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ABSTRACT

The split Hopkinson pressure bar has been used to
study the acoustic isolation that can be achieved by iﬁsertiné
a compliant element into the sound path in an elastic system,
and to study the dynamic response of the material comprising
the compliant element. The specimens were inserted between two
steel transdﬁcer bars. The incident stress pulse, of about 100
microsecond duration, was produced by striking the free end of
one.of the transducer bars by a round-headed striker bar. The
incident pulse in the first bar and the transmitted pulse in
. the second bar were sensed by strain gages and displayed on an
oscilloscope. |

The coﬁparison of computed Fourier transforms (within
the acoustic frequency range) of both the incident and transmitted
pulses showed that in general a greafer reduction in transmission
of vibration across a specimen is achieved:

i) by increasing the length of the spécimen;
ii) by using a material wiﬁh a higher attenuation constant
or higher viscous damping;
iiji) by increasing the impedance mismatch between the spec-
imen and the steel transducer bars.
Also, it was found that isolation is greater at high

frequencies than at low frequencies.



Page

Abﬁtract

List of Figures
" Nomenclature

1

(8] N -

Lo o~ Gl o

38
5
57

64

CORRIGENDA

- 4,6,7,13

11
9 up
12

10 up

3 up '

20

Change

3

audible not acoustic
- Sine not since

Inverse not Iniverse

specimens not specimen'v
audible not a;oustic
(3.1.10) not (3.1.8).
¢* not ¢ or c :
(iwt) not (fQL).
[12] not [6]

[13] ﬁot [6] -

A h(t+2 ) not h(t+d)
1 c0 s COJ

- lateral not letral

specimens not specimen

Time not strain

. Volterra.not Voltera



Chapter

1 INTRODUCTION

TABLE OF CONTENTS

"2 STATEMENT OF PROBLEM . . . . ¢« « « « + o o

3 REVIEW . .

3.1 Review of Theoretical Work . . . . . .

3.2

'3.1.1

Wave Propagation in Elastic and
Viscoelastic Bars . .+ . + « +

3.1.2 Waveform Produced by Mechanical
Impact . . « ¢ ¢« ¢« o ¢ o o o o &
Review of Experimental Work . . . . . .

4 Theory .

4.1 Propagation of Longitudinal Stress -
‘ Pulse in Coupled Bars . « .« « « « + + =
4,2 Duration of Stress Pulse . . . . . ....
4.3 Momentum Analysis . . . . . e e e e
5 Experimentation and Instrumentation . . . .
5.1 Experimental Setup . . . . ¢« ¢« « ¢ . .
5.1.1 Mechanical System . . . . . . .
5.1.2 Transducer and Recording System.
5.2 Details of Experimental Apparatus . . .
5.2.1 Triggering Circuit . . . . . . .
5.2.2 Straiﬁ Gage Locations . . . . .
5.2.3 Size of Strain Géges c e e e e
5.2.4 Diameter of Bars . . . . . . . .
5.2.5 Selection of Striker . . . . . .
5.2.6 Selection of Specimens . . . . .

. . . . . . . . . . . . . . . .

Page

26
29
34

34

34

34
36
36
36
38
38
38

44



Chapter

6 Results and Discussion . . . +« « « « o &

6.1 Performance of the System and its

Limitations . . . . ¢« « « ¢« ¢« « + .

6 1.1 Duration of Pulse . . . . .

6.1.2 No Distortion of Pulse . . .

6.1.3 Effect of Adhesive . . . . .

6.2 Checks on’ObserQations and Results

7  Conclusions and Remarks . . . . ; . e

8 Suggestions for Further Work . . . . . .
8.1 Improvements and Changes in Present
Experimental Setup . . . . . . . .

8.2 Suggestions for Further Analysis .
Bibliography . . .+ . ¢ & « o v & 4 o o« &+ o o @
Appendix A Test Procedure . . . .« ¢« + « <« « o
Appendix B Calculations . . . . . . . « .« . .

Appendix c Two-Triggering Pulse Electronic

: Circuit . . . . . ¢ ¢ o + o o o . .
Appendix D Additional Figures . . . . . . . .

Page
46

46
46
46
50
50
59

61

61
63
64
65
66

70

71



Table

5.2.A

5.2.B

LIST OF TABLES

Page
Stress?Time—DiStance_Relationship for Three-
Bar System . ¢ ¢ ¢« 4 ¢« ¢ ¢ 4 s s 4 a4 s 4 4 & e e 15
Results of Striker Bar Studies . . . e e e e . 42

Material Properties .« ¢« « « « ¢ ¢ o « o o o o 45



LIST OF FIGURES

Two-Bar System-. . « ¢ « + & « ¢ o o « o+ .
Three-Bar System . . . . . « .« « .+ ¢« .+ . .
o-x-t Plot: Three-Bar System . . . . . .

Incident Reflected and Transmitted Waves

'in Three-Bar System . . .« ¢« ¢« ¢« « o« « o« &

Propagation of Rectangular Pulse in Three-

Bar System . . ¢« ¢« ¢ ¢ ¢ ¢ ¢ ¢ 4 ¢ e o o .

og-x-t Plot for Incident Rectangular Pulse
in Three-Baxr System . . . « ¢« & o« o « + =

- Viscoelastic Bar Coupling Two Elastic

BAars .« ¢« ¢ ¢ ¢ i 4 e e o e 4 e o o o o o o
Fourier Transform for a Half Since Wave .
Schematic Diagram of Experimental Setup .

Error in Measuring Dynamic Strain
with Strain Gages . ¢ « ¢ « ¢ « « o .o o«

Striking Arrangements . . . ¢ ¢ + « o o
Fourier Transform of Observed Pulse . . .

Setup to check condition of No Distortion
of:Pulse . . . . . ¢ ¢ ¢ ¢ v 4 e e e e e

Record Showing No Distortion of Pulse .

Setup to Check Effect of Adhesive . . . .

Record for Paint as an Adhesive . . . . .
Record for Grease as an Adhesive . . . . .
Record without an Adhesive at Junction . .

Fourier Transform of Pulses Recorded

for Paint . ¢ v v v ¢ ¢ o 4 e e o e o o o

Page

10
13
16

18
20
21

.22
27

35

37
40

47

.48
48
49
49
49

49

51



Figure Page
6.2.1 Stress-Time Relationship Record . . . . . . . . . 52
|
i
6.2.2 Fourier Transforms and Reduction Coefficients . . 154
6.2.3 Average Reduction Coefficient . . . . . & « o + . 55
6.2.4 Stress-Time Relationship RECOrd « « v o o o o o & 57
8.1.1 Suggested Mechanical System . . « . « + « ¢« o o« & 62
8.1.2 Hypothetical Stress-Time Relationship . . . . . . 62
c.l Circuit for Two Triggering Pulses . . . . . . . . 69
D.1 Average Reduction Coefficient for 0.25 in long
7% Antimonial Lead . ¢ ¢ ¢« ¢ « ¢ 4 ¢ o e o o o e 72
D.2 Average Reduction Coefficient for 0.50 in long
7% Antimonial Lead .+ . ¢ ¢ ¢ ¢ ¢« 4 ¢ 4+ e 4 o o 73
D.3 Average Reduction Coefficient for 0.75 in long
7% Antimonial Lead . . . . . « ¢ o 0 0 o e . .o 74
D.4 ‘Average Reduction Coefficient for 0.25 in long
3% Antimonial Lead . . . ¢ ¢ v ¢ v 4 o 4 e . . . 75
D.5 Average Reduction Coefficient for 0.50 in long
3% Antimonial Lead 3 . . . . . L) . . . . . . . . 76
D.6 Average Reduction Coefficient for 0.75 in long
3% Antimonial Lead . . . . + .« ¢ ¢ & v 4 e . e . 77
D.7 Average Reduction Coefficient for 0.25 in long
' Pure Lead . . . . . .+ + .« . . . e e e e . 78
D.8 Average Reduction Coefficient for 0.50 in long
Pure Lead . . . e e e e e e . . . . 79
D.9 Average Reduction Coefficient for 0.75 in long
Pure Lead . . « « « « « o o« o . e e e . -80
D.10 Average Reduction Coefficient for 0.25 in long
Nylon . . . . . . o o s e e s o« o o e . 81
D.1l1 Average Reduction Coefficient for 0.50 in long
Nylon . . . « ¢« ¢ ¢ ¢ o o o o « & e e e e e -82
D.12 Average Reduction Coefficient for 0.75 in long
Nylon .« . o ¢ v v v o o o o o o & « e e e .83



Transmission
Lead . . . .

Transmission
ILead . . . .

Transmission
Transmission

Experimenfal

Coefficient For

Coefficient Fbr

Coefficient For
Coefficient For

Setup . . . . .

7% Antimonial

3% Antimonial

Pure Lead

Nylon

Page

86

87
88
89

90



NOMENCLATURE

A(w) - Amplitude in the Cosine Fourier Transform
B(w) Amplitude in the Sine Fourier Transform
E Young's Modulus

E =E'+iE'', Complex Modulus

E' Real Part of Complex Modulus

E'! 4 Imaginary Part of Complex Modulus

En(w) Energy of a wave over its period T,

G(w) Modulus in Complex Fourier Transform

[ =% (w)+B2 (0)) /2]

i(w) Intensity of a Wave of Frequency w

L(w) Reduction Coefficient

Lavg(@) Average Reduction Coefficient

F(u(t)). =U(w), Fourier Transform of u(t) with respect to t
F;l(U(m)) =u(t), Iniverse Fourier Transform of U(w)with

respect to w

T Time Duration of Pulse
To | Time Period of a Wave of Frequency o
c » Elastic Wave Propagation Velocity
c Phase Velocity in Linear Viscoelastic Material
« IE (£-3)
f'(t-a) Derivative with Respect to Argument (=————;?—4
3 (t-=)
c
£ Derivative with respect to Time
1 Length of the Finite Bar in Three-Bar System
P Frequency of Half Sine Wave

t Time



u Particle Displacement

e

Particle Velocity

X Distance from Origin

z Impedance .

Z, Impedance of Semi-Infinite Bar in Three-Bar System

aT(w) Transmission Coefficient at Frequency uw

€ - Strain

¢, ¥ Phase Difference

Ay =(z2o-2)/(2,+2)

XZ =22,/(2,+2) A

v Poisson's Ratio

[ ' Density

‘c Stress

g F(c(t)), Fourier Transform of o (t).

T Time taken by a Stress Wave to Tra&el the Length 1
of Finite Bar |

w Circular Frequency

Superscripts i, r, t represent Incident, Reflected and

Transmitted Pulse or Wave.

Subscripts 1, 2, 3 refer to bars 1, 2 and 3.
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1. INTRODUCTION

The pfoblem of isolation'of buildings and structures
from acoustic noise and vibration is quite old. Lead-asbestos
pads have been used [8] for the last forty-five years in tﬁe
foundations of buildings to prevent transmission of vibrations
from the ground into the buildings. Similarily lead also finds
apélication in many other areas to control sound'and
vibrations [91.

The phenomenon of wave propagation in solid bars is well
known. Experimental investigations were unaer way’by the begin-
ning of the 2Cth century. Thev"split Hopkinson pressure bar"
method was introduced in mid 20th century to study the behaviour
of small specimens under dynamic loading. Several methods have
been employed in the past using explosive charge and mechanical
devices to produce a pulse for dynamic compression testing
of solids.

So far scientists have concentrated their attention
towards dynamic compression testing of small specimen in order
to study the dynamic behaviour of materials and to determine
dynamic stress-strain curves, etc. Setups similar to split
Hopkinson pressure bar-method were used. The present work is
aimed at the study of the frequency dependence of materials,

and their vibration isolation characteristics.



2. STATEMENT OF PROBLEM

The probiem was to design and construct equipment ade-
guate for the study of the frequency response of a material
and to analyse the behaviour of the specimens of different
lengths with a view to reducing the transmission of acoustic
vibrations across them.

The above problem was divided into the following sub-
problems:

i) Design and construct a system to produce stress pulses
covering the acoustic frequency band, with small stress
amplitudes;

ii) Set up instrumentation to record the observations of
experiments conducted; |

iii) An;lyse the records to investigate the effects of spec-
imen length and material properties on the specimen's
capacity to reduce thé amplitude of vibrationvtrans—

mitted across it.



3. REVIEW

3.1 Review of Theoretical Work

3.1.1 Wave Propagation in Elastic and Viscoelastic Bars
In 1807 Thomas Young gave laws governing the propagation
of elastic waves in bars. The solution of the governing

differential equation

32u 221
p —5 = E ——s (3.1.1)
at2 ax2 :
which is
— X _X
u = f(t+c) + gt c) ’ (3.1.2)
where
c =V 3.1.3

describes the two waves f(t+§) and g(t—%) pfopagating with vel-
ocity c in.the negative and positive x directions respectively,
. Later H. Kolsky [1] analysed one-dimensional wave
propagation in viscoelastic solids by introducing the concept of .
the complex elastic modulus foridescribing sinusoidal wave prop-
agation. " The complex.modulus E is defined as the ratio of sinu-

soidally varying stress

0 = 0, exp(iwt) (3.1.4)



to the sinusoidally varying strain
e = e, exp(iwt-1i8) . (3:1.5)
In (3.1.4) and (3.1.5) respectively, o, and ¢, are real.

§ is the phase lag between the applied stress o and the resul-

tant strain e. The complex modulus is then given by .

E=E'+E" = 2= %%.exp(id) = E¥ exp(is) - (3.1.6)
where
E* = [£'%4p 1 21/2 O (3.1.7)
and
tén § = E''"/E' . | (3.1.8)

Hence for sinusoidally varying displacement
u = U(x)elwt

it fqllows from (3.1.6) that

c=E %;— . ‘ . (3.1.9)

Replacing E in the equation of motion (3.1.1) by E,
yields, for sinusoidally varying displacement,

_d2u 32u

E 7= 5 . (3.1.10)

9X ot



The solution of (3.1.8, for a progressive sinusoidal
wave of frequency w/2n, whose displacement at the origin is

given by u, exp(iwt), is

u = u, exp(-ax+iu(t-%)) (3.1.11)
= |
where |
¢ = (8*/0)Y? sec S (3.1.12)
o = (w/¢) tan §/2 . 7 (3.1.13)

The propagation of a pulse has been treated by Fourier
synthesis and thus the displacement at the origin (x=0.0) is

expressed as the Fourier integral

u(o,t) = I_w A(w)exp(iwT)dw . (3.1.14)

Therefore,

u(x,t) = f_w A(w)exp (~ox+io (£-5))du (3.1.15)

where A(w) is a complex function of the frequency w.

3.1.2 Wave form Produced:by Mechanical Impact:

Various authors have analysed the problem of finding the
length or duration of a stress pulse produced in a long bar by
the impact between a stationary 1oﬁg bar and moQing objects of

different geometries.



Timoshenko [2] has shown that the length of the stress
pulse produced by the longitudinal impact between two bars is
211, where ll is the length of thé shorter bar.

Hertz [3] analysed the problem of a ball of radius r
and mass m, striking a semi-infinite bar with.velocity Vo. He
derived the differential equation

d2a  k  do>/?  x 1/2

+ : + — qa = 0 (3.1.16)
dt?2 pc.0 dt m

with the initial conditions «=0 and v=v, for t=0, where o is the
indentation of the impinging ball and @ is the area of cross

section of the bar. The constant k in (3.1.16) is given by

E 1/2

r (3.1.17)

~
]
W N

(1-v2)

where E, p and v refer to the material of the bar.

The solution of (3.1.16) was.found to be in élose agree-
ment with the experimental results [3].

W.A. Prowsé [4] applied the Hertz theory to analyse the

impact of a round-headed bar and found the expression

l+6+62

2 L _q 268+l
B8 =<- +21log [ ———1 - 4/73 tan —  (3.1.18)
/3 (1-5)2 /3
where
. 6v,
§ = (g—) 3/2 H g = t ’
1 o



and o is the indentation at time t, o, is the maximum indenta-

1
tion, and v, is the velocity of the impinging bar.
|

3.2 Review of Experimental Work

In 1914 Bertram Hopkinson [5] proposed an experimeﬁtal
technique, now known as the Hopkinsoﬁ pressure bar method, for
heasuring the pressure produced by the impact of a projectile
or explosive charge on the end of a long bar. The apparatus
employed a short bar, called the time piece, stuck by means of
grease to the end of a steei bar, several feet long, suspended
hérizbntally by means of strings.

The pressure to be measured was applied at the end of
the long steel bar, opposite to the end to which the time piece
was attached. The time piece flew off when the préssure wave,
reflected as tension wave from the end of the time piece, reached
the junction of the time piece and the long steel bar. The
momenta of time pieces of various lengths were recorded to
calculate the pressure pulse.

In 1949, Kolsky [6] introduced the "split Hopkinson
. pressure bar" apparatus. This employed a disc specimen]sandwiched
between two long steel bars suspended horizontally by strings.
An explosive charge at the end of -the steel anvil bar caused a
ahort duration (~1 micro?sec.) stréss\pulse in the anvil bar.
The pulse suffered dispersion during propagation through bar due
to the geometric and mechanical properties of the bar.

The displacement-time relationship was measured by a

parallel plate condenser at the free end of the second bar. The



stress-time aﬁd strain-time relationships were derived by
numerical analysis of the displacement-time relationships
‘obtained in the absence and presence of the specimen.

Davies and Hunter (1962), [6], studied the mechanical
behavior of solids under dynamic compression testing. Their
method differed from Kolsky's mainly in specimen geometry.

For Kolsky's specimen, since a/h=10 (a is the radius and h is
the thickness of the specimen), stresses in the tangential and
radial directions arose due to frictional forces between the
specimen-bar interfaces.

‘A criterion to indicate when frictional fofces can be
neglected, was derived by Hill in 1950, [6]. This criterion
required a/h<<25 in the experiment conducted by Davies and
Hunter, and this condition was satisfied.

The circular faces of bars and specimen'in the Davies
and Hunter experiments were finished to optical‘flatness. The
specimens were held in position by "wrung joints."

In recent years the use of strain gages for measurements
of strain pulses has been established. Experiments conducted
~ by R.M. Davies, D.H. Edwards and D.E. Thomas in 1950 [7] led to
the conclusion that static and dynamic gage factors are prac-

tically the same.



4. THEORY

In order to provide some theoretical basis to verify
i :
gualitatively the experimental investigations, the followinu

analysis has been developed.

4.1 Propagation of a Longitudinal Stress

Pulse in Coupled Bars

First of all, we consider the case of two semi-infinite
bars of the.same diameter but of different materials coupled
together (Figure 4.1.1).

From (3.1.1) and (3.1.2) waves propagating in bars 1

and 2 may be described by

o
|

X T x '

o
1

X X .
5 = f2(t+-62)+g2(t—62) . (4.1.2)

Therefore particle velocity is given by

[
[
i

) X . X
£ (5 ¢ gy () (4.1.3)

Al X 1 X
£ () + g R 4 (4.1.4)

o
I

Since the stress in elastic bar is related to strain by Hooke's

law, the stress oy and o, are given by

E E .
_ 1 1 X - 1 ' X
= —— fl (t+-é- ) —_— gl (t—é- ) (4.1.5)

< 1 cq 1

91



0 |
X g egc
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| _
Barl 1-2 Bar2.
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Figure 4.1.1 Two-Bar System
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E2 X 2 | X
— = (et - U (= .

92 c f2 ( C ) 92 ( c ) _ (4'1’6)
{ 2 1 <, 2 .

An incident stress wave given by

i, o(t-g )

o}
1 1

is considered to travel in the positive x direction in bar 1
and to arrive at the junction x=0.0 at time t=0.

Therefore, in (4.1.5)

fl'(t+§ ) = 0 for t<0 (4.1.7)
€
and
X €1 X '
g,' (t== ) = - == g (t-2=) . : (4.1.8)
1 cl E1 cl

As there is no wave travelling in negative x direction

in bar 2,

.l X - : ;
f2 (t+E;) = 0 (4.1.9)

Continuity of stress and particle velocity requires,

at x=0.0,

} _ f (4.1.10)

The boundary conditions (4.1.10) for £>0 applied to.

(4.1.3), (4.1.4), (4.1.5), (4.1.6) yield the set of equations



12

£)' ()49 (£) = £ (£)4g, " (8)

} (4.1.11)

1

B E. E
l 1 l 1 2 1) t
= £ - =g () = L -2 gy ()

€1 €1 ) )

Solving (4.1.11) together with (4.1.8) and (4.1.9)
(for x=0.0), for gl' and f2' and then substituting these ex-
pressions in (4.1.5) and (4.1.6) yields ol(x,t) and oz(x,t)

given by the expressions,

2,-2

ol(x,t) = o(t—g )+ 2 1 c(t+§—) , (4.1.12).

1 22+zl 1

where the reflected wave in bar 1 is

Z.,~2
21Xy, | (4.1.13)

olr(x,t) =

22+Zl

and transmitted wave in bar 2.

22 ‘
g (t-=) (4.1.14)

22+zl 2

-ozt(x,t) = o, (x,t) =

The impedances z, and zz'of bar 1 and bar 2 respectively are’

given by
2y = pyC; = El/cl and z, = 0,0, = E2/c2 . (4.1.15)

The above analysis shows that phenomena of reflection and



o ¢

| 2 | 3

-2 EPC 2-3 Eo £

Junctions

Figure 4.1.2 Three~Bar System

€T
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transmission take place at thé junction, when the incident wave
reaches the junction between two bars.

; In another example, an elaétic bar of lehgth 1 is san-
dwiched between two semi-infinite bars (Figure 4.1.2).. The
semi-infinite bars are of the same material, with physical pro-
perties E,, po, and ¢c,. The finite bar is of different material

with physical properties E, p and c.

We now define

T = 1/c

Ay = (20-2)/(z0%2) .

Then - : ' (4.1.16)
(1+Al) = 22,/(z,+2) = Az
and :
(2-A2) = (l—Al) = 2z/(z,+z) .
A stress wave in the form of a Heaviside step function,
given by

oyt k) = o(t-E) = ne-E) - (4.1.17)
1 1

is assumed to travel in bar 1. Beginning a£ time t=0 when it
arrives at the junction between bar 1 and bar 2, it is partly
reflected and partly transmitted to bar 2. The wave transmitted
to bar 2, when it arrives at the junction 2-3, is partly re-
flected and partly transmitted to bar 3. Thus stress waves
~travel back and forth in bar 2 and give rise to successive re--
flection and transmission at junctions 1-2 and 2-3. |

From (4.1.12), (4.1.14) and (4.1.16), the analysis has



Bar 1

Par 2

[Bar 3

h ('t - X/Co)

ht+xk.)
(;7-);)/‘7;%, A(t-27 +Xe)

(2-DA) Ao h(t - 4T + Xtta)

1(2-22) ?\,,;‘\T"h (t—zn‘f-r"/eo)

x,

<

\ (2-22) A (E-X/e)
, (2-ADN, A(t-THX/e)
\ [2-Ay) »N h(t-27T- %)

< (2-M) A h (2-3T+X/c)

(2-2) X h(t- 4T~ Xc)

'z'nf

(2-Av) )";nh(t’z'"? - X/c) >

TABLE 4.1.A

>\4 (2-A)ALA (27T = XLe)

5o | . _ :
>\ (2 —/\-‘)/\m)\",’k(f—zt - %/e,)

5T - . |
>\ (2-22) AN A(t -5'T - %/e,)

: 27 .

1

(2-»-&/)’(
C2-A) AN A (£- (2790 - R/c,)

Ve

STRESS-TIME-DISTANCE RELATIONSHIP FOR SUCCESSIVE REFLECTION AND ‘TRANSMISSION FOR AN
ELASTIC BAR SANDWICHED BETWEEN TWO SEMI-INFINITE ELASTIC BARS

ST
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17
been carried out to develop the stress-time-distance relation-
Ships and results for successive reflection and transmission
are shown in the Table (4.1.A) and Figure 4.1.3.

The stresses in bars 1 and 3, cl(x,t) and 03(x,t) re-
spectively can be obtained by superposition of the stresses
listed in Table (4.1.3).

Thus

_ _X N\ X 2y _ X
o (x,t) = h(t E:)»Alh(t+c°)+(l A7) agIh(t 2T+E:)

(4.1.18)

) 2 _ X ’ 2(n_l)
g “h(e-dri)de L. 4y h(t-2nT+—)+....]

[~}

and,

_ (1o, 2 X 2) (po3p-X
03(x,t) = (1- 7\1 ) [h(t-= co) + )\l h{t-31 Co)+/\l

4 ‘ X
h(t"ST"'é?)
LR U S YO RIS DREE S P (4.1.19)
CO
Then cl(X,t) can be expressed as
S oi (%,8) = ot (x,t)+0. T (x,¢t) (471.20)
1t® 1 M 1 % e
where » ' (4.1.20)
i _ _X
9 (x,t) = h(t E:)

is the incident wave travelling in the positive x direction, and
olr(x,t) is the reflected wave travelling in the negative x
direction in bar 1 after time t=0; The stress 03(x,t) in bar 3

is associated with a transmitted wave c3t(x,t) travelling in
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positive x direction in bar 3 when t>0. The waves o, t

1%
and Gl¥' olr‘and c3t are plotted in Figure 4.1.4, which shows
the form ¢f the incident reflected and transmitted waves.

Now" we investigate the problem of propagation of an

- incident rectangular pulse of duration T (Figure 4.1.5a) propa-

gating in the positive x direction in bar 1 in a three-bar
system (Figure 4.1.2).

The rectangular pulée can be expressed as
i - X X
01 (x,t) = h(t 'C:) h(t T_ -C:) .

Thus clr(x,t) and cst(x,t); the reflected and transmitted waves
respectively, can be obtained by superposition of the reflected
and transmitted waves for h(t—gt) and h(t—T;X/Co) ﬁsing (4.1.18)
and (4.1.19). |
The results for a particular case (T=4t1) have been der-
ived systematically in Figure 4.1.5 and Figure 4.1.6 by the
superposition of waves shown in Figure 4.1.4 and Figure 4.1.3.
Thé following analysis has been carried out for a finite
viscoleastic bar sandwiched between two semi-infinite elastic-—~ ~~—=
bars of the same material (Figure 4.1.7). The incident, trans-

mitted and reflected displacement pulses are given as
i = X r - X
uy (x,t) —,fl(t Co) and gl (x(t) = gl(t+c°)

uy(x,8) = gt e) = £y (-5 (4.1.21)

= [ (£-F_ X
u, (x,t) = £, (t c°)+gl(t+5:)
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Fourier transforms are defined as,

D PR = £ = A [0 plareTiOf ay O (4.1.22)
: /_211 = ’ :
FIE()] = Flw) = —4— [ £(0) l%F ac (4.1.23)
S Ze |
27
£(t) = —= _j (—iw)F (o) e Tt gy . (4.1.24)
Yom == | |
™
Therefore,
FIE(t)) = —iwF (w)
and _
F(E () = -w?F ()

The eguation for sinusoidal wave propagation in bar 2 can

be written as

32u2 32u2
5 - ’_—i' ——2'— = Or 0 ¢« x <1 (4al-26)
9X c 9Jt
where s2 = E'+iE"!
. P
for viscoelastic materials. For the speciallcase when bar 2 is

elastic,a is replaced by ¢ = Y E/p" Applying the Fourier trans-

formation to (4.1.26) yields

2

UZ"(m)+£—7 Uy(w) =0 : : ' (4.1.27)

The solution of (4.1.27) may be written



wX

——

C

U2(w) = P(w) cos

The inverse Fourier

uz(x,t) = 1

Y27
At x=0,

u2(0,t) = i_
V2T

u2(0,t) = i_
V27

u,' (0,t) = ——
Y2r

+ Q(w)sin 9% .

c .

transformation vields,

— J- [P (w) cos g% + Q(w)sin

C

-— 00

[ (-iw) P(w)e ™t gy

* % Q(m)e”iwt dw
o _

wX

c

-iwt

24

(4.1.28)

dw
(4.1.29)
(4.1.30)
(4.1.31)

(4.1.32)

The requirement of continuity of stress and particle

velocity at the junctions (x=0 and §=1) yields the following

equations:

EP ' Eo ' 1 w0 = iot
- — £ () — gy ' (E) = j” L E g(u)e *tay (4.1.34)
. CO co /27\' Lo C
, \ I A ~igt
£1' (t)+g, ' (£) = __/[ (-iw)P (w)e 1¢F gy (4.1.34)
o 4 )
S (1,t) = £.'(t-—1) (4.1.35)
271 3 Co e
Eo 1 1 (T 1, -iwt
- — f3'(t—8—): - (\9% [-P (w)sin wl +_Q(w)cosﬂt]e lw‘dw .
Co ° Y27 Lm c. c e

(4;1.36)



Combining and simplifing (4.1.35), (4.1.36) and (4.1.29)

yields
. E '
- 2 (~iw) [P(w)cos YL 4+ o(u)sin &L
Co c c
= %E [ p(w)sin ¥t + Q(w)cos &L ]
c c c
or _ _
ic E . ic E
[cos %l - — sin ££] P(w)+[sin — + —— cos gi]Q(m)=0 .
c " CE, c c CE, c
(4.1.37)
From (4;1.21), it can be shown that
E, .
- — £y (-5 ) = o3t(x,t), (4.1.38)
c, 5 Co . .

hence in conjunction with the Fourier transform of (4.1.35),

we obtain the equation

wl t

. cO -—
iw[P(w)cos — + Q(w) sin %il = — 04

(w) . , (4.1.39)

Similarly, by (4.1.33) and (4.1.34), it can be shown that

E, - E '_
iw — P(w)+ w= Q(w) = 2¢
c, c

1

P(w) and Q(w) can be found from (4.1.37) and (4.1.40)

and hence o3t(x,t)‘and olr(x,t) can be computed. Since the

25

Llw) . (4.1.40)

values for c(w) are not available readily, (4.1.37), (4.1.39)

r
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and (4.1.40) can be solved to give the following equation:

! - - - o,1

‘sin %l + 2i (—£S) cos %i + (-—EE—-)2 sin %l = 2i (LS )—l—

ey : PoCo c PoCo C PoCo 83t
(4.1.41)

When oll(x,t) and o3t(x,t) are known, c(w)can be found by solv-

ing (4.1.41). Then, since

E = BE'+iE'' = p[c(w))?

the complex modulus of the material of bar 2 can be found.

4.2 Duration of Stress Pulse

The following analysis has been carried out to show the
effect of the duration of a pulse on its frequency spectrum.
The frequency spectrum of a pulse o(t) is expressed by

its Fourier transform. o(t) can be written as

o(t) = % l' [A(w)cos wt + B(w) sin wt] dw.
r . (4.2.1)
= L) G(u) sin(ut+s)dw
T o
where
2 .
Gw) = [A%(w)+ B (w12 S (4.2.2)
ié the modulus in the complex Fourier traﬁsform,‘and
6 = tan T [A(w) / B(w) ) o (4.2.3)

is the argument in the complex Fourier transform
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Also,

il

Alw)

i R -0

® c(t) cos wt 4t : (4.2.4)

and

/ c(t) sin ot dt . | (4.2.5)

- 00

B(w)

For the particular case of a stress pulse of the form of

a half sine wave given by

o(t) = sin pt for O0¢ t< T
=0 for 0> t> T
where.
p= /T,

A(w), B(w) and G(w) have been calculated as follows:

From (4.2.4)

T
A(w) = J sin pt cos wt dt
o .
(4.2.6)
= -—2L7 [l+COS 9% ] -
p v :
and from (4.2.5)
T . .
B(w) =.[ sin pt sin wt dt
o
wT for w#p . (4.2.7)

= b sin -
p"w
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Therefore, according to (4.2.2)
G(u) = 2P cos 1& | - (4.2.8)

%(w) has been plotted against frequency in Figure
4.,2.,1. Figure 4.2.1 shéws that the amplitude (the modulus in
the complex Fourier Transform), for w>2.5p, is iess than 20%
of the maximum value at w=0; Hence to cover a larger frequency

band a pulse of shorter duration would be required.

4.3 Momentum Analysis

By the law of conservation of linear momentum, the momen-
tum of the incident pulse should be equal to the algebraic sum
of the momenta of the reflected and the transmitted pulses. The

momentum of the incident pulse is

-] o
M11=J upodx=f ullpocodt (4.3.1)

00 -0

and the total momentum of the reflected and transmitted pulses

is
r t ® . ® . r ® .t

Ml HM3 = l Up,dx = [ uy PoCodt + [ uqy poCodt (4.3.2)
. - i _ r t

Since Ml = Ml +M3 ’

it follows that

o, i _ w * T “w.t )
g dt—/ a;tae _+/ 4y dt . (4.3.3)

- 00
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The incident and transmitted pulses are travelling in the posi-
tive x direction, and the reflected pulse in the negativevx

direction.

Then -

R C N
1. _X e g Xy = a2 gt '
u;” o= gl(t Co)' and uy 9; (t co) . oy (x,t)
[«]
o (e+X), and w.f = £ '(@+%) Si . T (x,t) (4.3.4)
Uy TRV 1 1 S, T g 1% i
o o
u.t = (t-% ) and u.%t = (-2 ) = —Si ik, t)
2 T 93'tTg, /)y 3 T 93 c,’ T g 73 YHE
. [e]

In view of (4.3.4), (4.3.3) may be written,

@

Z; ot (x,t)dt = -J o (x,t)dt + o3t(x,t)dt , (4.3.5)

o [+]
which shows that the area under the stress-time curve of the
incident pulse is equal to the corresponding area of reflected
pulse substracted from the area of the transmitted pulse.

Examination of (4.2.4), (4.2.5) and (4.2.2) for w=0

- shows that '

G(0) = ]' o (t)dt ' (4.3.6)

- ZLoa
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and hence by (4.3.5)

/ ct() = ¢t + et . (4.3.7)

For an elastic three-bar system, it was proved analytically
for the case of the propagation of the rectangular pulse of

duration T=41 and unit height, discussed in section 4.1, that

w o, T .
}; oll(t)dt =[ cll(t)dt = 41

(]

1l
o

Lw olr(t)dt

]
=
-
.

ana | 05" (t)dt
(]

Hence '{(4.3.5) is satisfied.

A similar check was made for the case when bar 2 is

viscoelastic. In the limit as w approaches zero (4.1.37)

becomes
Eo E
— P(w) + 2 Q(w) =0
CO E
or . _ : (4.3.8)
icE,
Q(w) = P(w) .
coE

4

Substitution in (4.1.40) yields, when w approaches zero,

] Plw) = 25,0 (w)

[oR R ]|
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or
iwE, -i ‘ , .
Plw) = ol(w) . S _ (4.32.9)
| (=]
i
By (4.1.39),
iwE, -t : ‘
P(w) = 03 (w) : (4.3.10)
Co
and therefofe,
T jwt
f oy (t)dt = o3 (t)ydt . ' (4.3.11)
o o

Solving (4.1.33) and (4.1.34) for the reflected pulse yields

E, E -
—in: P(w) + wg Qw) = 2clr(w)
or (4.3.12)
- E, E c E,
a, (w) = [~io— + v — 1 — —] Plw) .
Co - - C,
c E

P(w) and Q(w) are finite for w=0, provided the displacement
u2(0;t) and the strain u2'(0,t) are integrable over the interval

-x<T<w , Therefore as

w —)0,

o, (@)~ 0,
hence : : : o (4.3.13)

-] r . _
J 9y (t)dt = 0

[+



Thus (4.3.5) or (4.3.7) are satisfied from the results of

(4.3.11) and (4.3.13).

33



5. EXPERIMENTATION AND INSTRUMENTATION

The present section deals with the design aspects of
the experimental setup, and certain experiments carried out to
a;rive at the final design.

The Split Hopkinsoh pressure bar apparatus introduced
by Kolsky [6] was the basis for the design of the experimental
setup. Changes were introduéed to take account of the present

requirements.

5.1 Experimental Setup

A schematic diagram of the setup is shown in Figure 5.1.1.
The overall design consists of two main systems described as

follows.

5.1.1 vMechanical System:

Two 0.25 in.diameter steel bars of lengths 4.0 ft. and
5.0 ft. were suspended by étrings and the specimen to be tested
was bonded between the two bars with paint. The incident
pulse was introduced at free end of the 4.0 ft. long bar by thé
impact of a round-headed steel bar (1.5 in. long and 0.25 in.
diameter).held ldosely in a bronze bushing at the end of a

pendulum.

5.1.2 Transducer ahd_Reéording Syétem:

Budd strain gages (type C6-121 Budd Metafilm strain
gages, red colour) were émﬁloyed for the purpose of sensing
the incidenﬁ, reflected and transmitted pulses travélling in

bar 1 and bar 3. The gage on bar 1 was mounted 18 in. away
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from the free end and on bar 3; 30Ain. away from the free end.
Two compensating gages were mounted on two different bars of
steel for temperature Compensation;

The output from each. of the half bridges, consisting
of one active and one compensating'gaqe, was fed into separate
Bridge Amplifier Meters (BAM) . The amplified output from the
BAM was observed and recorded on an oscilloscope. ’These
strain-time relationships were photographed (Figure 6.2.1) to

obtain a final record.

5.2 Details of Experimental Apparatus

5.2.1 Triggering Circuit:

- By proper adjustment of the level switch, the oscillo-
‘'scope can be triggered when an electrical pulse of more than
2 volts amplitude is applied to the external triggering terminals
of the scope. The triggering circuit has been shown in
Figure 5.1.1. A 12V puise, produced by the contact of the

striker bar ahd bar 1, was employed to trigger the scope.

5.2.2 Strain Gage Locations:
- The strain gages were mounted on the bars more thah half *

the length of the incident puise away from the ends,

i) to avoid any interference of the incident and trans-
mitted pulses with the reflected pulses from the ends.
ii) to avoid any localized three-dimensional effects at

the ends.
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5.2.3 Size of Strain Gages:

Some_efror [10] results when a strain gage is used to
measure a strain pulse, due to the fact that a strain gage
measures an average strain over its length Al, rather than
~strain at a point. This effect is illustrated in Figure 5.2.1,
A gage lenéth of 0.25 in. was chosen. Since the wave length of
highest frequency (20,000 cps) of interest ié 10 in., fhe ratio
of gagé length to wave length (1/40) was quite low. Therefore
the error in measuring instantaneous strain at a point was

negligible.

5.2.4 biameter of Bars:

Kolsky [il] has shown that the error in the determin-
ation of strain using one-dimensional wave propagation theory
is propoftional to az/Azl(where a is the diameter of the bar and-
A is the wave length of strain wave). Since the shortest wave-
length of interestAin the steel bar is 10 in. (for 20,000 cps),
the error involved is less than 1% fof 0.25 in. diameter steel .
‘bar, and hence three dimensional effécts, such as letral inertia,

are negligible in the present circumstances.

'5.2.5 Selection of Striker:

The highest frequency of interestvwas chosen as 20,000 cps.
From Figure 4.2.1 which §hows the modulus of the Fourier trans-
form of a half sine wave, we have concluded - that the amplitude
for vw>2.5p is less than 20% of the maximum amplitude at zero
frequency. Therefore in order,that the pulse contain significant’
components up to a frequency of 20,000 cps, it is necessary

that
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2.5p>2mwx20,000

where p=n/T and the pulse duration is T, so

T <(2.5/2x20,000) sec.

Thus a pulse duration of less than 62.5 miero—see is required.
Davies and Hunter [6] have mentioned that in general mechanical
systems are used for experiments in which load is applied in
times of order of milliseconds or greater, while for pulses of
microsecond duration, explosives are usea. However, in the case
of loading by expiosive charges, the intensity of stress is
very high (>1O3psi) and there is little control on the form of
the pulse. Therefore a pendulum striker was chosen to produee
a stress pulse, for there is greater control on reproducibility
of the pulse form and the streeses involved are of the order of
100 psi.

A number of theories have been postulated and experiments
conducted regarding the duration of a pulse produced by the
impact between the bodies of different geometries, and these
have been reviewed in Chapter 3. It was not feasible to achieve
the ideal conditions of the theories in present work. However,
different geometrical configurations, of the striker were in-
vestigated experimentally, and the time duration of the pulses

recorded have been tabulated in Table 5.2.A.
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Configeration l:-

A flat-headed bar of length 1 was rigidly mounted at

the end of the pendulum arm (Figure 5.2.2a).

Configuration 2:-

This configuration was similar to 1 except the striking

head of the bar was rounded (Figure 5.2.2b).

Configuration 3:-

A ball bearing suspended by a heavy wire was used to

strike the free end of the bar 1 (Figure 5.2.2c).

Configuration 4:-

A ball-bearing of diameter d was shot by a spring loaded
- shot gun, to achieve a free impact between the ball and the bar.

(Figure 5.2.2df.

Configuration 5:-

This arrangement was used to achieve impact between two
free bars. The striker bar rested in a semi-circular slot in

the pendulum (Figure 5.2.2e).

Configuration 6:-

This arrangement was similar to 5 except that the slot
was removed and the striker bar was free to slide in a smooth

bronze bﬁshing (Figure 5.2.2f).



RESULTS OF STRIKER BAR STUDIES

TABLE 5.2.A

s. | config- 1 d Striker Time
No. | uration in. in. Geometry- Material B Sec Remarks
1 1 3 12 {10 Steel > 300 S. No.l through 5 gave results
2 1 3 - 3/8 -do- -do- 150 with poor reproducibility
3 1 3 1/4 -do- -do- 100 Pulse duration was increased
4 1 3 3/16 -do- ~do- 125 ‘by increasing impact velocity.
5 1 3 1/4 ~-do~ Alumimimum 125
6 1 . 1l/4 -do- Steel 125
7 1 . 3/16 -do- -do- 125
8 2 3 1/4 | C-DO O -do- 125
9 2 1.5 1/4 - ~do- -do- >100 Inmperfect impacts.
10 3 - 9/16 <:> <:> Ball Bearing 80-150 | Higher impact velocity gaveva
11 3 - 3/4 ~do- .| = -do- 100-200 | smaller pulse duration. |
12 4 - 9/16 “do- -do- - Nothing could be recorded due to
‘ ' -rattling of the ball.
13 5 3/8 |3 O Steel 150-200 '
14 5 1/4 -do- -do- -do-
15 5 .3/16 -do- Steel -do-
16 5 3/8 '-'do—_ -do- -do-
17 5 . 1/4 ~do=- ~do- -do-
18 5 . 3/8 DO O -do- ~-do-
19 5 . 1/4 -do- ~do- ~do-

(44




Table 5.2.A (continued)

S. config- 1 a Striker _ Time
No. |} uration in. in. Geometry ‘Material n Sec - " Remarks
20 6 . 1/4 ~do- Wood 130 ,
21 6 174 (3 O Steel 80-110 | Poor reproducibiiity.
22 6 . 3/8 -do- | -do- -do- -do-
23 6 . /4 D O ~do- ~ 100 Good results.
24 6 1/4 -do- -do- ~ 100

1387




As Table 5.2.A shows, in Ehe twenty-four different
varrangements tried, it was not possible to produce é pulse of
smaller curation than 62 py sec. The best results were obtained
for configuration 6 with a 1.5 in. long round-headed steel bar

of 0.25 in. diameter sliding in the bronze bushing.

5.2.6 Selection of Specimens:

It was shown in Chapter 4 that the greater the differ-
ence in the impedance (z=E/c) in the two contiguous materials,
the less the energy transmitted. Hence the following were the

criteria in selection of a specimen:

i) The ratio (Xl)—of the difference and sum of the impe-
dances of steel and the material of the specimen should
be large.

ii) The material should be strong enough to support enough
load so that it may be_used‘in buildings and structures.

iii) Some materials exhibit the property of internal fric-
tion, which, in many instances, can be treated by ..
linear viscoelasticity. The energy df a stress wave is
dissipated'while'propagating through such material.

iv) The length of thé specimen has been chosen (a/h<<25) to
eliminate the effecﬁs of radial and tangeﬁtial friction"
[6] but-sﬁort enough to bé used economically in appli-

cations.

Table 5.2.B shows approximate values of different rele-

vant material properties



TABLE 5.2.B

MATERIAL PROPERTIES

45

o Ex10”® | cx1074 z |12, ]
Material psi in/sec. | psi-sec./in. .
Aluminum 10 6 170 .94

Steel 30 20 150 1
Copper 15.6 4 390 .56

Lead 2.35 4.34 54 .5t
Nylon .18-.45 5.36 3.3-8.3 .07 

The materials tested were pure lead, 3% antimonial lead,’

high polymer.

7% antimonial lead and nylon.

Nylon was chosen as a typical

tions criterion IV, listed was satisfied.

All specimen were 0.25 in. in diameter, and

0.25 in., 0.50 in. and 0.75 in. in length. For these propor-



6. RESULTS AND DISCUSSION

{ The first part of this chapter deals with the perform-
ances of the system, and shows the extent to which the require-
ments are satisfied and what limitations were encountered.

The second part deals with the checks on the observations and

results.

6.1 Performance of the System and its Limitations

6.1.1 Duration of Pulse:

The system finally selected to produce the stress pulse
gave a pulse of about 100 microseconds duration as against the
réquired 62 microsecond or less. However, since the puise pro-
duced was not a half sine wave, the Fourier Transform of the
pulse covered frequencies,from zero to‘20,000 cps as shown in

Figure 6.1.1.

6.1.2 No Distortion of Pulse:

As shown in Figure 5.1.1, strain gages on bars 1 and 3
were mounted 30.0 in. away from the specimen. To check that
‘there was no distortion of a éulse éé it propagates in the
steel transducer bérs 1 and 3, experiments were carried out on
a continuous 8 ft. steel bar (Figure 6.1.2). No distortion
was found (Figuré 6.1.3) for the propagation of a pulse over
va disténce of 120 in, it was possible to observe the wave over
this distance by taking account of the reflected pulse. There-
fore it can be concluded that the wave forms recorded by the
strain gages on the transducer bars 1 and 3 give an accurate

indication of the wave at the junctions with the specimen, bar 2.
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6.1.3 Effect of Adhesive:

To hold the specimen inlpésition, paint was used as
an adhesive. To make sure that the point'dées ﬁot cause any
reflection of the pulse, an,experimént was c¢onducted by join-
ing with paint the two steel bars or 0.25 in. diameter (Figure
6.1.4) and recording the pulse in each bar. The record (Figure
6.1.5) shows that there is no reflection of the pﬁlse at tﬁe
joint. Figure 6.1.6 and Figﬁre 6.1.7 were recorded for similar
experiments conducted by using grease at the joint and by
keeping the bar in contact juét by applying slight pressure
(no adhesive used). Both Figure 6.1.6 and Figure 6.1.7.show
reflectioﬁ of the puise at the joint as compared to no reflec-
A tion in case of Figure 6.1.5. The Fourier transforms for the
incident and transmitted pulses havé been shown in Figure 6.1.8
for the case.of two bars in Figure 6.1.4 joined together with
paint. This establishes that the presence of paint causes no
reflection or distortion at the juction.

Since the BAM had a constant gain up to 15,000 cps , ahd
since the modulus of the Fourier transform of #he incident
pulse at "15,000 cps is less than 10% of the maximum amplitude’
at zero frequency (Figure 6.1.15 the results were plotted up

to 15,000 cps only.

6.2 Checks on Observations and Results
A typical stress-time relationship record is shown in

Figure 6.2.1. The following checks and observations were made:
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Figure 6.1.8 Fourier Transform of Pulses Recorded for Paint
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15 The célculated velocity of sound inlsteel is about
20x10% in/sec (¢ = VYE/p, E = 30x10° psi p = .282 lb/in3);
*therefofé the transmitted and reflected pulses should commence
300 microsecond after the commencement of the incident pulse
for a pair of strain gages mounted 30.0 in. away from the
junctions. This checks with Figure 6.2.1. | |
ii) In the presence of a specimen, the transmitted pulse
appeared attenuafed_(Figufé 6.2.1) as compared to the incideﬁt
pulse.
iii) Dispersion was observed in the transmitted and re-
flected pulses (Figure 6.2.1) with respect to the incident pulse.
iv) The transmitted puise was always observed to be com-
pressive for a cémpressive incident pulse.
Av) The reflected pulse was tensile initially and changed
to compression.
All observations, ii through v, check with the simple
theory developed ih Chapter 4 for an elastic specimen, bar 2.
The infinite duration of the transmitted and feflected pulses
~ (found théoretically) could.not be observed practically due to
small amplitudes associated with the trailing part of the
pulses. |
The reflected pulse, beingvlonger than 36.0 in., could
not be isolated.frbm its own reflection (figure 6.2.1) from the
free end of the bar 1, which was 18 in. away (Figure 5.1.1)
from the_gage; _
Figure 6.2.2 shows.Gi(m), Gt(w) and L(w) plotted

against frequency; Gl(w) and‘Gt(w) are the moduli of the
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Fourier transforms of the incident and the transmitted pulses
‘and L(@), the»reduction coefficient (=[Gi(w)—Gt(m)]xlOO/Gi(w)),iS
the peréent reduction in amplitude. The final results pre-
sented, Figure 6.2.3, show Lavg(w) (r.m.s. average) with
standard  deviation lines bounding it to give an indication of
the scatter in the results. : o

Most of the results show that the reduction coefficient
is not zero at zero frequéncy._ This observation could not be
accounted for by the simple theories developed in Chapter 4
for the case of eléstic and linear viscoelastic specimens,
since these theories predict that the reduction coefficient at
zero frequency should be zero. This effect may be due to non-.
linear behaviour of the material.

Checks 6n the conservation of momentum couid not be made
accufately as the complete information about the reflected |
pulse was not available. However, approximate checks made on
some photographs satisfied (4.3.5).

Some cases have shown a peculiar behaviour of a negative
reduction:coefficient for a range of small frequencies. Such -
- behaviour is not in accord with the linear theories developed.:-==- =
in Chapter 4. One sﬁch case is shown in Figure 6.2.4. The
area and hence the momentum of the transmitted pulse are ‘greater .. .-
than the area>ahd'the mdmenﬁum of‘the incident pulse. Also -
since the area of the compressive part of the reflected pulse
is greater (in absolute,yalue) than - the area of the tensile
paft of the reflected pulse, the reflected pulée has-positive

momentum. The amplitude of the Fourier transform at zero
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Figure 6.2.4
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frequency is pfoportional to the momentum of the pulse. Hence
a negative reduction coefficient'is related to the distribution
of momentum discussed above.

The energy carried in the incident pulse is proportional

to

f [cli(x,t)l 1 at .
<o x<0

By calculating the correséonding integral for the transmitted
pulse in bar .3, it was found that there was a reduction in
~ the energy transmitted, even for this case of a negative re-
duction coefficient. |

The results can be considered useful only up to 12,000 cps
as the deviation for w>12,000 cps are rather high. The higher
frequency components in the Fourier transform arise due to
sudden changes in slopes which could not be defined acéurately
with the photographs taken in the present work. This may be

the reaéon for larger deviations for w>12,000 cps.



7. CONCLUSION AND REMARKS

; It has been found that the approach adbpted in the?
piesent work is a very good method for studying the frequency
response of different materials. The impact of the striker
bar produces a pulse which is of suitably small‘amplitude
(7250 psi) and coﬁtains frequencies up to 15,000 cps. Explos-
ive charges, on the other hand, produce high amplitude pulses
and the waveform is more difficult to reproduce. It is very
difficult to produce a stress pulse with the'dufatioﬁ of
microsecond range by mechanical dévices.

A streés pulse (within the elastic_limit) propagating-- *
through a steel bar does not distort. The use of paint to hold
the specimen between the two.steel transducer bars 1is an ex-
cellent techhique which does not destroy the surfaces in contact.

The following points, established theoretically for the:

cases of elastic specimens, bar 2, were verified experimentally

for the specimens used in the present research:

i) The transmitted pulse has the same sign as the incident
- pulse; i.e. if the incident pulse was compressive, the trans="- ~~—-
mitted pulse was also found to be‘compressive.

ii) The transmitted pulse was found to be_attenuated and’
diépersed as compared fo the‘incident pulse.

iii) It was also verified that the reflected pulse had both

Compressive and tensile parts.

iv) Energy transmitted to bar 3 was less than tﬁe energy

in the incident pulse in bar 1.
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,:'As opposed to the results of simple linear theory, the
-momentum of the transmitted pulse was not found to be equal
‘"to the momentum of the incident pulse. This result may be
attributéd-tq nonlinéar viscoelastic behaviour of the material
of the specimen. |

" Results show that reduction coefficient is a function

of frequency, and also of'thickness and material of the spec-
imen. In generai the redﬁction coefficient increased Qith the

following factors:

i) An increase in thickness of the specimen.> This can be
observed by comparison of the Lavg (w)'curVeS for the §pecimens
of different lengths of the same material. A pulse propagating
in a longer viscoelastic material is atﬁenuated more than in
a shorter one.

ii) An increase in the ratio of difference and sum of the
impedances of the coupled materials. This can be observed by

comparing L, g(w) curves for the specimens of the same length -

v
but of different materials.
iii) An increase in the viscous damping of the material.

For pure lead, 3% and 7% autimonial lead, the value of quantity
'Al is almost the same, but a comparison of Lavg(w) curves for
0.75 in. long specimens of the three matefials distinctly
shows an increased reduction coefficient fof pure lead, which-
has the highest viscous damping coefficient of all the three.

iv) An increase in-frequency.. Every Lavg(m)curve shows an -

increase in the reduction coefficient with increasing fre-

quenéy except a few which show a decrease for higher frequency.



8. - SUGGESTIONS FOR FURTHER WORK

The folleinglsuggestions can be divided into two

groups.

8.1 Improvements‘and Changes in the Present Experimental Setup -

I. For higher sensitivity, higher voltége output is re-
guired (it is desirable td achieve a sensitivity of at least
10 psi/mv and préferably llpsi/mv or less). The sensitivity
can be increased in following ways: |

(a) Using a féur gage bridge;

(b) Employing an additional d.c. source in series with
the BAM, dépendiné on the power restriction of the
gages.

(c) Using a BAM with a higher amplification factor or a

separate amplifier to amplify output from the BAM.

II. A band-pass filter (80 éps to 40,000 cps) may be used

to eliminate any 60 Hz pick-up and high frequency noise.

III. To get a better descriptioﬁ of the pulse, the time
{scéie of the scope should be enlarged. This can be accomplished 7' !
by using the triggering éircuit shown in Appendix C, Figure C.1l
and hsing the mechanical system shown in Figure 8.1.1. This
will give a stréss;time relationship hypothetically constructed

in Figure 8.1.2.

IV. It would be easier to mount a speciment on a 0.5 in.

diameter bar.

V. Laminated specimens can be tried as they are being
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used in the foundations of buildings..

8.2 Suggestions for Further Analysis
S - -
|

Further analysis has been suggested which could be
carried out using the data obtained from the setup suggested.
I. It may be shown for each stress-time rélationship
that: |
“ i, _ ® r ® t
[o ot (£)at --‘! o, (t)at +j) o, ()at .
: !

II. Depending on the results obtained for each specimen, a

viscoelastic model may be appropriate to interpret the results.

" IIT. E = E(w) and c¢ = c(w) can be computed numerically

from (4.1.41) by an iterative technique.



lo.

11.

BIBLIOGRAPHY

Koisky, H. "International Symposium on Stress Wave Prop-
agaition in Materials," Norman Davids {(editor), Interscience
Publishers, Inc., New York.

Timoshenko, S. "Theory of Elasticity," (lst Edition),
McGraw Hill, (1934), pp. 387-389.

Hertz, H¥ "Uber Die Beruhrung Ferter Elastischer Korper,"
J. Reine Angew. Math., Vol. 92 (188l1), p. 156. Reprinted
in English in Hertz Miscellaneous Papers, London, MacMillan.

Prowse, W.A¥ "The Development of Pressure Waves During
the Longitudinal Impact of Bars," Philosophical Magazine,
Vol. 22 (1936), pp. 209-39.

Hopkinson, B¥ "A Method of Measuring Pressure Produced

in the Detonation of High Explosives or by Impact of
Bullets," Philosophical Transactions of Royal Society of -
London, Series A, Vol. 213, p. 411.

Davies, E.D.H. and Hunter, S.C. "The Dynamic Compression

Testing of Solids by Method of the Split Hopkinson Pres-
sure Bar," Journal of Mechanics and Physics of Solids

(1963), Vol.1ll, pp. 155-179.

Voltera, E. and Zachmanoglou, E.C. "Use of Resistence °
Strain Gages and Pizoelectric Gages," from "Dynamics of
Vibration," Charles E. Merrill Books, Inc., (1965),

p. 565.

"Current Practises in Isolating Buildings from Vibration
with Lead Asbastos Pads," AlA, No. 39-D, Lead Industries
Association, N.Y. (1969).

"Lead to Control Sound and Vibration," 9 Acoustical Treat-
ment, Sound and Vibration, (1969), Lead Industries Assoc-
iation, Inc., N.Y. :

Taylor, D.A.W. "Time and Amplitude Errors in Measurement:
of Dynamic Strain Pulses by Resistance Strain Gages," .. - -
International Journal of Mechanical Sciences (1964).

Kolsky, H. and Douch, L.S. "Experimental Studies in Plastic -
Wave Propagation," Journal of Mechanics and Physics o
Solids, (1962), Vol. 10, pp. 105-123, : :

* From the book listed in [7].



- 12.

13.

Kolsky, H.** Proceedings of Physics Society (1949), B 62, p. 676.

Hi1l, R** "The MéthematicallTheory of Plasticity," (1950),
Clarendon Press, Oxford. - * '

** From the paper listed in [6].



APPENDIX A

Test Pfocedure:Q

The'specimen was glued with paint between two steel
barslsuspended by‘strings. The pendulum was released from a
certain angle and the striker bar was made to strike the free
end of bar 1. The impact 6f striker bar with bar 1 triggered
the scope. The stress-time relationships produced by the
oscilloscope beam were photographed. For each specimen,
about ten photographs were taken with a 35 mm Ashai Pentax
camera on é Plus X film. These were enlarged to give 1 in? on
the print for 1 cm?,on the scope. The time axis on the print
was 0.1 m sec/in. The pulses were digitized by reading points
at 10 micro-sec. intervals.

The results obtained from such photographs were very
erratic since the quality of the photographs was very poor. To
improve the quality, the sensitivity of the BAM was increased
by additional d.c. voltage. A photogfaph thus obtained has

been shown in Figure 6.2.1.



APPENDIX B

- Calculations:-

The incident and the transmitted pulses, described in
Appendix A and Figure 6.2.1, were normalized by dividing
the ordinates of the pdlses by maximum stress in the incident

pulse. Thus A(w), B(w) and G(w) were defined as follows for

computing the results:

(=]

A(w) ==// EiEl cos wt dt-
B(w) =// ELEL sin ot dt

Glw) = [2%(w) + B2 (w)]1/2

A(w) and B(w) were computed by numerical integeration. To check
the numerical method adoptedvnumerical and analytical results
were computed for a half sine wave of duration of 100 micro-
second on which the points were described at lolﬁicrosecond
intervals. The maximum error was less than 1%, up to 20,000 cps.

The reduction coefficient L (w) Qas calculated after
finding Gi(w) and Gt(w) for the incident and the transmitted
pulses fespectively, where L (w) isvgiven by

| i t
L(w) = & (-G (u)

-x 100
6" (w)

The reduction coefficient L(w)was plotted for eight to

ten stress-time relationship records for each specimen. A
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larger scatter (more than 4%) of points was observed in certain
cases particularly at frequencies lower than 4,000 cps and
hiéher than 10,000 cps. The high frequency componénts arise
from -sudden changes in slope while low frequency components‘
are due to small gradients in the pulse. Therefore the inaccur-
acy and error in the results at low and high frequencies are

pdssibly related to the following points.

i) Since the points on the recorded pulses could not be
read at smaller intervals than 10 microsecond on the horizontal
time axes, these measurements are Qithin an accuracy of #*5 micro-
second . Such an error was generally encountered either at the
leadfng or the trailing end of the pulse, where the slopes are
quite steep. Thus this may give rise to error at higher fre-
qguencies.

~ii) The pulses could only be read with an acburacy of 5
ﬁsi. This represents an absolute error, and hence the.percent
error in Gi(m), Gt(w)} and L{w) due to this absolute error, is
greatest at high frequencies where Gi(wj and'Gt(w) are small.

iii) The transmitted pulse,.as found theoretically, should
extend to infinite time. However, due to the very small ampli-
tude associated with the trailing part of the t;ansmitted pulse,
it is impractical to read the pulse after a certain finite
time. The omitted'trailing part of the transmitted pulse may
have a finite area.which contributes to the low frequency com-
ponants of the’Fourier transform. | |

Therefore, four consistent L(uw) plots (out of 8-10 plots)
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were chosen to obtain the curves for Lavg(w) given by

, | a2
L. (w) =J §=,1 L] (w)/4

Lavg(w) was plotted in the final results bounded by the

standard deviation lines described as

: |
1 ~ 2
L ) s J P g0 =3 517 J

A typical Lavg(w) bounded by the standard deviation

lines is shown in Figure 6.2.3.
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APPENDIX C

Two triggering pulse-electronic circuit:

The Figure C.1l shows the circuit té obtain two trigger-
ing pulses from one electrical pulse produced by the contact
of the striker bar and anvil bar. The interval t between the
two pulses is given by 1t = .7RC.

For .the circuit shown, the sweep time is 500 microsecond
and about 100 microsecond have been provided for reset time,
making 1 = 600 microsecond.

~Three or more triggering pulses can be geﬁerated by
adding one or'mofe monostable‘vibrators to the circuit.

Elimination of invertor I would yield a delay circuit

giving a delay time 1 =.7RC.



APPENDIX D

Additional Figures:
i) Reduction Coefficient:
The following figures show thLe average reduction coeffi-

cient (L g(w)) for twelve specimens which were tested.

v
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ii) Transmission Coefficient:

If a stress wave travelling in an elastic bar is given

by

u = £(t-3) =D (0) sin {w(t-3) + ¥} - (9.D.1)

Then stress can be expressed as

Q=

D(w) éos'{w(t—§ + v}

(9.D.2)

G(w) sin {u (£-5) + ¢}

4The intensity of a wave can be expressed as the average
. energy over the period of the wave crossing per unit area per
unit time. .The expression for the energy, over a period T,

of the wave, crossing per unit area at a distance x along the

length, can be written as

Titx/c

En(m) [ Strain Energy + Kinetic Energy ]

x/c

. (9.D.3)
T,+x/C T.+x/C

= Lf o2cdt+ -:2L—p f 4% cdt

x/c x/c

N
3
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To+x/c g2 : Totx/c . '
-c [T Ee?Bae + Lo [ £12e-H) at
2E C2 C 2 . C
x/c x/c
(9.D.4)
To+= _2
c °'c E 2 X
= £ = f “(t-2) dt (9.D.5)
E x%; c? ¢
X
To+—= , ‘
=% [77° &%) sin® (wie-d) + ¢ at  (9.D.6)
x/c
cT,
- c?(w) . (9.D.7)
2E
Therefore the intensity I(w) can be expressed as
(9.D.8)
I(w) = 5= 2 ().

The transmission coefficient aT(w) is given as the ratio.
of the intensities of the transmitted wave to the incident wave.
Thus in present context of a three bar system

t

I (w) Gt(w) ]2 _

(

oq ()= = )
1t () Gt (w)

[ 1-L(w) ]2 . (9.D.9)

The following figures (Figures D.13 through D.16)
show the variation of aT(w) with frequency w, which have been
plotted corresponding to Lavg(w) values ‘shown invFigUre D.1

through D.12.
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