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ABSTRACT

The provlem of determining the structure of
linear transformations on the algebra of n-square matrices
over the complex field is discussed by M. Marcus and
B. N. Moyls in the paper "Iinear Transformations on Algebras
of Matrices'". The authors were able to characterize linear
transformations which preserve one or more of the following

properties of n-square matrices; rank, determinant and

eigenvalues.

- The problem of obtaining a similar characterization
of transformations as given by M. Marcus and B. N. Moylé but
for a wider class of fields is considered in this thesis.

In particular, their characterization of rank preserving trans-
formations holds for an arbitrary field. One of the results

on determinant preserving transformations obtained by M. Marcus
and B. N. Moyls states that if a linear-tfansformation T

maps unimodular matrices into Qnimodular matrices, then T
preserves determinants. Since this result does not necessarily
hold for algebras of matrices over finite fields, the dis-
cussion on the characterization of determinant preserving

transformations is limited to algebras of matrices over

infinite fields.
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CHAPTER ONE

RANK PRESERVERS

INTRODUCTION

The purpose of this chapter 1s to establisﬁ some
notation to be used in this paper and to present a character-
ization of linear transformations which preserve the rank
of h-square matrices. Although the paper [l]* of M. Marcus
and B. N. Moyls 1is concerned with the algebra of matrices
over the complex field, theilr proofs of the lemmas and the
theorem on rank preservers are not dependent on the character-
isticvnor the algebraic closure of the field. In fact, the
proofs hold word for word for the algebra of matrices over ah.
arbitrary field. No proofs are given in this chapter but the

main result obtained in [1] is stated below in Theorem 1.3.2.

NOTATION

The notation used in [1] will be adopted. Let F
denote a field. Let the following symbols denote the respect-

ive sets:

*
Numbers in square brackets refer to the bibliography



=
.

Mn - the algebra of n-sqguare matrices over F
U_. - the unimodular group of matrices in Mh-
(i.e., matrices in M with determinant 1)

2

rinally, A denotes the transpose of A

RANK PRESERVERS

1.3.1 Definition ©Let o(A) denote the rank of the matrix

A . A linear transfTormation T on Mn is said to be a rank

preserver if o(T(4)) = o(A) for all A e M . - e

1.3.2 Theoren Let T Dbe a linear transformation of ‘Mh

into Mn . T 1s a rank preserver 1f and only if there

eXxist non-singular matrices U and V such that either:

T(A) = UAV for all A

o+

or T(A) = UA"V  for all A .
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CHAPTER TWO

DETERMINANT PRESERVERS

INTRODUCTION

The main result of this chapter is given in
Theorem 2.3%.8 which states that the following conditions
are equivalent:

(1) T maps U, into U .
(2) T preserves determinant; i.e., det T(A) = det A

for all A € Mﬁ .

(3) There exist non-singular matrices U and V

with det UV = 1 such that either:

T(A) = UAV for all A

or T(A) = UA™V for all A .

When the base field F 1s an arbitrary infinite
field, the major difficulty encountered in obtaining the above
results lies in showing that condition (1) implies condition

(2). The solution of this problem is to a large extent the

'_J

point of this thesis. When F is a finite field, condition
(1) does not necessarily imply condition (2). A counterexample

will be given to show this.



2.2 A COUNTEREXAMPLE FOR FINITE FIELDS

The following example is a linear transformation
which maps unimodular matrices into unimodular matrices but

does not preserve determinant.

Consider the algebra Mé of 2 x 2 matrices over

the finite field of characteristic two with elements {0,1}

Let G, and G, be the following subspaces of Mé

2

o= {69, 69,6H,CH] e
= {G9, G 6 GY).

Let T Dve a linear transformation on M, such that

= G and kernel T = G Such a transformation is

T(Gy) = Gy 2

possible since M2 is the direct sum of Gl and G2 (that is,

00 . . . .
{(O 0 } and dimension M2 = dimension Gl +

dimension Gg) .

The transformation T maps Un into itself;
that is, T(Un) CiUn . For each unimodular matrix A there

st 3 = v 7 { i ") OO
eA;SLS a matrix B € 02 and a matrix C € { Cl - {<O 0 };}'
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such that A =B + C ( + denotes the usual matrix addition).

‘Since T 4is linear and B € Gy s then T(A) = T(B+C) =

T(B) + T(C) = T(C) . But by the hyﬁothesis T(C) € [?i "’{Kg 8.3

all of whose members are unimodular. Thus T(A) is uni-

modular, and T(U ) CU, -

On the other hand, T does not preserve zero

determinant. Consider .E = <8 f . Since <8 g =
10 10 00 _ 10 .
<O O) + <Q 1) > T o l) = T (O 1) - And since T
. : 0 0\ _ 10\ .
preserves unimodular matrices, det T (5 1) = det T o1) =1 -

But det E = 0 , ‘therefore T does not preserve zero
determinant. Thus the transformation. T maps unimodular
matrices into unimodular matrices but does not presérve_

determinant. ‘ ‘ .

DETERMINANT PRESERVERS

2.3.1 Definition A linear transformation T on Mn is

sald to be a determinant preserver if. det T(A) = det A for all

4A € Mh .

2.3.2 Lemma If F is an infinite field, then the n-th

i

root of an element~of. F exists in F fbr an infinite number

of elements of F .



- ; n
Proof: Let a, Dbe a non-zero element of F and Db, = a4
. . . n . .
Consider the equation X = b1 . Now a, 1s one solution and
there are at most n solutions of the equation in F . But

since there are an infinite number of elements in F , there

. . n
exists a non-zero element a2 e F such that a2 = b2 and

D # b; . Suppose N distinct elements Dby, by, ... , by

have been found, each of which has an n-th root. Then there

: T . . n _ ,
are at most nN solutions of the equations X = Db, ,

, +«. , N . Since F 4is an infinite field, there

exist non-zero elements aN*l and bN+l belohging to F such

such that ap., = by, and by . #b, , 1=1,2 ..., N

Therefore there are an infinite number of elements in F

with an n~th root in F

2.3.3 DNotation ILet A = (aij) € M

n
(1) A, denotes the cofactor of . a.. in A .
C1d 1J :
(2) A(s,t)(x) = (aij) where o, = 2,  when
(1,3) # (s,t) and o, =x . (That is,

A(s,t)(x) 1is the nxn matrix obtained from

by the

A Dby replacing the entry &gt

indeterminate x .)



2.3.4 Lemma If A= (aﬁj) ¢ M and det A# O, then
for some J , alelj # 0 . Consequently, 3y 5 # O and

Alj # 0 for this J

Proof:  Suppose alJAlj =0 forall j, 1< j<n . Then
n i
X . .
det A = % (~l)‘+3 a, A ;=0 which contradicts the hypothesis
=1 Jd +d
that det A # O . Therefore alelj # O for some J . And
since a5 and Alj are elements of F , then alelj # 0

implies that alj # 0 and Alj # 0

2.3.5 ILemma If det A# O, then for some fixed J and

for each b € F there exists an element a € F such that: =

det A(1,J)(a) = b .

Proof: By Lemma 2.3.4 there exists a , 1< 3<n, such

that Alj # 0 . Let this value of j be k . If

n ‘ .
1+3 .
] - ) £ 1 =
3 Z‘lk( 1) 214ty = ¢, then det A(L,x)(x) = xA + ¢ .
J=1, J3#
For any b € F , the polynomial xA1k + ¢ - b in the in-
determinate X has a root, namely x = (b—c)Aii'. Denote

this root by a . Thus, for any b € F there exists an

a € F such that det A(l,k)(a) = b .
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2.3.6 Lemma Let F be an infinite field. If T(U

then for any A e M, such that det A # 0 , det T(A) = det A .

Proof: Let A € MY1 and det A £ 0 . Let B be an infinite

subset of F such that if b e B, then b # 0 and b has
an n-th root in F . By Lemma 2.3.2 such a set exists. Since
det A # O , by Lemma 2.3.5 there exists a k such that for
each b € B there is an a € F for which det A(l,k)(a) =b
Let S Dbe the subset of F suchbthat for each a € S there

corresponds a b € B for which b = det A(1l,k)(a) . In other
words, for each a € S det A(1,k)(a) # 0 and [det A(l,k)(a)]l/n
¢ F. Since B contains an infinite number of distinct
elements then so does S . For each a e S, det[A(l,k)(a)/

1/n

@

(det A(1,k)(a))” ] =1 . And since T(U ) c U, , for each

n

a e S, det T(A(1,k)(a)) = det A(1,kx)(a)
Denote by Eij the nxn matrix whose (i,J)-th

position contains the element 1 and is zero elsewhere. Then

det T(A(1,k)(x)) = det T(xE,, -+ ) =

by a, b, .
1 = i
(L ALx) T

det (xT(Elk) +'(i,j)§(1,k)aiJT<EiJ)> = p(x) , where p(x)

is a polynomial in x of degree < n . In the proof of

Lemma 2.3.5 it was shown that det A(L,k)(x) = XAy, + C for

some ¢ € F . Since for each x e S det A(l,k)(x) =

det T(A(1,x)(x)) , then XAy, + ¢ = p(x) for each x € 8



But S contains an infinite number of distinct elements,

therefore XA1k + c = p(x) identically in x . Thus for
any x e F, det T(A(1,k)(x)) = det A (1,k)(x) . In parti-

cular, the eguality holds for x = 8qyp 3 and since

A(1,k)(aq,) = A then det T(A) = det A

2.%.7 Corollary. Let F be an infinite field. If

T(U,) C U, , then for any A e M , det T(A) = det A .

Proof: Let A Dbe any matrix belonging to M_ , and let

n
A(u) Dbe the matrix obtained by replacing a;; in A Dy
a;; tu, for 1i=1, 2, 3, ... , n, where u 1is an in-
determinate.

Det A(u) = u + pl(u) = p(u) , where pl(u) is a

polynomial in u of degree < n-1 . But det T(A(u)) =

det (idl(g+aii) T(E, 5 igjaij T(Eij)) ; thus de? T(A(u))‘

g 13

= q(u) where q(u) is a polynomial in u of degree <n

Since p(u) = O has at most n solutions, then det A(u)
= p(u) # 0 for infinitely many values of u in F . But
if det A(u) # 0, then by Lemma 2.3.6 det A(u) = det T(A(u))

and consequently p(u) ='q(u) for infinitely many values of

u in F . Thus p(u)

1l

g(u) identically in u and

det A(u) = det T(A(u)) for all values of u in F . In

particular, the equality holds for u = 0 . But since A(0) = A

3
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then det A = det T(A) . A was an arbitrary element in

M, and therefore det A = det T(A) for all A e M, -

The proofs of Lemma 2.3.8 and Lemma 2.3.9 are those
giveany M. Marcus and B. N. Moyls in the paper [1] . The

proofs are included in this paper for the sake of completeness.

2.3.3 Lemma If T preserves determinant, then T 1s non-

singular and hence onto.

g

roof: Suppose T(A) = O . Since det A = det T(A) =0 ,

then the rank of A , denoted by o¢(A) , 1s less than n

There exist non-singular matrices M and N such that MAN =

I+ On—r where r = g(4) , I the 1rxr unit matrix and

r r
0, , the (n-r)x(n-r) zero matrix and + denotes the direct
sum. For any X e Mo, [det(MAN+X) ][ det M—lN—l] =
det M T(MAN+X)N"L = det(A+MTxNT) = det T(M luwl) =
T oy -1 -1 | )
det M "XN = = det X det M "N ~ .  Therefore det(MAN+X) = det X .

Set X =0_+ I .. . Then det(MAN+X) = det I =1 . But

det X =0 'unléss r=0., But rr =0 implies A = 0 . Thus

T is non-singular.

2.3.9 Lemma Let F Dbe an infinite field. If T preserves

determinant, then T preserves rank.
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Proof: Let A ¢ Mn be an arbitrary matrix. There exist
non-singular matrices Ml s Ny, M2 and N2 such that

MAN, = ¥, = I +0, . and M,T(A)N, =Y, = Ig + 0y ¢ where

r = g(A) and s = og(T(A))
Define § : M —sM_ by @(X) = m,T(M 1xnTl)N
eLin S R - pr\My Ay Mo

The mapping @ has the following properties:

(1) @ 1is linear since T 1is linear.

(2) det §(X) = k det X , where k = det(M My TN )

21

This results from det @(X) =

. S T— | _
det M,-det T(M; XN;7) -+ det N, =
Get, i, det e txany Qe N, =

) ~1.-1. '
deL(Mng Ny Ng) det. X

(3) #(vy) = Y, since @(Y)) = MQT(Mil(MlANl)Nil)NE

)

Set Y, =0_ + I . For each scalar 1 , det()¥; + Y

>
) = det(xﬁ(Yl) + ﬁ(YB)) = .
det(ng + @(Y=)) = p(xr) , where p(n) is a polynomial in

s . But det BAY; + Yy) =k det(AYq + ¥

5) 3)

, ‘therefore p()) = k) ¥ for any ) € F . .Since
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k#0, o)) =kx identically in \ . Therefore r £ s

and c(A) < c(T(A))
By Lemma 2.3.8, T~l exists; and since T pre-

: - -1
serves determinant, det B = det(TT l(B)) = det T “(B) for

all B € Mn . Therefore T—l preserves determinant. Thus

o(T(h)) < o(T_lT(A)) = g(A) and since it has previously been
shown that o(A) < o(T(A)) , then o(A) = o(T(A)) . That
is

, T ©preserves rank.

The statement of the following theorem differs from
that given by M. Marcus and B. N. Moyls only in part (3). In
particular, when F 1is the field of complex numbers, they
were able to find unimodular matrices U and V which satisfy

conditions in part (3) of Theorem 2.3.10.

2.3.10 Theorem ILet F be an infinite field and T a

linear transformation on Mn . The following conditions

are equivalent:

(1)

]

maps U into U_ .
nap n T n
(2) T preserves determinant.

(3) There exist non-singular matrices U and V

with det UV = 1 such that either

T(A) = UAV for all A

or  T(A) = UA'V  for all A .
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Proof: (1) nolds if and only if (2) holds by Corollary 2.3.7.
(3) implies (2) since det T(A) = det UAV = det A - det UV

= det A .

(2) implies (3) . If T preserves determinant, then by

Lemma 2.3.9 and Theorem 1.3.2, there exist non-singular matrices
U and V such thet either T(A) = UAV or T(A) = UA®V for

1 therefore 1 = det T(I)

Il

>

all A eM . Det T(I) = det I

= det UIV = det UV . That is, det UV = 1

COMMENTS AND FURTHER PROBLEMS FOR INVESTIGATION

The hypothesis of Theorem 2.3%.10 requires the
field F to contain an infinite number‘of elements, but the
infinité field is not a necessary condifion. In orger to show
that two polynomials of degree < n are identically equal,
it is sufficient that the equality holds for n + 1 distinct
elements of the field. The proof of Lemma 2.3%.6 requires
these n + 1 elements td be ndn-zero and to possess an
n-th root. If the field contains n(n+l) non-zero elements,
then there exist at least n + 1 distinct non-zero elements
each possessing an n-th root (see the proof of Lemma 2.3.2).
Therefore, for a given n , it is sufficient that the field
F of Theorem 2.3.10 contains at least n(n+l) non-zero
elements. Again this is not a necessary condition on the
field F since for some givén n there exist fields such

that each element of the field has a n-th root; for example,



1k,

for n=3 take F = 25 = 7/5Z .

The paper [1] gives a characterization of linear
transformations which preserve eigenvalues for all matrices
in the algebra of nxn matrices over the complex numbers.
A further problem would be to see 1f the same characterization

holds for the algebra of matrices over a larger class of fields.

v

Another problem which may be considered is the
following. In order to obtain the characterization of rank
preservers given in [1] it is sufficient that the linear
transformations preserve ranks 1, 2 and n . It may be possiblé_
to find other sufficient conditions on a linear transformation .
T such that T 1is a rank preserver. For example, if
o(T(A)) = 5(A) for all symmetric matrices, A , in the
algebra of matrices over a field P R then is T a rank

preserver?
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