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THE DEFORMATION CHARACTERISTICS OF ZINC AND CADMIUM 

ABSTRACT 

T h i s work was u n d e r t a k e n t o s t u d y the n a t u r e o f 
the d e f o r m a t i o n mechanisms i n p o l y c r y s t a l l i n e z i n c 
and cadmium over a t e m p e r a t u r e range from 77°K t o 
300°K. 

I t has been o b s e r v e d t h a t the o n l y non b a s a l 
s l i p s y s t e m w h i c h i s o b s e r v e d under normal l i g h t _ 
m i c r o s c o p y i s t h a t of second o r d e r p y r a m i d a l £ll22j 
<1123>. A t temperatures above T = T = ,4 } the amount 

H T 
M 

o f non b a s a l s l i p i s g r e a t e r i n z i n c t h a n i n cadmium. 
The amount o f t w i n n i n g , s u b s t r u c t u r e f o r m a t i o n and 
g r a i n boundary m i g r a t i o n i s comparable i n b o t h systems. 
N e g a t i v e work h a r d e n i n g beyond the U.T-. S. a t 
t e m p e r a t u r e s above T = .4 i s a s s o c i a t e d w i t h r e -

i i . . H 
c r y s t a l l i z a t i o n . 

I n b o t h systems a t t e m p e r a t u r e s below T = ,26 a 
H 

r e g i o n o f t e m p e r a t u r e and s t r a i n r a t e i ndependent 
l i n e a r work h a r d e n i n g o c c u r s . The e x t e n t o f l i n e a r 
h a r d e n i n g i n c r e a s e s w i t h d e c r e a s i n g t e m p e r a t u r e below 
T = .26. Above T = .26 s p o l y c r y s t a l l i n e h a r d e n i n g i n 
. H H 
b o t h systems i s p a r a b o l i c from y i e l d on and the r a t e o f 
h a r d e n i n g a t a g i v e n v a l u e o f s t r a i n d e c r e a s e s w i t h 
i n c r e a s i n g t e m p e r a t u r e . Cadmium s i n g l e c r y s t a l s showed 
a s i m i l a r t r e n t i n t h a t below .26 b o t h 0̂ . and 0̂ .̂  
remained c o n s t a n t . However, above .26 t h e r e was a s t e a d y 
d e c r e a s e i n t h e shear h a r d e n i n g r a t e s . 

I t was o b s e r v e d t h a t the C o t t r e l l - S t o k e s law i s 
obeyed o n l y i n the l i n e a r h a r d e n i n g r e g i o n s o f 
p o l y c r y s t a l s and i n Stage I I h a r d e n i n g o f s i n g l e c r y s t a l s 
below .26. When dynamic r e c o v e r y o c c u r s A C T i n c r e a s e s 
w i t h i n c r e a s i n g s t r a i n . °~ 

I t has been o b s e r v e d t h a t below .26 the l i n e a r 
h a r d e n i n g r a t e i n cadmium d e c r e a s e d w i t h i n c r e a s i n g 
g r a i n s i z e ( c o n s t a n t specimen d i m e n s i o n s ) so t h a t 



e = 0 O + kd 

The v a l u e o f 8 0 was shown t o c o r r e s p o n d t o the t e n s i l e 
h a r d e n i n g r a t e d u r i n g Stage I I s i n g l e c r y s t a l 
d e f o r m a t i o n . The t e n s i l e h a r d e n i n g r a t e was used 
because of t h e e x t e n s i v e t w i n n i n g found t o be a s s o c i a t e d 
w i t h S t a g e I I h a r d e n i n g . The g r a i n s i z e dependence o f 8 
has been i n t e r p r e t e d i n terms o f a g r a i n s i z e dependence 
of t h e e x t e n t o f {1122} <1123> , s l i p . 

I t was found t h a t d u r i n g l i n e a r h a r d e n i n g i n b o t h 
z i n c and cadmium the d i f f e r e n c e i n f l o w s t r e s s a t two 
d i f f e r e n t t e m p e r a t u r e s i s a r e v e r s i b l e d i f f e r e n c e 
i m p l y i n g t h a t t h e d i s l o c a t i o n c o n f i g u r a t i o n s p r o d u c e d 
w i t h i n c r e a s i n g s t r a i n do not v a r y i n n a t u r e o r e x t e n t 
w i t h t e m p e r a t u r e . Under such c o n d i t i o n s i t i s p o s s i b l e 
t o f o r m u l a t e a m e c h a n i c a l e q u a t i o n o f s t a t e . 

E x t e n s i v e r a t e t h e o r y measurements have been made 
i n b o t h systems i n o r d e r t o att e m p t an e v a l u a t i o n o f the, 
r a t e c o n t r o l l i n g mechanisms b o t h d u r i n g l i n e a r h a r d e n i n g 
and d u r i n g dynamic r e c o v e r y . The former has t e n t a t i v e l y 
been a s s o c i a t e d w i t h i n t e r s e c t i o n . Dynamic r e c o v e r y on 
the o t h e r hand has been l i n k e d t o t h e l o o p a n n e a l i n g 
o b s e r v a t i o n s o f P r i c e . 
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ABSTRACT 

This work was undertaken to study the nature of the deformation 

mechanisms i n p o l y c r y s t a l l i n e zinc and cadmium over a temperature range from 

77°K to 300°K. 

I t has been observed that the only non basal s l i p system which 

i s observed under normal l i g h t microscopy i s that of second order pyramidal 

[ l l 2 2 ] <(ll23>. At temperature above T = T = .k, the amount of non basal 
H <V 

s l i p i s greater i n zinc than i n cadmium. The amount of twinning, substructure 

formation and grain boundary migration i s comparable i n both systems. Neg­

ative work hardening beyond the U.T.S. at temperatures above T = .k i s 
H 

associated with r e c r y s t a l l i z a t i o n . 

In both systems at temperatures below T = .26 a region of 
H 

temperature and s t r a i n rate independent l i n e a r work hardening occurs. The 

extent of l i n e a r hardening increases with decreasing temperature below .. = 

T = .26 . Above T n = .26 , p o l y c r y s t a l l i n e hardening i n both systems i s 
H n 

parabolic from y i e l d on and the rate of hardening at a given value of s t r a i n 

decreases with • increasing temperature. Cadmium single c r y s t a l s showed a 

s i m i l a r trend i n that below .26 both 0^ and • remained constant. However 

above .26 there was a steady decrease i n the shear hardening rates. 

I t was observed that the Cot t r e l l - S t o k e s law i s obeyed only 

i n the l i n e a r hardening regions of p o l y c r y s t a l s and i n Stage II hardening of 

single c r y s t a l s below .26 ..When dynamic recovery occurs A°~ increases 
cr 

with increasing s t r a i n . 

I t has been observed that below .26 the l i n e a r hardening rate 



i i 

i n cadmium decreased with increasing grain s i z e ( constant specimen dimen­

sions) so that 

1 -2 
0 = Qo + kd 

The value of 0 owas shown to correspond to the t e n s i l e hardening rate during 

Stage II single c r y s t a l deformation. The t e n s i l e hardening rate was used 

because of the extensive twinning found to be associated with Stage II 

hardening. The grain s i z e dependence of 0 has been interpreted, ih.iterms of a 

grain s i z e dependence of the extent of £ll2*2]^1123^ s l i p . 

I t was found that during l i n e a r hardening i n both zinc and 

cadmium the difference i n flow stress at two d i f f e r e n t temperatures i s a 

re v e r s i b l e difference implying that the d i s l o c a t i o n configurations produced 

with increasing s t r a i n do not vary i n nature or extent with temperature. 

Under such conditions i t i s .possible to formulate ai.mechanical equation of 

state. 

. Extensive rate theory measurements have been made i n both 

systems i n order to attempt an evaluation of the rate c o n t r o l l i n g mechanisms 

both during l i n e a r hardening and.during dynamic recovery.. The former has 

t e n t a t i v e l y been associated with intersection.. Dynamic recovery on the other 

hand has been l i n k e d to the loop annealing observations of P r i c e . 
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1. DEFORMATION CHARACTERISTICS OF ZINC AND CADMIUM 

1 .1 INTRODUCTION 

In the past, the major emphasis i n the f i e l d of p l a s t i c deformation 

has been placed on face centered cubic metals. Much of t h i s work has been 

r e s t r i c t e d to the use of single c r y s t a l s i n an attempt to determine the 

d i s l o c a t i o n mechanisms which con t r o l the work hardening processes. The study 

of single c r y s t a l behaviour has the advantage of avoiding the d i f f i c u l t problem . 

of dealing w i t h the constraining conditions imposed by grain boundaries during 

the deformation of p o l y c r y s t a l l i n e aggregates. This s i m p l i c i t y , which enables 

one to obtain a better.knowledge of shear stress conditions on p a r t i c u l a r s l i p 

planes has disadvantages due to the poor r e p r o d u c i b i l i t y of flow stress values 

of d i f f e r e n t single c r y s t a l s because of the e f f e c t s of s l i g h t changes i n such 

f a c t o r s as substructure, impurity concentration, o r i e n t a t i o n and i n i t i a l 

d i s l o c a t i o n density. The c o r r e l a t i o n of single c r y s t a l and p o l y c r y s t a l l i n e data 

f o r face centred metals i s a t o p i c of some current i n t e r e s t 1 " 5 and should i n 

the future provide a groundwork f o r the understanding of macroscopic deformation 

c h a r a c t e r i s t i c s . 

I n the p a s t few years the study of body centred cubic-metals,,' 

n o t a b l y , i r o n ; , has been i n t e n s i f i e d . C o n r a d 6 - 1 0 , Gregory 1 1, B a s i n s k i 1 2 and 

others have attempted to determine the rate c o n t r o l l i n g mechanism over a wide 

range o f temperaturei Much of t h i s work involved the use of p o l y c r y s t a l l i n e 

specimens. 
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The f i e l d of hexagonal metal deformation has "been somewhat ignored 

due i n most part to the anisotropic nature of the hexagonal system and the 

resultant d i f f i c u l t i e s encountered i n mechanical working and engineering use. 

With p o s s i b l y the exception of zinc and cadmium, the more prominent hexagonal 

metals in c l u d i n g T i , Be, Mg, Co, and Zr are associated with d i f f i c u l t 

m e t a l l u r g i c a l procedures during e x t r a c t i o n and r e f i n i n g which tend to make 

them, expensive and hence undesirable as engineering materials except i n 

ap p l i c a t i o n s where d e f i n i t e advantages occur. 

Of a l l . the hexagonal metals, titanium and-magnesium have been studied 

i n the greatest d e t a i l because of t h e i r favourable strength to weight r a t i o . . 

Because of gaseous embrittlement and d i f f i c u l t i e s encountered during mechanical 

forming, titanium has not become as widely used as once predicted. Magnesium 

i s d i f f i c u l t to produce i n wrought form due to embrittlement during cold working. 

Therefore the problem of determining the deformation mechanisms which c o n t r o l 

flow i n magnesium has been a subject of considerable i n t e r e s t . 

On the other hand very l i t t l e work has been done on zinc and 
2 3 

cadmium since the c l a s s i c works of Scamid and Boas- i n the e a r l y 1930's. 

Recently considerable i n t e r e s t has been shown i n the development of new wrought 

zinc a l l o y s to compete commercially with some aluminum and copper a l l o y s . Poor 

creep properties due to i t s high e f f e c t i v e temperature at" room temperature and 

reduced d u c t i l i t y because of cleavage fracture at reduced temperatures have so 

f a r l i m i t e d i t s use. I t i s necessary therefore to have a more d e t a i l e d knowledge 

of the deformation mechanisms to provide a ground work f o r future alloy- develop­

ment. Most inv e s t i g a t i o n s to date have been concerned with e i t h e r the hardening 



mechanisms during basal g l i d e 2 4 - 2 5 or the nature of eleavage f r a c t u r e . 2 6 2 7 

Very l i t t l e work has been done with p o l y c r y s t a l l i n e zinc to determine such 

factors as the s t r a i n rate and temperature s e n s i t i v i t y of the flow s t r e s s , the 

mode and degree of non basal s l i p , the nature of dynamic recovery,, the relevance 

of g r ain boundary e f f e c t s etc. 

Although s i m i l a r i t i e s e x i s t between zinc and cadmium as shown i n 

Table I, the apparent deformation c h a r a c t e r i s t i c s d i f f e r i n that cadmium does 

not f a i l by cleavage fracture and maintains s u b s t a n t i a l d u c t i l i t y down to 

4 .2°K„ However a quasi d u c t i l e - - b r i t t l e t r a n s i t i o n involving a change i n 

fracture mode from d u c t i l e shear to intergranular fracture has been reported 

by S t o l o f f 2 8 and Magnussen. 2 5 . Therefore by comparing zinc and cadmium under 

standard conditions of p u r i t y , grain s i z e , temperature, s t r a i n rate and 

specimen geometry i t may be possible to obtain a more d e t a i l e d knowledge of 

the flow and fracture mechanisms. 

The f i r s t part of t h i s t h e s i s i s concerned with the more 

macroscopic flow parameters whereas part two describes attempts to determine 

the rate c o n t r o l l i n g mechanisms by the use of rate theory. 

1.2 EXPERIMENTAL PROCEDURE 

1.2 .1 Materials and Specimen Preparation 

The zinc and cadmium used i n the course of t h i s work was of 

99.999% p u r i t y and was supplied i n the form of one-half inch rods by the 

Consolidated Mining and Smelting Company, T r a i l , B.C. 

These rods were remelted i n a i r and cast into graphite moulds to 

give ingots with dimensions 5" x 2^" x . These were then r o l l e d into 



TABLE I 

P h y s i c a l Properties of Hexagonal Metals 

Element Zn Cd Mg Be Co T i Zr 

Melting Temperature °C 420 320 65O 1277 1495 1668 1852 

Density gms/c.c. 7.14 8.65 1 .74 I . 8 5 8.9 4.51 6.49 

c / a r a t i o I . 8 5 6 1 .886 1 .624 I . 5 8 6 1.623 1.588 1 .590 

Stacking Fault 
Energy* 

medium medium high high low high high 

Periodic Group No. 11B 11B 11A 11A VIII IVB.-- IVB 

Stacking Fault Energies Low - under 25 ergs/cm 2 

Medium - 2 5 - 1 0 0 ergs/em 2 

High - > 100 ergs/cm 2 



sheet. The i n i t i a l r o l l i n g passes f o r zinc were c a r r i e d out at 150°C i n 

order to avoid cracking. The grain refinement which occurred during t h i s 

hot r o l l i n g operation was such as to allow further reductions to be 

ca r r i e d out at room temperature. R e c r y s t a l l i z a t i o n during r o l l l i n g r e a d i l y 

occurred at room temperature because of the small grain s i z e . 

Cadmium was r o l l e d at room temperature throughout the-reduction 

process. .In both cases reduction was c a r r i e d out i n .010 inch steps from 

.150 inches to the f i n a l sheet size of .031 inches. This treatment 

produced a.very uniform and f i n e grained r e c r y s t a l l i z e d sheet with a grain 

size of 20u f o r zinc and 25u f o r cadmium. 

The grain si z e could be varied s i g n i f i c a n t l y by changing the 

amount of reduction i n the f i n a l r o l l pass. For instance a f i n a l grain 

size of 50;i instead of 25u could be obtained i n cadmium by using a f i n a l 

reduction of 51/0 instead of 25%. For t h i s reason a l l specimens were cut 

from the same sheet i n order to eliminate small differences i n grain size 

and preferred o r i e n t a t i o n . 

Tensile specimens were punched to give a reduced gauge length 

of .8 inches with cross s e c t i o n a l dimensions of .200" x .031" ( F i g . l ) . 

Since t h i s procedure, caused s l i g h t deformation around the specimen edges 

i t was necessary to chemically p o l i s h the surface p r i o r to t e s t i n g . 

Approximately .0015 inches were removed to give a f i n a l specimen thickness 

of .0280 inches. The p o l i s h i n g s o l u t i o n used f o r both zinc and cadmium was 

as follows -

320 gms C r 0 3 

20 gms Na 2 S04 

1000 mis H 2 0 

, . 30 
This represents a s l i g h t modification of Gilmans s o l u t i o n 1. - Besides 
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p o l i s h i n g the surface, t h i s treatment caused grain boundaries to become 

s l i g h t l y grooved thereby f a c i l i t a t i n g metallographic examination a f t e r 

t e s t i n g . 

Large grained specimens were obtained by annealing punched 

specimens i n ai r . under the following conditions: 

Cadmium - 2 hrs at 230°C 
Zinc - 2 hrs at.l80°C 

The specimens were then furnace cooled from temperature over a period of 

1 hour. The resultant grain size i n each case was 400u- - 25u. This 

produced specimens with only 1 to 2 grains across the specimen thickness. 

Because of t h i s , the s c a t t e r i n flow stress values was somewhat greater 

than f o r f i n e grained specimens. The purpose of producing such specimens 

was to f a c i l i t a t e metallographic observations and to provide an intermediate 

t e s t specimen between the normal f i n e grained material and single c r y s t a l s . 

The single c r y s t a l s used were grown by a modified Bridgman 

technique i n evacuated $mm diameter pyrex glass tubes. Extruded .100 inch 

lengths of cadmium were placed i n the tubes which were subsequently 

lowered at the rate of 1" per hour through a. 12" v e r t i c a l tube furnace. 

C r y s t a l s up to 18 inches i n length could be grown providing numerous 

samples of the same o r i e n t a t i o n . 

1.2.2 Testing Procedure 

Specimens were deformed on a Floor Model Instron using s t r a i n 

rates that varied from 4.0 x 10 3 s e c 1 to 4.0 x 10 5 s e c *. Testing media 

included l i q u i d nitrogen^cooled petroleum ether (-140 to +20°C), hot 

water (+20 to + 100°C) and s i l i c o n e oil(above 100°C). The bath temperature 
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i n each case could be c o n t r o l l e d to i 2°C. S p l i t jaw grips which produced 

a very r i g i d t e s t i n g apparatus were used f o r the p o l y c r y s t a l l i n e specimens. 

(F i g . 2 ) . 

•Single c r y s t a l s were mounted i n solder i n aluminum grips and 

were deformed i n a t e s t i n g r i g which allowed complete freedom of 

r o t a t i o n ( F i g . 3 ) . The distance between grips was between 30 and 35 

g i v i n g a length to diameter r a t i o of 10/1. 

. In order to f a c i l i t a t e comparison with previous work a l l 

data on p o l y c r y s t a l s i s expressed i n terms pounds per square inch (p.s.i.) 

whereas single c r y s t a l r e s u l t s are given i n terms of c.g.s. u n i t s . 

1..3 STRESS ̂ -STRAIN RELATIONSHIPS 

1.3-1 Nature of the Stress S t r a i n Curves 

True s t r e s s - t r u e • s t r a i n curves f o r both grain sizes i n zinc 

and cadmium at a few selected temperatures are shown i n Figures k,, 5 , 6 

and 7> The cadmium curves are q u a l i t a t i v e l y the same as those observed by 

S t o l o f f and Gensamer 2 8 f o r .020 inch grain size material. - S p e c i f i c a l l y , 

work hardening i n the e a r l y regions of s t r a i n i s parabolic at high 

e f f e c t i v e temperatures and tends to become more•linear with decreasing 

temperature. ( E f f e c t i v e temperature i s given by Tg .= T_ where T^ i s 
T M 

the melting p o i n t ) . At temperatures above approximately T^ = .kO 

there i s a large amount of s t r a i n beyond the point of maximum stress which 

was not observed to be associated with necking. I t was also observed that 

t h i s e f f e c t i s gr e a t l y reduced i n the UOOu material. 



- 8 -

F i g . 2 P o l y c r y s t a l t e s t i n g apparatus. 
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F i g . 3 Single c r y s t a l t e s t i n g apparatus. 





F i g . 5 . S t r e s s - s t r a i n curves f o r k00u cadmium. 
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Fig.7 .Stress - s t r a i n curves f o r kOOn zinc 



1.3-2 • D u c t i l i t y - ^ 

D u c t i l i t y w i l l be given only i n terms, of percent elongation 

or true s t r a i n as i t was not p r a c t i c a l to obtain reduction i n area values 

because of the specimen dimensions. .As an a i d to i n t e r p r e t a t i o n , 

d u c t i l i t y i s given not only as the true s t r a i n to fracture but also :in 

terms of the true s t r a i n to maximum stress conditions. This i s important 

when considering deformation at high values of T^ because of the large 

amounts of deformation associated with negative work hardening. 

1 .3 .2 a) Cadmium 

The e f f e c t of temperature on the d u c t i l i t y of 25p and 400u 

cadmium i s shown i n Figures 8 and 9- I t i s observed that there i s an 

increase i n the s t r a i n to frac t u r e as the temperature decreases to -120°C. 

This increase is more pronounced with an increase i n grain s i z e . At 

-120°C both grain sizes have approximately the same s t r a i n to frac t u r e of 

about kO$>. Below -120°C there i s a steady decrease i n d u c t i l i t y 

independent of grain s i z e , i n agreement with the r e s u l t s of S t o l o f f and 

Gensamer. This decrease corresponds to a change i n the fracture mode from 

d u c t i l e shear to in t e r g r a n u l a r . f r a c t u r e . 

From Figures 8 and 9±t i s also observed, that above -120°C 7 

,1.) the true s t r a i n to maximum stress i s greater f o r kOOp. than f o r 25u 

cadmium 

2) the percentage of the t o t a l d u c t i l i t y which i s associated with negative 

hardening a f t e r maximum stress conditions have been r e a l i z e d i s greater 

f o r the 25u cadmium. 



I I I I I I I I I I L I 1 1 
-160 -120 -80 -40 0 +40 +80 

Temperature °C 

F i g . 9 The e f f e c t of temperature on the d u c t i l i t y of 400j j cadmium. 
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•1.3.2 b). Zinc 

The r e s u l t s f o r zinc are q u a l i t a t i v e l y the same as those f o r 

cadmium except f o r the occurrence of a d i s t i n c t d u c t i l e to b r i t t l e 

t r a n s i t i o n due to cleavage f r a c t u r e . 

From Figure 10 i t i s observed that t h i s t r a n s i t i o n i s s h i f t e d 

about 50°C as the grain s i z e i s increased from 25u to 400u. Above the 

t r a n s i t i o n temperature i t i s observed that both the t o t a l s t r a i n to 

fracture and the true s t r a i n to maximum stress decrease with increasing 

temperature i n a manner s i m i l a r to cadmium. Likewise the percentage of 

the t o t a l d u c t i l i t y at fr a c t u r e which i s associated with negative work 

hardening i s greater f o r 20u zinc than f o r 400u'zinc. Also the true s t r a i n 

to maximum stress i s greater at the same temperature, f o r hOOu zinc than 

for 20u z i n c . This i s i n agreement with observations (1) and (2) of the 

previous section on cadmium. 

The e f f e c t of s t r a i n rate on the d u c t i l e to b r i t t l e t r a n s i t i o n 

i s shown i n Figure 11. . Changing the s t r a i n rate by a f a c t o r of 10 s h i f t e d 

the t r a n s i t i o n f o r 20u zinc by about 25°C. 

1 .3 .3 Grain Boundary E f f e c t s 

The observations of the previous section with regard to grain 

size e f f e c t s indicate that some form of recovery and r e c r y s t a l l i z a t i o n are 

operative during deformation at elevated temperatures. These processes . 

are expected because of the high p u r i t y and high e f f e c t i v e temperatures. 

However S t o l o f f found no evidence of r e c r y s t a l l i z a t i o n during t e s t i n g at 

20°C . 
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F i g . 1 0 The e f f e c t of grain s i z e on the d u c t i l i t y of z i n c . 
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. Temperature • °C 

F i g . 11 The e f f e c t of temperature on the d u c t i l i t y of 20u, z i n c . 
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Figure 12 shows the r e l a t i v e grain boundary structures i n 25u 

cadmium before and a f t e r 7$ deformation at room temperature. The boundaries 

have become very jagged i n appearance i n d i c a t i n g considerable grain 

boundary migration during deformation. 

Figure 13 shows other examples o f boundary motion i n kOOp zinc 

and cadmium. With decreasing temperature the migrating boundaries show 

a more continuous type of migration along the boundary (Fig.13b) opposed 

to the corrugated type observed at room, temperature and above (Fig. 1 3 d ) . 

At a given temperature these boundary e f f e c t s were much more prominent i n 

fine grained material. 

Figure 13(b)-shows a "stepped" type of boundary migration 

s i m i l a r to that observed by Chang and' G r a n t 3 1 during creep of p o l y c r y s t a l l i n e 

aluminum a t elevated temperatures. They interpreted such observations i n 

terms of alternate processes of shear and migration. 

In order to obtain a q u a t i t a t i v e assessment of the importance .of 

shear as a deformation process, polished kOOp specimens were f i n e l y marked 

by means of a soft brush and then deformed. . As shown i n Figure lk, shear 

was observed i n both systems at room temperature. I t was not ne c e s s a r i l y 

associated with migration. Only a few boundaries showed, v i s i b l e o f f s e t s 

and such o f f s e t s could only be seen at rather .high magnifications. / 

The e f f e c t of boundary migration and shear processes on the 

stress s t r a i n curve i s not f u l l y understood. Shear i s b a s i c a l l y a work 

hardening process and involves the deformation and subsequent hardening of 

areas adjacent to the boundaries. On the other hand migration occurs 
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X 2k0 
(a) undeformed 

X 240 
(b) deformed and immediately repolished 

Fig.12 Grain boundaries i n 25u cadmium before and a f t e r 7% deformation 
at +20°C. 
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(a) corrugated grain 
boundary i n cadmium 
deformed 7$ at +20°C 

and repolished. 

X 2k0 

X 2k0 

Fig. 1 $ Grain boundary motion i n kOOu zinc and cadmium. 
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x 700 

(a) cadmium at 10$ s t r a i n . 

X 700 

(b) zinc at 7$ s t r a i n . 

F i g . l 4 Grain boundary shear i n kOOy zinc and cadmium at +20°C. 
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because of a net difference i n free energy across the boundary caused by 

differences i n the d i s l o c a t i o n configurations associated with the work 

hardened states on each side of the boundary.. I f when a boundary moves 

i t leaves behind a s t r a i n free region into which deformation can then 

proceed, the migration i s e s s e n t i a l l y a recovery process a c t i n g as a 

prelude to r e c r y s t a l l i z a t i o n . . Therefore any co-operative process of shear 

and migration represents a hardening and recovery c y c l e . Very small amounts 

of migration and shear were observed i n cadmium at -95°C (̂ V. = . 3 0 ) , where 

migration was observed more as a s l i g h t grain boundary corrugation and did 

not involve gross boundary movement. More d e t a i l e d studies w i l l have to 

be made to accurately determine the temperature dependence of these 
22 

processes..Dorn observed s u b s t a n t i a l shear i n p o l y c r y s t a l l i n e magnesium 

at +20°C (T = .32). The p o s s i b i l i t y e x i s t s therefore that the d u c t i l i t y 
H 

t r a n s i t i o n i n cadmium at -120°C i s associated with the cessation of 

grain boundary recovery.. I f d u c t i l e shear as opposed to intergranular 

fracture occurs because of boundary recovery then i t i s necessary that 

the a c t i v a t i o n energy associated with migration be a v a i l a b l e down, to 

T R = .26 . 

The a c t i v a t i o n energy c o n t r o l l i n g boundary m o b i l i t y i s not 

95 

known. However Winegard has shown that the a c t i v a t i o n energy associated 

with grain growth i n u l t r a pure metals can be r e l a t e d to the l i q u i d s e l f 

d i f f u s i o n energy. This i s usually i n the range from .1 e.v. to .k e.v. 

Although the d r i v i n g force i s somewhat d i f f e r e n t i n each case i t i s not 

expected that the act u a l rate c o n t r o l l i n g mechanism during boundary 

migration w i l l be d i f f e r e n t than that associated with grain growth. There:-

fore i t i s probable that the energy required f o r boundary migration w i l l 

be s u f f i c i e n t l y low that some boundary i n s t a b i l i t y can occur i n cadmium 
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o 
at temperatures down to -120 C. 

Boundary migration i n p o l y c r y s t a l l i n e zinc poses a d i f f i c u l t 

problem f o r the development of successful zinc a l l o y s with good creep 

r e s i s t a n c e . I t i s desirable to obtain as f i n e a grain si z e as possible 

i n order to improve strength and mechanical working c h a r a c t e r i s t i c s . With 

such a structure however i t i s then necessary to s t a b i l i z e the boundaries 

by a suitable a l l o y i n g technique. • 

o 

Since climb i s known to occur at temperatures above -30 C, 

i t i s probable that the d u c t i l e - b r i t t l e t r a n s i t i o n i s r e l a t e d to the ease 

with which climb can occur as a dynamic recovery mechanism to allow f o r 

the circumvention of points of stress concentration. This i n t e r p r e t a t i o n 

however does not explain the known grain si z e dependence of the t r a n s i t i o n 

temperature. 

This dependence on grain size may be explained i n terms of 

easier crack propagation i n large grainedrmaterial. I t may also be explained 

i n terms of the r e l a t i v e amount of material being recovered by the action 

of boundary migration . Cleavage cracks are usually nucleated at grain 

boundaries, twin i n t e r s e c t i o n s etc. where stress concentration occurs. I f 

these points of stress concentration can be removed by boundary migration 

then cleavage f r a c t u r e should not occur. I f i t i s assumed that the def­

ormation processes do not change s i g n i f i c a n t l y with grain s i z e , then the 

increased d u c t i l i t y of zinc with decreasing grain si z e at low temperatures 

may be r e l a t e d to the increased importance of grain boundary migration 

as a recovery mechanism. At any given value of s t r a i n and boundary migration 

rate, the amount of recovered material will:.increase as the grain si z e 

decreases. 
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1.3,k R e c r y s t a l l i z a t i o n 

Grain boundary migration always preceded the introduction 

of new r e c r y s t a l l i z e d grains which had t h e i r o r i g i n on the.grain 

boundaries. A r e c r y s t a l l i z e d grain which subsequently deformed i s 

shown growing from the boundary i n Fibure 15(b). The growth of the new 

grain appears to have been stepped s i m i l a r to the migration of e x i s t i n g 

boundaries. F i g . 15(a) i l l u s t r a t e s the movement of twin boundaries i n t o 

the parent grain by a d i f f u s i o n process. This process i s d i s t i n c t from 

stress dependent twin growth which i s a shear transformation. The o r i g i n a l 

twin which formed i s s t i l l v i s i b l e due to surface d i s t o r t i o n . 

R e c r y s t a l l i z e d grains were never observed before maximum 

stress conditions, but were associated with the negative work hardening 

slope obtained at elevated temperatures above T^ = .kO'. At a l l temperatures 

studied, r e c r y s t a l l i z a t i o n never went to completion during t e s t i n g except 

i n the f i n a l necked area. At room temperature i n 20u zinc ?about 50$ of 

the specimen volume remained u n r e c r y s t a l l i z e d a f t e r 60% deformation. 

R e c r y s t a l l i z e d grains were r a r e l y observed i n 400u specimens at any 

temperature. This i s r e f l e c t e d by the smaller amount of d u c t i l i t y from 

maximum stress to f a i l u r e (Figure 9)• The lower d u c t i l i t y to maximum 

stress f o r 20n Zn and 25u Cd at high temperatures as opposed to that f o r 

400u material i s merely a r e f l e c t i o n of more pronounced boundary migration 

and the e a r l i e r introduction of r e c r y s t a l l i z a t i o n i n the f i n e grained 

material. 
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Maximum Stress-Variation'with Temperature and S t r a i n Rate 

S t o l o f f using 500u cadmium found a plateau i n ultimate 

t e n s i l e strength below about - l 6 0°C. -The r e s u l t s of the present work 

are shown i n Figure 16 and indicate that the occurrence- of t h i s plateau 

i s grain s i z e dependent. .Continuously increasing strength values can be 

obtained to lower temperatures with a f i n e grain s i z e . 

S i m i l a r r e l a t i o n s h i p s are observed f o r zinc at high temperatures 

(Fig. 1 7 ) . However with the onset of cleavage fr a c t u r e that accompanies 

decreasing temperature, there i s a gradual decrease i n maximum.stress 

which l e v e l s • o f f at a more or l e s s constant value when d u c t i l i t y becomes 

less than 1$, i n d i c a t i n g a temperature independent fra c t u r e process. The 

e f f e c t of s t r a i n rate on fra c t u r e stress i s shown i n Figures 18 and 19. 

I t i s seen from Figure 19 that i n zinc when frac t u r e occurs by cleavage 

as opposed to d u c t i l e shear, the macroscopic fracture -stress i s s t r a i n rate 

independent over the range of s t r a i n rates used. 

With cadmium ( F i g . 18) the s t r a i n rate dependence of maximum 

stress varies only s l i g h t l y above 77°K. .At 77°K where fracture i s completely 

i n t e r c r y s t a l l i n e , there i s v i r t u a l l y no s t r a i n rate dependence of 

maximum str e s s . 
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F i g . l 6 The temperature dependence of the maximum stress i n cadmium. 
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1.4 DEFORMATION MODES IN.ZINC AND CADMIUM 

In I928 Von M i s e s 3 2 showed that i t was necessary f o r f i v e 

independent s l i p systems to be operative before a p o l y c r y s t a l l i n e material 

can undergo a general homogeneous s t r a i n by s l i p . In many systems 

however other mechanisms such as twinning 7bending and. kinking may occur 

thereby reducing the number of d i s t i n c t s l i p systems required. 

1 .4 .1 S l i p 

The predominant s l i p system i n zinc and cadmium i s the basal 

system (0001) ^l^oy . I t has been a popular b e l i e f that i f and when 

non basal s l i p does occur i t w i l l do so much more r e a d i l y i n systems which 

have °/a r a t i o s equal to or l e s s than i d e a l . This argument follows from 

33 

r e l a t i v e close packing considerations. Seeger has suggested however that 

i n a d d i t i o n to the c / a r a t i o , the stacking f a u l t energy w i l l have a strong 

influence, on deformation modes i n as much as i t controls the cross s l i p 

process. S t o l o f f and D a v i e s 3 4 using hexagonal close packed Zn-Ag a l l o y s 

of s l i g h t l y varying a x i a l r a t i o s showed that the c / a r a t i o i s not the only 

c r i t e r i o n . f o r non basal s l i p . 

The possible pyramidal s l i p systems are indicated i n Figure 2 0 . 

Tables 2 and 3 show the r e s u l t s of previous investigations i n t o the non 

basal s l i p c h a r a c t e r i s t i c s of zinc and cadmium. . A l l studies were c a r r i e d 

out using single c r y s t a l s . Oilman 4 3 observed prismatic s l i p ^lOlO^ O-120/"-

i n cadmium, but only at higher temperatures than those used i n the present 

i n v e s t i g a t i o n . The only non basal system that has been r e l i a b l y reported 

as being operative i n zinc i s the second order pyramidal £ l l 2 2 j < 1̂12~3^ . 



- 31 -

However both pyramidal systems [ l O l l j < 1120/" and £ l l22J <C 1123/> have 

been observed i n cadmium by Price using d i s l o c a t i o n free p l a t e l e t s . 4 0 4 1 

This i s i n t e r e s t i n g i n that the f i r s t order pyramidal i s a possible cross . 

s l i p plane. .Alden using zinc and cadmium, single c r y s t a l s found that 

zinc has a. much higher net hardening rate than cadmium during a l t e r n a t i n g 

tension-compression t e s t s . This he interpreted to be due to the greater 

ease of cross s l i p i n cadmium. . However the 1st- order pyramidal system 

has never been observed during the deformation of bulk c r y s t a l s . On the 

other hand Price f a i l e d to observe any cross s l i p from basal to pyramidal 

planes. His pyramidal d i s l o c a t i o n s were a l l nucleated on the pyramidal 

planes. 

. Metallographic studies f o r - t h i s work indicated that non basal 

s l i p i s a common occurrence. A l l observations were-made using 400u material 

because of the d i f f i c u l t y i n r e s o l v i n g traces-on f i n e grained surfaces. 

Q u a l i t a t i v e l y i t appeared that the occurrence of non basal s l i p increased 

i n frequency with decreasing grain s i z e . .However any q u a n t i t a t i v e . r e s u l t s 

w i l l have to wait an extensive e l e c t r o n microscopy r e p l i c a study. 

1.4.1 a) Zinc 

Non basal traces were much more prevalent at +20°C i n zinc 

than i n cadmium at an equivalent temperature. Figure 21 shows s l i p l i n e 

traces i n zinc over a series of s t r a i n s at +20°C. . Approximately•50$ of 

the grains i n zinc showed non basal traces at fr a c t u r e . These traces 

were u s u a l l y wavy and discontinuous i n nature at +20°C and d i d not 

completely traverse a grain. They would s t a r t near grain boundaries 

and gradually progress across the grain (Grain A, Fig.. 21). Many grains 

showed two d i f f e r e n t traces and a few three (Grain B). 
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(a) First-order pyram­
idal glide occurs when_dis-
locations with a $[1210] 
Burgers vector move on 
(lOTl) planes, (b) Second-
order pyramidal glide oc­
curs when dislocations_with 
a Burgers vector J[ll23] 
= c+a move on (1122) 
planes. 

(b) 

F i g . 20 Pyramidal g l i d e systems i n zinc and cadmium ( a f t e r Price ' ). 



TABLE 2 
Non Basal S l i p Systems Observed i n Zinc 

Author Temperature Loading Non Basal System Remarks 

Rosenbaum 3 5 +20°C Bending {ll22} <112J> etch p i t t i n g on 
basal planes 

3 6 
B e l l and Cahn +20°C Tension 11 to 

basal planes 
[ l l 2 2 j <^1125/' s l i g h t departure from 

{ll22} - s l i p plane may 
be i r r a t i o n a l 

P r i c e 3 7 ' 3 8 ' 3 9 +20°C-^-150°C Tension {ll22]<1123> d i s l o c a t i o n f r ee 
p l a t e l e t s 

4 2 
Predvoditelev +20°C Compression 

11 to c axis 
(1122} <1123> etch p i t studies 

Oilman +20°C-^ +150°C Compression 
11 to basal 
planes 

{ll22}<1123> 
[1010]<1120> 

Prismatic only 
at elevated temperatures 

S t o f e l , Wood 
4 4 and Clark 

25°C and ^78°C Tension and 
Compression 11 
to c axis 

{1122] <ii23 y rate of work hardening 
= 7.5 x. 10 5 psi.. 
decreases with decreasing 
temperature 



TABLE 3 

Non Basal S l i p Systems Observed i n Cadmium 

Author' Temperature Loading Non Basal System Remarks 

S t o l o f f and 
Gensamer 4 7 +20°C -*- -196°C 

bending and 
compression 

£ll22j <1123> Single c r y s t a l s used 

P r i c e 4 0 ~ 4 1' +20°C -*- -150°C tension (1122] <1123> 
[ l O l l ] <11207 

D i s l o c a t i o n free p l a t e l e t s 
[ l O l l j predominates at 
elevated temperatures 

G i l m a n 4 8 +150°C -»-2750C tension {lOlo} <1120> Only at elevated 
temperatures 

Wernick and 
Thomas 49 

+25°C —- -150°C compression £1122} <1123> etch p i t studies 





(b) 4 .7 $ s t r a i n 

(c) 7 • ! io s t r a i n 

F i g . 21 £l_122] ^1123^ s l i p i n 400u zinc at various s t r a i n s . 
Temperature = +20°C Magnification X kQO 
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By a trace analysis technique s i m i l a r to that described by 

Reed-Hill and Baldwin, 6 5 a l l non basal traces were i d e n t i f i e d as 

o r i g i n a t i n g from £ll22^ <C 1123 s l i p . The technique can only be used i f 

at l e a s t 3 twin traces and the basal s l i p traces can be observed. Then 

by an appropriate measurement of angles i t i s possible to a r r i v e at a 

possible s o l u t i o n f o r the non basal traces. Because- of the s l i g h t 

ambiguity associated with t h i s procedure, i t was checked against X-Ray 

determination of the o r i e n t a t i o n f o r two selected grains showing non 

basal traces. In both cases, the two techniques indicated 2nd order 

pyramidal s l i p . 

Price observed that screw d i s l o c a t i o n s with a Burgers vector 

3 {̂ 11233 cross g l i d e d frequently between planes containing the ̂ 1123̂ ] 

d i r e c t i o n . This could explain the wavy nature of the traces at room 

temperature. 

With decreasing temperature the non basal traces became 

st r a i g h t e r and tended to concentrate i n t o bands, an observation made 

previously by S t o l o f f 4 7 i n cadmium and Gilman 4 3 i n z i n c . These bands may 

e a s i l y be mistaken f o r f i n e twins. However as seen i n Figure 22 they 

r e a d i l y i n t e r s e c t one another and were, removed by p o l i s h i n g . 

1.4.1. b) Cadmium 

At 30°C and above non basal s l i p was l e s s extensive i n cadmium 

than i n z i n c . -With decreasing temperature i t became more prevalent as 

shown i n F i g . 23. These low. temperature markings were very s i m i l a r to 

those observed i n zinc at equivalent temperatures. As i n zinc-trace 
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analysis showed them to originate from { 1 1 2 2 } ^ 1 1 2 3 s l i p . In no case was 

f i r s t order pyramidal observed. 

The observation of extensive {1122} 0-123^ s l i p i n zinc and 
86 

cadmium i s not unexpected.•As reviewed by Dorn , t h i s system i s the only 

one which can promote extensive deformation p a r a l l e l to the c-axis. The 

contribution that twinning can make i s not s i g n i f i c a n t i n terms of the 

t o t a l s t r a i n . No combination of £000l]<1120>, £l010}<1120>, and{l01l}<1120> 

can provide the f i v e independent systems required f o r homogeneous deformation. 

However the operation of £L122^<1123> i s s u f f i c i e n t by i t s e l f i n providing 

the number of required systems. Table 4 shows the number of independent 

systems f o r each of the prominent s l i p systems . 

TABLE 4 

S l i p Systems i n Hexagonal Metals 

No. S l i p System Burgers Vector Number of Independent 
Systems 

1 (000l]O.120> a 2 

2 [1010] CL120? a 2 

3 £l011̂  <1120> a 4 

4 [1122] <1123> c + a 5 

5 1 + 2 + 3 a 4 

( a f t e r Dorn ). 
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cleavage crack 

X 240 
(a) Non basal traces near fra c t u r e surface. 

twins 

X 240 
(b) As above a f t e r p o l i s h i n g . 

F i g . 22 £ll22] ̂ 1123> s l i p i n 400ju zinc at -196°C 



F i g . 23 ^1122J<1123> traces on UOOJJ cadmium deformed 7$ at -196°C. 
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1.4.2 Twinning 

In both zinc and cadmium twinning occurs on the £l012^ planes 

i n the <1011^ d i r e c t i o n s . However s l i g h t differences occur i n the two 

systems i n the frequency of twinning. 

In the absence of general grain boundary migration the amount 

of twinning d i d not vary appreciably with temperature. As the temperature 

decreased the twins became f i n e r i n d i c a t i n g r e s t r i c t e d twin growth with 

decreasing temperature. A comparison of the deformation markings a f t e r 7$ 

s t r a i n at +20°C and -196°C in-400 u cadmium i s shown i n Figures 24 and 25. 

The amount of twinning under equivalent conditions of 

temperature and s t r a i n was s l i g h t l y l e s s i n zinc than i n cadmium. However 

Price observed that i n d i s l o c a t i o n free p l a t e l e t s , twins formed more 

r e a d i l y and grew to l a r g e r sizes i n zinc than they did i n cadmium. This he 

explained i n terms of the greater shear associated with twinning i n cadmium 

( .171) as opposed to z i n c ( .139) a n c i "the p o s s i b i l i t y therefore of a more 

d i f f i c u l t process of twin nucleation i n cadmium. However one could e a s i l y 

argue that twins should nucleate and grow more r e a d i l y i n cadmium because 

they represent a more e f f e c t i v e deformation mechanism. 

The lower frequency of twinning i n zinc may a l s o be due to the 

fact that second order pyramidal s l i p occurs more r e a d i l y i n p o l y c r y s t a l l i n e 

zinc than i n cadmium and the amount of twinning needed to meet Von Mises' 

requirements i s therefore reduced. 



F i g . 2k Microstructure of 400JJ cadmium deformed 7$ at +20°C. 
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X 100 

F i g . 25 Micro-structure of 400/4 cadmium deformed 7$ at -196°C 
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The amount of twinning i n both systems was always.governed by 

the r e l a t i v e temperature and s t r a i n . . In the region of room temperature 

with increasing boundary migration accompanying i n c r e a s i n g ' s t r a i n , twin 

formation became much l e s s frequent. Once d i s t i n c t r e c r y s t a l l i z a t i o n started 

twin formation was not observed. Therefore cadmium which had fractured at 

20$ s t r a i n at -196°C always showed more twinning than cadmium deformed to 

20$ s t r a i n at +20°C since at the l a t t e r temperature migration i s occurring. 

Migration a f f e c t s twinning due to i t s recovery e f f e c t on areas of stress 

concentration required f o r twin nucleation. Therefore true comparisons of 

r e l a t i v e twinning could only be made e i t h e r at low values of s t r a i n before 

extensive migration had started, or at low temperatures. 

On t h i s basis of comparison and keeping i n mind the greater 

tendency f o r migration and r e c r y s t a l l i z a t i o n with decreasing grain s i z e 

i t was observed that the amount of twinning did not vary s i g n i f i c a n t l y 

with'grain i .size .• 

. At temperatures above +20°C7where extensive migration occurs-

very l i t t l e twinning occurred as shown i n F i g . 26. 

S t o l o f f observed l e s s basal s l i p i n twinned regions with a 

decrease i n temperature. This was not observed as indic a t e d i n Figure 27 

which shows extensive twin basal s l i p at -196°C. The f i n e r nature of basal 

traces at low temperatures makes them more d i f f i c u l t to resolve. 

When twinning on one p a r t i c u l a r twin plane was stopped by a twin 

on another plane as shown i n Figure 27, extensive s l i p would occur i n basal 

planes of the l a t t e r and eventually cause twin nucleation on the opposite 

side of the twin. .This process of twin nucleation was a common occurrence 

e s p e c i a l l y i n cadmium. 



- +5 -

X 260 
F i g . 26 Lack of twinning i n the presence of boundary migration. 

( 25ji cadmium deformed 10$ at +60°C.) 

X 120 

Fig.27 Twin basal s l i p and twin nucleation. 

( 400jj cadmium deformed 7$ at +20°C ) 
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1.4.3 The Formation of Low Angle Boundaries during Deformation 

Low angle boundaries have been observed to form during the 

deformation of both single c r y s t a l s and p o l y c r y s t a l s i n many materials. 

Such boundaries have been r e f e r r e d to by a .variety of nomenclatures which 

has confused t h e i r nature of formation and. t h e i r importance as a 

deformation process. 

The formation of "kinks" i n single c r y s t a l s of cadmium was 

f i r s t observed and discussed by Orowan 5 4. Hess and B a r r e t t 5 2 , G i l man 5 5 5 6 

and Washburn and P a r k e r 5 - ' ' 5 3 studied the nature of kinking i n zinc single 

c r y s t a l s . .Gilman distinguished between compression kinks and tension kinks, 

p o s t u l a t i n g that the l a t t e r form only due to c r y s t a l inhomogeneities. 

Compression kinks were further subdivided into "ortho" (formed, under low 

stress conditions) and"para" (formed at high stresses i n c r y s t a l s which have 

been extensively deformed). Compression ortho kinks were observed by 

Gilman i n which the kink planes were always perpendicular to surface basal, 

traces. They were observed to form i n zinc at temperatures down to -196°C 

i n d i c a t i n g that the process of t h e i r formation i s more l i k e l y one of stress 

induced d i s l o c a t i o n rearrangement on the basal planes-than one of 

d i s l o c a t i o n climb which i s thermally a c t i v a t e d . 

Boundary formation i n p o l y c r y s t a l s i s more complicated because 

of the nature of the stresses. I t has therefore been re f e r r e d to by a 

v a r i e t y of terms such as mosaic w a l l s , c e l l formation and non c r y s t a l l o ­

graphic boundary formation. G i f k i n s 5 0 reported the formation of " c e l l s " 

during the deformation of p o l y c r y s t a l l i n e zinc above 200°C. D o r n 2 1 2 2 

studying magnesium observed temperature independent "non c r y s t a l l o g r a p h i c " 
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boundary formation which i n many cases crossed grain boundaries. He 

postulated that these boundaries formed because of the bending of the 

l a t t i c e associated with the non homogeneous deformation of underlying 

grains. 

The observations of the present work indicate that the 

formation of boundaries.is s i m i l a r i n degree and type i n both zinc and 

cadmium. "Non c r y s t a l l o g r a p h i c " boundaries s i m i l a r . t o those observed by 

Dorn are shown i n Figure 28 and 29. From Figure 28 i t i s a l s o observed 

that these boundaries can cross grain boundaries. 

On close examination of Figure 28 i t i s observed that some 

boundaries seem to be " c r y s t a l l o g r a p h i c " i n that they are perpendicular to 

the basal s l i p traces. S i m i l a r boundaries are shown i n Figure 30. These 

boundaries are s i m i l a r to the ortho kink planes of Gilman. They were 

distinguished by three d i s t i n c t features: 

1) The misorientation of the b a s a l traces was always greater across 

the c r y s t a l l o g r a p h i c "kinks" than across non c r y s t a l l o g r a p h i c 

boundaries. 

2) C r y s t a l l o g r a p h i c boundaries formed i n those grains which had the 

most prominent basal traces and few.if any twins. 

3) The boundaries were sometimes observed to be composed of two or 

more smaller boundaries.(Figure 30) s i m i l a r to those of Washburn 

and Parker. 

I t would appear that the " c r y s t a l l o g r a p h i c kinks" from only 

under f a i r l y simple stress conditions such as ..bending or compression of the 

basal planes. The boundaries become non c r y s t a l l o g r a p h i c however where 



x4oo 

c r y s t a l l o g r a p h i c 
non " 

F i g . 28 Low angle boundaries i n cadmium deformed 7% a"t -30°C 

X 1.20 

F i g . 29 The formation of non c r y s t a l l o g r a p h i c boundaries i n cadmium 
due to underlying small grains. 

( deformed 15$ at +20°C.) 
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X240 
(a) cadmium deformed 15$ at +20°C. 

X240 

(b) zinc deformed 7$ at +20°C. 

Fig.30 Crystallographic boundary formation i n 400p Zn and Cd. 
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boundary r e s t r a i n t s on a given grain become more complicated. The extensive 

non c r y s t a l l o g r a p h i c boundary formation of Figure 29 i s due to the r e s t r a i n t s 

imposed by the underlying.fine grain structure. 

1.5 YIELD STRESS AND WORK HARDENING 

1.5-1 The Temperature Dependence of Y i e l d 

The flow stress-temperature r e l a t i o n s h i p s found by S t o l o f f are 

shown i n Figure 31- He found that the y i e l d stress was independent of 

temperature below about -80°C and that the work hardening rate was constant 

over an increasing s t r a i n region as the temperature decreased. . The. r e s u l t s 

at k.2°K are somewhat i n doubt due to the d i f f e r e n t specimen geometry. 

The d e f i n i t i o n of y i e l d i n p o l y c r y s t a l l i n e zinc and cadmium i s 

d i f f i c u l t because of the gradual nature of the. y i e l d process". Therefore the 

y i e l d stress f o r the purpose of t h i s work was defined by an o f f s e t technique 

using .Yfo s t r a i n as the y i e l d s t r a i n . . In order to compare the temperature 

dependence of y i e l d i n zinc and cadmium, the y i e l d stresses were normalized 

i n each case by d i v i d i n g by the shear modulus G;. -Shear'modulus, values were 
"57 

obtained from the tables of Koster . The y i e l d s t r e s s - e f f e c t i v e temperature 

r e l a t i o n s h i p s are shown i n Figure 32. 

I t i s seen that below the c r i t i c a l temperature where y i e l d i s 

completely thermally acti v a t e d the y i e l d stress appears to increase l i n e a r l y 

with decreasing temperature. The temperature dependence of y i e l d f o r both 

grain sizes i s s l i g h t l y greater f o r zinc than f o r cadmium. The normalized 

y i e l d stress i s also somewhat higher f o r zin c . .In 400u material the 
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Fig.51 Flow stress-temperature r e l a t i o n s h i p s f o r 0.020 inch 
grain diameter cadmium as found by S t o l o f f . 
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Fig.32 .Temperature dependence of the y i e l d stress i n p o l y c r y s t a l l i n e zinc and cadmium 
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c r i t i c a l temperature (Tc) i s approximately the same f o r both zinc and 

cadmium(Tjj = .520). Tests could not be done on f i n e grained material 

above about Tg = .5 due to grain growth at these temperatures. 

I.5.2 Temperature S e n s i t i v i t y of the Flow Stress 

B u l l e n 5 8 6 0 using p o l y c r y s t a l l i n e copper.found a l i n e a r 

r e l a t i o n s h i p between the flow stress (at constant s t r a i n ) , and temperature 

over a range of temperature from h.2°K to q-50°K. He postulated that the 

hardening mechanism i n copper remained the same over the temperature range 

studied but that the lower flow stress values obtained with increasing 

temperatures were due to e i t h e r a. d i f f e r e n t rate of obstacle formation 

with s t r a i n , or to a temperature dependent dynamic recovery process which 

tended to remove obstacles once formed. On the other hand R u s s e l l 4 , again 

using p o l y c r y s t a l l i n e copper found that the work hardening rate was linear,-

and temperature i n s e n s i t i v e below a c e r t a i n c r i t i c a l temperature. The 

amount of s t r a i n involved with t h i s constant l i n e a r hardening was a l s o a 

function of temperature, and increased with decreasing temperature. His 

r e s u l t s are shown i n Figure 33- S t o l o f f (Figure 31) a l s o indicated a l i n e a r 

and temperature i n s e n s i t i v e work hardening rate f o r cadmium at low 

temperatures where the flow stress i t s e l f was not a function of temperature. 

I.5.2 a) Cadmium 

Flow stress-temperature r e l a t i o n s f o r 25^. and hOOyx cadmium 

obtained during t h i s study are shown i n Figures 3^ a n o - 35-



- 5+ -

Fig-33 The temperature dependence of the s t r a i n hardening parameter 
of p o l y c r y s t a l l i n e copper as found by Russell" . 



F i g . $4 .Flow stress-temperature r e l a t i o n s h i p s f o r 25p cadmium. 
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F i g . 35 .Flow stress-temperature r e l a t i o n s h i p s f o r 400p cadmium. 
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I t i s seen that as•opposed to S t o l o f f ' s r e s u l t s , the flow stress 

continues to increase with decreasing temperature down to -1^6°C. U n t i l 

t e s t s can be performed below -196°C i t i s not known whether t h i s trend 

continues. 

In order to obtain a more d i r e c t comparison of the stress s t r a i n 

r e l a t i o n s h i p s , the y i e l d stress was subtracted from the flow-' stress f o r each 

point g i v i n g p l o t s of the work hardening parameter ( °"flow ~ ^.1$ s t r a i n ) 

vs.temperature." These are shown i n Figures 36 and 37- . I t I s seen that i n 

both cases, a .region of temperature independent work hardening develops 

below -120°C s i m i l a r to that observed by R u s s e l l . .With increasing 

temperature the amount of s t r a i n involved decreases. The temperature 

independent work hardening region covers, the same temperature range f o r both 

grain s i z e s . However la r g e r amounts of s t r a i n i n hOOyx material show 

temperature independent work hardening than that found, f o r 25u ( i . e . l4fo 

s t r a i n at -196°C f o r 400u and 7$ f o r 25u). 

1.5.2 b). Zinc 

Because of the l i m i t e d d u c t i l i t y of ,400u z i n c , no s i m i l a r 

evaluation could be made. However the r e s u l t s obtained f o r 20u zinc are 

shown i n Figures 38 and 39- Temperature independent work hardening i s 

observed below approximately -95°C• Table k shows a comparison between 

zinc and cadmium of the maximum temperature f o r t h i s region at the 

a r b i t r a r y value of 1$ s t r a i n . . I t i s seen that temperature independent work 

hardening occurs below a common equivalent temperature of Tg = .26 i n both 

systems. 
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F i g . 56 The v a r i a t i o n with temperature of the work hardening 
parameter i n 25/j cadmium. 
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F i g . 3 7 The v a r i a t i o n with temperature of the work hardening 
parameter i n k-00[l cadmium. 



- 60 -

20 

H 

x 16 

ID 

ft 
w 
to 
<D SH 
-P 
w 

H 

12 

• 

A 
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The comparison of the work hardening behaviour of zinc and 

cadmium.in the temperature i n s e n s i t i v e hardening' region i s shown i n 

Figure 40. Taking i n t o account the shear•modulus of each system, i t i s 

seen that the work hardening of f i n e grained zinc and cadmium i s i d e n t i c a l . 

Except f or a parabolic region below 1% s t r a i n , the hardening i s also l i n e a r . 

TABLE 5 
Upper temperature l i m i t s for, l i n e a r 

hardening i n p o l y c r y s t a l l i n e zinc and cadmium 

Zinc Cadmium 

. Maximum Temperature for' l i n e a r 
. hardening -95°C -120°C 

Maximum Equivalent Temperature 
T .26 .. .26 

1.5-3 Strain Rate S e n s i t i v i t y of the Flow Stress 

The e f f e c t of s t r a i n rate on the flow stress was . investigated 

for 20u Zn and 25u Cd over the temperature.range from - I 9 6 to +20°C.' Tests 

were not done with 400u material because of the poorer r e p r o d u c i b i l i t y of 

flow stress values. Five s t r a i n rates between 4.0 x 10 3 sec 1 and 

4.0 x 10 5 sec 1 were used. Linear r e l a t i o n s h i p s were obtained f o r a l l 

test conditions between flow stress at constant s t r a i n , and the na t u r a l 

logarithm of the s t r a i n rate as i l l u s t r a t e d f o r 20u zinc i n Figure 4 l . 

A C T was chosen as a s t r a i n rate parameter and values obtained as a 
Aln£* 

function of s t r a i n are shown i n Figures 42 and 4j for cadmium and zinc 

r e s p e c t i v e l y . 
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F i g . hO Linear hardening of p o l y c r y s t a l l i n e zinc and cadmium 
below TTJ=.26'1 
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From Figure 42 f o r 25u cadmium i t i s seen that at -]_96°C there 

i s an almost constant value of s t r a i n rate s e n s i t i v i t y up to about f$. 

s t r a i n above which t h e . s e n s i t i v i t y increases. This implies a s t r a i n rate 

i n s e n s i t i v e rate of work hardening i n t h i s region. This region of s t r a i n 

at -196°C i s approximately the same that showed temperature i n s e n s i t i v i t y 

of the hardening rate. 

Between -95°C and -196°C there i s a continual increase of 

s e n s i t i v i t y with increasing temperature and s t r a i n . At about -60°C and 

above however i t i s seen that, at high values of s t r a i n the increase i n 

s e n s i t i v i t y with s t r a i n i s much l e s s . I t i s i n t h i s region that grain 

boundary migration i s known to occur to a s i g n i f i c a n t degree. 

The r e s u l t s f o r zinc are q u a l i t a t i v e l y the same ( F i g . 45). 

Below -95°C "the s t r a i n rate s e n s i t i v i t y does not vary with s t r a i n . This 

again i s the same temperature region which gives a temperature independent 

work hardening rate. 

1.5.4 The Deformation of Cadmium Single C r y s t a l s 

R u s s e l l has proposed that the deviations which occur from l i n e a r 

hardening at high values of s t r a i n or with increased temperature i n copper 

are due to a dynamic recovery mechanism in v o l v i n g cross s l i p . He has 

associated the i n i t i a l l i n e a r hardening region of p o l y c r y s t a l s with second 

stage single c r y s t a l hardening. Therefore i n order to have a b e t t e r 

understanding of the deformation behaviour of. cadmium i t was decided to 

undertake some study of single c r y s t a l behaviour. 
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Resolved shear stress-shear s t r a i n curves f o r cadmium single 

c r y s t a l s of i d e n t i c a l o r i e n t a t i o n s are shown i n Fig s , hk and h^. The 

o r i e n t a t i o n used was as shown i n F i g . hh with the angle between t e n s i l e 

axis and s l i p plane and t e n s i l e axis and s l i p d i r e c t i o n being 36 0 and 38° 

r e s p e c t i v e l y . At +20°C a three stage hardening curve was obtained (Fig.U5) 

i n which the i n i t i a l stage i s subdivided i n t o two regions s i m i l a r to that 

observed by See g e r ^ i n zinc at room temperature. He also postulated that the 

t r a n s i t i o n from Stage I to Stage I I hardening i s due to the establishment of 

a c r i t i c a l , density of immobile d i s l o c a t i o n loops due to vacancy condensation. 

At -50°C and below the nature of the curves i s somewhat 

d i f f e r e n t ( F i g . kk\. Stage I was l i n e a r at a l l temperatures down to -196°C 

and d i d not show the "S" "type of hardening observed i n magnesium^. Of about 

20 c r y s t a l s tested a l l showed extensive twinning during Stage I I . A l l 

possible care was taken i n order to avoid c r y s t a l damage p r i o r to t e s t i n g 

and no observable twins were present. Therefore at low temperatures i t must 
89 

be concluded that twinning i s a general feature of Stage I I hardening. L a l l y 

has reached a s i m i l a r .conclusion with respect to magnesium. 

An i n t e r e s t i n g observation i s that the resolved shear stress 

on the b a s a l plane associated with i n i t i a l twin formation was v i r t u a l l y 

independent of temperature as shown i n Table 6. The shear s t r a i n increased 

with i n c r e a s i n g temperature due to the lower rate of work hardening. 

Although the maximum rate of hardening during Stage II i s a 

function of the nature- and extent of twinning, the t r a n s i t i o n from Stage I 

to Stage I I cannot be associated with twinning. This follows from the 

experimental observation that a considerable proportion of the c r y s t a l 

remains untwinned i n the t r a n s i t i o n region. The flow stress i s derived 
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therefore only from the nature of the d i s l o c a t i o n configuration i n untwinned 

regions. 

Due to the above reasoning .i t i s more accurate to say that i t 

i s the stress associated with the end of Stage I ffb.iffih.lis,. independeht'npf, -

temperature .Twinning therefore i s an " a f t e r the fact" consideration 1; 

10U 
Somewhat s i m i l a r observations were made by Lucke .eit. al.i;v 

during the deformation of zinc single c r y s t a l s . They found that the stress 

associated with the end of Stage I hardening i s independent of s t r a i n rate 

at +20°C. The rela t e d shear s t r a i n increased with decreased s t r a i n f a t e s . 

TABLE 6 

Basal shear stress required f o r 
i n i t i a l twin formation. 

Temperature Shear stress on basal 
plane gm/mm2 

Shear s t r a i n 

+20°C 260 550 

-50°C 280 2^0 

-78°C 280 . 190 

-120°C 285 1^5 

-196°C 300 130 

Wo attempt was made to calculate the macroscopic stress on 

the twinning system.. I t i s known 3 9 that such c a l c u l a t i o n s produce values 

that are at l e a s t an order of magnitude lower than the stress thought 

to be required f o r twin n u c l e a t i o n . l i t i s impossible to estimate with any degree 

of accuracy the stress at points of stress concentration which i s required 

http://ffb.iffih.lis
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f o r twin nucleation i n bulk c r y s t a l s . .However i f one assumes a .constant 

r e l a t i o n s h i p between macroscopic shear stress and the value of stress at 

points of stress concentration i t i s then possible to p r e d i c t a temperature 

independent twinning s t r e s s . 

1.5.5 Temperature Dependence of Work Hardening 

The temperature dependence of the rate of work' hardening i n 

Stage I (&xj and Stage II ^Qgjj i s shown i n Figures 4 6 and 4 7 - I t i s seen 

that below -120°C the work hardening rates are constant. Above t h i s 

temperature f o r both hardening regions the rate of hardening decreases. 

Fahrenhorst and Schmid 6 2, and Seeger and T r a u b l e 2 5 have found s i m i l a r 

r e l a t i o n s h i p s f o r Stage I.hardening of zi n c . The data of Seeger a f t e r 

normalizing f o r shear modulus changes i s compared with t h a t obtained during 

t h i s study of cadmium i n Figure 4 8 . I t i s seen that the drop i n the 

hardening rates occurs at the same equivalent temperature of Tg =. .26 i n 

bo£h systems. This i s the same temperature below which temperature and 

s t r a i n rate i n s e n s i t i v e hardening began i n p o l y c r y s t a l l i n e zinc and cadmium. 

I f t h i s decrease i n hardening' rate i s associated with some dynamic recovery 

mechanism i t would appear that such a mechanism, i s s i m i l a r i n both p o l y c r y s t a l s 

and single c r y s t a l s . • 

From Figure 4 8 i t i s also noted that t h i s work hardening 

t r a n s i t i o n region has an upper temperature l i m i t of about Tg = - . 4 0 i n both 

systems. 

1.5.6 The Grain Size Dependence.of Hardening at -196°C 

2 
Clarebrcugh and Hargreaves have attempted an analysis of the 

s i m i l a r i t i e s of Stage II hardening of .f.c.c. single c r y s t a l s and the i n i t i a l 

deformation c h a r a c t e r i s t i c s of p o l y c r y s t a l s . This was based to a large 
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3 extent on the r e s u l t s of Feltham and Meakih who observed a l i n e a r hardening 

region during the e a r l y regions of s t r a i n associated with the deformation 

of p o l y c r y s t a l l i n e copper. They also observed that the magnitude of the 

p o l y c r y s t a l l i n e l i n e a r hardening rate was comparable to that of Stage II 

hardening. There was therefore no appreciable e f f e c t of grain s i z e on the 
k 

work hardening rate. S i m i l a r conclusions, were reached by R u s s e l l who also 

correlated the stress, at the end of p o l y c r y s t a l l i n e hardening to that at 

the end of Stage I I single c r y s t a l hardening. Parabolic, hardening as opposed 

to l i n e a r hardening, occurs i n f . c . c . p o l y c r y s t a l s therefore, due to the 

action of cross s l i p i n a s i m i l a r manner to single c r y s t a l s . 

In order to t e s t t h i s concept, cadmium of 5 grain sizes was 

tested at -196°C. Since the specimen dimensions were held constant i t was 

thought that any consistent trend towards single c r y s t a l data.might be 

observed. 

Due to the extensive twinning during 2nd stage single c r y s t a l 

deformation at -196°C the meaning of the resolved shear stress- on the basal 

planes i s clouded. Therefore for comparison with p o l y c r y s t a l l i n e material 

i t was decided to merely report the single c r y s t a l Stage II hardening i n 

terms of the t e n s i l e hardening rate. This also avoids the d i f f i c u l t y 

associated with assigning some average shear stress value f o r p o l y c r y s t a l s . 

The p o l y c r y s t a l l i n e stress s t r a i n curves obtained are shown i n 

Figure ^9- I t i s seen that with increasing grain size a two stage. hardening 

curve gradually appears. Since i t was desired to compare the 2nd•stage 

hardening, the maximum hardening.rate was used i n a l l cases as shown. With 

decreasing grain size the region of l i n e a r hardening decreased to smaller 
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values of s t r a i n . 

The comparison of hardening rates i s made by a d~ 2 p l o t as shown 
_ J L 

i n F i g . 50- I t i s seen.that the rate of hardening varies l i n e a r l y with d 2 

and extrapolates to the sin g l e c r y s t a l value at d 2= 0. There i s an increase 

by a f a c t o r of about J i n the hardening rate from the single c r y s t a l value to 

25u material. - Since a l l c r y s t a l s are twinned to about the same degree, t h i s 

increase r e f l e c t s the nature of the hardening change with increasing grain 

boundary area per unit volume and decreasing proportion of grains with a free 

surface. Since no pyramidal s l i p was observed i n single crystals;, and an 

increasing amount occurs i n p o l y c r y s t a l s as the grain s i z e decreases, the 

increased hardening (rate can be explained i n terms of a gradual change 

i n the nature and extent of the deformation mechanisms. However i n copper 

single c r y s t a l and p o l y c r y s t a l hardening rates can be compared d i r e c t l y 

because the deformation mechanisms do not change with grain s i z e . 



Temperature f C 
g. ̂ 7 The temperature dependence of stage I I hardening i n cadmium. 
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F i g . 48 Temperature dependence of the r a t e of work hardening 
during Stage I deformation 





F i g . 5° The e f f e c t of gr a i n size on the rate of l i n e a r 
hardening of cadmium at -196°C. 
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PART II 

2. MECHANISMS OF HARDENING IM ZINC AND CADMIUM 

2.1 INTRODUCTION 

Many techniques have been used i n recent years _in an-effort to 
/ 

evaluate the hardening mechanisms that c o n t r o l deformation. Some of the more 

prominent include the use of transmission electron microscopy,.the study of 

Cot t r e l l - S t o k e s Law obeyance, and. the a p p l i c a t i o n of rate theory to determine 

the rate c o n t r o l l i n g mechanisms. A l l have t h e i r l i m i t a t i o n s depending upon 

experimental procedures and t h e o r e t i c a l assumptions. 

•Although transmission microscopy techniques have proven to be 

valuable i n observing d i s l o c a t i o n motion and behaviour, considerable d i f f i c u l t y 

i s encountered i n preparing specimens which t r u l y represent bulk samples 

Several authors have made d e t a i l e d studies, of the C o t t r e l l -

Stokes • Law 6' 1 1 1 3 ; ' 6 8 7 2 , However there i s considerable controversy as- to the 

exact meaning of Cottrell-Stokes.obeyance. 

The a p p l i c a t i o n of rate theory to deformation processes .has been 
1 1 9 73~* 7 8 

plagued by a multitude of formulations a l l of which .require c e r t a i n 

s i m p l i f y i n g assumptions to a r r i v e at mathematical expressions which may be. 

e a s i l y used to i n t e r p r e t experimental data. 
7 9 

Seeger o r i g i n a l l y postulated.that the applied stress could be 

considered as the sum of two components such that 

where "X 

ra = rG + r* . . . . . . . . . . . . . . . . . ( D 

i s associated with short range obstacles which can be 
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overcome with the a i d of thermal energy ( forest 
d i s l o c a t i o n s ) . . Therefore i t maybe re f e r r e d to as the 
thermal component of the applied s t r e s s . 

and i s the athermal component of stress which a r i s e s due -to 
long range e l a s t i c i n t e r a c t i o n s such as those between 
p a r a l l e l g l i d e d i s l o c a t i o n s at distances large compared 
with "b". Such obstacles cannot be overcome with the a i d 
of thermal energy. 

.The temperature dependence of y i e l d as postulated by Seeger when 

the mechanism of y i e l d does not change with temperature, i s shown i n F i g . 51 

The i n t e r n a l stress Tn v a r i e s with temperature only through a change i n the 

shear modulus. The increase i n T a below the c r i t i c a l temperature r e f l e c t s the 

decrease i n the amount of thermal energy a v a i l a b l e and subsequently the 

increased e f f e c t i v e stress necessary f o r activation.-

Y i e l d 
stress 

7* 

1 
k c 

Temperature 

F i g . 51 The temperature dependence of y i e l d i n terms of the stress 
components ( a f t e r Seeger). 

Much of the work i n deformation i n recent years has been concerned 

with obtaining a better knowledge of the nature and o r i g i n of the stress 

components i n various systems. 
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1 7 

Basinski postulated that because of., Cottrell-Stokes obeyance i n 

c e r t a i n f . c . c . metals,, the two components ^ and J*~ a r i s e from a single 
6 6 

source ( the i n t e r a c t i o n of glide and f o r e s t d i s l o c a t i o n s ). Seeger has 

since modified h i s o r i g i n a l d e f i n i t i o n of 7G to include a short range e l a s t i c 

i n t e r a c t i o n term . However he maintains that a major po r t i o n of the flow 

stress of s i n g l e c r y s t a l s i s s t i l l derived from longe range int e r a c t i o n s 

between p a r a l l e l d i s l o c a t i o n s (Fig.52 ). 

Shear s t r a i n J 

F i g . 52 The components of the t o t a l flow stress in. f . c . c . c r y s t a l s . 
3g l,= c o n t r i b u t i o n of the long range i n t e r n a l stress 
Tc/^= e l a s t i c i n t e r a c t i o n between g l i d e and f o r e s t d i s l o c a t i o n s 
T * = thermal component of the stress ( e f f e c t i v e stress); 

In the only consistent study to date, Mitra and Dorn have with the 

a i d of rate theory separated the two components of the athermal stress i n 
5) BO 

aluminum and copper single c r y s t a l s . .It would appear, that short range e l a s t i c 

stresses as proposed by Basinski account .for,a ;'greater proportion of the 
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t o t a l flow stress than has been indicated by Seeger. 

In 195̂  C o t t r e l l and Stokes using aluminum sin g l e c r y s t a l s found 

that the r e v e r s i b l e change i n flow stress ( A T ) during a. temperature change 

t e s t was d i r e c t l y proportional t o the t o t a l flow stress and that the value of 

AO"* w a s not only independent of s t r a i n but also of the p r i o r thermal and 
7 

mechanical h i s t o r y . C o t t r e l l - S t o k e s obeyance occurs therefore when with 

increasing s t r a i n 

A T = QTJ ~ OTI. = 1 - 3T> = a constant (2) 

* %, Tfr, 

C o t t r e l l a l s o recognized that when two i d e n t i c a l specimens are 

deformed to the same s t r a i n at d i f f e r e n t temperatures, the t o t a l flow stress 

d i f f e r e n c e i s made up of a r e v e r s i b l e component due to the d i f f e r e n t amount 

of thermal energy a v a i l a b l e and an i r r e v e r s i b l e component due to the d i f f e r e n t 

d i s l o c a t i o n configurations produced at the d i f f e r e n t temperatures ( F i g . 53 ). 

S t r a i n 

Components of the dif f e r e n c e i n flow stress when two 
i d e n t i c a l specimens are deformed at d i f f e r e n t temperatures. 
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6 9 C o t t r e l l - S t o k e s obeyance has been interpreted. to mean that the 

type of d i s l o c a t i o n configuration must remain constant during deformation 

with only the scale changing. Obeyance has a l s o been shown to require that 

a constant p r o p o r t i o n a l i t y e x i s t s between T/Q and *J during deformation. 
T8 

Basinski showed that a C o t t r e l l - S t o k e s t e s t could be carried., out 

at a constant temperature by p e r i o d i c a l l y varying the s t r a i n rate and that 

such .tests might be more accurate i n that they eliminate some of the 

d i f f i c u l t i e s associated with temperature change t e s t s ( the necessity of 

stopping the t e s t to change temperature and the d i f f i c u l t y i n d e f i n i n g flow 

stress due to y i e l d point e f f e c t s • ) . 

.The o r i g i n of 0" the thermal component may be due to a number of 

processes a l l of which can be thermally a c t i v a t e d . Therefore rate theory has 

been used i n an attempt to e s t a b l i s h the rate c o n t r o l l i n g process f o r various 

systems.- Since 7 * i s the stress associated with thermal a c t i v a t i o n , studies 

of the s t r a i n rate and temperature dependence of can be c a r r i e d out i n 

order to determine such rate parameters as a c t i v a t i o n energy, a c t i v a t i o n 

volume and a c t i v a t i o n distance. By comparing experimental values with those 

t h e o r e t i c a l l y predicted, i t i s sometimespossible to postulate the rate 

c o n t r o l l i n g mechanism. Mechanisms that can be thermally a c t i v a t e d and there­

fore rate c o n t r o l l i n g include the following: 

•1) cross s l i p 

2) f o r e s t i n t e r s e c t i o n 

3) the non conservative motion of jogs i n screw, d i s l o c a t i o n s 

k) climb 

5) overcoming of the. E e i e r l s stress 
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I f a si n g l e a c t i v a t i o n process i s rate c o n t r o l l i n g over a 

c e r t a i n temperature range then the s t r a i n rate associated with deformation 

may be expressed as 

• w - A G/kT 
6 = uc,e (3) 

- A G / k T 
j[ = NAb V e (4) 

where 

N = number of s i t e s per u n i t volume where a c t i v a t i o n occurs 

A = area swept out per successful a c t i v a t i o n event 

b = Burgers vector 

V = frequency with which b a r r i e r i s attempted 

G = Gibbs free energy of a c t i v a t i o n 

The development of equation 5 to give u s e f u l mathematical 

expressions i s outlined i n Appendix I..The r e l a t i o n s h i p s to be used i n 

the present work include the following: 

. A c t i v a t i o n volume v = b d l (5) 

= kT I £ In j/L \ (6) 

*-2kT / A In 6 /g 0 \ (7) 

l ACT* ! T 

A c t i v a t i o n enthalpy A H = - k ^ / (j In t/j0 \ I c)"J* \ (8) 

a7* h I 6T /ty. o 
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Thermal component of the a c t i v a t i o n energy-

AG = AH - T A s (10) 

= A H + - L * - 4 .Tv 
. . (11) . 

Apparent a c t i v a t i o n energy = AG = AG + v (12) 

where 
d = a c t i v a t i o n distance 

1 = d i s l o c a t i o n length involved i n thermal a c t i v a t i o n 
• 

J( = shear s t r a i n rate 

<5 = t e n s i l e s t r a i n rate 

T = shear stress 

CT = .tensile .. stress 

u = ..shear modulus 

AS = entropy change during thermal a c t i v a t i o n 

I t has been assumed that the shear stress i n : p o l y c r y s t a l s can be 

approximated by taking one-half of the t e n s i l e s t r e s s . .Such an approximation 

w i l l not a f f e c t the calculated values of AH, AG, • or AG since the 
O 

conversion must be made i n both numerator and denominator. I t w i l l however 

a f f e c t the values of the a c t i v a t i o n volume i n that ^f* appears in. the 

denominator of expression .6 . This w i l l be discussed i n more d e t a i l l a t e r . 
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2 . 2 , .TEMPERATURE CHANGS TESTS 

Temperature change t e s t s were undertaken not only to check the 

v a l i d i t y of the Cot t r e l l - S t o k e s law but also , t o obtain a better, knowledge 

of the e f f e c t of p r e s t r a i n at elevated, temperatures on the subsequent def­

ormation behaviour at low.temperatures. 

2 . 2 . 1 . Procedure 

In cadmium -196°C was used as a base temperature while.the upper 

c y c l i n g temperature varied from - l40°C to -30°C .-Strain increments between 

1.5$ and .2.O/0 were used at each temperature. A f t e r deformation at the upper 

temperature, the specimens were cooled to -196°C as r a p i d l y as possible 

i n order to minimize recovery e f f e c t s . This cooling could u s u a l l y be accom­

p l i s h e d within 30 seconds. During the temperature change operation, the 

load was maintained at about 20% of the flow s t r e s s . Since s t a t i c recovery 

i s n e g l i g i b l e at -196°C, the specimens were held f o r 15 minutes p r i o r to 

resumption of t e s t i n g i n order to e q u i l i b r a t e the t e s t i n g device. A.O" values 

could not be obtained during an increase i n temperature due to recovery 

during the time necessary.for temperature e q u i l i b r a t i o n . 

Because of the l i m i t e d d u c t i l i t y of zinc , the Co t t r e l l - S t o k e s 

law f o r temperature change t e s t s could not be investigated. Therefore t e s t s 

were l i m i t e d to p r e s t r a i n i n g 20u zinc to a given value of s t r a i n at some 

elevated temperature between +20°C and -95°C and subsequently deforming the 

specimen to frac t u r e at -120°C. 

2 . 2 . 2 . C o t t r e l l - S t o k e s Tests 

For the various temperature change t e s t s on 25u and kOOp cadmium, 

the Ac"* values obtained were corrected to take i n t o account the change i n 
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ACT due to the temperature dependence of the shear modulus kShear modulus 

57 
values were obtained from the work of Koster 

The A,cr values were then normalized to Ao~ i n order, to give 
A T 

values of the r e v e r s i b l e change i n flow stress per °K..When.these are exam­

ined .in terms of the flow stress at the standard temperature of -196°C, 

Cot t r e l l - S t o k e s p l o t s as shown i n F i g . 5̂ 4 a r e obtained. 

It i s observed from F i g . 54 that the C o t t r e l l - S t o k e s law i s not 

s t r i c t l y obeyed f o r temperature change t e s t s . . Ao~* values decrease 
c r 7 7 A^T 

s l i g h t l y during.the e a r l y stages of deformation and increase again at higher-

values o f Oyy. This i s true f o r both grain s i z e s . The dotted l i n e s indicate 

i d e a l Cottrell-Stokes, obeyance. 

From F i g . 54 i t i s also noted that the experimental value of 

A_o~* at a given value of flow stress at -196°C i s independent- of the 
A T 

upper c y c l i n g temperature. This i s true f o r both grain sizes although the 

values of A 0"* a r e considerably lower f o r ,40Qu material. 
CT77 A T 

The r e s u l t s of the temperature change -tests are therefore very 

s i m i l a r to those reported by Bullen et a l f o r p o l y c r y s t a l l i n e copper deform­

ed between 173°K and 373°K and subsequently, deformed at Y ^ K ^ 5 8 ' 5 9 ' 6 0 ^ 

They noted a deviation from.ideal Cottrell.-Stokes behaviour at high values 

of stress which gave increased values of Ao~* . They also found values 
o> 7 A T 

of A C T which at a given value of stress at 77°K were independent of the 
A T 

upper c y c l i n g temperature between 173 °K and 37-5 °K. They therefore concluded 

that the same sequence o f o b s t a c l e " formation occurs during deformation 

independent of the temperature but that the rate of obstacle production with 

increasing s t r a i n may be temperature dependent due to, the removal of obstacles 

by some process of dynamic recovery. They made no attempt to i d e n t i f y the 



Symbol Temp, cycle °C 

O (-140..-196) 
• (-120..-196) 
D (-95-..-196) 
A (-60. ..-196) 
A (-30...-196) 

-k -1 
£ = k.O x 10 sec. 

o / • 

2514 cadmium 

400^1 cadmium 
Broken l i n e s indicate C o t t r e l l - S t o k e s 

obeyance. 

1.0 2.0 3.0 
k 

.True stress at -196°C p . s . i . x 10 
The r e l a t i o n s h i p between the change i n flow stress per °K and the resultant stress at -196°C 

1 obtained during the temperature c y c l i n g of. cadmium. 
2i 0 0 

^ 1 
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"obstacles" but postulated thaf'recovery was associated with the a n n i h i l a t i o n 

and.rearrangement of d i s l o c a t i o n s by the ac t i o n of point defects. 

A * o~ , only 
GT A T 

a rather narrow range of grain sizes was used. I t also appeared that there 

was no e f f e c t of preferred o r i e n t a t i o n . 

2,2.3. The Mechanical Equation of State 

I f the sequence of events occurring during deformation i s the same 

at any two temperatures, then one would expect that the i r r e v e r s i b l e compon­

ent of the flow stress d i f f e r e n c e as shown i n F i g . 53- would be zero. The d i f f ­

erence i n flow stress at a given s t r a i n at two d i f f e r e n t temperatures i s 

therefore due only to a differ e n c e i n o~ .. Under such conditions i t i s ex­

pected that a mechanical equation- of state might be v a l i d . The flow stress 

can then be expressed as a unique function of the instantaneous value o f the 

s t r a i n , s t r a i n rate and temperature and i s independent of the p r i o r s t r a i n 
8 1 

h i s t o r y . Therefore 

cr = a(6,6 T) 
Bullen i n f a c t d i d observe that during temperature c y c l i n g below 

approximately 300°K there was always an 'Incubation s t r a i n " during which the 

i r r e v e r s i b l e component of the flow stress difference as shown i n F i g . 53 was 

zero. His r e s u l t s f o r various temperature cycles are shown i n Fig.55- The 

incubation s t r a i n s taken from h i s r e s u l t s are shown i n Table 7 . I t i s 

observed that the magnitude of the incubation s t r a i n increased as the upper " 

cy c l i n g temperature decreased. In t h i s region of s t r a i n therefore, the d i s ­

l o c a t i o n configuration at a given value of s t r a i n i s independent of temper­

ature which leads to temperature i n s e n s i t i v e work hardening and the obeyance 
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20 30 
PRE-STRAIN 1% 

F i g . 55 The e f f e c t of elevated temperature p r e s t r a i n i n g on the s t r e s s -
s t r a i n curve of p o l y c r y s t a l l i n e copper at 7 7°K ( a f t e r B u l l e n 5 8 ) . 

TABLE 7 

Incubation s t r a i n required- i n p o l y c r y s t a l l i n e - copper p r i o r 
to the appearance of an i r r e v e r s i b l e component of the 
difference i n flow stress 

Lower c y c l i n g Upper c y c l i n g Incubation 
temperature temperature s t r a i n 

77°K 

77°K 

77°K 

173°K 

233 °K 

293 °K 

9$ 

5% 

I t 
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of"the mechanical equation of state. The i n s e n s i t i v i t y of the hardening rate 

to temperature and the increase in,..incubation s t r a i n witbJdecre.asingi,temper-

ature are i n q u a l i t a t i v e agreement with jthe' results, of R u s s e l l although the 

temperature range of i n s e n s i t i v i t y as found by R u s s e l l extended to somewhat 

higher temperatures than those found by Bullen. 

2 . 2 . J . a ) Cadmium 

F i g . 56 i l l u s t r a t e s the flow stress c y c l i n g obtained when 25u 

cadmium i s deformed a l t e r n a t e l y at - l40°C and -196°C. For comparison the n 

normal s t r e s s - s t r a i n curves at the two temperatures are also indicated. I t 

i s seen that i n the e a r l y regions of s t r a i n where dynamic recovery does not 

occur at e i t h e r of the temperatures involved,, the t o t a l flow stress d i f f -

erence i s due e n t i r e l y to the d i f f e r e n c e i n o~ . The s l i g h t y i e l d points 

obtained on reloading at -196°C are due to an unloading e f f e c t as described 

i n Appendix II and can be ignored. 

As deformation proceeded i n t o the region of dynamic recovery, 

the r e v e r s i b l e flow stress difference could not account f o r t h e ' t o t a l d i f f ­

erence i n the stress at a given value of s t r a i n . As the upper c y c l i n g temp­

erature was increased above -120°C, i r r e v e r s i b l e components of the flow 

stress d i f f e r e n c e were evident immediately a f t e r y i e l d i n g . 

2.2.3 . "b) Zinc 

The r e s u l t s of the p r e s t r a i n t e s t s on 20u zinc are shown i n 

F i g s . 57 and 58. F i g . % i l l u s t r a t e s the e f f e c t of p r e s t r a i n i n g at -95°C to 

f i v e d i f f e r e n t s t r a i n s on the subsequent deformation behaviour at i:120°C. I t 

i s observed that i n a l l cases the flow stress at -120°C a f t e r p r e s t r a i n i n g 

at -95°C , was exactly that found, on s t r a i n i n g e x c l u s i v e l y at -120°C to that 

p a r t i c u l a r value of s t r a i n . 
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F i g . 56 Temperature c y c l i n g of 25)J cadmium between -lkO°C and -196°C. 
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I 1_ '. I I L _ 

.5 1.0 1.5 2.0 2.5 

$ s t r a i n 

F i g . 58 The e f f e c t of p r e s t r a i n i n g at -70°C on.the subsequent 
deformation behaviour at -120°C of 20Llzinc. 
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The r e s u l t s are therefore s i m i l a r to cadmium in.that the flow 

stress at a p a r t i c u l a r value of s t r a i n at temperatures below.T^. = .26 

a r i s e s due to a common d i s l o c a t i o n configuration and the change i n stress 

with temperature merely r e f l e c t s a change i n the thermal component of stress 

cr*~ . However i n t h i s temperature range f o r z i n c , fracture occurs before an 

i r r e v e r s i b l e e f f e c t i s obtained with increasing s t r a i n as i s observed with 

cadmium. 

.Prestraining above = .26 as shown i n F i g . §>S, produced an 

i r r e v e r s i b l e component of the flow stress d i f f e r e n c e at a l l values of s t r a i n . 

I t would therefore appear that i n the regions of s t r a i n below 

T^ = .26 where l i n e a r hardening occurs i n both zinc and cadmium,,that"equi­

valent states" are obtained at equal strains.. In t h i s region therefore i t 

i s probable that a mechanical equation of state could be formulated. A 

mechanical equation of state f o r metals, i s r a r e l y v a l i d except during 

Stage I and Stage II hardening of f . c . c . single c r y s t a l s at low temperatures. 

Once parabolic hardening associated with dynamic recovery begins, the mech­

a n i c a l equation of state becomes i n v a l i d . 

• 5 

Mitra and ;Dorn have stated that equivalent states are obtained 

i n p o l y c r y s t a l s only when O g and "1" (the average d i s l o c a t i o n length being 

thermally activated) are constant. Since the r e s u l t s below :T = .26 indicate 

that the flow stress difference i s just due to a diff e r e n c e i n cr* , then 

O~Q Hp must be constant independent of temperature at a given value of 

s t r a i n . Tests were not comprehensive enough to e s t a b l i s h the constancy of "1' 

2.2.4. Equivalent States above TH=.26 

I t may be as suggested by Bullen that i n a given system the 
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sequence of events occuringo. during deformation does not change with temper­

ature but the rate at which the sequence proceeds, might be temperature dep­

endent .. Under such a d e f i n i t i o n , the r e s u l t s . o f the previous section would 

be interpreted i n terms of a constant rate of obstacle, production below 

T = .26 i n the temperature i n s e n s i t i v e hardening region. However above 

T̂ . = .2.6 where dynamic recovery occurs at a l l values of s t r a i n , i t i s necess­

ary to equate states at d i f f e r e n t values of s t r a i n at any two temperatures-

i n order t o . s a t i s f y Bullen s postulate. This.condition i s i l l u s t r a t e d i n 

F i g . 5.9... 

Stress 

S t r a i n 

F i g . 59 Equivalent states at d i f f e r e n t strains. 

The i r r e v e r s i b l e difference i n flow stress then develops because 

of a d i f f e r e n t rate of obstacle production at d i f f e r e n t temperatures.•The 

state of the c r y s t a l at "E" deformed at T 2 i s the same as.the state obtained 

at "A" when deformed at Tj_. ,CE represents the difference i n the thermal com-; 

ponent of stress and CD can be r e l a t e d d i r e c t l y to AB. The equivalent s t r a i n 
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values at Tx and T 2 are then given by <g and (5m r e s p e c t i v e l y . 

Using t h i s above method of a n a l y s i s , the amount of p r e s t r a i n 

at various elevated temperatures was r e l a t e d to an equivalent value of 

s t r a i n at -120°C i n 20u z i n c . The r e s u l t s are shown i n F i g . 61.. With increas 

ing temperature of prestrain,an,:.increasing amount of s t r a i n i s required to 

give a c e r t a i n equivalent s t r a i n at -120°C. .When the sections CD and AB were 

superimposed, the hardening rates i n a l l cases were the same. T i e t z and Dorn 

using aluminum found that the hardening rate CD was s l i g h t l y greater, than AB 
8 3 

On the other hand Sylwestrowicz using p o l y c r y s t a l l i n e copper and aluminum 

was able to q u a l i t a t i v e l y show, that the Acr value (AA) obtained- on decreas­

ing the t e s t temperature from 300°K to 77°K was i d e n t i c a l to the her value 
(BB) obtained on increasing the temperature at a stress corresponding to 

A ( F i g . 60). This suggests equivalence of states at A and B. 

ol 1 I I ! 
0 5 10 15 20 2 5 % 

STRA IN 

—Stress -strain curves of copper specimens, strained 
at different temperatures. Curve No. 1-at 300°K; Curve 
No. 3 — at 76° K; Curve RN — at 300° K after pre-strainingat 
76* K; Curve NR —at 76° K after presenting at 300° K. 

F i g . 60 Reversible temperature change t e s t s at equivalent states i n 
p o l y c r y s t a l l i n e copper. 

O O \ 

( a f t e r Sylwestrowicz ). 



F i g . 6l The c o r r e l a t i o n of strains, at d i f f e r e n t temperatures 
i n 2Cu zi n c . 



Although such an analysis might appear unwarranted at t h i s 

point because of the lack of d e t a i l e d experimental data, i t i s thought that 

there i s some merit i n the idea of equivalent states at various s t r a i n s at 

d i f f e r e n t temperatures i n zinc and cadmium above T .= .26.-This i s not to 
H 

be construed as applying to a l l metal systems where dynamic recovery can 

a f f e c t the nature of the hardening.-Much would depend on the exact nature 

of the recovery process. I f i t involved a process which caused a d i s t i n c t i v e 

change i n the nature and character of o^ then i t i s doubtful i f such an 

analysis can be made. However i f recovery i s lin k e d to the observations of 
39 

Price concerning the rearrangement and gradual disappearance of debris then 

the above ideas may have some merit. Price observed that basal d i s l o c a t i o n s 

and debris i n t e r a c t strongly. Because of the rearrangement and removal 

of debris i n a temperature region of recovery, l a r g e r values of s t r a i n are 

therefore required to a r r i v e at an equivalent obstacle density- to that 

produced a t a given value of s t r a i n when recovery does not occur. Since the 

rate of rearrangement of debris as observed by Price increased with increasing 

temperature, i t i s expected that the "equivalent s t r a i n " as observed i n F i g . 6 l 

w i l l , increase w i t h increasing t e m p e r a t u r e . 
2.3. -STRAIN PATE CHANGE TESTS 

The a c c u r a t e determination of the r e v e r s i b l e change i n f l o w 

s t r e s s accompanying a change i n s t r a i n rate i s of prime importance since the 

e x p e r i m e n t a l v a l u e o f /\cr as: used not only i n determining the, v a l i d i t y of 

t h e C o t t r e l l - S t o k e s law but also to determine the experimental values of 

a c t i v a t i o n volume and a c t i v a t i o n energy.-A discussion of the d i f f i c u l t i e s 

e n c o u n t e r e d i n c o r r e c t l y determining Acr* i s given i n Appendix I I I . 
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For the purpose of t h i s work, Acr*"was obtained during an 

increase i n s t r a i n rate. For p o l y c r y s t a l l i n e zinc and cadmium the s t r a i n 

-5 -h -1 
rate was cycled between 4.0 x 10 and 4.0 x 10" sec corresponding 

to a crosshead speed change from .002 to .02 inches per minute. Cadmium 

single c r y s t a l s were cycled using crosshead speeds of .02 and .2 inches per 

minute corresponding to i n i t i a l shear s t r a i n rates of approximately 3-8 x 10 
-1 n • -3 - 1 

sec. and 3-8 x 10 sec. 
2.3.2. C o t t r e l l - S t o k e s Behaviour i n Cadmium at -196°C. 

Single c r y s t a l s (#o= 36°, Ao= 38°) and p o l y c r y s t a l s of three 

d i f f e r e n t g r a i n sizes ( 25u., 400u 1250u ) were tested f o r Co t t r e l l - S t o k e s 

behaviour at -196°C. 

2.3.2. a) Single C r y s t a l s 

Three single c r y s t a l s of i d e n t i c a l o r i e n t a t i o n were tested 

and a l l showed s i m i l a r behaviour to that shown i n F i g . 62-. ..It i s seen that 

during basal g l i d e i n Stage I, there i s a gradual decrease i n the value of 

AX with increasing s t r a i n . However i n Stage II the- C o t t r e l l - S t o k e s law 
y 6 i 

i s obeyed confirming the r e s u l t s of Davis . With the beginning of Stage I I I 

i t would appear that there i s a s l i g h t but consistent increase i n A T • 

Although i t may be argued that t h i s apparent increase could just be a r e s u l t 

of the experimental e r r o r i n determining AT > i t w i l l be shown i n the 

ensuing r e s u l t s f o r p o l y c r y s t a l s that dynamic recovery following l i n e a r 

hardening i s associated with c o n t i n u a l l y increasing values of AQ~ 
o~ 
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Fig.62 The v a r i a t i o n of the Cottrell-Stokes parameter during the deformation of a cadmium 
single c r y s t a l at -196°C. 
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2 . 3 . 2 . b) Po l y c r y s t a l s 

The three stage behaviour f o r single c r y s t a l s i s a l s o observed 

during the deformation of p o l y c r y s t a l s ( F i g . 63). In a l l cases there i s a 

region of s t r a i n i n the f i r s t few percent of deformation during which A o~ 
cr 

decreases. The extent of t h i s i n i t i a l region increases with increasing grain 

size and at 1250n corresponds rather w e l l to the change i n work hardening 

slopes observed i n Fig..4 9 .This i n i t i a l region i n p o l y c r y s t a l s may therefore 

be r e l a t e d i n some manner to the basal g l i d e region of single c r y s t a l deform­

ation. 

From F i g . 63 i t ' i s seen that the C o t t r e l l - S t o k e s law i s obeyed 

in intermediate s t r a i n regions s i m i l a r - t o that observed f o r Stage II of 

single c r y s t a l s . This region of obeyance ends with a gradual increase i n the 

value of A Q~ • The stress and s t r a i n values at which t h i s occurs f o r each 
cr 

grain s i z e are summarized i n Table 8 . They correspond very w e l l to the 

beginning of parabolic hardening observed i n F i g . . 4 9 . I t would therefore 

appear.that the i n i t i a t i o n of dynamic recovery at -196°C i n single c r y s t a l s 

and p o l y c r y s t a l s i s associated with increasing values of the Cot t r e l l - S t o k e s 

r a t i o . . 
TABLE 8 

Grain si z e dependence of C o t t r e l l - s t o k e s behaviour (cadmium at -I96 

Grain Size 
S t r a i n at 
beginning of 
C .S.. obeyance 

S t r a i n at 
beginning of 
recovery 

Stress at 
beginning of 
recovery 

Constant 
C o t t r e l l - S t o k e s 
r a t i o 

25u 2.5$ 7$ 19,000 
p. s . i . 

.0195 

400u 4 .5$ 13$ 14,500 .0180 

125 Qu 10$ 20$ 11,000 •0155 

Single 
c r y s t a l 

130$ shear 100$ t e n s i l e 
l 8 0 $ shear 

5 , 5 0 0 p . s . i . 
1,100 gm/mm. 

(shear) 
.0115 
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2.3.3. The E f f e c t of Temperature on C o t t r e l l - S t o k e s Behaviour _ " 

The r e s u l t s of s t r a i n rate changes on p o l y c r y s t a l s above -196°C 

are shown i n F i g s . 64 and 65 f o r 25u and 400u cadmium r e s p e c t i v e l y . Regard­

l e s s of the temperature or grain s i z e there i s a decrease i n ACT i n the 
cr 

i n i t i a l regions of deformation previously r e l a t e d to Stage I deformation of 

single c r y s t a l s . F i g . 66 shows that A C T decreases during'Stage I deform-
cr 

a t i o n of a si n g l e c r y s t a l deformed at -50°C where recovery i s known to a f f e c t 

hardening..Therefore whether dynamic recovery occurs or not, the C o t t r e l l -

Stokes r a t i o decreases during Stage I deformation. 

As the temperature increases above -196°C,.there i s a decrease' 

i n the. amount of s t r a i n showing Cottrell-Stokes, obeyance u n t i l above -120°C 

( T „ = .26), t h i s region disappears completely. Above T = .26 f o r cadmium 
H 

regardless of the grain s i z e , the values of ACT increase Immediately 
cr 

a f t e r the i n i t i a l region associated with Stage I. Therefore the s t r a i n rate 

and temperature i n s e n s i t i v e hardening regions.below Tg = ,26: described i n 

Part I would seem to be associated with C o t t r e l l - S t o k e s law obeyance. 

Several s t r a i n rate change t e s t s were performed•on 20u zinc 

at temperatures between -70°C and -120°C. The r e l a t i o n s h i p s shorn i n F i g • 67 

indicate that the r e s u l t s are q u a l i t a t i v e l y the same as those f o r cadmium. 

However at -95°C a nd. -120°C (below Tg = .26) fracture occurs before any 

general increase i n A cr i n d i c a t i n g the absence of dynamic recovery. 
cr 

At -70°C there was a s l i g h t increase i n Acr s i m i l a r to that observed 
cr 

during dynamic recovery above Tv, = .26 i n cadmium. 
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2.k. .HARDENING AT -196°C IN CADMIUM " 1 0 7 " 

Since l i n e a r hardening i n p o l y c r y s t a l s at -196°C i s not a f f e c t e d 

by dynamic recovery, the experimental determination of a c t i v a t i o n volume and 

a c t i v a t i o n energy i s s i m p l i f i e d and more accurate than at higher temperatures. 

2.4.1. A c t i v a t i o n Volume 

In order to calculate the a c t i v a t i o n volume i t i s assumed that 

the shear stress i n p o l y c r y s t a l s i s equal to one-half of the t e n s i l e stress 

y = o~ . The correct f a c t o r f o r the conversion i s co n t r o l l e d by the degree 
2 8 4 

of preferred o r i e n t a t i o n and therefore can vary with grain s i z e . However i t 
8 5 

w i l l have a value somewhere between 1/2 and l/k . Since the a c t i v a t i o n 

volume i s experimentally determined from the expression 

v = kT /_Aln5/eo) 
\ AT * IT 

the values of "v" obtained represent the lowest possible values i f the con­

version f a c t o r of 1/2 i s used. 

The manner i n which the a c t i v a t i o n volume va r i e s with the applied 

stress f o r p o l y c r y s t a l s i s shown i n F i g . 66J . TO a f i r s t approximation, v 

i s a function of the str e s s , decreasing i n an almost exponential manner with 

increasing s t r e s s . At any constant value of stress, v increases with increas­

ing grain s i z e , an observation expected due to the decreasing values of A Q" 
cr 

with.an increase i n grain s i z e ( F i g . 63 -). 

.The grain size (stress) dependence of the a c t i v a t i o n volume at 

y i e l d i s shown i n Table 9 . I f a simple assumption i s now made that the 

a c t i v a t i o n distance "d" can be approximated by the Burgers vector b, then 
2 

v = l b 





TABLE 9 

Grain s i z e dependence of the a c t i v a t i o n volume at y i e l d i n cadmium at -196°C. 

Grain Size 
A c t i v a t i o n 
volume at y i e l d 

(cm. 3) 

A c t i v a t i o n 
volume at y i e l d 

3 
(* ) 

Forest density 
at y i e l d 

2 
lines/cm. 

Average activated 
length "1" at 
y i e l d 

(cm.) 

A c t i v a t i o n 
volume at s t a r t 
of dyn. recovery 

(cm. 3) 

25u .30 x 10" 2 0 110 
10 

9.0 x 10 3-3 x 10" 6 
-20 

.20 x 10 

kOOp. 
-20 

1.20 x 10 450 
9 

5.5 x 10 
-5 

1.3 x 10 
-20 

.26 x 10 

125 Ou 
-20 

. 2.70 x 10 IgOO 
9 

1.1 x 10 3.0 x 10 5 
_20 

.38 x 10 

Single c r y s t a l 

*o= 36°, \>= 38° 

-20 • 
30.0 x 10 11,000 

7 
1.0 x 10 3-3 x 10 * 

-20 
1.75 x 10 

o 
V O 
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From t h i s an estimate of some smeared average of d i s l o c a t i o n 

length being activ a t e d per event at y i e l d can be obtained. These values 

along with single c r y s t a l data are shown i n Table 9 . I t i s seen that there 

i s a consistent increase i n 1 from 3.J x 10 cm. to 3-3 x . 1 0 cm. as 

the grain size increases from 25u to single c r y s t a l dimensions. 

I f i t i s further assumed that the rate c o n t r o l l i n g mechanism 

i s one of f o r e s t i n t e r s e c t i o n , then an estimate of the f o r e s t density at 

y i e l d may be obtained since p = 1 i s a good approximation of the forest 
~ ^ 1 0 2 density. From Table 9 i t i s seen that p varies from 9-0 x 10 lines/cm . 

7 2 

f o r 25u cadmium to approximately 10 lines/cm. f o r single c r y s t a l s . These 

values are r e a l i s t i c f o r the i n i t i a l f o r e s t density. Mitra and Dorn found 

that i n t e r s e c t i o n i s the rate c o n t r o l l i n g process during the deformation 

of aluminum and copper single c r y s t a l s at rJrJ°K. For c r y s t a l s i n i t i a l l y 

oriented f o r easy g l i d e , they c a l c u l a t e d a f o r e s t density at y i e l d of the 
9 2 5 

order of 10 lines/cm. For aluminum p o l y c r y s t a l s they found an i n i t i a l 
1 0 2 

density of about 10 lines/cm. 

The a c t i v a t i o n volume at the end of Stage I deformation i n 
~ 2 0 3 

cadmium was found to be 5 . 0 x 10 cm. On the basis of the previous.assump-
8 

tions t h i s would indicate a f o r e s t density of approximately 3 x 10 l i n e s 
2 

per cm. This represents an increase i n the f o r e s t density during Stage I. 

of s l i g h t l y more than an order of magnitude. 

By assuming an a c t i v a t i o n distance of d = b the density values 

calculated f o r cadmium may be s l i g h t l y low i n that "d"" may be somewhat 

la r g e r . Price found that the stacking f a u l t energy f o r cadmium i s probably 
2 

between 15 and 30 ergs/cm. • This i s considerably lower than previously b e l i e v ­

ed. Therefore before i n t e r s e c t i o n can occur there must be a recombination of 

the basal p a r t i a l s . This tends to give a more gradual slope to the f o r c e -
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distance curve than would be expected i f the stacking f a u l t energy was high. 

This i n turn e f f e c t i v e l y increases the possible a c t i v a t i o n distance.•How­

ever at 77°K, a s i g n i f i c a n t proportion of the energy required f o r i n t e r s e c t ­

ion i s supplied by the e f f e c t i v e stress since the thermal component of the 

a c t i v a t i o n energy /\G should be quite small. This therefore l i m i t s the 

value of the a c t i v a t i o n distance during thermal a c t i v a t i o n and the assump­

t i o n that d = b i s not u n r e a l i s t i c . 

I t has been assumed up to t h i s point that i n t e r s e c t i o n i s the 

rate c o n t r o l l i n g process governing y i e l d and l i n e a r hardening at -196°C. 

This w i l l be discussed more f u l l y i n subsequent sections with regard to 

possible a l t e r n a t i v e mechanisms. 

2.4.2. • A c t i v a t i o n Energy 

With the known values of the a c t i v a t i o n volume i t i s now poss­

i b l e to c a l c u l a t e a value of the apparent activation'energy AG D at y i e l d 

f o r 25u and 400u cadmium. The Ao~* values required f o r the c a l c u l a t i o n 
AT 

were obtained from the y i e l d stress-temperature r e l a t i o n s h i p s of Fig.,32. 

They agreed very w e l l with the extrapolated values at y i e l d of A o~ 
AT 

obtained from C o t t r e l l - S t o k e s temperature change t e s t s . 

The values obtained f o r the various rate parameters are shown 

i n Table 10 and were calculated using equations 9,\1 .and 12 . 
TABLE 10 

Energy values at y i e l d f or cadmium deformed at -196°C. 

Grain s i z e AH e.v. AG e.v. vT* e.v. A G o e.v. 

25u .10 .08 .28 • 36 

400u .08 .06 • 33 • 39 • 
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The values shown i n Table 10 can be considered-accurate to 

at best ± 10$. Within experimental e r r o r the apparent a c t i v a t i o n energy 

AGo appears to be independent of grain size..This suggests that the f o r c e -

distance curve does not change s i g n i f i c a n t l y with grain s i z e and therefore 

that the mechanism, of y i e l d i s independent of grain size..The change i n 

a c t i v a t i o n volume with grain s i z e therefore merely r e f l e c t s the v a r i a t i o n 

of the f o r e s t spacing "1" as previously assumed. The s i g n i f i c a n c e of AG 
o 

w i l l be discussed later..However i t i s noted, that the thermal component 

A G i s much smaller than, the v j term. This i s to be expected since with 

decreasing temperature an increasing proportion of the energy A G w i l l 
o 

be associated with the work done by the e f f e c t i v e s t r e s s . 

2.5. HARDENING ABOVE -196°C IN ZINC AND. CADMIUM 

2.5.I. Y i e l d Behaviour i n Cadmium 

The values of v, A H , A G , A G D and v T at y i e l d i n 25u cadmium 

at temperatures above -196°C are shown i n Table 11. Values, are quoted to 

two s i g n i f i c a n t figures which i s u n j u s t i f i e d because of experimental 

l i m i t a t i o n s . This procedure was followed only, to provide a method of 

comparison between values calculated i n the same manner using consistent 

techniques of analysing experimental data. 

It i s seen, that below -120°C there i s a steady increase i n AGo 

and vX with increasing temperature. This increase i s consistent with an 

energy b a r r i e r as shown i n F i g . 69a i n which there i s a f a i r l y gradual slope 

of the force distance relationship.• With t h i s type of b a r r i e r i t i s expected 

that both A G 0 and v T w i l l increase with increasing temperature as ind i c a t e d 



TABLE 11 
Energy values at y i e l d i n 25u cadmium. 

Temperature 
(°c) 

AH 
(e.v.) 

A G 

(e.v.) 
v T 

(e.v.) 
A G 

(e.v.) 

A c t i v a t i o n 
volume g 

(cm.) 

-196 .10 .08 .28 • 36 
-20 

.30 x 10 

-lUO .ko • 35 .h2 • 77 .60 x 10 _ 2° 

-120 M .Ul M .82 -20 
.70 x 10 

-95 M •57 .26 • 63 .55 x 10~ 2 0 

-60 •50 M .20 .63 -20 
.55 x 10 

-50 •57 .50 .12 .62 
-20 

.50 x 10 



by. the two random temperatures T x and T 2. 

Under such conditions i t i s therefore impossible to p r e d i c t a .. 

rate c o n t r o l l i n g mechanism s t r i c t l y from the values of A G . . I t was f o r t h i s 
o 

reason that AG was l a b e l l e d "apparent"..It does not include the work done 
o 

by.the e f f e c t i v e stress before thermal a c t i v a t i o n . In order to calculate 

AG0, the t o t a l a c t i v a t i o n energy, i t i s necessary to know the c r i t i c a l 

temperature T c where T = 0. Under such conditions 

AG = AGd = AGo* 
A * 

A l t e r n a t i v e l y AGO may be calculated simply, by knowing the s t r a i n rate de-
86 

pendence of the c r i t i c a l temperature .Therefore a l l that can be said about 

A G 0 below -120°C i s that i t i s something i n excess of .8e.v.. (the value of 

AGo at -120°C) . 

Above -120°C A G 0 tends to remain constant at approximately 

.6 e.v..This temperature independence might suggest a rate c o n t r o l l i n g pro­

cess above -120°C which i s associated with an energy b a r r i e r as shown i n 

F i g . 69-b f o r which neither A G q nor d changes appreciably with temperature. 

Under such conditions A G * may be approximated by AG o and.is therefore 

equal to .6 e.v. + .1 e.v. 

This proposed change i n the rate c o n t r o l l i n g mechanism at -120°C 

i n 25u cadmium i s i l l u s t r a t e d quite c l e a r l y by the dependence of A G at y i e l d 

on temperature as shown i n F i g . 7/Q. 

Before such a proposed i n t e r p r e t a t i o n can become acceptable 

two major inconsistencies with theory must be explained. 

F i r s t of a l l the rate theory r e s u l t s i n d i c a t e a change i n the 

rate c o n t r o l l i n g mechanism of y i e l d at a .temperature of -120°C. However the 
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y i e l d stress has been found to v a r y • l i n e a r l y with temperature (Fig..32). 

This l i n e a r i t y suggests a common mechanism c o n t r o l l i n g y i e l d . I t may be 

however that the change at -120°C causes only a s l i g h t change i n the y i e l d 

stress-temperature slope which f a l l s w ithin the experimental scat t e r of the 

l i n e a r r e l a t i o n s h i p shown i n Fig..32. Further t e s t s below -196°C should pro­

vide a more complete understanding of the temperature dependence of y i e l d . 

S t o l o f f a c t u a l l y did observe a change i n slope at approximately -120°C but 

h i s experimental scat t e r was too great to accurately e s t a b l i s h the change 

i n Ao~* . 
AT 

The second inconsistency concerns the nature of the temperature 

dependence of AG below -120°C..From the r e l a t i o n s h i p 

AG = -kT. In _t_ 

to 

i f $ 0 i s not a.function of temperature,.then AG should vary i n a l i n e a r 

manner with temperature.I.However from F i g . 72 i t i s seen that a l i n e a r r e l ­

a tionship does not e x i s t below -120°C. E i t h e r deformation i s not c o n t r o l l e d 

by a single mechanism which would place i n doubt any c a l c u l a t i o n based on 

rate theory or the nature of the force -distance curve changes with temper­

ature. This l a t t e r p o s s i b i l i t y could occur without a change i n the basic 

rate process i f f o r instance ths stacking f a u l t energy changes with temper-
i s 

ature . At t h i s point there i s considerable doubt as to the magnitude of 

the stacking f a u l t energy i n cadmium l e t alone any possible temperature 

dependence. 
68 

Thornton and. Hirsch have proposed that the a c t i v a t i o n d i s ­

tance w i l l vary with temperature due to a change i n the stacking f a u l t energy. 

This would a l t e r the shape of the force-distance curve without a f f e c t i n g the 

basic rate mechanism. 
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Conrad ' using an i n t e r s e c t i o n model f o r magnesium single 

c r y s t a l s has shown that the nature of the force-distance curve may vary 

s l i g h t l y with temperature, (stress) due to the influence of stress on the 

amount g l i d i n g d i s l o c a t i o n s how out i n the s l i p plane thereby changing-the 

e f f e c t i v e f o r e s t spacing "1". 

• Another p o s s i b i l i t y i s that the pre-^exponential term J(i= NAby 

varies with temperature. However i n the development of rate theory express­

ions, Xo m u s " t he assumed temperature independent i n order to a r r i v e at use­

f u l mathematical expressions. I f i n fa c t )(0 does vary ?then the derived form­

u l a t i o n s must be modified. 

At t h i s time riot enough experimental data are a v a i l a b l e . i . . 

because of the l i m i t e d t e s t temperatures a v a i l a b l e below -120°C i n order-

to d i s t i n g u i s h between the above possible causes. A l i q u i d helium crydstat 

i s now nearing completion which w i l l allow f o r a more extensive t e s t i n g 

program. 

At t h i s point no attempt has been made to discuss the sign­

i f i c a n c e of the experimental value of AG D = .6 + .1 e.v. at. temperatures 

above T = .26. This discussion w i l l follow i n section 3.2. which includes H 
a. comprehensive survey of the possible mechanisms of dynamic recovery. 

2.5.2. The V a r i a t i o n of AH with S t r a i n i n 2^u Cadmium. 

The manner i n which AH varies with s t r a i n at d i f f e r e n t 

temperatures i s shown i n F i g . 71- Because of the unknown v a r i a t i o n of T 

with s t r a i n the values of AG and AGo cannot be obtained. However the 

s t r a i n dependence of AG w i l l be s i m i l a r to that of AH i n that the 

entropy f a c t o r i s not expected to lower AH by more than about 20%. 
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From F i g . 71 i t i s observed that the l i n e a r hardening regions 

below -120°C are associated with s t r a i n independent values of AH. This 

i s as expected when the Co t t r e l l - S t o k e s law i s obeyed. When dynamic recovery 

occurs AH decreases s u b s t a n t i a l l y . 

2.5.3. Y i e l d Behavior i n Zinc. 

The experimental values of- the various components of the 

a c t i v a t i o n energy at y i e l d i n 20u zinc are given i n Table 12..It i s observed 

that the r e s u l t s f o r zinc are s i m i l a r to those f o r cadmium. Both indicate 

a temperature independent value of AG o of about .6 e.v. i n the recovery 

range above T = .26. The values of AG f o r zinc are s l i g h t l y lower than 
H 

those f o r cadmium but do show a s i m i l a r temperature r e l a t i o n s h i p as shown 

i n F i g . 72. The break i n the AG - temperature r e l a t i o n s h i p f o r zinc 

at T = .26 i s not as obvious because of the l i m i t e d data below, t h i s H 

temperature.. The a c t i v a t i o n volume values f o r zinc are comparable to those 

of cadmium with the zinc values, beingaabout..25% smaller. 
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• TABLE 12 

Rate parameters at y i e l d i n 20u zinc. 

Temperature 

°C 

TH AH 

e.v. 

A G 

e.v. 

* 

v T 

e.v. 

AG 0 

e.v. 

V 
3 

cm. 

-120 .26 .21 • 17 .40 •57 
-20 

.36 x 10 

-105 .28 .27 • 23 .42 .65 
-20 

.41 x 10 

-95 •30 .29 .24 .40 .64 
-20 

.43 x 10 

-70 • 34 • 33 .27 .34 .61 -20 
.40 x 10 

-30 .41 .42 • 36 .24 .60 -20 
.40 x 10 
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F i g . 72 .The v a r i a t i o n of AG with temperature for' 20p. z i n c . 



3- DISCUSSION 
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Before any discussion of the present r e s u l t s i s attempted, i t 

i s desirable to review the e l e c t r o n transmission observations of Pric e 

on d i s l o c a t i o n structure and motion i n p l a t e l e t s of zinc and cadmium. Since 

the flow stress i s generally thought to a r i s e from some combination of long 

and short range1 e l a s t i c i n t e r a c t i o n s between d i s l o c a t i o n s and fromaa short 

range thermal component of s t r e s s , P r i c e ' s observations on t,he formation 
i 

and behaviour of d i s l o c a t i o n loops and t h e i r subsequent i n t e r a c t i o n with 

d i s l o c a t i o n s are thought to be s i g n i f i c a n t with regard to the mechanisms 

of hardening i n zinc and cadmium. 

3.1 Loop Formation and Annealing 

D i s l o c a t i o n loops can form on s p e c i f i c atomic planes by a 

v a r i e t y of processes. 

( i ) P r i c e observed that prismatic loops can form behind moving b a s a l 

edge d i s l o c a t i o n s by a process i l l u s t a t e d i n F i g . 73 

F i g . 73 The formation of a prismatic d i s l o c a t i o n loop by an edge 
d i s l o c a t i o n which i s held up at an obstacle. 
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This loop formation i s thought to be associated with the cross 

g l i d e of the screw components (c) and the subsequent a n n i h i l a t i o n of these 

components by glide on a p a r a l l e l g lide plane. This type-of•loop w i l l be 

s e s s i l e because of i t s edge components on non b a s a l planes. The kinks on 

the o r i g i n a l d i s l o c a t i o n (d) are expected to r e t a r d . i t s f u r t h e r motion. 

Loops thought to be formed by t h i s type of mechanism have been observed 

by L a l l y 89 during the Stage I deformation of magnesium at 20°C. 

( i i ) P r i c e also observed loop formation behind moving b a s a l screwvrdisloca-

t i o n s . A jog on a screw may a f f e c t the-motion of the screw depending on 

the size of the jog as shown i n F i g . 7U 

(c) 

F i g . 7^ The e f f e c t of jogs of various heights on screw d i s l o c a t i o n motion. 

Small jogs (lb-2b) can move non conservatively along with the 

d i s l o c a t i o n leaving a row of point defects behind ( a ) . This process may be 

thermally a c t i v a t e d and therefore rate, c o n t r o l l i n g . Very large jogs do not 

move and can act as pinning points f o r single ended Frank-Read sources.(b). 

Intermediate jogs (3b-300b) however can lead to the formation of an edge 
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d i s l o c a t i o n dipole (c) and a f t e r pinching off:,, to the formation of an 

elongated loop on a non b a s a l plane. Such dipoles and loops have been 

observed i n a v a r i e t y of metal systems. 

( i i i ) S e s s i l e d i s l o c a t i o n loops which contain a stacking f a u l t and have 

a Burgers vector \ c + p , may be produced by the collapse of vacancy 

discs as postulated by S e e g e r 2 5 . Berghezan 6 3 has observed such loops 
o 

on b a s a l planes i n zinc f o i l s which were heavily deformed at +20 C. 

S i m i l a r loops were observed to form by Priccf 3due to ion damage i n the 

e l e c t r o n microscope. The temperature range studied by P r i c e extended down 
o 

to -100 C. Whether such loops w i l l contribute to work hardening w i l l 

depend on the rate of loop production compared to the s t r a i n rate imposed 

on the system. The rate of loop production i n turn w i l l depend on the 

super saturation of vacancies i n a given area and the thermal energy-

av a i l a b l e f o r vacancy migration. 

( i v ) A fourth type of loop formation was observed i n considerable d e t a i l 

by P r i c e . Elongated s e s s i l e loops with B'urgers vectors c + a were 

observed to form on the b a s a l planes by the multiple cross g l i d e of £ll22^ 

<^1123^ d i s l o c a t i o n s . The stages i n the formation of these loops are 

i l l u s t r a t e d i n F i g . 75 • I t was observed that the loops acted as strong 

b a r r i e r s to the motion of b a s a l d i s l o c a t i o n s on the same glide plane and 

also produced a strong e l a s t i c i n t e r a c t i o n with other b a s a l d i s l o c a t i o n s 

on p a r r a l e l glide planes as long as the distance between the plane of the 

d i s l o c a t i o n and the loop plane was not greater than the loop width. 

A summary of the various types of loops i s given i n Table 13 

The d i f f e r e n t types of d i s l o c a t i o n s possible i n the hexagonal system are 

i l l u s t r a t e d f o r c l a r i t y i n F i g . 76 
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(b) 

(c) 

F i g . 75 Stages i n the formation of an elongated loop on the b a s a l 
plane by the cross g l i d e of a £ll22? <1123^ screw d i s l o c a t i o n 

The various types of loop formation have been described i n 

d e t a i l because i t i s thought that t h i s debris may be a p r i n c i p a l source of 

obstacles leading to hardening due to the lack i n the hexagonal system of 

strong Cottrell-Lomer b a r r i e r s . 

Comprehensive studies concerning the annealing behaviour of 

loops during deformation have only been c a r r i e d out f o r those formed as a 

r e s u l t of £ll22^ \1123"^ d i s l o c a t i o n motion. Pric e has come to the following 

conclusions regarding the behavior of these loops i n zinc and cadmium. 

( i ) At temperatures below T = .27, the loops are completely stable 

and can act as strong b a r r i e r s to the motion of b a s a l d i s l o c a t i o n s . 



- 1 2 7 -TABLE 13 Loop formation i n zinc and cadmium. 

Method of Formation Plane of Loop Burgers Vector 

.,. Behind moving ba s a l Non b a s a l a 
v 1 ^ edges as i n Fig.73 

/..\, Cross g l i d e of b a s a l Non b a s a l 
v 1 1 / screws 

, . Condensation of Basal -ic + p 
( 1 1 1 ) vacancies 

.. . Cross glide of Basal c + a 
(IvJ £1122} <1123> screws can decompose to 

c or -§c + p 
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(ii)'' At temperatures between T = .27 and T = AO the elongated loops 
H H 

break up i n t o rows of c i r c u l a r loops by a process of pipe d i f f u s i o n . The 

d r i v i n g force f o r s p l i t t i n g i s supplied by the p o t e n t i a l decrease i n l i n e 

energy.. The area within the elongated loops i s conserved, during the s p l i t t i n g 

operation and the rate at which s p l i t t i n g occurs increases with increasing 

temperature. Pric e envisaged that the a c t i v a t i o n energy f o r such a process 

w i l l be equal to U + U where U. i s associated with the required jog 
j P J 

formation and U i s the pipe d i f f u s i o n energy..Implicit i n the concept of 
a? 

loop s p l i t t i n g as opposed to loop shrinkage i s that U •+ must be less 

than the s e l f d i f f u s i o n energy U 

( i i i ) At temperatures above T = A,0. the c i r c u l a r loops gradually d i s -
H 

appeared by a process of climb. The measured a c t i v a t i o n energy f o r the 

shrinkage of loops was found to be equal to the s e l f d i f f u s i o n energy. 

The observations of Price are of p a r t i c u l a r s i g n i f i c a n c e with 

regard to the present work i n that the temperature region above which loop 

s p l i t t i n g occurs (.27), i s s i m i l a r to that above which temperature and 

s t r a i n rate independent l i n e a r work hardening disappear i n p o l y c r y s t a l l i n e 

zinc and cadmium and above which there i s a decrease i n the hardening rate 

associated with both Stage I and Stage II deformation of single c r y s t a l s . 

3.2. DYNAMIC RECOVERY 

In a very broad sense dynamic recovery may be re l a t e d to e i t h e r 

of the following processes: 

i ) cross s l i p 

i i ) d i f f u s i o n c o n t r o l l e d processes 
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3.2.1. Cross S l i p 

Cross s l i p i s known to be a dynamic recovery mechanism i n 

f . c c . metals.. In hexagonal metals, cross s l i p must be looked at from a 

s l i g h t l y d i f f e r e n t point of view..It may be a.required mechanism to permit 

basal d i s l o c a t i o n s to move r e a d i l y onto non basal planes and thereby allow 

fo r the operation of a d d i t i o n a l s l i p systems. On the other hand i t may 

operate as an adjunct to the operating systems i n order to allow d i s l o c a t i o n s 

to move around b a r r i e r s and therefore r e l i e v e points of stress concentration. 

Only under, the l a t t e r condition would cross s l i p be c l a s s i f i e d as a dynamic 

recovery process. 

Cross s l i p has not been observed under normal l i g h t microscopy 

i n e i t h e r zinc cadmium or magnesium. However L a l l y using r e p l i c a s has observed 

i t during the stage I deformation of magnesium at +20°C. Therefore r e p l i c a 

studies on p o l y c r y s t a l l i n e zinc and cadmium are c u r r e n t l y i n progress to 

e s t a b l i s h whether c r o s s - s l i p occurs to a s i g n i f i c a n t degree. I t must occur 

on a l i m i t e d scale i n order t o account f o r the loop formation behind moving 

basal d i s l o c a t i o n s described i n the previous s e c t i o n . However such i s o l a t e d 

instances are not expected to m a t e r i a l l y a f f e c t the flow stress.- Although i t 

i s true that such cross s l i p does allow f o r the circumvention of obstacles 

the net r e s u l t of the o v e r a l l process i s the production of s e s s i l e loops 

which w i l l act as strong b a r r i e r s to further d i s l o c a t i o n motion. 

89 

The observations of L a l l y and Hirsch indicate that during the 

Stage I deformation of magnesium, the d i s l o c a t i o n structure consists of a 

high density of elongated edge dipoles..Very few screws were observed..It 

was postulated that the edge dipoles were formed by the trapping of edge 

components from d i f f e r e n t sources on nearby g l i d e planes. Screws of opposite 
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sign.on the other hand can a n n i h i l a t e leading to a low screw density. Under 

such conditions, i t could be postulated, that dynamic recovery i n magnesium 

i s associated with the temperature at which cross s l i p can occur leading.to 

a lower o v e r a l l d i s l o c a t i o n density and a d i f f e r e n t d i s l o c a t i o n configuration. 

S i m i l a r observations t o those of L a l l y cannot be made on zinc 

or cadmium because of the higher e f f e c t i v e temperature at +20°C which w i l l 

give r i s e to a considerable d i s l o c a t i o n rearrangement during the time 

necessary f o r f o i l preparation. The observations on magnesium however are 

of importance i n that i t i s tempting to invoke cross s l i p as the mechanism 

of dynamic recovery. However on a more macroscopic scale the i n t e r p r e t a t i o n 

becomes more complex. Conract 6'"^as observed a s i m i l a r temperature dependence, 

of 9 /G i n magnesium to that observed i n zinc and cadmium. S p e c i f i c a l l y 

Q/Gc remains constant below approximately T^ = .23 and decreases above 

t h i s temperature'.... . Therefore the e f f e c t i v e temperature above which 

the hardening rate decreases i n a l l three metal systems i s approximately 

the same. However the ease of cross s l i p i s r e l a t e d to the stacking f a u l t 

energy i n that the p a r t i a l s must recombine before the process can occur. 

Although there i s considerable controversy with regard to the magnitude 

of the stacking f a u l t energies in. the three systems, i t ; i s generally thought 

that the stacking f a u l t energy of magnesium i s appreciably higher than that 

of e i t h e r zinc or cadmium. 

Because o f the a s s o c i a t i o n between the stacking f a u l t energy 

and cross s l i p i t would not be expected that a l l three metals w i l l undergo 

dynamic recovery at the same e f f e c t i v e temperature..Therefore i t i s not 

possible to l i n k dynamic recovery to cross s l i p . 
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3.2.2. .Diffusion C o n trolled Processes 

D i s l o c a t i o n climb when governed by the s e l f d i f f u s i o n energy 

U was not observed by Price at temperatures below T ..= .4 ..Therefore 
D H 

i t cannot be considered as a dynamic recovery mechanism i n the region of 

T H = .26 . 

•Kroupa and P r i c e 8 8 have observed, that above TTT = .26 i n zinc 
n 

c i r c u l a r c + a or c loops produced behind £L122|0-123^ screws can move 

under the stress associated with the i n t e r a c t i o n of the loops with approach­

ing basal d i s l o c a t i o n s ( F i g . 78 ). This motion was termed.conservative climb 

since i t d i d not involve s e l f d i f f u s i o n but rather the generation of vacancies 

on one side of the loop and t h e i r subsequent motion along the loop to the 

other side.. The a c t i v a t i o n energy f o r conservative climb w i l l therefore 

be the pipe d i f f u s i o n energy U . 

• Such loop i n s t a b i l i t y i s a mechanism of dynamic recovery since, 

as observed by P r i c e , the normally s e s s i l e loops act as strong b a r r i e r s to 

basal d i s l o c a t i o n motion. Loop motion by conservative climb should therefore 

r e s u l t i n a considerable r e l i e f of the back stress associated with pile-ups 

behind the loops. 

In the present work, extensive [1122}(112.3} s l i p was observed 

i n p o l y c r y s t a l l i n e zinc and cadmium. Therefore a s i g n i f i c a n t concentration 

of basal loops should be formed.. The value of AG Q at y i e l d f o r poycrystals 

at temperatures above T = .26 was determined to be almost i d e n t i c a l f o r 
H 

96 

both zinc and cadmium at .6 ± .1 e.v. F r i e d e l has stated that the expected 

values of the pipe d i f f u s i o n energy.in zinc and cadmium are .62 e.v..and 

.57 e.v. re s p e c t i v e l y . From an energetic point of view i t i s therefore 
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F i g . 77 ( c ) 

Sequence of transmission electron micrographs showing the ' conservative 
climb ' motion of a dislocation loop with a [0001] Burgers vector due to 
its interaction with a moving edge dislocation with a [̂1120] Burgers 
vector. The plane of the micrograph is parallel to the basal plane of the 
zinc platelet. 

( a f t e r Price ). 



possible to postulate that dynamic recovery i s associated with the conserv­

ative climb of basal loops. Since the energy required f o r elongated loop 

breakup ( U + U. ) i s greater than that of conservative climb (U ), i t 
p J j P 

may be argued that the rate c o n t r o l l i n g process i s a c t u a l l y that of loop 

breakup.However because of the higher d i s l o c a t i o n density i n r e a l c r y s t a l s 

as opposed to Price's specimens, i t i s probable that the edge dipole w i l l 
i 
j 

tend to pinch o f f e a r l i e r i n the sequence of loop formation.. Therefore the 

process of loop s p l i t t i n g i s not as important a process. 

In order f o r such a conservative climb i n t e r p r e t a t i o n to be 

v a l i d f o r single c r y s t a l s , i t i s neccessary to postulate that some £ll22} 

^1123^> s l i p can occur during both Stage I and Stage II single c r y s t a l 

deformation. 

1 3 

Basinski has shown that the C o t t r e l l - S t o k e s law i s only 

s t r i c t l y obeyed i n magnesium at temperatures below 46°K.•However the dev­

ia t i o n s that occur at higher temperatures are not p a r t i c u l a r l y severe..In 

any case there i s a considerable increase i n y during both stages of def­

ormation which was interpreted by Basinski i n terms of an increasing 

forest concentration. 

E s s e n t i a l l y s i m i l a r r e s u l t s were obtained during t h i s work on 

cadmium single c r y s t a l s . Although the C o t t r e l l - S t o k e s law was not obeyed 

during Stage I, there was a considerable decrease i n the activation, volume 

at a l l temperatures studied. At -196°C "v" decreased from 30 x 10 2 ° cm.3 

-20 3 
to 5 x 10 cm. Based on an i n t e r s e c t i o n mechanism t h i s corresponds 

to approximately a 30 f o l d increase i n the forest density during Stage I. 

It would appear therefore that there i s some non basal a c t i v i t y during 

Stage I and t h i s could lead to a s i g n i f i c a n t concentration of basal loops. 
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Dynamic recovery to t h i s point has been associated only with 

nd 

the conservative climb of basal loops produced behind 2 order pyramidal 

screws. However the pipe d i f f u s i o n process may a l s o have a s i g n i f i c a n t 

e f f e c t on the nature and mobility of the other types of loop debris men­

tioned i n the previous section. Since t h i s debris i s produced only as a 

r e s u l t of basal d i s l o c a t i o n motion, i f s i m i l a r processes i n v o l v i n g conserv­

ati v e climb can occur, then . i t i s not necessary to postulate a change i n 

the forest density during single c r y s t a l deformation i n order to explain 

dynamic recovery. Before t h i s i n t e r p r e t a t i o n can proceed i t w i l l be 

necessary to know more about the annealing c h a r a c t e r i s t i c s of debris. 

As an a l t e r n a t i v e to a pipe d i f f u s i o n mechanism, there i s a 

d i s t i n c t p o s s i b i l i t y that recovery may be associated with the annealing 

c h a r a c t e r i s t i c s of excess vacancies produced during deformation. R e s i s t i v i t y 
90 

studies made by Sharp, M i t c h e l l and C h r i s t i a n on cadmium , single c r y s t a l s 

and p o l y c r y s t a l s deformed 12$, indicated.the existence of an annealing 

peak i n the v i c i n i t y of T = .25 . They determined the a c t i v a t i o n energy 
H 

to be .25 * .2 e.v. and associated the peak with si n g l e vacancy migration. 
. 9 1 9 2 

P e i f f e r and Stevenson i n a s i m i l a r study observed two 

annealing peaks, one at T = .23 and another at T = .28. The a c t i v a t i o n 
H H 

energies were.24 and .30.e.v. re s p e c t i v e l y . They believed that one of the 

peaks was associated with single vacancy migration although they were not 

sure which one. The expected value f o r the energy associated with vacancy 
1 9 7 

motion i n cadmium i s .41 e.v. This i s somewhat lower than the .6 * .1 

e.v. a c t i v a t i o n energy found to control the dynamic recovery.of zinc and 

cadmium. However due to the approximations involved in. the rate theory 

expressions when applied t o deformation, i t i s not outside the realm of 

p r o b a b i l i t y that vacancy migration and dynamic recovery are somehow l i n k e d . 



The exact nature of such a r e l a t i o n s h i p i s rather vague. I f 

the net r e s u l t of migration i s the production of basal d i s l o c a t i o n loops by 

vacancy condensation, then i t would be expected that such loops w i l l con­

t r i b u t e to hardening and w i l l not lead to a recovery e f f e c t . On the other 

hand by annealing out at edge d i s l o c a t i o n s excess vacancies can cause climb 

allowing for. the circumvention of obstacles. Climb therefore can occur at 

lower temperatures than T = .k and under such conditions i s c o n t r o l l e d 
H 

only by the vacancy migration energy.- Although Price did not observe climb 

below T = .k , i t i s probable that the excess vacancy concentration i n the 
H 

p l a t e l e t s used f o r study was quite low due to the low d i s l o c a t i o n density 

and the a v a i l a b i l i t y of the specimen surface. 

. In summary.it must be concluded that the exact cause of the 

dynamic recovery occuring i n the v i c i n i t y of T^ = .26 cannot be d e f i n i t e l y 

established at t h i s time. However because of the b e t t e r c o r r e l a t i o n of 

energies, i t i s thought that the most l i k e l y process i s one in v o l v i n g 

pipe d i f f u s i o n leading to the conservative climb of normally s e s s i l e 

basal d i s l o c a t i o n loops. 

.3.3. -THE MECHANICAL EQUATION OF STATE 

It was shown i n section 2.2.3. that a mechanical equation 

of state could be formulated f o r :polycrystals i n the regions of l i n e a r 

hardening below T = .26 .-Only under these conditions i s i t possible to 
H 

obtain equivalent states at an equal value of s t r a i n when deformation occurs 

at d i f f e r e n t temperatures. 

The concept of dynamic recovery being associated with the 

conservative climb of loops i s consistent with the above observations. 

Basal loops should remain stable i n the l i n e a r hardening regions.- The 
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o v e r a l l d i s l o c a t i o n configuration at a given value of s t r a i n w i l l therefore 

be independent of temperature. 

However once conservative climb can o c c u r , . i t i s not expected 

that equivalent s t a t e s . w i l l be found, at equal s t r a i n s because of the temp­

erature dependence of the rate of loop annealing as observed by P r i c e . 

3.4. THE COTTRELL-STOKES LAW 

I t was observed that at a l l temperatures. the C o t t r e l l - S t o k e s 

law was not s t r i c t l y obeyed during the Stage I deformation of cadmium 

single c r y s t a l s or during the early, s t r a i n regions of p o l y c r y s t a l s . In both 

cases the Acr r a t i o decreased, with increasing s t r a i n . In e f f e c t t h i s 
cr 

means that the rate of increase of cr was somewhat les s than the rate of 

increase of cr . In p o l y c r y s t a l s t h i s may be r e l a t e d . to., grain boundary G 

e f f e c t s . • T h i s e a r l y region of s t r a i n i s associated with the gradual buildv. 

up of a stable d i s l o c a t i o n configuration at the grain boundaries ( p i l e ups). 

This c o n t r i b u t i o n to stress w i l l be athermal, contributing only to cr 
G 

It i s therefore expected that the increase i n cr w i l l be somewhat i n excess 
G 

of cr which i s associated.with intragranular processes. 

Although A T decreases during Stage I hardening.there i s 
X 

a s i g n i f i c a n t decrease i n the a c t i v a t i o n volume. This implies.that there 
_ *-

i s an increase i n the value of T with increasing s t r a i n although not as 

great as. the increase i n *X . This observation i s not consistent with the 
G 

2 4 

theory of Seeger regarding Stage I hexagonal metal deformation. He assumes 

that %/G can be calculated, by only considering•the e l a s t i c i n t e r a c t i o n s 

between i n d i v i d u a l p a r a l l e l d i s l o c a t i o n s and that the contribution to ©j/G 

from J i s n e g l i g i b l e . For such' a theory to be correct, the a c t i v a t i o n 

volume must remain constant during Stage I. Because of the marked change 
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i n "v" i n cadmium, i t must be concluded that Qj/G represents an important 

contribution to the observed rate of hardening and.cannot be neglected. 

3.4.1. Obeyance 

The C o t t r e l l - S t o k e s law i s obeyed only-during. the l i n e a r 

hardening regions of p o l y c r y s t a l s and during the Stage II hardening of 

single c r y s t a l s below T = .26 ..In order to postulate the o r i g i n and 
H 

re l a t i o n s h i p between C*and cr i t i s necessary to know how. twinning may f \ . 
G 

a f f e c t the two stress components.-As observed i n single c r y s t a l s the 

formation of a twin does not affect- t h e flow stress required f o r furth e r 

deformation. Basal s l i p . w i t h i n a twinned region therefore must represent 

an important contribution t o deformation only immediately a f t e r the twin 

formation before the macroscopic observed stress returns to i t s previous 

value. Therefore although twinning may. a f f e c t the work, hardening r a t e , i t 

does not changexthe instantaneous r e l a t i v e values of the. two stress com­

ponents. 

This ^status quo" condition during.deformation may al s o be 

applied to the nature of the d i s l o c a t i o n configuration i n the neighbourhood 

of grain boundaries.- Once a stable configuration i s obtained i t w i l l be 

assumed that hardening becomes intragranular and the component of <3~ 

associated with boundaries need not be considered•with regard,to the 

Cot t r e l l - S t o k e s law. 

The athermal component of stress is. therefore associated 

with some combination of the following components: 

i ) the i n t e r a c t i o n of forest and g l i d e d i s l o c a t i o n s 

i i ) the i n t e r a c t i o n of loops and gl i d e d i s l o c a t i o n s 
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I t w i l l be assumecL that cr a r i s e s due to an i n t e r s e c t i o n 

mechanism. The C o t t r e l l - S t o k e s obeyance can therefore be interpreted i n 

terms, of an increasing forest density with increasing s.train . • o~ remains 

pro p o r t i o n a l to both athermal stress components because the basal loop 

density w i l l be a function of the f o r e s t density. 

3.4.2. - Dynamic Recovery 

It has been shown that i n both si n g l e c r y s t a l s and poly­

c r y s t a l s , dynamic recovery i s associated with increasing values of Ao~ 
o~ 

This means, that the rate of increase of cr i s somewhat l e s s than that of 
G 

0~* . . I f recovery i s related, to loop i n s t a b i l i t y and i f a s i g n i f i c a n t 

proportion of cr i s derived, from the nature of l o o p - d i s l o c a t i o n i n t e r -
G 

-actions, then i t i s expected that c T ^ . w i l l increase at a lower rate 

because of the r e l i e f of back stress which occurs because of obstacle^ 

motion. 

3.5. -RATE CONTROLLING '.PROCESSES BELOW. TTT- = .26 

_ ^ 
I t was proposed,that forest i n t e r s e c t i o n i s the rate cont­

r o l l i n g process governing y i e l d i n single c r y s t a l s and p o l y c r y s t a l s below 

T = .26 . This was done without any. consideration of possible alternate 
H-

mechanisms.. These w i l l now be discussed. 

3.5.I. .Peierls Stress 

The P e i e r l s stress f o r the motion of basal d i s l o c a t i o n s i s 

very low because of the close-packed nature of the basal plane.. I t cannot 

therefore be considered as a rate c o n t r o l l i n g process. However during 

p o l y c r y s t a l l i n e deformation when non basal s l i p must occur, the P e i e r l s 
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stress associated with movement on the corrugated pyramidal planes may be 

s i g n i f i c a n t and rate c o n t r o l l i n g . 

The a c t i v a t i o n -volume at y i e l d i n 25ji cadmium at -196°C based 
_ -20 3 on a shear stress conversion of y = cr , was .30 x 10 cm. . In terms of 

. 2 3 a basal d i s l o c a t i o n where a = 2.97 A* , t h i s gave a value of 110b . •However 
3 

i n terms of a c+a pyramidal d i s l o c a t i o n t h i s reduces to about 17b a much 

more acceptable value for.the P e i e r l s mechanism. 

However i t was a l s o observed.(Table 9) that the a c t i v a t i o n 

volume increased with increasing grain s i z e , a trend not expected f o r the 

P e i e r l s mechanism. From F i g . 68 i t was observed, that f o r a given grain size 

"v" decreased s u b s t a n t i a l l y • w i t h increasing s t r a i n . - I f the P e i e r l s mechanism 

i s rate c o n t r o l l i n g .the a c t i v a t i o n volume should not vary with s t r a i n . 

-Since the P e i e r l s mechanism i s not compatible with a l l of the 

experimental observations,.it can be rejected as a possible c o n t r o l l i n g 

mechanism. 

3.5.2. . Cross. S l i p 

C r o s s s s l i p has been considered i n section 3-3» as a possible 

mechanism of dynamic recovery.. I t may a l s o be argued that cross s l i p could 

c o n t r o l y i e l d at temperatures below T . = .26 i f i t i s required.in order f o r 
H 

basal d i s l o c a t i o n s to move onto non basal planes and thereby c o n t r o l the 

extent of non basal s l i p . However-this argument cannot be v a l i d a t e d i n that 

the only non basal traces that are observed i n zinc and cadmium.arise from 

[ll22J0-123^ s l i p . This i s not a cross s l i p system. Also as pointed out 

i n section 1.4.1., when [ll22J<(ll23>sl .ip.occurs, the number of independent 

systems that can operate i s s u f f i c i e n t ..to promote extensive p o l y c r y s t a l l i n e 
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deformation. Therefore cross s l i p i s not a necessary process i n order f o r 

deformation to proceed. 

3 . 5 - 3 - The Non Conservative-Motion of Jogs 

9 8 

Frank f i r s t postulated that a jogged screw d i s l o c a t i o n can 

move only i f the jog leaves behind i t e i t h e r a row of vacancies or i n t e r -

s t i t i a l s depending on its . sign and d i r e c t i o n of motion.- The conservative 

motion of vacancy jogs i s thought to be associated with a r e l a t i v e l y high 

a c t i v a t i o n energy, and therefore need not be considered. 

. I t i s u s u a l l y not possible to d i s t i n g u i s h between a jog or 

an i n t e r s e c t i o n mechanism merely from the values of rate theory parameters. 

Both processes are expected; to have s i m i l a r values of a c t i v a t i o n volume 
2 3 4 3 i n the range from -10 b to 10 b . 

The concept of a jog mechanism being rate c o n t r o l l i n g i s not 
- 99 

strongly supported by experimental observations..It was advanced by Mott 

mainly to explain the nature of the flow stress v a r i a t i o n s i n copper single 

c r y s t a l s . . In copper i t has been observed that the flow stress i s almost 

temperature independent between T = .2 and T = .5 .-At higher temperatures 

there i s a s i g n i f i c a n t drop i n s t r e s s . Mott therefore proposed that at temp­

eratures below TJJ = -5 > "the s e l f d i f f u s i o n process required f o r ..the mech­

anism to procede cannot occur at an appropriate rate i n terms of the applied 

s t r a i n rate. The vacancy nucleation at the jog i s therefore completely 

athermal leading to a temperature independent flow s t r e s s . . I t was al s o 

assumed by Mott that energy i s not a v a i l a b l e f o r vacancy migration away 

from the region of the jog. Under such conditions any thermal f l u c t u a t i o n 

w i l l tend to move the jog forward a sing l e atomic spacing, but i f the vacancy 
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produced i s not mobile, the jog can be pu l l e d back by the i n t e r a c t i o n with 

the vacancy produced. Therefore the flow stress should not be temperature 

dependent below T =. .5 . Above t h i s temperature however where the energy 
. H 

f o r s e l f d i f f u s i o n i s a v a i l a b l e , the vacancies produced should be mobile and 

a temperature dependent flow stress should r e s u l t . 

There are some questionable features of t h i s theory. F i r s t of 

a l l i t i s not c l e a r why the nucleation of a vacancy at a jog should be a 

completely athermal process. The thermal energy a v a i l a b l e i n t h i s temperature 

range should be s u f f i c i e n t to provide a p o r t i o n of the energy needed f o r 

vacancy nucleation. 

Secondly, even i f vacancy nucleation i s an athermal process, 

the temperature at which a temperature dependent flow stress occurs should be 

associated only with the energy f o r vacancy migration. This should occur at 

temperatures w e l l below T ..= .5 
H 

.In zinc and cadmium.it i s believed; that single vacancy motion 

can occur at-appreciable rates above T = .25 .Therefore below t h i s 

temperature according to the jog mechanism, the flow stress of zinc and 

cadmium w i l l be governed by the athermal process of vacancy nucleation. 

This should lead to a temperature independent flow s t r e s s . This was not 

observed .There i s a considerable increase i n the flow stress i n both 

systems below T = .26. I t i s therefore u n l i k e l y that the non conservative 
H 

motion of jogs i s the rate c o n t r o l l i n g process at low temperatures i n zinc 

and cadmium. 

3.5.4. I n t e r s e c t i o n 

The postulate of forest i n t e r s e c t i o n was not made merely 

http://cadmium.it


- 1 4 2 -

because other mechanisms could not explain a l l of the experimental observat­

ions. There are no major inconsistencies with the forest mechanism. The 

estimate of f o r e s t spacings of Table 9 made from .activation volume data are 

reasonable f o r the systems involved. The v a r i a t i o n of a c t i v a t i o n volumes 
2 3 4 ..,3 

at -196°C from 1.1 x 10 b for. 25u cadmium to 1.1 .x 10 bb f o r si n g l e c r y s t a l s 

:.is. w ithin the expected range f o r i n t e r s e c t i o n . - The v a r i a t i o n has been shown 

to a r i s e from the expected difference i n the forest spacing as the grain 

s i z e changes and i s not due to a change i n the force distance curve.. The 

non l i n e a r v a r i a t i o n of AG with temperature can be interpreted from the 

fo r e s t mechanism to. be due e i t h e r to a change i n the stacking f a u l t energy 

with temperature or to a change i n the e f f e c t i v e value of the f o r e s t spacing 

due to the manner i n which a d i s l o c a t i o n bows out under the influence of a 

s t r e s s . 



4. SUMMARY AND.CONCLUSIONS 
- 1U3 , 

The observations and i n t e r p r e t a t i o n s of the deformation char­

a c t e r i s t i c s , of zinc and cadmium may be summarized.as follows: 

1) Negative work hardening beyond .the point of maximum- stress i n poiycrys-: 

t a l l i n e zinc and cadmium at temperatures above T = ,4 i s associated 

•with r e c r y s t a l l i z a t i o n . However at temperatures up to at l e a s t T = .5 

r e c r y s t a l l i z a t i o n does not go to completion during deformation. At l e a s t 

50$ of the structure outside the necked area remains u n r e c r y s t a l l i z e d . 

2) Grain boundary migration can occur i n the i n i t i a l hardening regions and 

i s p a r t i c u l a r l y important as a recovery mechanism above T = ,4 . 
H 

S l i g h t boundary corrugations were observed i n cadmium, at temperatures 

down to -95°C suggesting that the change i n fracture mode from d u c t i l e 

shear to intergranular fr a c t u r e which occurs at -120°C i s associated 

with the cessation of recovery by boundary migration. 

3) J1122}0-123)" i s the only non basal s l i p system observed during poly­

c r y s t a l l i n e deformation..It i s more prevalent as the temperature 

decreases.-At +20°C i t i s more extensive i n zinc than i n cadmium.at an 

equivalent temperature. The non basal traces are wavy and discontinuous 

at elevated temperatures.-At low temperatures they are s t r a i g h t and.tend 

to concentrate i n t o bands. Q u a l i t a t i v e l y i t appears that the amount.of 

non basal s l i p increases as the grain s i z e decreases. 

4) The formation of low angle boundaries during deformation i s s i m i l a r i n 

both systems.and does not vary i n nature or extent with temperature. 
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5) I n cadmium s i n g l e c r y s t a l s t h e resolved b a s a l s h e a r s t r e s s a t w h i c h 

S t a g e I ends i s i n d e p e n d e n t o f t e m p e r a t u r e i n t h e range f r o m -50°C t o 

-196°C. 

6) T w i n n i n g i s a g e n e r a l f e a t u r e o f S t a g e I I cadmium d e f o r m a t i o n a t temper­

a t u r e s below -50°C. 'a IV-.:., i j 

7) A r e g i o n o f t e m p e r a t u r e and s t r a i n r a t e i n d e p e n d e n t l i n e a r work h a r d e n i n g 

d e v e l o p s below T = .26 i n b o t h p o l y c r y s t a l l i n e z i n c and cadmium. The 
H 

amount o f s t r a i n a s s o c i a t e d w i t h l i n e a r h a r d e n i n g i n c r e a s e s as t h e temp­

e r a t u r e d e c r e a s e s . The r a t e o f h a r d e n i n g i s s i m i l a r i n b o t h s y s t e m s . 

8) Cadmium s i n g l e c r y s t a l s a l s o show c o n s t a n t S t a g e I and S t a g e I I h a r d ­

e n i n g r a t e s b e l o w T = .26 and c o n t i n u o u s l y d e c r e a s i n g h a r d e n i n g r a t e s 
H 

above t h i s t e m p e r a t u r e . T h i s i s s i m i l a r t o t h e b e h a v i o u r o f z i n c and 

magnesium. 

9) The maximum l i n e a r h a r d e n i n g r a t e o f p o l y c r y s t a l l i n e cadmium a t -196°C 
- 1 _ l 

v a r i e s l i n e a r l y w i t h d . The e x t r a p o l a t e d v a l u e o f 0 t o d 2 = 0 

c o r r e s p o n d s t o t h e t e n s i l e S t a g e I I h a r d e n i n g r a t e o f s i n g l e c r y s t a l s . 

T h i s change i n h a r d e n i n g r a t e can be e x p l a i n e d i n terms o f a change 

i n t h e f r e q u e n c y o f |jL122^<1123)slip. 

10) The C o t t r e l l - S t o k e s law i s n o t s t r i c t l y obeyed f o r e i t h e r , t e m p e r a t u r e 

o r s t r a i n r a t e change t e s t s . Obeyance i s o n l y o b s e r v e d d u r i n g t h e l i n e a r 

h a r d e n i n g o f p o l y c r y s t a l s and d u r i n g S t a g e I I s i n g l e c r y s t a l h a r d e n i n g 

b e l o w T = .26. Dynamic r e c o v e r y i s a s s o c i a t e d w i t h i n c r e a s i n g v a l u e s H 
o f ACT , 

cr 

11) I n p o l y c r y s t a l l i n e z i n c and cadmium e q u i v a l e n t s t a t e s a t e q u a l s t r a i n s 
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are only obtained during linear-hardening.- Therefore only i n these regions 

can a mechanical equation of state be formulated. 

12) Y i e l d at temperatures below T = .26 can be interpreted i n terms of a 
. H 

fo r e s t i n t e r s e c t i o n mechanism.. The'total a c t i v a t i o n cannot be estimated but 

D . v c i s somewhat i n excess of . 8 e.v. i n cadmium . 

13) I t i s probable that dynamic recovery-above TJJ = .26 i s associated with 

a d i f f u s i o n c o n t r o l l e d process. The most l i k e l y mechanism.involves.the 

conservative climb of normally s e s s i l e basal loops by a process of pipe 

- d i f f u s i o n . The experimental a c t i v a t i o n energy f o r y i e l d i n p o l y c r y s t a l l i n e 

zinc and cadmium i s .6 * .1 e.v. 
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5. • SUGGESTIONS FOR FUTURE WORK 

Several l i n e s of i n v e s t i g a t i o n are immediately recognized 

from the r e s u l t s of t h i s work. These include: 

1) An extension of t e s t i n g t o temperatures below -196°C i n order to 

completely e s t a b l i s h the flow stress-temperature r e l a t i o n s h i p s . 

2) . A thorough electron microscopy r e p l i c a study on s l i p traces i n order 

to e s t a b l i s h the s i g n i f i c a n c e of cross s l i p i n p o l y c r y s t a l l i n e zinc and 

cadmium. 

3) An extensive r e s i s t i v i t y study of various deformed states i n order to 

e s t a b l i s h the relevance of sing l e vacancy motion to dynamic recovery. 
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I ;.'.vi.:,Rate,, Theory 

As mentioned i n section 2 . 1 . when deformation i s goverened by 

a. si n g l e rate controlling..process, the shear s t r a i n rate may be expressed by 

)f = Jo e ( 1 ) 

81 
A more general expression as indicated.by Dorn , i s given by 

y SJ AQt/kT 
5L= J 0 .e . . . . . . . . . . . . . . . . . . . . . . . . . . . . ( 2 ) 

t h 

where " i " r e f e r s to the i ' kind of mechanism. 

•Several d i f f e r e n t thermally activ a t e d processes can operate at the 

same time. I f they occur s e q u e n t i a l l y then the steady state s t r a i n rate 

observed during c r e e p / w i l l be associated with the slowest process, i . e . the 

process with the highest a c t i v a t i o n energy.' If-the s t r a i n rate i s f i x e d as i s 

usual i n a , t e n s i l e test,.then the magnitude of the stress w i l l r e f l e c t ' t h e 

p a r t i c u l a r c o n t r o l l i n g process i n that any a c t i v a t i o n process occurs under 

the combined influence of thermal energy and the e f f e c t i v e s t r e s s . 

An example of sequential processes would be the movement of a 

jogged screw d i s l o c a t i o n during pyramidal g l i d e i n a hexagonal metal. Energy 

must be supplied f o r the non-conservative motion of the jog, f o r f o r e s t 

i n t e r s e c t i o n , to overcome the P e i e r l s stress and f o r possible cross s l i p 

around obstacles.. I f th i s , sequence of processes, must occur before deformation 

can proceed, then one of the processes w i l l be rate controlling..Which one 

w i l l depend on the nature of the e f f e c t i v e stress on.the d i s l o c a t i o n at any 

stage of the process. The stress w i l l increase, to a value at which the thermal 

energy a v a i l a b l e at that temperature i s s u f f i c i e n t to continue deformation 
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at the required s t r a i n r a te. Under such a sequential system i t i s quite 

possible that the rate c o n t r o l l i n g process can change during deformation 

from one of the aforementioned processes to another. 

- I f however, two or more independent processes contol the s t r a i n 

rate, then, the t o t a l s t r a i n rate i s given by ^ )( ̂  and. the 

a p p l i c a t i o n of simple rate theory to deformation i s not p o s s i b l e . 

. I f i t assumed that a single process i s rate c o n t r o l l i n g then 

from (1) 

A G = -kT In-i/j . . . . . . . . . . . . . . . . . . . . . . . . . ( 3 ) 

I f i t i s now assumed that at a constant d i s l o c a t i o n configuration thei. 

s t r a i n rate i s given bjp 

i = i ( T , ................(4) 

then by d i f f e r e n t i a t i n g . (4) withi.respect to temperature at constant e f f e c t i v e 

stress and recombining 

AG = - k T 2 / ^ m I c ) T * \ + T / G>AG\ 

Since i n general the a c t i v a t i o n entropy i s given by 

A s = - M A G \ .......(6) 

then the a c t i v a t i o n enthalpy i s given by 

AH = -kT 2 / 3 m i/i* \ I ................a) 
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v = b d l ..................... ...(8) 
where 

b = Burgers vector 
d = a c t i v a t i o n distance 
1 = length of d i s l o c a t i o n 

. undergoing a c t i v a t i o n . 

i s given by the stress dependence of AG such that 

v =-/_p\AG_\ = kT / din jl \ .................. (|) 

. Therefore a c t i v a t i o n energy and a c t i v a t i o n volume can be 

determined from r e v e r s i b l e temperature and s t r a i n rate changes during 

deformation. Probably the l a r g e s t source of er r o r i n t h i s type of c a l c u l a t i o n 

can be traced to the lack of r e v e r s i b i l i t y i n some systems. I f , which 

i s a function of the active d i s l o c a t i o n density, changes during the s t r a i n 

rate change, then the measured value of A l and subsequent c a l c u l a t e d values 

of v, A G , and AH w i l l be i n error . 

In order to c a l c u l a t e AC-., i t i s necessary to develop an expression 

whereby the entropy term ... / c) AG \ can be r e a d i l y evaluated. from .experiment-
so \ d T fa* 

a l data. Mitra and Dorn using a graphical technique have attempted such a 

c a l c u l a t i o n but i n the process appear to have interchanged free energy and 
7 4 

enthalpy. Schoeck ± n a consistent thermodynamic treatment has a r r i v e d at 

energy change (thermal 

% V 
d T n 

T dn 
P- d T 

AG = AH + 
..(10) 
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This he claims makes possible a simple c a l c u l a t i o n of AG since 

i t only contains terms that can be e a s i l y determined from experimental data. 

However h i s formulation i s based on the questionable r e l a t i o n s h i p 

i = y ( T , T a ) . . . . . . . . . . . . . . . . . . . . . . ( i i ) 

This d i f f e r s from (4) i n the use of the applied stress ^ a instead of the 

e f f e c t i v e stress Q'"*" . The s t r a i n rate f o r a given system under c e r t a i n 

conditions of temperature and applied stress i s associated with a c e r t a i n . 

rate c o n t r o l l i n g mechanism. This mechanism operates under the combined 

influence of the thermal energy a v a i l a b l e and the e f f e c t i v e stress 7 • 

Ultimately therefore the s t r a i n rate and the e f f e c t i v e stress are dependent 

variables and the dependence of \ on the macroscopic flow stress f i s 

u n j u s t i f i e d . 

I f 1 i s substituted f o r T3. i n Schoeck s expression ( 1 0 ) , a 

re l a t i o n s h i p s i m i l a r to ( 1 0 ) but containing T instead of T i s obtained. 
a 

Because of the unknown nature of J during deformation, i t i s d i f f i c u l t t o 

make any reasonable estimate of A G . 

Much of the confusion i n the l i t e r a t u r e concerning rate expressions 

involves the statement of the basic rate equation (1).. I t has been common 

to substitute ZVH, the enthalpy change f o r /\G i n ( 1 ) . When t h i s i s done, 
• S/'k 

i t i s assumed that the entropy term e i s incorporated i n t o the pre-

exponential term Vo . This approximation of the rate equation i s v a l i d only 

i f the entropy change does not represent a s i g n i f i c a n t contribution to the 

o v e r a l l free energy change and i f i t does not vary appreciably with temperature 

or s t r e s s . 
73 

As outlined by Conrad. , attempts have been made to calculate the 

energy of activation, including the work done by the e f f e c t i v e stress during 

thermal a c t i v a t i o n . In t h i s case t h i s " t o t a l " a c t i v a t i o n energy i s us u a l l y 
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expressed as 

AH0= AH + Fd : ....(12) 

where 
F= the force on the d i s l o c a t i o n 

segment 

Since Fd = lbd^f*= v j * , therefore 

AH 0 = AH + v i * . (15) 

where v j represents the work done by the applied stress during thermal 

a c t i v a t i o n . 

However the energies represented i n (15) should be free energies 

so that > 

AG D = AG + v!r* (14) 

A t y p i c a l force distance diagram i s shown i n F i g . 7 8 to i l l u s t r a t e 

the various energy terms. The term A;G0 must be l a b e l l e d only as the"apparent" 

a c t i v a t i o n energy since i t does not include the work done by the e f f e c t i v e 

stress before the a c t i v a t e d event. The true a c t i v a t i o n energy i s given by 

the t o t a l area under the force distance curve (AGo ). This can be a s c e r t -

ained only i f the conditions under which T = 0 are known. When T = 0 , 

AG = AG 0 * AGo • However even i f the c r i t i c a l temperature where T = 0 

can be accurately established, i t must be assumed that the force distance 

curve does not change with temperature i f the value of AG„ found at T 
c 

i s applied to other temperatures where the same rate c o n t r o l l i n g process 

i s thought to occur. Even i f the same process i s thought to occur over a 

range of temperatures, i f the stacking f a u l t energy changes with temperature 

then f o r some processes the shape of the force-distance diagram can change 

with temperature. 

The c a l c u l a t i o n of AG o Is therefore r e s t r i c t e d to conditions 
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ft* 

of y i e l d when J can be estimated from the y i e l d stress-temperature r e l a t i o n ­

ship . 
1 1 

Gregory developed a s i m i l a r r e l a t i o n s h i p to expression (13) 

i n order to cal c u l a t e t h e " t o t a l " a c t i v a t i o n energy. However he used the 

applied stress T instead of y*~ i n the l a s t term. This i s u n j u s t i f i e d 

and can lead to serious errors e s p e c i a l l y when Ta >'* jT . 
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A G = ABCA 

VT* = ACxgX-jA 

A G Q = x-^Cx^x 

A G * = x 0ABCx^x 

B 

Distance 

F i g . 7 8 Typical.Force-Distance curve f o r a thermally a c t i v a t e d deformation 
process. 
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APPENDIX 2  

[ Unloading Y i e l d Points i n Cadmium. 

During the e a r l y stages of deformation when c y c l i n g 25p. and kOOp. 

cadmium between -140°C and--196°C, s l i g h t y i e l d points as shown i n Fig.79 

were observed on reloading at T-196°C . 

s t r e s s 

s t r a i n 

F i g . 79 -Unloading y i e l d point i n p o l y c r y s t a l l i n e cadmium 

These made the determination of Aer d i f f i c u l t because of the 

ambiguity of the y i e l d stress at -196°C. 

Several authors have observed unloading y i e l d points i n f . c . c . 
100 101 

metals. Haasen and K e l l y and Makin observed y i e l d points i n sin g l e 

c r y s t a l s of aluminum, copper and n i c k e l produced by unloading and reloading. 

They postulated that Cottrell-Lomer s e s s i l e s are produced during unloading 

causing a higher y i e l d stress on reloading. 
102 

B o i l i n g using p o l y c r y s t a l l i n e Ag,"Al, Cu, Ni and Pb, found that 
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u n l o a d i n g y i e l d p o i n t phenomena i s a common o c c u r e n c e i n f . c . c . . m e t a l s . He 

f u r t h e r o b s e r v e d , t h a t t h e magnitude o f t h e s t r e s s i n c r e a s e was dependent on 

t h e amount o f u n l o a d i n g a n d -independent o f time.. Y i e l d p o i n t s were o n l y o b s e r v e d 

however when r e c o v e r y d u r i n g t h e u n l o a d i n g c y c l e Has n e g l i g i b l e . 

B irnbaum, t e s t i n g z i n c and magnesium s i n g l e c r y s t a l s between 7 7 C~ 

and 293°K f o u n d no y i e l d p o i n t s a f t e r r e l o a d i n g . F u r t h e r he o b s e r v e d that i n 

cop p e r s i n g l e c r y s t a l s , t h e magnitude o f t h e s t r e s s i n c r e a s e was o r i e n t a t i o n 

i n d e p e n d e n t , an o b s e r v a t i o n n o t c o n s i s t e n t w i t h t h e co n c e p t o f C o t t r e l l - "•-

Lomer s e s s i l e p r o d u c t i o n . He t h e r e f o r e p o s t u l a t e d t h a t a change o c c u r s d u r i n g 

u n l o a d i n g i n t h e n a t u r e o f g l i d e - f o r e s t d i s l o c a t i o n i n t e r a c t i o n s . 

I n o r d e r t o o b t a i n a b e t t e r u n d e r s t a n d i n g o f t h e y i e l d phenomena 

i n cadmium, 25u and kOOp, specimens were examinedVat -196°C. They were d e f ­

ormed u s i n g 2$ s t r a i n i n c r e m e n t s f o l l o w e d b y u n l o a d i n g t o a g i v e n p e r c e n t a g e 

o f t h e f l o w s t r e s s . Specimens were t h e n h e l d f o r v a r i o u s p e r i o d s o f t i m e 

b e f o r e r e l o a d i n g . 

I t was f o u n d t h a t t h e h o l d i n g t i m e up t o f i v e m i n u t e s had no e f f e c t 

on t h e magnitude o f t h e f l o w s t r e s s on r e l o a d i n g . However t h e o c c u r r e n c e o f 

y i e l d p o i n t s was a f u n c t i o n o f t h e amount o f u n l o a d i n g as p r e v i o u s l y observed^ 

by B o i l i n g . No y i e l d phenomena was o b s e r v e d u n t i l a t l e a s t 40$ o f t h e l o a d 

was removed. 

- A t low v a l u e s o f s t r a i n o~ a= cr ( F i g . 80 ), However w i t h 

i n c r e a s i n g d e f o r m a t i o n , o*"a became somewhat g r e a t e r t h a n o~ c. B o i l i n g 

o b s e r v e d s i m i l a r b e h a v i o u r and e x p l a i n e d i t i n terms o f c r e e p d u r i n g t h e 

u n l o a d i n g c y c l e . 

F i g . 8 l i l l u s t r a t e s t h e v a r i a t i o n o f 0^/05 w i t h i n c r e a s i n g 

s t r a i n . I n a l l c a s e s specimens were u n l o a d e d t o 10$ o f t h e f l o w s t r e s s and 

h e l d f o r f i v e m i n u t e s b e f o r e r e l o a d i n g . The u n l o a d i n g o p e r a t i o n was c o n t i n u o u s 

and t o o k about t e n se c o n d s . 
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Fig . Q p Unloading y i e l d point terminology 
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I t i s observed from F i g . 8 l that the y i e l d e f f e c t i s considerably 

greater in.400u cadmium than i n 25". The values of ^b/c% remain approx­

imately constant up to a value of s t r a i n which has been previously i d e n t i f i e d 

with the s t a r t of dynamic recovery at -196°C. Beyond t h i s value of s t r a i n , 

Ob/og decreased and the y i e l d e f f e c t gradually disappeared. 

Specimens were a l s o tested at -95°C and no y i e l d e f f e c t s were 

observed. In f a c t s l i g h t s t a t i c recovery occurred. The drop i n stress assoc} 

iated with unloading and: t h i r t y second holding at 10$ of the flow s t r e s s , 

i s shown as a function of the flow stress i n F i g . 82 .Therefore during 

C o t t r e l l - S t o k e s t e s t s , appropriate corrections were made to A o~ to take 
A T 

into account the s t a t i c recovery occurring during the operation of changing 

temperatures. 
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Fig.82 The decrease i n flow stress due to s t a t i c recovery during 
interrupted t e s t i n g of 25u cadmium at -95°C. 

( 30 second holding at 10$ of the flow stress ). 
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APPENDIX j 

The Determination of A°~ from-Strain Rate Change Tests 

An i d e a l s t r a i n ; r a t e change should occur i n an instantaneous 

fashion without an intermediate drop i n load or a measurable time l a g during 

the change. These factors become of extreme importance i f one i s attempting 

to analyze materials at high e f f e c t i v e temperatures where recovery can occur. 

When using an Instron, mechanical d i f f i c u l t i e s are sometimes 

responsible f o r a considerable e r r o r i n the determination of ACT . Although 
i 

the Instron used during t h i s work was equipped with an automatic push button 

crosshead speed change, a considerable time l a g was observed during a de-r 

crease i n s t r a i n rate. When the crosshead speed was changed from .02"/min. 

to ,002"/min. there was a delay time of 1.6 seconds during which time the 

machine stopped. When changing from .2"/min. to .02"/min. the delay time 

was .8 seconds. However at these higher speeds there was also a s l i g h t 

r e v e r s a l of the screws during the change which caused a.drop i n load on 

the specimen. 

There was no measurable delay time associated with a change 

to an.increased crosshead speed. Therefore a l l j A 0 " values were obtained 

during an increase i n s t r a i n rate. In many materials i t i s necessary to 

obtain Ao~ from a decrease i n s t r a i n rate because of the appearance of 

d i s t i n c t y i e l d points on increasing the s t r a i n rate. For t h i s work i t was 

decided that any error a r i s i n g from any' s l i g h t y i e l d phenomenon would be 

much l e s s than that r e s u l t i n g from the time dellay during a decrease i n s t r a i n 

rate. 
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Fig.83 i l l u s t r a t e s the nature of the change i n flow stress 

during s t r a i n rate change t e s t s under various conditions. 

(a) below T = .26 i n l i n e a r hardening regions . 

Fig.83 
v 

The nature of the flow stress obtained during s t r a i n rate change 
t e s t s i n p o l y c r y s t a l s 
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Obtaining values at low temperatures was r e l a t i v e l y easy 

because of the abrupt nature of y i e l d a f t e r a change i n s t r a i n rate ( F i g . 

83 a) . With increasing s t r a i n however y i e l d became more gradual s i m i l a r 

to that obtained at a l l values of s t r a i n at temperatures above = .26 . 

Under these conditions /L\a~ was obtained by extrapolating the e l a s t i c 

and work hardening regions.(Fig.83 b) . 

As the temperature increased to the region of T = .hO 
a 

i t became extremely d i f f i c u l t to obtain r e l i a b l e values of Ao~ because 

of the almost completely parabolic nature of y i e l d a f t e r an increase i n 

s t r a i n rate (Fig.83 c ) . For t h i s reason rate theory c a l c u l a t i o n s were 

not ; attempted above T = .k-0 
H 

Some work softening occurred on decreasing the s t r a i n rate 

at a l l temperatures above T .= .26 .=This gave f i s e . t o a more gradual 
H 

decrease i n the observed flow stress a f t e r the s t r a i n rate change had 

been made. This became more pronounced with increasing temperature ( F i g . 

83 c ) . I f the load was removed and immediately reapplied ifenefe was no 

evidence of any y i e l d point which i s u s u a l l y associated with work 

softening. However y i e l d points were observed during s t r a i n rate changes 
ok 

on cadmium single c r y s t a l s s i m i l a r t o those reported by Langenecker i n 

aluminum and zin c . I t would therefore appear that i n p o l y c r y s t a l s at 

elevated temperatures considerable d i s l o c a t i o n rearrangement can occur 

i n the time necessary f o r a decrease i n s t r a i n rate. One i s faced with the 

d i f f i c u l t y of e s t a b l i s h i n g the flow stress along a-b (Fig.83 c) at which 

y i e l d i s occurring at the reduced s t r a i n rate. Since t h i s region u s u a l l y 

involves up to at l e a s t .5$ s t r a i n there i s considerable doubt i f any such 

determination r e a l l y r e f l e c t s a r e v e r s i b l e change. 
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Some ambiguity i s a l s o associated 1with an increase i n s t r a i n 

r a t e. However i t should be somewhat l e s s due to the absence of the delay 

times observed during a decrease i n s t r a i n rate. At temperatures above 

Tg = .kO the work hardening rate a f t e r an increase i n s t r a i n . r a t e i s not 

s u f f i c i e n t l y l i n e a r to allow f o r an extrapolation as i n Fig.83 b . Under 

such conditions A<3~ should be obtained by extrapolating the work hardening 

rate at a c e r t a i n constant vjalue of s t r a i n (Fig.83 c ) . 

1 
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