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ABSTRACT

A series resonant L-C circuit in which either the
induotor or the.capacitor is nonlinear and which is excited
by a sinusoidal volt;ge of a fixed frequenéy may have two
'steady-staté.fesponses.v One of these respénses is character—
ized by a high amplitude oscillation; the other by a low
oné. If the amplitude or frequency of the driving signal is
Qaried slowly, the response may suddenly change or " jump"
to the other state. As a result, this phenomenon has been
Called Jump resonance, or %erroresonance.

. Because the high and low resonant States‘coﬁld be con-
sidered as a O and 1 basis for digital logic operations, it
was the purpose of this work to study the phenomenon and to
investigate the possibility of using it in the design of
digital logic eleﬁents.

Equations 'which exhibit the necessary features were
studied on an analogue computer. The results of the study
~ were used as design criteria for the construction of an actual
circuif and also as a basis fpr an appfdximate analytical
study. The analytical study uses the Ritz method to find
useful features of the responses. The results of previous
users of this method have been extended to include equations
with both second derivative coupling and non-symmetrical non-
linearities. |

Based on the above Studies,'a prototype circuit was

designed which has some of the basic properties of conventional
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flip-flop ciréuits. Ong'of_the"main'fegtures of this
 circuit is fhat‘it,is;aimost éntirelyvmade of_féactive,
coﬁponenté and-és a rééult_has‘very“low power consumption}
The opefafion‘of the circuit is uscd to.verify thé validity
of the approximétioné‘made in both the'analogue'éimglafion |
and the analytical study. The results obtained from the
ahalogﬁé study, theARifz énalysis,-éﬁd the prototype circuit
compare favorably with each other. Some suggestions for

future work are given.
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1. INTRODUCTION

Qhé phenoménon df_ferfofesonance'was observed for the
first fime;in 1906 during-the tuning of radio-transmitters.(l)
~Since then it'has appeared in the literature pertaining to f:

(2) (3) (4)

power systems, electronics, and honlinéar mechanics.
Ferroreéonance can occuf in a_driven sefies resonant circuilt
which consists of an inductdr and a capacitor, one of which
is nonlinear. If the nonlinear characteristic is symmetrical,
such a circuit can be appfoxiﬁated by Duffing's equation:

X + wo2x + hx

SA; G cos wt (1-1)

: :
Closer approximations using higher order terms can be found in

Hayashi.(5)

Thié equation has the property that under certain
~conditions it has two stable solutions near‘resénance, one a
iarge amplitude oscillation and the other a smail one. This
phenomenon is called ferroresonance.

| The bistable multivibrator, or flip-flop, is one of
the most usefulvélectroﬁic devices employed in digital'éom—
puters. An identifying feature of a bistable multivibrator

is that it consists of a pair of fwo—étate devices arranged
symmetrically so as to allow only two stable states of the
complete circuit. For'example; in a transistor flip-flop,

either transistor may be on or off but they are arranged so-

that when one is on it keeps the other off.



It was proposed to investigate the possibilify’of
making ¢ flip—flop type computer component using the ferro-
resonant regions of nonlinear L-C circuifs. The large
ampiitﬁde cscillation could represent an Sh'étate and the
Sméll_one an off state. Some work in this areavhas been |

(6) (7)

done by other workers such as Isborn , Gremef ’ and.'

(8)

Ozawa However;.their wbrk was based on the assumption
gf a symmetrical.characteristié for the noniinear element.
Moré recent developments in semicbnductors; particularly
the advent of varactor diodes, have made it necessary to coﬁ—
sider the problem allowing nOn—syimetrical characteristics.

| The work presented nere includes the choice of a
particular type of nonlinear capacitor, én analogue'simulation
to obtain a final circuit coﬁfiguration and to give
approximaté design values to the components, an approximate
mathematical analysis of the circuit, and the building of an

operative protofype unit. The circﬁit finally used can be

described by the folloWing equations:

I
o

| (1-2)

I
O

i, + 2DKe(3,) + K°f(q,) + Mi, - p sind

These equations are analyzed using fhe Ritz or Ritz-Galerkin
.ﬁé%ﬁéa. Some of Klotter's(g’lo) methods have been extended

to equations with second derivative coupling. General algebraic



condl,lons relatlng the response to the dr1v1ng amplltude

and frequency are derlved for thls type of equatlon

These recults are applled to the specific case of a circuit
with neglig 1ble damplng and w1th an asymmetrlcal restorlng

-

function which can be approximated by:

£(q) = q + pa’ | a3
i ‘ - ' ’

Parametric excitation using thebvariable'capacitance
proberties of materials such as barium titahate has been
achieved ™) and it was thought that components of this type
could be used as the nonlinear elements in fhe synthesis of
the proposed circﬁit. However; they were deemed unsuitable
for use. at the present time due to their cosf and scarcity
withinvthe needed capacitance tolerance. Instead, low cost,
commgrcially évailable silicon capacitors were used to demon-
strate the principles of operation and were found to be quite
satisfactory. | .

This thesis consists of a discussion of the analogue
computer simulation in Chapter 2, the development ofAthe Ritz
analysis in Chapter 3, some discussion of the circuit degign.
and results in Chapter 4, and some'suggesfions-for future

study in the ccncluding Chapter 5.



2. ANALOGUE SIMULATION
2-1  Preamble

An electrohic'analogue computer consists of a collection’
of units, each of which isvdesigned to produce anroﬁtpuf that |
is a pérticular linear or nonlinear functioﬁ of the inputs.
These units are reédily intefconnécted to solve mathematical
eduations or to simulate the behaviour of a physical system.

A convenient feature is on-iine éontrol, that is the facility
with which changeées in parameters'of»the equations can be made

manually during the actual operation or solution of an equation.

2-2 Computer Circuits

The circuit shown in Figure 2-1 can be described by the

following equations:

d2q1 dqi 1 d2q2
V sinwt = L > + R + Q - M—7
- dt at f(vc ) ate
. 1 (2-1)
| d2q2 dq, 1 d2q1
V sinwt = L —5 + R + a5 - M —
dt dt f(v_ ) dt
€2

. The voltage—capacitanée-characteristic,'f(vc) is that~of a
Transitron SC-5 silicon capacitor (Figure 2-2) and was obtained
from the manufécturer's specifications and direct measurement.
The frequency of the_driving sinusoid was chosen to coincide
with that of the highest quality factor (Figure 2-3) at about

2 x lO6 r/s. An estimate was made of the maximum probable
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value of all the variables and of their first and second
.dérivatives. Amplitdde and tim= scaling traﬁsformétions

were then made on (2-1) so that ro variable or its derivatives
would exceed unity and also so that the operating frequency
Would be about two cycles/sec. Thése operations are necessary -
to prepare an equation for solution on an analogue computef.

The sinusoidal forcing function was obtained by solving

-é Van der Pol type of eQuation:(l2)
X - 10(4% - x° - (%)2) X +Aw2x =0 (2-2)
x(0) = A, x(0) = 0
This equation has the solution
X = A cos wt | - (2-3)

and has the property that if perturbed, the solution will
quickly return to (2-3), and it will not decay due to leakage
in the computer capacitors or other non-ideal faétors.

This can ‘readily bebseen by an examination of the sign
of the damping coefficient in (2-2). The circuit used
to solve 2-2 is‘shown in Figure 2—4. The circuit used fo solve
the timé and amplitude scaled (2-1) is shown in Figure 2-5.
There were varioﬁs minor modifications and additions to this
circuit to allow sign chénges of M/L, inclusion of source
.impedance, various input disturbances, and some protective pre-
cautions, but these are all omitted in Figure 2-5 for the sake

of clarity.
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2-3 Discussion of Analogue Computer Results
(a) Form of Solutions

The results obtained on the Pécé 231-R computer proved
very useful in determining compdnent values for the final
circuit. Examples bf solutions are given in Figures 2-6
through é—ll. From the results, several features are apparent.
Firstly, it can be seen that.the solution is approximately a
biassed sinusoid with the same frequency as the driving
function in most cases. Subharmonics will be diécussed
separately. Secondly, it is clear that jump resonance can
occur. This means thaf for the same driving function, there can
be two possible states of each side of the circuit of Figure
2-1. This feature is shown in Figure 2-6 where the upper trace
is the input driving function which is kept constant, and the
lower trace is proportional to the voltage across one_of the
-silicon capacitors. The Jjump or transition betﬁeen the two
states was initiated by a small pulse applied to amplifier A22
which simulated a pulse in the bias of one of the capacitors
of Figure 2-1, thus causing.a.momentary change in the average
éapacitange.

Figures 2-7, 2-8 and 2-9 show the possibility of the
existence of subharménics(B). It was somewhat difficult to
initiate this mode of resonance, but 5y various on-line dis-
turbances Qf‘the solufioh, subharmonics of this typé could be

made to exist. Once initiated, they were maintained indefinitely.
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However, because of the peaked shape of Figure 2-3, it is mgsf»
unlikely that any subharmonicé cculd persist'in the actual

circuit of Figure 2-1 because of tie greater damping at highef
and iower freéuenciesw & feature not included in the analogue

model.
(b) . Effect of Varying the Resistance

The coefficient represenfing the resiétance of Figure
2-1 was readily varied by changing.potentiometers&Q13 and Q18
.of Figure 2-5. It was found fhat for the first derivative
coefficient value of above about 0.2 there was no jump
- resonance. This value represented a series resistance of -about
17 ohms in the circuit being modelled. Progressively smaller
values of this coefficient gave an increase in the ratio
between high'and low states and also a decrease in the switchihg
time ©between the fwo stafes. waever, there was also an in-
crease in the time required for the transient modulation to
damp out. This feature is shown in Figure 2-10 which is the
transition between high and low states with a damping coeff-
icient of 0.04. Note that the modulation of the carrier en-
velope after the jump is‘very'similar to the overshoot in an
underdamped linear secgnd order system. Note_alsb that the
jump occurs in six cycles.of the carrier instead?of the eleven
cycles in Figure 2—6 where the damping coefficieﬁt is 0.05 and
the thirtéen‘cycles in Figure 2-11 where the damping coefficient

is 0.07. Thus it is seen‘fhat to build the désired'circuit,
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- the loss must be kept low énough to allow ferroresonance, but
not so low as to permit excessive transient modulation of the

output waveform during switching intervals.
(c) Effect of Varying the Coupling

One of the main reasons for studying a modei of the
circuit (Figure 2-1) on the analogue computer rather than using
the actual circuit was the ease with which the M/L ratio could
be varied. Potentiometers P55 and P56 controlled the coupling
between the branches. Amplitﬁde and frequency responses were
obtained fdr various values of the M/L ratio. It was fouﬁd
~ that up to a poinf, increasing this ratio iﬁcreased the region
~in which the entire coupled circuit could be symmetrically
bistable; that is, when oné branch of the circuit is in tﬁe high
state, the other will be in the low one (see Figure 2-11).
However, if this ratio was increased beyond abouf 0.3, the two
branches became tightly coupled so that they would both be in
either the high state or the low state - - a symmetrically bi-
stabie state was not possible. Hence it is seen that if the M/i
ratio is too small, the circuit must be Very accurately tuned
to be bistable at all, but if the ratib is too large the desired
symmetrically bistable state cannot exist. An M/L value of 0.1

was found to be a good compromise.

2-4 Summary of the Analogue Simulation Results

The simulation of various circuits on the analogue

computer provided invaluable groundwork for the chapters to
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follow.' Fifstly, the basic circuit configuration>to be.used
was de%ermined. Secondly, the general shape and features of -
the output waveform were found. Knowledge of these is
necessary;fbr the Ritz analyéis in the next Chapter. >Alsq,
study of the analogué circﬁit gave the design criterié for M,
L,‘and R that are used later in this work. The ﬁost important
result of this simulafion, albeit intangible, was the intuitive

understanding which it gave of the circuit.

-2
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3. CIRCUIT ANALYSIS AND DESIGN
3-1 Preamble

When considering fhe behéﬁiourtof iinéar'syStems,vit is
cohvenient té deal with sinusoidalvinﬁﬁts and their outputs
which are again sinusoidal. As a result of the principle of
superpbsition, the ratio between putput and input as a functionA
of frequency is'a basis for a éomplete description of the
system behaviour. However, in nonlinear systems this principle

(13)

cannot be used and other methods, whiqh are usually
approximations, must be found. In the following analysis,
the Ritz<l4) or RitZ—Galerkin method will be used. This method
is capablé of handling a large variety of steady state cases.
The main difficulty involved in using the Ritz method is that
the approximate form of the solution must be known or assumed.

AAs a resulf, this method will not find unknown featurés of the

\'solution such as higher or lower harmonics if they are not
included in the éssumedlsolution.. The results of the analbgue
computer study show that a biassed sinusoid at the forcing
frequency is a good approximation to the solution waveform,

and such a solution can be well approximated with the Ritz

method.

3-2 The Ritz Mefhod as Applied to Forced Osciilations

(9)

The Ritz method, as summarized by Klotter -/ is based

on the following principle. Let the differential equation
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describing a system be:
E[q(t)] =0 | o (3-1)

and replace the solution, q(t), by an assumed form:
’ m T )
T = > e Yo (8) for acicy (3-2)
k=1 -

where the q)k(t) are an appropriately chosen set of linearly

independent functions. Unless q(t) is the exact solution,
E [a(tﬂ'will not vanish. The Ritz conditions for the system

. are conditions on ak such that

b |
S E [“d(t)] qjk(t)dt =0 (k=1,2,...m) (3-3)

a

3-3 Development of the Ritz Conditions

The equations to be considered describe the circuit of

Figure 2-1 and are of the form:

0

E[q]} £ al + 2DKg(('11) + K2f(ql) + Mf'l'Z - psing =
(3-4a)
E[q] _a-’ +2DKg(c1 ) +K2f<q ) +M(.1. - psing =0
(3-4b)

where Z: wt.
We can choose our \Pk to give assumed approximate solutions of

the form: : _ : ‘
‘ 5’1 =Cy + A sinG - B, cos G - (3-5a)

i



~

a9, = C, + A, sin G - B, cos G - ‘(3-‘5b‘)

where C and 02 are included to allow for poss1ble asymmetrv

- in the f or g functions. It follows that
a‘l = wh, cos@ + wB sin® i=1,2 (3-6a)

?1'1 =-w2A. s1n% F W B cos® i=1,2 (3-6b) "

By defining auxiliary functions

2% : .
i A ~ A . -
i A N ' S oo :
FS(C Ai’ Bi) = S f(q )s1n8 dg i=1,2 (3=7b)
0
Fz(ci, A, B)) S J f(q Jeos@ a8 i =1,2 (3-7c) |
S _
. : N 1 ..
i 1 L.
Gé(Ai, B, _w) = fj i=1,2 (3-8a)
0 ,
B 2w _
G]S‘(A'i, B., w) :1‘% . %5 g(a’i)sinz i i =1,2
0 _ A (3-8b)
2T
i i 1 P i
G (Ai, B., w) = z “j g(qi)cosg dg i = l_,_2
0 . (3-8c)
~the Ritz conditions:
21 o e : ' :
S E[’ori] dgé =0 i=1,2 (3-92a)

0
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271 ' , _
j E [3;] sing d% =0 i=1,2 (3-9b)
0

1,2 ' (5490)

I

o
H
I

o em -
g E[a'l] cosg 4%
Ov ’ -

give rise to the following set of algevraic equations:

i i
Fy + 2pGO =0 | (3-10a)
) Wil

P oL oopet - AL - Mn2 A, - S =0/ [i=1,2 (3-10b)

s S '? i 7 j i ,

-2
it ]

i i 2 2

FC + 2DGC + 7 Bi + My Bj :O (3—100)»

where S = p/K2 and 7: w/K.
The f(q) characteristic for the silicon capacitors

used may be approximated (see Appendix A) by:

2

f(q) = q + pq (3-11)

USing (3-11), we obtain the following Ritz conditions

for the coupled, non-symmetric equations:

FL 4 2DGT = 0 i (3-12a)
g ~§ 5 5 - i=1,2

Fy + 2DG; - 97A;-M9“A-s = O L;;laz (3-12b)
i i o 2

F, + 2DG, + 7 Bi+M7 Bj =0 (3-12¢)

If we evaluate Fé from equation (3-7c) we obtain:

i N L
F, = B;(2uC, - 1) | (3-13)
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It is.evident now, that_if we assume negligible damping

(i.e. D=0), equation (3-12c) is satisfied for B, = Bj = 0.
For this case, our'simplified Ritz conditions becomef
20, + 2uC.2 + pA.% = 0 i=1,2 (3-14a)
Vi Bo 4 A, = = 4,
o j=1,2 |
- 2 2. - . .
A2+ ZpCi) - 7 A;- M9 A_j—S =<O it (3-14D)

Solving for C. in (3-12b) and substituting in (3-12a) yields

equations of the form:

x4 + bx2 + ¢cx + dxy + ey2 +hy +a =20 (3-15)
v' o+ by° + ey + dxy + ex’ + hx +a = 0 (3-16)
here ’ ‘ .’M§* 4
where _ : A
x=h ‘ ¢ = 17~
, [
_mpt
y = A2 : i e ="

4_ .

b:-g‘—zl— B h:'M—?"z—S'

2y il

2 2
u

Making the substitutions x = u + v, y = u - v and adding and

subtracting (3-15) and (3—16)'uncouples,the equations and gives:

v o'[4ur2 + 2(b-e) u + c—h] -0 (3-17)

= + 4u2(r24u2) +br + cu + d(2u2—r2) + er® +hu +a =0
| (3-18)
where r2 = u° + vo. Equation (3-17) is satisfied if

v =0, Ifv 4 0, solving for rl in (3-17) and using this value
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in (3-16) gives a polynomial in powers of u:

u6[=4]+ u4[2(d + e - bﬂ +ul [2h]
+ u2[3e2 - b? +2bd - 2dc - 2be + 4a ] .4
v [E-D.0n - 0] |
[h'-? c]2=0 :
5 | (3-19)

When v = 0, X = v and equation (3-15) may be solved directly.

o]

+

i~
o

When v £ o the Ritz coefficients are determined from the roots of

(3-19).

3-4 Qualitative Discussion of Solutions

To get an heuristic idea of what to expect for solutions,
it is useful to examine (3-14a) and (3-14b) more closely. Solving

for Ci in the first equation gives

-1 i},l - 2p%a,

C, = n (i'= 1,2) (3-20)

Now if Ai ie ZEero, Ci must also be'zero because‘there is no
oscillation to cause the bias or dc term. Thus, only the positiﬁe
sign in front of the radical in (3-20) is meaningfui. The neg-
ative sign leads to extraneeus roots. Using (3-20), substituting

for Ci in (3-14b), and solving for yzzyields:

:7 ¢ —21 v& - opfa? -8 (3-21)
(1 +M K%) -t
1

In the‘special case where M = O, these equations reduce to

(9)

exactly the same form as given by Klotter for uncoupled
equations. TFigure 3-1(a) is a typical frequency response plot of

(3-21) for M = 0. For M £ 0, the term 1/(1 + M 1) expands or
| Sy
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(3)

(b)

OPERATING

- | )

. M=0 ‘4 REGION |
(c)
M—A—2<O

Aq _

faar}.
1 2 n2

Figure 3.1 Typical Frequency Responses
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cdntraéts this curve along the ?2 axié. The curves shown in

‘Figure 3-1(b) depict this feature and are drawn assuming ‘that A,

. A.
is greater than Aj and that M Kl is slightly greater than -1.
C . o i _ '
.A.i - . . . .
Because (1 + M K—) is.smaller than (1 + M Kl), the curve for
J i

i =2, J=11s expanded along the 72 axis more than the curve .
for i - 1, j = 2. " Thus the possible opefating region where Al
is greater than A, is increased as shown in Figure 3-1(c).

- With M %ﬁ positive, the possible operating region is decreased.

3-5 TFeatures of the Solutions

A more thorough and quantitative determination of the
Ritz‘coefficients is obtéined by solving (3-16) and (3-19)
directly. Thefe are Sixteen\root pairs resulting from these
equations. Four aré obtained from the solution of (3-16) for
the case x =7. The other twelve are solutions of the sixth
order (3-19) and the transformation re - u2.+ ve in (%3-18). How-
ever, because of the symmetry involved, for each of six x, ¥y

solution pairs resulting from (3-19) there is an identical y, x

solution. The equations were solved on an I.B.M. 7040 digital

computer using Laguerre's method(IS)’(l6) for extracting poly-

nomial roots, (see Appendix B). This method was found to be more
réliable for this work than the Muller, NeWton, or Bairstow-
methods. The Ritz coefficients were determined and theéir depénd—
ence on the driving amplitudels, the normalized‘frequencyv jy ’
and the coupiing term M were found. Exaﬁples of the solutions

which come from the real roots of (3-16) and (3-19) are given
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in'Figpres 3-2 through 3-8. Complex roots have no physical'méaning.

3-6 Discussion of the Uncoupled Case (M = 0)

(a). Frequency Characteristics

In Figure S—Bjit is seen that the frequeﬁcy response
of thié_”ﬁonlinear circuit is quite uniike-that of its
linear ééunterpartftwo series‘resonant L-C circuits. The curve.
is shaped so that although the syétem described is lossless,
the response is everywhere finife. Aléo, as previously mentioned,
the circuit can exist in more than one state at a given driving

(5),(8)

frequency. It can bé shown that solutions characterized
by'negétive slope regions in the ;]Xl' - s plane are unstable
and hence cannot exist in a physical system. These solutions
and the ones resulting from extraneous roots are shown in

broken lines in the figures. It is seen then, that for the'un—
coupled case, the circuit can exist in four different states:

a 1-1 state (both x and y large and opposite in phase to the
driving term); a 0-O state (both x and y small and in phase with

’

the driving term); a 1-0 state; and a 0-1 state.

(b) Amplitude Characteristics

Figure %-3 shows thaf the dependence;of the responses
on the driving amplitude is also quite unlike that of the cir-
cuit's linear céunterpart. The dependence is examined at a
frequency that is known from Figure 3-2 to have more than one
" possible response. Again, the ﬁnstable and extraneous solutions

are shown with broken lines. It is seen that if the circuit is
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in the 0-0 stzte and the dfiving amplitude is gradually
increasedl, the response‘increaSes gradually -until the vertical
tangent peint on the lower curve is reached, and then suddenly
increases tv the amplitude and phase given by the upper curve
(a 1-1 state). From then on, the response gradually increases

with increasing input amplitude.

(¢c) Effect of Damping

The effect of sllght loss in the resonant 01rcu1t can be
shown(5) to modify the prev1ously discussed curves as deplcted
:1n Flgures 3-4 and 3-5. It is seen that if the circuit is again
in .the 0-0 state and the input amplitude is gradually increased,
the response increases . and a jump in amplitude and phase occurs
as before. If now the amplitude is slowly decreased, the
response decreases slowly until the other vertical tangency
point is reached at which time the circuit reverts to the 0-0
state. In the region between the two vertical tangent points,
all four states are possible. The change of state with driving
amplitude is discuesed in 3-8 as a means of limiting the number
of stable states.

If the circuit is more heavily damped so that no vertical
tangent points‘occur, the two‘sides of the circuit cannot be in

different states.

%3-7 The Effect of Coupling

It is useful first to consider a typical response plot

as shown in Figure 3-6. This plot is the entire solution from
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equation (3-19) as it varies with driving amplitude. The éix
X, y pairs shown are labelled (Xl,yl)'through (x6,y6). It should
) through

be remembered that there are six more pairs (X7,y7

(X12’yl2) but these are the same as (Xl,yl) through (X6,y6).

The unstable and‘extréheous solutions are again shown in broken
lines and it should be noted that only £99Yq is left solid and
hence is the only solution  of interest. In the following dis-
cussion only the solutions of interest will be shown.

The effect of varying M is then seen by examining the -
frequency plots of Figﬁres 3-7 and 3-8. It is seen that grgater
coupling with M positive results in a decreased region of
.possible bistability with both sides of the circuit in the same
state (0-0 or 1-1). Also, it results in a greater region of
possible symmetrical bistability (0-1 or 1-0). With M negative, the
opposite effect is observed, that is the unsymmetrical regibn
(0-0 or 1-1) is incfeased whereas the symmetrical region is
decreased. It should be possible then, to have the circuit
operate at a point such that only the desired symmetricai

states can exist.

3-8 Source Impedance Considerations

Consider the effect of placing a capacitor, CS in series
with the carrier source of the circuit shown.in Figure 2-1 which
was previously discussed. Let the source voltage, V, be inc-
reased such that when the circuit is in either the 0-1 or 1-0

state, the voltage at A is the same as it was before the
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insertion of the capacitor. If the circuit were now to attempt
to go into the 0-0 state, less current would be drawn from the
source and the voltage drop across CS would decrease. Hence the
_voltage at A would increase and, as can be'seen from Figure

3-5; it would tend to force the circuit back into the 0-1 or
1-0 state. .Similariy, if the cifcuit were to attempt to go

into tﬁe 1-1 state, the voltage at A would decrease‘aﬁd the
circuit would again be forced back to the C—l or 1-0 state.

This series cépacitor can thus ﬁe used %oAincr;ase thé pre-

viously discussed effect of positive coupling.
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4. EXPERIMENTAL RESULTS

4—1. Bacic Circuit Configuration

A basic circuit as éhowﬁ in Figure 4-1 was constructed.
The nonlinear capacitors in the resonént circuits are the
Transitron SC-5 silicon capacitofs that have been previously
discussed and whése characteristics were used for thé analogﬁe
computer study and also in the approximate énalyticél study
of Chapter 3. As these capacitors are a type Of_diode, they
were back-biassed at 5 volts through a 100 kilohm resistor.
The carrier signal source was a General Radio Type 1001-A
sfandard radio signal generatdr which was operatéd near the peak
of the Q-curve (Figure 2-3) at 350 KHz. The inductors and
transformer were wound on Siemens Siferrit ferrite pot cores
which have an adjustable air gap, permitting the inductance to
be varied. This feature is neéessary to tune the resonant
circuits to the.operating frequency and alSo‘to compensate for

variations in capacitance between different silicon capacitors.

4-2 Output Waveform

The output waveforms were found to be very hearly biassed
sinusoids af the same frequency as the carrier source, thus{'u‘
validating the use of the approximate form of the solution éhat
was used in Chapter 3. Unlike the results shown by the analogue
study, higher harmonic and subharmonic reséonses were either non-

existent or so slight that any effect they might have had on
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the solutions in Chapfer 3 or on the‘actual operation of the
circuit is negligible. This apporent discrepancy beﬁweeh the
actual circuit and its analogue model was due.to the use of a
slightly simplified model. -It is the simplification of the
"'frequency'characteristics of the analogue model‘ﬁhich causes
the actual circuit to act more‘predictably than the analogﬁe

model (see Chapter 2).

4-3 Powef Consumption

An approximate measurement of'the steady state power
consumption of the basic circuit was made by considering the
whole unit as a black-box, measuring the driving voltage, and
'finding.the current that was in phase pith it in the following
manner: The voltage across the unit was-displayed on the
vertical axis of an oscilloscope and a signal proportional to
the current was displayed on the horizontal'axisf From the
resulting Lissajous figure the in-phase current was determined
and‘the power dissipated by the basic circuit was calculated to
be slightly less than ten microwatts. This'extremely low loss}
is a result‘of this circuit consisting almost entirely of re-
active coﬁponents. The portion of the loss attributable to the

bias resistor was less than one microwatt.

4-4 Bistability

The circuit was readily made symmetrically bistable by
adding a series capacitor as discussed in section 3-8. The value

of‘CS'wes_chosen such that the voltage at point A of Figure 4-1
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‘was sufficient to pérmit symmetrical bisfaﬁility when the
signal generator was at three-quarters of its maximum Qutput;
" Both sides of fhe circuit were tuned to the operating
frequency by varying the air gap in ind‘uctors'L_l and L2. ‘With
" the circuit adjusted ih fhis manher, the unit was symmetrically
bistable‘with the amplitude of the high resonant state‘about

- four times that of the low one as shown by the center two traces

of Figure 4-3.

4-5 Use as a Memory Device

To use a basic circuit as a memory device, all that is.
needed is a means of changing its state. This is readily
done by applying a négative‘pulse through avdiode at point X"
or Y" in Figure 4-1. If side X is in the high resonant state
and side Y is in the low state, a negative pulse at X" mom-
entarily increases the bias on SC5-X. This increase~in bias
reduces its average capacitance and causes side X to drop into
the low state, and because the coupling and series capacitor
require that the circuit be symmetrically bistable as described,
side Y is forced inté the high state. 'Successivé pulses
at X" then have no further effect on the state of the circuit.
To festére thé circuit to its originai State, a negative pulse

must be applied at Y".

4~6 Use as a -Counter

The circuit configuration used to demonstrate counter



operation of the device isishown in Figure 4-2. Successive
pulses appliéd at input point A reverée the.state of the
~circuit in a manner to be discussed in Section 4-7. The
switching pulses were obtained byrpassing a sqﬁare wave through
capacifor C, and diode D3. Figufe 4-3 shows the operation of
this circuit with diode D3 shorted out. All the traces are at
the same vertical scale of 1 volt/division. The uppef trace
shbws the input triggering pulses at point A, the next two
tracés show the carrier envelope at points X and Y and the

~ lower trace is of the output pulses at point Y' which are
obtained. by rectifying the signal at Y with diode D2 and then
différentiating it with C4, R4. It should be noted here that
with D3 shorted out, both positive and negative pulses reach
point A, but only the negative pulses trigger the circuit.

This effect is due to the way the circuit was tuned and will

be discussed in the next section.

The sensitivity of the circuit to variations in input
pulse amplitude and duration was détermined by reblacing the
square wave generator and capacitor‘CZ'with a General Radio
Type 1217A pulse genefator. The minimum puise duratién that
would reliably trigger the circuit was about 5 microseconds or
nearly fwo complete cycles of the cérrier signal. It would
- not be reasonable to expect the c¢ircuit to respond to a pulse
duration ofAless than one complete cycle because the transient

response would then depend on what portion of the cycle was

disturbed. However, if more than one or several cycles are
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disturbed by.a:pulsé, fhércircuit céniaftaiﬁ‘q'ﬁseﬁdO—sféady |
state and will act as describéd inA%he next section. The min-
imum amplitude pulse to which the.circuit would respond reliably
was about 0.15 volfs. This-minimum ampiitude of pulse is also’
dependent on the circait'tuning in a manner to be discussed in
Section 4-7. | |

" To tfigger successive circuits, the output?pulses from
either-X' or Y' of Figure 4-2 were uséd at point A of the next
unit. Figure 4-4 shows the envéIOpe at X and Y of two consecutive
units. The upper two tracés are of the first circuit which is
triggered by negative pulses from a differentiated and recti-
fied square wave as before,and the lower two-trades are of
the.second unit which is triggered by output pulses as shown in
"the lower trace of Figure 4-3. DNote the irregulafities in the
envelope of the second ﬁnit that occur when the first unit
~switches. bThese‘are a result of the 50 ohm output impedaﬁce of
the signal generator which causes fluctuations in its output
amplitude at‘sWitching instants. An undesirable outcome of
this effect is the possiblé oCcurfence of unwanted switching
which was demonstrated by placing a resistor in series with the
generator(to increase the output impedance as seen by the cir-
cuit. Although the impedance of the generator itself was not
sufficiént to adversely affect the prototype units being studied,
if many such units were being driven by a single oscillator as
would Qccuf in a larger scale computiné device, it would

- become more impbrtaﬁf that the oscillator be of low output
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Figure 4.3 Operation of Counter

Figure 4.4 Waveforms of Two Consecutive Counters
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Figure 4.6 Switching Waveform



impedarnce. _ : _ : : »

4-7 Switching

- It is not the purpose here to attempt a rigorous dis-
‘cussion of thLe transient behavicur of the circuit. Instead, an
'intuitive discussion based on the previously developed analyt-
ical results will be given in order to expléin the brocess of
state reversal. Suppose that initially the circuit of Figure
4-2 has side Y in the high state and side X in the 1oW state
- as debicted on the éblid cufves of Figure 4-5a. A«négative
‘pulse applied to the nonhlinear capaéitbrs increases the bias,
reducing the average capacitance, and thus shifting the
frequency and amplitude resﬁonse curves as shown by the broken
lines in Figure 4-5a. At this instant, the only stéble con-

» figuration is the 0-0 state and so Y starts to decrease. Be-
cause less cgrrent'is being drawn the'ﬁoltage across 02 drops

and the driving amplitude begins to increase, causing points X
and Y to move as indicated. When the pulse is removed it is seen
(Figure 4-5b) that Y is now in an unstable region and decreasing.
Because less current is being drawn by the circuit, the voltage
drop across capacitor CS is.decreased, causing the driving
amplitude to be increased, and fhus causing X to increase.
Because the region is unstable, Y must continue to decrease untii
X is forced past the vertical tangency point, TL’ on the ampli-
tude response curve (Figure 4-5b(2)), and the circuit attains

the complement of its original state (Figure 4~5c). The next
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pulse causeé a repeat of the process. ‘From Figure 4-5a it is
evident that the amplitude of the pulse required to trigger |
the circuit is depehdent on how far the operatihg point is from
Tu.  Also, it is seen that if Y is closer to the upper
‘vertical tangency point than X is to the lower one, as shown
in Figﬁre 4-52, a negative pulse which shifts the fréquency'
curve up the frequency axis will trigger the circuit more
readily than will a positive pulse which shifts the frequency
curve.down the frequency axis. By operating the circuit at a
highér frequency it is poséible to usebpositive pulses for
"switching. However, the difference in amplitude between the
high and lowvstates is less in this region so it is better to
use the first method with negative pulses.

The preceding discussion uses the results of the Ritz
analysis which is a steady;state - not a transient-analysis.
However, it can be seen from the analogue computer results
~ (Pigures 2-6, and 2-11) and also the results from the actual
circuit (Figure 4-6) that the switching process takes place
slowly over several cycles of the carrier signal so that at any
particular instant the circuit may be considered to be in a
quasi—steady state. The switching of the prototype unit
(Figure 4-6) takes place over about 10 cycles of the 350 KHz
carrier signal as described above and exhibits the same type of
overshoot that was apparent in results obtained from the

analogue computer study.
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4-8 Svmmary '

This chapter has dealt with tﬂe conétructidh of a

- prototype low loss bistable circuit that has many of the -
properties of a conventional flip-flop. It was.shown hqw‘
ferroresonant circuits could be ﬁsed as memory- devices o£
cascaded to form counters. ResultsAoBtained from the actual
circuit compared favorably with analogue and analytical solu-
tions and the use of the assumed approximate solution used inv
the Rifz analysis was’shown to be justified. Finally, a
.description of the switching process Was given which combined

a consideration of the Ritz results with observable features

of the analogue and circuit switching waveforms.
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5. CCNCLUSIONS

Th? purpose of this work was to study jump resonance
phénomena ard to investigate fhe possibility of using the
principle in the design of digitél logic elements. Tﬂe éygtem'
chosen for stuay was described by a pair of noniinear second
order differential equations which were coupled by second
derivative terms and wére driven by a sihusoidal forcing
function. -Klotter'é Work,on.the.Ritz method of analysis was
" extended to study the previously mentioned coupled equations -
with asymmetrioél nonlinearities. Klotter's work was limited
to.symmetrical nonlinearities.in'equations with coupling and
the coupling was only in the dependent variable. The analysis
yielded algebraic conditions which were solved on a digital
computer to obtain frequéncy and amplitude responses of the
model. ._ |

The results of the above study compared favorably with
those obtained from the study of a model on an analogue computér,.
and information from the two studies was used in the design
and cdnstrqction of a prototype bistablé circuit which used
low and hiéh resonant states of jump resonant circuits to
represent a O and 1 basis for logical operations. The proto-
type circuits had many of the features of conventional fiip—
flops such as being abie to store and count binary numbers and
drive other units. However, unlike conventional flip-flops,

they required an ac driving source as well as a dc bias supply.
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The dc bias supply could be eliminated from the circuit with
the_advent of nonlineér capacitors with a dielectric such as
barium titanate. Such capacitors would be of low-loss, aﬂd
have a ndnlinear.Chafacteristic. Tr.ese ferroelectric devices
have beenisucéessful in parametric amplifiers. |

Another problem inherent in the device studied was the
switching time. It was-very dependent on the carrier frequency
and also on the loss of the circuit. It was shown by the analogue
computer study that switching would nof occur reliably in less
than five cycles of the carrier signal and that ten cycles
would bé more useful as a design minimum. The implication
here is that the driving source must consist of an oscillation
at a frequency at least ten times the desired maximum switching
rate. The cutoff frequency of the nonlinear‘capacitor sets the
maximum operating frequency of the reébnant circuit and therefore
the maximum switching speed. For low speed applications con-
ventional lumped elements can be connected together to form logic
circuits such as was done with the prototypes described ih this
report, but for higher operating frequencies it would become
increasingly difficult to contain the signals in or near the
~elements ahd lines. One way of avbiding this problem would be
to use conventional microwave devices such as coaxial cables,
waveguides and resonant cavities. However, these are quite
large and cumbersome. Another possible way of increasing the

switching speed would be to make the size of the device small
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compared to»one wavelength. _The technique ofAmiérominiaturizationv
Ais still under development and it would be useful for future
workers in that field to consider miniaturizing the circuits
developed here;

The main incéntive for fﬁture work aiong these lines is
~the inherent low power consumption of the devices. Because most
of the components needed are of a reactive natufe, loss is
primarily due to capacitor leakage and'copper and core loss in
the iﬁductive elements. ‘Devices of the type deVeloped here
would find application in situations where logical'operationsA
‘are required and where low power consumption is necessary.

In Summary,_the work presented here includes:

-1l. BExtending previous work on thé Ritz method of analysis
so as to permit study of coupled nonlinear differen-
tial equations which.have'asymmetrical nonlinearity.

2. An analoguevcomputer study of a model of a bistable

ferroresonant circuit. |

3. The design and construction of a prototype of the above

. ¢ircuit, and some suggestions for future study.
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APPENLTIX A

Polynomial Approximation to the f(q) Characteristic for the

Silicon Capecitor

The voltage-capacitance characteristic of the
Transitron SC-5 silicon capacitors (Figure 2—é) was tabulated
-and using this data a pblyndmial approximation to the f(q)
in (3-4) ;as madé using a least squares fitting proceduré.

A brief outline of that prdcedure follows.

The charge on the capacitor can be described by
q = v.C(v) _ (A-1)

The voltage v, and the corresponding capacitance, C(v), were
found at 52 Points in the voltage range O to -30 volts.
Quadfatic and cubic least squares fits were made at -5 volt.
bias to

v = f(q) = a

2
o T 81Q +axa” + ..., (A-2)

The results are tabulated in Figures A-1, A¥2, and Table A-1.
Both the quadrétic and the cubic approximations to the character-
istic are well within the 20% variation among components

that is claimed by the manufacturer. As a resulf, the Quad—

ratic approximation is used in the analysis in Chapter III.
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Figure A.1 Normalized f(q) Characteristic
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Coefficient a a a 8o Standard
° 1 2 > Deviation -
Approximation .
Quadratic  |1.65 x 1077 | 2.30 x 107° | 2.68 x 107 | - 0.1737
Cubic 1.43 x 107 | 2.32 x 1072 | 2.70 x 1072 | -8.6 x 107 1%.1722
Table A.1

Ly
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APPENDTX B

Determination of the Rivz Coefficients

Figure B-1 is the flow diagram depicting the pro-
cedures followed in determining the dependence of'the Ritz
coefficients on the various parameters of interest. The pro-
gram is quite versatile and portiohs Qf it are self—checking.

(15)

Laguerre's method of fihding polynomialh roofs gives quick
convergence from any starting value for distinct roots. One
Laguerre sfep.réquires more calculation than one Muller, Newton,
or Bairstow step, but with no a priéri approximation to the
‘zeroces it more»than compensates for this by the reduction in
the number of iterations needed. If the root is simple, con-
vergence is cubic; otherwise it is lineaf. The actual Fortran
program used is a modified form of the program "LAGERE" which

(16)

was written by J. Stevens in 1966 and has since been added

to thé computing center's library. The modifications made to

this program allow it to be used to find small roots with a high
degree of accuracy and also to check its accuracy by feconstructing
the coefficients from the roots. These modifications were
necessitated by the properties of polynomials (3-1%) and (3-17)

and by the requirement that the root-finding technique be

operative over a wide range of coefficient values.
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