance index the usual procedure i s to 
di f f e r e n t i a t e the performance index with respect to each of the 
k design variables, equating each derivative to zero. It i s 
evident from the form of Eq. (2.23) that the derivatives, which 
are the s e n s i t i v i t y c o e f f i c i e n t s , are expressed as algebraic 
functions of the system parameters. That i s , e x p l i c i t relations 
are obtained for the s e n s i t i v i t y coefficients which are determined 
by analog means by the method of Bingulac and Kokotovic 
However, the solution of the k simultaneous nonlinear equations 
for the parameter presents some computational d i f f i c u l t i e s . The 
procedure selected here avoids the d i f f e r e n t i a t i o n problem and 
i t s associated d i f f i c u l t i e s and has the advantage of being an 
automatic method for dealing with the problem of minimization or 
maximization of the performance index with the aid of a d i g i t a l 
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computer 



3. A PERFORMANCE FUNCTION APPROACH TO IINEAR 
SINGLE VARIABLE SYSTEM DESIGN 
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3.1 Outline 
The following examples demonstrate the use of the per­

formance indices P and J^. i n the design of l i n e a r single input -
single output control systems. In the f i r s t example, a l i n e a r 
t h i r d order system i s designed on the basis of a response cor­
r e l a t i o n ,with the response of a known second order system. In 
the second example, a comparison between unweighted and time-
weighted error c r i t e r i a i s given for the case of a simple second 
order system. 
3.2.1 Design of a Third Order System 

A position control servomeonanism having two time con­
stants and an integration and compensated by a phase-lead net­
work,;1 as shown i n Figure 3 . 1 » i s designed on the basis of maxi­
mizing the correlation of i t s response with that of a reference 
second order system for unit impulse input to both systems. 

R(s) ?! a(l+Ts) • K C ( B ) _ 

V 1+aTs s(l+T 1s)(l+ ,l' 2s) 

Figure 3.1 Phase-Lead Compensated Position Control 
Servomechanism. 

The closed-loop transfer function of the reference 
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second order system i s 

a)2 

H (s) = -p 2 p ( 3 . 1 ) s + 2?co s + co„ c c 
where w , the natural frequency of o s c i l l a t i o n of the system i n c 
rad./sec., and the damping r a t i o of the system, are known. 

The closed-loop transfer function of the system shown 
i n Figure 3 . 1 i s 

KaTs + Ka  H(s) = 
[aTT 1T 2s 4+ {aT(T 1+T 2)+T 1T 2}s 3 + (aT+T-j+T^s' 

(KaT+l)s + Ka] ( 3 - 2 ) 
where T^=4 sees, and T 2=l sec. and K, a, and T are regarded as 
the design variables with the constraint on a that a ^ 0 . 1 . 

The values of K, a, and T are chosen to obtain the 
maximum correlation between the two system responses for a unit 
impulse input to both systems. 

Denoting the output response of the reference second 
order system as V(s) and that of the unknown system as U(s), 
for a unit impulse input, Eqs. ( 3 . 1 ) and ( 3 . 2 ) y i e l d 

V(s) = - 5 2 p ( 3 . 3 ) s + 2?w s + GO c c 
, T T / \ KaTs + Ka  

and U(s) = aTT xT 2s 4 +faT(T 1+T 2)+T 1T 2}s 5 + (aT+T^T^s 2 

(KaT+l)s + Ka] ( 3 - 4 ) 
The maximum correlation between the two system responses i s 
obtained by maximizing the performance index P such that 

P - , i ^ v ) l - ̂  i ( 3 . 5 ) 
m a x j(u,u)(v,v) 
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"00 

(u,v) = uvdt 

-oo 
(u,u) = u dt 

^0 

and (v,v) = v 2dt 
' 0 

Using Eqs. (2.24) and (2.32) and regarding q = 0, that i s p = 0, 
(u,v), (u,u) and (v,v) can be written i n the following determi­
nant forms. 

(u,v) = 7-

c o 0 w2 

c 0 0 2 
a 0 W c 

c l c0 c co2 

c 0 2 
a l w c 

c2 c l 1 -2<?w 
c 

0 

°3 c2 0 1 -2§<o 
c 

0 
C4 C3 0 0 1 0 
0 c4 0 0 0 0 
c0 0 ^c 0 0 0 

c l c o -2?o)c co2 

c 0 0 

c2 c l 1 -2?o>0 < 0 

C3 c2 0 1 -2Sa> 
c 

co2 

c 
c4 °3 0 0 1 -2fu 

c 0 C4 0 0 0 1 
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(u,u) 

(v,v) = 

where 

c0 0 0 2 
a o 

C2 c l c o 

C4 °3 C2 0 

(-1) 0 0 c4 0 
2 c4 "co 0 0 0 

C2 c l c o 0 
c4 c3 C2 c l 
0 0 C4 °3 
u>2 

c 
( - D 1 0 
2 2 CO c 

1 
0 
2% 

= Ka C l = (KaT+l) • 
9 '0 

&q =-. Ka ; = KaT 

L l " r x 2 ' 
aTT xT 2 

Results obtained by substituting (u,v), (u,u), and (v,v) i n 
Eq. (3.5) and maximizing P for various values of co are shown 

2 2 
i n Table 3.1. A b r i e f summary of the method used for 
maximizing P i s given i n Appendix B. This method avoids d i f ­
f e r e n t i a t i n g P with respect to each of the design variables, 
equating each derivative to zero, and solving a set of non­
l i n e a r algebraic equations. The method works d i r e c t l y with the 
expression for P and searches for the maximum automatically on 

23 
a d i g i t a l computer once the search i s i n i t i a t e d . In terms 
of the notations explained i n Appendix B values of a = 3-0, 
S = 0.5 and e = 0.1 were used, along with s t a r t i n g values of 
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K _= 3.0, a = 0.2, and T = 3 . 0 , to initiate..the search for 
maximizing P. Given i n Section 3 . 3 are methods of obtaining 
approximate values of design variables to i n i t i a t e a search on 
the computer. The method i s fast and r e l i a b l e especially when 
a large scale d i g i t a l computer i s used. The meaning of the 
number of t r i a l s and the number of stages given i n Table 3 . 1 i s 
explained i n Appendix B. 
Table 3 - 1 Values of K, a, T and P for Known Values of to 

' max c 
and f . CO 

c 
rad/sec 

P 
max K a T 

No. of 
Tr i a l s 

No. of 
Stages 

Appr.ox. 
Time of 
Solution 

5.0 0.5 0.070 2.917 0.100 0.235 1972 60 200 sec. 
4.0 0.5 0.092 11.936 0.100 1.860 1990 60 200 sec.. 
3.0 0.5 0.239 52.827 0.100 1.763 1738 60 175 sec. 
2.0 0.5 0.505 24.609 0.100 2.517 2231 60 235 sec. 
1.0 0.5 1.000 7.115 0.156 2.825 2 2 3 7 .25 sec. 

The step response of the system i l l u s t r a t e d i n Figure 
3.1 for values of K, a, and T corresponding to P__v =1.0, as 
given i n Table 3.1, i s shown i n Figure 3.2. The step response 
of the reference second order system for coc = 1.0 and ? = 0.5 
i s also shown i n Figure 3.2. 

From the results given i n Table 3.1 i t can be inferred 
that the performance index P could be used to provide a f l e x i b l e 
c r i t e r i o n capable of being adjusted to suit system performance. 
A performance index based on system error when minimized becomes 
insensitive to parameter v a r i a t i o n but the time domain response 
of the system, such as the overshoot, could s t i l l be sensitive 
to parameter variations. The minimization of such a fixed 
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(a) Compensated Third Order System Response 
(b) Reference Second Order System Response 

Figure 3.2 Unit-Step Responses of the System Shown i n 
Figure 3.1 and the Reference Second Order 
System. 
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performance index, therefore, cannot always ensure meaningful 
results and can lead to system designs that are unstable or 

23 
physically unrealizable . Furthermore, i t i s usually more 

- important to minimize the time domain response s e n s i t i v i t y to 
parameter changes than i t i s to optimize the performance index. 

To overcome these disadvantages, i t i s desirable to 
allow a degree of f l e x i b i l i t y i n the choice of a performance 
function. The performance function P used here, since i t i s 
based on the response correlation with a class of reference 
systems, gives this f l e x i b i l i t y . I f a = ( a ^ , a ) 
represents the parameters of the system to be designed and 
(3 =(P-j_» » P m) represents the parameters of a reference 
system having a known response, then i t i s possible to determine 
the parameters a and |3 by the operation 

Min S Max P(a,p) 
W 

(3.6) 

where S represents some suitably chosen time-domain s e n s i t i v i t y 
function for the system and where, i n general, the parameters 
P k have specified upper and lower bounds. For example, S could 
be the s e n s i t i v i t y of the maximum overload with respect to 
variations i n K, Further improvement could be made i f the 
class could, for example, be the class of systems having a 
delayed second order response for step inputs. The reference 
system variables then become the time delay, ̂ , the damping 
ratio,: and ooc, the natural frequency of o s c i l l a t i o n of the 
system. The use of this.idea w i l l be considered i n the next 
Chapter. By using a class of reference systems, i t becomes 



3 0 
possible to investigate the parameter s e n s i t i v i t y of the time 
domain response, for example the overshoot to a unit step input. 
Thus, instead of choosing the system given by Eq. (3.6), i t may 
be more meaningful to choose the system which has least 
s e n s i t i v i t y to variations i n i t s time domain response. 
3 - 2 . 2 Design of a System With and Without Time Weighting 

To compare the merits of different performance 
indices a second order position control servomechanism w i l l 
now be designed on the basis of an unweighted and two time 
weighted error c r i t e r i a . The system i s shown i n Figure 3 . 3 . 

The closed-loop transfer function of the system 
i s given by 

- S ^ f - T — 1 (3-7) 
R(s) s + as + 1 

R(s) 

Figure 3.3 Second Order Position Control Servomechanism, 

where a i s regarded as the design variable. I t may be noted 
that i f the natural frequency of o s c i l l a t i o n of the system i s 
considered as unity, a equals twice the value of the damping 
r a t i o , •? , of the system. 

Consider that the system i s subjected to a unit step 
input and that the value of a i s to be found so as to minimize 
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the i n t e g r a l of error squared, Z^, the f i r s t time moment of 
error squared, a n <^ ^ e second time moment of error squared, 
J 2 2> i n that order. 

The error transform of the given system for a unit-
step input i s given by 

E(s) = 2
 s + a (3.8) 

s + as + 1 

Using the standard form from Table A.2, Appendix A, for p = 0, 

J 2 = (1 + a 2)/2a 

J"2 i s a minimum for a = 1, when J 2 = 1. 
Using the standard form from Table A.3, Appendix A, for p = 0, 

J 2 1= (2 + a 4)/2a 2 

J 2 ^ i s a minimum for a = 1.19, when Z^ = 0.718. 

Using the standard form from Table A.4, Appendix A, for p = 0, 

J"22= (eft - a 4 + a 2 + 4)/a^ 

J" 2 2 i s a minimum for a = 1.334, when J 2 2 = 1.737. 
The results are summarized i n Table 3»2 

Table 3.2 Comparison of Unweighted and Time-weighted Error 
C r i t e r i a , 

m̂k Minimum value of J , 
mk 

a 

J2 1.000 1.000 0.500 
J21 0.718 1.190 0.595 
J22 1.737 1.334 0.667 
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This example shows how the i n t e g r a l performance 

c r i t e r i a can be used to determine unknown system parameters. 
In general, however, one weakness of these c r i t e r i a i s that 
there i s no direct relationship between the performance 
integrals and the time-domain response. To overcome this 
weakness a method for determining algebraic relationships 
between system parameters and the time-domain response w i l l 
be developed i n Chapter 4-
3.3 Methods of Obtaining Approximate Values of Design Parameters 

The search procedure selected for minimizing or 
maximizing a chosen performance index on a d i g i t a l computer 
requires a s t a r t i n g value to i n i t i a t e the search. While i t i s 
possible to arrive at a reasonable i n i t i a l guess for simple 
systems, the problem becomes increasingly d i f f i c u l t as more 
complex systems are encountered. 

The following sections deal with two methods of 
a r r i v i n g at reasonable s t a r t i n g values for the design 
variables to i n i t i a t e a d i g i t a l computer solution. The methods 
to be discussed use a comparison system and give relationships 
between the design variables and known parameters of the 
system to be designed and the comparison system. The comparison 
system i s assumed to be a second order system. However, this i s 
not a r e s t r i c t i o n imposed on the method; other comparison 
systems could be used. The theoretical development w i l l be 
i l l u s t r a t e d by an example i n Section 3.4-
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3.3.1 Routh Array Approximation 

Consider the system of Figure 3.4 where K and are 
regarded as the design variables. The method to be'discussed 
i s based on choosing values of K and to give an optimum 
correlation with respect to the response of the comparison 
system 

H c(s) = - CO (3.9) 
s~ + 2§co s + co 

R(s) 

Figure 5.4 Third Order Control System With Tachometer 
Feedback. 

The closed-loop transfer function of the system 
shown i n Figure 3.4 i s given by 

H(s) = 
1 (3.10) 

r i r 2 3 V r 2 2 l+K, T 
K s + 1 

The Routh array for the characteristic equation of t h i s 
system i s shown i n Table 3.3. The .characteristic equation i s 
obtained by equating the denominator of Eq. (3.10) to zero. 
If an approximating transfer function, called an associated 
function, of second order i s constructed by using the l a s t 
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Table 3-3 Routh Array for the Characteristic Equation of the 

Given Control System. 

f i r 2 
K 
r±+r2 

K 

1+KT 

K r 1 + r 2 

i+z a 

~K~" 

1 
.J 

three elements of the f i r s t column of the Routh array, then 
this transfer function w i l l have the same in t e g r a l squared 
impulse response as the system transfer function,Eq. (3.10). 
The i n t e g r a l squared impulse response i s computed from the 
l a s t two elements i n the Routh array. The associated function 
i s given by 

A(s) = (3.11) 
r1+r2 2 

— r ~ 3 + 

1+K G 

"TT~ 
r±z2 S + 1 

The natural frequency of o s c i l l a t i o n of the system 
given by Eq. (3.1l) i s the same as that of the system given by 
Eq. (3.10). As a f i r s t approximation i n designing the unknown 
system, i t s natural frequency of o s c i l l a t i o n i s equated to 
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that of the comparison system. E q s . ( 3 . 9 ) and ( 3 . 1 1 ) y i e l d 

Z _ 

As a f i r s t approximation, therefore, 

z = ( r x + r 2 ) w 2 > ( 3 . 1 2 ) 

The energy r a t i o of the impulse responses of the two 
systems H(s) and H (s) w i l l now be considered. This r a t i o 

c 
i s computed from the f i r s t order coefficients of H (s) and 

C' 
A(s) which y i e l d the energy r a t i o 

E l = 1 + Z T 
Z 

r i r 2 

This r a t i o w i l l be unity for a correlation match i n the id e a l 
sense. Therefore, as a second approximation, the following 
equation i s obtained. 

1 + Kn 
K 2? ^_r 2 

C 1 2 ( 3 . 1 3 ) 

Eqs. ( 3 . 1 2 ) and ( 3 . 1 3 ) are the required equations from which Z 
and are obtained i n terms of the known parameters X j , 
and co . 

c Additional energy r a t i o s can be defined between the 
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elements of the f i r s t column of the Routh array and the 
coefficients of the characteristic equation to. obtain further 
relationships between the system parameters. These energy 
ratios are l i s t e d i n Table 3.4. 

The energy r a t i o method i s based on the concept of 
obtaining a simple response approximation for a system by 
comparing i t with a known comparison system. The approximation 
i s r e s t r i c t e d to systems described by a lumped-constant l i n e a r 
d i f f e r e n t i a l equation whose transform i s of the following form. 

H(s) = — °-
a s + + a-, s + a A 

n 1 0 
The response approximation i s performed by placing a constraint 
on the r a t i o between the integrated square of the system impulse 
response and the corresponding i n t e g r a l of the comparison 
system. 

Since the response of a second order system i s easy to 
v i s u a l i z e i t i s convenient to choose a second order comparison 
system. However, by means of a Pade approximation, a delayed 
second-order response could also be used. Many systems of high 
order have responses which can be accurately approximated by 
such a delayed response. 
3 . 3 . 2 Correlation Function Approximation 

For the two system transfer functions H (s) and H(s), 
c 

given by Eqs. (3.9) and (3.10), the following three relationships 
are obtained using Parseval's theorem. 
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Table 3.4'Energy Ratios Defined Prom the F i r s t Column Elements 

of a Routh Array and the Coefficients of the 
Characteristic Equation. 

Energy Ratio Routh Array 

E „ z= a o/R-7 -I n-2 n-2' 3,1 

• a o e o 

« e • © o 

E3 = a 3 / R n - 2 , l 
E 2 = a 2 / R n _ 1 A 

Ê  = an/R n 1 1' n , l 

i 

a n a 'n-2 .. a 2 a Q j 

n-1 
S.1 

a n-3 
S,2 

Rn-2,1 Rn-2,2 / 
/ 

R T T R ., - / 
n-1,1 n-1,2 / 

R h , l 
R n+1,1 

l i = H c(s)H c(-s) ds 
-2oo 

(3.14) 

1 
2«;j H ( S ) H ( - B ) ds (3.15) 

and 

hh = 1 
2*3\ H ( B ) H C ( - S ) D S (3.16) 

Each of the above three equations can be solved from a set of 
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l i n e a r equations. Corresponding to Eq. ( 3 . 1 4 ) the set of 
li n e a r equations i s 

2 ' 4 , N <Vl = " V 2 

z 1 + 2?co cz 2 = 0 ( 3 . 1 7 ) 

where z = h 2 

2 c 

Corresponding to Eq. ( 3 . 1 5 ) the set of l i n e a r equations i s 

( r

x + z

2

) j i + ( 1 + K r ) y 2 + ' K^3 = 0 

T1Z2*Z + (Tl+r2^3 = 0 

(3.18) 

2 where y ? = h 

Corresponding to Eq. ( 3 .16) the set of l i n e a r equations i s 

w 2x x + Kx, • = Kto2 

2 
c 

~ 2 ? w c X l + w c x 2 + ^ 1 + K t ) x4 + Kx 5 = 0 

x l " 2 § ( 0 c x 2 + w c x 3 + ( ? i + 2 2 ) x 4 + ( 1 + K T ) x 5 = 0 

(3.19) 
x2 " 2 ? a j

c
x 3 + r i ^ 2 x 4 +( r

1+ 22 ) X 5 = 0 

x 3 + \r27i5 = 0 

where x = hh~ 
5 c 

In the above equations the variables z-^,Z2,y-^,y2> etc., represent 
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the coefficients of powers of s occurring i n Eq. (A.9) i n 
Appendix A. • „ . . 

— —2 
Assuming that h = h , 

that is,. y 3 . z 2 = (0 o/4S (3.20) 

Eqs. (3.18) and ( 3 . 2 0 ) y i e l d 

1 + K T = K lu2 + 2 t 

-2 c 

Solving for Xj-, from the set of Eq. (3 .19), 

(3.21) 

AK + BK(1+KT) 
5 ~ ^2 K + EK + PK(1+ZT) + G(1+KT) + H(l+Z T)^ + J 

(3-22) 

where 
A 

B 

E = 2 o ) 2 ( r 1 + r 2 ) ( 2 ^ 2 - i ) + 2 ? o > ^ r 1 r 2 ( 4 ? - 3 ) 

F = 2?w 

.G. 

H 

2 ^ r 1 r 2 ( 2 ^ - i ) + 2 ^ ( r 1 + ^ ) 

2 

and J = + ^ ( r ^ z , ) * + 2 ? ^ r 1 r 2 ( r 1 + ^ ) 

To maximize the correlation function given by Eq. (3 .16), Eq. 
(3.22) i s differentiated with respect to K. Equating the 



40 
derivative to zero yields 

A+B(l+KT) -K 2+G(l+K T)+H(l+K T) 2 + J = 0 

Therefore, either 

A + B(l+K T) = 0 

which i s a t r i v i a l solution, 

or K 2 = G(l+K T) + H(l+K T) 2+ J (3.23) 

Substituting Eq. ( 3 . 2 3 ) . i n Eq. (3.22), yields 

A + B(1+KT) 
'5 ~ 2K + E + E(1+KT) 

(3.24) 

Assuming that hh = h , c c ' 

Letting 

x 5 = (o0/« 

a = to. 

(3.25) 

(3.26) 

and substituting Eqs. (3.21), (3.25) and (3.26) i n Eq. (3.24) 
yields 

K = a^a + a^ (3.27) 

where 
a. 

(^,+^) 3 3 S o (5?-12?:') 
L l c 2 
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a. 
(2" 1 +r 2) 

1 6 2 

(6S 2-2) 

and a 4 = i + e f r ^ 

I f coc of the comparison system i s regarded as an 
unknown quantity, instead of assigning an arbitrary fixed 
value to i t , Eq. (3.27) can be used to obtain an approximate 
s t a r t i n g value. Prom Eq. (3.27) i t i s seen that for K to be 
positive, 

a-̂oc - a 2 > 0 

or a>a 2/a- L 

that i s , 
tt> 6 < g " 2 (3.28) 

Eq. (3.28) provides the relationship between the known parame­
ters of the system to be designed and ^, the known parameter, 
and co , the unknown parameter, of the comparison system. It c 
w i l l now be shown how the results obtained i n this and the 
previous section can be used to obtain approximations to 
system parameters which can then be used as i n i t i a l estimates 
for the d i g i t a l computer solution. 
3.4 I l l u s t r a t i v e Example 

Consider the system of Figure 3»4 for which the system 
transfer function i s given by Eq. (3.1 0 ) . l e t the comparison 
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system be a second order system and i t s transfer function have 
the form given by Eq. (3.9). I t i s assumed that the time 
constants V and ^ i n Q̂.. (3.10) and t i n Eq. (3.9) are known 
and have the following values. 

T = 1.174 sec. 

2̂ = 0.426 sec. 

= 0.6 

Based on these choices and considering K and as unknowns, 
values of K and w i l l be calculated using the approximation 
methods described before. 
3.4.1 Routh Array Approximation 

To obtain a suitable value of co consider that the 
c 

r i s e time of the unknown system i s the same as that of the 
comparison system and from physical considerations l e t t h i s , 
for example, be 2.02 seconds. Therefore, for the comparison 
system, the maximum value of the impulse response i s 

h m a x = l/(Rise Time) = 0.495 

In terms of ^ and co , h i s given by 
C ULclJC 

CO 
c hmax = T T ^ e x p 

I ? VJ^y 1 

- 7j--§ tan 1( J l-"§7<?) 32 

^ 180 
(3.29) 

Substitution of the value of h into Eq. (3.29) yields 
max 

co = 0.786 rad./sec. c 
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For this value of co , Eqs. (3-12) and (3.13) y i e l d 

K = 0.99 
1 + Krp = 1.82 

Results obtained using these values of K and K̂ , as i n i t i a l 
estimates for the design variables and maximizing the 
correlation type performance index P are shown i n Table 3«5. 
The results correspond to the comparison system parameters 

t = 0.6 
co = 0.786 rad./sec. c 

3.4.2 Correlation Function Approximation 
For t = 0.6, Eq. (3-28) yields 

a > 0.392 

From Eq. (3-27) i t i s seen that for a = 0.392, K = 0 and for 
small values of a, K i s also small. For example, i f a = 0.4 
K = 0.0034, and Eq. (3.26) gives co = 1.28 rad./sec. Choosing 
a larger value of a, for example cc = 1, Eqs. (3.26) and (3.27) 
y i e l d 

co = 3„ 2 rad/sec. 
K = 1.051 

Substitution of these values of co and K i n Eq. (3.21) yields 
c 

1 + K T = 0.723 

The negative value of K^, as an i n i t i a l estimate, i s the result 
of the choice of and 2^ a n d ^ . The value of coc also depends 
on the choice of these parameters. 
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Maximizing the performance index P for the above 

i n i t i a l estimates of the unknown parameters K, and u>Q i t i s 
found that the value of P increases as w i s reduced from the 

c 
estimated value of 3.2 rad./sec. For comparison with the 
Routh array approximation r e s u l t s , obtained i n Section 3-4.1, 
values of K and K^, corresponding to wc = 0.786 rad./sec, 
obtained by th i s method are given i n Table 3.5. 
Table 3-5 Results Obtained by Maximizing the Correlation Type 

Performance Index P on an IBM 7040 D i g i t a l Computer. 

Routh Array 
Approximation 

Correlation Function 
Approximation 

Approximate Values 
K 0 . 9 9 1.051 
K T 0.82 -0.277 
0) 
c 

0.786 3.2 

Maximum.Correlation 
Values 

K 1.00074 1.00083 
K T 0.91208 0.91198 
0) 
c 

0.786 0.786 
p 
max 

0.98733 0.98733 

3.4.3 Remarks 
Results given i n Table 3.5 indicate that^irrespe.ctive 

of the i n i t i a l value used to obtain a maximum correlation 
between the unknown system and the comparison system the 
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d i g i t a l computer program yielded almost i d e n t i c a l r e s u l t s . 
I t can, however, be seen that the Routh array approximation gave 
i n i t i a l estimated values closer to the maximum correlation 
values of the design variables. Furthermore, the correlation 
function approximation method becomes d i f f i c u l t to handle as 
the complexity of the unknown system increases. From t h i s 
point of view the Routh array approximation has an advantage 
over the correlation function approximation. 
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4. ALGEBRAIC EXPRESSIONS RELATING THE TIME-DOMAIN 

RESPONSE WITH SYSTEM PARAMETERS 
4.1 Outline. 

A continuing problem i n systems design i s to determine 
the relationships between time-domain response characteristics 
and system parameters. The root-locus and the parameter-plane 
methods are graphical means of establishing numerical r e l a t i o n ­
ships between the characteristic roots of li n e a r time-invariant 

25 
systems and system parameters. Computer solutions of system 
d i f f e r e n t i a l equations, whether obtained by analog or d i g i t a l 
means, are ess e n t i a l l y numerical i n nature and can only be used 
to determine empirical relationships, between system parameters 
and system response by curve f i t t i n g techniques. I t has been 
suggested that the i n i t i a l value theorem and a Taylor series 

2 6 

could be used to obtain a n a l y t i c a l relationships. However, 
l i t t l e use has been made of t h i s suggestion because of the poor 
convergence of the Taylor series. Better methods for the eval-

27 
uation of system response are the state-space approach and 

28 
the use of moments and special sets of polynomials. However, 
these methods are again numerical i n nature. The following 
sections deal with a technique which determines algebraic r e l ­
ations between system parameters and the time-domain system 
response which i s superior to the Taylor series approach both 
i n the accuracy achieved with a given number of terms as well 
as i n i t s computational convenience. Application of this 
technique to the analysis of piece-wise l i n e a r systems w i l l be 
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discussed i n Chapter 5. 
4.2 Generalized Time Domain Design Method 

Consider the feedback control system of Figure 4.1 
with the closed-loop transfer function : having the general form 

n-1 
a_ -, s +. + a-, s + a„ 

H ( S ) = JOZL  1  0  

c s n + + c ns + c A 

n 1 0 

K Ts K Ts 

Figure 4.1 A Feedback Control System. 

Taking the inverse Laplace transform of H(s) yields 

h(t) = J_ C H(s)exp(st)ds • (4.1) 

Eq. (4.1) i s inconvenient i n control system design 
because of the fact that i t does not y i e l d any direct r e l a t i o n ­
ship between system parameters and system response. One such 
relationship i s obtained by r e l a t i n g a Taylor series of H i n 
powers of l / s i n the frequency domain to a Taylor series of h 

,,1 , v, 
0 
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26 i n powers of t i n the time domain . The expansion of h i n 

the Maclaurin series form yields 
h(t) = h(0) + th'(O) + t 2h"(0)/2: + 

+ t k h ( k ) ( 0 ) / k i 
where h(0) = a-̂  

h'(0) = a 2 - 0 ^ ( 0 ) 

h ( k ) ( 0 ) = a k + 1 - c ^ ^ ^ ^ O ) - - c kh(0). 
The usefulness of t h i s approach of time domain design i s , 
however, l o s t because of the necessity of employing a large 
number of terms even for simple systems. 

A new method for obtaining direct algebraic relations 
between system response and system parameters through use of 
Eq. (4-1) w i l l be presented i n Section 4.3. I t appears from 
Eq. (4.1) that i f a system with a transfer function H (s) = 
exp(-st) could be used, i t would be possible to obtain h(t) 
i n terms of the system parameters and t following the procedure 
for evaluating I i n Eq. (2.23). This, however, requires 
H (s) to be a r a t i o of polynomials i n s, and that the denominator c 
of H (s) be a Hurwitz polynomial. The required representation c 
for exp(-st) can be obtained by means of a r a t i o n a l f r a c t i o n a l 
approximation. A Taylor series approximation to exp(-st) i s 
one such p o s s i b i l i t y . However, i t i s commonly accepted that 
Pade approximations are superior to a Taylor series approxi­
mation. Pade approximations for exp(st) are given by 
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P w = exp(st) = lim 
F (st) uv 

(u+v)-oo Q. ( G T ) 

2 where P / , \ -, u(st) u ( u - l ) ( s t ) ' 
UVvSt j — -L + + 

u+v 2J(u+v)(u+v-l) 

u 
+ u(u-l) (2)(l)(st) 

ui (u+v) (v+1) 

and G
u v ( s t ) = 1 - v ( s t ) + v ( v - l ) ( s t ) 2 + 

v+u 21(v+u)(v+u-1) 

+ (-D T v ( v ~ 1 ) . . ( 2 ) ( l ) ( s t ) V 

v! (v+u). (u+1) 

Pade approximations of exp(st) for various values of u and v 
are shown i n Table 4.1. 
4.3 The Derivation of Algebraic Relations Between System  

Response and System Parameters 
The technique to be discussed can be applied to time-

invariant l i n e a r and piece-wise l i n e a r systems and i s based on 
Parseval's ide n t i t y 

u(t)v(t)dt = _1_ j ' V(s)U(-s)ds (4.2) 

and on a method given by Talbot 4 for evaluating Eq. (4.2). 
Talbot's method requires that u(t) and v(t) be the output 
response of stable time-invariant l i n e a r systems and i s a 
generalization of the well known technique for evaluating 
mean-square integrals. 
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Table 4*1 Pade Approximations of exp(st) for Various Values of 
u and v . 

u V 

1 1 

1 2 

2 2 

2 3 

3 3 

3 4 

4 4 

P u v = exp(st) 

2 + st 
2 - st 

6 + 2st 
6 - 4st + s 2 t 2 

12 + 6st + s 2 t 2 

12 - 6st + s 2 t 2 

60 + 24st + 3 s 2 t 2 

60 - 36st + 9 s 2 t 2 - s 3 t 3 

120 + 60st + 1 2 s 2 t 2 + s ^ t 3 

120 - 60st + 1 2 s 2 t 2 - s 5 t 3 

840 + 360st + 6 0 s 2 t 2 + 4 s ^ t 3  

840 - 480st + 120s 2t 2 - l 6 s 3 t 3 + s 4 t 4 

1680 + 840st + 180s 2t 2 + 20s^t 3 + s 4 t 4 

1680 - 840st + 180s 2t 2 - 2 0 s 5 t 5 + s 4 t 4 

Let 

where 

V(s) = A(s 
cTs 

U(-s) = Bis 
DTs 

A m-1 v :. n-1 , 
A(s) ~ JZZ a v s k ; B(s) 4 £Z b k s k 

0(s) k I 

k=0 
m 

k=0 
n 

k=0 c ks D(s) i X Z ^ 
k=0 

(4.3) 
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and where C(s) and D(-s) are Hurwitz polynomials. The 
evaluation of E q . ( 4 . 2 ) could be performed by a p a r t i a l f r a c t i o n 
expansion of the form 

A(s)B(s) = Q(s) + R(s) ( 4 . 4 ) 
C(s)D(s} D(F) cTs) 

where 
Usl = I Z A ( s k ) B ( s k } . 1 ( 4 . 5 ) 

C W k = 0 D(s k)C'(s k) s-s k 

and by completing the path of integration along an i n f i n i t e l y 
large semicircle i n the l e f t - h a l f s-plane. Thus, 

m i = r^ A ( s k ) B ( s k ) ( 4 > 6 ) 

k = 0 D(s k)C'(s k) 

= lim sR(s) ( 4 . 7 ) 
s—•oo C(s) 

However, the evaluation of I by E q . ( 4 . 6 ) requires the numerical 
determination of the characteristic roots, which can be avoided 
i f suitable use i s made of E q . ( 4 . 7 ) . l e t 

,m-I, . n - l t k R(s) = } _ r , s K ; Q(s) = )_2 % s ( 4 . 8 ) 
k = 0 K k = 0 * 

n+m-2 , 
P(s) £ A(s)B(s) = I _ f v s k ( 4 . 9 ) 

k = 0 K 

I t follows from E q . ( 4 . 7 ) that 

I = rm-l ( 4 . 1 0 ) 
c 
m 

and from E q . ( 4 . 4 ) that 
E(s) = Q(s)C(s) + R(s)D(s) ( 4 . 1 1 ) 
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Substituting Eqs. (4-3) and (4 .8 ) into Eq . ( 4 . 1 l ) and 
comparing l i k e coefficients of s yields 

o o + dOrO •o 

c i * o + c o q i + + d ^ + d 0 r x = f 1 

c q~ + m̂ -0 

+ d r„ + n 0 

= f m 

(4.12) 

c q -, + m^n-1 d r -i n m-1 = 0 

where f k = 0 i f k>n+m-2. The system of Eq . (4 .12) can be 
solved for rm_-|_ and substituted into Eq . ( 4 . 1 0 ) . Thus 

where 

I = 1_ 
c m 

A' 
A 

(4.13: 

'0 L0 

• 0 0 

A = m 
'0 

n 

l 0 (4.14) 

0 0 

m n 

and where A' i s obtained from A by replacing the l a s t column by 
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the right hand column of Eq. (4.12). The result given by 
Eq.(4.13) expresses I i n terms of system parameters. Consider 
now the p o s s i b i l i t y of expressing I i n terms of a time-domain 
response. I f = £(Z"-t), where S(t) i s the unit impulse, 
then 

U(-s) = exp(st) ; (t>0) (4.15) 
and Eq.(4.2) reduces to the conventional inverse Laplace 
transform. However, Talbot's method does not apply for 
Eq.(4.15). On the otherhand, i t i s known that Eq.(4.15) can 
be approximated by means of r a t i o n a l f r a c t i o n s , f or example, 

_ 1 29 the Fade approximation 
P 2 3 ( s t ) = 60 - 24st + 5 ( s t ) 2 (4.16) 

60 + 36st + 9 ( s t ) 2 + ( s t ) 5 

may be used to approximate the ideal delay exp(-st). Let 
umn('Z') be the impulse response of a system whose transfer 
function i s P ( s t ) . Por the all-pass case where m = n, mn r 

u n n ( r ) = ("D^^) + S n n ( r - t ) } ' ( t > 0 ) ( 4 ' 1 7 ) 

and for the low-pass case where m = n-1 
= S m ( r - t ) , ( t > o ) (4.18) 

I t i s a consequence of the Pade approximation that 
lim S (r) =S(T) (4.19) 
n—•oo 
Por the all-pass case, l e t B(s) and D(s) be poly­

nomials i n s which have no common di v i s o r and which are defined 
by 

P (-st). = ( - l ) n + B(s) (4.20) 
^ D(sT 

Substituting Eq.(4.17) and Eq.(4.20) into Eq.(4.2) yields 
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where 
/-do 

v n n ( t ) a V ( T ) S n n ( r - t ) d r , (t>0) (4.22) 

For the low-pass case, l e t B(s) and D(s) he polynomials i n s 
which have no common di v i s o r and which are defined by 

P f-st) = B(s) (4.23) 
D(s 

Substituting Eqs.(4.18) and (4.23) into Eq.(4.2) yields 

v n n ( t ) = ^ r 3 " a. (4. 24) 

where 

vmn ( t ) = j v ( r ) £ m n ( r - t ) d r ' ( t > 0 ) ( 4 * 2 5 ) 

The integrals i n Eqs.(4.21) and (4.24) can be expres­
sed i n the form of Eq.(4.13), consequently 

v ft) = 1,A' . (t>0) (4.26) 
c A m 

I t follows from Eqs.(4.19), (4.22) and (4.25) that 

lim v (t)•= v(t) , (t>0) (4.27) 
n—*co 

Thus, Eq.(4.26) gives the desired algebraic r e l a t i o n between 
the time-domain response of a system and i t s parameters. 
4.3.1. I l l u s t r a t i v e Example 

To i l l u s t r a t e the proposed method consider 

V(s) = 2s 2 + 5.5s + 1.75 = A(.s) (4.28) 
s 5 + 3s 2 + 2.75s + 0.75 
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and choose Eq.(4.l6) so that Eq.(4.23) i s used. The choice of 
Eq.(4.28) i s made so that a comparison can be made with the 
state-space method proposed by Liou which i s claimed to be 
superior to c l a s s i c a l methods. Eq.(4.14) yields 

A = 

0.75 0 0 60 0 0 
2.75 0.75 0 -36t 60 0 
3 2.75 0. 75 9 t 2 -36t 60 
1 3 2. 75 - t 5 9 t 2 -36t 
0 1 3 0 - t 5 9 t 2 

0 0 1 0 0 - t 3 

and Eq.(4.9) yields 
f Q = 105 , f-L = 210 + 42t, f 2 = 120 + 8.4t + 5.25t 2 

f = 48t + 10.5t 2 , f^ = 6 t 2 , f 5 = 0 (4.30) 

The response Vg-^t), given by Eq. (4.26), i s expressed 
as the r a t i o of a f i f t h order polynomial i n t and a s i x t h order 
polynomial i n t . Table 4.2 compares the results given by Liou 
with Eq.(4.26). A direct comparison i s not possible. However, 
Liou's method requires the computation of ninth-order matrix 
products and i s e s s e n t i a l l y based on a Taylor expansion which 
includes terms up to the ninth order. For the i n i t i a l portion 
of the response Eq.(4.26) i s not only a simpler representation, 
but has the further advantage that system parameters enter i n a 
simple way. This i s readily seen by replacing the numerical 
entries i n Eq.(4.29) by parameters. The response given by 
Eq.(4.26) then consists of a r a t i o of polynomials i n t with the 
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Table 4.2 The Exact and Approximate Solutions of the System 
of Eq.(4.28). 

t = nT v(t) v 2 5 ( t ) Exact 
Solution 

0 2.00000 2.000000 2.00000 
0.1 1.76781 1.767809 1.76781 
0.2 1.56775 1.567742 1.56774 
0.5 1.39515 1.395146 1.39515 
0.4 1.24604 1.246038 1.24604 
0.5 1.11701 1.117022 1.11700 
0.6 1.00515 1.005196 1.00515 
0.7 0.907982 0.908084 0.907979 
0.8 0.823383 0.823582 0.823379 
0.9 0.749542 0.749889 0.749538 
1.0 0.684914 0.685474 0.684912 

system parameters entering i n a simple algebraic manner. I t i s 
evident from t h i s representation that time-domain response 
s e n s i t i v i t y to parameter variations can be readily evaluated. 
This as well as other p o s s i b i l i t i e s w i l l now be discussed. 
4,4 Applications to the Time-Domain Analysis of Linear Time-

Invariant Systems 
Consider a feedback system whose closed-loop transfer 

function i s given by (Figure 4.1) 

H(s) = K (4.31) 
^ r 2 s 5 + ( r i + ^ ) s 2 + (l+KrjJs + K 

I t i s of interest to determine how the gain K and the tachometer 
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feedback parameter Z^ affect the maxim"um overshoot for a unit 
step input. Let h(t) and g(t) be the unit-impulse and uni t -
step response, respectively. The maximum overshoot occurs at 
the f i r s t zero of h ( t ) . This can be found from Eq.(4.26) by 
choosing V(s) and, for example, U(s) = P 2 ^ ( s t ) : 

^25^ t ) = - i 
C1L2 

Z 0 0 60 0 60Z 
z 0 -36t 60 24tK 
1+KT z 9 t 2 -36t 3 t 2Z 

1+1^ - t 5 9 t 2 0 
0 r 1 + r 2 0 - t 3 0 
0 0 0 0 0 

z 0 0 60 0 0 
K 0 -36t 60 0 

r 1 + r 2 z 9 t 2 -36t 60 
r i r 2 - t 3 ' 9 t 2 -36t 
0 r x r 2 0 - t 3 9 t 2 

0 0 * i Z 2 0 0 ' - t 3 

(4.32) 

Equating the numerator determinant of Eq.(4.32) to zero yields 
t 6 Z 2 - 8t 5Z(l+K T) - 1 2 8 t 4 K ( r i + r 2 ) - 7 4 4 t 3 K r i r 2 + 2 0 t 4 ( l + K T ) 2 

- 840t 2 ( l+K T ) r i e ' 2 + 12 0 t 3 ( l + Z T ) ( 2 ' 1 + r 2 ) + 1200t 2(?' 1+2 2) 2 

2 2 
+ 96oot(^n + r „ ) r 1 r 0 + 3600ZT 

J- d ± <L l 2 
= 0 ( 4 . 3 3 ) 

I f , and t = t are specified, Eq.(4.33) i s a quadratic m 
form i n Z and 1+Z^ and shows how these parameters must be r e l a -
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ted i f the maximum overshoot i s to occur at the instant t m 
The maximum output amplitude = g(t ) can also be expressed 
i n the form of Eq.(4.26). To obtain the desired result l e t 
A(s) and C(s) be polynomials i n s which have no common factor 
and which are defined by 

G(s) = 1 + H(s) - 1 = 1 + A(s) (4.54) 
s s s C(s) 

If V(s) = A(s)/C(s), the inverse Laplace transform of 
Eq. (4.34) yields 

g(t) = 1 + v(t) , (t >0) (4.35) 
and from the previous discussion i t follows that v(t) can be 
approximated by Eq.(4.26). Thus 

«mn ( t ) = 1 + V ( t ) 5 ( t > 0 ) ( 4 ' 3 6 ) 

i s an approximation to the unit step response where 

v (t) = 1 mn — z^2 

K 0 0 60 0 
f 0 

1+Krp K 0 -56t 60 f l 

1+^ K 9t 2 -36t 
f 2 

1+Krp - t 5 9t 2 
f 3 

0 T1T2 r1+z2 
0 - t 5 

f 4 
0 0 r i r 2 0 0 f5 

K 0 0 60 0 0 
I + K T K 0 -36t 60 0 
r 1 + r 2 K 9t 2 -36t 60 
r x r 2 r i + r 2 - t 5 9t 2 -36t 
0 7r t 

1-2 V*2 0 - t 5 9t 2 

i 0 0 0 0 - t 5 

. ( 4 . 3 7 ; 
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and where 
f Q = -60(1+^) ; f = -60(^+2^) - 2 4 ( l + % ) t ; 

f 2 = -60 ̂  - 24(^L+^)t - 3 ( l + K T ) t 2 ; 

f 3 = - 2 4 r 1 r 2 t - 3 ( r 1 + r 2 ) t 2
 ; ±A = - 3 r ± ? 2 t 2

 ; 

0. 

Figure 4.2 i l l u s t r a t e s the type of data that can be 
obtained from Eqs. (4 .53) and (4 .56) where the choice ?^ = 1.174, 

^ = O.46 has been made. By choosing 1+K^ and t m , Eq . (4 .33) 

can be solved"for K and Eq . (4 .36) can be solved for the maximum 
output amplitude g m < The time-domain s e n s i t i v i t y of g m and t m 

to v a r i a t i o n i n K and K̂ , can be determined from Figure 4 . 2 . 

The s t a b i l i t y boundary (SB), defined by the values of K and 
which result i n an unstable system, i s also shown i n Figure 4 . 2 . 

I t i s interesting to note that with suitable r e s t r i c t i o n s , the 
proposed method determines the i n i t i a l response of unstable 
systems as shown i n Figure 4 . 3 . To discuss the method for an 
unstable system, direct use must be made of the inverse Laplace 

where the l i n e c+jco i s chosen so that a l l poles of H(s) are to 
the l e f t . Provided that the poles of P m n(~ s"t) a r e ^° ̂ e right 
of this l i n e , the exponential function i n Eq . (4 .38 ) can be 
approximated by P (-st) and the int e g r a l 

transform 
g(t) (t >0) 
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^ n ( t ) = . j M S i a i P m n ( - s t ) d s ; (t>0) 2JCJ I s mn 
c-joo (4.39) 

evaluated by the method of residues, that i s , Eqs. (4.6), (4.7) 
and consequently Eq.(4 .13) then remain v a l i d and can be used as 
an alternative method for evaluating Eq.(4.39)« 

Figure 4.4 i l l u s t r a t e s a plot of Eq.(4.36) for the 
case K = 1 , = 1.7, compared with the exact response. The 
closed-loop transfer function for this•case i s 

H(s) = 2 (4.40) 
s 5 + 3.2s 2 + 3.4s + 2 

The accuracy can be improved by choosing a larger 
value of n. However, even for the choice m = 2, n = 3, i t i s 
seen that reasonable accuracy i s maintained up to the f i r s t over­
shoot . 
4.5 Method of Residues 

I f most of the system parameters are specified numeri­
c a l l y eq.(4.26) can be readily evaluated by a d i g i t a l computer, 
even for systems of high order. However, i f most of the system 
parameters are i n i t i a l l y unspecified, the algebraic forms obtained 
from Eq,(4.26) could become unwieldy. An alternative approach, 
based on the method of residues applied to a form such as 
Eq.(4«39)» could then be considered. The conventional method 
for evaluating Eq.(4.38) i s to complete the path of integration 
i n the l e f t - h a l f s-plane and requires that the poles of H(s) 
be determined. However, i f Eq.(4.39) i s used, the path of 
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2.5 ^ 

Figure 4.5 The Exact and Approximate Unit-Step Responses 
of the System Shown i n Figure 4.1 i n the Case 
of I n s t a b i l i t y . 
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integration can be completed i n the right-half s-plane and 

(4.41) 

t 

Figure 4.4 The Exact and Approximate Unit-Step Responses 
of the System Shown i n Figure 4.1. 

where the form, of Eq.(4.23) has been used and where are- the 
poles of ^ m n ( - s " t ) ' f o r example, n = 3 i s chosen, Eq.(4.4l) 
contains only three terms irrespective of the order of the 
system. Figure 4.5 i l l u s t r a t e s the response obtained from 
Eq.(4.4l) where H(s) i s given by Eq.(4.40). 



Figure 4.5 The Exact and Approximate Unit-Step Responses 
of the System Shown i n Figure 4 .1. 
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5. NONLINEAR SYSTEM DESIGN 

5.1 Outline ... 
Any system with any number of loops and l i n e a r 

elements can be reduced to an equivalent system having the 
block diagram representation shown i n Figure 5.1 provided that 
the system contains only one nonlinear element. 

The characteristic of the nonlinear element i s taken 
to have the form shown i n Figure 5.2 so that i t l i e s i n the 

R(s) -^Xh 

Figure 5.1 Nonlinear Control System. 

N y N C(s) 

Figure 5.2 Characteristic of the Nonlinear Element 
and i t s Linear Bounds. 
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sector formed by the x-axis and the l i n e 

y = kx 

where k > 0. 
The l i n e a r part, given by G-(s), i n Figure 5.1 can be 

designed on the basis of an optimum output correlation of the 
closed loop system with respect to the output of a closed loop 
comparison system where G i s replaced by G . The parameters 
of the comparison system are assumed to be known except for 
the optimum gain K. K can, however, be expressed as a function 
of the slope k and the parameters of the comparison system. 
For example, for a second order system K could be expressed as 

K = K(k, ?c,wc) 

where f i s the damping r a t i o and coc i s the natural frequency 
of o s c i l l a t i o n of the comparison system. 
5.2 The Design P r i n c i p l e 

Replacing the nonlinearity i n Figure 5.1 by k and 
the l i n e a r part by the comparison system G (s) the following 
equivalent system of Figure 5.3 i s obtained. 

C(s) 

Figure 5.5 Equivalent Linear System for the 
System of Figure 5.1. 
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In order to define the optimum gain i n terms of 

•30 

k and the known parameters of the comparison system, Popov's 
c r i t e r i o n for absolute s t a b i l i t y w i l l be used. Popov's c r i t e r i o n 
for absolute s t a b i l i t y for the system of Figure 5,. 3 requires 
that Re [(l+jwq) G + l / k > 0 ( 5 . 1 ) 

Im[G*(jw)] 

Figure 5 . 4 Popov Line and Locus of G (jw). 

where q, an arbit r a r y r e a l parameter, determines the slope of 
the Popov l i n e shown i n Figure 5 . 4 . The system i s stable pro­
vided that the locus of G*(jw) l i e s to the right of the 

c 
Popov l i n e passing through the point ( - l / k , 0 ) . In Figure 5 . 4 

the dotted l i n e represents the tangent to the locus of G*(jco) 
at the c r i t i c a l frequency.WQ and 

Re [G*(ju)J = RefG c(ju)] 

and , Im'••'••[ G* ( j to)] = wlm [GQ( ju)] 

If the arb i t r a r y variable q i s chosen so that the 



68 
Popov l i n e passing through the point (-l/k,0) i s p a r a l l e l to 
the tangent to the locus of G*(jco) at the c r i t i c a l frequency, 
then the s t a b i l i t y of the system i n the Popov sense i s ensured, 
The above value of q when substituted i n Eq. (5.1) w i l l then 
define a range of the optimum gain Z of the comparison system. 
5.2.1 Choice of q for the Popov Line and the Range of K 

Consider the following comparison system given by 

G c ( s ) = - £ (5.2) 
(s+b)(s 2+2f co s+co2) c c • c 

Substituting s = jco and separating the r e a l and imaginary 
parts yields 

r n KpbW2," w2(k+2S>„)] Re[GJ(jco)] = Re[Gc(jco)] = — L - 5 ^ 

and 

( W
2+b 2)[(co 2-a) 2) 2

+4^a) 2co 2 J 

(5.3) 

r- • r Kco2 Rco2-co2)-2^co bl 
Im[G*(ju)] = w l m ^ C ^ ) ] L ° Q- e- J" 

(co 2+b 2)[( W
2-co 2) 2+4^^co 2 J 

(5.4) 
The locus of G*(jco), shown i n Figure 5.4, cuts the r e a l axis 
i n the l e f t half plane at co = W Q , the c r i t i c a l frequency. 
Equating Eq. (5.4) to zero yields 

CO = COQ = 

1 
co2 + 2 ? co b c c c 



The positive value of WQ i s taken since the locus of G*(jto) 
i s plotted for positive values of to only. 

The slope of the tangent to the locus of G*(jto) at 
(OQ i s given by the expression 

to2 + 2 ? u b 
-2 £ - S - ( 5 . 5 ) 2?w + b c c 

Substituting the value for G*(jto) into the inequality (5.1) 
yields 

K[bco2 - to2((b+2?ca)c) - q(to 2
+2^to cb) + qco2j] _ ̂  

(to2+b2) [ ( ( / - t o 2 ) 2 + 4<?2 to2(o2 ] 

( 5 . 6 ) 

Choosing the slope of the Popov l i n e equal to the slope of 
the tangent to the locus of G-*(jto) at tô  and using Eq. ( 5 . 5 ) 

results i n the following expression for q: 

2 f u + b • ' c c  q = -p 
to + 2 ? to b c c c 

Substituting t h i s value for q into Eq. ( 5 . 6 ) and evaluating 
i t at the c r i t i c a l frequency yields 

+ i7 > o 2 ? u> (co2 + 21? to b + b 2) k 

c c c C C ' 

Thus the range of K i s given by 
0 <kK <2 ^ cw c(to 2+ 2? cto cb + b 2) 
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where k, § , co and b are known quantities. 

The l i n e a r part G(s) can now be designed on the 
basis of an optimum correlation with respect to the 
comparison system G (s) by maximizing the performance index P, 

c 
given by Eq. (2.35), where 

U(s) = kG(s) 
1 + kG(s) 

and 
kG (s) 

V(s) = Q  

1 + kG c(s) 

The c r i t i c a l frequency U)Q, the slope of the Popov 
l i n e ^, and the range of the optimum gain K for several 
comparison systems are given i n Table 5.1. 

The s t a b i l i t y of a system designed by the above 
technique cannot be unconditionally guaranteed. However, since 
the responses of the l i n e a r i z e d systems are s i m i l a r which i s a 
consequence of maximizing P, i t follows that G(jco) must 
approximate G (jco) over a range i n values of co. Thus i f G (jco) c c 
does not cross the Popov l i n e i t can be anticipated that G(jco) 
w i l l not cross the Popov l i n e . This approach' cannot, therefore, 
guarantee a suitable response i n the time-domain. It does, 
however, result i n a comparatively simple way-for choosing 
system parameters. This method could be used to determine 
suitable i n i t i a l estimates for the time-domain approach 
discussed i n the following section. 



Table 5,1 C r i t i c a l Frequency, Popov l i n e Slope and Range of Optimum Gain 
i n Terms of Known Comparison System Parameters. 

Comparison System 
G c ( s ) 

C r i t i c a l Frequency 
to, '0 

Popov Line Slope 
1/q 

Range of Optimum Gain 
K 

K 
2 2 s + 2 ?OKS + io c c c 

2 

c c 
0 < kK < oo 

K 
2 2 s(s + 2 ? co s + co ) c c c 

to. c c 0<i kK< 2 <?co -c c 

K 
(s+b) ( s 2 + 2? a s+w-) c c o 

co + 2 ? co b c c c 
< + 2 % " c b  

2 ? c w c + b 
0 < kK< 2 <? co (co2+2 ? co b+b2) c c c c c 

K 
s(s+b) (s2+2 f co s+co2) c c c' 

bco b(oc(2fccoc+b) 2 f cA(co 2

+ 2^co cb-fb^) 
(2%% + b ) 2 . 2 t ^ c + b 2§ (co2+2 ?co b+b2)-bco c c c c ' c 

0< kK< 

K(s+a) 
(s+b) (s 2+2f co s+co2) c c c 

(a-b)o£+2-Sccocb 
a - (b+2?ccoc) 

{(a-b)(o2+2Sccocbj 
.{a-(b+2?ccoc| 

(a-b)co +2 ^cocb 
(a(b+2?ccoc); 
.{a-(b+2fa ) c)} 

0<kK<-

2 ?co c c L
2 - i 1 
Q _-b[a-(b+2 l^coc)}_ 

a - b - 2f cco c 
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5.3 Time-Domain Analysis of Piece-wise Linear Systems 

Consider the piece-wise l i n e a r feedback system 
i l l u s t r a t e d i n Figure 5.5 where the nonlinear element has a 
saturation type of c h a r a c t e r i s t i c . This type of non-linearity 
approximates the saturation characteristics of many energy 
conversion devices at high signal l e v e l s . The saturation l e v e l 
i n t h i s example i s taken as v Q = 1.4. The method to be discussed 
i s , however, also applicable to the case of amplifier saturation 
where the nonlinear element precedes the l i n e a r element. 

Figure 5.5 A Piece-Wise Linear Feedback System. 

Let v(0) = 0 = v(0) be the i n i t i a l conditions and l e t the input 
be a unit step. Let v.̂  = v, v 2 = v. Before saturation occurs, 
the state equations are 

v 1 - v 2 = 0 
(5.7) 

v 2 + v 2 + lOv-^ = 10 

Solving Eq. (5.7) by Laplace transform methods yields 

10 V u ' — 

sU+sJ o * v1 
~V4 
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V t ) \ \\^{0)) + r h i " h 2 i (5.8) 
v 2 ( t ) y V - i o h 1 h J \ v 2 ( o ) y \ lOb^ 

where 

i e x P ( s t ) ds- h - — 
1 " 2*d J . s 2 + s + 1 0

 d S ' h2 " 2«3 3 
s exp(st) 

h ^ a _ i _ x c ^ S P u , ds; h 0 = 7 T r r \ " 2 ^ ^ •- ds 
„ , „ , _ s +s+10 

(5.9) 

Por the given i n i t i a l conditions Eq. (5.8) reduces 
to 

v 1 ( t ) \ / l - h ^ h g 

v 2 ( t ) / V 101^ 
, 0 i t § t x (5.10) 

At the instant t ^ of saturation, the state equations 
change to 

v-̂  - v 2 - 0 
(5.11) 

v 0 + v Q = y 

where y = 10(l-v o) 

and where v i s the saturation l e v e l of the nonlinear element. s 
Solving Eq. (5„ll) by Laplace transform methods yields 

y(t-l+h 3) N 

1 • + 1 = _ „ 2 + ; t t 
.y(i-n.3) 

(5.12) 
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where 

J- joo 

At t = t ^ , the state equations are again given by Eq„ (5.7) 
and Eq. (5.8) can be used provided that v-^(O) and V2(0) are 
replaced by v ^ ( t 2 ) and v 2 ( t 2 ) , respectively. The functions h^, 
h 2, h^ can be evaluated to any degree of accuracy i n the form 
of Eq. ( 4 . 2 6 ) by means of a r a t i o n a l f r a c t i o n approximation to 
-s t 
e . The choice of a r a t i o n a l f r a c t i o n approximation i s based 
on a compromise between the desired accuracy over a given period 
of time and computational s i m p l i c i t y . I f , for example, P 2^(st) 
i s used and i f v 0 = 1.4, Eq. (4.26) yields 

s 
h ^ 500t 5-240t 4-5780t 3+560t 2+5600t  

1 1000t6+900t5+4500t4+2640t5+2700t2+2l60t+3600 

h ^ 5100t4+480t3-15660t2-1440t+5600  
2 1000t6+900t5+4500t4+2640t3+2700t2+2l60t+3600 

h g ?t 2 -24t+60 ( 5 > 1 4 )  

5 t5+9t2+36t+60 

Eigure 5.6 shows the response v(t) obtained from 
Eqs. (5.8), (5.10), (5.11) and (5.14) compared with the exact 
response. Since the matrices i n Eqs. (5.8) and (5.12) are 
state-'transition matrices, i t i s seen that the elements of the 
stat e - t r a n s i t i o n matrices can be represented i n the form of 
Eq. (4.26), that i s , the elements can be expressed as the r a t i o 
of polynomials i n t with coefficients which are algebraic 
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functions of the system parameters. By means of these 
algebraic forms, the parameters of a piece-wise l i n e a r 
control system can be d i r e c t l y related to i t s time-domain 
response. The application of these forms to system design and 
to the determination of response s e n s i t i v i t y to parameter 
variations i s s i m i l a r to that given i n Section 4.4 and w i l l not 
be discussed further. 
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6. MULTIVARIATE CONTROL SYSTEM DESIGN 

6.1 Outline 
The design of multivariable control systems u t i l i z i n g 

31 32 33 
matrix formulation has been considered by many authors. ' ' 
While some of them have been concerned with the question of 
physical r e a l i z a b i l i t y , the problem of r e l a t i n g system parameters 
to time-domain response and interaction i n the time-domain are 
not considered by these authors. Interaction within a multi-
variable control system may, i n some applications, be 
desirable, the interaction being controlled rather than 
removed. Recognizing that the physical construction of a 
completely noninteracting control system i s impossible, a root-

34 
locus design method^ applying the techniques of single-variable 
system design has been suggested. However, the p r a c t i c a l 
advantage of the root-locus method applied to multivariable 
control system design could be realized only i f a rapid 
t r a n s i t i o n from the pole-zero locations to the time-domain 
characteristics could be made. Two methods of designing 
multivariable control systems, based on the methods of l i n e a r 
single-variable control system design discussed i n 
Chapters 2 and 4, are given i n the following sections. 
6.2 Design Method Based on Performance Functionals 

Consider the system of Figure 6.1 which represents 
an interacting plant with f a c i l i t y for compensation to be 
inserted i n as G-̂  and G-^0 



Assume that E±1 = l / ( s + l ) , H 1 2 = H 2 1 = l/(s+20), 
H 2 2 = l/(s+2), 
G l l = K i ( s + a i ) / ( s + n ] _ a i ) > nj< 1 

G22 = K 2 ^ S + a 2 ^ ^ S + n 2 a 2 ^ ' n 2 < ; 1 * 
The group of design, variables K^, K 2, o^, a 2, and n 2 are 
positive r e a l numbers. 

The equations describing the block diagram of the 
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system are 
n
 G 1 1 H 1 1 ( 1 + G 2 2 H 2 2 ) " G l l G 2 2 H 1 2 H 2 1 r A

 G22 H12 r °1 = A V A R2 

G l l f 2 1 p
 G 2 2 H 2 2 ( 1 + G 1 1 H 1 1 ) " G11 G22 H12 H21„ ' 

2 ~ A 1 A n2 
where A = (l+G^H^) (l+G 2 2H 2 2) - G

1 1
G

2 2 H 1 2 H 2 1 

R l - ^ 

Figure 6.1 Multivariable Control System. 

Consider the case when R2= 0, 
C 

1 11 
R l " 1 + A l l 

(6.1) 

where A-^ = ^]_]_[^]_]_- ^12^21^-G22'//^+G22'^22^ 
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Eq. (6.1) can be represented by the block diagram shown i n 
Figure 6.2. Si m i l a r l y , i f R^ = 0, 

'22 
R, 1 + A, 

(6.2) 

where A - G-A22 ~ 22 

2 ~22 
H22 " H 1 2 H 2 l { G l l / ( l + G l l H l l ) B 

then the block diagram representing Eq. (6.2) i s shown i n 
Figure 6.3. 

Considering Eqs. (6.1) and (6.2) as the transfer 
functions of single variable systems i t becomes possible to 
determine two sets of parameters of the compensating networks 
^11 a n d ^22 maximizing the correlations of C^ i n Figure 6.2 

H l l H l l 

Figure 6„2 Block Diagram Representation of Eq. (6.1) 

and C 2 i n Figure 6.3 with the output responses of two known 
reference systems. The design technique has been described 
i n Section 2.3=2 of Chapter 2. The choice of which set of 
parameters to be used may be made on the basis of s a t i s f y i n g 
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Figure 6.3 Block Diagram Representation of Eq. (6.2) 
34 

a given interaction constraint-^ such as 

2i 
R. 
2 R.= 0 l 

w= 0 
R.= 0 J 
w= 0 

(6.3) 

or on the basis of minimizing a suitable time domain 
s e n s i t i v i t y function for the system sim i l a r to that given 
by Eq. (3-6) i n Chapter 3° 
6.3 Time Domain Design Method 

If the design specifications are given i n terms of 
the transient response of the multivariable system then the 
design technique described i n Section 6.2 cannot "be 
employed. A method w i l l now be described which employs time 
domain specifications for the design of a multivariable control 
system. 

Consider the following design specifications for 
the system shown i n Figure 6.1. Here u(t) represents the unit 
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step and a l l i n i t i a l conditions are zero, 
c 1 ( t ) reaches a maximum 

r x ( t ) = u(t) 
r 2 ( t ) = 0 

overshoot of x-̂ % i n t ^ seconds, 

c 2 ( t ) reaches a maximum 
r x ( t ) 
r 2 ( t ) 

0 
u(t) 

overshoot of x 2$ i n t 2 seconds. 

2l 3 o p i •1*2 ! R. 
R 1 = 0 
io= 0 

1 R2= 0 
co= 0 

4. c 1 ( t 1 ) 
r 1(t)=0 
r 2(t)=u(t) 

c 2 ( t 2 ) 
r 1(t)=u(t) 
r 2(t)=0 

where t-^ and t 2 are the times defined i n ( l ) 
and (2) above. 

The l a s t design s p e c i f i c a t i o n defines an additional interaction 
constraint. In the general form i t i s defined as 34 

c. 
1 

=- e! ., for 0 £ i 
r.=f(t) 1 J 

J 
r.=0 
x at some time, for example at the time for which the response 

c^ i s a maximum. 
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In terms of the above d e f i n i t i o n the l a s t design 

s p e c i f i c a t i o n yields e j ^ = £ 2 i * 
For the set of design specifications outlined above 

the required design equations -will now be obtained. 
Recognizing that the time of maximum overshoot for a step 
input corresponds to the time when the impulse response equals 
zero, the design specifications ( l ) and (2) y i e l d 

h 1 ( t 1 ) = 2 ^ J \ V s ) exp(st 1)ds = 0 

h 2 ( t 2 ) = 2^3" \ H 2(s) exp(st 2)ds = 0 

( 6 . 4 ) 

where H^(s) and H 2(s) are given by Eqs. (6.1) and ( 6 . 2 ) . 

For the system under consideration H^(s) and H 2(s) have s i x t h 
order denominator polynomials and f i f t h order numerator polyno-
mials i n s. Using Fade approximation of the desired order for 
the exponential functions i n Eq. ( 6 . 4 ) and evaluating 
Eq. ( 6 . 4 ) two design equations, i n terms of the known and 
unknown system parameters and r e a l time, are obtained. The 
interaction constraint defined by the design s p e c i f i c a t i o n ( 4 ) 

yields -, ( d 

c 1(t- L) = 2rij \ [ H i ( s ) / s exp(st 1)ds = e-[2 

(6.5) 

i j C [H 2(s)/s]exp(st 2)ds k £' C 2 ( t 2 } = 2k, , . , , 2 1 

where £^2 = e^. The design s p e c i f i c a t i o n (3) yields the 
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(6 .6) 

interaction constraint relations given by Eq. (6 .6 ) 

= £ 2 - ^ 2 ( 2 0 ^ + 1 9 . 9 ^ ) 

2 K 2n 1 = e 12K 1(40n 2+19.9Z 2) 

where £21 = e ] _ 2 ' 

The set of relations given by Eqs. ( 6 . 4 ) , (6 .5 ) and (6 .6) 

constitute the required design equations for the evaluation 
of the s i x design variables K^, K^f oĉ , oc^, n^, and n 2. 

The above method i s also applicable to the design 
of noninteracting multivariable control system by making 
e. . = 0 and e! . = 0. An i l l u s t r a t i v e example i s given i n 
the following .section. 
6.4 An I l l u s t r a t i v e Design Example 

Consider the system shown i n Figure 6.4 

where 
H l l = - 2 / ( s + 1 ) » H i 2 = V ( s + 1 ) , 

H 2 1 = 4/(s+l), H 2 2 = (8s+2)/(s+l) 

The equations of the system are 

° i = ( V ° i ) G i i H i i + ( V c 2 ) G

2 2

H i 2 

C 2 = (R 1+C 1)G 1 1H 2 1 + (R 2-C 2)G- 2 2H 2 2 

In matrix form the above equations can be written as 
(6 .7 ) 



where 
A l l = [ G11 H11 ( 1 + G22 H22 ) ~ G l l G 2 2 H 1 2 H 2 l ] / A 

A 1 2 = (G 2 2H 1 2)/A 

A21 = ( G
1 i H 2 1 ) / A 

A22 = [ & 2 2 H 2 2 ( 1 - G 1 1 H 1 1 ) + G l l G 2 2 H 1 2 H 2 l ] / A 

and where A = (l-G^H-^H 1+& 2 2H 2 2) + &]_]_&22H12H21° 

Taking r ^ ( t ) , r 2 ( t ) as impulses at time t=0 of areas and r 2 

respectively, the inverse Laplace transform of Eq. (6.7) 
yields 

^ ( t A / a i ; L ( t ) 

\ a 2 ^ ( t ) a 2 2 ( t ) 

Figure 6<,4 Block Diagram of a Multivariable Control System. 
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where 

a,, . a.r 3° , ail Hllt^ G22 H2 2)- Sli a22 Hl 2
H21 e ] c p ( s t ) a s 

^G H 
h\ - £ 2- J i 2-exp(st)ds 

(6.8) 

a12 - 2jtj ) A 

A 2 1 = w\ ^ i e x p ( s t ) d s 

a ? ? = A C J " 6 2 2 H 2 2 ( 1 - 6 1 1 H I 1 ^ g ; i S 2 2 H 1 2 H 2 1 ( s t ) f l s 

22 2 3 t J ) . 

Let G^ = and G^2 = K^' where and are the 
design variables. 

Substituting the values for G^ and G 2 2 into Eq. (6.7) 
yields 

2 2 A = (a+bs+cs )/(l+s) 
A x l = -22^(1+8)(1+8K2)/(a+bs+cs2) 

A 1 2 = 3K 2(l+s)/(a+bs+cs 2) 
2 (6.9) 

A 2 1 = 4^(1+3)/(a+bs+cs ) 

A 2 2 = 2K 2 [(1+8^) +8(5+8^)]/(a+bs+cs 2) 

where 
a = 1+2K 1 +2K 2+16X^2 
b = 2(1+^+5X2+8^2) 
c = 1+8K2 
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Substituting Eq. (6.9) into Eq. (6.8) and using the Pade 

approximation for exp(st) ,a-^, a-^2, a 2 i » a n ( ^ a 2 2 c a n b e 

expressed as ratios of polynomials i n t with coefficients 

as algebraic functions of the system parameters. Using the 

f i f t h order Pade approximation 

,st _ 60 + 24st + 5 s 2 t 2 

60 - 36st + 9 s 2 t 2 - s 3 t 3 

solving for a-^ a n ^ a 2 1 from Eq, (6.8) and equating the 

results to zero, the following relations are obtained: 

7 2 OK. 

960Kn 

A+BK1+CK2+DK^+EK2+PK3+GK1K2+HK1K2 

L +JK 1K^+1K 2K 2+MK 2K 2+M^K 3 

"A+BK1+CK2 +DK2+EK2 +PK^+GK1K2 +HK1K2 

L +JK1K|+LK2K2+MK2K2+NK2K5 

= 0 

(6.10) 

= 0 

where 

A = 

B .= 
c = 
D = 

E = 

E = 

Gf = 

H = 

- 0 . 0 1 2 5 t 5 - 0 . 1 1 2 5 t 4 + 0 . 4 t 5 + 0 . 6 t 2 - 3 t - 1 5 

- 0 . 0 5 t 5 - 0 . 5 5 t 4 + 0 . 6 t 3 + 4 o 2 t 2 + 1 2 t 

- 0 . 1 5 t 5 - l . 0 5 t 4 + 7 . 8 t 5 + l . 8 t 2 - 1 0 8 t - 3 6 0 

- 0 . 0 5 t 5 - 0 . 6 5 t 4 - 1 . 4 t 5 - 3 t 2 

- 0 o 4 5 t 5 - l ' . 0 5 t 4 ' + 3 5 . 4 t 5 - 1 1 3 . 4 t 2 - 1 1 5 2 t - 2 8 8 0 
i 

- O . 4 t 5 + l o . 2 t 4 + 2 9 6 t 3 + 5 5 2 t 2 - 3 8 4 0 t - 7 6 8 0 

- 0 . 9 t 5 - 9 . 3 t 4 + 2 2 . 8 t 3 + 1 1 8 . 8 t 2 + 2 8 8 t 

- 4 . 8 t 5 - 4 3 . 2 t 4 + 1 4 7 . 2 t 3 + 6 7 2 t 2 + 2 3 0 4 t 
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J = -6 ,4 t 5-32t 4 +844o8t 5+3302.4t 2+6l44t 
L = -1.2t5-15.6t4-33«6t3-72t2 

M = -9.6t 5-125.4t 4-268,8t 3-576t 2 

N = -25.6t5-332.8t4-7l6„8t5-1536t2 

Figure 6.5 i l l u s t r a t e s the type of data that can be obtained 
from Eq. (6.10). By choosing IC, and t , Eq. (6.10) can be 
solved for K^ and Eq. (6.7) can be solved for the maximum 
output amplitude for specified inputs. The time-domain 
s e n s i t i v i t y of the maximum output amplitude to va r i a t i o n of 
Z^ and Z 2 can be determined from Figure 6.5. This information 
i s s i m i l a r to that obtained from Figure 4.2 of Chapter 4 . 

A l l a n d A22 "*"n 9) c a n ^ e expressed as follows: 

-2Kn(1+8Z9) 
A - A 
A l l - 3Z 2

 A12 
2Z,(l+8Z n) 8Z„s 

A n^ = d r7jr A. • 22 _ 3K 0 "12 -i 2 J ° a + bs + cs 

When A^2= 0, A-^ = 0, and 

A, 
8Z 2s 

22 ~ 2 a + bs + cs 

Solving for a 2 2 , using the f i f t h order Pade approximation for 
exp(st), and equating to zero yields 

2400K2 A' +B 1K 1 +C ' Z2+D' K2+E »Z2+F' z|+G' Z ^ 

+H»KXZ2+J' ZjK^+L' Z 2Z 2 +M' Z2Z2+N' Z 2Z 3 

(6.11) 

=0 
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Figure 6.5 2h© Gains and 'Kg as Functions of Time t 
, for the System Shown i n Figure 6 .4. 
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where 

A' = 0.17t 4+0.l6t 3-2.88t 2-9.6t+12 
B' = 0.68t 4+0.48t 5-5.76t 2-9.6t 
C» 2.04t4+2.4t3-51.84t2-201.6t+288 
D' 0.68t 4+0.32t 3+2.4t 2 

E' - 6. l'2t4+10.2613-254.88t2-1382. 4t+2304 
p. = 5.44t 4+12.83t 4+12.83t 5-1209.6t 2-•3072t+6.144 
Gr' = 12.24t4+9.6t3-138„24t2-230.4t 
H' 65o28t4+6l.44t3-998„4t2-1843.2t 
J' = 87 .04t4+122.88t3-3870.72t2-4915- 2t 
L 1 

= 16.32t 4+7.68t 5+57.6t 2 

M' = 130 . 56t 4+6l.44t 5+460.8t 2 

If' = 348.16t 4+l63.84t 3+1228.8t 2 

The relationship between K^, K 2 and the instant of 
time when a 2 2= 0, given by Eq. (6.1l) for t=5, i s also shown 
i n Figure 6.5» The point of intersection of the two curves 
gives the values of K^ and K 2 for which the impulse responses 
ei^^ $ ^12 * ̂ 21 "̂22 

reach zero value at t=5. In other.words, 
the amplitude of the outputs for unit step inputs reach th e i r 
respective maximum values at that instant of time. This could 
be considered a desirable effect i n some applications. The 
example discussed above only i l l u s t r a t e s the pr i n c i p l e of the 
proposed design technique and the p o s s i b i l i t i e s of getting 
useful information from the algebraic r e l a t i o n s . 

In general, the output and input signals of a multi-
variable control system can be related by the following matrix 



representation. 

where the c^(t) are the outputs and the r ^ are the areas of 
impulse inputs or the amplitudes of step inputs and where 
each &j| c(t) i s a r a t i o of polynomials i n t with coefficients 
which are algebraic functions of system parameters. 

It i s interesting to note that the interaction 
34 

constraints e and e'., , discussed i n Sections 6.2 and 6.3 
can e a s i l y be expressed as r a t i o of polynomials i n t with 
coefficients which are algebraic functions of system 
parameters. I t , therefore, becomes possible to investigate 
the interaction effects of a multivariable control system 
with parameter variations i n the time-domain along with a 
s e n s i t i v i t y investigation. 



7. CONCLUSIONS 
91 

A method has been presented for obtaining algebraic 
relations between system parameters and system response based on 
the frequency domain evaluation of an i n t e g r a l performance 
c r i t e r i o n . The performance c r i t e r i o n P, defined-as a correlation 
measure between the responses of a known reference system and 
the system to be designed, provides a f l e x i b l e c r i t e r i o n . 
Unlike the minimization of performance c r i t e r i a based on error 
measures, th i s method allows a choice of different values of P 
to be made. Within the class of systems defined by the maxi­
mization technique, the par t i c u l a r system with the smallest para­
meter s e n s i t i v i t y can then be chosen. This i s often more 
important than minimizing or maximizing a fixed performance 
function. 

A method has also been presented for obtaining alge­
braic relations between the parameters of l i n e a r and piece-wise 
l i n e a r systems and t h e i r time-domain response characteristics. 
Since the method i s based on the solution of systems of l i n e a r 
equations, the computations required are e a s i l y performed, and 
the d i f f i c u l t problem of r e l a t i n g characteristic roots to several 
system parameters i s avoided. The algebraic relations obtained 
or the systems of l i n e a r equations used are well suited for 
time-domain s e n s i t i v i t y calculations by d i g i t a l computer means. 

35 
As i s done i n the s e n s i t i v i t y analysis of networks ^ , the 
unspecified parameters can be tagged and derivatives with 
respect to these parameters obtained by simply deleting the 
parameters i n the systems of l i n e a r equations. This i s 
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possible since the parameters enter the equations i n a 
l i n e a r manner. A graphical display of the algebraic relations 
allows one to see the effect of several parameters on the 
time-domain response. The method augments very e f f e c t i v e l y 
other parameter plane methods since i t avoids dealing d i r e c t l y 
with the characteristic roots which i s an essential feature 
of these other methods. 
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Evaluation of Performance Integrals I and J 
° mn m 

A.l Outline 

and 

The evaluation of performance integrals 

Xmn = 2 ^ f U(s+p)V(-s +p)ds (A.l) 
C 

Jm = 2 ^ 1 ^ U(s+p)U(-s+p)ds (A.2) 
C 

can be reduced to the solution of a system of l i n e a r algebraic 
equations. The following derivations are based on a proof 
given by Talbot 4. . 
A.2 Evaluation of Performance Integral I mn 

When U(s+p) and V(s+p) are r a t i o n a l functions of s 
vanishing at i n f i n i t y , with the poles of U(s+p) a l l to the l e f t 
of the poles of V(-s+p), the contour C may be completed by an 
i n f i n i t e semicircle on either side of C. Taking i t to the l e f t 
and expressing U(s+p) and V(-s+p) i n the form given by equations 
(2.15) and (2.19), respectively, equation (A„3) i s obtained 
from Cauchy's residue theorem. 

V = 0 F ( s ) / C ' ( s ) D ( s ) ] s = s . ( A ' 3 ) 

X 
1 

where P(s) denotes A(s)B(s) and where s^ are the zeros of C(s). 
Equations (2.16) to (2.18) and (2.20) to (2.22) give the numera­
tor and denominator polynomials of U(s+p) and V(-s+p), respec­
t i v e l y . Since a l l zeros of C(s) are to the l e f t of the zeros of 
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D(s), C(s) and D(s) have no common factors. 

In order to evaluate I i n equation (A.3), the 
mn u 

following i d e n t i t y i s considered: 

Since B(s) and D(s) have no common factor and the degree of 
F(s), or A(s)B(s), i s less than the degree of C(s)D(s), R(s)/C(s) 
i s the sum of those p a r t i a l fraction- terms of F(s)/C(s)D(s). . 
which belong to C(s); and s i m i l a r l y for Q(s)/D(s). Thus, 

R(s) _ [F(s)/0'(s)D(s)3: 
CTs) ~ ^ S - 3±-

(A.5) 
s=s i 

I t follows that I i s the coe f f i c i e n t of l / s i n 
mn ' 

R(s)/C(s) i f th i s i s expanded i n descending powers of s, that 
i s , 

! =
 l i m sR(s) 

mn s—-oo C(s) 

Thus, i f 
m 1 

R(s) = r
m_2_s +........+ T Q (A. 6) 

and Q(s) = ^ . i S 1 1 - " 1 " + ........ + q_Q (A.7) 
then 

I = ̂ 2=1 ( A o 8) mn c m 

Equation (A.4) i s equivalent to the polynomial 
equation 

F(s) = R(s)D(s) + Q(s)C(s) . - (A.9) 
By equating terms containing the same powers of s i n equation 
(A.9), a set of simultaneous equations are obtained for the 
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coefficients i n R(s) and Q(s) which may be written as 

M w = F (A.10) 
where, w i s the (m+n)-rowed column (q~, . 10 ; 

F i s the (m+n)-rowed column (fg, 
q n - l ' r0' 
f k , 0, ... 0) 

r -.) m-1 

where 
J 

, f. = ̂  > a.b. . , for 0 ̂  j ̂  m+n-2 
i=0 

and M i s the (m+n)-rowed square matrix given by equation (A.11) 

M = 

'0 
1̂ 

0 L0 . 0 
d l *• 

m. 
0'- c 

n 

m 0 n 

(A . l l ) 

The solution of I i s given by 
mn 

C = A — mn c A m 
(A.12) 

where A i s the determinant of M and A i s the determinant of 
M on replacing i t s l a s t column by F. 

Eqs. (A.8) and (A.12) remain v a l i d even i f the 
zeros of C(s) are not a l l simple. The procedure above holds 
for an arbit r a r y numerator F(s) and arbitrary denominator fac­
tors C(s) and D(s) having no common factor, provided the degree 
of F(s) i s less than that of C(s)D(s). The roles of U and V 
may always be interchanged. A does not vanish since the poly­
nomials C(s) and D(s) have no common factor. C(s) and D(s), 
however, must be Hurwitz polynomials. 
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A. 3 Evaluation of Performance Integral J m 

To evaluate the in t e g r a l J m i t i s noted that equation 
(A.3) becomes 

J = m 
A(s)A(-s) 
C (s)C(-s) 

(A.13) 
J s=s. 

and i n place of equation (A.9) equation (A.14) i s obtained. 
R(s)C(-s) + R(-s)C(s) = A(s)A(-s) = 2L(s) (A.14) 

J m i s the coe f f i c i e n t of l / s i n R(s)/C(s), and i f 

Ms) = l2m-2 + 

J - m 

o o o e + L 0 (A.15) 

(A.16) 

In terms of determinants the f i n a l solution i s 

,m+l A J = (-1) 
m v • ' c A m 

(A.17) 

where A i s the determinant of the (mxm) square matrix 

M = 

'0 0 

°1 0 
c3 c2 c l C0 

(A.18) 

'2m-2 ° 0 ' V l 
A i s the determinant of M on replacing i t s l a s t column by 

J0' ~2' °° ° ° JJ'2m-2̂ ,' the column L = (L,~, I>0, o ° ° . l 0 r y i 0) 
and where 

2 i = YZ ( - D ] " V 
J i=0 J 1 

m-1 

for 0 = j = m-1 

= I (-1)*3 xa.a. . , for m =• j 4 2m-2 . 
(A.19) 

i=j-m+l 
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A,4 Table of Integrals 

Solution of the integrals I for values of m from 1 
D mn 

to 2 and n from 1 to 3 are given i n Table A . l . Solution of the 
integrals J and t h e i r derived form J , are given i n Tables to m mk to 

A.2 to A.4 for values of m from 1 to 4 and k from 1 to 2. The 
int e g r a l forms of I and J are fa mn m 

I = d s UsMsl (A. 2 0) mn 2%j J C(s)D(,s) 
C 

J
m = ^ r J (A.2i) 

c 
where 

. / \ m-1 
m-1 0 

n—1 
B(s) = t>n_^s + ........ + bQ 

and D(s) = d^s31 + ............ + dQ 

(A.22) 
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Table A . l Values of I i n Terms of the Transform Coefficients, 

mn 

12. 

'22 

a0 bQ c0 
11 c ^ d Q - C Q ^ ) 

a 0 ( c l b 0 " C 0 b l )  

c0 d2 " c l c O d l + c l d 0 
a l b l ( c O d l " C l d 0 } + a 0 b 0 ( c l d 2 " c 2 d l } ' 

+ (a^Q + a 0 b 1 ) ( c 2 d 0 - c Qd 2) 
( c 0 d 2 - c 2 d 0 ) + ( c 1 d 2 - c 2 d 1 ) ( c 1 d 0 - c 0 d 1 ) 

a l b 2 °0 ( c0 d2- c2 d0 ) " c l ( c 0 d l - C l d 0 ) 

2 

+ ( a Q b 2 + a 1 b 1 ) ( c 2 ( c 0 d 1 - c 1 d 0 ) - GQ&^J 
+ (a 0 b 1 + a 1 b 0 ) { c 2 d 0 - c 0 ( c 2 d 2 - c 1 d 3 ) } 
+ Q - Q ^ Q I 0 ! ( c 2 d 2 - c 1 d 3 ) + c 2(c Qd 3-c 2d- L)} 

"23 c 0 { c 2 c 0 ( d 2 - d 3 d 1 ) - c 2 c 1 ( d 2 d 1 - d 3 d 0 ) + c 2(d 1-d 2d Q) 
2 

+ G Q ^ G Q ^ - C ^ ) + d 3 d 1 ( c 1 - c 2 c 0 ) } 
+ d Q { ( c 1 d 3 - c 2 d 2 ) ( c 2 c 0 - c 1 ) + c 2 c 1 ( c 0 d 3 - c 2 d 1 ) 

+ O2 4o} 



99 
Table A.2 Values of J i n Terms of the Transform Coefficients 

m 

a J, = 0 
2 C 1 C 0 

a l c 0 + aQ c2  
2 c 2 c l C 0 

2 n ( 2 Q x 2 ^2^10 + i a ~ £-&2&Q) Q-^GQ aQC^Cg 
2C ^ C Q ( — C ^ C Q + CgC^) 

J, = 

" 2 2 2 
a^(—C ^ C Q + ^2*^1^0^ ( a2 2a^a-j_)^^^2.^0 2 2 2 + (a-ĵ  - 2 a 2 a Q ) c 4 c ^ c Q + a Q ( - c 4 c 1 + c^c^Cg) 

2 c 4 c 0 ( - c | c 0 - c 4 c 2 + c 5 c 2 C l ) 



1 0 0 
Table A. 3 Values of i n Terms of the Transform Coefficients 

J 1 1 
a 0 
2 c 0 

J 2 1 
1 0 . 

2 c ' 
2 2 2 

a l a 0 . a l C 0 + a 0 C 2 C 0 
0 

C l ° 0 2 2 
C 1 C 0 

J 3 1 

J 4 1 

2 
a 0 a 2 a l + a l a 0 C 2 / / c 0 2 c 0 

a 0 

C 2 C 1 c 3 ° 0 
• 2 2 2 2 3 ' a 2(c 1+c 2c 0) + a 0(c 5c 0+C2)/c 0 

2 2 + ( a 1 - 2 a 2 a Q ) ( C ^ H ^ )  

2 c 0 

(CgC-j^ - C ^ C p , ) 3 0 ' 
2 2 2a^Cg + a^a2C-^ + (a2-2a^a.^) C2 

+ ( a 2 a - ^ - 3 a ^ a Q ) c^ + 2 (a-^-^agaQ) c^ 
2 2 

+ a

1

a Q ( c 5 c 2 ~ c 4 c i ^ / c o + a o ( c 4 c 2 + c 5 ^ c O . 2 _ 2 
C 3 C 2 C 1 C 4 C 1 C 3 ° 0 

+ 

( C ^ C - ^ C ^ C Q + C ^ ) f a 3 c i + ( a 2 - 2 a ^ a 1 ) c 3 c 1 

2 2 + ( a 1 - 2 a 2 a 0 ) c 5 

2 
+ a 0 ( c 3 c 2 - c 4 c 1 ) c 3 / c Q } _ 

( - 2 _ n2 \ 2 

\O^C2C-^ ^ 4 ^ 1 3 ^ 0 
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Table A.4 Values of J 0 i n Terms o f the Transform Coefficients 

J. 12 
2 

a0°l 
'0 

J 22 
a o c i 

4 

2 2 

C1 C0 
2 2 2 4 a 1 a 0 c 2 - 4 a 0 c 2 / c 0 4a-Lc2 

— 2 — + 3 

C1 C0 °1 

J 32 
a o c i 
'0 

r 2 2 Q 2 2 2' 
a2 C0 + ^ a2 a0 C2 C0 + al C2°0 + a0 C2 

2a-^aQC2c^ 4~ 2a^aQC3CQ 
C0^°2 C1 ~ C3 C0^ 
2 3 2 2 2 4a 2a 1c 0(c 2+c^c 1) + 4 a 1 a Q (C ^ + C ^ C Q ) + 4a Qc, 5c ? 

C Q ( C 2 C ^ "" C ^ C Q ) 

2 3 2 2 3" 
4 a 2 ^ C 2 c 0 + C 3 C 2 c l c 0 + C 3 C 0 + C 3 C l ^ 
- 8a 2a 0(c 2+2c|c 2c 0+c 2c 2) 
+ 4a 1(c 2+2c 2c 2c 0+c 2.c 2) 

^ C2 C1 ~ °3C0^ 



Table A.4 (Continued) 
1 0 2 

42 
2 

V i 

+ 

2 2 2 2 2 Sa^c^CQ + 4a^a2C2CQ + (5a2-6a^a^) CJI°Q 

2 2 
+ 8 ( a 2 a 1 - 3 a ^ a 0 ) c 4 c 0 + (a-L+2a2a0) ( c . ^ - c ^ . ^ ) c 2 2 + a 1a 0(4c 4c 2c 0+6c 3c 0-2c 3C2C 1+2c 4c- L) 
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2 ("2 ( c 2 + c 5 c 1 - 4 c 4 c 0 ) { a : 5 c 0 ( 2 c 5 c 0 + 4 c 2 C 1 ) + 3 a 5 a 2 C 5 c 1 c 0 

+ (a 2-2a 5a 1) U c ^ - ^ c ^ ) c Q 

+ 3 (a2a-^—3a^aQ) C ^ C Q 
2 

+ 10(a- L-2a 2aQ) c 4 c ^ c 0 
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+ (8L-^~2.SL23-Q) 

.̂ + ag(c 3C2-c 4c 1)c 3/c Q} _ 
r _ 2 _ ^2 N3 ^ c 3 c 2 c I c 4 c i c3 ° o ^ 
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MINIMIZATION AND MAXIMIZATION PROCEDURE 
B.l Outline 

The search procedure used i n th i s thesis leading to 
the minimum or maximum value of the performance index, was 

22 
f i r s t suggested by Rosenbrock and works with n orthogonal 
directions i n which the search progresses at each stage. A 
stage i s defined as the set of t r i a l s made with one set of 
directions and the subsequent change of these directions. Each 
attempt to find a new value of the performance index i s called 

e. I f the step i s successful, e i s multiplied by a, where 
a > l . I f the step i s unsuccessful, e i s multiplied by -|3, 
where 0<|3<1. Success i s defined to mean that the new value 
of the performance index i s less than or equal to the old value 
when a minimum i s sought or i s greater than or equal to the old 
value when a maximum i s sought. 

steps are taken the value of e i s altered u n t i l at least one 
t r i a l i s successful and one t r i a l i s unsuccessful i n each of 
the n directions. 

Suppose that D̂  i s the algebraic sum of a l l the 
successful steps z-. , i n the dire c t i o n V, , etc., and i f 

Each stage i s started with a step of arbitrary length 

To change the dire c t i o n of a vector V i n which the 

A l = D 1 V 1 + D2 V2 + 

A 2 = D2y0 + (B.l) 
* 0 D V U 

n n 
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then A-̂  i s the vector joining the i n i t i a l and f i n a l points ob­
tained by use of orthogonal unit vectors V^, V®> •«•»• > V^, 
Ag i s the sum of a l l the advances made i n directions other than 
the f i r s t , etc. The orthogonal unit vectors V^, V^, V^, 
are then obtained as follows: 

= B 1 / | E J 

Bg = A 2 - A g - V ^ (B.2) 

- B2/|B2| 

n-1^ 
B = A - ) \ -vW 
n n / , n j j 

V 1 = B /|B | n n' 1 n' 
The above algorithm ensures that V_̂  l i e s along the 

dir e c t i o n of fastest advance, V 2 along the best di r e c t i o n which 
can be found normal to V^, and so on. An obvious advantage of 
this method i s that no p a r t i a l derivatives of the performance 
index with respect to the design parameters need be calculated. 
B.2 IBM 7040 D i g i t a l Computer Program 

The computer program incorporating the above mentioned 
ideas and written i n the FORTRAN IV language for the IBM 7040 
d i g i t a l computer includes the evaluation of the performance 
index from the determinant form. The overall flow diagram i s 
shown i n Figure B . l . 
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Input - output stage 

VECTOR 

Performance index minimization or maximization stage 

FUNXON 

Orthonormal d i r e c t i o n finding stage 

Determinant — 
evaluation 
stage by 
Gauss' method 

DETUV 

GAUSSB 

Performance index evaluation stage 

Overall Flow Diagram for Minimizing or 
Maximizing the Performance Index on the 
D i g i t a l Computer, 
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