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A STABILITY STUDY OF GRAVITY ORIENTED SATELLITES
ABSTRACT

The stability of gravitational gradient oriented
satellites is examined by considering four simplified
modélsg"Tbe investigation is carried out numberically
and analytically. The techniques employed involve
considerable computation and hence are particularly

suited to solution by a digital computer.

The analysis of the planar motion of a rigid
satellite leads to the concept of an invariant surface
or integral manifold. Numerical integration of the
equation of motion is employed to determine the mani-
folds. It is shown that for specified values of the
parameters describing the satellite, the region in
phase space that is consistent with stable motion cor-
responds to the largest invariant surface which can be
found., It is also demonstrated that the manifolds are
intimately connected with periodic solutions of the
equation of motion and this knowledge permits determin-
ing limits on the parameters so as to ensure stable
motion by a study of the solution of the variational
equation. Several charts suitable for design purposes
are presented.

The planar motion of a satellite containing a
damping mechanism is studied using a simplified model.
It is shown that for small dampers the motion eventualtl
becomes nearly identical with a periodic solution of
the undamped case.

The third model represents a flexible satellite
free to deform under the influence of solar heating.
An analysis of the temperature distribution in the
structure permits determination of the shape of the
satellite solely in terms of its position. .The result-
ing equation of motion is derived and it is shown that
flexibility does not greatly affect the stability pro-



vided that the flexible member is not too long.

The case of an axi-symmetric satellite in a
circular orbit is also considered. It is shown
‘that in this case manifolds also exist although in
some cases apparently ergodic motion can occur,
Stability can be guaranteed if the Hamiltonian is
less than a prescribed value. Values of the
Hamiltonian larger than this may also permit stable
motion and in this case an invariant surface is
always described in phase space. The stability of
the general motion is somewhat greater than that
for the planar motion. Charts are preéented giving
the maximum permissible disturbances for stable
motion.
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ABSTRACT

The stability of gravitational gradient oriented
satellites is examined by conéidering four simplified models.
The investigation is carried out numerically and analytically.
The techniques employed involve considerable computation and
hence are particularly suited to4solution by a digital
computer. |

The analysis of the planar motion of a rigid satellite
leads to the concept.of an invariant surface or integral
manifold. Numerical.integration of the equation of motion
is employed to determine the manifolds. It is shown that
for specified values of the parameters describing the
satellite, the region in phase space that is consistent with
stable motion correspondskto the largest invariant surface
which can be found. It is also demonstrated that the mani-
folds are intimately connected with periodic solutions of
the equation of motion and this knowledge permits determin- 
ing limits on the parameters so as to ensure stable motion
by a study of the solution of the variational equation.
Severél charts suitable for design purposes are presented.

The planar motion of a satellite containing a damping
mechanism is studied using a simplified model. It is shown
that for small dampers the motion eventually becomes nearly

~identical with a periodic solution of the undamped case.
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The third model represents a flexible satellite free to
deform under the influence of solar heating. An analysis of
the temperature distribution in the structure permits
determination of the shape of the satellite solely in terms
of its position. The resulting equation of motion is derived
and it is shown that flexibility does not greatly affect the
stability provided that the flexible member is not too long.
| The case of an axi-symmetric satellite in a circular
orbit is also considered. It is shown that in this case
manifolds also exist although at times apparently ergodic
motion can occur. Stability can be guaranteed if the Hamil-
tonian is iess than a prescribed value. Values of the Hamil-
tonian larger than this may also permit stéble motion and in
this case an'invariant surface is always described in phase
space. The stability of the general motion is somewhat
greater than that for the planar motion. Charts are presented

giving the maximum permissible disturbances for stable motion.
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1. INTRODUCTION

1.1 Preliminary Remarks

- The motion of a space vehicle involves two dynamical
aspects of interest, namely, the analyses of its trajectory
and of its orientation. The former, generally referred to
as the orbital motion, is concerned with the determination
of the motion of the mass centre and may be thought of as
an extension of classical celestial mechanics. On the
other hand, the motion of a satellite about its own centre
of mass is called libratioﬁ°

~There are situations of practical importance where
it is desirable to maintain a satellite in a fixed orienta-
tion :elative to the earth. For example, proper function-
ing of commuhication satellites with directional antennae
or of weather satellites scanning cloud cover requires
attitude control. Unfortunately, the orientation of the
satellite, even though positioned correctly in the beginning,
deviates in time under the influence of external disturb-
ances, e.g. micrometeorite impacts, solar radiation pressure,
gravitational and magnetic field interactions. This leads
to undesirable librational motion which must be controlled
for the successful operation of the satellite.

Several methods of attitude control are available.

..They may be classified as active orlpassive techniques.

Active stabilization involves the expenditure of



energy which 1s a very expensiveAcommodity aboard an instru-
ment packed spacecraft. The main advantage of this tech-
nique is its ability to maintain the specified orientation
with almost any desired degree of accuracy.

. Passive stabilization techniques, which use no power,
can provide the necessary attitude control if the orienta-
tion requirements are not too severe. Stabilization is
obtained by employing the non-uniformities of the environ-
ment in conjunction with the physical properties of the
satellite.. The significant forces available for passive
stabilization of a spacecraft arise from gravitational,
solar, magnetic, and aerodynamic effects.l’2

The gravitational moment arises because of the local
variation of the gravitational acceleration within the
satellite. It tends to make the "long" axis (the axis of
minimum moment of inertia) of the spacecraft point in the
local vertical direction. There is no discrimination

between "up" and "down." The maximum gravity-gradient

torque is given by

[; = -2‘1-’:-%(]” - ];z)‘ (1.1)

The electromagnetic radiation from the sun carries
with it momentum and hence when absorbed or reflected exerts
a pressure. A satellite with a large surface area placed
asymmetrically with respect to the centre of mass will

experience a moment which may be utilized to establish a
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preferred orientation. The radiation pressure in the vicinity

of the earth is given by

= T o g7 x10° bt (1:2)

so that the maximum radiation pressure torque is

I = pA A, (1.3)

The earth's magnetic field extends for some distance
into space. Within ten earth-radii it is relatively stable
and varies approximately as the inverse third power of the
distance. At larger distances it interacts with the solar
wind and becomes quite uns,teady.3 The earth's magnetic
field can interact with a spacecraft giving rise to a moment
in three distinct ways.

. Rotary motion of the conducting material in the space-
craft induces eddy currents which dissipate energy. The
effect is to provide a moment which opposes the motion.
Rotation with respect to the earth's magnetic field of
ferromagnetic materials present in the satellite results in
hysteresis losses and hence in a damping moment. The
interaction between the residual magnetic moment of the
spacecraft with the earth's field also produces a moment.

In contrast to the previous two cases, this interaction is
conéervativeo The maximum torque due to the magnetic |

moment 1is



I; = 738x10°MH It C(1.4)

‘The problem is further complicated by the fact that the
magnitude and direction of the earth's field change with
the position of the satellite in its orbit.

_Under certain conditions, aerodynamic forces may
provide an effective means of stabilizaﬁion with respect to
the velocity vector. Unfortunately these forces cause the
satellite to re-enter the earth's atmosphere thus limiting
the application of the technique to a short interval. The

maximum aerodynamic torque is given by

I = pvihet 677 0.5

King-HeleLP

has discussed the determination of fﬁ in consider-
able detail.

" The variation of the moments given by equations (1),
(3), (4) and (5) with altitude for the representative
configuration5 described in Table 1 is shown in Figure 1-1.
A satellite, when stabilized by one of these moments, tends
to attain the preferred direction associated with that
moment. The remaining moments which act in different
directions constitute disturbances. The chosen technique,
therefore, must have a large maximum torque compared to the

disturbing moments so that the perturbed motion is within

the allowable limits.



Table I
5

Representative Gravity-Gradient Satellite Configuration

Satellite GEOQOS -_A

~ Moments of inertia, Ixx 615.3 slug ft2

2
I, 20.8 slug ft

Projected area, Ar = Aa - 13.1 ft2
Offset between centre of mass and
centre of area, A£r~=: Aea 5.75 ft

~ Residual magnetic moment, 77t 302 pole cm

1.2 Gravity=Gfadient,Stabilized Satellites

The dominance of the gravity-gradient torque over a
large range of altitudes has led to considerable interest
in this technique of stabilizing the attitude of artificial
satellites. A survey of the literature reveals that the
analysis of the problem has proceeded essentially along two
paths. The major bulk of the literature is concerned either
with the theoretical analysis of idealized models under
restricted conditions or with the detailed simulation of
specific configurations.

‘The purely theoretical analysis of the problem is
limited by the fact that the governing non-linear coupled
equations of motion do not possess a closed form solution.

7

Moran6 and Yu’ found that some simplification of the prob-

lem is possible as the perturbations of the orbit due to
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Figure 1-1 Magnitude of forces acting on a

representative satellite



the librational motion of the satellite are negligibly
small. This makes it possible to describe the orbital
motion using the simple Keplerian equations.

Nelson and Loft8

studied small amplitude librations
of a rigid body in a circular orbit using linearized equa-
tions of motion. -The approximation resulted in the decou-
pling of the motions in and normal to the orbital plane.

9

Klemperer” gave the exact solution for planar libra-

tions of a dumbbell satellite in a circular orbit.

Schechterlo

attempted to extend this solution to the case

of small orbital eccentricity by the method of perturbations.
The method has limited applicability as the resulting pertur-
bations grow without bound.

Bakerll

found periodic solutions with orbital fre-
quency for a dumbbell satellite in an elliptic orbit. He
showed that the amplitude of the motion is approximately
- proportional to the eccentricity of the orbit.

A recent paper by Zlatousov et al12 is of consider-
able interest. These authors also obtained periodic.solu-
tions of the planar equations of motion. The solutions were
functions of the orbit eccentricity and a parameter which
described the geometry of the satellite. It was found that,
in addition to the solutions predicted by Baker, there may
be two other solutions for the same values of the parameters
Infinitesimal perturbations about these solutions were

investigated for stability. It was shown that stable

periodic motion was possible for all orbit eccentricities



by the proper choice of satellite geometry. Non-linear
effects in the perturbation equations were not considered
so that the magnitude of a finite disturbance which would
yield stable motion was not determined.

These authors appear to have been the first to ana-
lyze the problem using the coﬁcept of a stroboscopic phase-
plane. A plot in this plane may be regarded as the result
of repeated application of a point transformation. Stable
motion is represented by closed invariant curves and is
associated with a periodic solution which appears as a set
of fixed points. |

The analysis involving the three degrees of freedom
of a rigid satellite is very difficult. If the orbit is
circular, the Hamiltonian is constant which specifies bounds
on initial coﬁ@iﬁions to guarantee st;ability.l3 |

DeBralh formulated the problem of the libration of a
rigiqAarb;trarily shaped satellite in an elliptic orbit..

He considered the general case with three degrees of freedom
in the presence of a specific form of damping. The response
of the satellite was determined for a limited set of initial
conditions. Instability was attributed to“the non-linear
coupling exi§ting between the degrees of freedom.

The detailed simulation technique has nearly always
been concerned with satellites consisting of several bodies
which are hinged together. The joints of such systems are
conventionally equipped with springs and energy dissipating

mechanisms. The introduction of articulated bodies increases



the complexity of the problem but, as pointed out by Hartbaum
et al,15 the configuration possesses considerable merit. The
major advantages are very fast transient damping at all
amplitudes of motion and considefable design flexibility.

Zajac16

has analyzed the small amplitude planar motion
of a two-body satellite (Figure l-2~a)_in a circular orbit.
It was shown that in the presence of viscous damping the
configuration reduces the time constant to 0.137 of the
orbital period.

Multibody satellites have been investigated in detail

by several authors. Etkinl7’l8

has derived the equations of
motion for a satellite consisting of rigid bodies (Figure
1-2-b). For an orbit of low eccentricity the equations of
motion were linearized by assuming small amplitude librations
of the constituent bodies. The roots of the resulting
characteristic equation were evaluated for a wide range of
configurations. This showed that the motion could be highly
damped.

Fletcher, Rongved and Yul9 formulated the equations
of motion for a two-body communications satellite which was

proposed originally by Paul, West and Yu20

(Figure 1-2-c).
A considerable amount of detailed simulation showed that
the performance of such a device would be satisfactory.

Hartbaum et al15 as well as Hughes21

have attempted
to optimize the configuration of articulated satellites
(Figures 1-2-d and 1-2-b respectively) with respect to

pointing accuracy.
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Several configurations have been proposed which are
simpler than the multi-body satellite discussed above. 1In

1963, Paul®?

investigated a satellite in which a mass was
suspended from a "lossy" spring_(Figure 1-2-e). The device
damped oscillations only about axes perpendicular to that
of the spring. This difficulty was eliminated in a study
by Buxton, Campbell and Losch23‘where the spring was also
permitted to execute torsional oscillations (Figure 1-2-f).
Systems of this type are characterized by amplitude dependent
damping. |
Satellites designed for gravity-gradient stabilization
are necessarily very long; Recently much attention has been
focused on the effects of the resulting flexibility. Katucki
and Moyerzh have considered this to be a major factor affect-
ing the librational dynamics as solar heating can produce
large changes in the configuration. Ashley25 investigated
analytically the structural dynamics of several flexible
bodies when excited by the gravitational gradient field.

- Dow et a126

have presented the results of an extremely
élaborate simulation of flexibility effects.

The simulation studies of this nature have been
successful in predicting the performance of existing gravity-
gradient satellites. The Geodetic Earth Orbiting Satellite,
GEOS—A,5 and the Gravity Gradient Test Satellite, GGTS,27

are performing as expected.
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1.3 Purpose and Scope of Investigation

The main purpose of this investigation is to obtain
the limiting initial conditions for a gravity-gradient
stabilized satellite as a function of design parameters.

The segondary purpose is to investigate the nature of the
motion and to establish procedures based on this knowledge
which will speed and simplify the analysis. To these ends,
several models are studied. In each case only those forces
specifically mentioned are included in the analysis.

The first model is that of a rigid satellite execut-
ing librations in the plane of the orbit. The investigation
assumes a non-dissipative configuration (Figure 2-1).

Model number two includes dissipation by the addition
of a damper of the form proposed by Paul.22 Planar motion
is essential for the proper functioning of the model
(Figure 3-1).

The third model assumes the satellite to be non-
dissipative but subject to considerable distortion due to
solar heating. The effects of varying the satellite's
physical properties are considered (Figure 4-1).

The last model investigated is an axi-symmetric rigid
satellite (Figure 5=l); The restriction to planar motion
is removed although the orbit is assumed to be circular.

The first model is the simplest. It was specifically
chosen to provide a basic understanding of the nature of the

motion. In general the librational motion is two-dimensional
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and model four serves as an appropriate extension. The

influence of internal damping, which is always present, is
idealized in model two. The importance of thermal distor-
tion has been pointed Qut_by_several investigators.24_26

The third model provides a convenient way of studying these

effects.



2., PLANAR LIBRATIONAL MOTION OF A RIGID SATELLITE

2.1 Formulation of the Problem

The planar motion of a rigid satellite in a circular
orbit has been solved by Klemperer9 in terms of the elliptic
sine function. 1In an elliptic orbit, the variations in the
orbital angular velocity and the local gravitational gradient
provide the satellite with a mechanism for exchanging energy
between the librational and orbital degrees of freedom. In
general, this leads to a reduction in the range of initial
conditions that result in stable librational motion as com-
pared to the corresponding range for a circular orbit. This
chapter investigates the bounds that must be placed on the
initial conditions as functions of orbit eccentricity and
satellite geometry to guarantee stable motion.

Consider a rigid satellite of arbitrary shape with
centre of mass at S executing planar librational motion while
moving in an elliptic orbit about the centre of force O
(Figure 2-1). The mass distribution of the central body is
assumed spherical so that the orbit defines a plane. The
position of the satellite is-given by the orbit angle, 6,
measured from the pericentre, P, in the direction of the
orbital motion.

Let xyz be a set of orthogonal body co-ordinates with

the y-axis normal to the plane of the orbit. The angle



Elliptic orbit

Figure 2-1

Geometry of planar motion of a rigid
satellite

15



between the local vertical, 0S, and the z-axis in the sense
of the orbital motion defines the libration angle, ¢/. For

an element of mass, dm,, of the satellite the expressions

b)
for the kinetic and potential energies can be written as
. J . . . 2
dT = 7""2 {[r@ Cosf = ¥Sinyy + (6*}”)§J
. . . z
+[r6 Sinp + Y‘Co.SSU "(6+y/)70]}

= L { R RN (TS

+2(6+9NzroCos p - 5FSinyg
- ;(y‘é Sin(}/ - X?“Co:&b)’}»

and

CJU _ Mdm! — LA dmb

Vit | = [(fj,'nyj_x)z_/_(rcos}a_‘_;)z_ﬁjzjl/z
dm '
= “&,;—"{/ - S (3Csp -2 Sing)
2 2+ 2 3 2 2
~ ;‘Zz } -+ ;—rz_(g Cos;//
- 2x3 Sinylos ¢ #)’35/‘/725&)4‘..}.

If the origin of the xyz axes, S, is at the centre of mass,

/a/mb = m
/YO/’% - /7“% = /}‘/”’6 = 0,

16
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Moreover, if the axes are chosen to be the principal axes

2
/X O/mb = ——/ _]xx)
2 . .
g JM = x -
Jr . b / ( ] ry) (2.5)
fZ dmb = 7( Iz:.)
fxga’mb = 0
With these relations the expressions for the kinetic and
potential energies become
_ My fpZRL A 14 4 0)° .6
T_T(r+r9 +Z(6+¢) (2.6)
, ' "
U =-“BF‘—b + 2},.3 {(ZIXX Iyy zz) ( )
2.7

2
~3(I,~ L)Y,
Using the Lagrangian formulation the equations of motion

corresponding to the three degrees of freedom can be

written as

°0 . y X ) 2 . ‘
¥ oord o= %%1%? {ZIXX-IW-IZZ-3(1”-111)&5 «}z} (2.8)

rzé e %:e (e + L')) = constant = -%e (2.9?

T4 6 3M Ixrlzz] - -0 (2.10]
+ 6 + . Sin Cos .

LP rs“[ IYY ‘P ‘P
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These equations are essentially those of Yu°7 The terms
involving moments of inertia in equations (2.8) and (2.9)
represent perturbations of the usual two-body equations of
motion. Their presence can be attributed to the finite
dimensions of the satellite. »Morané and Yu7 found approxi-
mate solutions to (2.10) and showed that for typical
satellites the contribution of the perturbation terms is
extremely small. Neglécting the perturbations in the orbit
due to the librational motion of the satellite, the solution
of equations (2.8) and (2.9) leads to the classical

Keplerian relations

’rzé = 4

) (e s
2% (2:11)
ro= 2
/U.(l-i- e Cos 9) Ny
. Noting that
d _ h d
T'E- = rz de (2.12)
and
dz éz C/Z . vo i
Jt* 7 de* d46 |
' (2.13)
_ A i de d
r? d6% r do do

equation (2.10) can be rewritten as
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(1 + e Cos G)q)" - 2eSin(+1) + 3K, SinyCos¢ = 0. (2014)

This form of the equation of motion was presented indepen-
dently by Zlatousov et al.12
In general, the governing non-linear, non-autonomous
differential equation with periodic coefficients does not
admit of any closed form solution. The non-linearity is

similar to that of a "soft" spring thus raising the possibil-

ity of amplitude dependent instability.

2.2 Simple Exact Solutions
2.2.1 Circular Orbit (e = 0)
When the orbit of the satellite is circular, equa-

tion (2.14) assumes the autonomous form

" _ ,
v + 3K .Sm(’b Cosl,b =0 (2.15)
which has the firsﬂ'integral

W'z + 3K; Jinz()U = constant = C, . (2.16)
Equation (2.16) defines regions of stability in the -/
phase-plane. For values of the constant less than 3Ki‘the
trajectories are closed and the resulting motion is periodic.
Figure 2-2 illustrates the effect of varying the constant

of integration.

Different values of Ki result in different trajec-



1

-90

Figure 2-2

Phase plane trajectories describing the
solution when e
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tories which for C_ = 3K; are shown in Figure 2-3. It is
noteworthy that these curves are invariant with respect to
©, hence the regions of stability may be considered to be
cylinders with the cross-sections depicted here.

For periodic motion (Cé <'3Ki) equation (2.15) yields

a solution in terms of the elliptic sine function,

Sin Yo )] (3:17)

Y = Sin_'[S:}. SUMax sn (3K, (6-6,)

’
where Y =0 and Y = [fC = 3k, sin ¢ at =6,
' The change in the orbital angle during one complete

cycle of the librational motion is given by

5B = f—%?. K(sm quax). (2:18)

Of particular interest are solutions where AB =27 n/m
indicating m oscillations in n orbits.
i

The initial conditions required to generate these

solutions may be taken to be

SDP;'(O) =0
w",),(o) J3K: Sin Y.

The variation of(P;'(O) required to produce periodic
?

(m=n= ,) (2.19)

solutions with specified values of m and n is plotted in

Figure 2-4 as a function of Ki°
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for e = 0
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Stability limit-

m = Number of oscillations
n = Number of orbits
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Ki
Figure 2-4 Initial angular velocities required to
%roduc? specified periodic solutions
e =0
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2.2.2 Periodic Solutions Using the Method of Harmonic
Balance

The non-linear term in the governing equation of

motion (2.14) may be represented by the Taylor's series

. {2.20)

L
2
2 3 s
T

Consider now a solution of equation (2.14) of the form

| 00
k’)[:,n B ZAm’n Sin 'mhﬁ ) (n=|7z,5.«..) (2.21)

m=|

- which has a period of 2T n. The first two derivatives may

be written as

!
;qlf)”

I | Z (_”_"_.)2 A Sin M€
wP,n - n myn n

I
<k
P
E
3
o
(&)
(1.3
=
Slo

(2.22)

and the expansion for q)B leads to an expression of the

form

3 («.2) 2] o0 |
. . MO <. mB Si mso
(Pr,ng Z Z ZCM,,mz’ma'nsm ™ Sin Z= Sin R
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J
qu, 51 f f 4 ’"nmm 531

-l M=l n1=4
X{S;n (m.+m';—m3)e 1+ Sin (mz+m3h—m,)e (2.23)

+ Sin (ms +m, - m,)o + Sin (10, + g + 1,10 }
n n

Similar expressions can be obtained for (P5, (P7, ..... S0
that the Taylor's series expansion for SinZ#l in (2.20)

introduces only sine terms. Recognizing that

jT‘P;?mG = z m‘A 5'” ne C°5'mn_e

L fd

= ) B Ag o0 ¢ 50

m\= (2.24)
37_;% Cos © :-mz_( )AmnCos 19 gip M6
- =L ) (=A mn{s.n (an)0 i (116 }
m={

equation (2.14) becomes



-
m=i
The principle of harmonic balance requires the co-

efficient of each trigonometric term to be individually zero
thus providing a sufficient number of equations to solve for

the A (i =1,2,....). The equations are non-linear and,

n,i
for a significant number of terms in the assumed solution,
are difficult to solve. However, the important conclusion
can be drawn, that the assumed form of the solution is
correct.

Periodic solutions of (2.14) are odd functions of 8.
The non-linearity of the equations also indicates that there
may be more than one solution for:specific values of the
parameters.

There are other families of periodic solutions which

are closely related to those already investigated. Let

26

Enn(Am n; E) K,)San 'mng =0, » (R.25)
? J ‘

e* - 0 - T (2.26)

then
Sin & =~ Sin 6*

Cos & = "’COS_e*
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d - 4
d6 d6* (2.27)
JZ JZ cont'd

de* = de*

and equation (2.14) becomes
*
(1 — € Cos e) s +2@5’"9(de* )

(2.28)

+ 3K; Sin (// Cos ¢

Equation (2.28) has essentially the same form as
(R.14) except for the sign of e, hence the same form of

solution is valid and periodic solutions of the form

G—H
(Hojn iAmyn n (2.29)

m=1

exist. These solutions appear as odd functions about the
point @ =T . 1In some cases, the solutions thus determined
are identical to those which are odd about the point & = O,
esg., n = 1,

The fact that the eccentricity is negative implies
that the apocentre corresponds to @ = 0. If the solution
is such that at pericentre (Y # 0, the solution is different
from that obtained earlier.

There also exists a third family of periodic solutions.

Let
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‘. — )i
SD* = Y - 7 (2.30)
then

dp _  d%

d6 do

IEEE B dty (2.31)
d6? de?

Sin l{) Cos \P = - Sin LP,_‘ Cos ‘P*

so that (2.14) becomes

(1+ eCose)% ZeS‘me(q);H)-JKiqu)*cos%=o, (2.32)

" This is identical to equation (2.14) with K; replaced by
—Ki. The equation may be solved using the techniques dis-

cussed above and yields the similar solutilon

‘ JI .. mb6
q‘)ﬁn -2 + iAm,n Ot n (2.33)
m=i

In physical terms, the motion represents an oscillation
about the local horizontal. It is interesting to note that

Zlatousov et a112

obtained periodic solutions of this type
numerically for n = 1 without establishing the general form

of the solution presented here.
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Periodic solutions determined with negative values
of e and Ki thus correspond to realizable situations when
the parameters are restricted to the interval between zero
and one. Larger values of these parameters have no physical
meaning as for e > 1 the orbital motion is not periodic and

Ki > 1 is physic¢ally impossible,

2.2.3 Numerical Determination of Periodic Solutions

The preceding section has .indicated a method of
determining the periodic solutions of (2.14). The actual
solution of the resulting equations is quite involved as the
number of terms required for an accurate solution is astro-
nomical. Fortunately, the knowledge of the form helps
considerably in the numerical evaluation of the periodic
solutions.

The numerical determination of the periodic solutions
was accomplished aslfollows° A digital computer was pro-
grammed to solve equation (2.14k) using a numerical algorithm.
Initial conditions were chosen consistent with the known

form

o)

L

p(o)
J© = ¥

and equation (2.14) was integrated until © = 2Tn. The

(R.34)

final values of ¢Q and wi which were, in general, different

from (2.34) were noted. A correction was then made to the
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value of w; so as to cause the final condition to become
identical with the initial condition. When a periodic
solution exists, the process converges to give the required
value of pi and the solution of the interval.

Typical periodic solutions with orbital frequency
(i.e. n = 1) are presented in Figures 2-5 and 2-6. The
initial derivatives,%éﬂ(O), required to produce solutions
of this type are plotted in Figure 2-7. A similar diagram
was presented independently in reference 12. The diagram
indicates that for Ki less than 1/3 there is only one
periodic solution while for larger values of Ki there may
be as many as three. This result is in accord with the
curves presented in Figure 2-4.

The numerical technique can produce periodic solutions
of any desired accuracy. A reliable estimate of the error

may be made by computing the function

§6) = £[p, ,(r+0) + p,(nm-6)] (2.35)

over the interval 0£06<n7l. The exact solution is odd with
respect to the point = nX so that & should be identi-
cally zero. Several typical situations are shown in Figure
2-8. The maximum observed value of & , which occurred at
high eccentricity, was .003 radians and may be attributed

to the nearly discontinuous behaviour of the solution.

It is also possible to search for solutions of longer
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period (n > 1). The numerical technique is quite versatile
in this respect. Figure 2-9 illustrates periodic solutions
with a period of 4TU. Note the degeneration of a solution
which oscillates three times at e = O into one which oscil-
lates only twice at e & 0.35. 1Initial values of the

derivatives, tp'p’z(o), for the solutions are presented in
Figure 2-10. Vertical tangents to these curves correspond
to the points where the solutions become identical to those

periodic over 27C.

2.3 Approximate Solutions

2.3.1 WKBJ Method?®

For small amplitude motion, equation (2.14) may be

linearized by introducing the approximations

Sin = VY

Cos Y ~ | .
The equation of motion reduces to
(1 +€Cos0)§' ~2eSnOY + 3K P = 2eSm e

which may be transformed by means of the transformation

g o= (1+ e s ) ¢

35

(2.36)

(2.37)

(2.38)
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to

2e Sin O (2.39)

ré.:
+

27
Il

where

2 3K; + e Cos © '
G - | + € Cos® » 2:40)

The complementary solution to (2.39 can be obtained
approximately using the WKBJ method provided the function

Gz(e) satisfies the inequality

J 1 \R
F=..CLTZ. _é%‘_——%(é) << |, (2.41)

Figure 2-11 shows the variation of F with ® for several

values of e and Ki = 1., It is evident that, even for large
values of the eccentricity, the inequality in (2.41) is
reasonably well satisfied.

The approximate solution to (2.39) is then given by

Y=y +GY, ¢ P 242

(2.43)
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and ﬁP* represents the particular integral obtained using

the method of variation of parameters
e

* °2esme Y, JQI
@ tzj;?lq’zl,_{?.’q,z,
,ZGS:’ne ?}L Je

"'Q% oW g, - ﬁi’dﬁ

In general, the evaluation of the WKBJ solution can
be achieved only numerically and involves a large amount of

computation. Considerable simplification is possible with-

40

(2.44)

out substantially affecting the accuracy of the WKBJ approxi-

mation by adopting the following procedure.
Neglecting second and higher degree terms in e and

putting

w? = 3K

3K - |

v @ K;

-the required functions can be approximated as
Q o~ (,,)L<l— ye Cose)

(,+ -VZe Cose)

L~ L
Vg e
Sin (fo%w) = Sin (w,_@ - ev), Sin 9)

;9' Sin WO - eV, Sin® (o5 W6

(2.45)

(2.46)
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e
COS(LG de) = Cos (LJLG - €V Sin @)
(2.%63
nt!
=~ (Cos W O °°
+ evw SinB Sin w6
Thus, within a ﬁultipiicative constant, the solutions (2.43)
become
4 e
tp 2~ Cos ) 0 +EV(4 2 Cos(l),_-l-,')@
| (2.47)
+ ev(';’ + %) Cos (:J,_- .)e
We
Ip ~ Sin w6 + e\)<4l‘_27) Sin(c.),_u)e
(2.48)

The first derivative is missing from equation (2.39)
so that the denominators in (2.44) are equal to a constant

which is
q]' (le, - q): qu = W+ Q(e")v (2.49)

The particular integral already involves the first power of



L2
the eccentricity so that

e
qy* A ‘{S;n A) efS:’nQ Cos 6 6 d6
W iV

° Z
= Cos wL9f5z'n6 Sin W) 6 JG} +O<€)
0

(2.50)

~ (wz 3 (e, Sin6 - Sinw0)
L

+ O(ez);’ (W # 1),

Using the transformation (2.38) the solution for SD is

- _ '
Y = ¢y + Cap + Y (2.51)

where

lP, = Cos wB + € (’5"’ - UE\) B %)Cos(w,_-% 1)6

.;.e(z + :.;,:V - %)Cos(b);oe-*o(ez)
Y = Sinw® + € g"‘%"é‘)Sin(l«)ﬁI)e

;e (i’}i + %&—%)Sm(w’_—9e +O(e*)

(2.52)

P = (ml (w SinB - Sin .0 )+ O@?)

Figures 2-12 and 2-13 compare the WKBJ solution
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(2.42 - Z.Qh) and its approximation (2.51, 2.52) with the
exact numerical solution of equation (2.14). It is apparent
that the simplification to the WKBJ method does not increaseA
the error already present.

The approximation to the WKBJ solution follows the
exact solution in a general fashion for a long period of
time. This is illustrated in Figure 2-14, where the libra-
tional motion is shown over eight revolutions, and discussed
on page 47. The WKBJ solution is not plotted because it is
nearly coincident with the approximate result.

The analysis does provide useful information about

the maximum value of the amplitude of libration. From (2.51),

: _ VA —2 . 2e \2
o] - o oG )

RIS (2.53)
v —— -, .
ve(1- 3)/a* 5
which has a minimum when
c, = O
_ 26 (2.54)
C
z wL(wj-a)

provided Q)L2><e/(4-3e))o Hence the amplitude of libration
is always greater than Z€ (NL‘Z—I> + O(ﬁz)o The method pre-

dicts the "period" of libration with considerable accuracy.
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Figure 2-12 Comparison of the exact solution of the equation of
. motion with that determined by the WKBJ method and
the approximate WKBJ method (Ki =1, e = 0.1)
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For the particular case of e = 0 and Ki = 1, it provides the
well known result that, for small amplitudes, the librational
frequency is VF; times the orbital frequency. Further, the
presence of a particular solution indicates that a body in
an elliptic orbit always executes librational motion.

It may be pointed out that the frequency spectrum
associated with the librational motion consists of the
orbital frequency, the frequency of libration in a circular
orbit, anq the modulation products of the two foregoing
frequencies. The resulting motion acquires an apparently
random character due to the superposition of the various
frequencies. This also explains the unusual irregularities
which may be noted in Figure 2-14. The frequency of libra-
tion is also dependent on the amplitude of the motion. .Thi§
introduces a phase shift between the exact and approximate
solution§vv |

The major source of error 1s the non-linearity of
equation'(2;lh). The amplitudes of 4} definitely indicate
that the system 1s operating in the non-linear region. How-
ever, it appears that the approximation to the WKBJ method
presented here may prove adequate for preliminary design

purposes.

2.3.2 Principle of Harmonic Balance
The method outlined in section 2.2.2 may be considered
exact. Unfortunately the amount of cbmputational work in-

volved is prohibitive.
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Consider for example the three term series solution
. = . - - e .
q)r,)' Al,! SinB + AZ,I din 28 + A3’| Sin 30 (2.55)

The Sin 4) COS!P term may be represented by the first two
terms of the Taylor's series (2.20) so that it retains its
inherent non-linear character. Substituting equation (2.55)
into (2.14), collecting terms and applying the principle of

harmenic balance results in the three equations
' 2 AZZ 2 ]
A, [k -2-3K: (A5 + 28, + 28,

2 2
= 4e + 3K|’A371(A2)' "Am)
2 2 Z
A2,‘ [GK‘ -8 - 3'(. (AZJI + 2A|’| + ZA3,, + 2A|,| A,). ]
(2.56)
= \Be <A'3| + A},l)

2 2 Z
A_;,,[éKi -18 = 3K (Aa,n + 2Ag,, + 24y, )-]
2 2
= se Az)' <+ Ki Al)|<3AZ’l-A‘,I)°

This set of equations does not possess any simple
solution, hence an iterative procedure was adopted. For
example, when e = 0.3 and‘Ki = 1 three solutions were

obtained. The coefficients were found to be :
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Ay 1 = 0.333; 0.975; -1.286
Ay ) = -0.116; -0.114; 0.097 (2.57)
Ay ;= 0.021; 0.065; -0.010.

Even with this three term approximation, the amount
of computational effort is comparable to that for the exact
numerical solution (section 2.2.3). The procedure can be
simplified further by putting.AB’l = 0, i.e. by considering
a two term series solution. The equations relating the co-

efficients then reduce to

A,),[GK; - 2-3K: (A, + 283,)] = 4e

2 2 (2.58)
Az,'[GKi‘a"SK; (Az,l +2A.,;>] = Je A')l
which can be rewritten in a more convenient form as
-e
Ayl
) - A
46 Az . (2.59)
4 Ki A, 3K Z
A =- + l - d - Azbl - ze ' (2.60)

For specified values of e and K; equations (2.59)

and (2.60) define curves in an Ay 15 A, l=plane (Figures
] ?

2-15-1 to 2-15-vi) where the points of intersection give

the required values of Al 4 and A, 1° Since
3 3
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Equation (2.59)
Equation (2.60)

-5
Solution

-1.0

1.0)

l._

Determination of the first two terms
of the sine series solution (K,

Figure 2-15-1
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/\IJ

Equation (2:59)

Equation (2-60)

Solution

= 0,9)

Determination of the first two terms
of the sine series solution (Ki

Figure 2-15-ii
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Determination of the first two terms
of the sine series solution (Ki = 0.7)

Figure 2-15-iii
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: of the sine series solution (Ki = 0,5)
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Determination of the first two terms

Figure 2-15-vi
of the sine series solution (Ki = 0.1)
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/
LPP"(O) = A H ZAZ,, (2.61)

the initial derivative of the periodic solutions can also

be estimated. Figure 2-16 shows the value of qfé,l(O)
obtained in this manner. A comparison with Figure 2-7
indicates that the general characteristics of the diagram
are quite accurate. In particular, the approximate scheme
predicts the maximum value of the eccentricity and the
minimim value of Ki for which three periodic solutions exist
with considerable precision.

Figure 2-17 compares the results of the simple two
and three term analysis with the exact numerical solution
of the equation of motion for the three cases listed in
equation (2.57). The accuracy of the two term solution is
rather poor (maximum error & 20%). The addition of the
third term improves the accuracy only of the solution of
smallest amplitude. To achieve greater accuracy requires
that more terms in the Taylor's expansion of the non-linear

term be retained.

2.3.3 Perturbation of Periodic Solutions
Consider the periodic solution q)p , developed in
?
2.2.2 or 2.2.3. Let & represent a perturbation so that the

actual librational angle is given by
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Figure 2-16  Values of the initial derivative required to
produce solutions with period of 27 as

determined by the first two terms of the sine
series solution
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i

q’ 4?1" 3

Substituting (2.62) into (2.14) results in

f(|+ e Cos @)q)r,:'h - Zedin0B ((VP:Y' + 1)

(2.62)

4y (14€Cs0)8" = 2e5ne S (2.69)

+ 3K; Sin . Cos k})nn62>s2§ + 3K;Cos Z?P),,SmgCoScS =0

which for small & reduces to the variational equation

(1+eCo30)5" - 20 5n0© 5" + 3K Cos2py S = O, (2.64)

This is a linear differential equation with periodic

coefficients which possesses two linearly independent

solutions, &(6) and &,(8), defined by the initial
conditions

(o) = |
s’ (o)

é&.(Q) = 0O
§,(0)

1
o

(2.65)

I

The solution to (2.64) subject to the initial conditions
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il
w

5(0) R
5/(0)

(2.66)

I
-~
0

is given by

S(6) = 2,8) + Y. o,0) . (2.67)
Now, for © = 27, equation (2.67) gives

§izn) = &52n) + % &(n)
Star) = &£ &kn) + 3, &)

and since equation (2.64) is invariant when @ is replaced

(2.68)

by & + 23 , the solution in (2.67) can be extended over the
interval 2L € 6 € LTU by considering (2.68) to be new

initial conditions and writing the analogous relation

S(6) = {x§¢n) + ], H(2m)f 5,(o)
/z (2x) + L% (27) f (s) .

This process may be continued indefinitely. Thus

(2.69)

the complete solution for & may be written in terms of
the solution over the interval 0 € 6 < 207.
Because equation (2.64) remains invariant when S

is replaced by -8 and © by -8, the éé solution must be an

odd function of 6. i.e.,
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| Szlﬂ'é%>

= _'ngég)
/ (2.70)
5 (-6) = (6),
The initial conditions
S(e) = - 4,127
CS-/[O) _ (5:2/(27() (2..71)

define a solution

$) = - Sa)dE) + Llm)se)

(2.72)
in the interval 0 < 8 <€ 27 which matches the 52 solution
in the interval -2 £ © £ 0. The final conditions at
© = 270 must.then be
S(Z]I) = (o) = o |
.y (2.73)
sz = &)= 1 -

Hence, from (2.72)

and

J/Z]Z‘) = - c@(?]?)o(,ﬂ?ﬁ) + JZ/(ZJZ) 0;(277) =0 (2.74)

S1ar) = -8,(am) 8 (arr) + Syan) &, () = | (2.75)
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s5,2m) = &) (2.76)

and

8,En)8, @) - 8\ @) em) = 1= W(zr). (2.77)

The left hand side of (2.77) is the Wronskian of the
differential equation and can be determined from the co-

efficients,29 For equation (2.64) the relation is

w/ = /ﬁeesg?ofe /6 (2.78)
or |
Y4
= / + € (2.79)
W(Q) W/O)(/# e Cos B )

and therefore
W(o) = M/(Z]T) = |/, (2.80)
Consider the solﬁtion (2.67) when € = 2n® and let
<§(4?f[’ﬁ) = &
, (2.81)
5(2]7’") = Jh

then, by (2.68)
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5(2717”277) = 2y, = ak, + bJy

- (2.82)

S@mnsam) = Jpy 7 ez, +dJ,
where
a = § ()
b = &,(2n) (2.83)
¢ = 8 (en)
d = & (z2n)

and (2.82) represents a pair of linear difference equations.

Taking a solution of the form

. n
g = AS 14 (2.84)
jn .= BS Y
and substituting in-(2.82) results in
nt ) Y" B Ly"
As ¥ = At @ e (2.85)
, , n
Bst' = Ajc¥ + B,d ¥

or

A (¥ - a) - Bsb = © (2.86)



6l

(2.86)
"ASC + DB (Y—cﬂ>= o cont 'd
For a non-trivial solution, it is rehuired that
2
Y —(a+d)%’ + fad - bc) = O.  (2.87)

It may be pointed out that the analysis due to Floquet30

yields an equation for the characteristic roots thati:iss
identical to equation (2.87) which simplifies, using (2.76)
and (2.77), to

Y* = 22 + 1 =o0 (2.88)
giving
z . P
¥, = o T ya-| ;(“’72) (2.89)

and equation (2,89) when substituted into (2.86) gives
Y:—a AS. — + Vaz"l (=
g, = tnelhs o xS lag; (02), ese

The solution (2.84) may be written as the sum of the

two solutions

n n

En = AS, Xl + ASZ XZ. (2.91)
h L)

3}1 - figlxj + 13$Z Y;
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hence

n n
DI Ag, ¥ = Agy, (2.93)

Ja*-i S

Taking the sum and difference of (2.91) and (2.93) gives

, _bY

7 J a?-1

bJ
(2 - —Zeh = ZAg
n JoZ-1 2

n
= = ZAs?
(2.94)

yh
2

whose product yields the relation

N

) z 2 n

Ez'\a_‘%’% = 4A5 A, %) =dAhhs, . (2o

This result shows that, if the solution of equation
(2.64) is inspected each time the independent variable
equals 27t n, the values of the function and its derivative,
when plotted in the Z,¥ -plane, lie on é certain curve.
For |a|> 1 the curve is a hyperbola so that & eventually
becomes very large. On the other hand if Ja] € 1 the curve
is an ellipse and & is bounded.. It may be concluded that
in the latter case, small perturbations about the periodic
solutions are stable and for 6 = 2J{n may be found on a

single curve in the q},yl'aplane which surrounds the point
/

((Pp(O),‘Pp(O))o

For values of © other than zero, a point on the curve
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transforms into

$(6) = &S, (e) + J$,(6)

(2.96)
Se) = x8/(e) + 35 @)
where Z and J' liezén the curve defined by (2.95). Hence
- _8(6)8(6) - §(6)5:(6) 297,
| W(e)
J — 5/(9) 5/(9) - 5[9)5}/[‘9) (2.98)
W(o)
which when substituted into (2.95) determine the shape of
the curve at the specified vaiue of ©
52(,9){0( (6) - 52 576)
..zg(@),g(g)/;(e)s ) 55l e
S0)f5%8) - 7 50 j = 4A 4 Wio)
that is,
3(9)52(9) +$(9)5;§) +G(6)8(6)S(6)+D(6) =0,  (2.100)

The nature of the curve at the specified value of ©
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is determined by the sign of the parameter

De) = 4A(6)B(6) - Cz(e) (2.101)

such that for D > 0 the curve is an ellipse and for D < 0,
a hyperbola. From equations (2.99) and (2.100) there is

obtained

@(9) - 4b2 (9) (2.102)

therefore, & < 0 if |al > 1 and > 0 if |a|< 1.

Thus, depending upon the value of |a|‘the curve
defined by successive passages of the solution at fixed 6
is either an ellipse or a hyperbola. In the first case a
tubular surface is defined.

Linear perturbation analysis predicts that initial
conditions which do not lead to exactly periodic motion may
still permit the motion to remain in the neighbourhood of
the periodic solution. There is also the possibility that
the motion may drift away from the generating solution°
. The criterion determining the kind of motion is the magni-
tude of the 52 -type of solution of the variational equation
at 8 = 21l . For |62(25I)i:$ 1, the variation increases with
time, but iflSZ(ZT[” < 1 the difference between the actual
and the periodic solutions remains bounded. In fact, in
the latter case, the solutions lie on a surface in ¢, ¢/, 6

-space which always surrounds the periodic solution and has
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an elliptic cross section.

Figure 2-18 presents the regions in an e,Ki parameter
space for which the perturbations about the various periodic
solutions of orbital frequency are stable. This diagram was
determined numerically and represents an extension in the

1.12- In

region near e = 1 of the work by Zlatousov et a
general there are three periodic solutions to consider. One,
with large positi?e initial derivative, always leads to un-
stable perturbations. The other two solutions, having either
a small positive or large negative initial derivative may
yield stable perturbations.

Figure 2-19 presents similar data for periodic solu-
tions which complete three oscillations in two orbits. It
may be emphasized that there is only one class of solution
in this case {n = 2) because solutions with the positive
slope at & = 0 required in Figuré 2.10 have at © = 27 the
negative slope also found in this Figure (see also Figure
2=9).

When the parameter a in equation (2.88) lies between
+1 and -1, the perturbations are confined to a surface with
elliptical cross-section. In general, as time increases the

point of intersection of the trajectory with the 6 = 0

plane moves around the ellipse., In fact, since

. A=)
Y = o ¥ L /l-a° = e (2.103)

where
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© = Cos o, | (2.104)

it is evident from equations (2.82) that the point repre-
senting the perturbation solution in the Y, W' ~-plane
rotates around the ellipse at the average rate of @ radians
per orbit. 1In particular, if is a rational sub-multiple
of 27U the points defined by (2.82) appear stationary. Thus
the perturbation solution has itself become periodic. This
occurrence is the manifestation of the coalescence with the‘
original periodic solution of another solution characterized
by a period equal to that of the perturbation.

For example, referring to Figures 2-7, 2-9, and 2-10
it is seen that one type of solution of period 4TI becomes
identical with that of period 2T at e= 0O.43. Figures 2-20
and 2-21 indicate that for both periodic solutions |a|l =1

at this point, hence ® = 0, 180°.

2.4 Phase Space and Invariant Surfaces
The equation of motion (2.14) may be written as a

pair of first order differential equations

¢

§ o I
=

= ¥

d6

l (2.105)
dJv'  zesineW'e1)-3KiSingCos ¢
Je |+ € Cos ©

This parallels the usual Hamiltonian formulation where the
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distinction between co-ordinates and moménta nearly disappears.

' The solution of (2.105) depends on the starting values of both

Y and ¢’, as well as thé value of the independent variable, ‘
at the initial point (& = 90)° This suggests that the state

of the system can be represented by a point in a phase space
formed by the three orthogonal co-ordinates ¢, tVﬁ and 6.

As shown in section 2.2.1 for e = O, the existence of
a first integral (2.16) indicates that the stable state of the

system is represented by a point which lies on the closed curve,

g © o 3Kisintp = Cc € 3K, (2.106)
The curve can be thought of as defining a cylindrical surface
with oval cross-section (Figure 2-3).

The governing non-linear, non-autonomous differential
equation does not admit of a simple solution for e # 0. How-
ever, it seems logical to expect that closed curves analogous
to those of Figure 2-3 should continue to exist for non-zero
eccentricity. These curves would then be functions of © and
thus define a surface in the three dimensional Y, q}ﬁ @ -space.
It is apparent that equation (2.14) is periodic in 6 with
period 27X, hence the surface need only be determined over that
interval. |

The surface may be generated by what Hénon and Heiles31
refer to as a "numerical experiment."™ An initial point,l
@ = (/)o, @' = c/J'O, ® = 0 is chosen and equations (2.105) are

integrated until © equals 2JU. This produces a *consequent"



point ¢ = 410, ‘P’= vjc, © = 2 which may be considered as
a new initial point with © = 0. The process may be thought
of as a transformation, defined by equations (2.105), of
the initial point.

The new starting point may itself be transformed
repeatedly thus leading to a series of points in the 91,4/
-plane at 6 = 0. If any of the transfqrmed points lies out-
side the region |#J|€JE/2, then all the points determined
by the process lead to tumbling motion and may be plotted
in thé unstable region. Alternatively, the points may lie
inside the region indicating stable operation and, when
plotted, appear to define a curve., This is an invariant
curve of the transformation. That is, the transformation
of the curve lying in the 6 = O plane results in the same
curve being generated at © = 2 . The two curves are con-
nected by an infinity of trajectories thereby defining a
surface which may be called an "invariant surface® or
"integral:manifold. " The:existencel ofusuch.strfaces:for
librational motion in a circular orbit is evident from

32

earlier discussion, and, as pointed out by Moser, their
existence can be proven for e # O as follows.
The concept of a transformation which converts a
. / . \ '
point (¢, ¢IO) in the € = O plane into another (¢, %’c)
in the 8 = 2T plane is very helpful in this regard. Periodic

solutions appear as sets of fixed points in the two planes

and hence are characterized by an identity transformation.
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The period of the solutions may be taken as long as
desired by making n —»e. Hence there will be a countably
infinite number of points which satisfy an identity trans-
formation. Since the density of these points may be made
as high as desired, the mapping defined in this manner must
be area preserving.

Now, the period of oscillation of the system for
e = 0 is given by (2.18) as a monotonically increasing

function of q)maxo The period is bounded by

2 £ 46 < 005(0 *<‘Pm,(< %) (2.107)

V3K

Moser's theorem then asserts that there exist curves
in the neighbourhood of the curves (2,.106) which remain
invariant under the mapping for small e. Figure 2-22 repre-
sents such an invariant surface schematically.

The surfaces generated by equation (2.14) have certain
symmetry properties. This differential equation remains un-
changed if both © and (Y change sign. Thus, the solution
and its derivative defined by the conditions ¢ (0) = 0,
¢V(O) = (V;, are odd and even functions respectively. Conse-
quently, the points defined in the & = 2tm (m = 1,2,...)
planes are reflections about the tplaaxis of the points
defined in the 8 = 27¥m (m = -1, -2, ...) planes. Hence
the cross-sections of the surface at € = 0 and 2JT are sym-
metrical about the Vf -axis. This is illustrated in Figure

2-23.



Figure 2-22

Schematic view of an invariant surface
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Further, the points defined in the © = 8 plane will
be the mirror image about the q/—axis of the points defined
in the © =-5 plane, or equivalently in the © = 27T - %
plane. Thus the cross-section of the invariant surface at
6 = 8 is a mirror image about the tp'-axis of the cross-
section at © = 27¢ - 8. Hence, the cross-section at 8 =T
is also symmetric about the t/J'--axis° Several cross-sections
of an invariant surface taken at various orbit angles are
presented in Figure 2-24 for specific values of e and Ki“

An initial point taken within a given manifold gener-
ates a different trajectory and hence a new surface. The
property of uniqueness guarantees that the new trajectory
does not intersect the old one. The new invariant surface
must therefore lie completely within the original.

On the other hand, an external initial condition
generates an external surface provided that.thé‘motion con-
tinues to be stable. The desired region of étability may
be represented as the largest closed invariant surface that
can be constructed. Typical invariant surfaces are shown
in Figures 2-25-i and 2-25-ii. The symmetry properties are
readily observed.

This concept of a limiting surface in the phase space
is very important. For given values of the parameters it
provides all possible combinations of initial angles and
velocities to which a satellite may be subjected at any

point in its orbit without causing it to become unstable.
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Figure 2-25-1

Trajectory, K; =1, e=0.25

Typical invariant surface (Ki =1, e = 0;25)
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Trajectory  (K;=07, e=0.2)

Figure 2-25-ii  Typical invariant surface (K4
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In this respect it is an improvement of the work of Zlatousov
et.al.,12
The existence of an integral manifold raises doubts
as to the applicability of Lyapunov's direct method in the
determination of stability. In this method a Lyapunov V-
function, which may be taken to be positive definite, is
sought. According as its time derivative is negative de-
finite, zero, or positive definite the motion is either
asymptotically stable, neutrally stable, or unstable.

When an integral manifold exists, the point repre-
senting the_sﬁate of motion always lies on the same surface.
Therefore the motion must be neutrally stable. Hence the
derivative of the V-function is identically zero and the V-
function must be a constant of the motion. That is, the
integral manifold is a surface on which the V-function is
constant.

Near such a surface an apprdximate V-function will
possess a time derivative of variable sign so that no infor-
mation regarding stability can be obtained by an approximate
analysis. On the other hand, the determination of the V-
function with dV/dt =0 is exactly equivalent to the deter-
mination of the integral manifold so that no saving in
effort is to be expected.

Using an approximate V-function and requiring that
the state vector be larger than some specified value, it is

possible to estimate bounds, on the conditions which lead to
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instability. These bounds a;ghonly_gpproximate and only the
more exact numerically determined bounds are considered.

It is possible that a particular set of parameters
(e, Ki) may be associated with more than one region of
stability. This is illustrated in Figure 2-26. There is
a single central "mainland®™ accompanied by one or more
"islands." The smaller invariant surfaces wrap themselves
around the main surface in a helical manner. The region
between the surfaces represents unstable initial conditions.

The symmetry properties of the invariant surface pro-
vide a means of condensing considerable information into a
single diagram. The line in phase space defined by the inter-
section of the planes ¢ = 0 and 6 = O forms an axis of sym-
metry of the surface. The intercepts made by the limiting
manifold on this line represent bounds that must be placed
on the derivative for the given configuration (¢ = € = 0)
to ensure stable motion. For a specified value of Ki the
points of intersection can be plotted as a function of
eccentricity (Figures 2-27-i to 2-27-vi). Qualitatively
such a diagram measures the size of the region ofxstability°

The spikes in the diagrams indicate the presence of
the secondary islands of stability discussed earlier. The .
irregular edges of the stable regions are caused by the
presence of many additional small spikes. The Figures also
indicate that the region of stability shrinks rapidly with
increasing eccentricity. At some upper limit, e the

max’
stability region shrinks to a point; or in the phase space
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e

"

Trajectory, K;=1, e=0.2

Figure 2-26 Typical invariant surface with "islands™"

98



ST TN \\\\\,\\\\\\\\\§

(d_W) 0-&\ ' \\\\\\\ I—i‘f—————— ""':jj‘ﬁy

SHANN -

-2 i 1 } 1
0 1 2 3 4 5
e
————— Stable {periodic solutions with
"""""" Unstable period = 27n.

I  Transition points as determined
by perturbation analysis.

Figure 2-27-1 Range of values of the derivative when
Y =06 = 0 for stable motion (Ki = 1.0)



87

K;= 09
“N“.."\Q:]
\\\ \\\
NN\ ) -
DA e
AL :
do) o .f.r\‘\'\T\\\\\\\ A\ \\\ 7,1/ :
de
©:9:0
'0'5 n=2// -
\)‘
/
0 b -
R L R .
1. 1 | ]
0 1 2 -3 4 5
e
————— Stable periodic solutions with
""""""" Unstable period = 2nn.
1 Transition points as determined by

perturbation analysis.

Figure 2-27-11 Range of values of the derivative when
¢ =6 = 0 for stable motion (K, = 0.9)



s:w:’

/

&
T
o
R~
AV

e
Y
-~

.~
-~
~
-
-
.
e
‘e

A
~an
-~
-
.



15+

0.5

\\\

A5 | ]
A l’ | i
0 1 2 3 4 5
e
————— Stable periodic solutions with
------------- Unstable period = 27n.

Figure 2-27-iv
| @

Transition points as determined by
perturbation analysis.,

Range of values of the derivative when

= @ = 0 for stable motion (K = 0,5)

89



1.5 T

90

-

0 A 2 3 4

————— Stable periodic solutions with
------------- Unstable period = 27n.

I Transition points as determined by
perturbation analysis.

Figure 2;27-v Range of values of the derivative when

@ =6 = 0 for stable motion (K°1 = 0.3)

L9 B



1.5

0S5 F

e
1

0. -

-10 F

-15

Figure 2-27-vi

Stable ( periodic solutions with
Unstable { period = 2xn.

Transition points as determined by
perturbation analysis.

Range of values of the derivative when
¢ =6 = 0 for stable motion (Ki = 0,1)

91



92
representation the invariant surface degenerates to a single
trajectory. Thus, beyond a certain critical value of eccen-
tricity, stable motion is not possiblé° At still higher
eccentricities, stability may return but the size of the

region is so small as to be of no practical importance.

2.5 Accuracy of the Method

There are several sources of error in the method out-
lined in section 2.4. They are all due to the finite nature
of the numerical process.

A large discrepancy may arise in the solution due to
the truncation error of the numerical integration process
and "roundoff" generated in the computer.

The truncation error varies as hh for the Adams-
Bashforth and Runge-Kutta techniques employedo33 The_round-
off error, on the other hand, tends to increase as 1/n.

Thus there is an optimum step size which minimizes the total
error. At times a situation may arise where the critical
step size is too small for rapid computation and the result-
ing precision may not be essential for the analysis.

To illustrate this point, several step sizes were
chosen for the integration of equation (2.14) over 30 orbits.
The resulting values of the final conditions (Table II) in-
dicate that the errors can be reduced to .0001 radians by
employing a step size of 30;

Figure 2-28-i presents the invariant curve in the
°)

& = 0 plane as given by the most accurate solution (h = 1.5

o
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TABLE IT

The Effect of Varying Integration Step Size

Inertia parameter, K, = 1.0
Orbit eccentricity, e = 0.1

Initial displacement, ¥, = O

Initial velocity, ¢QI = 1,18
h W (60T) -l eom)
Degrees Radians -

30 Unstable after 4.5 orbits
15 Unstable after 18.3 orbits
7.5 -0.18556 1.12282
3 -0.18910 1.11949
1.5 -0.18911 1.11948

Also plopted in the Figure are selected points determined
from the numerical solution obtained with h = 7.5°. Tt is
interesting to note that the differenge between the two
cross-sections is much smaller than that between the two

34

solutions indicated in Table II. Mitropolskiy indicates
that this is frequently observed in systems which possess
integral manifolds. There does not appear to be a theoreti-
cal explanation for this behaviour, but it does permit the
use of large step sizes. Although the resulting solutions
have large errors the invariant surfaces are usually of

sufficient accuracy. The errors appear to cause displace-

ments around the manifold rather than normal to it.
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The determination of the limiting invariant surface
involves additional difficulties.. Here, even a small dis-
crepancy can lead to erroneous results regarding stability.
As indicated by Table II the errors bring about early in-
stability and hence céuse the size of the limiting invariant
surface to be underestimated. (Figuner2-28%iii).,

The results suggest that any error which displaces
the representative point into the unstable region leads to
further growth of this error. Any subsequent error which
acts towards the stable region will have to be somewhat
larger than the original error to regain stability. On the
other hand, the effect of an error which takes the represen-
tétive point into the stable region may be immediately
cancelled by an error of the same size but in the opposite
sense. Thus, assuming that both kinds of error are equally
probable, there will be a drift towards instability from a
thin "skin®" which lies inside the limiting invariant surface.
In the majority of cases studied this tendency towards
instability was noted.

A second error in the determination of the limiting
manifold is due to the termination of the numerical integra-
tion after a finite time. This may result in an unstable
solution appearing stable. Careful plotting of the results
can usually detect any tendency of this type. This error
acts to increase the size of the limiting invariant surface.

Thirdly, the process of numerical experimentation is
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necessarily discrete. That is, bounds can be placed on
initial conditions which separate stable and unstable solu-
tions. These bounds may be made as fine as desired provid-
ing sufficient computing time is used. There is, therefore,
a practical 1limit to the precision with which the limiting
manifold can be determined. This results in the numerically
evaluated limiting manifold lying inside the true one.

The majority of the numerical integrations were per-
formed using a step size of 7.5°%,  The resulting limiting
surfaces were compared with more exact results in several
cases using the data at © = ¢ = 0 as a standard. The
results with h =.7;5° lay within -.07 and +.05 units in
of the more precise results. In the majority of cases the

error was less than .03 units.

2.6 The Significance of Periodic Solutions

2.6.1 The Relationship Between Manifolds and Periodic
Solutions

In section 2.4 it was shown that an initial condition
chosen inside a specific manifold results in the generation
of a new manifold which lies completely within the first. A
succession of initial conditions may thus be chosen which
determine progressively smaller manifolds, finally resulting
in a surface which has zero cross-section. Because of the
periodicity exhibited by the invariant surface, this mani-
fold must then represent a periodic solution., Hence periodic

solutions act as spines upon which the invariant surfaces are
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built. The general motion can then be thought of as a bounded
perturbation about the appropriate periodic solution.

The numerical results presented in section 2.4 indicate
that with increasing eccentricity the size of the limiting
invariant surface shrinks. Ultimately, the cross-section
becomes a set of points so that the manifold degenerates into
a periodic solution. The importance of the periodic solutions
is now evident; as at the largest orbit eccentricity for
stable motion the only available solution is a periodic one.
Because at this critical value of eccentricity the invariant
surface is infinitesimal in size, the linear perturbation
analysis should correctly predict a change from stable to
unstable perturbations. The maximum eccentricity for stable
motion can thus be determined with great precision by the
variational analysis of the appropriate periodic solution.

The details of the analysis were presented in section
2.3.3 and the limiting values of eccentricity were plotted
in Figures 2-18 and 2-19. They are also indicated in Figures
2-27-1 to 2-27-vi to compare the accuracy of the strictly
numerical search for the limiting manifold with the more
theoretical determination of the characteristic exponents.

The agreement is quite good,; but tends to become poorer as

K.1 decreases. This is due to a multiplicity of periodic
solutions appearing and disturbing the numerical search near
the maximum eccentricity. Because the numerical integrations

involved are performed only over finite intervals and are not
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#open ended" as in the case of the numerical search, the accu-
racy may be improved to any desired degree. These results
also explain the apparently anomolous behaviour of the region
of stability between K, = 0.5 and 0.3. Figures 2-7 and 2-18
indicate that the upper spike disappéars with decreasing Ki
(it can be shown that the spike vanishes for K; = 1/3) while
the lower one continues to grow until Ki = 0.25.

Occasionally unstable periodic solutions appear inside
the manifold cross-sections. Figure 2-29 presents several
cross~sections of invariant surfaces evaluated for K, = 1,

e = ,2. The closed curves surround stable periodic solutions
and the pointed invariant plots are associated with unstable
solutions. This is in agreement with the analysis (section
2.3.3) where it was shown that the perturbations lie along
ellipses or hyperbolae in the vicinity of the periodic
solutions. In the stroboscopic phase plane stable periodic
solutions appear like centres while the unstable periodic
solutions have the appearance of saddle points. Thus the
inspection of the periodic solutions provides qualitative
information concerning the nature of the stroboscopic phase
plane and hence of the motion.

2.6.2 Determination of a Complete Set of Periodic

Solutions

Section 2.2.2 indicated the existence of periodic solu-
tions that could be represented as a sine series. An exten-

sive numerical search for these solutions resulted in the

—
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"data presented in section 2.2.3. No attempt was made, how-
ever, to determine if the solutions obtained constituted a
complete set. The importance of periodic solutions in deter-
mining the limiting values of eccentricity and the gehéral
shape of the invariant surfaces makes the knowledge of a
complete set desirable.

Earlier the process of intégration of equation (2.14)
from 6 = 0 to © = 27Tn was described as a transformation
between the two planes. In terms of such a transformation,
a periodic solution appears as a fixed point. Thus enumera-
tion of a complete set of periodic solutions requires the
determination of all the fixed points of the transformation.
Although this is a simple concept it involves an enormous
amount of work because of the large number of trajectories
which must be computed.

Figure 2-30 presents for»Ki =1, e = 0, contours in
the & = 27 plane which correspond to lines of constant ¢
in the 8 = 0 plane. A curve may be drawn which passes
through those points such that Y is invariant under the
transformation. The corresponding plots for constant w' are
shown in Figure 2-31.

The points of intersection of the Y -invariant and
the @’'-invariant curves constitute a complete set of fixed
points for the given values of the parameters (Figure 2-32).
Note that because the eccentricity is zero, there are an

infinite number of invariant points which define a closed
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curve. This is consistent with the exact solution arrived
at in section 2.2.1.

Figures 2-33, 2-34, and 2-35 present the correspond-
ing set of curves for Ki =1, e = 0:1. In this case the three
solutions on the qf-axis are immediately evident. Because
the transformation studied is for n = 1, these three solutions
also lie on the q)aaxis at ® =T and hence are also members
of the second family of periodic solutions. There are also
solutions of the third family at § = %17 /2 as indicated by
Zlatousov et al.,12

No other periodic solutions exist so that those deter-

mined in section 2.2.2 form a complete set for n = 1.

2.6.3 The Degree of Stability

As already mentioned, any state of motion within the
region of stability will give rise to a surfacé which lies
within the limiting surface at all times. Since the major
disturbances are essentially stochastic in nature, the dis-
tance between the surface corresponding to the actual motion
of the satellite and the limiting surface would be a measure
of the long term stability. Further, since the phase space
representation shows that the various surfaces are nested,
this distance becomes a maximum when the surface becomes as
small as possible, i.e. a single trajectory. This state
corresponds to a periodic motion of the satellite with
period 27V,

The necessary momentum change at © = O can be obtained
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from Figures 2-27-i to 2-27-vi. The plots in Figures 2-36-i
through 2-36-vi present the size of the destabilizing impulse
as a function of orbit angle for several values of eccentric-
ity and inertia parameter. iny the largest invariant sur-
faces have been used to prepare these diagrams. Moreover,
the'presence of spikes has been ignored so that the margin
of stability shown in the Figures represents a conservative
.eétimate. It is apparent that orbit angle does not affect
the degree of stability greatly. Eccentricity of the orbit,
on the -other hand, is a powerful destabilizing factor. Values

of e greater than 0.15 lead to a substantial loss of stability.

2.7 Concluding Remarks

The essential featureé of the analysis presented in
this chapter and the conclusions based on them may be sum-
marized as follows:

(1) The analysis demonstrated the existence of various
periodic solutions which may be determined by analytical or
numerical means.

(ii) The concept of a three dimensional phase space
has been introduced. This has the valuable property that
the trajectories described in the phase space by the repre-
sentative points are unique and non-intersecting.

(iii) The periodic solutions appear as helical
trajectories in the phase space. The general character of
the motion is displayed by the integral manifolds which have

been determined numerically. The manifolds are also non-



Figure 2-36-i

L) T I
e=O
—— ) —’4
\\‘\§\ /,/’,_
o \‘\ ~\~ ,/’/’/
s\\ \\\ 0.05/‘/ /,
N CTee— . - P
N 10 -
~ -~
\~\ _______ /“/-

-:~\“\ '//—_;'-
~\\ \\ . ’/
\\ \\~\ _—Q:l—g_/’//z/
\~\\ \‘\ --------------- Q‘ZQ” ’/‘_—
~ 7
N o 025 -

- \\~___/' I I B

T T - T T Q‘;\O___ T
L 1 0’3551
T 1 T
Ki =100
R 0.30
___________ — ‘\.\-—_—’_____‘
L -
—-—\~\ ‘/"_-\i\\0025 PR it
-~ " -
~‘_/‘/ _____Q:2\0 ~\_____/
- — _/‘ ~ e —— —
\_\~_—‘:_; ------- \-:~\~——‘/_——-
e e —— e e e — " T e e —— ———— -
_ 0.15 _
________ 0.10
=TT \'\_~
e, . 0.05 —
-_-’ -------------- -
______________________ o _ . _ . _._._
1 | 1

270

Maximum momentum change required to
destabilize a satellite (Ki = 1,0)

110.



i T T
—iee_._.#=0_
1
\\\ ,/‘
o s
~< e
~ ~
] B \\\‘\--_‘_ _____ 9:‘—'-9/—/’ -
o N _ Lo T T
\\ \\\- _,—/—~~ .0.20 -/‘/ I/
\ e oy /
\ 0.32 ,
\ LT ’/"\_ /
. ‘v-/—/ \\ ‘/ \.\._l
Aw O L .--T-—— 1
we N\l T t _
4 T~ TN 0.32 S
’/’ \_‘__,/ ‘\-/4/ \\
a/ O' o \\
| _ /‘/'\~\ /_/-‘~\ .
—-\~ . - ‘\ - —
- \§/‘/ ‘\-/—/
Ki = 0.9
1k i
I 010 . —-~-—._ __-
\\ ‘/’
f—
- N
. | 0
| 1 |

111

Figure 2-36-ii

360

Maximum. momentum change required to
destabilize a satellite (Ki = 0.9)



2 i : - : ' 112

— — o — — i — i —— G — e —— " —— o — 0 v — i —— —— v m— i —

oy -
_ . N
] - \s\ 0'05 /’/ 7 7]
\\ ''''''' \__’_/-_—--—-’ /
9§ S o10___ _-~7 )
! \\ \_\___/_’ ’/
\ N e 4
L\ s 0.15 e
\\ ‘\_\ ~~~~ . — \-:_-’ ’_/ /
. ’
N /
S~ 0.20 —°

__ — S e m—. —
— . —- T - —

g
ol|E-
o
©
R
o

- ~
-~ - ~
‘/’ ~ .
- =~
0.15
e T e e - ____-—-_.-/"\~\
b - T~ e
0.10
_—._...__-"—_--~\N - '\-—-_-__\
b — e -
~. .~
I 005 _ _.—-—.
- — ‘-—--_\- h - — - — —
—— - -
-1k c— - -

e - e — r—— . — — — — — — — — S Smmv > a—— — —

-2 1 | |
0° 90 180° 270° 360
e

Figure 2-36-1iii Maximum momentum change required to
destabilize a satellite (Ki = 0,7)



e e e e e — e —— e — e e — -
1 -
K; = 05
h~
~. ,/' 1
\~\.—— ______ _O_,_O-S’_ -_’/_/
_/"-\“\-/'/-\‘\ 0.0/5"-\ —- T T
L ~- .
-] - -

-2
00

Figure 2-36-iv

90" 180° 270° 360

©

Maximum momentum change required to
destabilize a satellite (Ki = 0.5)

113



2 _ 1 T T 114

-‘\_/-—~\ - —— T

o 0.05_ -

~._ -
S~ . -
— . - —

N o.. SRR EE

éﬂ! 0 } 4 +
Wo L. e 0.10 -

______________
—_—-~ T~
~— 0.05.—-—
~ - >

- \‘\_/’/ \“\-/‘ -

) L - L
0 90 180 270 360

©

Figure 2-36-v Maximum momentum change required to
destabilize a satellite (Ki_= 0.3)




2 : r T 115

Ki= 0.]
1+ _
e=0 |
b=— 005 . _.—--

Ay T T T~ —

We 0 S e
-------- 005 T—-—--
S ¢ S 1

-‘| L -
-2 1 i 1
o 90 180° 270° 360
o

Figure 2-36-vi Maximum momentum change required to
destabilize a satellite (Ki = 0.1)



116
intersecting and exhibit a close relationship with the periédic
solutions.

(iv) The region of stability is represented by the
largest integral manifold which can be constructed. The
importance of such a surface cannot be over emphasized as
for given values of the parameters it provides all possible
combinations of disturbances to which a satellite may be
subjected at any given point in its orbit without causing
it to tumble,

(v) For a circular orbit the invariant surfaces in
the phase space are cylinders with simple cross-sections.

For finite eccentricity the surfaces are helical and exhibit
substantial variétion in srogs-sectionewithi.orbitaliangle:.

(vi) As eccentricity increases, the size of the limit-
ing surface decreases and for e = € ax it collapses to a line,
i.,e. to a periodic solution. There is a limit to the value
of orbit eccentricity for stable librational motion. This
critical value depends on the geometry of the satellite. The
numerically obtained value was checked by linear perturbation
analysis of the periodic solutions.

(vii) The analysis suggests that a small»value of
eccentricity and a large value of inertia parameter would
help to ensure stability. For e larger than about 0.38
practical gravitational gradient stabilization of a satellite
is not possible. If the size of the limiting invariant sur-

face is interpreted as a measure of the disturbances which
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a satellite will tolerate and still continue to execute
librational motion, it has been shown that even quite
moderate values of eccentricity would seriously reduce the

ability of the satellite to withstand external disturbances.



3. PLANAR LIBRATIONS OF A DAMPED SATELLITE

3.1 Formulation of the Problem

The analysis of the planar librations of a rigid satel-
lite was presented in the preceding chapter. By constructing
the satellite so that relative motion can occur between various
members and inserting energy dissipating mechanisms which
oppose this relative moﬁion it is possible to hasten the cap-
ture of the satellite by the gravity-gradient field‘and to
reduce the effects of external disﬁurbances on its orientation.

Several designs have been proposed in the literature
(section 1.2). Some of these are quite complex as they attempt
to stabilize the satellite about all three body axes. If only
planar librations are considered, the damper proposed by
Paul22 is adequate. This device consists of two poiht masses
constrained to move along the axis of phe satellite gnd con-
nected by a linear spring-dashpot arrangement. |

The configuration studied by Paul is unduly restrictive
and a more general configuration has been selected for study
(Figure 3-1). Note that the mean position of the damper mass
is offset from the centre of mass of the main body. |

The kinetic and potential energies of the system may

be written as
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Elliptic orbit

Figure 3-1 Geometry of motion of a damped satellite
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T = —é-(mb+m4)(?2+ rzéz) + 5y ?2

l | 3 O VTRRY (3.1)
+ z(L, + (3, + 3) )6 + )
U = ‘“%(an-!-ma)
. : — =\
+ A, {zxm T, -1, + m(G.+3)
| (3.2)

— —\ V4
""‘3<Ixx ’Izz+ md(}o"’}') )C°5 LP}
—Z
]
+ T'Iﬁ[ 5 .
Writing the dissipation function as

9 = -Z-L%;;Z ' (3.3)

and using Lagrange's formulation gives the equations of

motion in the (/} and 21 degrees of freedom

(Tyy + MG, 3 B +¥) + 2m (5,43.)5. 6+ §)

b (T, -1+ My (543) ) S Cosy = 0
mc,?. t CJ,?; + %(5“%)("3&524’) -
3.5

- my(Fat5 X6+ 9) + hF = 0.



Putting
_ Ly = T2z
K Iyy
K, = My Fo*
d = T
Yy
Z = 3/5
Z
w =k /my

the governing equations may be rewritten as

(14 Ky (152) N5+ ) + 2Ka(1+2)2(6+ )

(K + K, (142) )SmLPCos

5 . Z +{w¢ + A (1-305p)- (ew)z}

e

_ [(é )~ Jr.g(l- 3Co.sz(/))}’

The use of the awkward relations governing r, &, and

é as functions of time can be avoided by changing the inde-
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pendent variable to © using the relations (2.11)-(2.13) and

noting that
- Z

M - &

r3 ] + e(CesO
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For an ellipfical orbit it is possible to write a relation-

ship for © in terms of the orbital period

2
. {{e 2 (1+eCos®) _ , (1+€ (s 6) 3.10)
6= A (/_eZ)J/z 6 (/_€Z)B/z

so that the parameters describing the damper may be written

. 3
L6 ¢ _ (e
T 76 T4y (1+ € Cos 6)*

“2/2 9-2(_%) = Q(U) (/4(/@ gase)‘*

Using these relations, the system equations (3.8)

(3.11)

and (3.9) may be written as

(1+ K (1+ )" - /%ggo’zg (W'+ /))'
+ 2K (1+2)2 (v'e 1) (3.12)

3K + K (1+2)%) Sin o Cos =
* S €Cesb Sin Cos ¢

and

_ o2Vl :
Z//+[ (1-¢€ _ 2esinb ]Z'

'Z’)\‘(/.,LevCoa‘e)z |+ @ Cos @
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5‘)*2(/‘62)3 - 3(05290 VAPAY:
+[(/+€Co$9)4+ | + ¢ (Cos6 ((P’“) ]Z

(3.13)
/ 2 l‘—JZCBSZSD
- I:(LP“'l)"‘ [+ € Cos B ]
where . |
*
= Wy T
T 6 d (3.14)
(A)* = wd/we

The system involves a large number of variables which
complicates the analysis. To better understand the basic
character of the system it is convenient to consider a
particular situation where the mass, my» is ceritically

damped, i.e.

*

/
= ZW (3.15)

T#
Furthermore, the parameter Ki will be taken to be unity thus
representing a slender, dumbbell type satellite.

3.2, Numerical Results
The damping present in the model causes the phase space
trajectories to gradually approach a limit cycle. The dis-

sipation of energy in the damping mechanism precludes employ-
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ing the process which made possible the generation of an
invariant surface. For a damped system there is no closed
invariant surface, however, the representation of the be-
haviour of the system in the stroboscopic phase plane is
still very helpful.

For a given value of 6, a point in the stroboséopic
4’,y/—plane determines the state of the satellite while a
corresponding point in a Z, Z' -plane specifies the state
of the damper. For simplicity only the phase plane repre-
senting the state of the satellite is studied here.

A typical short history of the satellite motion is
presented in Figure 3-2. The corresponding stroboscopic
phase plane is shown in Figure 3-3. The diagrams indicate
that the damper is causing the amplitude of the motion to
decay., Similar results for several cases are presented in
Figures 3-4 and 3-5. Note that the apparent curves in these
diagrams do not indicate the actual motion of the satellite,
but serve only to indicate the inward trend of successive
points. The number of apparent curves is of no special
significance.

. It may be pointed out that after a considerable period
of time successive points in the stroboscoﬁic phase plane
fall progressively closer together. The system thus approaches
a periodic solution or limit cycle.

Figures 3-6 to 3-8 compare the limit cycles given by

different dampers with the periodic solutions obtained in
section 2.2.3 for the same values of e and Ki' Of the three
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periodic solutions available for a given set of parameters
(e, Ki) only the one with the smallest amplitude was suitable
for comparison. For small dampers (Kd{<l) and sufficiently
high natural frequencies (00d2>>3€029) the two types of
solution are virtually identical.

The introduction of damping causes the limit cycle
to lag behind the periodic solution obtained for Kd = 0., The
varying gravitational gradieﬁt and orbital angular velocity
interact with this lag and can often lead to an increase in
the amplitude of the motion although the nonlinearity of the
system precludes any definite prediction of this nature.

Note that a very low natural frequency of the damper
can create a problem because the coefficient of equation
(3.13) which represents the spring "constant" becomes
negative.. The motion of the damper mass then becomes un-

stable and the equations cease to describe the system.

3.3 Conclusions

The addition of a damper to a rigid satellite results
in the disappearance of the invariant manifolds discussed
in Chapter 2. The accompanying limit cycles are independent
of the initial conditlons and, for small dampers, are nearly
identical with one of the periodic solutions obtained for
the undamped case. The equations of motion in the two cases
are similar and the presence of damping merely causes the
trajectory in phase space to spiral inwards.

The limits of stability determined in Chapter 2 may
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be regarded as approximately valid for the lightly damped
satellite. The presence of damping causes the satellite to
become stable eventually, irrespective of the initial condi-
tion. However, if the state of the satellite can be ex;
pressed by a point inside the appropriate limiting manifold
of Chapter 2, and the damping is small, the subsequent
motion should remain stable and approach the limit cycle.

In doing so the representative point drifts inwards across
the intermediate invariant surfaces which were determined
for the undamped case. Therefore, it may be concluded that
the small amplitude periodic solutions obtained for the
undamped satellite represent a limiting case approached by

all real satellites.



4. PLANAR LIBRATIONS OF A LONG FLEXIBLE SATELLITE

4.1 Preliminary Remarks

Gravity-gradient stabilization of satellites requires
that the inertia of the satellite be large so that the avail-
able torque is sufficiently great to overcome the effects of
external disturbances. To a certain extent, this problem
has been overcome by the use of the de Havilland STEM (Self-

storing Tubular Extensible Module)24

which is capable of
extending a tubular boom up to several hundred feet long
(Table III).

The STEM boom is typically about one inch in diameter,
or less, with a wall thickness of about .002 inches. This
thin, slender, tubular member is quite flexible énd hence
susceptible to external disturbances. Thus a long boom
which provides a large stabilizing effect can also introduce
substantial externally induced forces. Preliminary
analysiss‘?tP indicates that among the various forms of disturb-
ance (section 1l.1) the thermal deformation of the boom is
likely to have the most significant effect on the performance.

The problem in general is extremely complex as it in-
volves the solution of a set of simultaneous differential
equations with a large number of parameters. To initiate
the study of such a difficult problem, a simplified model

is considered.



TABLE III

CHARACTERISTICS OF REPRESENTATIVE STEM CONFIGURATIONS?> 30

Material
Radius, 8y
Wall thickness, b

Density, Fb

Thermal
conductivity, kb

Specific heat, Cy
Coefficient of
thermal
expansion, &

Absorptivity
(solar), oK

Emissivity,. €b

Bending
stiffness, €1

Mass/length, My

Alouette I

Steel

0.475
0.006
0.286

26
0.11

6.5)(10“6

0.9
0.8

351
0.068

Alouette IT
Beryllium copper
0.25
0.002
0.32

50

0.092

10x10~

0.45
0.25

15.5
0.0142

Units

inches
inches

1b/in’

BTU/hr ft °F
BTU/1b °F

oF-l

1b ft?
1b/ft
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This chapter studies the planar librations of a slender,

flexible satellite of constant cross-section under the influ-

ence of solar heating.

and continuous, and the resulting bending is assumed to take

The solar flux is taken to be direct

place in the plane of the orbit. The concept of the phase

space representation of the motion is extended to a deform-

able system and the corresponding limiting invariant surfaces

are obtained.

Charts are presented which indicate the effect

of orbit eccentricity, solar aspect angle, and the satellite's
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physical properties on the allowable disturbances for stable

operation.

L.2 Formulation of the Problem

Consider a slender flexibie satellite with centre of
mass at S, deformed due to solar heating, and executing
planar librational motion while moving in an elliptic orbit
about the centre of force O (Figure 4-1). The kinetic energy

for an element of the satellite located at

xX = 7<'(5)'t')

(4.1)
3 = }(Sat)
can be written as
dT = —ZLdmb{(-iSIntp +réC05‘P + 5(6+ ‘P)“")Z
+(FCosp + 1@ Sing - X(é+q3)+3)2}
= Ldn, { P24 26T + (6+§) P+ F) + 574 5
~z2r(6+P)(xCosp + 3 Sin c/)) (4.2)

v 2068+ P3Gy - ¥Sin)
+ 2X (-—ffSinsb + V‘é Cosé,b 7‘}'(9""7‘)))
+23(F Cosyp 4 ré Sin¢ —X(éﬂb)?].
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Figure 4-1 Geometry of motion of flexible satellite
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Because S is the centre of mass, the relations

'/z’c/mb = /idnb =/}me =/§'0/mb= o, (4.3)
permit writing the total kinetic energy as
/ 2 2.2 / e e\
T = Tmb(r + r8%) +?Iy>,(e+5u)

+ L[ GR4 Gy, + (54 )) G- 13)en

(o)

where

I, = [+ 3) ey =1, + I, 5

The quantity

/(X}- x3) o/mb = {5 (4-6)

represents the angular momentum of the satellite with respect

to the rotating x, z-axes. The choice

765 = 0 (4e7)

indicates that the axes rotate in a manner equivalent to
that of axes which are fixed in a rigid body. This device
separates the librational degree of freedom, described by
the co-ordinate ¢I, and the vibrational degrees of freedom
which employ the x,z-co-ordinates.

If the x,z-axes are taken to be the principal axes

of the deformed body, the potential energy due to the
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gravitational field is (equation (2.7))

Uj= - .’ir'ﬁ er{ <| 3CaotP +Izz(l—351ntpj (4.8)

~There is also the elastic potential energy

_/_L_ds ) (4.9)

Using Lagrange's equations the motion of the centre

of mass can be described by the equations
oe < Z ;3&& 2
r —ré + L:z = Zmbr4 {Ixx(l-BC"" (P) |
+1,, (l- 35in Y )}

2y 4 Iw(b+d) _ | |
ro + m, - ~%9 \ (e dd)

(4.10)

while the librational motion is governed by

£t 6o0] + {1 Lmpiop -0

which requires that the deflection of the beam be known.

This 1s a very complex problem. As a first approxi-

mation let
.__..a;( __la) (4.13)



140

To this degree of approximation
32 << 7'(2 (4.14)

and hence the co-ordinates of an element of the boom are

given by

F = 3 (4.15)
X = )’(Cb't ).

The deflection of an isolated beam with no external

forces present is given by the partial differential equation

2 [Elbas] m, 3z,

which has the solution

x(s, 1'5) ="_ZAL(JC)><£(S) (4.17)

where the mode shapes, Xi(s), and the amplitudes, Ai(t),

satisfy the differential equations

Ay + oA =0 (28
d [ x"] —msw‘fX‘: = O (4.19)
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subject to the appropriate initial and boundary conditions.
The Xi may be thought of as generalized co-ordinates

and the Ai as the amplitudes. The Xi are orthogonal; that

is

(L e
dm = -/ (4.20)
/')(z 'xA m Ny 4

also, for a free-free bean,

/XLSJ% = ,/XL§JMB = 050:’72)"') (4.21)

so that the x, z-axes remain the principal axes of the
deformed body.
The kinetic energy of vibration may be written in

terms of the Ai

T, = 555 dn, v 7 [¥dn,
| =7//(g/&ixi)zdmb
= 7"/2” ZLA.:AJX"- X; dm,

i=I J=I
| N A2
7z ) Al .
=1

The expression for the elastic potential energy

(L.22)
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L
I/ cly s = f@[ (4.23)
= 51
z o Rcz S
may be integrated by parts twice to give
_ L o _ L)
- [5 b 25" 95 o as(ab 25°

(Lo2k)
o >
+ /o gz(a& a;*)’“"’j-

Since the satellite is completely free, the bending moment,

(‘:Ibg;: and the shear force, —-(611%2{), are zero at the ends

and hence

o o e D
Ue = _2_/,,' 552( % aa*)" ds

It
N |~
S
™~
&

N
(\)>
o>
X
X
oS
&

- (4.25)

L’

=/
The inertias of the beam are given approximately by

I, ,=/xzdmb = iAz I,

L=l (L.26)

T ex f}zclm ~/s’~clm = I
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Zii_/NT‘I (4.26)
IY)’ - IXX+ Izz ~ Ir + i [l con_t'd
| s

The expressions for the kinetic and potential energies may

then be written as

T = 5m (F+ r*6%) + ZL/Ir+i.A? I;Yéu;v)z
. i=1

@® .2
+ E% ;Z__/xi :[o
(4.27)
U = -85+ L5 {1(1-3Gs")

3 K--)

+iAZL I, (l* 35inzl}))3 ~|— —-z,—

and therefore the equations of motion governing the ampli-

2
“%ZALL:

=/

tudes of the vibrational modes are

A +for e B(-smpl -+ AR, wa

Here the F; represent the generalized forces due to thermal
bending. The dependence of these forces on the orientation
of the satellite leads to coupling between equations (4.12)
and (4.28). This analysis parallels that of Etkin and
Hughesz’5 who took L}')z»éz,p./rB.

The natural frequencies of a uniform, free-free beam
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37

can be determined from

2 eI 4
W, = _'msli‘* (kL>L (4.29)

where

Cos (kL); Cosh (kL), = 1. (4.30)

The values of (kL)i are

i (kL) 4
1 4.73004
2 7.85320
3 10.99561 (4.31)
L 14.13717
5 17.27876
i> 6 (21 + 1)
2 )t »

For the representative STEM configurations (Table III)

the lowest natural frequency 1is

6
wr = |75 %10 (4.32)
| L4

(L in feet) which for lengths typical of present practice

(50-500 feet) leads to values for the fundamental period of
from 3.75 to 375 seconds. It may be noted that the period
of the vibration is much less than that of the orbital
motion.

The results of Chapter 2 showed that the value of Y
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is of the same order as é. Also[-Jl/r3 is approximately equal
to 6° so that in equation (4.28) all terms due to the
gravitational field can be completely ignored compared to
the relatively high natural frequency of the boom. The
deflection of the boom can be approximated by the normal
modes thus reducing the equations of motion corresponding

to the elastic degrees of freedom to

A +wA Fos (i= b2, (4+33)

4.3 Thermal Analysis of the Boom

At this stage information concerning the deformation
of the satellite under the influence of solar heating is
essential to proceed further. Figure 4-2 illustrates the
assumed cross-section of the flexible satellite which may
be thought of as approximating the STEM.

Consider an element of the beam as shown in Figure
4=3. Taking the thickness of the wall to be much iess than
its radius, ignoring longitudinal conduction and performing

a heat balance for the element gives the equation

kb, 3T, { - - 3T
"‘f 0* L: 3«.# Z‘rebT } = .,ﬂ,bb ﬁh (L.34)

This equation représents a significant improvement on the
work of Etkin and Hughes35 in that the effect of thermal
conductivity is considered.

The thermal input to the boom from the sun can be
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Sun

Figure 4-2 Assumed cross-section of satellite boom
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written as

¥
q o5 Sin @ Cs;-L¢a<h
S

ext O ; elsewhere
where @* is the angle between the longitudinal axis of the
boom and the sun. This may be written as a Fourier series
y (12
3 = 3 ¢ 5:‘n¢ chhCos nQ) . (4.36)
ext 55 )
N=9o
where
7% ; n =20
7 n=l |
JZLED-Z; n even, # O |
T (n*1)
o ; n odd, # 1.

To determine the amount of radiation incident on the
interior of the boom consider the radiation emitted by an

element of area (dAe) on the inside of the tube (Figure L4-4)

%(3_; = ebcr['l; (/“r"'ﬂ)]‘t (4.38)

Assuming that the radiation obeys Lambert's law, the radia-

tion which falls on the second element of area (dAin) is
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Figure 4-4 Geometry of radiant heat transfer in the,
interior of the satellite boom
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2 4
ﬁe—%&;— S ;('-ebw [7;(/4;11)] Cos Ar. jA&i)n (4.39)
where dw is the solid angle subtended by dAin as seen from
dAe
doo = 22 i’i dhin (k.40)

From Figure L4-4 it is evident that

A, = A = Av (ho41)
2 2
r? = ST + Zab (|— Cos,:lr) (4.42)
and
2,422 a4+ rt- ZarGon | )
a, + J, = @ b v (43
so that
A o= 2 (l - Cos )
Cos A) = — He (bodls)
The radiation incident on dAin from‘dAe is then
given by

- 4 2 2
_izg__ = &7 [—I—b (/4,1..(1)] QA (l- Cos/A..)
AAG AAih ']T []"2 + 24.: (l _ Cos/.A'.)J 2

(boh5)

and since
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dAe = q J\Sr Af*r .(4.46)

ebv[n(i‘r+ﬂ)] Clb(l C°5/‘> J
C]Am : 31»« ff 71'[],, + 24, (/— Cos/u,)] I’ 1

(bol7)

ebr///—Cos/«(y [T(/"V‘Lﬂ?] /.

L.4 Solution of the Heat Balance Equation
Representing the temperature distribution in the boom

by a series of the form
’ o0 _
= (t) Cos nL (4.48)
L@ =) T,
n=o '
where it may be assumed that

RO(E) >2 Typnlt); n=hzye- (4.49)

leads to the séries
3 [2)
[Tb HF‘.Q] ~ To 4 ( Z (osnéu,,t(l) L. 50)
n=|

Hence the radiation incident upon the interior immediately

following emission is
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21

4 3 & v
in: -e—zil: 7;’0 ¥ 45/0 ';Tthw nOAﬁQ}] Sin’;— J,A,.

(4.51)
4 -rhn COJ NQ]
= &7 [Ro * 4T° |- 4n?
A fréction,e?b, of this radiation is absorbed,
2 4 3¢ T, CosnQ
bn “O35 N,
g = ebq'[ﬂ,o +4-rbo£ " an* ] (4.52)

aks : n= |

and a quantity (1,-€b) is reflected,

2 -rbn C°3nﬂ
(1-6,)€,T [I +4T] 0 } (4.53)
jre( ) K nZT - an® .

If the reflection is assumed diffuse, the reflected
radiation is again incident upon the interior of the boom
in a manner analogous to that employed in the derivation of
equation (4.51). The total incident heat flux on the in-

terior of the boom wall is then given by

-rbn Cas hﬂ
_ e O-E -¢,) [ 4.T° s ] b5k
m m=°( b b (1-4n3)"M* ).

Now,
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i(|—é)m—[|—(\-é)‘l— L (4.55)
bl = b ] T g

m=0
(=6)" _ }i 1=€p '"
(1- 4at ™" (I- (- 4n?) I— 4'1

™~

m=o
' (L.56)
= — ‘
€, 4n
so that
_ e éz _ _bn._fs_'.’_. .
g = cbo-'f;)o s Rl A - ant - (4.57)
inf | n=
The final form.of the heat balance equation can now
be written
kobe V- 2 Sng® T
- ;z" ZTb,nn CoanQ2 +ﬂ°°(s ing ZCS'" Cos N2
b n=
4 | 3 &
T 2 Tan_Cos nar
—ebo- bo + 46190--];,0 - 4n?
h=i | (4.58)

[~ ]
3
- 5ebu-Tb/o ZrTm Cos N2

“ i
= bebbb ZTW' Co; nL.
‘ h=2o

which 1s of the form
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o

) > Cbn Cos ncL = O (4.59)
(]
heo

where the Coon depend on time, but are independent of L.
. ’

This leads to the series of equations

[ 4 *
G e + €7 [pe = 3% SMP (4.60)

kb,
Cbeb Tbm _,_{ o n* + 4ebo-T [24- yPn cb]}Tm

X (4.61)
" j;x5 Sin 87 (n.= 2, )
where
!
2? HE n=1
¢}
CS,'\ = | Z_ﬂ. ; n even; # 0 (4.62)
TT(h*1) | N

o) ; n odd, # 1.

The figst of these equations is non-linear. The
remaining equations, although linear, contain time varying
coefficients which depend on the solution of (4.60).

Fortunately it is not necessary to solve the equations
in detail. Considerable information can be obtained by
determining the approximate time constant and the steady

state solution.
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The time constant of the nth term of the series

(4L.48) is given by

?r _ be%‘kk
h kb n®
[——babz + 46,07, (Z’L ZTLe—)]
7 £ (4.63)
Cbe b/K n*
and the steady state solution for the same term is
¥
T G"y 4, Sin ¢ (4.64)

lead ’
h sleady [ +45£‘7:7— (7;-4 ol éb)]

35

The analysis of Etkin and Hughes, referred to earlier,
ignores the term involving conductivity in the denominator
of equation (4.64). This is usually the dominant term and
hence their analysis overestimates the effect of solar

heating. For the representative configurations (Table III)'

/z
2} N ———— 4.6

“max) n

and therefore 2; is very éhort, of the order of 12 seconds.
The short time constant implies that the Fi depgnd
directly on the solar aspect angle as the thermal lag is
negligible compared to the librational and orbital periods.
The presence of internal damping will cause the complemen-
tary solutions of equation (4.33) to damp out leaving only
the forced motion of the boom. As the Fi depend essentially
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on the position of the satellite, the rate of change of
which is of the order of the orbital period, the Ai term in

(4.33) may also be neglected so that

A, = i | (4.66)

I (Jiz °
Thus the instantaneous configufation of the satellite is
represented by its steady state deflection corresponding to
the orientation. This in effect eliminates equations (4.33)
leaving‘only (4.12), containing variable inertias,.to be

solved.

L.5 Thermal Deflection of the Boom
Consider an element of the boom of width abdfl (Fig-
ure 4-5). The length of the strip is

/L(‘Q) - (Rc - ag¢°"ﬂ)¢b . (4.67)

' If“eref denotes the original length of the strip at a refer-

ence temperature, Tref’ this length can be obtained by alter-

ing the temperature and stressing the material

fb(IZ) = /[r'e//-/+“:{-(7-(-(2)_7;<[)+ %ZQ)Z | '(a.és)‘

hence

G) = E[(5L 1)+ 5% a2
- & (T(2) - %p)]

(4.69)
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Sun

Figure L4-5 Thermal deflection of the satellite boom
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The longitudinal force on the element is

n

F _=f o"(.a)abbbclﬂ

L

(4.70)
F&'Q&"/ ' |
_ 2naghef(BE) g (T -7,
Z b b Ifef {' ,blo . "/
where
Z:¢b = I(F/Z) = mean length of the element.
During orbital motion the lohgitudinal force on the satel-
lite is negligibly small so that
I(m2)- | | (4o71)
= M (7; - T ) ’
o re
*(??fﬂ ¢ ) 7[
which represents the longitudinal thermal expansion.
The moment produced by the strésses on the section
is 2T ,
| ° | (4.72)

If the frequency of the thermal driving force is much lower
than the natural frequency of the beam, the beam will be in
equilibrium and the moment will be zero. That is
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Pe L ey (4.73)
/A%f' Re a, )

Let the Eb,)’(b-éo-ordinate system be defined so that

the Eb, Ylb-plane lies in the plane of motion with the sun

on the negative)qb-axis (Figure 4-6). From elementary
calculus
e d%/‘fzb = / (4 74)
)
R [ lieT% 20+ (i) ]
d*7, / dis Y
: = — + | i
I3 Vi [/ (deb) (4.75)
where |
* Ie
fr= KLl |22 4 4-@177— ] (4.76)
X, “%.j' 4 - ‘éb)
Ta%ing
(0) = Qlzﬁ(o') = 0 (4.77)
A dg, "/
gives |

= -j,\‘}n Cos [Eb/’w‘). (k-78)
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This solution is illustrated in Figure 4-6.

If s is the arc length of the curve
¥ — /&
5= £¥ | Ton (2 + E) (.79

and the solution can be written in the parametric form

E, = 1*5in°|[73n"’ (5/'6*)]} (4.80)
’n‘b - ,e* Im Cosh (5/»6*) o (4.81)

A satellite of given length can be easily fitﬁed
along an arc of the curve in Figure L-6, hence its centre
of mass, orientation of principal axes, and the correspond-
ing moments of inertia can be deﬁermined as indicated in
Figure 4-7. The results of this analysis are piotﬁed in

Figures 4-8 and 4-9. The variation is expressed by the

factors

‘P< _ Ir T dxx
X Ir - Ixxmm (4.82)

I
% I

K

22 ppx

where Ir represents the inertia of the rigid satellite about

the x- and y-axes. It is interesting to note that I -I
~ a r *Xnin

Z

is nearly three times Iz and
v max
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Figure 4-6 Shape of thermally deflected satellite boom

20

9T



162

Sun

Satellite
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Principal axes

Figure 4-7 Illustration of the pr1n01pal axes of the
deflected satellite
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Figure 4-8 Maximum inertia variations as functions of
boom length
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R

. }Q ~ (:B:? X;

3

so that

I. = L

Z pox

2 | | 2
Ixx = I‘r - ’(Ir' Ixxmih) Cos ¥ Ir = SIzszXoa Ys .

Noting again that

COJ ‘ Xs

d 4o d

dt  r* de

2 ke
dt? - rt  de*

and representing

144

L - Loz ~ Ir( - 41 SinZ(.S)

equation (4.12) becomes

(l - 21 S’"zF’X' + eCose) q)"

21?:_ dr d

1 = Ir(l- 21 Sinz@>

rs de de

-z'(zp'u){(u eCos0)I(Y'+1) SN2
+ €Sine(1- 215ing)}
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. (4.83)

(4.84)

(L.85)

(4.86)

(4.87)
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/]
o

(4.87)

cont 'd

+ 3(!— 41 th‘z@)S'inLPCos $

L.6 Stability Analysis

The governing non-linear, non-autonomous differential
equation (4.87) with periodic coefficients is of the same
form as (2.14). Hence the solution of the equation when
represented in the three dimensional phase space generates
integral manifolds with properties similar to those discussed
in Chapter 2,

‘The solution of the equation was obtained for a wide
range of initial conditions using a digital computer. The
satellite was taken to be stable if it did not tumble within
fifty orbits. The trajectory starting from stable initial
conditions generates a surface in phase space of the form
shown in Figure 4-10, It is still sufficient to extend the
bphase space co-ordinape © only up to 27T because when a
trajectory arrives at © = 21U with certain values of ¢ and
'¢/’, it may be extended by considering another trajectory
starting from 8 = O with the same values of {J and tP,.

This is identical with the procedure adopted in Chapter 2.

The search for the limiting initial conditions which

result in stable librational motion is thus a search for
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the largest such surface. Any state of motion which lies with-
in this surface generates a trajectory, and hence a new sur-
face, which remains inside the limiting manifold. Therefore,
the region enclosed by the limiting surface is the region of
stability.

The usefulness of such a phase space was explained
in section 2.4. For given eccentricity, satellite character-
istics, and solar aspect angle it provides all possible com-
binations of disturbances to which the satellite may be
subjected without causing it to tumble. The effect of solar
aspect angle on the stability region is illustrated in Figures
4=11 and 4-12 where cross-sections of the stability region
at several values of the orbit angle are presented.

A convenient condensation of dqta may be effected by
plotting the intercepts of the ¢/—axis with the phase space
cross-sections at 8 = O as shown in Figures 4-13 and L-14,

It is apparent that with increasing eccentricity the stabil-
ity region decreases in size and beyond a critical value
ceases to exist.

The accuracy with which the limiting manifolds were
determined is approximately the same as discussed in Chap-
ter 2., The calculations were carried out with the same
precision and therefore the error in the region of stability
is approximately % .03 units in w'.

Several symmetry properties exhibited by equation
(4.87) simplify the.preéentation of the numerical results. .
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Variation of the cross-section of a limiting
invariagt surface with orbit angle (e = 0.2,
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Note that substituting & + T for ® results in no change
iﬁ the trajectories as the equation is invariant under this
substitution. For negative &, say « = - ®, the solution
for ¢ obtained by integrating in the direction of increas-
ing © from the initial conditions ¢ = O, ‘P’==‘P;, is
exactly opposite in sign to that obtained by integrating
backwards from the same initial conditions but with o = 0(3.
Hence the trajectories formed in the phase space for -« ‘
become mirror images of those obtained for + . In partic-
ulaf, the cross-sections for & = -(Xe at 8 = 0,7 are
mirror images about the q/-axis of the cross-sections obtained
for ==+-Weo Thus the intercepts of the wl-axis with the
limiting surface at ©® = 0 do not change when X changes sign
or increases by 180°.
Hence the stability region varies periodically with
(. As the solar aspect‘angle would vary due to orbit preces-
sion and the motion of the planet about the sun, only those
regions of the stability charts which actually overlap guarantee
long term stability (Figure 4-15).
The spikes appearing in Figures 4-13 and 4-1k4 represent
~the secondary stability regions. They are associated with
different periodic solutions to equation (4.87), and appear
as small helical regions surrounding the main stable region
of phase space. = As the narrowness of these secondary regions
makes them unsuitable for any practical operation, the appear-
ance of splkes reduces the practical upper limit on eccentricity

for stable operation.
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L.7 Concluding Remarks

Based on the analysis the following observations may
be made:

(i) The method employed in this chapter is restricted
to "short" satellites for two reasons. The fundamental
frequency of the beam must be much higher than the orbital
frequency in order that the approximation employed in
equation (4.33) remain valid. Also, the relations (4.84)
which represent the variable inertias introduce considerable
error for long satellites.

(ii) The stability limits for a slender flexible
satellite,lfree to deform under the action of solar heating,
have been obtained using the concepts of phase space and
integral manifolds. This determines the critical values of
initial disturbances to which a satellite may be subjected
without causing it to tumble.

(iii) In general a small value of eccentricity would
help to ensure stability. The critical value of eccentricity
is affected by the dimensionless length Ik, as well as the
solar aspect angle, X . When I# is specified, the critical
eccentricity varies periodically with ® in such a manner
that it increases with. increasing & for 0€®<90°, For the
cases considered, it appears that gravitational gradient
stabilization of an undamped satellite is not possible under
any circumstances for e > 0.425 (Figure 4-12).

| (iv) The flexible nature of the satellite causes a

reduction in the size of the stability region for almost all
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values of & . This reduction is not severe. It is concluded
that satellite flexibility of this nature does not have a
strong destabilizing influence.

(v) The critical eccentricity based on the long term
stability analysis would be considerably lower than the one
specified above in (iii). This is because of the periodic
variation of the stability region with X .

(vi) The presence of spikes further reduces the
practical upper limit on eccentricity. If the depth of the
stability diagrams (Figures 4-11, 4-12, 4-13) dsc interpreted
as a measure of the disturbance which the satellite would
tolerate without becoming unstable, it is apparent that even
guite moderate values of eccentricity seriously reduce the
ability of the satellite to withstand external disturbances.
The effect of increasing I? is similar but not as severe.

(vii) It must be pointed out that eclipses of the
sun by the planet were not éonsideréd in this analysis and
may contribute to a further loss of stability. These
occurrences would excite the vibrational modes of the boom
and a more detailed analysis of the decay of the vibrations

would be required.



5. .TWO,DIMENSIONAL MOTION OF AN AXI-SYMMETRIC
" SATELLITE IN A CIRCULAR ORBIT

5.1 Introductory Remarks

The review of the literature (Section 1.2) suggests
‘that the planar motion of a rigid satellite in a gravity-
gradient field has been the subject of considerable in?esti-
.gation. In contrast, the dynamical study of a satellite
executing librational motion out of the orbital plane has
received comparatively little attention.. Such an investi-
gation is important because, as pointed out by Kane,38 for
large amplitudes the transverse‘motipn is strongly coupled
with that in the plane. | |

The lack of information may be partly attributed to
the fact that the governing equations of motion are non-
linear, non—autonomoﬁs, and éoupled. They also involve a
large number of parameters and hence are not amenable to any
simple concise analysis. Some simplification of the problem
is achieved by restricting the satellite to move in a cir-
cular orbit. For this case, as indicated by Auelmann,13
closed zero-velocity curves exist under certain conditions
which limit the amplitude of motion.

In this chapter, the stability bounds for coupled
librational motion of an axi-symmetric satellite in a circu-
lar orbit are obtained numerically. The zero-velocity curves

suggest possible regions of stabllity and instabilit&j
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" Regular and efgodic types'of_stable mption are discussed and |
the behaviour of the system in the transition region is
explained. Using the concept of an invariant surface, it is
shown that stable motion can result even when the zero veloc-
ity curves are open;.wLimiting infariant surfaces are pre-
sented and provide a comprehensive summary of the initial
disturbances to which a satellite may be subjected,withdut

causing it to become unstable;

5.2. Formulation of the Problem

Consider a rigid satellite with mass centre at S in
an orbit“about the centre of force O (Figure 5-1). Let
S-xyz be the principal body axes of the satellite and the

triad S-x ‘be chosen so that the z_-axis is directed

oYo%0 0
outward along the local vertical and thé yo-axis is parallel
to the orbital angular momentum vector. The position of the
mass centre is given by the distance r‘between 0 and S and
the orbit angle 6.

The orientation of the satellite may be specified by
a set of rotations taken in the following order: a rotation;
Y , about the yo-axis, giving the X Y% -axes; a rotation,
@, about the xl—axis resulting in the X5Y 5%, triad; and a
rotation; A , about the zz-axié which yields the principal
body axes xyz. | |

Using the principal'éxes the kinetic energy of the

satellite can be written as
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1 2 2.2 ] 2 L)z 2
T = 4m, (1% r'6Y) + H{T,o + 1,2 FI,9).  (5.)

Noting that
w, = G$CosA + (6+9)CoshSm A
wy = ~@Sin ) + (6+¥)Cos Cos A (5.2)
@, = A —(é+¢)5m¢'

so that

q———

T = -ZL%(?ZJ- r*6*)

-4 ¢§2(Co:’z/\ Ly + Sin 2 L)

+ @ (6+$)Cos S ) @:A(l},-fyy) 53)

yooifetsn ciag)
L (K- (6+i)n )T,

To determine the potential energy, consider an element
of mess, dm, with co-ordinates x,y,z,. - The distance between

the mass element and phe centre of force can be written as

R = [(,\wn&)zJ- (7+ ré)zf(}+ ,,/})z]% O (5.)
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where the direction cosines_fx,,zy,.fz between the outward

local vertical and the xyz-axes are

Ly = —Singp CosA + Cos@Sing Sin A
Ly = SmpSmA + Cas PSing Ces A (5.5)

j; = Coo‘%‘cosjb .

The potential energy of the satellite is

dn,

U = —}*f I
| =,

S [+ gty s 2]

(5.6)

= ’f—f[";"(”x +yby 4 34)
| / 2 2 2
- 5 ()r 943 ) + 2—3},—2@{,*7/‘/}4;/§)+]le

| As S is the centre of mass
— (/ = 0/ = O
Jrdy = [a%y = Joh

and since xyz are principal axes
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fde’mb =/75dh2 =/;Xd"z =0 (5.8)

With this the expression for the potential energy simplifies
to ,
U= -pmlr * (5.9)
b A [r0-387)+ g (-34) 510034 o
Now, ' )
/‘)(20/7”2’ = 7/—/[)7 + 1, - ]xx>
/720/”’4, = -2’— (IZZ +.7)'(X - I,/) (5.10)

]
NI -
I~y
X
~+~
l\|
S
[]
e~
NG

/320/’”5

so that there results

U =-

M
By B (Tt Ty + Taa)

a5 (ol i o550

+4 S,’n q) Cos(/j Sin® SinA Cos A (Txx ’Iy})
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+ Cos"p Sin*e [ I, (Lo L, SnA- Cos'))

(5.11)
cont'd
+ Cos'p Cos’g (L + Ty, ’Izz)}
For a slender axi-symmetric satellite
Ly =Ly = 1T > Ig (5.12)
hence equations (5.3) and (5.11) assume the much simpler
forms
] -2 l.Z_ | v 2 2 s\ 2
T = .Zmb(r +r9)+—2—1(¢ +(9*‘P)C0.575)
| (5.13)
’ . 8 . Z
+ %Izz <>‘ —(e+(})>5m ¢>
U = - HAm
v - (5.14)
2 2
4 %(I 'Iu>(l-3C05LPC06_¢),
The generalized momenpa can be expressed as
- 9% 724 (5 +9) - Ty, (5-(6+E)SnP)S
R= 99 ° I Cos® (6 +¢) - Top (X-(6 +#)5in #) Sngp
| ’ (5.15)

P¢=—§§=I¢;



191

. s N el (5.15)
S BRI

Because Bf/bk = 0 in this case, the momentum conjugate to
the co-ordinate )\ 1is constant. This momentum can be

identified with the spin of the satellite about the z-axis,

F)\ = IZZ (X - (é+(}))5lh¢)= co_ns"’an"’. ~ (5.16)

For a non-spinning satellite the constant must be zero,

therefore
2 F%9Y) 4 LT(0% (6+0)Cosd (5.17)
T = 4m(F+r6) s ST(f+ (6+9) Cosp)

Using the Lagrangian formulation the governing equa-
tions of motion for the 4) and ¢ degrees of freedom can be

written as

q) + 6 - Zé(é'*q))—l_ahqﬁ

(5.18)

+ %%K, SinLPCosL'D = O

# #{(éiy&f # % H; Cx‘;ajjmgﬁ (sp=0,  (5.19)
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. Noting that

. . ! .
({} = \'U © |
.. .2 /e (5.20)
y = Yo 4+ ¢
ve + 2 | ’e
¢ = ¢”8 + ¢’e
and for a circular orbit‘
ﬁ - éz — conslant
r> (5.21)
6 = o
hence the equations of motion may be written as
" —
W= 28'(¢'+1) Tan @ 5.22)

f3K;5/'n(,0‘Cosc/J =0
¢l/ 4 {‘(('U’-,L/)Z-,l 3K'Cg52$uj5;—n¢ C‘w¢ :Q . | (5.23)

5.3 The Hamiltonian and Zero-Velocity Curves
Ignoring the r, 8, and A co-ordinates the Lagrangién

for the system can bé written as
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= L1 /3321 (6 +D)2Cos? |
:C - 2I(¢ + (0+¢) C°¢) (5.24)
2 2
e

- Thus for a circular orbit, the Lagrangian function corre-
sponding to the librational motion does not involve time
explicitly hence the corresponding Hamiltonian is a constant

of motion and is given by
H = Zh‘iz - g
= LI(37+ (p%-8%)Cos"¢ ) (5.25)
2 2
- _g%(_[.—fu) Cos"p Cos' ¢

and using (5,2}) equation (5.25) may be rewritten as

2 = I GBI GIY) <Gy, 520

13

Auelmann's paper contains an error in the statement of
this equation.

Defining a new variable
/ /
S?’ = ¢ Cos & (5.27)

equation (5.26) becomes

¢’2 - @/z = C‘é.szgé (/ + IK: Coszgﬁ) -+ CH. (5.28)



Setting ¢' = 4Y = 0 gives the zero-velocity curves for the

motion (|P] , |#]<T/2) which are presented for various
values of CH in Figure 5-2. Since the right hand side of
(5.28) is a maximum at @ = (Y = 0, the sum of the squares
of the velocities is positive only inside the zero-veiocity

curves. Therefore the zero-velocity curves represent bounds

for the motion. It is thus possible to conclude that for:

Cy < -(1 + BKi), no motion is possible,
-(1 + BKi);S Cy £ -1, the motion is bounded,
-1 < ¢y € 0, instability can arise only in the
W -direction,
0 < Cy, unbounded motion is possible in both

directions.

5.4 Phase Space and Trajectories
The equation of motion (5.12) and (5.23) may be

written as a set of four first order differential equations

de @
de ‘ Co$¢

_CLQ)’ ¢'(ﬁ,73n¢ + 2¢ 5in¢

194

de (5.29)

- 3K; 57/750 Cos(/) Cosgls

= F, (‘7”) 95) ‘;u\; ¢/)
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- Figure 5-2 Zero-velocity curves for an axi-symmetric
satellite in a circular orbit ('Ki = 1)
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44 _ @
de | (5.29)
qu' - ) 2 cont'd
‘ 3
TQ— = —{(C—:ﬁl—-¢—+l) +3K,Co§ ‘})} 5“’\¢COS¢
I A/
B "2.(")) ?) ‘P) .
These may be rearranged in the form
Hé _ Cos@dy __dP _ d¢ _ d¢' (5.30)

tp/ F-' - ¢I ,‘ an

which defines a trajectory in a four-dimensional phase
space. The Hamiltonian (5.28) permits determining any one
phase space co-ordinate in terms of the other three. Solv-

ing for Cos @ gives,

1R 12
Cos ¢ = _4_.(¢ +<P’—CH)
[+ 3K Gy

or

2 A2
S [+rg =@ -G )] (5.31)
+4 .
P =iCa [‘ | 4 3K Corp

The ambiguity as to sign indicates that the information

derived from the Hamiltonian cannot differentiate between
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+@, -@, TT + @, and Tv - @. This information can usually
be obtained from a consideration of the continuity of the
solution.
If @ is taken to be positive and less than T /2,
equation (5.31) is unambiguous and equation (5.30) defines

a unique trajectory

| JHP G D] = ‘Jéy
9Y s (995 = —
nx 5¢() / jH) 5 (v, P ¢, %)

do/
F(¢ ¢)9P) &)

(5.32)

Al :

in a three-dimensional (, @, Pt-space. A similar equation
holds for @< 0 and defines equally unique trajectories in
another phase space. Certain symmetry properties, however,

permit the elimination of one of the spaces.

5.5 Symmetry Properties

On substituting

e
Y= -y (5.33)
¢ = ¢ )

-6

/ /
in equations (5.22 - 5.23) it is observed that (7) = @-,

¢4=w-¢@’¥f'=“eqﬁﬁﬂ¢g§;%¢”gnd the equations of motion are
unchanged. Thus a trajectory defined by (5.22 = 5.23) Qr‘
the equivalent (5.32), which passes through the point

u((p, (p', @') possesses a mirror trajectory which passes
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through the point (-¢, lj)', -@7). Therefore the trajectory
which passes through the point (O, ¢>', 0) exhibits symmetry
about the @ '-axis.

When the substitutions

& = -
W:*L'U (5.3#)
p -

are made in equations (5.22 - 5,23) ¢>' = Q)f, @1 = @' and
the form of the equations is invariant. Therefore the
trajectory passing through the point (¢, -¢z, ¢j)‘ with

@* > O possesses a mirror trajectory which passes through
the point (-¢, @', @') where g < 0. Hence the trajectory
defined by the equations of motion in the phase space is,
for § > 0, a mirror image about the £p',\¢'-plane of the

trajectory defined for @ € O.

5.6 Numerical results

It was pointed out in section (5.3) that initial
conditions corresponding to -(1 + 3Ki) <€ Cy € -1 always
lead to stable motion. However, there appear to be two
types of trajectories which indicates the existence of two
classes of solutions.

The first class of solutions is illustrated in Figure

5~3°‘ Here an invariant surface is defined in the three-

dimensional phase space. That is an "isolating" integral
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Figure 5-3 Invariant surface resulting from the first
class of solutions
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has been determined numerically. Figure 5-4 indicates the
cross-section of a similar surface in the plane ¢ = 0. It
should be noted that the points of intersection of the
trajectory with the plane ¢’= O define a smooth boundary.

The second type of behaviour is illustrated in Figure
5-5. As before it represents the state of motion of the
system in the plane (¥ = O with the identical co-ordinates.
However, in this case the points appear to be scattered
randomly over regions in the plane indicating the "ergodic™"
nature of the motion. |

Kane38 has indicated that the motionvnormél to the
orbital plane may exhibit a type of beat phenomenon with a
very long period, typically 35 to L5 orbits. This type of
behaviour would lead to a plot of the type presented in
Figure 5-5. A large number of p01nts would have to be
determined before perlodlclty becomes ev1dent° Such motion
could best be described as "qua51-ergodlco"

The behaviour of the solution in the 'transition region
between the large simple surfaces of the fifst type and the
ergodlc behaviour of the second type lends support to the
concept of quasi-ergodicity. 1In the tran31t10n region,
"chains of islands" appear which become smaller and more
numerous as the ergodic region is approached31 (Figure 5-6).

‘For CH > =1 there is a possibiiity that the motion
may be unstable. The numerical resulté indicate that a
stable initial condition results in a solution of the first

type and hence in the generation of an invariant surface
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Figure 5-4 Cross-section of a surface similar to that
presented in Figure 5-3 when ¢ =0
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o
o

Figure 5-5 The cross-section (¢ = 0 in phase space
K illustrating the ergodic nature of the
) second class of solutions
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e.~A

Figure 5-6 The cross-section ¢ = O in phase space
illustrating the transition from a large

simple "mainland" to an ergodic trajectory
via a number of "islands"
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(Figure 5-7). Certainly, if there is such a surface, the
trajectory can never leave it and stability is guaranteed.
Further, the numerical analysis suggests that the ergodic
type of trajectories are not consistent with stability for
Cy > -1.

For a given value of CH, suitable initial conditions
can be chosen to generate different surfaces. The largest
such surface is referred to aé a limiting surface. Thus the
interior of a limiting surface represents all possible states
of the system, consistent with the fixed value of the Hamil-
tonian, corresponding to stable motion.

The numerical work indicates the existence of invariant
= 0.5, For C, 2 0.6 invariant

H H
surfaces do not appear to exist. Figures 5-8-i to 5-8-iii

surfaces up to at least C

show several limiting surfaces for representative values of
Cy (8 2 0). The symmetry properties of section 5.5 (illus-
trated in Figure 5-8-iii) may be used to determine the
surfaces for g < 0.

~ The limiting surfaces provide useful information con-
cerniﬁg the nature of the motion. At high values of CH the
limiting surfaces for both § 2 O and § £ 0, when drawn in
the same diagram (Figure 5-8=1ii), appear as a twistgd
figure eight. Ip:is interesting to note that both motions
are quasi-periodic with the period of the out-of-plane
motion approximately double that of the in-plane librations.

Figure 5-9 1llustrates this behaviour for a specific set of
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1-10

CH=O
®>0

Figure 5-7 Typical invariant surface when Cy 2 -1
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Figure 5-8-i  Limiting invariant surface (Cy = -0.5)
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Figure 5-8-ii Limiting invariant surface (CH = Q)

207



208

CH =0.5

0.5)

I

Figure 5-8-iii Limiting invariant surface (CH
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Figure 5-9 Solution of the equations of motion for
specific initial conditions, illustrating
the quasi-periodic nature of the motion
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initial conditions.

The results displayed in Figures 5-8-i to 5-8-iii may
be presented in a more informative manner. If ¢ and @ are
fixed, a constant value of CH describes a circle in a ﬁ)',
@r-plane. A point in this plane specifies value of the
angular velocities of the body and hence gives a complete
set of initial conditions. If the velocities are zero, the
point lies at the origin and the Hamiltonian has its minimum
value. For values of Lﬁ and @ such that Cy = -1 defines a
realhradiua, there exists a circle inside which stability is
guaranteed. Larger values of CH.result in stability for
varying arc lengths of the constant CH cirgles.

Figures 5=10=-1 to 5=10-iii show the stable regions. in
Q}’, @!-planes for various combinations of Y and g. It is
possibie to make an observation concerning the relative
sensitivity of the satellite in the position of stable
equilgbrium to disturbances in the ¢ and @ directions. Tt
is evident from Figure 5-10-1 that for ¢ = @ = 0, the |
coupled motion can remain stable even when subjected to the
angular velocities (#,= -1;15, gt = ilv.,7l5_° The resultant
velocity of approximately 2;1 is.considefably“above the
valpé of V3 which holds for the.planar case. Thus motion

restricted to the orbital plane appears to be less stable

than the more general two dimensional motion.

5.7 Concluding Remarks

The results show that there are two distinct types
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-2

Figure 5-10-1

/Ny

Y

Allowable variations .,in the angular
velocities which may be imposed on
an axi-symmetric satellite when in
a specified orientation (@ = 0)
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Yx@>0) fy _ W=@<0)

Figure 5-10-11 Allowable variations in the angular
1 velocities which may be imposed on
an axi-symmetric satellite when in

-a-specified orientation (@ = %15°)

2
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Figure 5-10-1ii Allowable variations in the angular
velocities which may be imposed on
an axi-symmetric satellite when %n
a specified orientation (@ = £457)
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of stability associated with the coupled librational motion
of a gravity-gradient oriented satéllite° For values of CH
less than -1 unconditional stability is guaranteed by the
existence of closed zero velocity curves about the equilibrium
position. On the other hand, if -1 < C, < CHmai? 0.55, the
system possesses conditional stability which depends upon the
initial conditions imposed and corresponds to the existence
of an invariant surface in the phase space. Thus stable
}motion can result even when the zero velocity curves are not
closed.

From the limiting invariant surfaces presented here it
can_be concluded that wiﬁh increasing CH the.region of
stability diminishes rapidly in size. For,CH ~ 0.55 it
ceases to exist altogether. This imposes upper bounds on the
disturbances which a satellite can tolerate‘Without becoming
unstable.

The librational motions, both in and normal to the
orbital plane, are quasi—periodic; This is particularly
noticeable at high values of Cy where the motion in the
orbital plane occurs at a frequency approximately double
that of the motion normal to the orbital plane.

The analysis suggesté that the coupled librational
motion is more sensitive to the in-plane disturbances com-
pared to those normal to the orbital plane. This indicates
that design analyses performed using planar motion are con-
servative and that the actual motion is at least as stable

as indicated by the simplified study.



6. CONCLUDING REMARKS

6.1 General Conclusions

The reéults presented have shown the usefulness of
adopting a phase space which possesses a sufficient number
of dimensions so that the state of the system under study
is uniquely represented byvthe co-ordinates of a point.;,In
the great majority of the cases studied, the numerical inte-
gration of the equations of motion led to the generation of
an invariant surface. That is, an "isolating" integral mani-
fold could be obtained which forms.a surface in the phase
space and represents a reduction in the number of co-ordinates
by unity. |

- In those cases where no integral manifold could be
found, the motion was either unstable or a type of long period
beat phenomenon was observed. . In the latter case, there is
evidence that the invariant surface breaks up into a tortuous
structure which gives the motion a random appearance.

. The invariant surfaces are non-intersecting. This is
their most important property as it increases their useful-
ness in the study of the general motion and the conditions
‘which yield stability.

. There is an inherent limitation to the practical
'application of the concept in that it is difficult to con-

ceive of a space possessing more than three dimensions.
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Hence systems requiring more than three co-ordinates for their
description are too complex for this approach to yield really
useful information. Where the system involves three state
variables, or less, and particularly in the case of the
general second order differential equation, the method is

extremely valuable.

6.2 Recommendations for Future Work

~ There are many possibilities for extension of the work
presented here.. It would, for example, be useful to obtain
. an approximate analysis of the planar motion of a rigid
satellite which is capable of predicting the size and shape
of the limiting invariant surface. One possible way of making
this study would be to investigate the transformation concept
introduced in Section 2.4 and to determine approximations.
to the mapping which yield the results with a considerable
reduction in computational effort.

_.The analysis of the damped satellite could be extended
considerably. The damper emplbyed in Chapter 3 is complex
and inefficient as compared-to other devices. The configura-

tion studied byZajac16

may prove to be useful in approximat-
ing practical satellites. There 1s a large amount of litera-
ture concerning the small amplitude motions of these devices,
but very little effort has been made in consldering the
inherent non-linearity of the equations or the problem of
capture of the satellite by the gravitational gradient field.

_ The problem of the "long" elastic satellite also



217
remains to be treated. There is at least one scientific
experiment that has been proposed which would require very

39

long antennae. ‘The analysis becomes much more difficult
as the parametric excitation of the boom becomes significant
as a result of the low natural frequency and interacts with
the non-linearity of the large thermal deflections.

_ A study of the general mopion of a non-spinning
satelliﬁé would involve a massive amount of work. If the
orbit is elliptical, the.Hamiltonian varies with time and
hence the state of the system (equations 5.18 and 5,}9)1
depends on the fiyve variables; ©, ¢, &P', %, gb'as well as
the parameters K; and e. By fixing the values of E),MKi,
and e and assuming that an integral manifold exists, it should
be possible to»determine ¢, for example, as a function of ¢l,”
gJﬁ and qS’for_a specified set of initial conditions. The |
determination of such a function would be extremely interest-
ing, but it would involve the integration of the equations
of motion for approximately one thousand orbits if the result-
ing accuracy is to be equivalept to that in Chapter 5. The
determination of the limiting maqifoldlwill thus be a very
time consuming process. A comprehensive study of the effects
of variations in the parameters Ki_and e thus appears to be
unrealistic,

A contribution could be made by attempting‘an_approxi-
mate solution of the equations of motion and by comparing

the results with the numerical work. This is a more elaborate

problem than that proposed for the approximate solution of
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the planar motion and it is assumed that the‘blanar work would
be completed before the more complicated analjsis is attempted.

It _would also be useful to perform a detailed simulation
of an acﬁual satellite in ordef to assess more accurately the
magnitude of the effects of various disturbances. The design
of a satellite might well form the ultimate goal of this work
and such a simulation would be required in any engineering
study and would be essential in determining the effects of

design changes on the performance.
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