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ABSTRACT

The objective of thils thesis 1s to investigate
decomposlition and its applicability_to the theory of
optimal control. The work begins wiﬁh a représentatidn
of the structure of the optimal control problem in terms
of directed graphs. This representation exposes a strong
conhectedness’pfoperty leading to fundamental difficul-~
ties which are'cehtral in 1limiting the class of control
problems to which decompoéition can successfully bé app-
lied., | |

Computational problems of optiﬁal control are
" then considered, and decomposition is found to provide
a framework within which to analyse numerical methods
sﬁitable'fqr pérallel processing. A number of such methods
‘are shown and a numerilical example 1s uséd to illustrate
the viabiiity of one of these. | |
| In the second part of the thesis, the optimal con-
trol law synthesis problém 1s discussed together with an
inverse problem. Thé latter concerns the requirement of
a second-level co-ordinator in a hierarchical:structureo
A multi-level controller is ﬁhen suggested fof_a class
of systems. The effect of this dontroller structure is
to provide a performance very close to the optimal while
maintaihing adequate sub-optimal control in case of a

breakdown of the second-level co-ordinator. The structure
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1svjustified on the basis of the second vartation theory
of the calculus of variatilons,

Finally, a new computational ‘technique founded on
the geometrical concepts of optimal.control'fheory is in-
troduced. This results in replacing the unstable co-state
variables assoclated with Pontryagin's maximum principle
with a set of bounded variables. The facility in the choice

of initial iterates makes the method promising.
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1. INTRCDUCTION

The objective of this thesis is to study the appii-
cability of the decomposition concept to optimal control
problems. The requirement for decomposition arises from
the necessity to understand and control 1ncreasing1y»complex
systems both in industry and society in general. These pro-
blems are so large that they cannot be handled_by the clas-
slcal scalar input-output analysis; nelther do they belong
in the category of '"disorganized complexity" as do those
studlied in thermodynamics, for which statistical methods are
adequate. Tﬁis middle ground of so-calléd.orgahized complex-
1ty requires the development of new and possibly special
techniques for éxploiting the system structure. These really
large problems,<bngusé they do contain subsystems, are boﬁnd
to have a structure that cén be utilized toAédvantége.

Deconposing, or breaking down a pfoblem into its con-
stituent parts, has long been recognized aé a natural épproach
to complexity, and numerous works, [1] to [6J , from many
research areas have been devoted to different aspects of
dedomposition, with varying degrees of success, Although

a few works such as [5] and [6], and others to be discussed
subSequently, have attempted to épply this concept to the

dynamic optimization problem, no unqualified breakthroughs



can be claimed.

This_thesis begins by defining the structure of an op-
timization problem and representing this structure by means
of directed graphs. Although no significant quantitative con-
clusions arise from this approach, 1t does offer a unified.
framework within which to consider decomposition probiems.
The thesis then branches into two related studles, one oon;
cerned with the computational problém of optimal control,
and the other involving the optimal feedback control law
synthesis problem.vlt is argued that the former benefits
from decomposition because new, attractive algorithms,ISuit-
able for multi-processing compﬁters. arise as practical pos-
~sibilities. The synthesis problem benefits, since decom-
position is the natural first step in obtaining a hierarchi-
cal controller structure, and thls structure 1s desirable
from many engineering considerations.

John Ven Neumann has been quoted asvséying.that [7]
"fundamental improvements in control are really improve-
‘ments in communicating 1nformafion within an organization
or mechanism." Wnen confronted with the problem of control-
ling a complex system, a central integrated controller can
very well become a bottle neck for the information flow,
Decomposition, because it offers the possibility of decen-

tralized control, has the potential of overcoming this bot-



tle- neck, thereby improving the information flow signi-

ficantly.



2. BACKGROUND TO DECOMPOSITION AND OPTIMIZATION PROBLEMS

Introduction

This part of the thesis provides some definitions as
well-asvbasic backgrdund material to be used in the subse-
quent sections. Terms not defined here, such as adjoint
variables , strong connectedness gnd so forth,are assumed
to have well defined meanings in the current literature.
The Haximum Principle of Pontryagin is stated, but proofs
are referenced, and the assumption is made that the reader
has fémiliarity with the current state of optimal control
theory. The problem of decomposition and system structure
is most readily studied with the aid of the theory of di-
rected graphs, and one section 1is thefefore devoted to the
relevance of this theory to the structure of optimal control
problems, Finally, this theory is used to limit the class

qf problems for which decomposition is readily applicable.

2.1 Systems Theory

The theory of systems is a mathematical theory, deal-
ing with abstract entitles or mathematical models., in this
context, the term object , or synonomously éubsxstem ié
taken to mean a finite set of wvariables together with a
set of relations between'them.:The term system refers to

" a collection of objects united by some form of mathematical-



1& well-~defined 1nteraction or interdependence., By apply-
ing cause-effect relationships, the set of variables charac-
terizing an object i may be partitioned into two non-inter-
secting sets, vi, known as the subsystem input, and yi;
the system - output. In this thesis, 1t is assﬁmed that the

set of relations between v, and Yy the input-output descrip-

1
tion, can be expressed in the form of an ordinary, first-
order, vector differential equation,
yi = fi(Yipvi) . ' 2.1-

and at some time to' 1t is assumed thatvyi 1s avalilable
for measurement, so that

| y,(0) = Vo, . | 2.2
Furthermore, it 1s assumed that the interactions which

‘unite the collection of objects to form the system be ex-
pressible by a vector algebraic‘equation of the form -
gly,v) =0 ' ' 2.3

wher y and v are thevcomposite vectors formed from the vec-:
vtors Y3 and'vi as 1 ranges over all the objects comprising
the system. | v

Equations 2.1, é.z, and 2.3 are sufficient to provide_.
a complete mathematical description of the system dynamics.,
In fact, some redundancy is bound to exist, since man& sub-
systems have outputs which form part of fhe input of some

other subsystem. In this thesis as well as in almost all

control system literature, these redundancies are eliminated



by explicitly solving for some of the Varlables in equa~
tilon 2.3 . The result of this s a new smaller set of in-
rut-output variables, called x and u, whiéhvare intercon-
nected by the dynamical equation

x = f(x,u) 2.4
while equation 2.3 has beén eliminated completely.

It is now assumed that the remaining system inputs, u,
ére all control inputs in the sense that; within certain
practical limitations, these vectors may be chosen at will
by the system designer. Thlis precludes the possibility of
noilse inputs, but this is justified by the following argu-
ment, In the case of the computational algorithm, the ob-
Jective is tb calculate the idéai behaviour'éf.the system
under no imperfections such as noise or controller limita~
tions. This 1deal is then used elther directly in control-
ler synthesis, or indirectly, as a measure of the perfor-
mance of some realistic, implementéble control law. In the
case of the synthesls procedure for on-~line controllers, |
a control law is obtained whose sole purpose 1is té correct
for noise inputs'to the system. Unless these uncontrolled
disturbances are highly predictable, there is no'effective'
way to compensate for them in the generation of the feed?
back control law, and they are therefore ignored.

It is further noted that the foregoing discussion



makes no mention of the concept of the state of‘the.system.
In the first place, no purpose is served by entering into a
1on§ discussiohvof this concept here, when so many excellent
referencés such as [8] and [9] treat this in detall. More
significantly, the assumption is made.that there exists a
unique minimal state description of the system, which 1is
identical to the afore-mentioned input-output description

of the systemn. The reason for this somewhat restrictive |
assumption is that with decomposition,‘thevemphasis is on
the system structural properties as manifested at the 1nput3
output level, As with stability properties, these structﬁ- '
ral properties are not preserved with arbitrary transfor-
mations of state, and at present, no restrictions on these
transformations are available which do imply these preser-
vations, Henceforth in this thesis, the terms output and |
state shall be employed interchangeably, keeping in mind

the above assumption.

2.2 The Optimal Dynamical System

The optimization problem to be Stﬁdied in this thesis
is now defined, Given a dynamical system.whose motion 1is
described by the equation

x = f(x,u), - 2.4
x(0) = xq

determine the vector ue€ () which will minimize the

functional : _
ty ’
J = § n(x,u) dt | . 2.5
o
subject to

pi(x(tf)) =0 | 2.6



where f) is some convex set,

M(.) 1s a vector valued terminal condition,
h(.,.) is & scalar valued, positive semi-definite
A function. |
The Hamiltonian for_the problem 1s defined as
H(x,p,u) = —h(x,u) + p'f(x,u) : 2.7
The Maximum Principle of Pontryagin states that.if the
control u= u¥ 1is optimal, then corresponding to u¥* and
the generated optimal trajectory x*, there exists an adjoint

vector p* , such that

x* = Vp H(x*,p*,u*) . 2.8
Pt =V H(x*,p*,u¥) S 2:9

3t ' * = .
p*(t,) Mx(x (te)) =0 2.10

H(x*,p*,u*) 2 H(xypyu)

for all ueS), and all t, 0<tgt .2.11

£
Tﬁis result is proved in detail in [1@], while'flﬂ,and
[12] serve as useful references and give examples of how
this is used. Equations 2,8 to 2.11 define a two-point
boundary value problem, henceforth réfe:red to as ﬁhe TPBVP.
Equation 2.11 provides an algebraic relatibnship between
the variables X, U and p, and with the use of the impli-
cit_funcfibn theorem, if the problem is non-singular [13] ’
u can be expressed as a function of x and p ;VTherefore,
these equations are sufficlent for generating the thimal

trajectory x(t), and the optimal control u(t), and these

will presumably be unique if the problem is well defined.



The difficulty arises becausevthe;mixed boundary conditions
do not allow readily obtainable solutions. To quote Letov
DAJ : ",.. the faméus two-point boundary value problem
stands as a fortress that has been attacked time after time;
but never conquered. ... (I am) not so bold as to claim

that success i1s close at hand in many applications of varia-
tional techniques which are'both»rigorous and legitimate.,.."

This obstacle'has sent many to search for other
optimization techniques, the most notable of which has béen
dynamic programming. However, none has been found that is
réally as useful in general asvthe‘maximum principle,and ,
therefore, this thesis will consider optimal contiol |
problems 6n1y from this viewpoint.

Consequently, in the subsequent sections, the dynamical
system defined by the necessary-conditions of the maximunm
principle will be studied extensively, and this system, |
governed by equations 2.8 to 2.11 wili be referred to as the

Optimal Dynamical System, or the 0DS for short. By the term

generating system for the 0ODS is meant the original dyhaf
mical system definéd by equationvz.h; where no stipulations
are made regarding performance functionals. As will become
evident shortly, ip_is important to differentiate between
these two systems, | |

The structure of the system is now defined as the
network of couplings between the objects which constitute

the system, Clearly, the structure of the ODS is potentially
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much more complex than the structure of the generating
system, Therefore a successful decomposition techhique
must utilize éll the information not only of the genera-

. ting system'structure,'ﬁut also that of the 0DS, in which.
the generating system is embedded. The‘logical tool for
studying system strucﬁure is the branch of topology known
as the theory of directed graphs [;5} . The bbjective of
applying this theory to the study of the ODS is to juétify
the use of a 1im1ted class of systems in the subsequent

sections dealing with decomposition.

2.3 Digraph Theory and the Optimal Dynamical System

The subsequent discussion of the theory of directed

[

graphs will employ terminoiogy identical to that of refe-
rence(@5], Harary et al.A directed graph, henceforth
referred fo as a digraph, consists of twoksets,the set of.
points and the set of lines, each line having assocliated
with it a direction.

To obtain the digraph of anAODS, all the wvariables
X, P, and u * are considered as points. The lineé_for
the digraph are obtained as fblléws. Sihce each of the
components of x and p. 1is generated by é differen-
tial equation, the lines converging to a point will be
defined by the varlables on the right hand side of the

respective differential equation. For example; if the

* In the next seétion, some others are also included.
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differential equation generating p3 is given by

Py = f(xz, Xgo Py)
then to the node associated with p3 will come directed
lines from the nodes assoclated with xp, Xss and Py
If f(.) were to include P3 logically a self-loop
~would be required, but.since these do not further the
understanding of the relationships between the variables,
they will be omitted.

For each component of u , there 1s a relationship
requiring that ﬁ be a maximum, and consequently, the |
explicit solution of thlis relationship for the particular
u component prdvides an algébraic eéuation which is_used
analogously to obtain the lines of the graph. - |

The digraph for the entire 0DS then consists of the
totality of such points and lines. It 1s noted that the
digraph thus obtained 1is in many ways similar to a stan-
dard block diagram. However, blockvdiagrams alréady have
associated with them concepts of transfer functions and
linearity, while the digraph is much more general. Thé
' generation of an ODS‘digraph is now 111ustrated with some :
' examples.‘ | |
Example 2.1 _

Find the functions u and .v which will minimize
the functional

T 2

J=%( x% + y° + w o+ v ) at
o



subject to X

= - x + 10xy + u x(0) = X,
y= x + v y(0) =y,
lu]g-U Ivig Vv
The Hamiltonian is
H = -%(x2‘+ y2 ru? o+ 3P ) + p(-x + 10xy + u )
+q( x +v)
Thus, the ODS will be of the form
X = - x + 10xy + u x(0) =‘xo
y=x + v | y(0) =y,
u = U sat(p/U)
v = V sat(q/V) »
P= x+p-10yp-q p(T) =0
Q= y -~ 10xp a(T) =0
where ’ 1 z>1
sat(z) = { z -1<z<1
-1 z < -1

and the digraph will be as follows:

It is observed that this digraph is strongly connected.

12



Example 2,2

Choose u and v to minimize the functional
T

J =3 S ( y2 + u2 + v2 ) dt

subject to °
¥ = -x2 +u x(0)=x x(T) =0

| y ==y +v y(0)=y y(T) =0

Thus Ho=-3y2 +0% +v2 ) +p(-x> +u) +ql-y +v)
u=p 4
v =4
b = 3x°p
qQ=y +q

If the digraph for this ODS is drawn according to the
preceding rules, it is found to be totally diSGOnnectéd, and
this of course implies that two independent optimization
problems are being considered. However, these problems are
not entirely independent, since they are connected through
the parameter T and the requirement that both subsystems
reach the origin at the Same'time. This interconnection 1is

indicated in the above graph by means of the dotted lines.,

13
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Thus, the overall graph remains connected, but not strongly
connected as in the previous example,
Example 2.3

Again, find uw and v to minimlze

J = %§ ( x° + y2 + z2 + u2 + v2 Ydt
subject to °
X = -xz +u
y= -yz +v
Z = =z

Application of the maximum principle yields

u=p
v =aq

P =x + pz
ad=y+aqz

T =px +qy +r t+ 2z

and the digraph becomes:

The. basic digraph for this 0DS has a soﬁrce and a sink,
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and is, therefore , again not strongly connected. A look-at
‘the generating systém reveals it to be uncontrollable. In
fact, 1t is easy to show that a necessary condition for the
controllability of the generating system is that the basic
digraph of the 0ODS, composed of x , p and u , have no
sources or sinks. It is further noted , hoWever, thaﬁ the
optimization problem for this example is well-defined and
has a unique solution.,

The foregoing exanples illustrate how the Structure:of
aﬁ ODS ¢an be represented in terms of a digraph. It is e#i-
dent that some transformations of state variébles_can.pro-
foundly affect the internal structure and.hence-the digraph
of the system.vHowever, because these transformations leave
the input-output description of the system invariant, and be-
cause the synthesis is concerned mainly with this dsscription
and its assoclated structﬁre, the original restriction to
this unique description of the system is justified.

The basic shortcoming of digraphs is the lack of capacity
or values on the lines, and this prohibits gquantitative stats-
ments regarding the system structure. This shortcoming can
not be overcsme in the case of systems with nonlinearities
and therefore, only qualitative conclusions can be drawn;

The next section describes how these qualitative conclusions

are‘employed to effect ODS decomposition.



2.4 Decomposition

The Oxford dictionary defines decomposition as'"break-

ing down into its constituent parts." The objective of this

section is to identify constituent parts of an ODS, and

then, wlth the ald of digraph theory, attempt conceptually

to break the optimization problem into smaller sub~problenms.

As will become evident shortly,'the natural constituent
parts of an OD3 do not necessarily coincide with-the sub=-
systems which make up the generating systém. In order’to
111ustrate decomposition, consider the fbllowing example.;
Example 2.4

Find u and v which will minimize the functional

J =3 ? (x2 + y2 + 2 € Xy + u2 + v2 )dt
o
subjectvto
¥ =-5x+¢ey + u x(0) = x4
y==7y+yd - 3ex+ v y(0) = ¥4
The maximum»principle yields
u =p : v=aq
where |
P=X+£&y + 5p + 3eq . p(T) =0

§=y+ex-¢ep+7q-3y% q(T) =0
The digraph for this ODS is

16



17

It is notéd that although the generator systgms for examples
2.1 and‘ 2.4 are different, the 0ODS's have identicel struc-
fures. _

It 1is evident that the.digraph has a high degree of.
connectivity, and because the lines have'no_capacities_asso-
ciated with them, the job of isolating constituent parts on
the digraph is difficult. However, if it is known that ¢
represents a small quantity, and sinée all the lines>crossing
the dotted line are weighted by &€ , then it would appear
that the obvious choice for the ODS constituent parts would
- consist of (x,u,p) and (y,v,q) .Both of these constituent.
parts are strongly connected, and with € = 0 , define
meaningful optimization problems. This latter underlines the
fact that this writer has failled to find any problem in
which it is useful to consider an output variable and its
assoclated adjoint varisble in different constituent parts.
This tends to corroborate the hypothesis that if aﬁ 6pti-
mization problem lends itself to successful decomposition,
it must be built up from a number of.interconnected opti-
mlization problems, each of which can be made meaningful
when considered alone.

Now, of course, the concepts of decomposition can be
applied just as well to the generating system as to the
ODS, and in fact, this is done in papers dealinglwith

multi~-level systems, aggregated syStems and so forth. There



18

is no harm in this, provided one 15 not concerned with a
specific optimization problem, The following somewhat simple-
minded example underlines the differences between decomposihg
the generating system and the ODS . |

Example 2.5

Consider a generating system with the.dynamicS‘

Nl

= f(x) + &y +u

gly) + €x + v

g
]

-z + w

N
t

which glves as a digraph

If the objective of decomposition were to choose two
subsystems which had the least amount of interaction bet-
ween them, then the obvious choice, consideriné only. the
generating system, wouid be as indicated by the dotted lines
above, :

v However, 1f the problem were tQ find, as well, the
functions u, v ahd_ W suoh_that, subject to the above
dynamical‘constraints, the following functional was mini-

mized :
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T 2
J = L S %ﬂy-z)z + x% + u2 + v + WZ}_ dt

o
then ,
H = -} {;rl(y_z)z .+ x2 + u2 + V2 + WZ'} + p(f(x)
+ €y +u) + q(gly) +ex +v) + r(-z + w)
and -
u=p v =q W=r
where
. of
P=X-—D~-¢&q _
ox
q =q(y-2z) - ep - 38 a
dy

r= -m(y-z) +r
and the ODS- digraph would be as follows:
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If the original objective in decomposition is retained
and if € is smaller thénrq ,the natural decomposition appears
as shown,

In striving for decomposition, it is evident that the
objJjectives of decomposition differ somewhat between the com- -
. putational problem, and the on-line synthesis problem. However

in both problems the first step 15 to group sets of 1nput
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and output variables té be considered as sub-systems. Be-~
cause relatively few results aré avallable for the synthesis
probiem in general, the usefulness of the digraph to this
problem 1is limlited, except perhaps 1h the negative sense,
that if the dlgraph 1s>strohgly‘conneCted to.a high degree
of connectedness, and if it appears that the connections
have strong influences, then 1t may be wiserbto sythesize
an integrated, centralized controller, Also, for this
reasoh, thevhierardhical syntheéis problem in part 4 is
restricted to a special class of systems, whose digraph
is rather trivial. |

The‘objeotive of decomposition with computational
problems will be discussed further in part 3 , but here it
suffices to say that one of the goals 1is multi—prooessing.
However, because the digraph of an O0DS 1s in general stron-
gly connected, the standafd TPBVP 1is incompatible with
multi-processing. The ideal structure for-this'is a num-
ber of parallel paths, but since that is an unrealistic
goal, then weak connectedness is aggeptable. In fact,. the
next part of the thesls will cover a number of tebhniques
which reduce to adding more nodes to the ODSVdigraph and
then restructuring it from the undesirable strongly con- -
nected configuration to & more desirable , Weakly connec-

ted, sink-source configuration.
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3 . DECOMPOSITION AND COMPUTATIONAL ALGORITHMS

Introduction

A major segnent of optimal control theory concerns
the numerical computation of the function representing the
ODS trajectory, and this function is rejuired to a high
degree of acéuracy in off—liﬁe'optimal guidance problems.
This emphasis on accuracy may be contrastéd with the on-
line control problems, treated in part & , wherein the
paramount consideration is the computation time., Neverthe-
less, in guidance problems of any complexity, the compu-
tation time acquires the second most impoftant position,
since 1t ultimately determines the practicai feasibility
of a particular solution. Therefore, in this section, de-
composition is considered not only as an attraotive posS-
sibllity for siﬁplifying the numerical prooedufes. bﬁt°as
a means of achieving greater computational speed.

The objective, then, 1s to sub-divide the original
computational problem into smaller, and hopefully simpler,
sub-problems, preferably chosen 1n_such‘a way that each
can be solved relétively 1ndependéntly of others. For
example, dynamic programming offers what might be termed
temporal decomposition, in that at each stage (in time),
the solution Qf a simple problem is required; Closely
connected with dynamicAprogrémming is the technique, hope-

lessly complex for dynamical systems, for optimizing a
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system with cascaded structure, as described by Fan et al[ié].
Although these achieve the goal of simplifying the numeri-
cal prbcedures, they are impractical because of excessive
computer memory requirementSl If memory is extended to in-
clude tapes, then of course, computation time becomes im-
practical, Naturally, no decomposition scheme 1s acceptable
if the time required to sequentially‘solve~the set of sub-
problems exceeds the solution time of the original intégra—
ted problem, assuming that some algorithm exists”for doing
so.

In fact, the priméry reason for considering decompo-
sition.ié the possibilitytof discovering situations where
the smaller sub-problems can be solved simultanequsly,the—
reby offering a potentially significant decrease in total
computation time, if suitable multi-processing computers
are availlable, Consequently, this part of thé thésis be-
gins with a brief discussion of the nature of parallelism
in numerical algorithms. Then, some algorithms which pos-
sess an inherent high degree of parallelism are describéd
and an attempt is made to define fhe structural properties
of the control problems which would allow efficient use of

this parallelismn,
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3.1 Parallelism in Compﬁtational Algorithms'

When formulating a séQueﬁtial numerical algorithm,
one does not feel bbllged to consider many restrictions
arising from the fact that a computer will eventually pro-
cess the algorithm. In the case of parallelism, this si-
fuation is reversed, and because such a variety of multi-
processing machinery is possible, there is a strong temp-
tation to tailor algorithms to spedific computer config-
urations. This tendency is undesirable if one wishes to
achieve any generality with the proposed algorithm.

Consequently, the discussion of proposed and actual
multl-processing hardware has been relegated to Appendix
B, while some universal aspects of parallelism, indepen--
~dent of hardware, are considered here,

Parallelism can be classified into four levels. The
lowest occurs at the bit level, and cohsists»of parallel
logic and arithmetic hardware incorporated into most
present-day high-speed computers. This level will not be
cbnsidered any further in thié’thesis. The next level in-
volves parallelism of individual instructions, and might
be considered as the digital counterpart of ah analogue
computer, in that all instructions which can be perfor-
med simﬁltaneously will be, Although this concept may

becone feasible in the future, present day hardware and
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soft-ware limitations preclude this fronm practical con-
siderations, except in very limited form, such as"n—stép
look-ahead? incorporated in some large, modern computers,

The third level, which will be emphasized subsequen-
tly, 1s parallelism among sub-routines, or groﬁps of
;nstructions, all assoclated with a single, overall pro-
blem. It is assumed that the programmer inserts FOBK and
JOIN [1?] ’ [18] instructions into the progran, 'thereb\) es- '
tablishiné the possible extent of thé subroutine paralle-
lism. Qn’encountering the FORK instruction, the executive
program allocates free processors to the designated para1-7
lel streams, but if the number of streams exceeds the num-
ber of free processors, some streams will be executed
sequentially. It is apparent, therefore, that for an effi-
cilent multi-processing computer, the executive progranm
must be highly elaborate, Furthermore, in order to méke
efficient use of this parallel capabllity, the subroutines
must be chosen so that the executive program time rejulred
'per sub~routine is small in comparison to the sub-routine
running time. _

The highest level of parallélism 1s that between inde-
pendent programs. Multi-processors utilizing this rather
trivial form of parallelism are well on their way to com-
merclal reality, and again, this form will not‘be discus~ -

sed any further,



The width of the computation front at any glven time,
considering parallelism of type 3 , 1is definedlas the num-
ber of.--parallel streams emanating from the last FORK ins-
truétion which have not yet been combined by a JOIN., It~ |
is evident that in developing algorithms, there 1is nothing
to be gained by making the width of the computation front
exceed the total number of processing'elements in the com-
puter, |

When dealing withvoptimal control problems, by far
the greatest proportion of time is consumed in repeated'
integratioﬁs of differential equations. In fact, since
usually 2n equations must be integrated, where n |1is
the dimension of the state space of the system, there
arises the possibility of using 2n (or more) proces-
sing elements in parallel to obtain.each integration step,
However, because of the relatively few operations invol-
ved in each step, this approach must be rejected as the
executive/sub-routine time ratio probably becomes exces-
sive. Moreover, 1f n 1s large, this appfoach would re-
quire a non-conventional computer, as described in Ap-
pendix"B .

An alternative is to chodse groups of equations, aﬁd
integrate these groups in parallel, using for interactions
some appropriate 1teraﬁion information., Since this approach
is iterative, it would appear that:Af N groups are cho-

sen to be integrated in parallel, significant gains in
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computation speed could be achleved only if the required
number df iterative integrations were less than' N . HOwQ
" ever, as will be shown, this requirement can be relaxed .
somewhat, since these integration iterations can be com--
‘bined effectively with those arising from the TPBVP..

| These brief comments on parailelism in algorithms
end this discussion, and some specific cases of optimal
control'problem computation are next considered in order
to illustrate the potential of multi-processing.

3.2 Generalized Picard Algorithm

As already mentioned, the well-known classical met-
hod of decbupling a set of equations is to employ itera-
tion. Thus, instead of solving the actual equations, one
solves a different set, dependent on a previous iteration.
In the case of the ODS , a very obvious decoupling and
iteration scheme, based on a generalization of the Picard
.iteration for differential equaticrns immediately arises;
This will be illustrated with the following éxample.
Example 3.1 |

Assume that the application of the maximum principle
to some optimization probiem has given rise to the fol-

lowing TPBVP

% =1 (x,y,u) | x(0) = x4
§ = rp0x,y.v) $(0) = v,
u = u(x,p)

v = v(y,q)

p = gy (x,p,q) - p(T) =0
a = go(y,p,q) . a(T) = 0



This TPBVP is reformulated as

x = £y(x,y*,u) | x(0) = xo
y o= £(x*,y,v) y(0) =y,
u = u(x,p)

v = v(y,q)

p = g4(x,p,q¥) p(T) =0

a = g,(y,p*,q) . q(T) =0

whre x*, y*, p* and q* are functions obtained at a pre=-
vious iteratibn. Naturally, it is assumed that some star-
ting iterate can somehow be chosen. The digraph for this
second system is therefore a source-sink configuréﬁlon

as 1llustrated:
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This approach provides both a weakly connected 0DS
structure, and a parallelism of type 3 with a computa-
tion front width acceptable to conventional muiti-pro-

cessing computers. Furthermore, in principle, there are no

27
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restrictions on the applibability of the method, and non-
linear as well as linear problems canvbe handled. However,
severe difficulties can be encounteréd in choosing good in-
itial iterates, and consequently, a simple-minded apbli—
cationvof the method may lead to unsatisfactory rates of
convergence, as reported by Takahara[li]. Another bbjec~
tion against the method 1is thét being a generalized Picard
algorithm, it also has a characteristic slow rate of con-
vergence in comparison to Newton-Raphson algorithms, Never-
. theless, later in this section, 1t will be shown that by
introducing a number of modifications, the method has im-
portant pfactical signifioanée fér some classes of prob-
lems, Before this,. however, some other approachés, some-
what more elegant theoretically, thoﬁgh of little import

as practical computation schemes, will be considered.

3.3 Deconposition Algorithm Based on Duality

Probably the best known and rather aesthetic algorithm
concerned with decomposition and optimal control theory is
that derived by J.D.Pearson [20] [21] , based on duality
and the Legendre transformation of the calculus of varia-
tions [22] Of all the techniques considered in this thesis,
this one bears the closest resemblance to the Decomposi-
tion Principle for Linear Programs, as discussed in Dantzig
and Wolfe [3]. Although this latter principle has enjoyed

some degree of success, there does not appear to be any
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way of extending it to optimization problems with dyna-
mical constraints, as considered here. The techniqﬁe of
Pearson, though similar, has wider applicability_but 1s also
a far weaker numerical algorithm, For the sake of complete-
ness and for purposes of'comparing‘the resultant digraﬁh
: structuré with the other algorithms, Pearson's technique is
included here,

For 1llustfative purposes, consider the optimization

problem of finding uw and Vv which minimize

J=%§(x2+y2+u2+v2)dt '_ 31
subject to ©
| X = agqx + alzy.+ u x(0) = & 3.2
y = ap4X + agyy +v y(0) = B 3.3
‘erl .Y€Q2 ‘

where Q1 and Q» are closed,.bounded, convex sets,

That is, the problem concerns a linear system with a guad-
rafic performanée functional, and, very importantly, boun-
ded state variables,

By introducing

y=r , o : 3.4

X = s | 3.5
the dynamical constraints can be re-written as

X = agqx + aqpr +u | 3.6

y = 8,48 + 855y * V 3.7

The original problem can then be reformulated as
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finding the minimum of J , subject to constraints 3.4 to

3.7 . Forming the Lagrangian,

{ 5(x2 +y% + v + v?)

L(xpyru'vrplopzvsprv);’r‘) =

+ py (k - a;4x - 8457 = u) + py (¥ - az1s - agy -
v) + A(y -~ r) +p(x - s)}adt
the problem requires the extremization of L subject to
x(0) =« , and y(0) =p, xX,85€¢Q , Y,reQy .

Now L conveniently breaks up into two parts,

L = Ll(xourplir'oxof‘) + Lz(yovoPlenao‘*)

where
T, 2., .2 ‘
L1 = giz(x + 1 ) + pl (X - allx - alzr - u)+(xr.\_ Arskdt
T L, .2 2
Ly = (S){’z(y +v7) + py, (y - apys - 8z - v)+(yA - psidax

Conditions which require L to be at an extre-~
mum also require that both Ly and L2 be at an extremun,
"This requirement leads to the conclusion that there exist
two sub-problems, similar in form to the original, which,
when solved, lead to the solution of the original.

Thus, for a given X and @ , both Ly and L, can

" be extremized as

L? = L"{(l't’*)
L = LE(A, )

Then, using the well-established saddle point arguments in

Banach space,[23] s, 1t follows that

L* = L'()\, -)+L'(An
max [ 1300 ) + 150 )
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It is noted that in the case of. the sub-system ext-
remlizations, s and r are treated as sub-system controls,
while A and #+ are arbitrary functions. Thus, for example,
the first subsystem problem is, given A and = , mi-.

nimize with respect touw and r ,
T 2 2
J; =3 § L(x" +u") + 2(kx - Ar)}at

subject to
X = a11X + ajor +u x(0) = o
‘ x:te ’ remQZ
The ODS generated by this sub-problem 1is-

X = a;qx +ar tu x(0) = o
ﬁ]_: X - allpl + = pl(T)= 0
u = pl

r = r(pg, N)
where the equation for r 1s obtained by maximizatition of
the sub-system Hamiltonian with respect to r , subject to
the condition tﬁat r be in Q2 . The digraph for this
entire system again has the desirable property, namely
two strongly connected subgraphs, connected together weak-

ly, as shown in the following diagram:




Therefore, ideally, the extrema of the two sub-systems
are obtained as functions of A and ¢ , and the sum then
maximlzéd. Howevef, since A and M are‘elements of a
function space, such explicit functional representatibns
are impossible to obtain in practice, Realizing this, Pear-
"~ son has suggested a hill-climbing scheme, where one begins
with some afbitrary A and ¢ , obtains L} and Lg ,

and proceeds hill-climbing in the conventional manner.

While this suggestion is valid, it 1s very gquestionable

whether the method will ever be attractive computationally,

since each step in the hill climb reQuires the solution of
variational problems, and hill-climbing techniques are not
noted for their fast convergence.

The other major objection to this theory is that it 1is
valid only_for linear systems with quadratic performance
criteria, since the duality theorem has only been estab-
lished for‘ﬁhe case of bilinear functionals on a Banach
space, éubject to linear constraints. Furthermore, as this
problem has the very attractive solution formulated by
Kalman, the practical usefulnéss of tﬁis dual theory is
questionable. It is not known whether the theory can be
“extended to more general problems,

Also, before leaving this technique, mention must be
made of the bounded state variable requirement. In fact,
this requirement i1s not necessary, and when absent, some

form of Jjuggling, as in referenoe[?h], can sometimes solve
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the problem. However, it is noted that, in contrast to
other methods, the boundedness requirement is not merely
an extehsion of the applicability of the théory, but rat-
her a constraint, which can sometimes, but not always be

circumvented.

3.4 Decomposition Using Penalty Functions

A decomposition scheme, based on penalty functions,
has beén suggested as another possibility. The method is
illustrated for the same problem as in the previous sub-sec~
tion, although this does not imply a restriction to linear
systems with quadratiq@erformance criteria. The problem is
to minimize 3.1 subject to 3.2 and 3.3 . Again, 3.4
and 3.5 are introduced, and the dynamical constraints are
fewritten as 3.6 and 3.7 .

Now thevoriginal performance functional is augmented

using penalty functions in the following manner:

T

Iy = J + 3 [h(x-s*)2 + Po(y-r¥)? + fg(r-y*)? +Hu(s-x*)‘5j dt
o]

3.8

where the variables with the asterisks will be consi-

dered as the respective previous iterates, Thus, if the it-
erative scheme were to converge, the penalty functions would
approach zero, and JN-—e-J'.-It is observed that if con-
straints 3.4 and 3.5 are neglected, and if fixed

values are chosen for the vector F » then minimization
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of 3.8 with respect to ﬁ, v, r and s sublect to con-
straints 3.6 and 3;? ‘consists of two independent pro-
blems. The ODS shall be demonstrated only for one.

That is , find u and r which minimize

T 2
5= 30 0% + 0 #plx-s)? ¢ pr-yh) T at
. o]

subject to

X = aq4x + 84T tu x(0) = «

It is noted that this method allows:freedom in the
choice of particular penalty functiéns so as to impose
functional convexity in both u and T , as opposed to the
-approach by Pearson, where, as mentioned, difficulties‘can
arise if the problem is hot originally formulated with
bounded state variables, |

Now, the ODS for this sub-problem is:

X = ajqx + a4,r + U x(0) =
1= x +P(x-s%) = a;p;  Py(T)= 0
u = pg

r=y*+ 1 (a;;pg)

ths

The overall system digraph is:
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It is evident that this structure 15 a combination
of the two previous structures, and it 1s interesting to
compare 1t to the others. To begin with, it appears that
in contrast to the generallized Picard method, this tech-
nigque does not require an initial p -~ vector to serve
"as a source, In addition, since after convergence, r
and s should approach y and. x respectively, it
might be somewhat easler to choose a satisfactory initial
iterate,

Conslder now the role of the p- vector. From the
calculus of variations, it 15 known that the solution to
fhe original problem requires infinite values for p.
Also, substitutions show that in facﬁ the four components
cén not be independent, if the solution to the original
problem is to be attained, but rather the following rel-
ationships should hold:

Ry = B
M2 = ¥j

These two considerations 1ndiéate.that perhaps by
satisfying the above relétionships at some suitably large
values of'}kl and r‘z y & solution arbltrarily near ther
optimum could be obtained. Since P represents a measure
of the effective coupling between the sub-systems, it may

be expectea that for small values of M , convergence

can be obtained rather quickly, and then with these values
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for x and y as initial iterates, largér Values of o
can be progressively considered until a practical infi-
nity istobtained. Although some success has in fact been
obtained with a slight modification of this approach, the
'following argument should demonstrate the weaknesses of
" of the method in the generai case, |

Although in the ﬁumerical Qomputation; the equations
representing the 0DS as already shouwn, would be used, the
following equations illustrate from an alternative view-
point what is actually being computed. After some substi-

tution,'it is found that the TPBVP to be solved is

- 5 1 _ )
X = 8pax * eyt 4 5 8pPy) * Py x(0)=
py= x + Pqlx-s¥) -a44P4 p(T)=0
: 1

y = ay,(x* + Ja,1py) +azy 1 y(0) =8
by= y + Poly-r¥*) - az,p, po(T)= 0

But since r*¥ and s* are obtained from previous iterates,
which are denoted by double superscripts,.the TPBVP can

be re=written as

r = k: .]; : =
X = a,x+ alz(y* + 3a12p1) + py x(0)= «

B
- 1 <1y -
By= x + Py (x = [x%% + L oapps]) - agypy py(1)=0

. e o 1 -

¥ = ey (x* 4 g?21pz) tayy tp, y(0)= @

s 34¢ 1 * =
b=y + P (y - [y* + F3a12p1l) - a,,P, DP,(T)=0

Using rkl = tk4 , sz = tk 3 thése equations re-
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. 1
= s ES
b allx + alzy + p1 +H3a12 pl X(O) = «
Py T X = aggPp - 8y PR ¥ P () py(T) =0
* 1 2
y = 3213{’( -+ azzy + p2 + F:‘821p2 Y(O) = ﬁ
152 = Yy - alzpe{ - a22p2 + Hz(y;y%*) pz(T) =0

These equations, being an alternate representation of

the algorithm, illustrate the difficulties in the appll-'
cation of this technique. For small values of p , the ‘
terms with the t*'s in the denominator can cause trouble,
while for lérge values, the terms r*l(x=x**). and M, (y-y#*¥)
make the system extremely sensitive, and éomputational
errors very difficult to control.

Before leaving this section, it should be pointed out
that the penalty functions empléyed here for illustrative
purposes are probably the simplest possible., Other more
complex alternatives might be considered, the only res-
triction being that they retain the convexitybproperties
previously mentioned. However, because of the 1imited
success that other researchers have hgd with penalty'func-
- tion approaches in other applications; it is‘felt that
the chances for success with this approach are not very

high.
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3.5 Parametric Trajectory Method (PART I )

In the previous sub-sections, three different compu-
tational algorlthms have been discussed, and with each,
difficulties in théir application have been pqinted out,
The first method, the generalized Picard algorithm, is
now reconsidered along with the introduction of some major
modifications, This modified_method, for reasons which
will become evident shortly, has been called the»Parametric
Trajectory Method.

The primary drawback with the generalized Picard
method ooncérns the difficultieé in selecting convergent
initial iterates, A class of optimization problems is now
defined for which a basic technique for circumventing
this difficulty can be obtained.

Basic Problem: |
Consider the optimization problem of determining the

control u which will minimize the funotiénal

: te N '
7= PO e.hi(x.u)] at

subject to the dynamical constrainté

ii = fi(xi’ui) + eli(x,u)
wy e 2y
i=1,2,...N

tf either free or fixed,
xi(tf) elther free or fixed
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where x1 is an hi - vector, the system output
ui is an mi - vector, the system control, or
input

X 1s the composite n - vector, consisting'of

all xi

u is the composite m - vector, consisting of

all u1

81 and h1 are scalar functions

fi and 1i are ni

 are closed -convex regions of m, =-space

- vector functions

'ni =n n1 z 1 i;= 1,2,...N

M= QO

1

M=
B
I
=
=

z2 1 - 1=1,2,..N
1

]
[ary

€ 1is the scalar decoupling parameter, and with no loss

of generality, it can be stipulated that the solution to

it

the problem is required at € 1,
Define A
P(E€) £ The foregoing optimization problem as
a function of the deooupling paranmeter
e, | | |
Sol( &) & The solution, as described by the
' functions u(t) and x(t) as well as

p(t), the adjoint composite variable,
of the problem P(E€ ),



With these definitions, the range of the applicabi-
lity of the Parametric Trajectory liethod can be stated.

Restriction on Basic Problem:

Sol (e ) exists and is unigue throughout the closed in-
terval [0,1] of the parameter e .

An all encompassing statement of nécessary and suf-
ficlent conditions required to meet this restriction, even
if that were possible, 1s beybnd the range of this thesis,
and the interested reader is referred to a current survey
article‘[lz] where this questlion is considered in detall,
and where a further list of references is provided. It might
be noted that in most practical problems, if the math-
ematical modeling has been done correctly, these general
questions rarely arise, However, in this particular case,
the problem of existence and uniqueness is not unimportant,
especlally at €= 0, since P(0) 1is in reality N cémple-
tely isolated sub-problems, and many systems problems lose
thelr meaning when decoupled and taken out of their systems
context, This restriction, therefore, provides an 11~
wlustration of the hypothesis madé in part 2 of the the-
sils, that problems susceptible to decomposition consist
of meaningful interconnected sub~problems.

Regardless of whether the foregolng restriction is
satisfied or not, Cullum [25] has shown that under relati-

vely mild conditions, Sol (¢ ) 1is continuous in € .



The standard Parametric Trajectory Method 13 a mod-
i1fication of the generalized Picard algorithm, based on
the foregoing restriction and ﬁhe cohtinuity of Sol(E).
Because P(0) consists of N independent sub-problems, it
is anticipated that Sol(0) can be obtained more quickly
and/or with considerably 1éss effort than Sol(1).* Having
obtéined Sol(0), €& 1is increased by a factor BT to €1
and So0l(0) is used as an initial iterate at the new &
value., With &t sufficiently small, this initial iterate
1s within the (finite) region of convergence, and Sol( 81)
can be computed. This process is then repéated for succes-
sively increasing values of the parameter £ until 1 1is
reached. Throughout this process, © generates a discrete
trajectory in the solution spaée, and this gives rise to
the name of the algorithm, Figure 3.1, based on Exanmple
3.2 to be discussed shortly, illustrates one of these
trajectories in the initial co-state space. If the step
size in € is taken to be too large, the previous solution
no longer serves as a satisfactory initial 1teraté, and
the next step does not converge. One can therefore imagine
a hypothetical region of convergence ardund each solution
point, as shown in Figure 3,1, and if this rezglon does
not overlap the next solution point, smaller steps in

€ are required.

* In fact, P(0) is ideally suited for parallel processing.
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Figure 3.1 Trajectory in the initial co-state space,
Example 3.2 .

The work of Cullum [25] ensures‘that if Aeisvchosen
small enough, convergence is obtained, but it gives no
information as to how small in fact ae should be in order
to have a practical computational algorithm., Unfortunately,
as in hill-climbing methods, oniy computational experi-.
ence serves as a gulde for this cholce., However, in order
to increase the optimal step size, the following modifica-

tions, using linear interpolation, can be employed.
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Assume that Sol(e,n) has been obtained. Then, for -an
initial iterate for P(€ ,4q), instead of Sol(asn), the fol-

lowing can be used:

X .
Initial Iterate = Sol(€& ) + -&gi%iiﬁl (€ 4y - Ep)

dSol( €,)
- This naturally requires the computation of Se ]
which can be approximated by
bSol(en) ~ Sol( e p +6e) - Sol(an)

Ot 8¢

‘where 8¢ 1is a very small change in & . Sol(e , + Se)
is therefore obtainable in at most two iterations.

If the problem is being solved using a Newton-Raphson
Lteration in the initial adjoint variable space to null
the final adjoint variables, the following equivalent
approach might be considered. Since the initial state va-
riables remain constant, the final adjoint variables can
be written as |

p(T) = (?(po.&)
where 6>(po,£,) is a symbolic representation of the
mapping P x gl — " , DPo,EEY, e¢El ahd- |
p(T) € E , and p, is the initial adjoint variable.
Using Frechet derivatives, this operator can be expanded
up to first order terms

Bipo ) = ®poge,) + @ |, (po= po) + B\ (ensr -20)

nat
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Assume that the correct Poy, which will null p(T)

at =€, 1s known, l.e.
(P(pon. €n) =0

Then the linear approximation to p, which will null

p(T) with € =¢€,4q 1s given by

=\ .
Po = Po " (® pol n\ (@Eln\( €1 = Sn )

ntl

-\

) A\ 1s estimated (using dif-
o

ferences) at each value of & , this interporation scheme re-

Since the operator (@)p

quires only the additional calculation of‘_(@a \ n\ , which is
obtained in one integration sweep.

The decisicn whether to use‘a standard Parametric
Trajeétory Method or the linear interpolation modification
is again difficult. While the interpolation promises a
larger effective step size Ot, thiﬁbis at the expense of
additional computation. As demonstrated in the example
~at the end of the next section, the interpoiation did
in fact result in é decreacse in thé overall'computation
time, but this decrease was not significant. However, as
expected, the optimum step slze was increased, and to a
value which was hot only non-optimum for the standard
method, but which did not even provide a convergent iter-

ation for the standard method.



3,6 Parametric Trajectory Method (PART II)

In the previous section, the Parametric Trajectory
Method was introduced as a technique for circumventing
the difficulties of choosing the initial iterate with the
generalized Picard algorithm. Although the method accom-
plished this task admirably, 1t also eliminated the
parallelism inherent 1n'the algorithm, since neilther the
standard nor the interpolation modification 1s suited
to multi-processing computers. In fact, it is easy to
show that the digraph for the standard Parametric Trajec-
tory Method, except at £ =0, is stronglyvconnected. A
further modification is now proposed which retainé the fa-
cility for the choice of the initisal Lterate, while at the
same time being fully applicable to multi-processing com-
puters. |
Because of the decoupled nature of P(0), Sol(0) cen
be obtained on a multi-processing computer. However, in
order to compute Sol( 81), each sub-system must have

information about the interaction functions, and this .

requirement eliminates the usefulness'of'multiAprocessing.-

But, if instead of the current interaction information,
all sub-systems were to use availabie solutions at the
previous € -value, parallelism would be retained. Nat-
urally, the splution obtained thus at &€ = € would

_ 1
.then not be Sol( &1), but rather some approximation,

ks
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whose quality would depend on how close the previous |

€ -value solution was to Sol( &4), and how closely the
sub~systems are coupled; The original basic problem, sta-
ted on bage 38 , is used to illustrate these 1deas. The

Hamiltonian for this problem 1is
N N '

eli(x.u)]
where
. - 1 N '
Py = -Hy, = gixi - fixipjL +aJ§1 (hjxi -‘ljxipj)
Assuming that the fixed time, free end point problem

is under consideration, the ferminal conditions on p; are:

pi(tf)=o
Maximization of the Hamiltonian results in
N N
H =g - e tn, Y+, b, + €231, p.= 0
uj 1ui j=1 ju1 1yg j=1 jui ;

and 1t is assumed that thils set of equatlons can be solved
for ui_as

ui = uil(xi’pi) + euiz(x’p)

Substituting this expression for ui in the state and
ad joint equations provides the standard TPBVP:
Xy = f3(x4, [uil(xi,pi) + £u12(x.p)]) + €13 (x,u(x,p))

N
!
By =gy - Ty teL (h

- 1-"p)
1 1 =1 9%y Jx; 7

io

py(t) = 0
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If this TPBVP were being solved by means of quasi-
linearization [26}, it wouldvbe sufficient to consider
Sol(£ ) as the composite vector function |
Sol (&) % x(®)
p(t)
opt
over the interval t€ [0, %} .
In order to obtain Sol(0), because the problem is
decoupled, N smaller TPBVP's can be solved in parallel,
Then, in order to retain parallelism, and assuming for

exanple, that .25 is bhosen as a step size in &€ |, instead

of solving for Sol(.25), the following TPBVP is solved:

).Ci = fi(xi’ [uil(xiypi) + .251112(801(0))]) + ~2511(801(O))
Py = 81y ” T1g Pt 25F(S01(0))
xy(0) = X,
pi(t) =0
where

N . ]
F(S01(0)) = 523[?JX1‘8°1<°>> - 1], (s03(0) Peg )

If S0l(0) does not differ appreciably»ffom Sol(.25),
or if the & terms have weak effects, the solution to this
problem, called Approx(.25), does not differ appreciébly
from So0l(.25). At this point, two possibilities arise.

First, assuming that Approx(.25) is a better approximation



to S0l(.25) thanvwas So0l1(0), thevabove TPBVP can again

be solved, but using instead of Sol(0), Approx(.25) .
‘This proceés, réferfed to_as Picard cycling, could be
continued until Approx(.25) converges to So0l(.25). Then

€ can be increased to .50 , and the process fepeated with
Sol(.25) instead of So0l(0) as interactions,

The second possibility is to assﬁme that the first
Approx(.,25) is a sufficiently good approximation to Sol(.25),
increase € to .50 immediately, and solve the new TPBVP
with Approx(.25) in the interaction position. The process
is then repeated with Successive steps in & and if the
error build-up has not been extreme, Picard cycling can
then be employed at &€= 1, to obtain Sol(1). It will be
shown In the following numerical example fhat this
procedure can result in a fairly successful computational
algorithm.

Example 3.2

In order to illustrate the foregoing theory, a satel-'
lite angular veloclity cbntrol system 1s considered. In |
this case, 1t is assumed that there are three indepen-
dent controls available for stabilizing the three angu~
lar velocities, and consequently, the problem is treated
as a collection of threé sub-systems, boupled together
by the products of inertia terms,

The problem is to choose u 1in order to minimize the

functional
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subject to the constraint
X, = = 3xq t € X,X3 + uy xl(O) = 5
Xo= - X, + £2X1X3 + u, x,(0) =-5

i3= - X3 = a3X2x1 + u x3(0) =1

3

lui‘ 10 , 1i=1, 2, 3

N

xi(l) are free.
With the aid of the Maximum Principle, this optimi-

zation problem can be converted to the following TP3VP:

5(1 = - %y + ex2x3 + 10 sat(pl/lo) Xl(o) = 5
Xp = = Xp + €2x3%4 + 10 sat(p,/10) x3(0) = -5
X3 = - %3 - g3xpxy + 10 sat(p5/10) x53(0) = 1
Py =10 x4 + py~ &( 2x3Pp - 3%,P3) pi{1) = O
r = + - € =
Py 10 X3 + Py (x2p1+ 2x1p2) p3(1) 0
where '
y ir tyt<«i1.
sat (y) = 1 if y =21
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- The parameter & has.been.included'explicitly,
but it is assumed that the original problem requires
& solution with € =1 . Clearly, the problem falls in-
to the basic category for the parametric trajectory
method, since it is evident that a unique solution
~exists for all values of &€ 1in the closed interval

o, 1] . However, because of the discontinuities in
“the right hand side of the equations, the efficlient
method of quasi-linearization is inapplicable, and,
‘therefore, a technique based on a Newton-Raphson
algorithm on zeroing the finél p - vector with the
choice of the initial p - vector was employed to ob-
tain the solutioh.

The solutions were obtained using all the dif-
ferent modifications of the parametric trajectory
method; and a comparlison of the computer times is
provided in Table 3.1 . These computer times refer
to the actual computation time with an IBM 7044 com-
puter, and do not include compiling or assembly of
the progrem. These times are rather sensitive to
factors such as the norms determining the conver;
gence of an iterative algorlithm, and consequently,
these numbers afe to be considered as a confirmation
of anticipated tfends rather than as useful quanti-

tative data,


file:////sing-

A B c D B F

Step No. of

Size Steps '

1.0 1 no 51.2 142, 0 123.6

conv

5 2 51,4 63.5 124.8 105.5
«33 3 62.7 99.6 141.4 83.3
25 b 77.7 106.5 170.7 . 81.2
.20 5 84,3 123.2 - 85.8
.166 6 - - - 84.9
.143 7 - - | - 89.3

Table 3.1 : A comparison of computation times with
different modifications of the Parametric
Trajectory HMethod, Example 3.2 , all
times quoted in seconds.
Column A : Step size in parameter e .
Column B: Number of steps in parametric trajectory.
Column C : Standard Parametric Trajectory Hethod.

Column D : Standard lMethod with Linear interpolation.

Column E : Parallel modification, Picard cycling at each
step.

Column F : Parallel modification, Picard cycling at
e=1,
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.~ Figure 3.2 and 3;3 illustrate the optimal tra-
jectories and the Lagrange multipliers, respectively,
at €= 1, while Figure 3.4 depicts graphically the
various computation times. Here, the optimum step
sizes are clearly evident. In fact, these occur
rather logically, in that the optimum step sizes for
the two standard techniques tend to be greater than those
for the parallel modifications. For the standard meth-
ods, as expected, the linear interpolation increéses the
optimum step siée, and in this example, the overalllch-
putation time is also slightly decreased. In the case of
parallel methods, the smallest optimum step size, as ex-~
pected, was obtained with the terminal cycling modification,
and this occurred at € = .25 . Using Picard cycling at each
£ step tended to consume too much time, and since the
terminal cycling was capable of producing convergence, this
modification seemed highly preferable when computation
times were taken into consideration.

In‘comparing the overall computation times for the
different methods, it should be mentioned that a2l1ll times
were obtalined using a standard sequential general purpose
computer. If a multi-processing computer with at least
three processors were avallable, and if the eéexecutive
program did not use a significant proportion of the over-
all'computation time, then it 1s reasonable to assume that

the parallel modifications should have their computation
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Figure 3.2 : Opf,imal.State Trajectories, Example 3.2 , e=1 .,



Figure 3.3 : Optimal Co~state Trajectories, Example 3.2 , € =1 .
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COMPUTER TIME (SECONDS) FIGURE 35
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times cut be a factor nearly equal to three, Taking this
time division factor to be the ideal, three, the hew com-
putation times are plotted in Figure 3.5 . Clearly, the
relative merits of the different-methodsvtake bn new per-
spective. The shortest computation time is now obtailned
by the parallel method with terminal Picard cycling, and
even the less efficient method of cycling at each & step
provides a lower optimum computation time than the stan-
dard methods. Indeed, it shouid be polnted out that this
particular example by no means represents a system with
weak coupling, and it is safe to assume that 1f this were
the case, the improvements offered by the parallel methods
would be even more significant. Furthermore, as will be
shovn by the analysis in the next section, greater impro-
vements in computing times can also be expected if systems

of higher order are considered.

3.7 Discussion and Conclusion

In the previous five sections, various methods com-
patible with the subroutine type of parallelism have been
considered. The theory of directed graphs, although of
little practical computing significance here, has been
suggested as an underlying and unifying concept ;1lustra-
ting the re-structurlng of the different algorithms for
use with multi-processing cobputers.

All the methods described, except the standard
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parametric trajectory method which is not suitable for
“”*muitisprocessingj“essentialiywach}eve»theirwparallelism
at the expense of inter-subsystem iteration. In order to
make these statements concrete, the following elaboration
is presented., Assume that a Newton-Raphson algorithm re-
quiring integration sweeps 1s employed, and suppose the
system under consideration consists of N sub-systems,

eaéh represented on the average, by n differential equa-
tions. Let 1Ij represent the number of iterations requi-
red to solve the optimization problem using some integrated
form of the algorithm, and since [( N n )2 + N n | equations
aré to be integrated per iteration, the total scquential
"solution time, Ti , assuming a single integration of one .

equation requires ti seconds, 1is

T, = (Nn) (Nn + 1 )’I1 ty
On the other hand, if a multi-processing computer is
available, assume it takes .Ip iterations to obtain a so-
lution using a parallel algorithm. Since only [ﬁz +n|
equations are to be integrated (sequentially) per itera-
tion, and assuming tp) seconds are required for the inte- -
gration of one equation, the total multi-processing solu-

tion time, Tp , would be

T, = n(n+ 1)I_t
( I,

p p

The ratio of these is

Tp N (n + 1) IDtD

i N(Nn + 1)Iiti



Into tp has been incorporated the fact that the exe~
cutive program in a multi-processor would take some,but
hopefully small, fraction of the total computing time. Thus,
t can be represented as btp = ti( 1 +K), where‘K should

Y
be a small positive number, Also it is clear that Ip would
be significantly larger than I1 s Since not only are sub-
problens beihg solved iteratively, but these sub-problems

must be iteratively co-ordinated. If it is assumed that

P

t t., , and n 1is large , then the above formula can be

p 1
approximated by

T Ip

— 3.10
T N% 1y

= |
n

Since the successful use of a parallél algorithnm
requires a much more powerfui computer, at least in terms
of the number of central processing units, then it might |
be argued that in order to have a sucéessful algorthm, thé
N times as powerful computer should produce an N - fold
decrease in the overall computation time. In that case,
the ratio Ip/Ii needs to be less than, or equal to N ,
As a matter of interest, the number of iterations using the
parallel modification of the parametric trajectory method
wWith terminal Picard cycling and the number with the stan-
dard parametric trajectory method are shown in Table 3.2 .
From this Table,Athe ratio of the dptimal nuﬁber of itera-

tions is 44/13 or 3.4 . Thus it is seen that for this



€0

4-—=Ae  -|-Standard .dethod .| . Parallel with
Terminal Cycling
1. 0 -
.5 | 13 55
.33 17 Ls
25 20 Ln
.20 22 L6

Table 3.2 : Total number of iterations to obtain solution,
' Example 3.2 .

example, this technique places the computational process
in the region of diminishing returns, in that tripling

the number of central processors does not cut the overall
computation time by a factor of three. Nevertheless, the
fact remains.that the total computation can be'decreased.
With this iteration ratio, the use of equation 3.9 (along
with the assumption that tp = t; ) would indicate a theo-

retical computation time ratio of

To (1+1) ug

- — T .56
Ty 3(3+1) 13

On the other hand, the actual optimum Ti fbr.the standard
- method from Table 3.1 is 51,4 seconds, and the optimum
Tp for the terminal cycling modification, if a multi-
processor were avallable, would be 27.1 seconds. Thus,

" the actual ratio would be



indicating that this analysis provides COmpﬁtation time
«ratloswofmthe'right order of ﬁagnitude.

The fundamental difficulties associated with any op-~
timization problem are centered on the rates of convergen=-
ce, error propagation and sultable step size, elither in in-
tegration or in some search procedure. The parallel proces-
sing techniques discussed in this section convert the large
integrated computational problems into groups of smaller
and, hopefully, more manageable sub-problems. Even so, these
sub=-problems employ state and co-state variables and the lat=-
ter are notorious for causing computational instabllity and
assoclated problems of error propagation. In an attempt to
overcome this difficulty, a method has been developed which
replaces the co-~state vectors wlth a set of bounded vectors,
A description is included in Appendix D. Such a technique
could then be used both as an alternative approach to the
sub-problem oomﬁutation and as a Jjustification for decompo-
sing the system into fewer but larger sub-systems.

These remarks conclude the part of the thesis'on com=
putationai techniques, and the next part is concerned with
the synthesis of on-~line controllers. The difference bet-
ween these parts stems mainly from the time available for
rerforming computations, and the fact that on-=line controi-
lers have stringent time requirements places anbther severe

constraint on the overall problem. Consequently, while de-
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c0mposition applied to the computational problem provided
results of some generality, success with on-line controllers,
as will be shown presently, can be claimed only for a spe-~

cial class of systems.
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L, DECOMPOSITION AND MULTILEVEL CONTROL SYSTEMNS

Introduction

This section concerns the synthesls of on-line control-
lers for the optimal contrel problem, and emphasis i1s placed
on the dévelopment of a hierarchical controller structure,

It is evident that the standard optimization problem for-
mulated in terms of a scalar optimization functional puts

no a priori requirements on the structure of the control-
ler, and therefore, the added cbmplexity of the hlerarchical
structure must be Justified by engineering considerations.
These include factors such aé increased rellability and ease
of maintenance, adaptability to future systeﬁ expansion and
reorgenization, spatial separation of sub-systems and the
‘consequent problem of data OOmmunicatién, Indeed, by the use
of weighting factcrs, it is‘conceptually possible to incor-~
porete these consideratioﬁs in a scalar performance functlional,
but in practice the possibilities for doing so appear remote,
On the other hand, defining vector valued verformarnce cri-
teria i1s of no avell, since no useful theory exists for
treating such problems. Nevertheleés,’the hierarchical con-
troller should be investigated, since such structures have
evolved as regulatorg and control systems in complex bi-

ological, scoclological and industrial systems.
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L,1 Hierarchical Structure

In most on-1line control sltuations, the time constants
assoclated with the system are sufficiently small so that
any possibility of approaching the problem with the view
of repeatedly solving two-point boundary problems using
some iteratlive algorithm must be ruled out as»impraotical°
Rather, an algebraic relationship mapping the current
state vector into the control vector is requlired, and this
in turn requires the elimination of the adjoint system.,
"In. some instances, such as the Norm-invariant system and
the linear regulator,[li] ,» thls elimination can be ac-

complished analyticzlly., Other attenpts [Zﬁ] . [?8] R

-

have been made to achieve this numerically, but with
systems with any degree of complexity, this approach be-
comes'impractical. A third alternative 1s to solve some
different but judicicusly chosen problem,the solution
of which:iz 228y to obtain, implement the control law from
this problém to the original, end then compensate for the
fact that it is a different problem., This has been at-
tenpted by Friledland [29]. but the appiicability of his
method remains to be demonstrated. A similar approach is
examined and ap@lied to a speclal class of problems in
a subsequent section,

It is assumed that the set of system outputs and con-

trols has been partitioned into a set of disjoint subsets
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in such a manner that each subset contalns at least one
output and one input or control. This assumption restricts
the class of systems studied and is closely linked with
the basic restriction in Part 3 of the thesis and the
hypotheslis on page 17.

If the system posesses some suitable spatial properties,
then this partitioning and assignmeﬁt is obvious. For example,
if the system consists of a 1ongvstr1ng of moving vehicles,
each subset might consist of the‘position, velocity and con-
trol of one vehicle. It is further assumed that the sub-
system controller can measure only the output of its sub-
system and apply a control oﬁly to the sub-system. In the
case of a linear generating system of the form

X = Ax + Bu
this means that B 1s block diagonal,‘and consegquently,
the 1'th component of u affects the j'th component of
x only through the coupling in the matrix A, The struc-
ture of the system, assuming only two sub-systems for il-

lustration, is then as showm:

Sub- Sud -
Hyotem Syntam
Centrcller Centrolier

\
tA egqsurement Contero) Meacurement Contech
) .
Sals - Sah -
‘5\39*.@ m S\,‘.{\Enw
No. |\ Dy . Ne. 2
Snamic

Tateractiions



Now, while the goal is still the optimal control
as stated in the optimization problem in part 2, it is
clear that because of the strong connectedness property
of the ODS, the achievement of this goal will be jeopar-
dized with the above structure. This ié a conseguence of
the fact that each control must be, iﬁ general, a function
of all the system outputs. If the structure is augmented
by the addition of a "second-level", which recelves com-
munications from each of the sub-system controllers ahd
in some sense, coordinates the sub-systems, then  op-

timal control is again feasible,

Central
1«,///////COGrgunaﬁx:s:::::iii\\
‘5LL\3 - ‘;)\_\b - .
System System
Centyoller Controher
b \
(3-\-‘-“)" . F’)LA\)-—
Dystem Dysiem
Ne.t Ne. 2

The three approaches to on-line control previously
mentioned are now examined with a view of incorporating
such a second-level coordinator. In the first two cases,
1t becomes apparent that the role of thevsecond-level is
reduced to that of an information distribution centre,
since the local controllers are provided with complete
transformation laws, and'require only the missing state

information for optimal cdntrol implementation.
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in the case of the third approach, what is envisioned
is an active second-level which, upon obtaining state in-
formation, performs either some calculations, simulation
as in L4,4 , or some maximization, as in the dual decompo-
sition method discussed in Part 3.

To generalize, all three approaches lead to a similar
hierarchical structure, but in the first tﬁo, the role of
the seqond level is reduced to the transmission of data,
while in the third, some information processing is actual-
ly performed. The advantages of this structure decline when
the processing capablility regquired of the coordinating second
level begins to approach the capability of a single integra-
ted controller, in which case, the additional engineering
considerations mentioned in the introduction lose their.re«
levance,

L,2 An Inverse Problenm

Before pursuing this line of thought any further, it
is lmportant to inquire into thé following inverse problem:
-Under what conditions is the second-level central coordi;
nator not required? Or to state it in a different manner,
under what conditions can the generating system be partiti-
oned in such a way that the 1'th subset of the control va-
riables requires only the 1'th subset of the output variables
in order to generate the opntimal control? |

Mathematically, this inverse problem can be formulated
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within the framework of the following optimization pro-
blem:
Given a dyhamical system
x = f(x,u)
find u which will minimize the functional
T
J = § glx,u) at
where x 1s the outgut n-vector ,

u is the control. m-vector.

Under what conditions is it possible to write the optimal

control law, u* = u(x) , as ug ¥ = ul(xl) ,
, X
u2*=,u2(x2) ) where X =(xﬂ » Xy 1s an ny-vector,
2

X, Is an nzevector, ng +n, =n, and where

u

u = 1 s Uq is an my-vector, Uy is an mz-vector,
V2

my + m, =mn 7

In fecv, this in&erse problem can again be divided
into two bases. The first concerns the standard case,
whefein ui* = ui(xi) 1s restricted to be an algebraic
mapping of part of fhe state space into part of the control
space, The second allows this mapping to include differen-
tial equations. This second case, 1nvolving>loca1 state
estimation, is considefed in section 4.3 . A prelimi-
nary report of the first problem appeared in_[jO] , and
here, some of these results are recalled, and some further

observations presented.



A most useful sufficient condition which ensures that
a second level coordinator 1s not required is availableA
in the case of no coupling boundary conditibns or éontrol
or state constraints, and this demands that the Hamiltonian
of the optimization problem be decomposable into a sum of
sub-Hamiltonlans, For example, in the problem stated on

the previous page, the Hamiltonian is

H(x,p,u) = - g(x,u) + p'f(x.u)

Therefore, if H can be re-written as
2 .
i=1 .
and if there are no non-decomposable boundéry conétraints

such as

]
o

G{x(t.))
where '

G(x(t.) =Ley(x, (e, 0} 1 =1,2

or similar constraints connecting the control variables,
then the optimal control can be written in terms of alge-
bralc mappings as
w*o= ul(xl)- , | i =.1,2
A practical example of where such a control is used
i1s in the design of aircraft, where, under sufficiently
small disturbances about a steady state condition,‘the

Hamiltonian can be decoupled in this manner., Consequently,
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a decoupled optimal control system in autépilots 1s not
only feaéible, but standard practice,.

Unfortunately, as shown 1in [3@] s this sufficient con-
dition is not necessary, and it would be desirable to have
some simple necessary and sufficient conditions. However,
even if the class of optimization problems is restricted
to those with linear dynamics and quadratic performance
criteria, to the best of this writer’s knowledge, no en-
tirely satisfactory criteria have been obtained,

Consider the folowing optimization problem:

Minimize '

T
J=%§ (x'Qx + uwBu dt b1
o

subject to

X = AX + Bu ' ' )
The case of B=I, R=I, T=®, and dim(u) = dim(x) ,
was considered in [30] .
Here it is assumed that B étd R are block dia-

gonal, Q 1s symmetric, and equation 4.2 can be writ-

'ten as
X1 = ApqXg + AgpXp + Byquy
Xp = BpyXq * AppXp + Bpoup
where dim(xi) = ny o, n, +n, =n
dim(ui) = m; m1.+ m, = m
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and m is not necessarily equal to n .
- [
‘Therefore, BR B is block diagonal, and 1t can be
represented as

C 0
Br~1s' = ¢ = ‘ 11 \
0 Con

This problem gives rise to the following TPBVP:

Xy = Apgxy * App¥p + CygPy x1(0)

i
el
ey

]
»
N
o

kp = ApyXy * AppXp + CppPp x2(0)

By = QupXq *+ Qp¥p - Agq Py = AyyPp Py(T) = 0

B2 = QipxXq * QpXp = Ay Dy = Ayib, Py(T) =0
This has a solution

P1 = Ki11x4 + KyXp

Py = Kipxy + Kpoxp

Ki1(T) =0 , Kyp(T) =0 , Kyo(T) =0

where the K's satisfy the well known matrix Riccatl equa-
tions.

Since Bllul = C11p1
and Boou, = 022p2

the inverse problem requires that

Kig = O



This, in turn, requires that the Riccatl matrices K

J

saﬁisfy the followlng equations 1
Kiq = - Kqphgq - Agg Kqp - ¥39CpaKqq *+ Qg4 .3
Kpp = = Kpphpp = fpp Kpp = KppCoopy + Qpp bl
Kithyp + 451Kz = Qo - .5

In the case of my = ni =1 , 1t is possible to

use equations 4.3 and 4.4 to eliminate the K's from
equation 4,5 entirely, thereby obtaining a necesséry
relationship among the A's , Q's , and C's , In the
general case , this does not appear to be feasible, but
some useful information can still be extracted from:equa-

tions 4.3, 4.4 , ahd Lh,g

1. In case Aqp= Apqy =0 , only le = 0 will
satisfy 4.5 . This, of course, is the case covered

by thce foregoing sufficiency condition,

2, If le = 0 ’ K11A12 = - A21 K22 .
3. If T =o0, Afq = Byp Qll = Q22 , Q12= 0,
ny = n2, then ™
! [}
A t ALt
21
Kiq = - S Qp & 2 at
o)

Fur thermore, Bellman[}{] shows that in this case,
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a necessary and sufficient condition that at least some

matrix K4 will satisfy 4.5 1is that
)‘i + FLJ # 0

where )\1 and M 3 are the characteristic roots of
.A12 and A21V respectively.

Clearly, equation 4.5 severely limits the admissible
systens, éspecially when sensitivity considerations are
included. The smallest change in Ay will mean that
equétion 4,5 4is no longer satisfiéd. and therefore, the
controller structure with nojsecond level is no longer
capable of achievfng'the optimal control.

Although these conclusions have been drawn only for
linear systems with quadratic performance criteria, it is
expected that the severity of the requirement wlll carry
over to other optimization problems, since many non-linear

systems approach linear behaviour near the origin,

4,3 Iocal State Estimation

. In the previous section, the inverse problem was con-
sidered wherein the control law mapping the state vector
into the control vector was restricted to be algebraic.

In this section, this resfriction is lifted and the pro-
blem 1s thereby transformed into one of observaﬁility,
Assuming that the local controller has a true optimum feed~

back control law available, bul lacks only information
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about the other states of the system, 1s it still possible
to circumvent the requirement for a second-level coordinator
by synthesizing local estimators, which, by measuring the
local state variables, can provide a satisfactory approx-
imation to the entire state vector? If this were indeed
possible, then the cost of the added complexity of the lo-
cal controllers could be weighed against the cost of an
overall data transmission network,or even an Integrated,
centralized controller. As in the previous section, it is
assumed that the state and control of the overall system

'have been partitioned as

and a feedback control law of the form

3%

v, = u,(xy, x,)

is available to the 1'th local controller. However, this:
control can not be implemented because, say Xo is unknown.
Clearly, the problem of state estimation 1s then reduced

to a problem of observability. However, because no theory
of observability exists for non-linear systems, only linear
systems will be censidered, and in this restricted case,

the theory orlginally developed by Kalman [32] and ex-
tended by Luenberger [333 , [34] to the noise-free sit-

uation 1s applicable here.



The dynamical generating system to be considered is
Xy = A%yt AgpXp b By

Xo = A21x1 + A22X2 + B2u2

.where the outputs are

Y1 = C1xq
Yo = Cpxp

Using some infinite time, quadratic performance

criterion, it is known that

uz = K12X1 + K22X2

where, again, the K's satisfy appropriate‘Riocati equa-
tions.

Thevbroblem, then, for the 1'th sub-system is to
generate ui using only the information in its measure-
ment Yy o _

- Using the notation that (A,C) is observable 1f the
system |
X = Ax + Bu
y = Cx

1s observable, then the following results due to Luenberger

[3”] can be stated:



1. Letting A ={Aij} y Ythe foregoing inverse
problem is unsolvable if (A,Cy) is unobservable,
1 =1, 2. |

2. For each (A’Ci) that 1s observable, (v-=1)'th
order obgservers cén be constructed, where v
i1s the index of observabillity, such that each
row of u

i
of this observer in linear combination with Yy e

can be generated using the output

Therefore, in the case where observers can be construc-
ted, an estimate for the entire state veétor is obtained.
In the case of an error arising from a discrepancy in in-
itial conditions, this errdr can be made to diminish arbi-
tfarlly gquickly, limited only by the fact that too fast a
respornse would make the system extremely sensitive to any
nolse in the output measurements.

The questioh of the second-level would therefore be
settled, at least for linear sysﬁems, 1f the particular
observabilify conditions required were a common occurrence.
Uhfortunately, in the experience of this writer, these con-
ditions have not been met by syste&s of any complexity.

For example, in the problem of a string of moving vehicles,
[35) y allowing each vehicle to measure its own position

and velocity along with, perhaps, those of the preceding

vehicle, 1s still not nearly enough to satisfy thes obser-

vability regquirements. -



Other approaches to state estimation, based on game
theory or Markovian models, have been suggested, but for
one reaéon or another, no satisfactory sﬁate estimation
based on local measurements alone appears feaslible, It
must therefore be concluded that in most practlical pro-
"blems, any hope of achleving local state estimatlion ls
negligible, and in order to 1mp1¢ment the optimal feed-

back control law, a second level must be established.

L,4 A Multi-level Controller Based on the Second Variation

In this section, the hlérarchical'controller struc-
ture is synthesized for a class of optimization problems.
This class of problems contains systems so large and con-
plex that obtaining an analytical expression for the feed-
back control law in the form u* = u(x) is impossible. And,
‘for the nmajority of the systems considered,-even.functional
approximations as suggested in [27 ] and [ 28 ] are completely
impractical. Thus, not even an expensive communicatlions net-
' work.can overcomne the sub-system coordination problem. In-
stead, an active second~level coordinator 1is proposed which
will receive information from the lowér level controllers, per-
form functional operations on this information, and theh pro~
vide lower levels some useful coordination data. With the

ald of this data, the lower level controllers can then



improve their control laws, thereby obtalning a good ap- -
proximation to the optimum. Naturally, much of’the.con—
trol calculation is done by the local controllers, ahd
the second-level coordinator is therefore, relatively -slim-
ple in comparison to a central integrated controller.

The decomposition technique based on duvality (see
Part 3) was developed to operate on these principles; and
Pearson has claimed it to be a wérkable alternative [24} .
However, it will suffice to say that except in extremely
simple‘cases of scalar, linear systems with quadratlc per-
formance criteria, any possibility of on-line application
of this method appears optimistic. This becomes immediate-
ly evident when the method is applied to any problem of
significance, since, in effect, the resulting second-le~
vel coordination problems turn out to be variational pro-
blems of greater difficulty than the originally stated, in-
tegrated problem. Thereforé, the complexity of the second-
level coordinator, even if one were feasible; would exceed
the complexity of a central, integrated controller, and
the gains of decomposition and hierarchy would be lost.
That a successful approximation technique can be developed
from this theory has yet to be demonstrated.

One of the standard approaches which might lead to a
multi-level controller structure 1s the well knowh neigh-
borhood controller, treated in detail by Kelley‘[36] , and

by Breakwell, Speyer and Bryson [37] s and there appears
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no point in further elaboration here, exbept to say
that in general, the linearized system remains Coub—
led, and one is left with one high level (nominal tra-
jectory) controller, and one low level (linear regula-
tor) controller. It has the further unfortunate bro-
perty that the linear region is very small and minor
perturbations tend to throw the system so far from the-
nominal that true optimality is lost unless new nominal
trajectories can be calculated rapidly.

The controller developed here can be fully under-
stood using only two sub-systems, and extension to N
sub~systems is rdutine. The notation used here is de-
fined in Appendix A. Consider the problem of detérmining
the control vector wuy, i=1,2 , which will minimize the

"functional

(3
]
fWE

[
1 M

T
§ (xi'Qix1 + ui'Riui) dt L,6
1 0

subject tc the constraint
ii = Ajxy + Sfi(xl,xz) + Byyy h.7

Xi(O) =Xio ’ 1=1' 2

Here, it is assumed that the function efl(xi,xz)
is small in some sense, as discussed later, so that the

system consists primarily of two linear systems, coupled



together weakly. Also, any small subsystém non-linearities
have been lumped into the f‘1 functions.
With the aid of the Maximum Principle, the optimal

control law can be written as
— -1 1]
ui - Hi Bi (-Kixi + hi)

where K, and hi are governed by

) , R -
Ki = - Ai Ki P KiAi + KiBiRi Bi Ki b Qi u.8
Ky(T) = 0

. . -1. ¢ "

hl = -(Ai - BiRi Bi Ki) hi + €:Kifi -
2
J=1

This control law immediately sugéests g hierarchical
controller structure, in that the -?IlaiKixi term in.
the control law acts as a local.feedback control; while
the RIlBi'hi term plays the role of the coordination
function., As &€ goes to zero, hi becomes.vanishingly
small, and no coofdination 1s-required. while, as € gets
large, the interaction term begins to dominate the dyna;
mics, and consequently, the linear system~-quadratic per- -

formance functiohal control law becomes insignificant in

comparison to the coordination function.

€2, fjxi(-xjxj +hj) h,9

80
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As the control law stands, no approximations have been
made, On the other hand, since the integration of 4.9A
requires the vector x , the present form offers merely
an alternate, non-trivial, two point boundary value prob—

lem,* However, the attractiveness of this formulation
becomes more evident when systems with "small" interactions

are considered, Writing the control law as

u = u + u 4,10
lopt Ay By T
where
— "1 . ' }4’
uAi = =~ Ry By Kixi .1;
= -1z !
ug, = Ry7By h . 4,12
then in the case of weak interactions,the uAi term would

dominate the control while the uBi term plays the role
of a secondary improvemént;;Of coursé, under the stated

conditions, the u can be implemented exactly by the

Ag
local controllers. It is suggested therefore, that the uBi
term, which is difficult to implement exactly, be approx;

imated. Because of the secondary nature of this term, this

approximation‘need not be particularily good. Thus, instead

of using 4.12 in 4,10 , ug,; 1s chosen to be

*# In fact, limited computational experience has shown no
particular advantages with this formulation.



= -1 ' -:(-' 1
Ug, Ri By hy L,13
where
* O )v 3% , ' *
fé £ (X7 (- Kx +-h*) b, 1k
e 3 X haad .2 X { O d
j-':l in j -j J

hi(T)*= 0

In 4,14 , x° is taken to be somesuitable, a priori
estimate of the state trajectory. A natural choice for x*
would be |

x*(t) = U(t) xg 4,15

where

Here, and in the subsequent development, the non-subscrip-

ted variables and matrices are taken to mean the composite

values, made up of the subscripted varibles., For example,

The following definitions are now employed. The

Approximate Control Law, uA y 1s taken to be

- - 1

and the value of the performance functional J arising from

the use of this control law is defined to be JA .

U = (a-3BrR"1B'R)YU |, U(0) = I 4,16
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The Compensated Control Law , u indicating that

C 1
some compensation for the coupling and the non-linearities

has been made, is taken to be
ug = - B71B'kx + B71B'n" 4,18

and the value for the corresponding functional J 1is

defined as JC .

The Optimal Control Law , uopt y 1s defined as

- -1, ~15" '
Uopt = - BTB Kx + BB h k.19

with the correspondingfprformanoe functional Jopt

Naturally, the complexity of the controller for imple-
menting‘these three control laws progressively increases
from 4,17 to 4,19 , and it is important to study the im=-
provements in J , if any, which are to be expected by using
the more complex control laws, Ideally, it is desired to ob-
tain analytic expressions for the functionals JA’ J

cr and

J and then compare the values of these for different

opt?
coupling functions and S,S . However, the problem is too
complex to allow such a course of action, and therefore
three alternatives are considered.

The first of these involves obtaining, for a rather
trivial problem, approximate enalytic expressions for the

J's , and this deveiopment is relegated to Appendix C. The

second, which is treated at the end of this section, in-



volves numerical simulation of different systems to il-
lustrate the effects of these control laws on the perfor-
mance fﬁnctionals. The third is a development based on the
second variation approach of the calculus of variations. to
support the assertion that JC is less than .JA under nor-
‘'mal circumstances, and 1s presented here.

Application of the control 1aw u, of equation ly,17
to the systém L,7 results in the state trajectory X, and
the performance functional J

A
du , results in a variation of the state trajectory, &x ,

. A variation in ul, called

about x, , and in a varlatiori of the performance func-

A
tional, §J , about J, . Expansion of 4.7 about this
nominal trajectory, retaining terms up to the second order,
vields the following differential relationship between

&x and éu :

éx = (A +ef (x;))éx + Béu + %.”1 b.20

dx(0) = 0
where the notation and the second order term M 1s de-
fined in Appendix A . Also, the variation, §J , expanded

up to second order terms becomes
T , s T , ;

83 = ((x,28x + u Réu)at + F § (§x'Qbx + du Réu) dt L.21
o ] o .

On substituting'control law 4,17 and integrating the

time derivative term, this expression can be re-written as

8L



T ' T .
§J = e (£ + x,Kf )bx at + & { (§x Qbx + Su'Rbu +
_ o o]
8
exAKﬂ]) dt 4,22
Since J is not the minimum value of J , there exists

A _
some &u such that &§J < 0 ., In fact, a new optimization

problem of determining the control §u which will mini-
mize 4.22 , subject to the constraint 4,20 , can be

posed. Thus, an auxiliary Hamiltonian is defined as

Hy = - e(f 'K + xuKf )6x - 3 (6x'Q8x + Su'RSu + ex,km)
+q'([a + er,)8x + BSu + £m) 4,23
where
. ' 1
4= Qsx - (A +ef +5N) g+ e(Xf + £Kx, +AKx,)
| b2k
a(T) = 0

and A, the second order term in &x, is defined in
Appendix A ,
Application of the Maximum Principle to this auxi-

liary problem results in

~1
du = R "B q b,25
and the TPBVP arising from equations 4,20 , 4,24 and

4,25 has as a solution

g= -L&x+ & L,26
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where

t—ln
I

= o(a+ efy - CL)'E +&(Lm - 2A0-Lox + 3]) +
e(K £ + fykx, + AKxy)  b,28
1

c =8BR""B L(T) =0 , &(T) =0 . 4,29

It is appropriate to define the matrix

MEK - L | | 4,30

and by direct substitution, using 4.8 and b,27

it is seen that
M=~ (a+ sfx - CK.)'.I"I - M(A + &fyx - CK) - MCH
+ e (Kfy + f;K ) h,31
M(T) =0
Then the equation for % can be re-written as
& =-(A+ efy - CK + c)'E + e(Kf + £3Kxp)
+ % [(K-M)*\» + 2 A (k-m)8x - 2Az + zl\KxA] L, 32
g(T) = O
The optimum contro} variation therefore becomes

Su = r718'[(1-K)dx + &] .33

- LA+ efy) - (A+ £f,) L + LCL - Q b,27

&6
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and then, if instead of the control law uA , the law

= BB [- kxy + (H-K)6x + 3]

I

B [ K(x, + §x) + lMéx + & b, 34

were used, a performance functional, JS s would result
which would be less than Jp » if expansions up to the
second order'terms provide a sufficientiy good approxima=
tion to the original problem. It is important to note that

if g is defined as

iy
el

Méx  + 4,35

g

then the equation governing g 1is found to have a struc-

ture identical to equations 4.9 and 4.14 , namely,
t 1 .
g == (A~ CK) g + eKf(xy) - efy(x,)(-Kxp + g) 4.36

g(T) = 0
And the equation for ug , noting the similarity to 4.18 and

L,19 , is

1

ug = R”B'(-sz+g) - 4,37

where X,

S

control Uy .

The effectiveness of the control law 4,37 1is de-

is the state trajectory resulting from the

pendent on how ciosely the original system can be approxi-

mated by second order expansions. If these approximations
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are good, and this is to be expected with normal dyna-

mical systems, then u is a control law close to the

S .
optimum, and therefore Jg < J, . Since n* is an ap-.
proximation to g , then under normal circumstances, it

is also expected that the control law Un will provide

A

The controller structure envisaged 1s then as shown
in figure 4.1 . Each controller continuously measurés its
local state variable, and at time zero, transmits this
value to the coordinator. The latter, after obtaining
x(0) , generates and stores o by means of one integra-
tioﬁ sweep of L4.14 1in conjunction with equation 4,15 ,
Then, throughout the time interval [O ' T] s 1t supplies
h* continuously to the sub-system controllers which
combihe this with their local feedback control law ,

T - Kixi', to form 1 Naturally, in an on-line situa-

c.
tion, this process wiuld be carried out on a sampled
baslis, sampling period being T seconds.,

If the sub-system transients were sufficiently slow,
it might even be feasible to implement control law Ug
L .37 . However, this would require the coordinator to make
two integration sweeps, a forward sweep to generate Xp o
and then a backward sweep to obtain g .

Before proceeding to the numerical examples, the special
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case of linear coupling will be considered. If the coup-
ling function, f(x) , can be represented to a satisfac-

tory degree of accuracy by the form

f(x) = F(t)x ' 4,38
then m =0, and N=o y and the equations for

M and @ reduce to
1 ]
M=<(A+ €F - CK) M - M(A + &F -~ CK) - MCM

+ e(KF + F'K) 4,39

I'G"
I

= (A + €F - CK + Ci) & + e(KF + F'i)x, 4,40
Moreover, the equation for g Dbecomes
§=-(A+ €F - CK) g + &(KF + F'K)x, bkl

g(T) = 0
Because of the lineafity of these eqguations, it bescomes

feasible to write the explicit solution for g as

T ‘
g(t) = [ex(t) § z(s){K(s)F(s) + F(s) K(s)}z(s)ds] x,
t .

b, 42
where
Y = (A + eF(t).- CK(t) ) Y
Y(0) = I
Z = (A+ €F(t) - CK(t) ) z

N
O
1}

I
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or g(t) = X(t) x4 |

~where X(t) 1is the matrix in the brackets in equation 4,42 .
Thus, by storing or having availablé, the matrix X(t), the
coordinator can supply the lower level controllers the fun-
ction g(t) with no integration sweepé necessary, and in
.this case, the control law ug 1s readily limplemented. Some

numerical examples are considered next.

Example 4.1

The first example concerns two,'coupled, first-order -
systems, each with a scalar control input. The low order
of the system tends to belie the complexity of its beha-
viour, especially in reglons of the state space where the
non-linear coupling effects are not insignificant, In fact,
the uncontrolled system is highly unstdable ih most reglons
of the state space,

The optimization problenm consists of determining con-

trols u, &and U, which minimize ke functional

= 1
J =3 é (100%™ + 100x, + u; "+ wp ) dt
subject to
X, = =Xq + U, + €X X 3 x, (0) = x
1 1 1 172 1 1o

. v 2
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The optimal solutions for different initial con-
ditions and € valuesfﬁre obtained using the Riccatil
transformation in conjunction with the generalized
Newton-Raphson algorithm, as described in [381. Figurg
L,2 shows plots of typical trajectories, starting at
differentbinitial points in the state space, and using

the three different control laws, Uy 9 Ug and u

opt °*
Because of the near symmetry of the system about the
variable x, , only the right half plane is shown. Table
L,1 gives values of J assoclated with these trajectories.
Table 4.2 1illustrates the effect of different values of

€ , the initial condition being héld fixed at (3,3),
a point in a particularly unstable region of the state
space, Indéed, a slight_increase in € above ,9 at this
starting point is sufficient to allow the system to

escape if only the approximate control law,. Uy is

used with no compensation.

Exampie 4,2

The second example concerns the optimal reguiatioﬁ
of two second order oscillators which are coupled by cross-
product terms. A problem of this type could arise, for
example, in flight vehicles, where the effects of the
products of inertia are not negligible, and where it may
be desireable to compensate for these effects in some op-

timal wmanner.
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% %
Initinl Je-Jopt!  TA=Topt
Conditions Jopt Je » Ja —

X1gr ¥2 Jopt | -Jopt
0.1, 3.0 74,01 74,01 7h, 04 | 0, 0.0k41
3,0, 3.0 | 252,15 | 26L.73 LOE.91 | 4,99 62,2
3.0, 0.1 82.54 | 82,54 82.€7 | 0. .157
3.0,-3.0 | 102.87 | 104,06 107,40 | 1,157 | L,Lb3
0.1,-3.0 | 73.81 | 73.81 73.82 | 0. L0k

Table 4,1 Trajéctories from different initial con-
ditions with € =,8 , as in Figure 4.2 ,
Example 4.1 ‘

% %
. - 5 5 JeTopt| Ja~Jopt
Jopt Jopt
! 165.55 | 165.78 | 166.29 | .14 | .bsg
.3 188,16 | 189,03 195,68 .56 4,00
.5 212,70 | 214.92 | 241.67 | 1.0 13,60
7 | 238,68 | 285,56 | 326.65 | 2.9 36,90
.9 265,02 | 288.45 | 594,60 | 8.5 123.6

Table 4,2 : Effect of different values of & , using
initial conditions (3,3) , Example 4.1



The problem is to determine u, and u, which will

1
minimize
T 2 5 o |
J =3z S 2 qyxy© + pyyi? +1wy” ) dt
o i=1
subject to
Xy =N X3 (0) = x4
_ i=1, 2
S’i == ay¥y + Uy + ef ,yi(O) = yio
where f =

Yi¥2

The parameters used in the numerical example were

as follows :

qq = Qp = 100
Py = Py = 1
&y = 5 a, = .1 ’
and T , € and the initial conditlons were varled.

The optimal trajectorlies in this case were obtained
using a sténdard parametric trajectory method along with
the»unmodified Newton~Raphson algorithm in function space.
Tables 4.3 and 4.4 provide a comparison of performance
functionals using the three different control laws for
various values qf T, € and 1initial conditions.

Figure U4.,3 shows typical state trajectories with these

control laws,
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JC - Jopt JA - Jop?t

e}
ct

- Jd, = J

X Y X Y Jopt J d A

1 + 2 2 ¢ A Jopt %  Jopt % Jy — Joot

.5 .5 .5 .5 17.684 17.703% 17.706 107 124 1.159
1.0 1.0 1.0 1.0 71.440 71.511 71.609 .099 237 2.594
1.5 1.5 1.5 1.5 - 162.758 162.894 16%.%09 .084 339 4.03%6
2.0 2.0 2.0 2.0 293%.559 29%.753% 294.707 - .066 .378 5.727_
2.5 2.5 2.5 2.5 466.018 466.295 467.846 .059 . 592 6.644
- .5 - .5 - .5 - .5 17.504 17.517 17.573 074 .394 5.324
-1.0 -1.0 -1.0 -1.0 70.016 70.0%6 70.060 .029 .063 2.172
-1.5 ~-1.5 -1.5 -1.5 158.054 158.244 164.893 ~.120 4,327 26.058
-2.0 -2.0 -2.0 -2.0 282.703% 284,421 %13.995 .608 - 11.069 18.206
~2.5 -2.5 -2.5 -2.5 445.457 450.546 542.3%7% - 1.142 21.757 19.052
TABLE 43: The Effect of Different Initial Conditions on-

Example 4.2, with ¢ = .5, T = 2
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%

; ; ; JeJopt 1Ta=Jopt [Ia=Iopt

& | Topt ¢ A Jon. J J =J
Opt opt ¢ “opt

L0 [121.122 | 121.122 121,122 .0 .0 1.0
2 |121.979 122.040L |12L,649 ,053 1.697 32.019
.u 125,505 | 125,571 142.153 .053 13.265 | 250.283
.6 [ 131.208 | 133.157 207,574 1.485 58,202 39.139
.8 138,507 169.062 727,068 22,060 | 424,932 19,263
Table 4.4 : Effect of different values of thé parameter

¢ 1in Example 4.2 , using initial conditions

(-2, 2, =2, 2 ) and T =2 .
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Discussion of Examples

The first point to note 1s that in every case con-
sidered, the compensated control law improved the system
performance as measured by the performance functionals.
.This result is in agreement with the scalar problem trea-
fed in Appendix C , and might have been expected from
the foregoihg second variation theory. It is also noted
that different portions of the state space-provide very
different performance criteria and this difference is
reflected in the comparison of the various control laws.

Also, it was anticipated that the pereentage impro-
vement of the compensated control 1éw ovef the approxi-
mate control law would not continue indefinitely with
increasing values of &€ , and this fact is borne out by
column 7 of Table 4.4 , where the meximum percentage
improvement occurs at €= .5 . This tendency is again
verified by the scalar example.

On the whole, the compensated control law provides
‘a performance very close to that of the optimum, end
since the implementation of this control law is very
much simpler than that of the optimal, it should be
seriously considered, Naturally, the 1mplementation
of the approximate control law is even simpler still,
but it is queetionable whether the resultant performance

degradation is acceptable.
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4,5 Conclusion

The preceding sections have considered the optimél
control synthesis problem for a class of dynamical systems.
This class consists of systems composed of a number of
sub-systems, preferably weakly interacting. It was first
argued that, although engineering considerations may fa-
vor a conpletely decentralized control, the restrictions
arising from the inverse problem investigation necessitate
the use of coﬁtroller coordination. Accordingly, a hier-
archical controller structﬁre was synthesized, and nune-
rical examples indlcate that such & controller is worth
considering as an alternative to an integrated, centralized
controller, Among the desireable characteristics of this
controller are ease of éontrol implementation and satis-
factory behaviour in a poor inter sub-system communica-
tion environment. Inherent in the hierarchical structure
is the property that if the central coordinator fails,
the local controllers remain operating, and thersystem

continues to function although further from the optimum,
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5. DISCUSSION AND CONCLUSION

The thesls began with a statement of the general
optimization problem under consideration, and by means
of the Maximum Principle, this problem was reduced to
determining the trajectory of the optimal dynamical sys-
tem. The structure of this system was then representéd
by directed grapns, which in turn provided a basic frame-
work from which to study different aspects of decomposi-
tion.

Deoomposition'was next considered both for the com-
putational problem as well as fér the synthesis problem.
In the former, the fundamental contribution of decomposi-

tion was to suggest methods of parallel précessing, while
in the latter, decomposition was found'tq be the first
step in synthesizing a hierarchical structure for the op-
timal feedback controller,

The one factor which detracts from the practicalluse-
fulness of theée studies is the scope of’the problem that
has been considered. Forbthe szke of mathematical conveni-
ence, the optimization problem was stated as the extremi-~
zation of a scalar functional subject to differential con-
straints. Unfortunately, in practical situations, it |
appears extremely difficult to define a scalar functional,
whlch, when extremized, guarantees.a desireable control

system with satisfactory performance., That a hierarchical
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structure is sought in the synthesis reflects the fact
that considerations other than the extremization of a
scalar functional are in evidence. However, the idea that
these other considerations may define other functionals,
and that these may be combined to form a vector perfor-
mance criteria is not impossible, but unlikely. In the
first place;‘these conslderations, which may involve ease
of maintenance and readily implementable redundancy, do
not lend themselves to quantitative mathematical expres-
sions. Secondly, even if they did; the vector valued |
optimization problem would be of nmuch greater COmplexity,
and its usefulness would be gquestionable,

Another conclusion which arises from the thesis is
that the structure of the system controller is highly de-
pendent on not only the performance criterion but the pro-
blem statement. It was shown in Part 2 how two uncoupled
generating systems become closely coupled by either the
performance functional, or the boundary conditions requi-
ring both to reach the origin. in a certain time. In pro-
biems where a fixed performance functional is defined,
and it is without a doubt, the one required to be optimi-
zed,then of course there is no élternative. Eoywever, if
as in most synthesis problems, a performanoé functional is
chosen merely on the basis of providing a systematic pro-
ceduré for obtaining the control law, then é great deal

of thought should be given to whether a different choice
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for this functional might result in a far simpler control-~
ler structure, while giving almost the same system beha-
 viour,

In conclusion, the moderately well known principle
in systems engineering might be considered [39) . "Do not
try too hard to optimize the small pileces of a tightly in-
terrelated system because 1t will cost you more than you
gained when you put the parts together.". On the other hand,
the results of this thesis indicate that if thebsystem Un-
der consideration is not "tightly interrelated", then sig-v
nificant gains can be anticipated by decomposition and de=~

centralized optimization.
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Appendix A : Notation
Throughout the thesis, the following notation has.

been employed.

N

\Mln‘
where
M. = 6X'fi Sx
t XX
and
f e e )
[fixlxl 1}:1}(2 fixlxn
fiyx =
f f e o o T
Ixpxy “lxpxp U 1XanJ
Furthermore,
n
NNy = {2 fixixjaxl}

Note that A # I\
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Using this notation, the expression for 6(8 fll_ '
O( &x)

where s 1is any vector independent of <5X becomes

Q(s'm)

d(éx)

o{ 7 s (o §x.,)
S £

k=1 k j:l kXin XJ }

= 2.hC s

Also, with this notation, the following expressions can

be used :
flx +8x) = £(x) + £y (x)éx + 3 m

felx +6x) = £ (x) + A



Appendix B : Multi-Processing Computers

The objective of this appendix is to present a brief
general description of the present status of multi—bro-
cessing computers, For a more detalled study of this sub-
ject, a list of references 1s included, and for survey
purposes, [40], LUl] and [42] are particularily recom-
mended. The machines to be considered are classified in-
to two categories, here referred to as the conventional
and the unconventional, In the former category belong
machines such as the IBM 9020 [43] which have a pair to
a dozen central processors plus a similar number of ad-

ditional peripheral data channeél- control-units and which

represent typical present day computer hardware. The lat-

ter category includes machines such as SOLOHMON II [41] ’
with a 16 by 16 array of processing elements.

The undonventiogal machines, though an exciting de-
velopment, are still faced with a number of not entirely
unrelated problems. One concerns memory allocation, and
how much local memory to provide for individual proces-
sing elements. Another involves the design of a flexible
data distribution network between processing elements and
the central control unit which will not be overwhelmed by
hardware complexity. In the case of SOLOMON II, each pro-
cessing element is provided with a local memory not exce-

eding one thousand words of 24 Dbits, while the central
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program memory, also relatively small, is used for system
instructions aswell as acting as an overflow for the lo-
cal memories., A very difficult task remaining 1s to deve~
iop software which aohievés satisfactory hardware utili-
zation factors. This type of machine holds great prbmise
for the solution of partial differential equations, as in-
dicated by some‘recent publications [&Ml ’ énd consequen-
tly, in the context of optimal control theory, the ques-
tion of explicit solutions of Bellman's partiél differ-
entiairequation is again raised.

The conventional machines are usually designed so
that each of the processing elements, having very little.
or no local memory, has direct access to the central me-
mory, which, aénin the case of IBM 9020, is available in
32 K word modules. Because no single major element is
critical to the operation of the system, it can be pro-
grammed to work in one extreme as a single processor se-
quential machine using the entire memory, or in the other
extreme as a number of independent smaller compﬁters.
Thus, each processor has a vast and yet variablé memory
at 1ts disposal. |

However, most complex problems would probaply have
a degree of parallelism far in excess of that pgovided
by a conventional multi-processor computer, and yet ex-

panding the number of processors with this configuration

107
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becomes impractical. The primary limitation seems to be
storage inﬁerference, or more than one processor wishing
access to the same memory module, as described in ref-
erence [4él. Also, although software design for the con-
ventional multi-processing computer seems easier than for
a non-conventional machine, high efficiency will almost
certalinly require a combination of multl-programming

as well as multi-processing, and because multi-program-
miﬁg even on a sequential machine is a non-trivial task,

a great deal of work remains to be done.
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Appendix C : Scalar Example

As an addition to the development in Part 4, Section
L , this appendix includes the derivation of approximate
analytic expressions for the value of the performance
functional in the case where the dynamical constraint is
represented by a scalar, linear differential equation,
and the performance functional is . quadratic. Although
in this case, decomposition is not possible, if i1s felt
that the characteristics of the three control laws, 4.17 ,
k,18 and 4,19 will be illustrated.

The problem is to choose u to minimize the functlional

oy
i
woj

T
S (Qx2 + u? )dt
(o]

subject to

On the assumption that T 1is large, the optimal feedback

control law 4.19 1is known to be

uopt = « }x
where
M2 = 2(a +b)H = Q = 0
’ L
or M= (a+b) + ((a+Db)?+q)?

Witnh this control law, the optimal trajectory is governed
by the eguation

x = (a +b - M)x
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2 5

Letting X = - ((a +b)7 +Q )F
then the optimal trajectory can be written as
Xopt = © Xo

and

However, suppose that b 1is not available for ac-
curate measurement, and the approximate control law, 4.17,
u, = - Kx

is used instead, where

2

K¥ -« 22K - Q 0

Wi

or K= a+ (a2 +Q ) .
Then the system trajectory is governed by the equation

X, = (a+b-XK)xy

and by letting
N
2

8= (b-(a®+q)%)

this trajectory is gilven by

- pt
X, = e Xg
Letting AJAQ Jy = J (to first order terms)
£ opt _
it is found that
ftié _ bK (x -~ @ )
= =
Xo ple+p)
or AJ, _ BK (X = @)

Jopt He (& +p)
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On the other hand, the compensated corntrol law, 4,18 ,

is given.by

Uy = -~ Kx 4+ h

b
where K 1s the same as above, and h is the solution

of the equation

L

n* = (a - K)h" + bKx* - b(-Kx* + n*)

I ‘ah* + 2bKx

i

h(T) = 0

Choosing x  to satisfy the equation

a ot
N

x = (a = K)x*
x (0) = x5 ,
letting

i
2

¥ = - (a°+q)
and assuming that T 1s large, the function h” is found
to be
(6) = 2bKxg ¢ 10/ (p+¥)
h (t) = thxo e (p+ ¥
The trajectory Xo arising from the use of the con-

trol Yo is then approximated by

- 2K pt ' 2K SR £7 '
= + - -
X [(1 .%4-P ) e ( T ) e } Xo
and letting :
' &
bIe = Jo = Jopt
AJC is found to be
L 2K 1 _ ¥ (¥+P) ..2}(b] 2
Aug = szhb * T&f-P)H(&%'p)(owd) IICE *eo
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These expressions were calculated for a range of

values of a , b and Q , and a typical result is shown

in Figure C.1 . In Table C.1 are listed numerical values

AJC/AJA It is found

for for different values of b ,

that for every case, this ratio remains less than 1 ,
indicating that for the relatively wide range of values

covered, the compensated control law always performed

better than the approximate.

ADJ AJC
b ", Q=100 —— " Q=10
AJA AJA
-10 342 .985
- 8 .213 .659
-‘6 122 + 388
- b 053 . 180
-2 013 LoL7
0 . 000 . 000
2 .012 051
b LOLL .207
¢ .038 465
8 134 775
10 .170 «979
Table C.1 Effect of b on the ratio AJ, / AJA ,

for the scalar problem ,

with

a = =10




1-10
-—-20
5130
« — 40
a=-10
Q- 100

(, AJopt %

Pigure C.l: A Comparison of. Normalized Performance Functionals in Scalar Example
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Appendix D : Tangent Plane lMethod

The 6ptima1 dynamical system as described in parts 2
and 3 of the thesis is defined by the state, controlland the
co-state variables of the problem. As is well known, these
co-state varlables are almost always governed by.unstable
equations and, consequently, the numerical difficulties as-
sociated with error propagation when the two point bounda=-
ry value problem is being solved are notorious. The purpo=-
se of this appendix is to introduce a new set of variables
related to the co-state variables, which possess appealing
boundedness properties.

The development of this technique is based on the geo-
netrical concepts of optimal control theory as described by
Leitmann [ﬁ5] , and Blaquiére and Leitmann [&6] , and the
notation subsequently employed is identical to that of chap-
ter 1 in reference [45] .

Consider the optimization problem of minimizing the

functional

tq
v = [ f_ (x,u) dt
o
t
subject to the constraint
x =.f (x,u).

and ?f(x(tl)) = 0,
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This 1s equivalent to mininmizing Xo(tl) , subject to

ko = fo(x,u)
x = f (x,u)
W (X(tl)) = 0 .

As in [&j} , the limlting surface in the (n+1)=-space
is denoted by ¥, , and the n-dimensional tangent plane to
7. at the point x(t) 1is denoted by T (x¥(t)). Provided
the initial conditions are sultably chosen, any.(n+1)-vector

lin this tangent plane, denoted by ™ , is governed Dby

i

where the asterisk indicates that the derivatlve matrix

—
-~

T
Ox.«
Xn

0x1 f0x2 e o« o T

£ f. ... f
L Px1 Pxp Axy,
is calculated at the optimum trajectory. Defining the vector

*

A to satisfy
A= = )

X
) i :
Therefore, 'Xﬁz= constant,

and if the initial A is chosen as orthogonal to T‘Z(x*(t)),

then A remains orthogonal throughout the entire trajectory.
To
f*J ,
lies entirely in the plane Til(x%(t)).

Since it can be shown [45] that A is also orthogonal to
fo'."r
f.*

it follows that (




J

, IJO

If ( 3 ) y J=1,....n represents a time-
WX (e)

varying orthonormal set of n (n+l)-vectors spanning

<

3 ' f
T‘z(xe(t)) , then © can be represented as
f ¥ n w J)
o
= Z-aj(cj) D.1
f j=1 w

where because of ortho-normality,

s
K

. ] fo 3% .1 %
ay = (woa-, wd ) ( ) = woj fo +wd f . D.2
T
Let a = [aq]| , W= w11'w12 coe wl W, = wo1
. . 1 2 ) ) .
an wn Wn e ¢ o Wnn Vron',

Therefore, D.1 and D.2 can be written as

* 1
fo =Wy, a
*

f = ‘1']. a

a = fc W + W f .

Combination of these equations yields
3% 1 * "-;e
fo =vy (£ wo +W T )
and this can be re-written as

1 L3
2% (WW’O) f
(1 = wy wy)

1 - W, W

np

Define P

v o= Ww,
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Equation D.3 then becomes

3* v

or

ka val! 3
"oty =0 .

This 1s merely a restatement of the fact.that'the
Hamiltonian for a non-autonomous system at the optimal
trajectory is zero. Furthermore, since the standard Ha-
miltonian is defined as

1 .
H= - fo + p f ’

it follows that
v

| P= g ' D.5
where the role of g is to act as a scaling factor. The
primary advantage of thls new set of vériables over the
co-state variables , p , arlses from the boundedness pro-
perties.

Because of ortho»nbrmality,
Wollg  + WU = I,

where I, denotesvan n by n identity matrix. Therefore,

WO' (wowo' + W) wy = Wo’Wo
or (1 ~ 9)2 + vv = (1 - @)
or | viv = ?(1'-@ ) D.6
Since ‘ v'v > 0 ,'

then 0 < pg 1 D.7
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Moreover, D.5 implies that
mex v'v = max F,(l —[3) = X D, 8
With the aid of equations D.5 and D.6 , the dif=-

ferential equatlons governing v and F can be derived.

Since
b = fop = fxD
using D.5,
. 3
TR U
or v - % é = f&fox - fx, v D.9
Therefore,
v'iv - .% v'v p = gvjfoX - v'fx' v oo,
which, with the aid of D.6, can be reduced to
ld—~((1— )) - (1-g)p = 'ro. = v'r '
> at pli-g P/B = BV Toyx VigV
or é = 2 Pv' ( = foy * fx' v )
Writing the Hamiltonian as
H = ~f, +v £ D.10
the equation for @ becomes
ﬁ = 2‘3v' Hy ' o D.11
Consequently, equation D.9 can be used to obtain
v o= (2v' H)v - pHg D,12
The transversality conditions require that |
1 ve = K &,Xf D.13
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where K 1s some positive constant, and the subscript f
denotes terminal values. Bquation DI'.12 can be written as
1 . .

—_— — 2 i v
B2 e T A tue

which, with the aid of identity D.6 yields

1
g 7 + K2yl D.1k
Fr 1 Yaip ¥
Consequently,
Ky
ve = xf D.15

1+ KEwg Wy,
With the aid of the scaling factor g and the vector
v , the maximum pfinciple together with the transversality
conditions D.14 and D.15 can be used to generate a new
TPBVP consisting of the state equations and equations D.11
and D.12 . The requirement that H as defined in equation
D.10 Ybe a maximum with respect to the control variable u
1s sufficient to provide conditions under which the control
variable can be replaced by a function of x , v and @-.
fhis method is illustrated on a simple second order
system 1n order to demonstrate its application. The problem

1s to drive the systen

_  Xp = u
from its initlal state X, = 0 , X, = -3 . to the
o
circle |
$(x(1)) = x(1)%2+ x(1)% - 1 = 0
so that
v 1 ,
J o= % [ uat
¢

s minimized.
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The standard approach is to define the Hamiltonlan as

H = =% u? + pyjXp + Dpu
where

py = O

52 = =M .

The maximum principle then ylelds

u = p,
which, When'substituted, gives H as

H = % p22 + PyXp |
The fact that H(0) =0 provides a relationship between

p1(0) and py(0) as

2
p1(0)= - g%g%%%

A numerical algorithm based on the generalized Newton-
Raphson technique similar to that described on page 43 of
the thesls is employed to determine the unknown quantity pZ(O)
which will null the function & (x(1)). | |

Tne r»resent method begins by defining the Hamlltonian

as
Vi v .
- H =""%' 1).2 +—'~’ X2 -+ "52 u
where
ﬁ = 2 @ V,HX = 2 vqVvp
. ' 2
vy = (2 v Hx) vy - @ HXJ = 2vq Vv

!
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!
N
l<
N
N
<
|
}
<
[N

' .
V2 = (2 v HX) V2 - pHXZ

Again the maximum principle yields

V2
u = —
B
and, this, when substituted into H gives
vp° V1
H = 5 — + = X2 .
2
P &

Thus, the H(0) = 0 condition implies that
v, (0) = = 2p(0) vy (0) x,(0) .
Moreover, the identity
pli-p) = v'v

which is valid for all t , provides the other missing ini=-
tial condition as

p(0) (1 = p(o)) = v;2(0) +vp*(0)
or _ '

BOI(L = p(0)) = v1%(0) - 20i0}7; (0)x2(0)

or

v (0) = p(0)xz(0) + | plo) + 2001 (x22(0) - 1)
and therefore,

v5(0) = =2 (3(0)x,(0) [@(o)xz(O) + [por + gf(o)(xg(o)flJ

As before, the problem 1s reduced to finding the
missing scalar quantity p(O) such that $(x(1)) will
be nulled.
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Table D.1 provides abcomparison of the number of it-
erations required for convergence between the standard me-
thod and the tangent plane method. These results are dis-
played graphically in Figure D.1 .

In Table D.1 , 3 refers to the quantity
p,(0) - p, (0)

Pg*(o)

and T refers to
pO) = p(0)
@%(O)

where py(0) and ﬁ(O) are the guessed initial conditi-

" ons as tabulated in the first and fourth column respectively,
pz*(o) and ﬂ?(o) are the correct initial conditions for
solving the problem, and these happen to be 6., and .0137
respectively, for this particular problem. Thesé normalized
quantities S and T are useful for comparing the ranges
of convergernce of the two methods, and are used as the com-

mon absclilssa in Figure D.1 - . Figure D.2 shows the optimal

trajectories for ﬁ V1 and vy .

As shown in Figure D.1 , the range of convergence for
the tangent plane method 1s greater than that for the stan-
dard method.‘in fact, this difference is even more notewor-
thy when it 1s realized that the "no convergence! condition

of the tangent plane method at T = - .5 occurs very close
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lto one extreme of ﬁ . To solve the problém, this wouldAnot
be a logical initial condition with which to begin the it-
eration..Therefore, the fact that p is known to lie between
0 and 1 should be of significant assistance in choosing
initlal iterates. The same can not be sald of p,(0) which
may lie anywhere in the range =-co < Dpp(0) £ oo,

Aside from the facility of choosing 1nltial conditions,
the boundedness conditions, D.7 and D.8 , because they al-
ways apply, should hold down the rate of error propagation
during forward integration, The control variable is then |
‘calculated by normalizing the v=-vector with 5 » and both
of these would be avallable to a good degree of accuracy.

It should be notéd‘that With the tangent plane method,
each iteration required the integration of (n+1) equations
as compared to n equations for the standard method. By
using the identity D.6 , it may be bossible to eliminate
the equation for ﬁ entirely. If Such 1s not the case,
then this drawback must be welghed against the other ad-

~vantages of the method.
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STANDARD METHOD TANGENT PLANE METHOD
Guessed 3 Numbexr Guessed T Number
Initial of Initial of
Condition iterations Condition iterations
py (0) for p(o) for
Convergence ! Convergence
18.0 2. N.Co .15 9.96 n.c.
12,0 1. n.c. .1 1 6.28 6
9.0 .5 n.c. .05 2.65 5
7.5 .25 8 .03 1.19 | &
6.5 .083 Ly .02 TS L
6.0 0. 1 .0137 0. 1
5.5 -, 083 L .013 -, 05 3
3.0 -. 6 .01 -.27 3
0.0 -1.0 8 . 008 -.416 L
-6, -2,0 10 . 007 -. 49 5
-12, -3.0 11 . 005 -.635| n.c.
Table. D.1 A comparison of the Number of Iterations

2%

red for Convergence Usling the Standard
angent Plane Methods.
(n.c. means no convergence)
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Ficure D.2 : Optimal Trajectories for g, v, and vy ,
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