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ABSTRACT 

O p t i c a l s i g n a l processing i s introduced as a t o o l f o r 
i n v e s t i g a t i o n s i n the f i e l d of t e l e v i s i o n compression research. 
An o p t i c a l s i g n a l processing system i s designed, which performs 
the F o u r i e r transform of a p i c t u r e s i g n a l F[B(x,y)] and i t s r e ­
co n s t r u c t i o n F ^"{F [B(x,y)]j . Some basic o p t i c a l f i l t e r i n g ex­
periments are performed i n the s p a t i a l frequency plane, and the 
o p t i c a l analogue of the frequency sampling theorem i s demonstrated. 

The F o u r i e r transforms of t e s t p a t t e r n p i c t u r e s show 
lar g e gaps which can be used f o r compression. Observation of com­
plex spectra of continuous tone p i c t u r e s i s found to be impaired 
by noise e f f e c t s . 

A p h y s i o l o g i c a l experiment i s c a r r i e d out, which i n v e s ­
t i g a t e s the r e l a t i o n s h i p between t o l e r a b l e f l i c k e r frequency and 
s p a t i a l frequency of a t e l e v i s i o n p i c t u r e . I t i s found that the 
t o l e r a b l e f l i c k e r r a t e f decreases as the s p a t i a l frequency f ^ 
i s increased, according to the e m p i r i c a l equation f = f e x p ( - k f x ) . 
f and k are parameters depending on f a c t o r s l i k e c o n t r a s t r a t i o , 
kind and s i z e of p i c t u r e , e tc. 

Compression systems using the above r e s u l t s are found to 
have a l i m i t of obtainable compression r a t i o of approximately 3 
to 1. 

i i 
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1. INTRODUCTION 

A considerable amount of work has been done i n the f i e l d 
of image compression research, starting almost immediately after 
the invention of t e l e v i s i o n . Numerous systems and techniques 
have been proposed to reduce the bandwidth required for the trans­
mission of t e l e v i s i o n signals, as becomes clear from Pratt's bib­
l i o g r a p h y ^ ^ . But, as Schreiber put i t i n a recent a r t i c l e : "The 

(2) 
results are meager, indeed". . The work continues, because the 
need for a more e f f i c i e n t transmission system s t i l l e x i s t s . And, 
even though the p r a c t i c a l results.have been l i t t l e , we at least 
begin to understand the problem. 

Most of the present day work to reduce redundancy i n t e l ­
evision picture transmission i s done on the basis of some d i g i t a l 
techniques, investigating e f f i c i e n t coding and quantizing methods. 
Wide use of computer simulation i s made to " r e a l i z e " the coding 
methods, and only a very small part of the proposed systems have 
actually been b u i l t ^ " ^ . 

In the l a s t few years a new method of analysing and pro­
cessing signals of various kinds has been developed, which makes 
use of coherent l i g h t , easily available today from lasers: Op­
t i c a l signal processing systems find increasing application i n 
numerous f i e l d s of research and p r a c t i c a l use. 

Optical systems possess two degrees of freedom, i . e . , two 
independent variables, as opposed to electronic systems with only 
one independent variable, time. In addition, o p t i c a l systems show 
the property that a Fourier transform r e l a t i o n exists between the 
l i g h t amplitude d i s t r i b u t i o n at the front- and back-focal planes 
of a lens used i n the system. The o p t i c a l system i s capable of 



2 

performing F o u r i e r transforms or r e l a t e d mathematical operations 
instaneously i n two dimensions; or, by use of as t i g m a t i c lenses, 
i n one dimension with a number of independent channels. This makes 
i t s uperior to an e l e c t r o n i c system, which would have to use scan­
ning or time sharing procedures to achieve the same r e s u l t s . 

The very l a r g e number of points which can e a s i l y be pro­
cessed i n p a r a l l e l f a s h i o n i s another f a c t o r i n favour of the op­
t i c a l method. A point against i t i s the noise, generated by the 
f i l m m a t e r i a l which c a r r i e s the o p t i c a l s i g n a l . 

With o p t i c a l methods, s p a t i a l frequency f i l t e r i n g i s a 
simple operation i n p r i n c i p l e , • and the research reported here uses-
such f i l t e r i n g as a t o o l to i n v e s t i g a t e some p o s s i b i l i t i e s of 
bandwidth re d u c t i o n f o r a p i c t u r e s i g n a l . 

There may be l a r g e gaps i n the spectrum of a p i c t u r e , which 
could be used f o r compression purposes, as suggested by vocoder 
methods'in speech compression. An attempt was made to check on 
t h i s point i n Chapter 4 . 

Mertz and Gray f i r s t showed that the t e l e v i s i o n spec­
trum i s comb-like i n s t r u c t u r e , with empty spaces i n between 

("3) 

each clump of energy. (This f a c t i s made use of i n c a r r i e r 
i n t e r l a c e d c o l o r t e l e v i s i o n ) . Thus, we expect to be able to red­
uce bandwidth merely by c l o s i n g up the spaces. In f a c t , the 
frequency v e r s i o n of the sampling theorerr/^ suggests s i m i l a r meth­
ods; a basic experiment described i n t h i s t h e s i s shows that the 
s p a t i a l frequency spectrum of a s t i l l p i c t u r e can be made i n f i n ­
i t e s i m a l i n t o t a l , without a f f e c t i n g appreciably the p i c t u r e qual­
i t y . 

For an a c t i v e l i n e of a normal t e l e v i s i o n d i s p l a y , 300 
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spectral spikes have to be used i n a frequency sampled signal, 
as w i l l be shown i n chapter 3.2. In p r i n c i p l e , each l i n e may be 
en t i r e l y uncorrelated, i n which case the bandwidth, needed for 
each spectral spike i s roughly the number of picture l i n e s times 
the picture r e p e t i t i o n frequency: 525x30 = 15,750 Hz, assuming 
single sideband modulation. Thus, although one single l i n e of 
a s t i l l picture needs zero bandwidth, (in the l i m i t ) , the t e l e ­
v i s i o n case-needs 300x15,750 Hz = 4-725 MHz; t h i s happens to be 
the normal actual bandwidth. 

Limitations i n the -perception of the human eye may be 
exploited to reduce television' bandwidth. One such l i m i t a t i o n i s 
examined i n t h i s thesis. I t i s concerned with the question: What 
i s the minimum rate at which the s p a t i a l frequencies must be pres­
ented on a TV-screen, for f l i c k e r to be just not apparent? I t 
i s shown that the minimum rate, or tolerable f l i c k e r frequency, 
decreases as the s p a t i a l frequency i s increased. 

Thus, a band reduced system could be designed, using 
different transmission rates for low and high frequency compon­
ents of a t e l e v i s i o n signal. 

The present thesis deals with three problems: 
(a) The design of o p t i c a l signal processing equipment, which can 

be used as a to o l to investigate t e l e v i s i o n compression prob­
lems (chapter 3 ) ; 

(b) The performance and results of some exploratory f i l t e r i n g 
experiments. These are not complete, but intended as a.guide 
to further work (chapter 4-) ; 

(c) The results of f l i c k e r experiments, which investigate the 
temporal response of-the human eye to s p a t i a l frequencies 
(chapter 5)• 
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2. THEORY OP OPTICAL SIGNAL PROCESSING 

2.1 Fundamental o p t i c a l systems 
An e x c e l l e n t d i s c u s s i o n of the theory of o p t i c a l data 

(5 ) 

processing i s given by Cutrona et a l . . For the purpose of 
t h i s t h e s i s a b r i e f d e s c r i p t i o n of the basic components and r e l ­
a t i o n s of an o p t i c a l system i s given here, d i s c u s s i n g mainly the 
theory as i t a p p l i e s to i n v e s t i g a t i o n s of the frequency domain. 

Let us f i r s t consider an example of a non coherent l i g h t 
system, as i t i s shown i n F i g . 1: 

y y 

F i g . 1 O p t i c a l system f o r two dimensional m u l t i p l i ­
c a t i o n and i n t e g r a t i o n 

A given s i g n a l of two v a r i a b l e s may be represented by a 
s p a t i a l l y v a r y i n g transparency, such as a photographic f i l m , whose 
transmittance i s t 1 ( x , y ) , with O-t.^-1. Light of uniform i n t e n ­
s i t y I passes through t h i s transparency and i s s p a t i a l l y modul­
ated to give the output i n t e n s i t y I t ^ ( x , y ) . I f we now l e t t h i s 
l i g h t pass through a second transparency of transmission t 2(x-X,y) 
f o r example, where X i s a displacement of the transparency o f f the 



axis of the l i g h t path, then the transmitted l i g h t w i l l be of the 
inte n s i t y I t^(x,y)t^(x-X,y). Thus a two dimensional multiplica­
t i o n i s performed. 

Let a second lens Lg focus the l i g h t to a point, summing 
up a l l i n t e n s i t i e s to a t o t a l i n t e n s i t y I : 

I p = Jj I Q t 1(x,y) t 2(x-X,y) dx dy 2.1 
A 

A i s the t o t a l aperture area i n plane P.̂ , and attenuation and ef­
fects of f i n i t e lens size have been ignored. 

This i n t e g r a l has the form of a two dimensional convol­
ution or cross-correlation. 

We defined the transmission function to be positive only. 
If we desire to represent a negative going sign a l , we must write 
i t on a dc-bias, represented by a constant c i n the transmission 
function. We may also have to introduce a scaling factor a for 
the o r i g i n a l signal function. 

^ + â ĵ  ^ ( x j ) 2.2 

Evaluating an i n t e g r a l of the form of equation 2.1 w i l l then pro­
duce undesired cross terms. 

In many applications i t i s possible to remove the dc-
bias by using a "coherent" o p t i c a l system. Such a system requires 
the use of p a r a l l e l , s p a t i a l l y ' coherent and monochromatic l i g h t . 
A Fourier transform of the transparency i s obtained o p t i c a l l y 
i n t h is system, where the dc part of the signal i s concentrated 
at one s p e c i f i c location. It may then be removed by a simple stop, 
and a second Fourier transform reconstructs the o r i g i n a l signal 



without the dc b i a s . Pigure 2 shows the necessary o p t i c a l 
arrangement. 

Plane P 

P i g . 2 O p t i c a l F o u r i e r transformer 

L i g h t of the complex amplitude d i s t r i b u t i o n U^(x^,y-^) emerges 
from plane P^. We can w r i t e 

U-]_(x1,y1) = U 1 ( x 1 > y 1 ) . 3 x p T j a ( x 1 , y 1 ) 2.3 

U-^(x-py^) i s the amplitude of the wave f r o n t and a(x^,y^) i s the 
phase d i s t r i b u t i o n . The amplitude may be regarded as represented 
by the photographic density of a transparency i n plane P^, the 
phase by v a r i a t i o n s i n transparency t h i c k n e s s . 

The complex amplitude d i s t r i b u t i o n ^2^x2'^2^ a"t plane P^ 
i s given by 

+C+D _ 

U n ( x n , y n ) e x p ( - j w x x 1 ) e x p ( - j w y1)dx1dy1 2.4 U 2 ( x 2 , y 2 ) = 

-C-D 



For a proof of equation 2.4 see appendix. 
The s p a t i a l frequencies wx and to are defined by r e l a ­

t i o n 2.5: 

to 
-2jtx, 

to 
-2%yr 

2.5 

where \ i s the wavelength of the l i g h t used. 
We see that i - s 'the Fourier transform of U , l y i n g 

within the l i m i t s -C, -D. Plane P^ i s the s p a t i a l frequency plane, 
The usefulness of a system according to Figure 2 can be seen im­
mediately: Besides being a to o l for spectrum analysis, f i l t e r i n g 
i s e a s i l y accomplished by placing appropriate stops i n the f r e ­
quency plane to block any part of the spectrum. 

To simulate and process the equivalent of a scanned s i g ­
nal, we need only a one -dimensional system. The second dimension 
can then be used.to accommodate a large number of independent 
channels for one dimensional signals, thus not wasting the capac­
i t y of the system. 

2̂ 

Fig. 3 Multichannel one-dimensional Fourier 
transformer 



8 

The lens system of Figure 3 focuses only i n one dim­
ension, performing an imaging i n the other dimension, such that 
y 2 i s an inverted image of y^. The Fourier transform obtained 
with t h i s system therefore becomes 

+r -
U 2(x 2,y 2) = J U 1(x 1,y 1)exp(-j(o xx 1) dx 1 

-C 

2.6 

Two or more Fourier transforming systems may be cas­
caded to perform successive transforms. The conventional Fourier 
transform theory requires the kernel function exp(-jwt) for the 
transform from time to frequency domain, and the function exp (j cot) 
for the inverse transform from frequency to time. An opti c a l sys­
tem ( i . e . , a lens) always introduces the kernel function 

exp 0 x 1 y 1 We can obtain the right sign for the ker­
nel function of the inverse transform by merely l a b e l l i n g the 
co-ordinates appropriately, as shown i n Figure 4 . 

1 

Fig. Successive Fourier transformers 

2.2 Optical f i l t e r i n g 
It i s possible to introduce f i l t e r i n g action on a signal 
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i n the frequency plane of an o p t i c a l system (plane T^, Figure 4). 
The r e s u l t i n g e f f e c t can be observed immediately i n the plane of 
the r e c o n s t r u c t i o n (P^, Figure 4). B a s i c a l l y there are two kinds 
of f i l t e r s that may be introduced i n the frequency plane: ampli­
tude f i l t e r s and phase f i l t e r s . Together they can e f f e c t a com­
plex f i l t e r f u n c t i o n . An amplitude f i l t e r i s obtained by v a r y i n g 
the o p t i c a l d e n s i t y of a transparency. A phase f i l t e r i s r e a l i z e d 
by v a r y i n g the th i c k n e s s , which i n t u r n v a r i e s the phase r e t a r d ­
a t i o n . A simple form of an amplitude f i l t e r might be a s l i t , whic 
corresponds to a s p a t i a l bandpass f i l t e r ; a stop represents a r e j ­
e c t i o n f i l t e r . 

Complex f i l t e r f u n c t i o n s appear to be p o s s i b l e , although 
more d i f f i c u l t to r e a l i z e p r a c t i c a l l y . A hologram, c o n t a i n i n g 
amplitude and phase information of a p i c t u r e , can be used as a 
complex f i l t e r . Examples f o r t h i s technique are to be found main-

(6) 

l y i n the f i e l d of pattern r e c o g n i t i o n . . 
The one-dimensional F o u r i e r transform plane may be sampled 

by narrow s l i t s ( i n f i n i t e l y narrow i n the l i m i t ) , spaced at reg­
u l a r i n t e r v a l s , to produce a perfect r e c o n s t r u c t i o n . This i s the 
• o p t i c a l analog of the frequency sampling theorem, which states tha 
a time l i m i t e d f u n c t i o n can be represented by i t s uniform samples 
i n the frequency domain.^ ̂  

For each point i n a l i n e of a scanned p i c t u r e , time has 
a d i s t i n c t correspondence with each point i n the x - d i r e c t i o n i n 
plane P-̂  of the o p t i c a l system (Figure 3)- The input s i g n a l w i l l 
be a p i c t u r e of f i n i t e s i z e , placed i n t o t h i s plane, thus f u l f i l ­
l i n g the c o n d i t i o n of a time l i m i t e d s i g n a l . Now we can proceed 
to introduce some kind of a comb f i l t e r i n the F o u r i e r transform 
or s p a t i a l frequency plane P 2. The e f f e c t , observed at 
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the output plane (see Pigure 4 ) , w i l l be a d i f f r a c t i o n due to 
the grating-like action of the comb f i l t e r , producing a string of 
diffra c t e d output pictures. A coarse f i l t e r produces overlapping 
output images; the spacing of the grating l i n e s has to be made 
fine enough (according to d i f f r a c t i o n theory) i n order to get the 
f i r s t maximum of the d i f f r a c t i o n pattern at least one picture 
width off the op t i c a l axis (see chapter 3 ) -
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3. DESIGN OP THE OPTICAL SYSTEM 

3•1 Basic considerations 
In the op t i c a l system described here Ronchi rulings were 

used as a comb f i l t e r to v e r i f y the frequency sampling theorem. 
These rulings are o p t i c a l l y f l a t glass pieces with engraved,, met­
a l - f i l l e d l i n e s of high precision, giving a 50/50 opaque/transpar-
ent grating. They are readily available only with 500 l i n e s 
per inch, which imposes some l i m i t s on . the physical size of the 
whole system, because of the quite large d i f f r a c t i o n length needed 
to get the di f f r a c t e d output pictures separated i n a_ one to one 
imaging system (see chapter 3-2.). One to one imaging was found 
to be desirable i n order to allow easy observation of the output. 
A system using long focal length lenses i s also better with res­
pect to lens aberrations, because the "thin lens" concept i s more 
closely r e a l i z e d . 

Further l i m i t a t i o n s of the physical dimensions are given 
by the width of the laser beam available, which provides the <-.o-
herent l i g h t . Here a commercially available beam expander was 
used, giving a beam of 50 millimeters diameter, with gaussian phase 
d i s t r i b u t i o n over the aperture. Standard 35 millimeter s l i d e s , 
which could be illuminated quite uniformly with the expanded beam, 
were used i n the input plane. 

The laser beam1can be made p a r a l l e l or converging by ad­
justing the expander telescope. This feature was used to get the 
f i r s t two dimensional Fourier transform of the input transparency, 
by focusing down the beam with the telescope, according to Figure 
5. 
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Such a.n arrangement i s described by Vander Lugt as 
the "variable scale" Fourier transform system. The input plane P-̂  
may be moved a x i a l l y without disturbing the exact Fourier trans­
form r e l a t i o n between plane P-̂  and P 2; only the scale of the 
transform i s varied. This system has also the advantage of being 
space invariant i n the sense that a l l the l i g h t emerging from lens 
L, f a l l s on the input plane. 

Fig. 5 Variable scale Fourier transformer 

A spherical lens, placed right behind the Fourier trans­
form plane, can be used to perform a second transform, giving an 
approximate one to one imaging onto the output plane. Two c y l i n ­
d r i c a l lenses, inserted at the appropriate places make the sys­
tem one-dimensional. The basic setup i s shown i n Figure 6. 
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p. 

Pig. 6 Basic o p t i c a l system 

3.2 Calculations 
The computations of the physical dimensions of the sys­

tem according to Figure 6 w i l l be based on the few desirable prop­
erties and given dimensions discussed above, such as size of i n ­
put picture, beam width, imaging conditions, size of .Ronchi r u l ­
ings . 

Let us f i r s t determine the d i f f r a c t i o n length needed to 
get the output pictures well separated. The 500 l i n e s per inch 
Ronchi rulings w i l l be used to perform the s p a t i a l frequency sam­
pli n g , and 1:1 imaging i s assumed. This dimension w i l l give us 
an idea of the t o t a l length, of the f i n a l system. The general 
equation for the in t e n s i t y d i s t r i b u t i o n at a point behind a grat-

(8) 
ing according to Figure 7 i s given by equation 3-1 • 

K P ) = 
sin-kNdp 2 

X . kdp 3-1 

where sinG - sin9 o 3-2 
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N s l i t s 

d 

Fig. 7 D i f f r a c t i o n grating 

L i s the length of a s l i t , k = 0, 1, 2 . . . 
The inte n s i t y d i s t r i b u t i o n I(p-) w i l l have maxima due to the 
period d of the grating, represented by the f i r s t bracket i n 
equation 3.1. These maxima w i l l occur at 

P 
m \ 
d (m = 0,-1,-2 ) 3-3 

m i s the order of interference, i t represents the path length 
difference i n wavelengths i n the dire c t i o n of the maximum, from 
corresponding points i n neighbouring s l i t s . The f i r s t order ma.x-

, X lmum occurs at p = ^ . 
In our case we have 9 =0, which means that the l i g h t 

o to 

i s normally incident on the grating. 

p l - s i n e i = d 3.4 

©]_ j s the angle of the f i r s t order d i f f r a c t e d picture with respect 
to the zero order picture on the opti c a l axis. We may replace 
sin9^ by the l a t e r a l separation b of the f i r s t order picture, 
divided by the d i f f r a c t i o n length 1 of the system. 
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s i n G i = i = a 3 ' 5 

We are now able to determine the d i f f r a c t i o n length 1 from the 
given dimensions b, d, and X. 

b = 35 mm 
d = 25.4 

500" m m 

X = 632.8 10~ 6 mm 1 = 2.8 m 

If we want to accommodate the whole p a r a l l e l beam of 50 mm d i a ­
meter, 1 comes out to be 4 meters. This value was used i n the 
actual system. 

The 35 mm picture i n input and output plane corresponds 
to a t e l e v i s i o n picture scanned by an electron beam, to give an 
electronic signal of a certain bandwidth. The standard t e l e v i s ­
ion system used here has 525 l i n e s , of which 21 are used for 
f i e l d blanking; t h i s leaves 504 active l i n e s . The time for one 
l i n e scan i s 63-5 us, of which 10.8 us are l i n e blanking time, 
leaving 52.7 us for one active l i n e . . 

Introducing a Kell. factor of 0.73, the v e r t i c a l resolution 
of the system i s 368 l i n e s per screen height. A 4 to 3 aspect 
r a t i o results i n 490 l i n e s horizontal resolution. These 490 
l i n e s are t e l e v i s i o n l i n e s , corresponding to 245 complete cycles 
black - white, which i s the standard used to define resolution 
of f i l m , and also the s p a t i a l frequency. 

245 f u l l cycles ( i n the worst case) are scanned by the 
t e l e v i s i o n system i n 52.7 us. This leads to a highest necessary 
bandwidth of the t e l e v i s i o n channel: 
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f 245 
m a x 52.7x10' 

= 4.65 M H z 3-7 

To summarize, 245 l i n e s (black - white cycles) across a t e l e v i s i o n 
picture correspond to a frequency of 4.65 MHz of the video s i g ­
nal. In the opt i c a l system described here, t h i s i s equivalent to 
a s p a t i a l frequency of 245 l i n e s per 35 mm, according to the chos­
en picture size. 

We r e c a l l equation 2.4, which relates the scale of the 
sp a t i a l frequency plane with the physical dimensions of the o p t i ­
c a l processing system. 

2TCX * OJ i n radians per / 0 A\ 
wx = ~W unit length 

To convert into the s p a t i a l frequency f , we divide by 2it. The 
highest s p a t i a l frequency i n our o p t i c a l system should f a l l inside 
an area i n the Fourier transform plane given by the size of the 
Ronchi rulings. 500 l i n e rulings are made i n a size of one by 
two inches, with the l i n e s p a r a l l e l to the short side. Therefore, 
for the l a t e r a l displacement of the of the highest s p a t i a l f r e ­
quency component from the dc centre l i n e somewhat less than one 
inch can be allowed. From Figure 6 and the 1 to 1 imaging condi­
tion we find that the d i f f r a c t i o n length of the output section i s 
also the focal length of the f i r s t Fourier transforming lens . 
V/e now can determine the point i n the s p a t i a l frequency plane, 
which corresponds to the upper l i m i t of 4.65 MHz actual bandwidth 
of a video signal, or 245 l i n e s per 35mm s p a t i a l frequency, i . e . , 
7 l i n e s per millimeter. 
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1 2rc\f 
x, =. = — = 17.5 mm 3-8 
1 2it 

x-̂  i s therefore well within the l i m i t of one inch or 25.4 mm 
given by the size of the Ronchi r u l i n g . 

Prom 3-8 we now find that 1 millimeter i n the s p a t i a l 
7 

frequency plane corresponds to ^ = 0.4 l i n e s per mm. This 
i s equivalent to an actual signal frequency f^ 

f 
f, =• = 266 kHz 3-9 

1 x l 

The s p a t i a l frequency plane i s sampled by the Ronchi r u l i n g at 
an i n t e r v a l d, which corresponds to a sampling i n t e r v a l Af i n 
actual signal space. 

Af = f± d = 13.5 kHz 3-10 

Taking the approach from the d i f f r a c t i o n theory, we can 
calculate the spacing of some grating l i n e s , which would corres­
pond to separated output pictures at the chosen d i f f r a c t i o n length 
of 4 meters. Prom equation 3«5 we have 

sinQ = T = -r-k- d = K1 3.11 1 d max b max 

With 1 = 4 m, b = 35 mm, X = 632.8 10~9m, we get d = 0.072 mm. 
niQ,x 

Converting into frequency, t h i s corresponds to a sampling i n t e r v a l 
Af 
max 

Af = f, d = 1 9 kHz 3.12 
max 1 max 

The sampling theorem implies that the sample i n t e r v a l 
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has to be smaller or equal ^ , with T being the duration of 
m 

the time limited s i g n a l . The time duration T for one l i n e scan • 
^ m 

i n the actual t e l e v i s i o n system i s 52.7 us. The necessary sam­
pl i n g i n t e r v a l therefore becomes 

f = 7K = 19 kHz 3-13 max T m 

This i s the same result as obtained from d i f f r a c t i o n theory. 
The 500 l i n e per inch Ronchi rulings used here, having 

a spacing equivalent to 13-5 kHz i n the 4 m long system, some- • 
what oversample the spatial frequency plane. This was introduced 
deliberately by taking 4m as the d i f f r a c t i o n length between 
Fourier transform and output plane, to ensure a f u l l beam dia­
meter separation. The system could be shortened to the absolute 
minimum of 2.8 meters, i f only 35 mm separation were desired. 

3.3 The l i q u i d c e l l 
An empty transparency, i . e . , a piece of transparent 

c e l l u l o i d , i n the input plane of the o p t i c a l system of Figure 
6 produces a great amount of noise i n the Fourier transform plane 
?2. The cause of t h i s noise i s interference due to the uneven 
f i l m surface, which acts i n the coherent illumination as a phase 
modulator. 

This undesired effect can be greatly reduced by a l i q u i d 
c e l l , shown schematically i n Figure 8. 

The uneven f i l m transparency i s immersed i n a l i q u i d , 
which i s contained i n a box made out of o p t i c a l l y f l a t glass. The 
l i q u i d has to be of the same ref r a c t i v e index as the f i l m material, 
which i s around 1.5, so that a change i n ref r a c t i v e index only 
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occurs at the o p t i c a l l y f l a t glass surfaces. Several components 
were tested for the l i q u i d , with pure turpentine giving the best 
r e s u l t s . A demonstration of the effectiveness of the l i q u i d c e l l 
i s given i n section 4.3-

f i l m transparency 

l i q u i d , r e f r a c t i v e index 
equal to f i l m material 

o p t i c a l l y f l a t glass 

Pig. 8 Liquid c e l l 

3.4 Frequency sampling arrangement 
To sample the s p a t i a l frequency plane at regular i n t e r ­

vals, 2 Ronchi rulings were used, providing a variable s l i t width 
of 50/50 black/ transparent to 100$ black. One r u l i n g was f i x e d -
mounted, while the other one was l a t e r a l l y movable by a fine ad­
justing screw. A t h i n o i l f i l m between the two ruled surfaces 
enabled them to s l i d e easily on each other. Figure 9 shows the 
arrangement of the sampling r u l i n g schematically. 

coherent 
l i g h t 

T i l II III 
n 1 

I) I ' 
1 4 

111 n 11 J 
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f i x e d mounted 
g r a t i n g 

mounts 

spri n g 
V adjustable g r a t i n g 

metal f i l l e d , engraved 
r u l i n g , ( g r e a t l y exaggerated) 

o i l f i l m 
a d j u s t i n g screw 

F i g . 9 Adjustable sampling g r a t i n g 

3•5 D e s c r i p t i o n of the system 
In the a c t u a l system of Figure 10 a two meter f o c a l 

length lens i s used as the second F o u r i e r transforming l e n s , and 
i t i s placed r i g h t behind t h e ' s p a t i a l frequency plane P 2, 4 meters 
from the input plane and 4 meters from the output plane. This 
arrangement gives a 1 to 1 imaging. I t i s e a s i l y converted i n t o 
a one-dimensional system by i n t r o d u c i n g the two c y l i n d r i c a l lenses 
L 2 and 1^. The f o c a l l e n g t h of these two lenses i s not c r i t i c a l 
as long as L^, t h e . s p h e r i c a l l e n s , i s placed r i g h t behind the 
F o u r i e r transform plane, thus being of almost n e g l i g i b l e e f f e c t 
on the imaging c o n d i t i o n between F o u r i e r transform plane and out­
put plane. The standard equation 3•14, r e l a t i n g the imaging d i s ­
tance B and the object distance G with the f o c a l length F of a 
l e n s , may be app l i e d to c a l c u l a t e the dimensions r e l a t e d with the 
c y l i n d r i c a l lenses L„ and L . . 
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1 1 1 •? 1 A 

F = B + G J ' 1 A 

Their f o c a l lengths have to be shorter than one meter, to ensure 
an imaging s o l u t i o n w i t h i n the a v a i l a b l e 4 meters t o t a l d i s t a n c e . 
A f o c a l l ength of 0.8 meters was chosen f o r both lenses and , 
g i v i n g approximately 3 to 1 imaging between the y - d i r e c t i o n of 
input and F o u r i e r transform plane, and 1 to 3 e n l a r g i n g from 
F o u r i e r transform to output plane. The.one-dimensional F o u r i e r 
transform i s therefore compressed i n the y - d i r e c t i o n , and thus 
f i t s e a s i l y i n s i d e the one in c h v e r t i c a l space l i m i t given by the 
Ronchi r u l i n g . 

S l i g h t o f f s e t of the lens from the exact h a l f distance 
between input and output plane may be compensated by asymmetrical 
arrangement of the c y l i n d r i c a l l e nses, but only i n a l i m i t e d r e ­
gion. For an exact c a l c u l a t i o n of the general asymmetrical case 

(8) 
the equation 3-15 f o r a two.lens system should be used f o r the 
output s e c t i o n . 

— — — _ H _ F = P + F 2 F 1 F 2
 : 5 , 1 5 

F and F 2 are the f o c a l lengths of the two lenses, H i s t h e i r 
separation. For lenses i n contact, (H = 0), t h i s equation r e ­
duces to a simple a d d i t i o n of the powers of the lenses. 

In p r a c t i c e , the symmetrical system was found to be eas­
i e s t to handle, because alignment procedures soon get very d i f ­
f i c u l t w i t h an asymmetrical setup, due to the l a r g e number of var­
i a b l e s •involved and the p h y s i c a l dimensions of the system. 

Figure 10 shows schematically the f i n a l system. 



Laser 

1 

Beam Liquid 
expander c e l l 

4m 

L 

Ronchi r u l i n g 
1.1m 

'Fourier transforming section 

1.1m 
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4m 
Reconstructing section 

Fig. 10 The f i n a l o p t i c a l system 

L^: Beam expander telescope, adjusted to F - 4m, 50mm diam. 
'• C y l i n d r i c a l lens, F = 0.8m, 55mm diameter 

L^: Spherical lens, F = 2m, 55mm diameter 
L.: Same as L„ 



A l l lenses had to be of e x c e l l e n t ' q u a l i t y , ground to 
w i t h i n the order of a wavelength. Any kind of surface d i s t o r ­
t i o n was r e a d i l y observable i n the output plane. The c y l i n d r i ­
c a l lenses were mounted i n r o t a t a b l e rings to provide easy a d j u s t ­
ment of the o p t i c a l a x i s . 

The sc a l e of the s p a t i a l frequency plane i n t h i s 
system was as c a l c u l a t e d under 3-2., i . e . , 1 mm i n the s p a t i a l 
frequency plane corresponds to 0.4 l i n e s per mm i n the input 
plane, or to 266 kHz of an a c t u a l video s i g n a l . 
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4 . FOURIER TRANSFORMS AND SPATIAL FILTERING 

4 . 1 Two-dimensional F o u r i e r transforms 
The f i r s t s e c t i o n of the o p t i c a l system according to 

Figure 10 i s converted i n t o a two-dimensional F o u r i e r t r a n s ­
forming arrangement by removing the c y l i n d r i c a l lens L^. Figures 
11 and 12 show the ROWI t e s t chart and the corresponding two-di­
mensional F o u r i e r transform as observed i n plane P,~,. The center-
p a r t , representing the dc and low frequency content of the t r a n s ­
formed p i c t u r e , had to be somewhat overexposed, to show the weaker 
parts of the l i g h t d i s t r i b u t i o n . 

Plane P 2 may be l a b e l l e d i n s p a t i a l frequency by a polar 
co-ordinate system w (r,<p), with o r i g i n i n the c e n t r a l dc poin t . 

P 
The concentric f r i n g e p a t t e r n represents the transform of the r i n g s 
i n the o r i g i n a l , with strong harmonics at the s p a t i a l frequencies 
corresponding to the width and spacing of the r i n g s . The repet­
i t i v e dot patterns are due to s p a t i a l d e t a i l i n the r e s p e c t i v e 
d i r e c t i o n s . Figures 13 and 14 show an o f f center d e t a i l of the 
same chart and i t s transform. Note here e s p e c i a l l y the strong, 
widely-spaced harmonics i n the h o r i z o n t a l and v e r t i c a l d i r e c t i o n s , 
corresponding to oval c l u s t e r s of f i n e v e r t i c a l and h o r i z o n t a l 
l i n e s . 

Although these transforms are not of primary i n t e r e s t 
f o r i n v e s t i g a t i o n s of a one-dimensional t e l e v i s i o n s i g n a l , they 
show some basic c h a r a c t e r i s t i c s . o f the performance of an o p t i c a l 
system. For example, they show c l e a r l y that only a small part of 
the t o t a l area of the frequency plane i s r e a l l y occupied by the 
l i g h t d i s t r i b u t i o n , at l e a s t f o r a two tone p i c t u r e l i k e the ROWI 
chart. 



Fig. 11 ROWI test chart 

Fig. 12 Two-dimensional Fourier transform of 
Fig. 11 (Center part overexposed) 
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Pig. 14 Two-dimensional Fourier transform 
of Fig. 13 
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Furthermore, the analogy "between the Fourier transform 
plane i n the op t i c a l system and the hologram plane of a Fraunhofer 
d i f f r a c t i o n hologram may be mentioned here again. By superimpos­
ing a reference beam on the Fourier transform we get a hologram 
of the input picture, which could be recorded on an appropriate 
photographic emulsion. The reference beam i n holography i s needed 
to get a recording of the phase d i s t r i b u t i o n i n the hologram 
plane by means cf interference, because photographic emulsion 
only responds to int e n s i t y and not to phase. A hologram then i s 
able to f u l f i l l the condition that the phase information also has 
to be retained i n the Fourier•transform plane i f further proces­
sing of the signa l , e.g., a second Fourier transform producing a 

(7) 
reconstruction of the o r i g i n a l , i s to be performed. 

On the other hand, f i l t e r s produced by holographic tech­
niques may be introduced i n the Fourier transform plane to achieve 
complex f i l t e r i n g , as has been done i n some pattern recognition +. (6) experiments. 

4.2 One-dimensional Fourier transforms 
Inserting the c y l i n d r i c a l lens at the appropriate 

place into the system of Figure 10, we obtain a one-dimensional, 
multichannel Fourier transform arrangement. Now an imaging^ con­
d i t i o n relates the y-axis of the planes P^ and P^, while the x-
axis i s unchanged- and s t i l l governed by the Fourier transform 
r e l a t i o n . 

Figure 15 shows the one-dimensional transform of the cen­
t r a l part of the ROWI test chart; Figures 16 and 17 show the 
Marconi resolution chart No. 1 and i t s Fourier transform. Here 



i t i s easy to r e l a t e the l i g h t d i s t r i b u t i o n of the Four i e r 
transform to the o r i g i n a l p i c t u r e . As i t i s w e l l known from the 
g r a t i n g equation 3»3, the separation of the secondary maxima of 
a d i f f r a c t i o n p a t t e r n i s i n v e r s e l y p r o p o r t i o n a l to the spacing 
of the g r a t i n g ; the same r e l a t i o n may also be derived from the 
d e f i n i t i o n of the s p a t i a l frequency (equation 2.4). We are thus 
able to c a l i b r a t e Figure 17 very e a s i l y i n a s p a t i a l frequency 
s c a l e , with respect to the o r i g i n a l t e s t chart. The i n t e n s i t y 
maxima, f o r the d i f f e r e n t l i n e spacings from 100 up to 600 l i n e s 
per p i c t u r e width are c l e a r l y v i s i b l e , as w e l l as the s l o p i n g 
l i n e s corresponding to the fanning-out l i n e s i n the center part 
of the o r i g i n a l . 

1 i 

f 
I I I ^ 

0 250 500 ( l i n e s per 
p i c t u r e width) 

F i g . 15 One-dimensional F o u r i e r transform of 
ROWI t e s t chart (center part) 



P i g . 16 M a r c o n i r e s o l u t i o n c h a r t No. 1 

I I I L 

0 200 400 600 f 
x 

(lines/picture width) 
Fig. 17 One-dimensional Fourier transform of 

Marconi chart (centre part) 
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4 . 3 R e l a t i o n to video s i g n a l 
A t e l e v i s i o n s i g n a l i s produced by scanning a p i c t u r e , 

( 3 ) 

l i n e by l i n e , at a c e r t a i n r a t e . As i t i s well.known, t h i s 
leads to a concentration of the power i n the frequency spectrum 
at the harmonics of the l i n e r e p e t i t i o n frequency. This f a c t i s 
based on the s u p p o s i t i o n of a time l i m i t e d s i g n a l of the d u r a t i o n 
of one l i n e scan, or a sequence of s i m i l a r s i g n a l s of equal l e n g t h . 

In our o p t i c a l system we f i n d an exact equivalent to 
the r e a l time s i g n a l . The one-dimensional system t r e a t s the i n ­
put p i c t u r e l i n e by l i n e , g i v i n g the immediate F o u r i e r transform 
of each l i n e . The h o r i z o n t a l a x i s of the p i c t u r e i s l a b e l l e d 
time, and the p i c t u r e width then determines the time f o r one l i n e 
scan, which, i n the F o u r i e r transform plane, w i l l give r i s e to 
power concentrations at the harmonics of the s p a t i a l frequency 
corresponding to the p i c t u r e width. 

The aperture given by an empty frame as the input p i c ­
ture produces a F o u r i e r transform as shown i n the Figures 18 and 
19. This i s the w e l l known patte r n of a Fraunhofer d i f f r a c t i o n 

(8) 
at an. aperture i n o p t i c s . Here the secondary maxima are the 
analogue of the maxima i n the frequency spectrum of a t e l e v i s i o n 
s i g n a l , spaced at i n t e r v a l s corresponding to the inverse l i n e 
d u r a t i o n . 

The e f f e c t of the l i q u i d c e l l described i n s e c t i o n 3-3 

i s demonstrated by the Figures 20 and 21, both showing the 
F o u r i e r transform of an aperture w i t h an empty transparency of 
c l e a r f i l m m a t e r i a l introduced. The severely disturbed l i n e pat­
tern of Figure 20 i s restored i n Figure 21, which was taken with, 
the same transparency, immersed i n the l i q u i d c e l l . 



0 190 kHz actual video 
signal 

18 One-dimensional Fourier transform of 
an aperture (Center part overexposed) 

.9 Part of the same transform as i n Fig. 18, 
only showing higher s p a t i a l frequencies. 
Line spacing equivalent 19 kHz actual video 
signal. (Fringe pattern due to lens used 
for enlargement i n photographic process) 



Fig. 20 Fourier transform of aperture with 
empty transparency 

Fig. 21 Fourier transform of aperture with empty 
transparency i n l i q u i d c e l l 
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4 • 4 Frequency sampling; 
The s t r i n g of separated output pictures produced by the 

frequency sampling i s shown i n Figure 22. The input picture was 
a 35 mm frame containing the center part of the ROWI test chart. 
As calculated i n section 3-2, the rulings are able to sample a 
50 mm picture without ambiguity, i . e . , without producing overlap­
ping outputs. 

Figure 23 shows the output of the system without the 
sampling r u l i n g . The rounded off edges are due to the small size 
lens used for enlargement i n the photographic process. 

Figure 24 shows the same image of the output plane, but 
with the rulings inserted and adjusted to a quite narrow s l i t 
width of approximately 15 to 1 opaque to transparent r a t i o . The 
effect on the output picture i s merely a decrease i n overall i n ­
tensity (compensated here by longer exposure of the photography). 
Some s l i g h t degradations are caused by imperfections i n the r u l ­
ings, only v i s i b l e under a microscope, and are independent of s l i t 
width. Figure 24 thus i s a very convincing demonstration of the 
.frequency sampling theorem. 

Figure 25 shows an enlarged part of the Fourier trans­
form plane with the sampling grating, adjusted to the same s l i t 
width as used for Figure 24. A l l sampling l i n e s are of equal 
width; the apparent broadening of some bright l i n e s i s due to 
overexposure of these l i n e s , which was necessary to show the weaker 
parts. 
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Fig. 22 String of output pictures after frequency 
sampling 

Fig. 23 Single output picture without sampling 



F i g . 24 C e n t r a l ( z e r o order) output p i c t u r e 

. a f t e r f r e q u e n c y s a m p l i n g 

Fig. 25 Enlarged part of sampled s p a t i a l frequency 
plane. (Apparent irre g u l a r sample width due 
to overexposure) 
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.4-5 Coarse f i l t e r i n g 
For the f o l l o w i n g experiments, f o r ease of observation, 

the output plane was viewed by a camera of a closed c i r c u i t t e l ­
e v i s i o n system and displayed on a monitor. The p i c t u r e on the 
monitor was n a t u r a l l y somewhat degraded, but much more convenient 
to observe. Figure 26 i s a photograph of the output p i c t u r e of 
Figure 24, displayed on the monitor. 

Some basic p r o p e r t i e s of the o p t i c a l system may be shown 
by very simple, coarse f i l t e r i n g , p l a c i n g stops i n d i f f e r e n t parts 
of the F o u r i e r transform plane. The e f f e c t of a low pass f i l t e r , 
r e a l i z e d by a 10 mm wide s l i t i n the F o u r i e r transform plane, pas­
s i n g only the c e n t r a l dc and low frequency region, i s demonstrated 
by Figure 27. The d i f f e r e n c e i n r e s o l u t i o n of v e r t i c a l and hor­
i z o n t a l l i n e s i s apparent. The v e r t i c a l r e s o l u t i o n i s not a f f e c t e d 
by t h i s f i l t e r i n the one-dimensional transform. 

A high pass f i l t e r i s r e a l i z e d by a stop i n the dc reg­
i o n . The e f f e c t of a 5 mm wide stop i s demonstrated by Figure 28. 
H o r i z o n t a l l i n e s are completely l o s t because of the missing low 
frequency components. 

As i t can be seen from Figure 15, the frequency spectrum 
of the ROWI t e s t chart contains many empty and low i n t e n s i t y spots. 
A very crude f i l t e r , passing only some of the b r i g h t e s t parts of 
the F o u r i e r transform plane (Figure 29), gives a f a i r l y good recon­
s t r u c t i o n , shown i n Figure 30. Note here, f o r instance, the per­
f e c t r e c o n s t r u c t i o n of the f i n e checkerboard p a t t e r n , which i s 
contained i n the string of harmonics at the top of Figure 29. The 
reduction i n bandwidth f o r t h i s part of the p i c t u r e i s approxim­
a t e l y 6 to 1. The lower h a l f of the c e n t r a l r i n g p a t t e r n i s r e -



26 Output picture displayed on closed 
c i r c u i t t e l e v i s i o n monitor 

Fig. 27 Effect of low pass f i l t e r 



F i g . 28 Effect of high p a s s f i l t e r 

(lines/picture width) 

Fig. 29 Mask f i l t e r i n Fourier transform plane of 
Fig. 13 (Broken l i n e s mark high intensity-
regions i n spectrum) 
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Pig. 30 Output from mask f i l t e r of Fig. 29 

produced much better than the top half. The two v e r t i c a l bars i n 
the f i l t e r of Figure 29 stop out parts of the Fourier transform, 
which are essential for the reconstruction of the ring pattern. 

In general, the reconstruction i s quite good, considering 
the very rough methods used to r e a l i z e the mask f i l t e r . (It was 
shaped by eye to match the brightest parts of the spectrum). It 
seems possible to save transmission bandwidth by omitting a l l the 
unused parts of the spectrum of the transmitted signal i n a s u i t ­
able t e l e v i s i o n system. 

It i s not possible to treat a continuous tone picture i n 
the same way. The spectrum of such a picture (Figure 30) i s shown 
i n Figure 31• High s p a t i a l frequencies were very low i n i n t e n s i t y , 
(not even recorded on the photograph), and were submerged i n noise. 
Their presence could only be inferred i n the reconstruction by 
masking i n the Fourier transform plane. Nothing d e f i n i t e can 
therefore be said about the actual shape of the Fourier transform 



F i g . 31 Fourier transform of a continuous tone 
picture ("Face" Figure 38) 

for t h i s class of pictures. 
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5. SPATIAL FREQUENCY FLICKER EXPERIMENTS 

5 .1 Basic 'idea 
I t i s w e l l known t h a t image q u a l i t y i s a h i g h l y sub­

j e c t i v e measure. There are q u i t e a number of p h y s i o l o g i c a l f a c ­
t o r s that determine the apparent q u a l i t y , e s p e c i a l l y f o r a r e a l 
time t e l e v i s i o n p i c t u r e . I t i s known, e.g., that a frame rep­
e t i t i o n as high as 30 per second i s unnecessary f o r most t e l e ­
v i s i o n reproductions, even of f a s t moving scenes (9) Some sav­
ings of transmission bandwidth could be achieved t a k i n g advantage 
of t h i s f a c t , or of r e l a t e d p r o p e r t i e s of the human e y e . ^ 1 0 ^ 1 1 ^ 

More r e l a t e d to our approach of i n v e s t i g a t i n g the s p a t i a l 
frequency domain i s the v a r i a t i o n i n response of the human eye to 
d i f f e r e n t s p a t i a l frequencies. Measurements of t h i s " s t a t i c " 
r e l a t i o n s h i p have been made by s e v e r a l workers . ; the r e s ­
u l t s found by Lowry and de P a l m a ^ 1 ^ seem most widely accepted at 
t h i s time. (Figure 32) 

Normalized response 
1 

(lines/mm on r e t i n a ) 

F i g . 32 Sine wave response of the human eye 
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With respect to a t e l e v i s i o n p i c t u r e d i s p l a y , one 
question seems of s p e c i a l i n t e r e s t to us: How i s the response 
of the human eye to s p a t i a l frequencies a f f e c t e d by the f a c t that 
the p i c t u r e i s presented only part of the time rather than c o n t i n ­
uously? Or, i n other words, what i s the c r i t i c a l f l i c k e r f r e ­
quency as a f u n c t i o n of s p a t i a l frequency? I f t h i s "dynamic" 
c h a r a c t e r i s t i c has the same g e n e r a l l y n e g a t i v e l y s l o p i n g r e l a ­
t i o n s h i p f o r high s p a t i a l frequencies as the " s t a t i c " one, then 
i t could be taken advantage of by presenting the high s p a t i a l 
frequencies of a t e l e v i s i o n d i s p l a y at a lower rate than the ac­
t u a l frame r e p e t i t i o n r a t e . The r e s u l t s of some r e l a t e d i n v e s t i ­

n g ) 

gations seem to j u s t i f y a c l o s e r look i n t o that question. 
The o p t i c a l s i g n a l processing system may be used quite 

e a s i l y f o r a study of t h i s problem. The s p a t i a l frequencies are 
r e a d i l y a c c e s s i b l e i n the F o u r i e r transform plane. A simple chop­
ping d i s c may be used to step out a l l s p a t i a l frequencies above 
a c e r t a i n 3.imit temporarily, at a v a r i a b l e r e p e t i t i o n rate, thus 
" f l i c k e r i n g " the higher s p a t i a l frequency content of a p i c t u r e . 
The e f f e c t on the p i c t u r e q u a l i t y can be judged simultaneously 
by the r e c o n s t r u c t i o n i n the output plane. 
5.2 Test arrangement 

To get some general and reproducible measurements, a 
p i c t u r e c o n s i s t i n g j u s t of a v e r t i c a l bar patte r n was used here 
i n a number of s u b j e c t i v e t e s t s . The setup f o r these f l i c k e r 
t e s t s i s shown i n Figure 33- A chopping wheel i s rotated by a 
small dc motor, producing a v a r i a b l e f l i c k e r r ate of 50/50 on/ 
of f time r a t i o f o r a part of the F o u r i e r transform plane. The 



side band stop blocks out one h a l f of the spectrum, passing only 
a "dc plus one sideband" s i g n a l , which i s s u f f i c i e n t to recon­
s t r u c t the l i n e s of the t e s t p i c t u r e . The t o t a l information i s 
contained i n e i t h e r side of the symmetrical F o u r i e r transform, 
as f o r the normal amplitude modulation spectrum. Only one s i d e ­
band was used i n the f l i c k e r experiment here, to avoid the nec­
e s s i t y of two synchronous chopping wheels f o r the high s p a t i a l 
frequencies of both sides of the spectrum. 

Compensating 

Chopping 
d i s c L ' J 

TV-Camera 

input sideband stop output plane 
(ground glass) 

subject 
TV-monitor 

A^Y"3 viewing distance 1.5m 
• -«ss • • • 

F i g . 33 F l i c k e r t e s t arrangement 

The output plane was viewed by means of the t e l e v i s i o n 
camera and monitor, so that brightness and constrast r a d i o could 
be e a s i l y adjusted. The secondary f l i c k e r introduced by t h i s 
viewing arrangement i s n e g l i g i b l e i f the set i s w e l l adjusted 
with regard to storage time of v i d i c o n and monitor, and i f the 
f l i c k e r introduced by the chopping wheel i s not i n the same f r e ­
quency range of 60 per second ( h a l f frame r a t e ) , which would pro-
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cluce some beat frequency e f f e c t s - As i t turned out, the c r i t ­
i c a l s p a t i a l frequency f l i c k e r was always below 30 per second, 
and no stroboscopic e f f e c t s were observed. 

An a u x i l i a r y l i g h t was provided by a Zeiss microscope 
i l l u m i n a t o r s h i n i n g through the chopper d i s c at the appropriate 
time. I t was found to be necessary to i l l u m i n a t e the output 
plane during the time when'the s p a t i a l frequency plane was par­
t i a l l y obscured. 

The explanation f o r t h i s seems to be the f o l l o w i n g : For 
i n c r e a s i n g s p a t i a l f requencies, the impression of a grey surface 
r a t h e r than the l i n e s t r u c t u r e of the t e s t s l i d e seems to become 
more and more dominant i n the perceived image. C u t t i n g out part 
of the F o u r i e r transform plane n a t u r a l l y reduces the t o t a l i n t e n ­
s i t y i n the observed p i c t u r e by a c e r t a i n amount. This i s per­
ceived as a change i n the o v e r a l l brightness of the p i c t u r e , i . e . , 
a f l i c k e r . Using Biernson's somewhat c o n t r o v e r s i a l feedback mod­
e l of human v i s i o n ^ ^ , t h i s e f f e c t may be explained by the f a s t 
response of the s p a t i a l average feedback, which also produces 
the grey impression. 

The a u x i l i a r y , compensating l i g h t , superposed during the 
chopping time, eliminated t h i s e f f e c t , and the eye seemed to con­
centrate on the l i n e s t r u c t u r e again, as can be seen, from the 
r e s u l t s of s e c t i o n 5-3> The i n t e n s i t y of the l i g h t was adjusted 
e a s i l y to the necessary value by the f o c u s s i n g system of the 
Zeiss i l l u m i n a t o r . 

5.3 Results 
Using the arrangement of Figure 33, a s e r i e s of subjec-
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t i v e t e s t s was c a r r i e d out, with 4 subjects, 3 male and 1 f e ­
male; t h e i r ages ranged from 20 to 28 years. The t e s t persons 
were asked to judge the image c o n s i s t i n g of a v e r t i c a l bar pat­
t e r n (50/50 black/white r a t i o ) as "good" and "acceptable", while 
the f l i c k e r rate of the e s s e n t i a l f i r s t harmonic i n the s p a t i a l 
frequency plane was v a r i e d . The r e s u l t s of these t e s t s are sum­
marized i n the Figures 34 and 35. 

The t e s t s were run 3 times, to check the consistency of 
the judgement. I t was found that the r e s u l t s between d i f f e r e n t 
runs v a r i e d only s l i g h t l y , mostly by no more than -1 c y c l e of 
f l i c k e r r a t e . 

F i g . 34 C r i t i c a l f l i c k e r frequency as a f u n c t i o n 
of s p a t i a l frequency f o r judgment "good". 
(Broken curve without brightness compensation) 
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16 

100 
-J . . ! 

50 

4-6 

A: 
B: 

Contrast r a t i o 27:1 
Contrast r a t i o 2^:1 

( l i n e s / p i c t u r e width) 
200 300 
100 150 -tar- f 

X 

F i g . 35 C r i t i c a l f l i c k e r frequency as a f u n c t i o n 
of s p a t i a l frequency f o r judgement "accep­
t a b l e " 

The contrast r a t i o of the l i n e p a t t e r n was adjusted by measuring 
the l i g h t i n t e n s i t i e s f o r peak white and peak black d i r e c t l y on 
the screen with a l i g h t meter. The i n f l u e n c e of the contrast 
r a t i o on the r e s u l t s i s made c l e a r by the curves of Figure 36, 
which are based on "good" judgements l i k e the curves of Figure 34 

^ A ( H Z ) 

16 

8 

f = 1 0 0 

f v = 125 lines/mm 
on r e t i n a 

Contrast r a t i o 

F i g . 36 C r i t i c a l f l i c k e r frequency vs 
contrast r a t i o . 
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The c r i t i c a l f l i c k e r frequency appears to be a loga ­
r i t h m i c f u n c t i o n of the contrast r a t i o . Only f o r high s p a t i a l 
frequencies at low contrast r a t i o s i s there a s l i g h t d e v i a t i o n 
from the l o g a r i t h m i c behaviour. This may be due to the dominat­
ing grey impression received under these c o n d i t i o n s . 

The background i l l u m i n a t i o n was held at a reduced l e v e l 
of approximately 180 l u x . V a r i a t i o n s i n room i l l u m i n a t i o n from 
2 l u x to 700 l u x were te s t e d , but found to be of n e g l i g i b l e i n ­
fluence. A b r i g h t background increased the c r i t i c a l f l i c k e r 
frequency very s l i g h t l y , e s p e c i a l l y f o r high s p a t i a l frequencies. 

The i n f l u e n c e of the average brightness of the p i c t u r e 
was checked over a 9 to 1 luminance range, from approximately 40 
to 350 cd/m . The e f f e c t of the contrast r a t i o dominates the 
brightness e f f e c t by f a r , but i t seems that the c r i t i c a l f l i c k e r 
frequency increases very s l i g h t l y with i n c r e a s i n g brightness. An 

2 
average screen luminance of 200 cd/m was used f o r the experiments 
of.Figures 3^ to 37. 

The i n f l u e n c e of the s i z e of the p i c t u r e area i s shown 
i n Figure 37; i t i s very small a l s o , and l i e s almost w i t h i n the 
un c e r t a i n t y of about -1 Hz b a s i c a l l y inherent i n the t e s t s . A 
trend to increased c r i t i c a l f l i c k e r frequency with l a r g e r area 
i s n o t i c e a b l e . 

A much l a r g e r mumber of t e s t s has to be c a r r i e d out to 
get more exact r e s u l t s , but t h i s was beyond the scope of t h i s 
t h e s i s . Generally, i t may be s a i d that the e f f e c t s of p i c t u r e 
area, brightness and background are only small and seem to be 
consistent with r e s u l t s f o r t o t a l r ather than p a r t i a l f l i c k e r i n g 

(17) 
found by Foley , which show b a s i c a l l y l o g a r i t h m i c behaviour. 
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P i c t u r e area 36 cm 
P i c t u r e area 9 cm 
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100 200 

100 50 (.lines/mm on r e t i n a ) 

P i g . 37 C r i t i c a l f l i c k e r frequency with 
p i c t u r e area as parameter 

F i n a l l y some s u b j e c t i v e q u a l i t y t e s t s were c a r r i e d out with the 
p i c t u r e s of Figures 38 and 39, f l i c k e r i n g the higher s p a t i a l f r e ­
quencies. Here i t was not necessary to r e s t o r e the average b r i g h t ­
ness during the chopping period; the power of the high s p a t i a l 
frequency components i s very low, and no change i n average b r i g h t ­
ness was observed. 

They show, f o r example, that the severely bandlimited p i c t u r e of 
Figure 41, which resolves only 50 l i n e s per p i c t u r e width, may 
be presented a l t e r n a t i v e l y with the o r i g i n a l p i c t u r e (Figure 38) 
at a r a t e of 19 Hz, to give a s u b j e c t i v e l y perfect image. For 
l e s s b a n d l i m i t a t i o n , the rate may be decreased below that value. 

to save transmission bandwidth i n a t e l e v i s i o n system. There i s , 
however, an obvious l i m i t to the compression that can be achieved 
t h i s way. I t i s given by the r a t i o of the t o t a l area of Figure 40 
to the area under the curves, which comes out to be approximately 

The r e s u l t s of these t e s t s are summed up i n Figure 40. 

I t can be seen immediately that t h i s f a c t may be used 



F i g . .38 "Pace" (viewed on TV-monitor) 
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F i g . 40 

100 
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A; "Face" ( f i g u r e 38) 
B: "Group" ( f i g u r e 39 

(Rating "good") 
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(lines/mm on r e t i n a ) 

C r i t i c a l f l i c k e r frequency of two 
h a l f tone p i c t u r e s 

F i g . 41 Bandlimited p i c t u r e (Resolution 50 
l i n e s per p i c t u r e width) 
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5.4 A t e n t a t i v e law 
One may t r y to approximate the r e s u l t s shown i n the F i g ­

ures 34, 35, and 40 by a mathematical expression i n order to put 
them i n t o the form of a basic law. I t seems that some kind of 
an exponential f u n c t i o n would describe the behaviour of these 
curves quite w e l l . We may therefore t r y an expression of the form 
of equation 5.1 

f = f exp(-kf ) 5.1 c o 1 x 

f denotes the c r i t i c a l f l i c k e r frequency, f the s p a t i a l f r e ­
quency i n l i n e s per m i l l i m e t e r on the r e t i n a . f i s an e x t r a p o l ­
ated, merely t h e o r e t i c a l value f o r f at a s p a t i a l frequency 
equal to zero. I t i s not of much p r a c t i c a l s i g n i f i c a n c e , because 
f o r very low s p a t i a l frequencies we approach the case of normal 
" t o t a l area" f l i c k e r , and judgements of q u a l i t y are a l s o very 
d i f f i c u l t to make i n t h i s region. The i n f l u e n c e of some para­
meters changes as w e l l , the contrast r a t i o f o r example becomes a 
measure f o r the average brightness too. 

I t can be seen, from e x t r a p o l a t i o n of our curves, that 
f w i l l depend on the contrast r a t i o and n a t u r a l l y on the kind of 
judgement we are working with ("good", "acceptable"). The f a c t o r 
k i n the exponent w i l l a l s o be a parameter'depending on the ex­
periment. I t i s , f o r example, apparent that k w i l l be d i f f e r e n t 
f o r the l i n e p a t t e r n experiments and f o r the p i c t u r e experiments, 
and i t may a l s o depend on the contrast r a t i o . 

The a c t u a l experimental values f o r f g e n e r a l l y l i e bet­
ween 24 and 34 Hz. The f a c t o r k l i e s q u i te constantly around 



0.012 f o r a l l l i n e p a t t e r n experiments, and at 0.02 f o r the 
p i c t u r e s , k g e n e r a l l y seems to increase very s l i g h t l y f o r i n ­
cre a s i n g contrast r a t i o . 

For curve A of Figure 35 we get the mathematical ex-
p r e s s s i o n of equation 5.2 

Curve B of Figure 40 obeys a law according to equation 5.3 

f c 30 exp(-0.012 f ) 5.2 

f c 28 exp(-.0.02 f ) 5.3 



F i g s . 42 and 43 View of t e s t apparatus used 
f o r the present work 
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6. CONCLUSIONS AND FUTURE WORK 

An o p t i c a l s i g n a l processing system may be used con­
v e n i e n t l y f o r i n v e s t i g a t i o n s i n the s p a t i a l frequency domain of 
an image s i g n a l . This has been the object of the present work, 
with s p e c i a l emphasis on image compression research. I t i s not 
po s s i b l e at the present time to incorporate an optical.system 
d i r e c t l y i n a bandwidth compression scheme; but the r e s u l t s of 
o p t i c a l s i g n a l processing research can be very u s e f u l f o r study 
and design of new compression methods. 

Some s t r a i g h t f o r w a r d p o s s i b i l i t i e s of bandwidth compres­
si o n are apparent f o r c e r t a i n t e s t charts which contain, very def­
i n i t e s p a t i a l frequencies; the l a r g e empty regions i n t h e i r spec­
t r a can be omitted to achieve s u b s t a n t i a l savings i n bandwidth. 
The coarse f i l t e r i n g experiment i n chapter 4 showed quite good 
p i c t u r e q u a l i t y f o r compression r a t i o s ranging from 2 : 1 to 
8 : 1 depending on the p i c t u r e complexity. 

The spectra of continuous tone p i c t u r e s could not be 
observed a c c u r a t e l y enough, because of noise e f f e c t s ; nothing can 
be s a i d about p o s s i b i l i t i e s of bandwidth compression using spec­
t r a l gaps f o r t h i s c l a s s of p i c t u r e s . 

Savings i n bandwidth can a l s o be achieved by e x p l o i t i n g 
some c h a r a c t e r i s t i c s of' the human eye. The o p t i c a l system has 
been shown to be a very u s e f u l t o o l f o r i n v e s t i g a t i n g one ques­
tion, concerning the v i s u a l perception of the eye. The r e s u l t s 
of these experiments, reported i n chapter 5, are very promising 
with respect to compression p o s s i b i l i t i e s . The decrease i n c r i t ­
i c a l f l i c k e r frequency'for high s p a t i a l frequencies of a t e l e v i ­
s i o n p i c t u r e can be used f o r compression by presenting the high 
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s p a t i a l frequency content at a reduced r a t e . Some d e t e r i o r a ­
t i o n of p i c t u r e s of f a s t moving scenes w i l l probably occur, sim­
i l a r to the e f f e c t s reported f o r a frame r e p e t i t i o n and r e p l e n ­
ishment system^"'. Here these e f f e c t s w i l l be l e s s severe, 
because the important low frequency content i s presented at the 
normal r a t e . 

The a p p l i c a t i o n of o p t i c a l s i g n a l processing to the 
f i e l d of image compression research has produced some i n t e r e s ­
t i n g r e s u l t s . A number of questions and problems, however, s t i l l 
remain and have to be l e f t f o r f u t u r e work. In p a r t i c u l a r , the 
f o l l o w i n g p o i n t s seem to be of immediate i n t e r e s t : 

a) A d d i t i o n a l i n v e s t i g a t i o n s w i l l have to analyse spectra of 
"continuous" tone p i c t u r e s , i n which the grey shades are pro­
duced by a r e g u l a r l y spaced r a s t e r , thus concentrating the 
s p a t i a l frequency content at c e r t a i n s p e c i f i c p o i n t s i n the 
spectrum. 

b) Further t e s t s , i n v e s t i g a t i n g the c r i x i c a l f l i c k e r frequency, 
have to be c a r r i e d out, using v a r i a b l e chopping i n t e r v a l s 
(instead of 50/50 on/off time). A more d e t a i l e d study of the 
i n f l u e n c e of such parameters as c o n t r a s t , p i c t u r e area, b r i g h t ­
ness, etc. i s suggested as w e l l . 

c) There are many ways i n which, a compression system may be des­
igned using v a r i a b l e p r e s e n t a t i o n rate f o r d i f f e r e n t s p a t i a l 
frequency content of a t e l e v i s i o n d i s p l a y . As a f i r s t exper­
iment, a very simple system may be b u i l t , using only two d i f ­
ferent r e p e t i t i o n r a t e s : Two scanning spots, at d i f f e r e n t 
v e l o c i t i e s , would produce two s i g n a l s ; one corresponding to 
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a 1 MHz bandlimited transmission at normal r e p e t i t i o n rate ( 3 0 

frames per second), and one conta i n i n g the s p a t i a l frequencies 
from 1 to 5 MHz, but at h a l f the r e p e t i t i o n r a t e . The superpos­
i t i o n of the two s i g n a l s at the r e c e i v i n g end could be achieved 
o p t i c a l l y by a s u i t a b l e viewing arrangement. The compression 
r a t i o would only be 1 . 6 7 with t h i s system; higher r a t i o s are 
obviously p o s s i b l e , using more channels, with more d i f f e r e n t i a t e d 
frame r e p e t i t i o n r a t e s . Closer r e a l i z a t i o n of the t h e o r e t i c a l 
l i m i t of approximately 3 to 1 i s merely a question of system com­
p l e x i t y . 
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APPENDIX 

Fo u r i e r transform re I at i oil of a coherent o p t i c a l system 

Coherent l i g h t can be t r e a t e d as an electromagnetic 
wave and described by g i v i n g i t s amplitude and phase as a func­
t i o n of the three space v a r i a b l e s . 

U = I(x,y,z)cos[~cot + 0(x,y,z)] A . l x , y , z 

For the f i e l d i n a plane perpendicular to the z-axis i n 
an o p t i c a l system, we can w r i t e 

U Q = l(x,y)cos[wt + 0(x,y)] A.2 

As a convention, t h i s may a l s o be w r i t t e n i n the form 

U o = I(x,y)exp[j0(x,yj] - A.3 

This r e p r e s e n t a t i o n i s j u s t i f i e d by the time invariance of a l l 
the s i g n i f i c a n t features of the o p t i c a l system, where CJ (the 
temporal radian frequency of the l i g h t ) acts i n a sense l i k e a 
c a r r i e r frequency. 

Let us now consider Figure 2 again (from chapter 2.1), 
which Is repeated here f o r convenience. 

F i g . A . l Two-dimensional F o u r i e r transformer 
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In plane P̂  a transparency of the complex transmission 
f u n c t i o n S(x,y) i s introduced i n the "beam of coherent monochrom­
a t i c l i g h t . 

S(x,y) = t(x,y)exp ha( x , y ) l A.4 

Emerging from P-̂  i s then the m u l t i p l i c a t i o n of the l i g h t 
wave wi t h S(x,y) 

t\ = S U A. 5 
1 o 

This wave now i s summed up over P^ onto P^ by focussing-
lens . C a l c u l a t i o n of Uv, requires f i n d i n g the o p t i c a l path 
length from x^Y-^ "to x^,y^. Up then i s the i n t e g r a l over P^ 
of U^, properly delayed i n phase according to the distance r . 

.2%T 
- D - T -

dx^dy^ A. 6 

X = wavelength of l i g h t 
d = amplitude a t t e n u a t i o n f a c t o r r e s u l t i n g from distance 

between P-̂  and P . 

1 -f^cosQ _ o b l i q u i t y f a c t o r 

r = distance between x - j _ 5 v ] _ "to X p , y p . 

In our system, —• can be dropped because absolute phase 
and amplitude are of no i n t e r e s t , d i s dropped because the a t t e n ­
u a t i o n i s n e g l i g i b l e , and the o b l i q u i t y f a c t o r i s dropped because 
0- i s always s u f f i c i e n t l y s m a l l , so that cosO We then get 
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JJ U^exp - 3 — r ( x 1 , y l f x 2 , y 2 . d x 1 d y 1 A.7 

To c a l c u l a t e the distance r , consider Figure A.2 

x 

x 1 

1 
9< 

0 

-BH-SJ -r-

P P' 
^ l 

X, 

F i g . A.2 Geometrical r e l a t i o n s 

A plane wave emerging from plane P-̂  at an angle 9 to the 
o p t i c a l a x i s i s brought to focus at x2,' where x 2 = f sin9. This 
i m p l i e s that the o p t i c a l distance between x 2 and any point on P^ 
i s a constant c. 

2 2 2 1/2 2 c = r-^ +. r 2 = l|g - X Q C O S 9 + |f. + x 2 A.8 

c = g + f 
, 2 \ x 0 

1 + fi — + f 2f f o r small 9 and 
x x 0 o 2 

A.9 
ta k i n g g 

The distance from the plane P-̂  to x 2 i s obtained by adding 
the term 

X ] X2 
-x^sin.9 = —j— 

A.10 

The t o t a l distance from x-̂  to x 2 i s then 



r U j ,y 1 ,x 2 ,y 

In two dimensions, the same approach leads to 
\ x 2+y 2 x n x 2 y ny. 

2 / = .const. I 1 - ^ 2f 
i l l 
'f A.12 

For the wave IL-, at P 2 we then get 

where 

U 1exp(-j x x 1 ) e x p ) - j y y ] _ ) d x
1

d 3 ^ 1 exp j (3 ( o , OJ ) A. 13 
1 

x 
2JI;X2 

' ~ \ f ~ ' 
2rty, 

oo = - , J y \± A.14 

and 

P = 1 
\ 2 2 

&\ X2 + y 2 
f 2f A.15 

For the system of Figure A . l g i s equal to f, so that 
(3 = 0. Equation 2.4 i n chapter 2.1 fol l o w s immediately. The 
co n d i t i o n f = g i s necessary to obtain an exact F o u r i e r transform 
between P^ and P 2 i n t h i s system. 


