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ABSTRACT 

A method i s presented for determining approximate solutions to a 

class of grossly nonlinear, non-autonomous second order differential 

equations characterized by 

2 2 3 d x +m (x + rx ) -t- u.f (x, dx, X ) — 0 , (-1 < r < oo) 
do? " d r 

with the restriction that resonance effects be negligible. Solutions are 

developed in terms of the Jacobian e l l i p t i c functions, and may be related 

directly to the degree, of non-linearity in the dif f e r e n t i a l equation. An 

integral error definition, which can be applied to any particular d i f f e r 

ential equation, i s used to portray regions of va l i d i t y of the approximate 

solution i n terms of equation parameters. In practice the approximate 

solution i s shown to be of greater accuracy than would be expected from the 

error analysis, and use of the error diagram leads to a pessimistic 

estimate of solution accuracy. Two autonomous equations are considered to 

f a c i l i t a t e comparison between the e l l i p t i c function approximation and that 

obtained from the method of Kryloff and Bogoliuboff. The e l l i p t i c function 

solution i s shown to be accurate even for heavily damped nonlinear autonomous 

equations, when the quasi-linear approximation of Kyrloff-Bogoliuboff cannot 

with v a l i d i t y be applied. Four examples are chosen, from the fields of 

astrophysics, mechanics, ci r c u i t theory and control systems to ill u s t r a t e , 

some areas to which the general approximation method relates. 
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1. INTRODUCTION 

" ... p r a c t i c a l l y a l l of the problems i n mechanics simply are 

.nonlinear from the outset, and the l i n e a r i z a t i o n s commonly prac t i c e d are 

an approximating device which i s often simply a confession of defeat i n the 

face of the challenge presented by the nonlinear problems as such". 

J . J . Stoker [ 22 ] 

These words, which appear i n the i n t r o d u c t i o n of Stoker's book 

"NONLINEAR VIBRATIONS", may w e l l be taken as an i n d i c a t i o n of the complexity 

with which engineers and s c i e n t i s t s are confronted when endeavouring to 

describe the operation, of p h y s i c a l systems. In the a n a l y s i s of nonlinear 

systems the i n v e s t i g a t o r has three basic tools at h i s d i s p o s a l : 

a) graphical analysis, which, although i t may be applied to grossly 

nonlinear problems, u s u a l l y implies a lack of p r e c i s i o n . 

b) d i g i t a l or analog computer simulation techniques which, i n common 

with graphical a n a l y s i s , can only be applied to a p a r t i c u l a r 

problem, and 

c) techniques of t h e o r e t i c a l a n a l y s i s . 

Of these three approaches only the l a s t enables r e s u l t s to be 

obtained i n terms of the system parameters. The system may then be designed 

to conform with s p e c i f i c a t i o n s , and therein l i e s i t s value to the engineer. 

U n t i l recently, however, l i t t l e research has been conducted i n t o the 

behaviour of systems which are g r o s s l y nonlinear, and e x i s t i n g a n a l y t i c a l 

techniques are r e s t r i c t e d to i n v e s t i g a t i o n s of q u a s i - l i n e a r systems. 

As an example of a q u a s i - l i n e a r d i f f e r e n t i a l equation, B. Van der Pol 

[23] considered 

x + w x = j U f ( x , x ) 

i & dx 
dt 

which i s the equation of a simple harmonic o s c i l l a t o r perturbed by a small 
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function f(x,x), the degree of "smallness" being determined by the constant 

term |t (0 < jx <K1 ) . 

This equation was also considered by N. Kryloff and N. Bogoliuboff [ 1 3 ] , 

and the solution method which they developed, commonly called the K-B method, 

has become a standard technique i n the analysis of quasi-linear systems. 

Because of i t s relevance to the present work, a brief description of the K-B 

method w i l l now be given. 

When the constant e i s zero in the equation 

x +io x + ef(x,i) = 0 

the exact solution i s x(t) = A cos (wt + 0 ) . Kryloff and Bogoliuboff postu

lated that, for small e, the solution of the quasi-linear equations departs 

only sl i g h t l y from the linear solution for which A and 0 are constant quantities. 

By considering the solution of the quasi-linear equation to be 

x(t) = A(t) cos (cot + 0 ( t ) ) 

and defining A • as the average value of A over one period,and 0 a v as the 

average value of 0 over one period, they derived relationships for and 

$ by integrating the Fourier series expansions for 

f(x,i) sin 8 and f(x,x) cos 9 

over the interval (t, t + 2 i t ) . where 9 = cot + 0 . 

Thus they obtained an average value for A and 0 over one period i n 

the form 

A = e r 
a v 2^0" J 

2n 
f (A cos 9, -Aw sin 9) sin 9 d 9 

0 
271 

# = _e f f (A cos 8, -Aoo sin 8) cos 0 d 9 . 
2 m o A J 

0 

These integrals are, in general, readily evaluated, but the approach 

i s limited to systems which are quasi-linear. 
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There does, however, e x i s t a nonlinear d i f f e r e n t i a l equation having 

a periodic s o l u t i o n i n terms of the Jacobian E l l i p t i c functions [ 7 ], [ 11 ], 

[ 21 ], of which the harmonic o s c i l l a t o r equation i s a s p e c i a l case. This 

equation: 

•• 2 / 3 \ ^ 
x + m [x +- px ) = 0 

was considered i n a previous paper [ 1 ], where an approximate, s o l u t i o n of the 

equation 
0 *z 

x + m (x + px"0 + ^uf (x,x) = 0 (p > 0) 

was determined by a method comparable to the K-B method. 

The importance of t h i s equation i n describing nonlinear o s c i l l a t o r y 

systems stems from the natural occurrence of odd, i n preference to even, 

n o n l i n e a r i t i e s . Often a cubic polynomial i n the dependent v a r i a b l e i s 

s u f f i c i e n t to model such a n o n l i n e a r i t y ; a higher order polynomial may s t i l l , 

however, be accommodated e i t h e r by"incorporating the high order terms i n the 

function f(x,x) or by approximating the polynomial by a cubic. An exhaustive 

analysis of t h i s l a t t e r technique i s to be found i n Soudack [ 2 0 ] . The 

o s c i l l a t i o n frequency of a nonlinear system.may be strongly amplitude 

dependent, and t h i s provides f u r t h e r motivation f o r the use of e l l i p t i c functions 

which have the same property. 

In 1955, Bogoliuboff and Mitropolsky [ 4 ] presented an extension 

of the K-B method, which w i l l be c a l l e d the B-M method, and i n p a r t i c u l a r 

presented a f i r m mathematical foundation f o r the approximation technique. 

S t a r t i n g from the basic equation 

2 
x + u> x = ^.f(x,x) , (0 < « 1 ) 

they assumed the following form f o r the s o l u t i o n x ( t ) : 

(1) 2 (2) 
x(t) = a cos ^ + - ^ i u v ; ( a , y ' ) + ^ . u ( a , y / ) + . . . . 

where 
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,a = ^ A ( l ) ( a ) -f |U 2A ( 2 )(a) + .... 

y>=co +JLUBV ; ( a ) + ^ B v ; ( a ) + 

where the u^"^ are functions periodic i n 2n, and the A ^ and B^^ are 

functions to be determined. The major advantage of t h i s method i s that 

successive approximations of i n c r e a s i n g accuracy can be obtained r e c u r s i v e l y . 

The same basic approach may be adopted f o r non-autonomous systems of the 

form 

x + U) x = ji. f ( x , x , t ) 

where the u^"^ become functions of a, y and t, but the non-autonomous term can 

only be periodic,, i . e . perturbation terms of the form tx, tx cannot be 

handled. The B-M method i s e s s e n t i a l l y that of " v a r i a t i o n of parameters" 

[ 6 ] J but i t i s s t i l l only applicable to q u a s i - l i n e a r systems. 

Nonlinear, non-autonomous systems i n v o l v i n g no time delay may 

broadly be divided i n t o two categories: those which e x h i b i t resonance phenomena, 

and those which do not. Time delay phenomena, although of great i n t e r e s t , 

w i l l not be considered i n the present work. Resonance e f f e c t s i n quasi-

l i n e a r systems lead to p a r t i c u l a r l y i n t e r e s t i n g and unusual phenomena, such 

as jump resonance [ 6 ] and sub-harmonic resonance [ 9 ], and i t i s possible 

to analyse these e f f e c t s by the B-M method. 

The research presented i n t h i s t h e s i s takes, as i t s s t a r t i n g point, 

perturbation s e r i e s s i m i l a r to those chosen by Bogoliuboff and Mitropolsky, 

i n an a n a l y s i s of the d i f f e r e n t i a l equation 

2 2 ^ 
d x +ra (x + rx ) 4- /Og (x, dx, X ) = 0 (-1 < r < oo ) 

d t 2 ' d ^ 

using the Jacobian e l l i p t i c functions. This i s a non-autonomous equation, 

but, because of the a n a l y t i c a l d i f f i c u l t i e s associated with resonance 
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e f f e c t s i n grossl y nonlinear systems, the a n a l y s i s i s r e s t r i c t e d to a 

consideration of non-resonant systems. 

Equations of t h i s general form a r i s e i n the f i e l d s of, f o r example, 

astrophysics [ 12 ], c i r c u i t a n a l y s i s [ 35 ] - [ 45 ] and c o n t r o l systems [. 46 ] -

[ 5 4 ] . 

1.1 Thesis Outline 

Much of the' work presented i n chapter 2 appears i n a paper [ 2 ] 

where the first-approximation s o l u t i o n of the equation 

x + x + px + Bf ( x , i , t) •= 0 (p > 0) 

i s developed under the assumption that s o l u t i o n frequency remains approximately 

constant. Three examples, r e l a t i n g to mechanical systems and frequency-

modulation c i r c u i t s , are chosen to demonstrate a p p l i c a t i o n of the approxi

mation method. I t i s shown that the approximate s o l u t i o n can be obtained 

i n a state-equation form where, f o r a p a r t i c u l a r d i f f e r e n t i a l equation, a l l 

the c o e f f i c i e n t s are known. This enables s o l u t i o n e r r o r to be predicted, 

and error r e s u l t s are shown f o r the three examples considered. Three 

s p e c i f i c d i f f e r e n t i a l equations, corresponding to the e a r l i e r examples, are 

solved using the first-approximation method. The graphical solutions of 

f i g u r e s 2.7 to 2.10 demonstrate the accuracy which can be maintained up 

to r e l a t i v e l y large values of the parameter (3, which determines the magnitude 

of the non-autonomous term. 

In chapter 3 the same basic equation i s considered, but the 

assumption that s o l u t i o n frequency remain approximately constant i s removed. 

The same three examples are considered, new error r e s u l t s are obtained and 

r e f i n e d solutions of the s p e c i f i c equations.are shown i n f i g u r e s 3*7 to 3 .9 . 

A p a r t i a l c a n c e l l a t i o n of c e r t a i n f i r s t order terms i s r e l a t e d to three 

d i f f e r e n t approaches f o r c a l c u l a t i n g the approximate s o l u t i o n , which enhance 



the accuracy of the r e s u l t i n g s o l u t i o n . 

Chapter 4 extends the r e f i n e d a n a l y s i s of chapter 3 to consider the 

equation 
3 

x + x - px- + B f ( x , i , t ) =0 (0 < p < 1 ) . 

Comparable examples to those of chapter 3 are chosen to d e r i v e e r r o r r e s u l t s 

and to f a c i l i t a t e comparison of the s o l u t i o n s shown i n f i g u r e s 4-7 to 4-9 w i t h 

the corresponding f i g u r e s of chapter 3-

Two autonomous d i f f e r e n t i a l equations, a modified Van der P o l 

equation [ 30 ] and the damped D u f f i n g equation [ 34 ]» a r e considered i n 

chapter 5- Because n e i t h e r the K-B method or the B-M method co u l d be 

a p p l i e d to non-autonomous equations, a comparison of the r e s u l t s of the 

s o l u t i o n method w i t h those obtained from c l a s s i c a l methods was not p o s s i b l e • 

i n previous chapters. For the autonomous case, however, such a comparison 

i s p o s s i b l e and i s made i n s e c t i o n 5-5, the r e s u l t s being shown i n f i g u r e s 5.1 

and 5-3. I t i s a l s o shown that use of the e l l i p t i c f u n c t i o n s o l u t i o n f o r 

the h e a v i l y damped D u f f i n g equation r e s u l t s , i n a f i r s t - o r d e r approximation 

of c o n s i d e r a b l e accuracy which i s , at the same time, i n a simple form. 

I n chapter 6 examples are chosen from the f i e l d s of mechanics, 

a s t r o p h y s i c s , c i r c u i t theory and c o n t r o l systems to demonstrate some areas 

of a p p l i c a t i o n of the general a n a l y s i s presented i n the e a r l i e r chapters. 

The t h e s i s i s concluded i n chapter 1, where some p o s s i b l e exten

s i o n s of the approximation technique are suggested. There are two s e c t i o n s 

i n an Appendix, the f i r s t c o n t a i n i n g some p e r t i n e n t r e l a t i o n s h i p s f o r 

e l l i p t i c f u n c t i o n s , and the second being a t a b u l a t i o n of two constants 

defined i n chapters 2 and 4-

1.2 No t a t i o n 

I t i s u s u a l to express an e l l i p t i c f u n c t i o n as a f u n c t i o n of two 

'variables, the f i r s t being the independent v a r i a b l e u (s a y ) , and the second 



being a'constant associated with the e l l i p t i c function,„called i t s modulus, k 

[ 5 ]- When the modulus i s zero the e l l i p t i c sine (Sn) and cosine (Cn) reduce 

to the c i r c u l a r functions s i n and cos r e s p e c t i v e l y . As k increases to 1 

the e l l i p t i c sine and cosine depart from the c i r c u l a r functions and eventually 

become hyperbolic functions. The g e n e r a l i t y of e l l i p t i c functions can thus 

be seen to depend on t h i s modulus k. 

The e l l i p t i c f u n c t i o n s o l u t i o n of the equation 

x + x + px = 0 (p > 0) 
2 1 /2 

with x(o) = a and x(o) = 0 i s x(t) = a Cn [ ( 1+pa ) t,k] using the notation 

Cn[u,k]. However, the modulus k can also be expressed i n terms of ' p' and 

'a' as 

/ 2 ( 1 + P a 2 ) 

2 
Because the value of k i s expressible i n t h i s form, the notation Cn[u,k] w i l l 

subsequently be replaced by the simpler form Cnu. 



2. THE ELLIPTIC FUNCTION APPROXIMATION, 

2.1 Introduction 

Taking the approach of Bogoliuboff-Mitropolsky [ 4 ] as a basis 

f o r the present a n a l y s i s , approximate solutions to a c l a s s of non-autonomous, 

g r o s s l y nonlinear second order d i f f e r e n t i a l equations are developed, under 

the.assumption that s o l u t i o n frequency remains approximately constant and 

with the r e s t r i c t i o n that resonance e f f e c t s be n e g l i g i b l e or non-existent. 

The equation analysed i n t h i s chapter i s of the general form 
2 2 3 d x + m (x + px ) + /Og(x, dx, f ) = 0 

d t 2 / d r 

where p > 0, and i s a small constant c o e f f i c i e n t which may be e i t h e r 

p o s i t i v e or negative. This equation represents an o s c i l l a t o r y system with 

a "hardening" [ 6 ] c h a r a c t e r i s t i c , but i f the c h a r a c t e r i s t i c i s of a higher 

order than cubic i n the dependent v a r i a b l e i t may s t i l l be approximated by a 

cubic polynomial [ 14], [ 20]. 

E x i s t i n g techniques f o r the a n a l y s i s of non-autonomous d i f f e r e n t i a l 

equations include v a r i a t i o n of parameters [ 17 ] and the WKBJ method [ 6 ], hut 

are r e s t r i c t e d uO q u a s i - l i n e a r systems. The ana l y s i s presented i n t h i s 

chapter now makes possible the i n v e s t i g a t i o n of nonlinear non-autonomous, i n 

ad d i t i o n to g r o s s l y nonlinear autonomous, systems. 

2.2 Development of the approximation 

Using well known techniques [ 3 ], [ 6 ], i t can be shown that any 

d i f f e r e n t i a l equation of the form 

it 2 3 

x + m (x + px^) +yOg(x,x,t) = 0 

where p > 0, yO i s a small constant parameter, and with a general i n i t i a l 

c o ndition x(0) = X Q and x(o) = 0, can be expressed i n the normalized form 
x + x H- px 5 + Bf(x,x,t) =0 (1 ) 



where x(o) = 1,0, x(o) = 0 , p > 0 and 6 i s a small constant c o e f f i c i e n t . 

The s o l u t i o n of equation ( l ) , when 8 = 0 , i s x(t) = Cn wt,where 
1/2 2 

Cn i s the e l l i p t i c cosine function 
[ 5 ], w = (Up)'' and 1c = _ p _ [ 6 ]. 

2 . ( U p ) 

For p 7^,0, consider an approximate s o l u t i o n 

x ( t ) = a(t) Cn (cot + 9) , 

where a(t) i s the s o l u t i o n amplitude envelope, and 9 i s a phase-modifying 

term. For ease of notation i n the subsequent a n a l y s i s , x(t) w i l l be used 

instead of x ( t ) . In t h i s case 
2 . 2 w = 1 + pa 

and 

k 2 = - P § _ 
2 ( 1 + Pa 2) 

I f 

then 

y = wt + 0 = f(a,t) 

x = aCny/ = x(a, \j/) 

D i f f e r e n t i a t i n g equation ( 2 ) : 

x = a tix. + V 7 ̂ JL 
ba ' 

and from equation ( 3 ) 

x = a ^ x + a. d 
da dt .ha. dt 

+ yls^ x 
' ay 

( 2 ) 

(3) 

(4) 

The approximation of Bogoliuboff-Mitropolsky [ 4 ] i s based on 

the following polynomial representation of a and 9: 

( 1 ) 2 , ( 2 ) ( i ) , = Ji-Av ; ( a , t ) + ĉ A (a, t) + + jx. AK ; ( a , t ) + . 

9 . 2 . ( 2 ) , p B V ' ; ( a , t ) +• ^ B ^ ; ( a , t ) + .... -r ^ i B ( i ) (a, t) + 

( i ) -„A where |JL i s a small constant parameter, A and B (i=1 , 2 , 3 , • • •) are 

functions to be determined, and both polynomials are assumed to be conver

gent i n JJL and contain no small d i v i s o r s so that V i : 
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i+1 . (i+1) , i , ( i ) 

1 + 1 B ( i + 1 ) « ^ B ( i ) 

D i f f e r e n t i a t i n g the expressions f o r a. and 9, and discarding terms of -0( |x J: 

A(1) 2 
a t . 

,(0 
t 9 -^B-' + ^ A ^ B ^ + B ^ a t . 

where the subscripts denote p a r t i a l d i f f e r e n t i a t i o n with respect to amplitude 

(a) and time ( t ) . 

.,^er .If now the fo l l o w i n g assumption i s made: 

d (cot) = co 
dt 

i . e . the frequency of the s o l u t i o n x(t) i s assumed constant over the time 

i n t e r v a l of i n t e r e s t , then equation ( 4 ) may be written as: 

x.= a-Cny -'2a (w+O) Sny/ Dn.y/ - a Sny> Dny 9 - aR (co+9) (5) 

where R^ _S_(SnyDny< ) 

i . e . R = ( l - 2 k 2 ) Cny + 2k 2 Cr?f 

and hence R = 1 
1 +pa 

Cn y + pa Cn y 

Equation (5) can now be expressed as a polynomial function i n JL/. 

plus one other term (which i s independent of jx ). As p r i m a r i l y only a f i r s t 

order approximation i s being considered, the polynomial function w i l l be 

concluded at terms of O(^). Note that, i n general, the expansion can be 

continued to any order of accuracy by i n c l u d i n g higher order terms i n |U. . 

The expression f o r x becomes: 



x = -aR (1+pa ) 

- j*. SnyDny/ a B ^ + 2A^ 1 ^ ( H p a 2 ) 1 / / 2 ] 

+ p A ^ Cny - (Cr. y +-pa 2Cn 5y ) 2 a B ^ 

( 1+pa 2) 1^ 2 

( 7 ) 

But (from equation (6)) 

2 0 *7\ 
' / t - ' R (1+pa") = Cr.y -i- pa d r y 

and from equation ( l ) : 

= -(aCny + pa^Cn^y/) - B f ( x , i , t ) x = 

From equation ( 7 ) i t now follows d i r e c t l y that 

6 f ( x , i , t ) = ^SnyDn^ 

" I * 

a B ^ + 2 A ^ ) ( 1 + P a 2 ) 1 / 2 ' 
(8) 

A ^ Cny - (Cny +• pa^n^y ) 2 a B ^ 

( 1 + P a 2 ) l / 2 

A convenient s i m p l i f i c a t i o n of equation (8") can be obtained by 

taking K 
J Cn^y 

K 
e j Cny/ d y 

-K 
(9) 

i . e . Cn y i s replaced by a term eCny having the same i n t e g r a l on the 

i n t e r v a l 

-K — \j/ — K , 

where K i s the complete e l l i p t i c i n t e g r a l of the f i r s t kind (see Appendix 1 ) . 

Now &_ (SnyDny/) = ( l - 2 k 2 ) Cny + 2 k 2 Cn 5y 

and hence 

2 k 2 j Cn 5y dy = SnyDny - ( l - 2 k 2 ) j Cny d y 

By evaluating the i n t e g r a l of CnjC [ 5 ],.the expression f o r e may now be 

obtained as: 
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(2k -1 )20 4- sin20 
4k 20 

(10) 

—1 2 

where 0 = s i n k. A t a b u l a t i o n of p, k , e and K i s given i n Appendix 2 , 

Table 1. 

I f the i n t e g r a l defined by equation (9) i s evaluated f o r cos y/ , 

instead of Cn y/, a value of e of 2 / 3 r e s u l t s . By applying l ' H o p i t a l ' s r u l e 

to equation (10), the same value i s obtained f o r k = 0, when Cn \j/ — c o s y / [5]. 

A s both jx and 8 are constant small parameters, no g e n e r a l i t y i s 

l o s t , i f , , i n equation (8), JJ. i s taken equal to 6 [ 4 ], [ 1 6 ] . S u b s t i t u t i n g 

f o r Cn Y » equation (8) then becomes: 

f ( x , x , t ) = Sny/Dn^ a B ^ + 2 A ^ 1 ) ( U p a 2 ) 1 / 2 

Cn A ( l } - 2 a B ( l ) ( U s p a 2 ) _ 
(1+pa ) 

(11) 

Now from Milne-Thompson [ 16 ] the F o u r i e r s e r i e s expansion of S n y / D n y V 

may be derived as: 

Sn\^DnU/ = -d_ ( C n y / ) = -_d_ 
— . 00 " q ( e +l/2)" 271 " q ( e +l/2)" 
Kk / , < (2B+1) 

1+qv ' s=0 
< (2B+1) 
1+qv ' 

COS (2s + 1 ) 71 \u 
2K 

00 

or S n v f D n y Dny 
kK 

s=0 

_ q 
1+-q 

(34-1/2)-

(2S+-1 ) 
(2s+1 ) s i n (2s4-1 ) • 71 u/ 

2K 

where q = exp -71K' 
K 

, and K' i s defined i n Appendix 1. 

The expansion of SnyDny can thus be expressed as an i n f i n i t e sum 

of sine terms; and Cn^ as an i n f i n i t e sum.of cosine terms. 

This property suggests that C n y and S n y / D n y / may be treated i n the 

same way as are c o s y / and sin^/ i n the p r i n c i p l e of harmonic balance [ 6 ]. 

(1 ) 
' I f equation (11) could be solved, then the unknown functions A and 

(1) 
B could be determined. 



Two terms prevent the d i r e c t s o l u t i o n of these equations, namely the p a r t i a l 
(1) (1) 

d e r i v a t i v e s with respect to time of A and B 

By d e f i n i t i o n : 

B ( 1 W 1 > ( a , t ) ' • .: 
and hence: 

a t 

B<'>-„<'>'. 
a t 

S u b s t i t u t i n g f o r a , to order u_ 

i<1>- M<'V1> +A<1> 
I a t 

i d ) 

I f the term i n 

(D B (D + B ( i ) = p. A ' B + B 

(D can be neglected i n each case, then A (1) 

(1) *0) '(1) 
and B\j/ can be approximated by A and B re s p e c t i v e l y . F i n a l l y 
equation (11) can be written as: . ' 

f (x,x , t ) = Sny Dny 

-Cny 

a B ^ + 2 A ^ ( U p a 2 ) 1 / 2 

A ( 1 ) - 2 a B ( l ) ( l + s p a 2 ) 

( U p a V ^ 

(12) 

For a p a r t i c u l a r f u nction f ( x , x , t ) , the unknown functions A (1) 

and B can now be evaluated. To c l a r i f y the a p p l i c a t i o n of equation (12), 

three examples w i l l now be considered. Complicated equations can be avoided 
2 2 

by taking a, (1+pa ), (1+epa ) etc. as constant [13 ] when evaluating the 

(1) (1) 

functions A and B . I f the amplitude i s slowly time-varying, then the 

error incurred by t h i s approximation w i l l be slight.. The examples each 

r e l a t e to systems i n v o l v i n g a time-varying component. The equation of example 

contains a l i n e a r l y - v a r y i n g phase term, and i s a nonlinear form of Hermite's 
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equation [10 ],. [ 18 ]. A l i n e a r l y time-varying damping term i s considered 

i n example 2, where the equation might describe o s c i l l a t o r y motion i n a f l u i d 

of time-varying v i s c o s i t y . Applications of the equations- of both examples 1 

and 2 are treated i n greater d e t a i l i n chapter 5. 

The equation chosen f o r the t h i r d example describes the' steady-state 

operation of a nonlinear frequency-modulated negative-resistance o s c i l l a t o r , 

and, because of i t s p r a c t i c a l i n t e r e s t , a b r i e f d e r i v a t i o n i s given below. 

Cunningham [ 6 ] considers the nonlinear o s c i l l a t o r c i r c u i t shown 

i n f i g u r e 2.0. . . . 

R' 
N.R 

, F i g . 2.0 Negative - r e s i s t a n c e o s c i l l a t o r . 

where the negative resistance device has the current-voltage c h a r a c t e r i s t i c 

3 
i = -ae + be , a and b being p o s i t i v e constants. I f the r e s i s t a n c e R i s not 

n e g l i g i b l e , the d i f f e r e n t i a l equation d e s c r i b i n g t h i s c i r c u i t i s : 
e + e _ (1 - aR) + Rbe£ + e 

L C L C 
R - a + 3be 
L C C 

0 

Now suppose the capacitance C i s varied so that 

C = C Q (l+m cos wQt) [ 6 ] , 
where C Q i s the mean value and m i s a small constant. A f t e r some manipulation 

i t can be shown that the d i f f e r e n t i a l equation of the system takes the form 

*e +.e (1 - aR) + bRe£ - me 
L C , L C , 

1 - aR + OJ 
L C 0 

0 
cos w^t + OJQ _R s i n ui^t 

L 

- ef(e,co Qt) + 0(mbR,m ) = 0 

where f(e,wt) i s a function i n v o l v i n g constants, e and p e r i o d i c terms i n wQt. 

This i s a Van der Pol - type equation [ 6 ], and i f terms of order 



mBR, m may be neglected, i t s steady state s o l u t i o n may be obtained from the 

equation 

+ e (1-aR) 4- bRe - me 
LC 0. LC 0 

1-aR - co 
L L L C 0 

0 cos co^t 4- U)Q R s i n co^t 
L 

= 0 

A corresponding, and s l i g h t l y simpler, form was chosen f o r ana l y s i s 

i n example 3, i . e . 
3 • 

X +• X 4- px - 6x cos co^t = 0 . 

The same equation i s also considered by Minorsky [17 ] and, i n connection wit 

a v i b r a t i n g s t r i n g problem, by McLachlan [15 ]• 
Example 1 

Consider the equation 

X 4- x 4- px 4- 8tx = 0 

where f ( x , x , t ) = tx = a t C n y . 

From equation (12), comparing c o e f f i c i e n t s of Cny and Sn^/Dn^: 

aB ( lU 2 A ( 1 ) ( H p a 2 ) l / 2 = 0 . 

A ( 1 ) - 2 a B ( l ) ( l 4 £ P a 2 ) = -at 

( U p a 2 ) l / 2 

D i f f e r e n t i a t i n g equation (14): 

a B ^ = ( A ^ 4 - a ) ( U P a 2 ) 1 / 2 

2(l+epa ) 

id) S u b s t i t u t i n g f o r aB i n equation ( 1 3 ) , and rearranging: 

Xd) 4. 4 A d ) ( 1 4 £ p a 2 ) - a 

or, expressing t h i s as a Laplace transform: 

A ( 1 > ( s ) = a 
4(l4-epa^ 

s " - 1 
2 AfA  2 ^  s  s -4- 4(1+epa ) 

(13) 

(14) 

assuming Ad)( 0-) = A ( 1 ) ( 0 ~ ) = 0. 
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(1 v 
A K ; ( t ) w i l l consist of a periodic o s c i l l a t i o n plus a p a r t i c u l a r i n t e g r a l 

term. By considering only the p a r t i c u l a r i n t e g r a l : 

A ( l > ( t ) 
40+epa 2) 

Note that t h i s process i s equivalent to the "averaging p r i n c i p l e " employed 

by K r y l o f f and Bogoliuboff [13 ]• - -

The expression f o r a. i s then: 

a. = -B a 
. 4(l+epa 2) 

and the s o l u t i o n f o r a(t) becomes: 

i(t) exp 
4(Uep) 

(15) 

To determine the p a r t i a l d e r i v a t i v e of A ^ with respect to 
• (1 ) 

time i s substituted f o r A i n equation (14) ( t h i s removes one of the approxi

mations made e a r l i e r ) , g i v i n g 

B v ' = t(1+pa ) ' 
2 ( U e p a 2 ) 

and f i n a l l y 

6(t) = B t 2 ( U p a 2 ) l / 2 (16) 

Example 2 

4 ( U e p a 2 ) 

x 4- x + px 4- Btx = 0 

? 1 / ? 

In t h i s case f ( x , x , t ) = tx = -at(l+pa ) ' Sn^Dny + O(fit). 

Note that terms of order Bt i n f( x , x , t ) are equivalent to terms of 

order B t i n Bf(x,x,t), and may consequently be neglected i n a f i r s t order 

a n a l y s i s . 



From equation (12): 

2 / 1 ' ) ( l + P a 2 ) 1 / 2 = - a t ( U p a 2 ) 1 / 2 

- 2 a B ( l ) ( H e p a 2 ) = 0 
t< 2N1/2 (1+pa ) 

(17) 

(18) 

,(0 D i f f e r e n t i a t i n g equation (18), and s u b s t i t u t i n g f o r aB i n 

equation (17) y i e l d s 

A ^ + 4 A ^ (1+epa 2) = -2at (1 + epa 2) 

Taking the p a r t i c u l a r i n t e g r a l of t h i s equation: 

and a(t) = exp |^-8t 2/4 

A < " - -at 

, ( 'D , 

Example 5 

S u b s t i t u t i o n f o r A ^ i n equation (18) gives f i n a l l y : 

0 ( t ) = - B t ( U P a 2 ) l / 2 

4(l+epa 2) 

x + x + px - Bx cos to^t = 0 

( 1 9 ) 

(20) 

where f ( x , i , t ) = -x cos to^t = -aCn^cos t o^t. 

To preserve the c o n d i t i o n that resonance e f f e c t s be n e g l i g i b l e , i t 
2 2 

i s necessary to require that co^ .csrl+pa . 

From equation (12): 

aB^'K 2 A ^ ( U p a 2 ) 1 / 2 = 0 

A ^ - 2aB^1 ^ ( U e p a 2 ) 1 ^ 2 = a cos co.t 
(1+pa ) 

(21) 

(22) 

By following exactly the same procedure as before: 

a(t) = exp B(cos w^t - 1 

4(l + ep) - to 
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or, i f the exponent i s small: 

a ( t ) - 1 + B(cos w Qt - 1) 

4(1+ep) - w. 0 J 

(23) 

F i n a l l y 

9 ( t ) = -26 ( l 4 - p a 2 ) 1 / / 2 s i n uiQt 

' w
0 [ 4 ( l + e p a 2 ) - w Q

2 J 

(24) 

2.3 E r r o r Analysis 

The approximation technique has been developed i n i t s e n t i r e t y , 

but with no dis c u s s i o n of the assumptions made during.the_ a n a l y s i s . As the 

usefulness of.any approximation depends on i t s range of v a l i d i t y , an i n v e s t i 

gation of s o l u t i o n e r r o r to determine these regions of v a l i d i t y i s a necessary 

adjunct to the approximation method. 

From equations (3) and (4): 

x = aCn^ - aySnyDny •- (25) 

and 
. >̂ 2 3 

x = aCny - 2aySnyDny - aySnyDny - a y (Cn y +• pa C n y ) (26) 
0+pa 2) 

Now x =- aCny 

i . e . , Cny — x 
a 

and from equation (25): 

aCny - x = ay/SnyDny 

aySnyDny = a x - x or 

S u b s t i t u t i n g f o r Cny and SnyDny i n equation (26): 

x = a x + 
a 

x - a. x 
a 

.y. + 2a 
y a 

•2 • / 3\ 
.y (x+px^) 

(27) 
( U p a 2 ) 

A l l the c o e f f i c i e n t s i n equation (27) are known ( f o r a p a r t i c u l a r 

d i f f e r e n t i a l equation), and consequently i n t e g r a t i o n of the two.state equations 
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X 1 ~ X2 •• 

• 2 / 3\ ' 

(1 + pa 2) 

y i e l d s the approximate s o l u t i o n x ^ ( t ) . 

The accuracy of the approximate so l u t i o n s f o r the three examples 

considered e a r l i e r was determined by comparison' with solutions obtained from 

a d i g i t a l simulation, using the fo l l o w i n g i n t e g r a l error d e f i n i t i o n : 

I = e 

Here x g x i s the s o l u t i o n obtained by numerical i n t e g r a t i o n of the equation 
•2 

x + x 4-px 4- 8 f ( x , i , t ) = 0, which was assumed.for a l l p r a c t i c a l purposes 

to be the exact s o l u t i o n , and x i s the approximate s o l u t i o n obtained from 
app r r 

equation (27). The numerator of equation (28) then represents the area 

enclosed between the true and approximate s o l u t i o n s . The area under the 

exact s o l u t i o n was chosen as a normalizing f a c t o r , and I i s then a normalized 

erro r f u n c t i o n . E r r o r i n an approximation i s often the r e s u l t of phase 

inaccuracy, and t h i s e r r o r f u n c t i o n i s p a r t i c u l a r l y s e n s i t i v e to such a 

condition. 

The e r r o r i n t e g r a l I i s shown as a function of time (t) and 8. f o r 

the three examples i n f i g u r e s 2.1, 2.2 and 2.3, with the parameter p (which 

determines the degree of n o n - l i n e a r i t y ) held constant at 2.0. The t o t a l 

time of i n t e g r a t i o n i s 20 seconds, which corresponds to about four complete 

periods of the s o l u t i o n (depending on the p a r t i c u l a r f u n c t i o n f(x,£,t)). 

Figures 2.4, 2.5 and 2.6 show the v a r i a t i o n of the erro r i n t e g r a l with p, 

holding the parameter 8 constant. I t i s i n t e r e s t i n g to observe that the 

error f o r the second example i s almost independent of p (as shown i n f i g u r e 2.5). 

— a_ x.j + x^ — 
a 

a x yy 4- 2 a. 
f a 

J x - x dt 
ex app 

(28) 

I x dt ex 
L 0 



Fig. 2.1 
TIME (SECONDS) -

Error integral as a function of time and 
8 for f(x,x,t) = tx, with p = 2.0. 

TIME (SECONDS) 

Fig. 2.2 Error integral as a function of time and 
8 for f(x,x,t) = tx, with p = 2.0. 



TIME (SECONDS) 

Fig. 2.3 Error integral as a function of time and 
B for f(x,x,t) '=- x cos t/m, with p = 2 . 0 

Fig. 2.4 Error integral as a function of time and 
p for f( x , i , t ) = tx, with B = 0 .10 . 
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Fig. 2.6 Error integral as a function of time and 
p for f(x,x,t) = - x cos t/m, with 6 = 0.60. 
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The approximation derived f o r t h i s case i n d i c a t e s that Jhe amplitude envelope 

i s independent of p (equation (19))> and also shows the phase-variation term 

to be small; t h i s p r a c t i c a l r e s u l t i s consequently i n agreement with predicted 

s o l u t i o n behaviour. 

When determining the approximate s o l u t i o n to a p a r t i c u l a r d i f f e r e n t i a l 

equation (from equation (12)), an a u x i l i a r y second order l i n e a r d i f f e r e n t i a l 

equation must be solved. This equation i s always conservative, and i t s 

.unforced s o l u t i o n i s discarded. -This i s d i r e c t l y equivalent to the "averaging 

p r i n c i p l e " . I t might be a n t i c i p a t e d that t h i s approximation would lead to 

an o s c i l l a t o r y e r r o r i n the f i n a l s o l u t i o n , and indeed such behaviour i s 

r e a d i l y observed i n f i g u r e s 2 . 1 - 2 . 6 . 

2.4 A p p l i c a t i o n of the method 

Now that the approximation technique has been f u l l y developed, and 

s o l u t i o n error determined, three equations corresponding to the e a r l i e r 

examples w i l l be solved to i l l u s t r a t e i t s a p p l i c a t i o n . . 

Taking s o l u t i o n time as i f t i s the independent v a r i a b l e of the 

normalized equations, then 

t = mt 

where m i s a constant. S u b s t i t u t i n g f o r t, the d i f f e r e n t i a l equations of 

examples 1, 2 and 3 become: 

d x + m \x + px ) + 
d^ 2 

m 5 6 t x = 0 (Ex. 1) 

m 2Bt dx = 0 (Ex. 2) 
d t 

- m Bx cos mtô TJ = 0 (Ex. 3) 

3 2 For ease of notation, l e t - m B i n the f i r s t case, and | i = m p 

f o r the remaining examples. A f t e r s u b s t i t u t i o n f o r B and t i n equations (15] 

and (16), the approximate s o l u t i o n to the equation 
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d x + m (x + px ) + i*-%x = 0 
d^ 

becomes: 

x exp 
4m (1+e.p) 

Cn /. 2 n1/2^ (1+pa .) ' X m + X 

4m(l+spa ) 

S i m i l a r l y , from equations (19) and (20), f o r the equation 

2 2 3 d x + m (x 4- px ) 4- jxX dx =0 

d t 

x( X ) = exp Cn 

dr 

d + p a 2 ) 1 / 2 r . m -
4m(l+epa ) 

and, from equations (23) and ( 2 4 ) , the approximate s o l u t i o n to the equation 

2 2 3 d x +• m (x +• px ) - ji x cos m 0JQ"£ = 0 

where m =1.0 i s : 

x(T?) = 1 + jK.(cosV -1) 
m2|^4(l + e P) - w Q

2J 
Cn 0 + p a 2 ) l / 2 m -2 jusin 

m[4(l + £ P a 2 ) - u ) Q
2 ] 

The most d i r e c t method of obtaining a g r a p h i c a l s o l u t i o n i s f i r s t 

to plot the s o l u t i o n envelope, and then to determine the time i n s t a n t s at which 

the approximate s o l u t i o n i s e i t h e r at a l o c a l maximum, minimum, or zero. 

The f i r s t of these steps presents no problem; the second, however, u s u a l l y 

d i c t a t e s that a graphical approach be used to determine the phase. 

B a s i c a l l y , the fo l l o w i n g equation must be solved: 

y/( V ) = n K 

where y(x) i s the argument of the e l l i p t i c cosine function, n i s an integer 

(n=0,1,2 ) 

u/2 
2^-1/2, 

K • J (1 - k 2 sin20)- l/2d0 , 

the complete e l l i p t i c i n t e g r a l of the f i r s t kind (see [ 5 ] and Appendix 1), 



2 5 

2 2 and k == pa ., 
2 ( 1+ Pa 2) 

For the f i r s t example an allowance was made for the decrease i n K 

with amplitude by solving the following equation graphically: 

nK ( 5 . 0 ) = fit), 

where K ( 5-0 ) i s the value of K corresponding to the envelope amplitude at 

X. = 5 . 0 (the time for which the approximate solution was determined). If 

'a' i s this amplitude: 

k 2 ( 5 . 0 ) pa 2 

2(1+pa 2) 

and K ( 5 . 0 ) may be determined from Appendix 2 , Table 1 by finding the value of 
2 

K corresponding to this k . 
A solution of the equation 

d 2x + 5(x + 2 x 3 ) + 1 . 1 1 8 f x = 0 

i s shown in figure 2 . 7 . -

The phase correction term for the second example (where f(x,x,t) = tx) 
2 1 / 2 

i s small compared with m(l+pa ) X , and may be neglected.. The decrease i n 

K with amplitude must, however, be taken into consideration. The following 

algorithm was used to determine the approximate solutions of the equation 
d 2x + 5 ( x + 2 x 5 ) + utdz = 0 , 

d t 2 d r 

with ^ = 0 . 2 and 0 . 5 , shown in figures 2 . 8 and 2.9-

1. Assume the average value of the amplitude to be 1 . 0 over the f i r s t 

quarter period, and let 'a' denote this average amplitude. 
2 

2 . Determine k from the relationship 
i 2 2 
k = pa 

2(1+pa 2) 
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3. 

4. 

Determine the value of K corresponding to k from Appendix 2, Table 1. 

Calculate the quarter period T from the r e l a t i o n s h i p 

2V1/2 T = K 
to 

where to = m(l+pa ) 

Determine the average amplitude over the next quarter period (assuming i t 

to be of duration T seconds) from the s o l u t i o n envelope ( i . e . i n t h i s 

case exp - ^ 
4 . J 

), and return to step 2. 

For the f i n a l example: 

f\l) = : ( U P a 2 ) l / 2 m tr - 2 fx s i n i n X 

m^4(l + epa 2) to. 

= nK 

where K i s c a l c u l a t e d f o r the average value of the s o l u t i o n envelope (from 

Appendix 2, Table 1), i . e . an amplitude 

a = 1 
m [i(Uep) - co 0

2 J 
The maxima, minima and zeroes of the approximate s o l u t i o n are then 

given by 

X - nK 2 jj-sint 

m (1 + pa 2) l / / 2 n̂ H+O + spa^) - (oQ
2 J 

where 'a' denotes the. average amplitude. This equation i s r e a d i l y solved 

g r a p h i c a l l y . 

An approximate s o l u t i o n of the equation 

2 3 d x + 5(x + 2x ) - 5 x c o s t = 0 
d ^ 

i s shown i n f i g u r e 2.10. 

2.3 Discussion 

The major innovation of t h i s a n a l y s i s i s - a consequence of the 

(1 ) (1 ) 
def i n i n g equation f o r the unknown functions A and B (see equation (12)), 

which leads (for a s p e c i f i c example) to a l i n e a r , undamped second order 
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differential equation for A (t). The complementary solution of this 

equation i s discarded, leaving a particular integral term; this approach (as 

mentioned in section 2 .2) i s equivalent to the "averaging method" of Kryloff 

and Bogoliuboff. The K-B method and also that of Bogoliuboff-Mitropolsky, 

however, both reach this averaging procedure after a Fourier series expan

sion which assumes periodicity ..in the natural, i.e. unmodified, frequency 

of the unforced system differential equation. For systems where the solution 

frequency i s rapidly varying this approach might be expected to result in 

inaccuracy. Note that this problem does not arise i n the present analysis, 

as no such assumption about periodicity of the equations defining the 

amplitude and phase variation terms i s necessary to the derivation of the 

expressions A^ ^ and 

The anticipated oscillatory behaviour of solution error is shown i n 

figures 2.1 to 2 . 6 , but the graphical solutions (see figures 2.7 to 2.10) 

indicate that greater accuracy i s obtained in practice than would.be expected 

from the error analysis. This apparent increase in accuracy i s a consequence 

of the expedients employed,when deriving the graphical solutions, which could 

not be incorporated i n the d i g i t a l computer simulation. The main value of 

the integral error results i s the portrayal of qualitative behaviour, but i t 

i s not disadvantageous to have a pessimistic estimate of solution error. 

Actual error in the graphical solutions i s much less than that predicted, and 

hence the error results provide a conservative aid in determining regions of 

vali d i t y of an approximate solution. 

2 .6 Conclusion 

A method for determining approximate solutions to a class of non

linear, non-autonomous differential equations characterized by 

2 ^ x + m (x H- px ) + jxf(x,x,t) = 0 
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has been developed using the Jacobian e l l i p t i c functions; the approximation 

i s easy to apply, and, although only a\ f i r s t order approximation i s employed, 

the three examples considered demonstrate the accuracy which can be obtained. 

An expression f o r s o l u t i o n e r r o r makes i t possible to determine the accuracy 

of the approximate s o l u t i o n f o r any function f ( x , x , t ) once the amplitude 

envelope and phase r e l a t i o n s h i p s have been derived. This approximation method 

i s r e f i n e d .in the following chapter, to take i n t o consideration the v a r i a t i o n 

of s o l u t i o n frequency with amplitude. 
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.,3. REFINEMENT OF THE FIRST APPROXIMATION 

\ 

3.1 Introduction 

In the previous chapter first-approximation solutions were developed 

under the assumption that the frequency of the non-linear oscillation remained 

constant (at least to f i r s t order). Although the accuracy of the solutions 

obtained demonstrated that this assumption was valid over a short time interval, 

more accurate solutions over longer time intervals might be anticipated i f 

allowance were, made for the variation of frequency with amplitude. In the 

present chapter, the analysis of chapter 2 i s extended to account for this 

variation of frequency. New error-integral results are shown, and refined 

solutions of the three examples considered i n chapter 2 demonstrate that an 

appreciable improvement in accuracy can be obtained. 

3.2 The refined approximation 

The solution of the normalized equation 

•, ••- x + x -f px 3 + 8 f(x,i,t) = 0 , 

with x(o) = 1.0, x(o) = 0 and where p > 0, i s again taken as 

x(t) = a ( t ) Cn (cot + 9) = a Cn\j/ 

where 
. 2 

to = 1 + pa 

y = cot + 9. 

However, in the present case, the assumption d [cot] = co i s no longer made. 

dt 

As before, writing '~ ' 

x = x(a, y) 

and differentiating with respect to time, the following equations are obtained: 



Also k = JJLA^1 ̂ (a,t) + j/A^2\a,t) + 

9 =|AB^(a,t) + jU 2B^ 2\a,t) 4-

a ^ A ( ^ + 0(j,2) 

where the subscript denotes partial differentiation with respect to time. 

Now 

where 

and 

.• = CO + tco + 9 
( A J 2 ^ / 2 co = (1 + pa ) ' 

co ' = paa 
(1+pa ) 

Retaining only f i r s t order terms in j^, the expression for y becomes 

y/ = (1+pa ) + JU. B^-+ p a t A ^ " (29) 

Similarly 

y 2 = . U p a
2 +- JJL 2 B ( l ) ( U p a 2 ) l / 2

+ 2 p a t A ( l ) ] (30) 

2 2 2 2 where terms of 0 ( ^ L ) , 0(JU. t) and 0(|A- t ) are neglected. It should be notei1 

that this assumption i s l i k e l y to cause a deterioration i n solution accuracy 
2 2 

for large t, i.e. when |^-t i s no longer negligible. 

For y/ : Y = 2co + t d _ 
' d t 

paa 
/, 2x1/2 _(1+pa ) 

+ 0 

or 

>y = 9 + _2paa, 
( H p a 2 ) 1 / 2 

+ Pt aa +• a 
( 1 + P a 2 ) ' / 2 ( W p a 2 ) 3 / 2 _ 

.2 2 
The term a. i s of order |U , and hence to f i r s t order in jU. 

d ) 2paA 0')' patA (1) 

^ 2^/2 i. 2s 1/2 (1+pa ) (1+pa ) 

(31) 
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The r e f i n e d r e l a t i o n s h i p corresponding to equation ( 5 ) i s therefore 

'x = a C n ^ - 2a^SnyDny - aSn^Trnfy - aR y (32) 

By appropriate s u b s t i t u t i o n i n t o equation ( 32 ) , the f i r s t - o r d e r approximation 

to x becomes: 

x =-(aCny + pa 3Cn 5y ) 

• jiSnyj/Dnxj/ 

A ^ Chy- - (Cn^ 4- pa2Cn3y/ ) 2aBv 

' 2.(1) 2..(1) 
2pa A v y4- pa tA v _ 

f« 2N1/2 . (1+pa ) . 

(1 )/ , 2x1/2 , 0 2 , . ( 1 ) 
v ' (1 +pa J ' 4- 2pa tA v ' 2 pa 

( H p a 2 ) 
2 ""5 ^ I f the term (Cn\j/ +- pa Cn ^ ) i s approximated by Cny/(l4epa ) (where the 

quantity e i s defined by equation ( 10 ) ) , then a r e f i n e d r e l a t i o n s h i p corres

ponding to equation (11) may f i n a l l y be w r i t t e n as: 

" (33) f (x,x,t) = SnyDny a B ^ 4 - 2 A ( 1 ) ( H P a 2 ) 1 / 2
 + 

"n 2.(1-) 2.,(1) 

2pa A v ' 4- pa t A ^ / 

^ 2\l/2 ... (1 +pa ) ; 

Cn 
Y 

A ^ - ( U e p a 2 ) 

(Upa 2 ) . .L 
2 a B ^ ( l + P a 2 ) l / 2 + 2 P a 2 t A ( 1 ) ' 

A comparison of t h i s equation and equation (11) reveals that the major 

modification i s to the term i n v o l v i n g SnyDny, but terms i n v o l v i n g t 

e x p l i c i t l y are now incorporated i n the c o e f f i c i e n t s of both CnyV and Sn^ Dny> 

To i n v e s t i g a t e the e f f e c t of t h i s refinement on equation s o l u t i o n s , examples 

1, 2, and 3 of chapter 2 w i l l b r i e f l y be reconsidered. 

Example 1 

Consider the equation 

3 
x 4- x 4- px 4- Btx = 0 

with x (0) = 1.0 and i(o) = 0. For t h i s equation f ( x , i , t ) = tx = a t C n y . 

Applying equation (33 ) , and comparing c o e f f i c i e n t s of C n ^ and Sny/Dn^: 
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.B<;>+ 2 A < 1 > ( l t p a 2 ) , / 2 4 2pa 2A^ l )4 P a 2 t A ^ 

L d 4 p a 2 ) 1 / 2 

( 3 4 ) 

A ( J . } - (Uepa 2) 
' (Hpa 2 ) 

2 a B ^ ( l 4 P a 2 ) 1 / 2 4 - 2pa 2tA^^ = -at ( 3 5 ) 

Taking the partial derivative of equation ( 3 5 ) with respect to time: 

aB ( l
t
} = ( A { \ \ 4 a). ( 1 + P a 2 ) l / 2 -_ Pa 

2(l4epa /, 2 x 1 / 2 
(1+pa ) 

( A ^ 1 )
+ t A ^ ) 

(1 ) 
Substitution for &£> ̂ ' i n equation ( 3 4 ) then yields 

A ( J ^ 4 - 4 A ( l ) ( l 4 e p a 2 ) 1 + pa 
2(1+pa) 

-a . ( 3 6 ) 

At this juncture in chapter 2, the equation corresponding to equation 

( 3 6 ) had been derived as 

A ( 1 )4- 4A ( 1 ) (Wepa 2) = - a , 

and this expression was then written as a Laplace transform. Inversion of 

the transform gave A ^ \ t ) as the superposition of a complementary solution and 

particular integral, of which only the particular integral was retained. 

The particular integral of equation ( 3 6 ) may be obtained by 

setting A^|| 0, and hence 

A 0 ) ( a , t ) = 
4(Hepa 2) 1 + pa 

2.(1+pa2) 

2 2 
Also, the term psi i s equal to k , where k i s the .modulus of the e l l i p t i c 

2(1+ Pa 2) 
'••a--. 

(1) 

function. Integrating the expression for A , and assuming that the 

amplitude 'a' [ 13 ] may be treated as a constant without incurring gross 
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inaccuracy: 

i(t) = exp 
4(l+£ Pa 2)(l+k 2) _ 

,(1). S e t t i n g A .̂ •,=• 0 i n equation (35) y i e l d s , a f t e r some manipulation: 

B ( l ) ( a , t ) = t ( U P a 2 ) l / 2 + 2. 
pa t 

2(1+ Epa 2) 4 ( l + £ P a 2 ) ( H k 2 ) ( H p a 2 ) l / 2 

and f i n a l l y : 

G(t) = p t 2 ( U p a 2 ) l / 2 + „ 2^2 
Bpa t 

4 ( H e p a 2 ) 8 ( l 4 - e p a
2 ) ( l + k 2 ) ( l + p a 2 ) l / 2 

(37) 

(38) 

I t i s p a r t i c u l a r l y i n t e r e s t i n g to observe that the refinement 
2 

introduces terms i n v o l v i n g k , a parameter- which increases with the degree 

of n o n - l i n e a r i t y and which, f o r t h i s example, decreases the rate of decay of 

the s o l u t i o n envelope (by comparison with the. unrefined approximation). 

From fi g u r e s 2.7 to 2.10 i t might be a n t i c i p a t e d that a decrease 

i n the rate of decay of the amplitude envelope would improve s o l u t i o n accuracy 

s u b s t a n t i a l l y . This, i n se c t i o n 3-4, i s seen to be the case and the r e f i n e d 

approximation predicts s o l u t i o n behaviour accurately. 
Example 2. 

3 

x + x + px + Btx = 0 

with x(0) = 1.0, x(0) = 0, and f o r which 
f(x,x,t) = t i = -at ( l + p a 2 ) 1 / / 2 Sn^Dny + 0(st) . 

2 

Note that terms of O(fit) i n f ( x , i , t ) are equivalent to terms of order 6 t i n 

Bf(x,x,t), and may consequently be neglected. 

From equation (33) : 
a B ^ + 2 A < 1 > ( U P a 2 ) 1 / 2

 + 

0 2.(1) 2,.(1) 2pa AK y+ pa_fcA_\j._ 

( 1 + P a 2 ) l / 2 

- a t ( l + p a 2 ) , / 2 (39) 
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(1+pa 2) _ 
W 1 ) ( l + P a 2 ) l / 2 + 2 p a 2 t A ^ ) ' (40) 

Taking the p a r t i a l d e r i v a t i v e with respect to time of equation (40) and s u b s t i 

t u t i n g f o r aB^^ i n equation (39) gives: 

+ 4A^ 1 ̂ (l + E p a 2 ) ( l + k 2) = - 2 a t ( l + e p a
2 ) 

The p a r t i c u l a r i n t e g r a l of t h i s equation i s 

A<1> = -at , 
2 ( l + k 2 ) 

and by i n t e g r a t i o n : 

t(t) exp 

1.4(1+^) 
(41) 

(1) 
S u b s t i t u t i o n f o r A i n equation (40) y i e l d s : 

B ( l ) ( a , t ) = _ _ _ _ _ _ d + p a 2 ) l / 2 

2 ( l + k 2 ) ( U p a 2 ) l / 2 4 ( H k 2 ) ( l + e p a 2 ) 

2,2 pa t 

In t h i s example, i t i s no longer v a l i d to assume that the amplitude remains 

approximately constant, and the phase of the s o l u t i o n i s more e a s i l y deter

mined i n an approximate manner as described i n section .3.4. 

Example 3-

x 4- x + px - Bx cos LO t == 0 

with x(o) = 1 . 0 , x(o) = 0, and where f ( x , i , t ) = -x cos co^t = -aCnycos co^t. 

From equation (33): 

a B ^ ^ W 2 ) 1 7 2 - * -
' 2. (1) 2 . , (1 ) " 2pa A -+- pa t A ^ ' 

(A 2x l /2 (1+pa ) 
= 0 

A ^ - (Uepa" 
(1+pa 2) 

2 a B ( l ) ( l + P a 2 ) 1 / 2 4 - 2 P a 2 t A ( 1 a cos co^t (42) 

and hence: 
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A ( l ) ( a , t ) = -au) 0sinw 0t 

4.(l+Epa 2)(l + k 2) - co Q
2 

Taking- the p a r t i a l d e r i v a t i v e of with respect to time, and 

s u b s t i t u t i n g i n equation (42): 

B ( l ) ( a , t ) = L 

[ 4 ( l 4 E p a 2 ) ( l 4 - k 2 ) -VJL ( 1 + P a 2 ) l / 2 

The expression f o r a(t) may f i n a l l y be obtained as 

pa tiu,,sinu)_t 2\1/2/.,.2\ , £ 0 0_ - 2(1+pa J ' (,1+k )cos coQt 

i(t ) = 1 -f 6(cos coQt -1 ) 

. 4 ( U e pa 2)(Wk 2) - LO q2 
(43) 

The phase-modifying term 6(t) w i l l be discussed l a t e r ( i n section 3-4), but 

at t h i s juncture i t i s s u f f i c i e n t to observe that i n t e g r a t i o n of the equation 

(1 ) 

d e f i n i n g B (a,t) i s unnecessary. 

A comparison of these r e s u l t s with those obtained i n chapter 2 

shows that the main consequence of the refinement i s the i n t r o d u c t i o n of 

f a c t o r s i n v o l v i n g k , the modulus of the e l l i p t i c function. As k increases 

with the parameter p (the c o e f f i c i e n t governing the degree of n o n - l i n e a r i t y ) , 

the e f f e c t of tha refinement should be most noticeable f o r high values of p. 

This hypothesis i s inv e s t i g a t e d f u r t h e r i n the f o l l o w i n g section. 

3-3 Er r o r Analysis 

The equations d e f i n i n g the approximate s o l u t i o n i n algebraic terms, 

derived i n s e c t i o n 2.3, are s t i l l v a l i d , but the q u a n t i t i e s a, a, a, y/ and 

\j/ are now d i f f e r e n t . The major source of-'error i n any approximation i s 

u s u a l l y to be found i n the phase-modifying term, or, more generally, i n the 

argument of the periodic function. In the un-refined case considered i n 

chapter 2 t h i s argument (y/) was taken as 

y = cot + 9 

and 
co -t 9 
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or, s u b s t i t u t i n g f o r to and 9: 

f = ( H p a 2 ) l / 2
+ / * B ( l > 

In the present (refined) case, from equation (29): 

j/ = (1+pa 2) 1 / 2 + jl B ^ + . p a t A ^ 

( H ' P T ) 1 7 " 2 -

i . e . , the refinement has introduced a term 

U patA^ 1^ 
( I 4 p a 2 

772 

i n t o the expression f o r \j/ . To demonstrate the e f f e c t of' t h i s modification, 

consider the values of y f o r example 1 (where f ( x , x , t ) — tx).. From 

chapter 2, the un-refined expression f o r y i s : 

• f = d+pa 2) l / 2+ B t ( l + p a 2 ) l / 2 

• 2(l+epa 2) 

S u b s t i t u t i o n f o r A ^ ^ and B^^ into equation (29) gives the r e f i n e d expres

s i o n f o r \1/ as: 
f 

f - ( H p a 2 ) l / 2 + 8 " t ( U p a 2 ) l / 2 + 
2(l+-epa2) 4 ( l + s p a 2 ) ( l + k 2 ) ( H p a 2 ) l / 2 

p a 2 t 

2, pa t 
4 ( H s P a 2 ) ( l + k 2 ) ( l + P a 2 ) l / 2 

which y i e l d s the i n t e r e s t i n g r e s u l t that, to a f i r s t - o r d e r approximation, the 

change i n \I/ due to _2_ (to) i s cancelled by the change i n y/ due to c> (6). 
' .̂a 5a • 

A s i m i l a r r e s u l t can r e a d i l y be obtained f o r the remaining two examples. 

Any improvement i n s o l u t i o n accuracy w i l l , as a consequence, only a r i s e from 

an.improved approximation to the s o l u t i o n amplitude and should be more 

apparent f o r high values of the parameter p. 

Families of error curves f o r the r e f i n e d case, corresponding to those 

obtained e a r l i e r , are shown i n f i g u r e s 3-1 to 3-6. Figures 3-1, 3-2 and 
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F i g . 3.2 Error integral as a function of time and 
6 for f ( x , i , t ) = tic, with p = 2.0. 
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TIME (SECONDS) 

Fig. 3-4 Error integral as a function of time and 
p for f(x,x,t) = tx, with (3 = 0.10. 
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TIME (SECONDS) _ 

Fig. 3.5 Error integral as a function of time and 
p for f(x,x,t) = tx, with 6= 0.06. 
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3-3 refer to the variation of the error integral with 8 for the three examples, 

with p held constant at 2 . 0 ; figures 3-4, 3-5 and 3-6 show error integral 

variation with the parameter p, holding 6 constant. 

A comparison of figures 2.1 and 3-1 and 2.4 and 3.4 reveals that 

less error i s incurred by assuming to to remain constant for the f i r s t example, 

where f(x,x,t) = tx . The deterioration i n accuracy when using the refine

ment (which i s small, but not insignificant) i s the consequence of neglecting 

2 2 

terms of order u. t when deriving the approximation (see section 3-2). 

This particular case, i t should be noted, contains no energy-dissipative term 

(e.g.. x), so that any change in amplitude can result only from a change i n 

solution frequency. The time varying function tx alters the solution 

frequency or, more specifically, the total phase of the solution, with the 

result that substantial phase variation i s the dominant feature of the solution. 

This factor, coupled with the slow change in amplitude envelope with time, 

indicates that, of the three examples considered, the f i r s t w i l l be the most 

sensitive to phase error. 

The remaining two cases show that considerable improvement in 

solution accuracy i s obtained by using the refined approximation (see figures 

2 . 5 , 2 .6 , 3-5 and 3-6) at high values of the parameter p, as had been anticipated. 

It should be emphasized that error predicted from the error-integral 

results tends to be pessimistic when compared with the f i n a l graphical 

solution,. as many expedients may then be employed which cannot be incorporated 

i n the d i g i t a l computer simulation. This becomes particularly apparent in 

the next section, where approximate solutions corresponding to the three 

examples of section 3-2 are obtained, and i t becomes evident that an improve

ment in solution accuracy results from use of the refined approximation for 

each example, including the f i r s t . 
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3.4 Applicaticn of the refinement 

For a non-autonomous function f(x,x,t) equation (29) w i l l always he 

of the form j/ = ( 1+pa 2)^ 2 + Bg(t), where g(t) i s a function containing t 

expl i c i t l y , i.e., the cancellation of terms of order 6 i s not complete. It 

w i l l be shown later (in chapter 5) that for a linear autonomous function f(x) 

this cancellation of f i r s t order terms i s complete. This i s an important 

result, but i t w i l l be treated i n detail i n section 5-2. In the non-autonomous 

case, however, the form of the expression for y/ can be used to indicate the 

method of approach when determining the graphical solution of a particular 

equation. 

By comparison with the phase-modifying term 9(t), the amplitude 

envelope a(t) i s , for a specific example, readily determined and hence the 

amplitude behaviour of the solution can be predicted. Also the function B^^ 

can readily be found once A^^ i s known, and the expression 

\j/ = (1+pa 2) 1/ 2 + B B ( 1 )
+ _ P a t A ^ ' 

( H p a 2 ) l / 2 

(29) 

" 2 1 /2 

can be evaluated tc datermine the function g(t) i n y/ = (1+pa ) + Bg(t), 

where 

g ( t ) = B ( 1 )
+ ' patA ( l ) 

( A 2X1/2 (1+pa ) 

The choice of approach should then depend on the nature of a(t) 

(the amplitude envelope), and the quantity g(t). 

a) If, over the time interval of interest, the amplitude envelope i s approxi

mately constant, then the phase of the approximate solution can be obtained 
(1) 

from 6(t). When integrating the expression for B to obtain 9(t) the 

amplitude may then be assumed constant, and the parameter K (the complete 

e l l i p t i c integral of the f i r s t kind) i n the expression 

f i t ) = nK , 



which i s us.ed to determine l o c a l maxima, minima and zeroes of the 

s o l u t i o n , takes a constant value corresponding to the i n i t i a l s o l u t i o n 

amplitude a(o). The evaluation of the quantity y ( t ) from 
2 1 /2 

^ ( t ) = (1+pa ) t + 9(t) (where 9(t) i s given by, f o r example, equation 

(38)), should, however, take i n t o account v a r i a t i o n i n the amplitude. 

This p r o v i s i o n i s necessary to ensure that equation (29) i s not v i o l a t e d , 

i . e . the p a r t i a l c a n c e l l a t i o n of v a r i a t i o n s i n j/ caused by changes i n 

a(t) and e(t) must be taken i n t o consideration,- although i n a c i r c u i t o u s 

manner. Note that i t i s much l e s s tedious to integrate the expression 

(1) 

f o r B assuming the amplitude to be constant than i t i s to integrate 

equation (29) where t h i s assumption cannot be made. The s o l u t i o n of 

the normalized equation (e.g. equation 1) i s taken i n the form: 

x(t) = a(t) Cn [ ( H p a 2 ( t ) ) l / 2 t + e(t)] 

and the l o c a l maxima, minima and zeroes of the s o l u t i o n are determined 

from 

y(t) = (l + p a 2 ( t ) ) 1 / / 2 t + 0(t) = nK(0) . 

This approach i s adopted f o r the f i r s t example of t h i s s e c t i o n . 

I f the mean value of the amplitude envelope i s constant, and hence g(t) 

i s p e r i o d i c , then equation (29) may be integrated assuming the amplitude 

'a' to take i t s mean value. The value of K i n y ( t ) = nK should corres

pond to t h i s mean-value of the. amplitude envelope. " '.'This approach makes 

i t unnecessary to evaluate ©(10'%, as y ( t ) may be obtained d i r e c t l y from 

equation (29). The approximate'solution i s then of the form 

x(t) = a(t) Cny . 

This method i s applicable to the f i n a l example considered. 

I f the amplitude v a r i e s s u b s t a n t i a l l y over the time i n t e r v a l of i n t e r e s t 

neither of these approaches can be adopted, and values f o r the l o c a l 

maxima, minima and zeroes of the approximation s o l u t i o n must be found 

by considering v a r i a t i o n i n the parameter K (see the algorithm of 
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• 2 1 / 2 

section 2 . 4 ) . Note that the existence of g(t) i n \jJ = (1+pa ) -1- 6 g(t) 

for the non-autonomous case implies that the argument f of the e l l i p t i c 

function i s both time and amplitude dependent, which provides additional 

j u s t i f i c a t i o n for considering the variation of K with amplitude (again see 

the algorithm of section 2 . 4 ) . 

In.this case i t i s unnecessary to evaluate either ^ or 8(t) although, 

depending on the particular system, some inaccuracy may be incurred. 

The solution i s obtained i n the form 

x(t) = a(t) Cn [ ( U p a 2 ( t ) ) l / 2 ] . 

Exactly the same equations are those chosen i n section 2 . 4 w i l l now 

be used to demonstrate practical application of the refined approximation. 

For the f i r s t example, setting t = mX and jU=m 6 : 
2 2 3 d x + m (x -+ px ) + uXx =0 

2 At 

and from equations ( 3 6 ) and ( 3 7 ) : 

x( t ) = exp 
_4m2 (l+-ep)(l-t-k2) 

Cn (1+pa ) ' X m + 
4m (1 +epa 

^ P a 2 ^ 2 

8m(H Epa 2)(l+k 2)(l + p a 2 ) l / 2 _ 

This solution i s shown i n figure 3 . 7 with m = 5 , p = 2 and p. = 1.118. 

The local maxima, minima and zeroes of the approximate solution were deter

mined by solving graphically the following equation: 

f ( X . ) = nK(0) (n=0,1 ,2 , . . . ) 

where K(o) i s the value of K (from Appendix 2 , Table 1) corresponding to 

the i n i t i a l amplitude. Note that this approach differs from that i n 

section 2 . 4 , because the change in frequency of the solution i s taken into 

account by the refined analysis; additional compensation for this frequency 



46 

t.o 

0.4 
aft) 

exp - 0.0183t 

i v 

». 
V 
V 
V 
* 
X 
X 
i. 

H 

-1.0 

/•0 2.0 G.O t 4-0 5.0 

x 
V. 

Time (seconds) computer solution 
approximate solution — 

Pig. 3.7 Approximate and exact solutions 
of dfx + 5x + 10x 3 + 1 ,118t x = 0 

d t 2 

1.0 

0-4 

x(t) 

exp-0-0375 t 

v 
-+-

1.0 20 

-0-4 

1.0] —• 

3.0 * 
f 
f 

r 
\ f 

4.0 SO 

Time (seconds) computer solution • • 
approximate solution 

Pig. 3-8 Approximate and exact solutions 
of d 2x +5x + 10x 3 + 0.2t & =0 

dT 



47 

cos t ) 

0.4 

x(t) 

-0.4 

/ TP — 

i 

6-0 

K 
r 

t 
r 

to.o 

-/.oh-

Time (seconds) computer solution 
approxim at e sotu tion 

F i g . 3.9 Approximate and exact s o l u t i o n s 
2 3 of d x + 5x + 10x - 5x c o s t = 0 

dtr2 



48 

change i s therefore unnecessary. 

For the second example, where ^ = m 6 and 
2 2 3 d x '+ m (x +• px ) + uli_dx. = 0 

d t 2 d r 

the approximate solution i s : 

x( X ) = exp .2 Cn 
.4(Hk 2). 

/, 2x1/2 ' m(1+pa ) ' V 

In this case phase cannot be determined e x p l i c i t l y in a simple form, and 

approach (c) i s necessary. 

In the analysis of the unrefined approximation the term 9(t) was 

found to be negligible, and the variation of phase with amplitude was deter

mined from the variation of K, the complete e l l i p t i c integral of the f i r s t 

kind. A suitable algorithm i s given in section 2.4. 

A solution of the equation 

, 2x + 5(x + 2r 5' 
d ^ 
dfx + 5(x + 2x 5) + 0.2 X dx = 0 
It 2 d r 

obtained from this approach i s shown in figure 3-8. 

.'" For the f i n a l example 

2 2 "5 
d x -t- m (x + px ) - jU x cos mio^f = 0 2 . 

where jU = m 6 and mcô  = 1 .0, the solution envelope i s given by: 

a(x) = 1 + j>u(cos X - 1 ) 

where 
U = 1 

] m [4(l+epa )(l+k ) - ~ Q 

which can be obtained directly from equation (43). Note that U i s i t s e l f 

a function of 'a' (which is assumed to be constant), and that U defines the 

depth of modulation of the solution amplitude. The following short algorithm 
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may be used to determine U : 

1. Set a = 1 

2 2 
2. Evaluate U, taking k = pa 

2(H Pa^) -

3. Calculate an improved value of the average amplitude 'a' from the 

relationship a = 1 - p-U. 

4. Return to step 2, and repeat u n t i l the desired accuracy i s obtained. 

The algorithm converges rapidly, e.g. three iterations were sufficient 

to give three figure accuracy in the example subsequently considered. 

As the average solution amplitude may be assumed constant, the 

phase of the approximation solution ( can be determined from an integration 

of the expression for y/ .. From equation (29): 

B ^ ^ t A ^ 
(A 2N1/2 (1 + pa ) J 

f = ( H p a 2 ) l / 2 + B 

Substitution for A ^ and B^ ^ yields: 

• y, = ( 1 + p a
2 ) 1 / 2 _ 2B(1 + P a 2 ) l / 2 (l + k 2) cos cont 

[ 4 ( l 4 e p a 2 ) ( U k 2 ) - co Q
2] 

Note particularly that the term with a *t' multiplier has disappeared. The 

expression for y/( X) can now be obtained as: 

2 ( U p a 2 ) l / 2 ( l 4 - k 2 ) s i n r y/(tr) = m(U Pa 2) 1' / 2t - ^ LU 
CO 0 

where 'a' i s the average solution amplitude defined by a - 1 - JJ.U, and k 

corresponds to this value of 'a'. The local maxima, minima and zeroes of the 

solution are determined from a graphical solution of the equation 

nK = y/( X ) 

where n i s an integer (n=0,1,2, ...) and K is obtained from Appendix 2, Table 1 

2 

for the value of k corresponding to the average amplitude. 

A solution of the equation 



d 2x + 5(x + 2x 5) - 5 x cosX = 0 

i s shown in figure 3.9-

3.5 Discussion 

A comparison of the results of the unrefined and refined approxi

mations indicates that substantial improvement in both amplitude and phase 

accuracy can be obtained when the refinement i s employed. The f i r s t example 

(where f ( x , i , t ) = tx) i s the case most susceptible to phase error, and, as 

such, i s a severe test of an approximation method. It i s encouraging that 

the approximate solution for this example should demonstrate such a noticeable 

improvement in accuracy, but perhaps the most interesting aspect of the refine

ment i s the connection between amplitude and phase variation which was demon

strated algebraically in section 3.3 and discussed in section 3-4. 

3.6 Conclusion 

The refinement of the f i r s t approximation of chapter 2 i s mathema

tically,no more d i f f i c u l t to apply, and yields approximate solutions which 

are significantly better than those derived by the un-refined method. The 

results of the error analysis show that the greatest improvement i s obtained 

at high values of the parameter p (which determines the degree of non-linearity 

There are three aspects of the refined approximation of particular 

significance. 

a) The use of e l l i p t i c functions i n the representation of.non-linear o s c i l 

lations results in a zero-order approximation which i s versatile and 

inherently more accurate than a corresponding circular function approxi

mation. 

b) Consideration of solution-frequency variation with amplitude leads to the 
2 

introduction of terms Involving k , a parameter which varies with the 

degree of non-linearity and which can therefore accommodate, with accuracy, 
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wide variations in non-linearity. This feature is- unique to the present 

analysis, and i s an important contribution to the accuracy of the method. 

c) The equation defining ^ requires no assumption of solution frequency. 

A ^ i s obtained as the particular integral of a linear conservative 

dif f e r e n t i a l equation, and should therefore, on average, be an exact 

representation of the behaviour of the amplitude envelope. This is .in 

contrast to either the Kryloff-Bogoliuboff method [13 ] or the Bogoliuboff 

Mi.tropolski method [ 4 ], which both assume the. amplitude and frequency 

remain constant when deriving the expression for a(t). Although in the 

present method a constant amplitude may be taken when deriving.the phase-

variation term, neither constant amplitude or frequency need be assumed 

when calculating the amplitude envelope. 

In the following chapter this refinement i s extended to consider 

equations of the form 

x+-x-px+-Bf(x,x,t) = 0, 

which relate to systems exhibiting saturation or limiting phenomena, e.g. 

electronic circuits involving saturating amplifiers, inductors and capacitors, 

negative-resistance devices, or oscillatory motion with a restoring force F 
3 

of the form F =.ax - bx . For the parameter p i n the range 0 < p < 1, 

and 6 =0, this equation has an exact solution in terms of the e l l i p t i c sine 

function. 
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4. SATURATING NONLINEARITIES 

4.1 Introduction 

The a n a l y s i s , so f a r , has been concerned with the transient response 

of non-resonant nonlinear systems where the parameter p i n the equation 

ii + x + px +. Bf(x,x,t) — 0 

i s p o s i t i v e , i . e . the n o n - l i n e a r i t y i s of the "hardening" type [ 6 ]. Many 

systems of p r a c t i c a l i n t e r e s t , however, contain non-linear elements of a 

"softening" type [ 6 ] (e.g. saturation e f f e c t s i n inductors and capacitors) 

[ 17 ], negative resistance devices i n e l e c t r o n i c c i r c u i t s [ 6 ] ) , and may 

be described by an equation of the form 

x +- x - px 5 +• Bf (x,x,t) = 0 (p > 0) 

This equation, f o r 6 = 0 , i s s t i l l s a t i s f i e d by an e l l i p t i c function, 
2 

but the form of the s o l u t i o n i s now dependent on the quantity pa , where 'a' 

i s the s o l u t i o n amplitude [ 21 ] . . I f pa i s l e s s than 1.0, then the s o l u t i o n 

i s o s c i l l a t o r y and i s given by 

x(t) -- a Sn(iot + K) 

when x(0) = 1.0, x(o) = 0; otherwise ( i . e . , i f pa > 1) the s o l u t i o n i s 

unbounded. The present a n a l y s i s w i l l be confined to a consideration of 

o s c i l l a t o r y motion, and, as before, resonance e f f e c t s are.required to be n e g l i g i b l e 

or non-existent. The parameter p (p > 0) i s retained, to f a c i l i t a t e compari

son with the r e s u l t s of chapter 3; when a more general d i f f e r e n t i a l equation 

i s considered i . e . , where the n o n l i n e a r i t y can be e i t h e r hardening or softening , 

the following form i s used: 

x + x + r x + Bf(x,x,t) = 0 
where -1 < r < oo. 

4.2 Development of the f i r s t approximation 

From Hsu [11 ], the exact s o l u t i o n of the non-linear d i f f e r e n t i a l 

•equation 
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•2 

x + x - px = 0 (p > 0) 

with x(0) = 1.0, i ( 0 ) = 0 i s : 

x(t) = a Sn(wt + K) 

where co = 1 - pa_ 
2 

1/2 
, K i s the complete e l l i p t i c integral of the f i r s t kind, 

and the modulus of the e l l i p t i c function, i s now given by 
,2 2 k = psi 

2 [ l - PJL 
2 

Accordingly, when p ̂  0 i n the equation 

x + x - px + 8f(x,x,t) = 0 

let the solution for x(o) = 1, x(o)'= 0 be taken as 

x(t) = a(t) Sn('cot + 9 + K) = a Snj/ 

As before: 

and hence 

X = x(a,y/) 

x = a. 3x + \J/c> x 
ha ' hf 

x = a cbc + a d_ 
da dt 

^x 
.3 a 

4- y d 4- y 3x_ 
dt L dyj Sy 

Evaluating the derivatives i n this expression: 

5x = Sn*J/ 
ha 

d_ 
dt 

d_ 
dt 

ax 

Sx" 

2c„3 

= yCny Dny 

•aCny Dny + a y J ^ (CnyDny) 

where _3_ (Cny Dny) = -(Sny - pa Sn^y ) 
ay 

and ^ x = a Cny Dny 
ay ' ' 

1 ~PiL 
2 

By substitution, equation (45) may now be written as: 

. 2 2 *5 
x = aSny 4 2ayCnyDny - a y (Sny -pa Sn y ) + ayCnyDny 

1 - p a 2 

2 

(44) 

(45) 

(46) 



The polynomial representation of a and 6 i s unchanged from chapter 2, 

i.e. 

a = |*A ( 1 ) (a,t) + y 2 A ( 2 ) (a,t) ^ A ( i ) (a,t) 

0 = j U B ( l ) (a,t) 4 - ^ 2 B ( 2 ) ( a , t ) + ^ B ( i ) ( a , t ) + ... 

and, r e t a i n i n g only terms of 0(jx): 

where the subscripts denote p a r t i a l d i f f e r e n t i a t i o n with respect to time. 

Following the approach of the r e f i n e d approximation (where the v a r i a t i o n of 

s o l u t i o n frequency with amplitude i s taken i n t o consideration): 

y/ = to + til) •+ 9 

where co = 1 - pa_ 
2 

1/2 

and 

To f i r s t 

co = -paa 
1 - pa 

2 . 
1/2 

order terms i n jJL, the expression f o r then becomes: 

r = 
2 

1 - pa 
2 . 

1/2 pat A (1) 
V 2 

1-pa 
. 2 . 

1/2 

S i m i l a r l y : 

1 - pa 
2 . 

2B (1) 1 - pa 
2 . 

l/2 . A ( 1 ) ' - pat A x y 

(47)" 

(48) 

2 2 2 2 where terms of 0 ( JA. ), 0(y t) and 0(yu t ) are neglected. 

For 
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or 

f 
e paa - pt, 

Vp2 2 1 - pa 
2 J 

aa 
1 - pa 

2 
TJ2 1 - pa 

2 . 
3/2 

.2 
Nov? the term a i s of order u. , and hence to f i r s t order i n 

f = r B ( l }
 - Pa A ^ 

1 - pa_ 
2 
172 

- pat A^ ^ 
1 - pa 

2 J 

1/2 
(49) 

• . 2 

Substitution for y, y and y in equation (46) yields the following expression 

for x : 
x= -(aSny- -pa? Sn^y ) 

4- JJL CnyDny 2A (1) 2 
1 - pa_ 

2 

1/ 2
 + a B ^ - (2pa 2 A< 1> t J>a 2t A ^ ) | 

1 - pa_ 
..2. 

1/2 

A^-'Sny/- (Sny- pa 2 Sn^y ) 
1 - p a 2 

2 . 

2aB (1) , 2 
1 - pa 

2 

1 7 2 - pa 2t A<1~>' (50) 

But, from equation . (44), x may also be expressed as 

x = -(aSny- pa?Sr?y + 8f(x,i,t)) 

and, setting 6 = jU, , i t now follows directly from equation (50) that 

f(x,x,t)= - Cn^Dny 2A (1) 1 - pa 
2 

1 / 2
 + aB<l> - (2pa 2 A^K pa 2t A ^ ) | 

1 - pa_ 
2 

,(0 2 e 3 
1 - pa 

2 

) W1> " 1 2 " 
1 - pa 

1 / 2 - p a 2 t A<1>" 
2 

(51) 

Following a similar approximation of chapter 2 let 

r 2K r 

o s r r J 
2K 

0 

2.3, 

Sn 3ydy (52) 

Now d_ (CnyDny ) = -Sny (1 + k ) 4- 2k Sn^y 
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and hence 2k 2 J Sr?y dy = CnyDny -+ (1+k2) J S n y d y . 

By evaluating the integral of Sny/ [ 5 ] , the expression for o may 

now be obtained as 

S - 1 

k 2 In 
(1 + k ) In [ 1 + k ] - k 

j~1 + k j L 2 L1 - k j 
(53) 

2 

A tabulation of p, k , o and K i s to be found i n Appendix 2, Table 2. 

Integration of equation (52) when k = 0, i.e. when Sny reduces to 

s i n y , gives the value of b as 2/3. An identical value i s obtained for 

equation (53) (when k = 0) after the application of L'Hopital's rule. 

Equation (51) may now be simplified to: 

f(x,x,t) = -CnyDny' 
V 1 ) 1 - pa 2 

2 
' / 2

+ aB<i> - ( 2 p a 2 A < ' ^ pa 2t A<]>) 

2ri--2T/2 pa 
2 

-Sn r A ( l } - ( i ^ i p a ! ) t r 2 . 
1 - pa 

2 

2aB (1) 

(54) 
1 / 2 2, .(1) ' - pa t A w 

From Milne-Thompson [ 16 ],fche x — i e r series expansion of Cny/Dn^/ 

may be derived as 00 
CnyDny = d (Sny)= _d_ 2TI 

kK y kK Z , „ 
/ L s = 0 Li - q 

. ( B +1/2) : 

,(2s + 1) 
sin (2s -+ 1 ) 

2K 

i . e . CnyDny = Tt"1 

kK 

00 

s^O L1 - q 

(s + 1/2) 

(2s + 1) 
(2s +• 1) cos (2s + 1) _rc_y/ 

2K 

where q = exp ^-liK' , and hence Sny and CnyDn^ may be expressed as infinite 

sums of sine and cosine terms respectively. 

As for the previous case (where r > 0 i n the equation 
3 

x +• x +• rx +• 8f(x,x,t) =0), this property indicates that Sny and CnyDny 

may be treated as analogous to s i n y and cosy in the principle of harmonic 

balance. The three examples of chapter 3 are again chosen to demonstrate the 



a p p l i c a t i o n of equation ( 5 4 ) . 

Example 1. 

x'+ x - px + 8tx = 0 

with x(o) = 1.0, x(o) = 0 and where f ( x , i , t ) = tx = at Sny/. S u b s t i t u t i n g 

f o r f ( x , x , t ) i n equation ( 5 4 ) , and comparing c o e f f i c i e n t s of Sn^ and CnyDnij 

(55) a B ^ + 2A<1> . 2 1 - pa 
2 

1/2 _ ( 2 p a 2 A ^ + p a 2 t A ^ ) = Q. 
" 2 1 - pa 

2 • 
1/2 

- (1 - o V ) 
1 - pa 

2 . 

2aB (D , 2 1 - pa 
2 . 

1/2" 2. .(1)" ' - pa .t A v y = - at (56) 

Taking the p a r t i a l d e r i v a t i v e of equation (56) with respect to time: 

.(0 
a B ( l ) = U ^ + a ) 

2(1 -S pa 2) 
1 - pa_ 

2 

,0) 

1 / 2 + p a f (A^K t A ^ ) 
2 X 

1 - pa_ 
2 

-1/2 

and by s u b s t i t u t i o n f o r a B ^ ' i n equation (55) i t now follows that 

A ( J . | 4- 4 A ( 1 ) ( 1 - S p a 2 ) 1 - . pa 
4 1 - pa 

2 . 

- a (57) 

S e t t i n g A ^ = 0 (as i n s e c t i o n 3-2 f o r t h i s example), and noting that 

2 2 
pa =k_ , where k i s the modulus of the e l l i p t i c function Sn\ls, the 
• 21 2 ' 1 - pa. 

2 
p a r t i c u l a r i n t e g r a l of equation (57 ) may be obtained as 

A<1> = -a 
4(1 - Spa" 

and then, by i n t e g r a t i o n : 

a ( t ) = exp 

4(1 -S 

1 - £ 
2 

- - P t 
2 N 

pa 1 - £ 
2 

(1) 

(58) 

,(D Taking A ^ = 0 i n equation ( 5 6 ) , the expression f o r B becomes 
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B < 1 > - . t r\ 2 i 
1 - pa 

1/2 2, - pa t 
. 2(1 - S pa 2) 2 . 

8(1 - opa 2) r 1 - k 2 i 
2 

1 - pa_ 
2 

•1/2 

and f i n a l l y : 

e(tj = B£ 
4(1 - Spa2) 

.1 - pa 
2 

1/2 

16(1 -6 
2,2 a t ; 2 

1 - pa 
S pa 2) n - k 2" 

2 
2 _ 

-1/2 

(59) 

Example 2. 

x +- x - px +• B t i = 0 

with x(0) = 1.0, i(o) = 0 and where 

f ( x , i , t ) = t i = at 1 _ E§_ 
2 

1/2 Cn^Dn^ + 0(Bt) 

As before (see section 3 .2) , terms of 0(pt) i n f ( x , i , t ) are equivalent to 
2 • 

terms of order 6 t i n Bf(x,x,t), and may be neglected. 

From equation (54)., comparing c o e f f i c i e n t s of Sny and CnyDny : 

1/2 1 - pa 2 

2 J 
1/2 2 .(1) 2, -*.(l)x 

- (2pa A v y+ pa t A y ) 1 -at 
1 - Pa' 

2 

T/2 
1r-pa2 

(60) 

A ( l } - ( l ^ i p a ! ) 
~ i 2 1 

2 

~ 2 a B ^ 1 - p a 2 1 / 2 - P a 2 t A<1>" = 0 .. (61) 
2... 

A f t e r taking the p a r t i a l d e r i v a t i v e of equation (61) with respect to .time, and 

substitution, f o r a B ^ i n equation (60), the fol l o w i n g equation i s obtained: 

A{1\ + 4 A ( 1 ) (1 -S pa 2) 1 -x. 
2 

= -2at (1 - & pa 2) . 

The p a r t i c u l a r i n t e g r a l of t h i s equation i s 

A<1>= -at 

and hence, by i n t e g r a t i o n : 

a(t) — exp 

1 - kT 
2 

1 - k' 
2 

21 
(62) 
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(1) 
S u b s t i t u t i o n f o r A ^ i n equation (61) then gives 

21-1/2 1 - pa ' 
2 

T»0) 2 4 - 2 

B = -Pa t 
1 - £ 

2 

1 

4(1 -S pa 2) h - k 2 l 
2 

1 - pa_ 
2 

1/2 

The same d i f f i c u l t y i s found here as was encountered i n section 3.2, 

namely that a simple closed form expression f o r 9(t) cannot be found i f the 

amplitude v a r i a t i o n i s to be taken i n t o consideration.- However, as f o r the 

e a r l i e r case, i t i s s t i l l possible to determine s o l u t i o n phase by an approxi

mate method (see sections 3-4 and 4.4). 

Example 3. 

- 3 , 

x - f x - px - Bx cos to^t = 0 

with x(0) =1.0, x(o) = 0 and where 

f( x , x , t ) = -x cos co^t = -aSn^cos co^t . 

Applying equation (54): 
2 ' - t^pa A ' • -f 

2" 
aB<}W1> 1 - pa_ 

2 
1/2 /_ 2 . (1 ) 2, . (1 ) N 0 - (2pa A v ' -f pa t A v ') =0 

211/2 t 

2 

A ( l } - (1_-J$paf) t 2 

1 - pa 
2 

" 2aB<1> 2" 
1 - pa 

2 
1 / 2 - P a 2 t A ^ ' = a cos co t . o 

(63) 

By the same procedure as before: 

A ( 1 ) _ - a co Q s i n c o Qt 

4(1 -6 pa 2) 

.(0 

1 - k: 
2 

- CO '0 

and, a f t e r s u b s t i t u t i o n f o r A ^ i n equation (63): 

4(l-«5pa2) [1-k 2] 21 2 1 - pa 2 

_ _ 2 . 
21 

_ 2 

pa tco sinco t 

T/2 
+ 2 1 - pa 

2 
1/2 

(64) 

1 - £ 
2 

cos co^t 

F i n a l l y , i n t e g r a t i n g equation (64), and assuming 'a' to be constant: 



60 

i(t) = exp 6 (cos cô t - 1 ) 

4(1 -<5pa2) 

or, i f the exponent i s small: 

k_ 
2 

- to,. 

i(t)=-1 + r p ( c o s v -1) 
_4(1 - opa 2) |~1 - k*_ - co 0

2 

(65) 

As discussed in section 3.2, i t i s unnecessary in practice to integrate the 

expression for B ^ and determine 6(t). 

Two limitations must be imposed in this particular case: 
2 l™~ 2 2 

a) To avoid resonance effects 4(1 - o* pa ) 1 - k_ »to 
L 2 J 

b) For solution s t a b i l i t y , the i n i t i a l value of the expression 

x - px - 8x cos to^t must be positive [ 11 ]. 

when x(o) = 1, this last condition may be written as 1 - p > 8. 

The equations developed above are applied to three specific examples 

i n section 4«4> following an analysis of error incurred i n applying the approxi

mation. One f i n a l detail, however, remains to be verified. In section 3.3 

i t was shown that, to a first-order approximation in the case of r > 0 i n the 

equation x 4- x 4- r x 3 4- 6f(x,x,t) = 0, the change in j/ due to j^_(to) was 
5a 

cancelled by that due to ^_(o). The first-order expression for u> i n the 

present case i s given by equation (47) as: 
f 

1 - p a 2 1/2" + P B<1> - nat A<1> 
1 - pa_ 

2 

Considering, for purposes of demonstration, example 3> and substituting for 

A<1> and B ( ' > : 

f 

2 
P§_ 

2 

1/2 

[4(1 - p a 2 ) [ j co. 

pa t sin to^t 

I1 " ̂  "T72 

• on 2 l 1 / 2 4- 211 - pa | ' 1 - £ 
2 

, • pa t co- sin co_t cos to^t - 0 0 
T72~ 



A similar cancellation to that observed in section 3 - 3 is thus 

also obtainable for the equation x + x - px + (3f(x,x,t) = 0. The above 

result may readily be deduced for the remaining two examples. 

In the following section the method introduced i n section 2 . 3 i s 

applied to determine error incurred when applying the approximation. 

4 . 3 Error Analysis 

The analysis of the preceding section yields, for a specific example 

relationships defining the quantities, a, a, a, yv and <p, and consequently 

the approximate solution can be simulated in the same manner as for the case 

considered in section 2 . 3 -

The necessary expressions for x and x are (from equations ( 4 4 ) and 

( 4 6 ) ) : 

x = a Sn̂ > + a^Cn^Lny/ ( 6 6 ) 

* 2 2 "5 > x - a Sny + 2ay»CnyDny/ - ay/ (Sny> - pa Sn y ) + a^CnyDny (67^ 

"l - p a f 
2 

Now x = a Sny 

i.e. Sny = x/a 

and from equation ( 6 6 ) : 

Substituting for Sn 
f 

x - a Sny = ayCnyDny 

Cny'DnU/ = k - ax 
. ' ' ay/ 2 • 

T a y> 

and hence, substituting for S n y and Cny/Dny i n equation ( 6 7 ) : 

x = a.x + 
a 

x - ax 
a 

_y£_+ 2 a 
a 

I (x - Px 3) 
1 - pa_ 

2 

( 6 8 ) 

A l l the coefficients of equation ( 6 8 ) are known (for a particular differential 

equation), and the approximate solution can now be obtained by integration of 
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the s t a t e equations 

X1 ~ X 2 
x 2 = a x 1 -t 

a 
a_ x. _y) + 2 a 

c. I 

a 
_ y a 1 - pa 

2 . 
These equations were i n t e g r a t e d (using.a d i g i t a l simulation), f o r 

the three examples of s e c t i o n 4.2, and.the i n t e g r a l e r r o r d e f i n i t i o n of 

equation (28) was again used to o b t a i n the r e s u l t s shown i n f i g u r e s 4.1 to 

4.6. F i g u r e s 4.1, 4.2 and 4.3 r e f e r to the v a r i a t i o n of the e r r o r i n t e g r a l 

w i t h 6 f o r the three examples, h o l d i n g p constant at 0.5; f i g u r e s 4-4, 4-5 

and 4.6 show v a r i a t i o n of the e r r o r i n t e g r a l w i t h the parameter p, w i t h 6 

h e l d constant. 

An i n t e r e s t i n g f e a t u r e of f i g u r e s 4.4 to 4.6 i s that s o l u t i o n e r r o r 

i s shown to increase w i t h the parameter p ( c f . f i g u r e s 5-4 to 3-6 where the 
2 2 

converse i s seen to be t r u e ) ; note, however, that k = pa f o r t h i s case, 
1 -pa 

2 

p tends to 1.0 as the modulus k tends to 1.0, and then the e l l i p t i c f u n c t i o n 

Sny tends to tanh y, which i s n o n - o s c i l l a t o r y . In s e c t i o n 3-4, where the 

equation under c o n s i d e r a t i o n was x + x + px +- B f ( x , x , t ) = 0 and p > 0, 

the r e s u l t s shown i n f i g u r e s 3-4 to 3-6 i n d i c a t e d that s o l u t i o n e r r o r decreased 

w i t h i n c r e a s i n g p, although i n that case the s o l u t i o n p e r i o d was a maximum f o r 

p = 0. The l i n k i n g f a c t o r of the two cases (which,, between them, cover the 

e n t i r e range of o s c i l l a t o r y s o l u t i o n s of the equation' x -+ x + px +Bf(x,x,t) = 0 

where -1 < p <oo) i s thus seen to be the. s o l u t i o n p e r i o d , and i t may be 

concluded t h a t , i n general, the e r r o r i n c u r r e d by the approximation diminishes 

w i t h decreasing s o l u t i o n p e r i o d . As before, the o s c i l l a t o r y behaviour of the 
(1 ) 

e r r o r i n t e g r a l , p r e d i c t e d from the a n a l y s i s where an o s c i l l a t o r y term i n A 

was neglected (see, f o r example, s e c t i o n s 2.2,. 3-2 and 4-2 r e f e r r i n g to 
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Fig. 4.1 Error integral as a function of time and B for 
f(x,x,t) = tx, with p = 0.5-

Fig. 4.2 Error integral as a function of time and 6 for 
f(x,x,t) = t i , with p = 0.5. 



F i g . 4.4 Error integral as a function of time and p for 
f(x,x,t) = tx, with B = 0.018. 



Fig. 4.6 Error integral as a function of time and p for 
f ( x , i , t ) = -x cos t/m, with (3 = 0.165. 
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example, 1), i s r e a d i l y observed. 

4.4 A p p l i c a t i o n 

The p r a c t i c a l a p p l i c a t i o n of the method w i l l now be demonstrated 

by considering three equations s i m i l a r to those chosen i n sections 2.4 and 

3-4; apart from changes i n the equations d e f i n i n g s o l u t i o n amplitude and 

phase, however, the approaches are e s s e n t i a l l y the same, as those outlined i n 

se c t i o n 3-4, and the same consideration must be given to the expression f o r y/ 

(equation (47) i n t h i s case). 

By taking t = mX , the d i f f e r e n t i a l equations of examples 1, 2 and 

3 of section 4.2 may be w r i t t e n as: 

d x •+ m l_.x - px j + 

dt 

•z 
m BTX = 0 

m Btdx = 0 

2 
-m Bx cos moo t = 0 

(Ex. 1) 

(Ex. 2) 

(Ex. 3) 

where x(o) = 1.0 and dx ( 0 ) = 0. 
&X 

From equations (58) and (59) the approximate s o l u t i o n f o r the f i r s t 

example i s then: 

exp 
4 n T ( l - S p ) -kj; 

2 

Sn , 2 1 -pa m , 2 1 -pa 
_ 2 _ 

1/2 X + K 

+- i,Xr 

4m( 1 -Spa2^ 

1 -pa 
2 

1/2 2 

1-iL 
L 2 J 

2" 
1-pa 

-1/2- -2" 
1-pa 

-1/2-
2 

where K i s the complete e l l i p t i c i n t e g r a l of the f i r s t kind corresponding to 

the value of p (see Appendix 2, Table 2), and jl-m B. 

This s o l u t i o n i s shown i n f i g u r e 4-7, with m = 5, p = 0.5 and 

= 0.20. 

For the second example, from equation (62) the approximate s o l u t i o n 
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x(t) 

-7 .0 

exp -0.0IB3t 

— f — 
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• 
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1Q.0 
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F i g . 4.7 Approximate and exact s o l u t i o n s of 
dfx. 
d^ 2 

d2x. H- 5x - 2.5x 5 +' 0.2% x = 0. 

computer solution . . 
approximate solution 

LO-

0-4-
x(t) 

•exp-0.0375 t" 

-K 1- -+-
2.0 

•0.4-\ 

4.0^ J~ 6.0 
\ i; ^ ^ — B.0 

;o.o 

; . o 4 - -

T/'mo (seconds) computer solution . 
approximate solution 

F i g . 4.8 Approximate "and exact s o l u t i o n s of 
_ : -t- 5 x ^ ^ 2 . 5x5-+• 0 . 1 2 5 ^ d ^ = 0 . 
d t 2 d r 
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Fig. 4 . 9 Approximate and exact solutions of 
d 2x + 5x - 2.5x 5 - 0.825x cost = 0. 
dV 1 
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i s : 

XX) exp 
1-k_ 
. 2 1 

Sn m 2" 
1 - p a 

l / 2 t + K ' 
2 

where |n_ = m 3. 

S o l u t i o n phase f o r t h i s example must again be determined i n an 

approximate method, and a s u i t a b l e a l g o r i t h m i s given below. 

1. • Assume the average value of the amplitude envelope (denoted by 'a' ) to 

be 1.0 over the f i r s t q u a r t e r p e r i o d . 
2 

2 . Determine k from the r e l a t i o n s h i p 
, 2 2 
k = pa 

1-pa_ 
. 2 

Determine the value of the complete e l l i p t i c i n t e g r a l K corresponding 
•2 

to t h i s k (from Appendix 2 , Table 2 ) . 

C a l c u l a t e the quarter p e r i o d T from the r e l a t i o n s h i p 

1/2 
T = K , where co = m 

co 
1 - pa 
. 2 . 

5. Determine the average amplitude over the next quarter p e r i o d (assuming 

i t to be of d u r a t i o n T seconds) from the s o l u t i o n envelope ( i . e . i n t h i s 

case exp 
1-kj 

. 2 

), and r e t u r n to step 2. 

A s o l u t i o n , u s i n g t h i s a l g o r i t h m , i s shown i n f i g u r e 4-8 f o r m = 5, 

p = 0 . 5 and jx = 0 . 1 2 5 . 

2 

For the f i n a l example, i f mcô  = 1 . 0 and |x = m 8 the s o l u t i o n envelope 

i s (from equation ( 6 5 ) ) : 

a ( t ) = 1 +-|*U ( c o s t - 1 ) 
where U = 

m 4 ( 1 - S p a 2 ) 1 - k _ 
L 2 

u 0 
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The algorithm given f o r the t h i r d example (which corresponds to the present 

problem) of section 3.4 may again be used to determine U except that, i n 

_ . Also, as 2 2 2 step 2 , k must be replaced by the expression k = pa 
1-pa_ 
. 2 J 

derived i n section 4.2: 

1 - pa_ 
2 

1/2 2B cos to Qt 

4(1 -<Spa ) 1-kJ 
. 2 J 

to. 

1-k 
. 2 J 

1 -pa_ 
. 2 

1/2 

and hence 

m 
" 2" 1 -pa . 2s±nX P. 2" 

l-pa 
1/2" 

_ 2 _ / L « 0 
2 2 _ -

f(X) 

where 'a' i s the average s o l u t i o n amplitude defined by the expression 
2 

a = 1 - juU, and k corresponds to t h i s value of 'a' . 
An approximate s o l u t i o n of the equation 

d 2x +• 5x - 2.5x 3 - 0.825x cosT = 0 
d-b2 

i s shown i n f i g u r e 4 . 9 ( i . e . f o r m = 5, p - 0.5 and jx = 0.825). 

4-5 Discussion 
2 

The c o e f f i c i e n t s m , p and jU. chosen f o r the graphical solutions of 

section 4 - 4 r e s u l t i n amplitude envelopes which are the same (f o r the f i r s t 

two examples) or close to those of the corresponding examples i n s e c t i o n 3 - 4 . 

To include a s i m i l a r number of o s c i l l a t i o n s , the solutions shown i n f i g u r e s 4 . 7 

to 4 . 9 were c a l c u l a t e d over twice the time i n t e r v a l taken f o r the examples of 

section 3 - 4 (see f i g u r e s - 3 - 7 to 3 - 9 ) . In s p i t e of t h i s increased time i n t e r v a l , 

which might be expected to produce greater error, the approximate solutions 

f o r both cases appear to be of comparable accuracy. 

Again, i t should be stressed that the e r r o r i n t e g r a l r e s u l t s of 

f i g u r e s 4-1 to 4.6 lead to a p e s s i m i s t i c estimate of s o l u t i o n error. A 

comparison of the r e l a t i v e error of f i g u r e s 3 .1 to 3.6 and 4 .1 to 4.6 i s 
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complicated by.the dependence of s o l u t i o n c h a r a c t e r i s t i c s oh the parameters 

p and 8. I f the envelope of the s o l u t i o n may be taken as a basis of compari

son, then f i g u r e s 3.4 to 3-6 and 4-4 to 4.6 are r e l a t e d and i n d i c a t e that 

le s s error i s incurred f o r the equation x -t- x - px •+ Bf(x,x,t) = 0; i n 

general, however, i t would be unwise to draw conclusions of t h i s nature as 

s o l u t i o n error i s dependent on a number of v a r i a b l e s . The most i n t e r e s t i n g 

r e s u l t s are those shown i n f i g u r e s 4-2 and 4 .6 , as although the s o l u t i o n of 
.. 3 

the equation x + x - px - Bx cos co^t = 0 does not decay i n amplitude, f o r 

c e r t a i n ranges of the parameters p and B the er r o r (as defined by equation (29)) 

does not increase above a l i m i t i n g value, at l e a s t f o r the time i n t e r v a l con

sidered . The phases of the approximate and exact solutions are thus i n 

accord over a long time i n t e r v a l , a feature which i s r a r e l y found even i n 

approximations f o r q u a s i - l i n e a r equations, with the r e s u l t that the error 

incurred per cycle of the s o l u t i o n remains approximately constant. 

4.6 Conclusion • -

The., a n a l y s i s presented i n t h i s chapter has extended the a p p l i c a t i o n 

of e l l i p t i c , functions to s o l u t i o n of the equation 

x + x + r x - t - B f ( x , x , t ) = 0 

where -1 < r <oo , and, together with chapter 3, enables approximate solutions 

of a wide c l a s s of non-autonomous grossly non-linear d i f f e r e n t i a l equations to 

be determined. The phase of solutions to such equations i s strongly amplitude 

dependent, and the success of the approximation i s , i n part, due to the 

recognition of t h i s property and the a b i l i t y of e l l i p t i c functions to account 

f o r varying s o l u t i o n phase. 

Although non-autonomous equations have been considered to demonstrate 

a p p l i c a t i o n of the method, i t should be evident that autonomous equations are 

equally amenable to s o l u t i o n i n the same manner. In the next chapter, two 



important autonomous cases are i n v e s t i g a t e d : a n o n - l i n e a r form of Van der P o l 

equation, and an equation r e p r e s e n t i n g a n o n - l i n e a r system w i t h heavy damping 
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5. AUTONOMOUS NONLINEAR SYSTEMS 

5.1 Introduction 

The analysis of the preceding three chapters, although i t has 

placed emphasis on the solution of non-autonomous equations, may equally be 

applied to a consideration of autonomous systems. Two such equations which 

have attracted considerable attention are Van der Pol's equation [24] - [31], 

and the unforced Duffing equation [32] - [34]. 

Much of the importance of Van der Pol 1s equation 

x + x - B(1 - x 2)x =0 (69) 
derives from i t s description of oscillatory processes having a steady-state 

amplitude which i s independent of i n i t i a l conditions; i t s eventual solution i s 

a stable sustained oscillation which, for the form of the equation given above, 

has a f i n a l amplitude of 2.0 for small 8. 

In the analysis of section 5-3 a modified version of Van der Pol's 

equation i s considered, which applies to a s t e l l a r pulsation problem [12]: 

••• x + x+px 3 - 8(1 - 2fx 2)x =0 ( p > 0 ) (70) 

This particular example i s also used to demonstrate application of the refined 

approximation of chapter 3 to systems where the i n i t i a l amplitude i s zero, but 

where x(o) i s non-zero, and where the amplitude envelope i s defined by an 

exponential function with a positive argument. 

The main d i f f i c u l t y encountered by previous workers when investigating 

solution behaviour of the unforced Duffing equation 

x + x + px 3 + Bx = 0 (71) 

was the prediction of solution phase (which, as might be anticipated from the 

discussion of section 4.6, i s far from being a linear function of time), 

particularly when calculated from a quasi-linear approach. Considerable 

ingenuity has been applied to the construction of suitable mathematical models 
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u s i n g c i r c u l a r functions,and Ludecke and Wagner [34] i n a recent paper adopted 

an approach which was c o n c e p t u a l l y s i m i l a r to that used i n chapter 3 ( i . e . , the 

v a r i a t i o n of s o l u t i o n frequency w i t h amplitude was taken i n t o c o n s i d e r a t i o n ) , 

except that c i r c u l a r f u n c t i o n s were s t i l l used i n the development of the 

approximate s o l u t i o n . 

In the f o l l o w i n g s e c t i o n i t i s shown that, f o r the damped D u f f i n g 

equation of equation (71), the phase of the f i r s t order approximate s o l u t i o n 

can be obtained e x p l i c i t l y i n terms of the amplitude envelope when e l l i p t i c 

f u n c t i o n s o l u t i o n s are considered. This r e s u l t makes p o s s i b l e a f i r s t order 

s o l u t i o n of equation.(71) i n a simple form, which i s accurate even f o r com

p a r a t i v e l y l a r g e values of the parameter 6. 

5.2 L i n e a r d i s s i p a t i o n 

In s e c t i o n s 3-3 and 4.2 i t was shown that a p a r t i a l c a n c e l l a t i o n of 

f i r s t order terms i n the expressions f o r \j/ (equation (29) of s e c t i o n 3.2 and 

equation (47) of s e c t i o n 4 .2) was obtained f o r non-autonomous f u n c t i o n s 
3 

f ( x , x , t ) i n the equation x + x + r x + B f ( x , x , t ) = 0 where -1 < r < oo. 

Now consider an autonomous f u n c t i o n f ( x , x ) i n the equation -

x + x - f r x 3 -+ 8f(x,x) = 0. (72) 

I f r > 0 ( i . e . the case considered i n chapter 3) the approximate 

s o l u t i o n i s of the form x ( t ) = a(t)Cny/, and f ( x , x ) may be expressed as 

2 1 /2 
f ( x , x ) = -g 1 a. (1+pa ) Sny/Dny/+- g ? a Cny, 

where f o r the moment no r e s t r i c t i o n i s placed on the f u n c t i o n s g^ and g^* 

except that they should not be f u n c t i o n s of time. Comparing c o e f f i c i e n t s 

of SnyDny and Cny when f ( x , x ) i s s u b s t i t u t e d i n equation (33) g i v e s (by 

the method of, f o r i n s t a n c e , example 1 of s e c t i o n 3-2): 

A ^ + 4 A ^ (l + e p a 2 ) ( U k 2 ) = -2g a(l+epa 2) 
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since -1 
a t 

= 0, and the p a r t i c u l a r i n t e g r a l of t h i s equation i s : 

where . 2 2 k = pa 
2 ( 1+ Pa 2) • 

I f f(x,x) i s a non-linear function then, although f(x,x,) can be 

expressed i n the l i n e a r i z e d form 

f(x,x) = - g l a(l + p a 2 ) 1 / / 2 S n ^ D n y / + g g aCn^ 

(see section 5-3), i t i s not s t r i c t l y true that g^ ^ g ^ ( t ) , as g^ w i l l be 

the approximation of a term i n v o l v i n g a mean value and pe r i o d i c component. 

I f , however, f(x,x) i s l i n e a r i n x and i , then g^ and g^ w i l l be constant 

and w i l l be zero. 

(1) (1) Evaluating B under the assumption A ^ — 0, and s u b s t i t u t i n g f o r 

A ^ ^ and B^ ^ i n equation (29) gives the f i r s t order approximation to \js as: 

f = ( U P a 2 ) 1 / 2
+ P-g2 ^ - f 2 , 

' 2 ( U e p a ) ' 

i . e . i f f(x,x) = g^x, where g^ i s a constant, then f i r s t order terms i n the 

expression f o r y/ cancel exactly. 

A corresponding a n a l y s i s f o r -1 < r < 0 (the case of chapter 4) 

where 
1/2 f(x,x) = g 1 a 1 2 1 - pa 

2 
C n y / D n y / + g 2 a S n ^ / 

gives, under the same assumptions of linearity, 

1 / 2 , Pg„ 
f 

, 2 1 - pa 
2(1-Spa d ) 

1 -pa 2 

2 

1 / 2 * 0 ( p 2 ) 

(from equation (47)). 

I t therefore follows that, f o r equation (72) and -1 < r < 00 , f i r s t 

order terms i n y/ cancel exactly; the s i g n i f i c a n c e of t h i s r e s u l t may be seen 
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from the fo l l o w i n g discussion. . 

Consider an approximate s o l u t i o n 

x(t)'= a(t) Cny ( i . e . the case of r > 0 ) . 

Then, i f y = ( l + p a 2 ) 1 / / 2 : 

d_ (Cny) = -Sny/Dny ]h£ 
dt & t 

and may be obtained by i n t e g r a t i n g yv = (1+pa ) t r e a t i n g 'a' as constant. 

I f the i n i t i a l value of the phase i s 9(o), then 

x(t) = a(t) Cn [ ( 1 + P a 2 ) t + G(o)] 

i . e . the phase-modifying term 9(t) i s time-invariant (to f i r s t order). This 

furt h e r implies that s o l u t i o n frequency i s only amplitude dependent, and the 

e l l i p t i c i n t e g r a l K, which defines the quarter-period T by 

T = K 

(1+pa ) 

may be regarded as i n v a r i a n t . This l a s t r e s u l t i s p a r t i c u l a r l y important 

when d e r i v i n g the approximate s o l u t i o n . A s i m i l a r argument may be applied 

to solutions of the form x ( t ) = a(t)Sny, f o r which the same conclusions are 

reached. . 

The f i r s t order s o l u t i o n of the equation 
3 

x+-x + rx + 8 x = 0 

with -1 < r < oo , and an i n i t i a l amplitude defined by the i n i t i a l conditions 

x(o) and x(0) (see section 5.3), can then be obtained by c a l c u l a t i n g the 

amplitude envelope a ( t ) , and determining the l o c a l maxima, minima and zeroes 

of the s o l u t i o n from 

y (t) = nK(0) 

where K(o) i s the value of K corresponding to the i n i t i a l amplitude a(o) 

2 • 
(derived from the value of k f o r a(o)), and y i s given by 
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f = ( l 4 P a 2 ( t ) ) 1 / / 2 t + e(o) f o r r > 0 

and 

1 - p a 2 ( t ) 1 / / 2 t + 9(0) f o r -1 < r < 0. 
2 

Although t h i s method r e l a t e s d i r e c t l y to the equation considered 

i n s e ction 5-4, note that, because of the nonlinear nature of the function 

(1 - ^ x ) i i n equation (70), i t cannot be applied to s o l u t i o n of the modified 

Van der Pol equation. 

5.3 The Modified Van der Pol equation 

Consider the equation 

x + x + px 3 - 8(1 - # x 2 ) x =0 (p > 0) (70) 

where x(o) = 0. I f the approximate s o l u t i o n of t h i s equation i s taken as 

x(t) = a(t)Cny • 

where y = cot - K + 9 ( t ) , K i s the complete e l l i p t i c i n t e g r a l of the f i r s t 
2 •] /2 

kind, co = (1 + pa ) ' and 9(0) = 0, then: 

x = aCn y - aySnyDny/, 

2 2 2 
Now Sn(-K) = - 1, and since Dn u = 1 - k Sn u [ 5 ] i t therefore follows that 
- t „\ . /, . 2x1 /2 • ' , , 2 2 jjn^-K; = \\ - k ) where k = pa .. 

2 ( H p a 2 ) 

I t i s now possible to define x(o) i n terms of the q u a n t i t i e s p, a 

and k 2 as: 

i ( 0 ) = a ( l + P a 2 ) l / 2 ( l - k 2 ) l / 2 (73) 

i . e . a choice of the i n i t i a l c ondition i ( 0 ) determines the i n i t i a l s o l u t i o n 

envelope anrplitude, the e l l i p t i c f u n ction s o l u t i o n of equation (70) then being 

defined by x(o) = 0 and x(o). 

Note that t h i s argument also applies to the a n a l y s i s of chapter 3, 

and may obviously be extended to that of chapter 4 where x ( t ) = a ( t ) Snf. 

These considerations of i n i t i a l conditions are necessary to obtain 

a f i n a l s o l u t i o n , but do not a f f e c t the d e r i v a t i o n of the equation de f i n i n g 
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the functions and B ^ ^ ( i . e . equation (33)) 

For equation (70): 

f ( x , x , t ) = -(1 - J-x 2)x 

and therefore 

f ( x , x , t ) = aSnyDny/ (1 - ^ a 2Cn 2 y/) ( 1 + p a 2 ) 1 7 2 + 0(p) (74) 

As before (see se c t i o n 3-2), terms of 0(B) i n f( x , x , t ) are equivalent to 
2 

terms of 0({3 ) i n 8f ( x , x , t ) , and may be neglected i n the f i r s t order a n a l y s i s . 

Equation (74) i s of a more complex form than has been considered i n 
2 

previous chapters, as i t contains a term Cn y Sny/Dny and may no longer be 
expressed i n the simple form f ( x , x , t ) = g(a,t)SnyDny> which had made possible 

a comparison of c o e f f i c i e n t s of Cn^ and Snyv Dny i n equation (33) (section 3.2, 
2 

Wow Cn y 

From Milne-Thompson [16]: 

2 2 3 1 - S n y , i.e.. Cn yv Sny/Dny = Sny Dny - Sn f Dn\fJ 

co 00 
3 3 Sn y Dny/ = 8 T T 

3 3 
/ S s i n ( 2n+-l)7i\i/ 

v a ' n + 1 / 2 where S " q 
n 

1 - q 2n+1 

n=0 

> d = _ q n ^ 

7 1 + 2 7 1 d • cos ,.n TX uv 
2K K n=1 

and q = exp -
1 + q 2n 

[~-7lK' 

L K _ 

I f k i s small only S Q and d^ w i l l be s i g n i f i c a n t . Using Hermite's 

expansion f o r q i n terms of k [ 7 ] and taking 

K = n 
2 

1 + k f + 3 k l + 
4 8 

(from Bowman [5 ] ) , the expression f o r Sn y Dny may be reduced to the form 

Sn y/DnU/ = ( l-A)sin TUJ/ 
' 2K 

(75) 

where 1- 1 +• 0.9375k' 

L1 +- k 2 

2. - 0.0625k 
4 

(76) 

i 4\ 
terms of 0(.k ) have been neglected, and only the fundamental component of 



the Fourier s e r i e s expansion has been retained. 

I f the following approximation i s made: 

S n 5 y D n y = (l-A)Sny^Dny/ (77) 

then f ( x , x , t ) can be expressed i n the form f ( x , x , t ) = f(a)SnyDny, and the 

method of sec t i o n 3-2 applied to determine ^ and 

From equations (74) and (77) : 

f ( x , x , t ) = TaSny/Dny ( 1 + P a 2 ) 1 / / 2 

where T=1 - v A a , . ' (78) 

and from equation (33), comparing c o e f f i c i e n t s of Cny and SnyDny: 
n ,, 2x1/2 ,,(1) 0 , ( l ) / , 2N1/2 Ta(1+pa ) ' - aSr^ + 2k> y (1+pa ) 1 - 2pa 2A^ 1^ + p a 2 t A^ l ^ 

1 + pa 2 1/2 
(78) 

0 = A ^ - ( U e p a 2 ) 
(1+pa 2) _ 

2 a B ( l ) ( H P a 2 ) 1 / 2
+ 2 P a 2 t A ( 1 ) (80) 

, Taking the p a r t i a l d e r i v a t i v e of equation (80), s u b s t i t u t i n g f o r 
(1 ) 2 2 aB i n equation (79) and s e t t i n g k = pa_ 

2(1+pa) 

•+ 4A^ 1 ̂ ( H e p a 2 ) ( l + k 2 ) = 2 T a ( n e p a 2 ) . 

The p a r t i c u l a r i n t e g r a l of t h i s equation i s : 

A<1>- P a 
2(l+k 2) 

and therefore, s u b s t i t u t i n g - f o r P from equation (78.): 

a. - B_a + BxAa = 0 
2(l + k 2) 2 ( H k 2 ) 

(81) 

Equation (81) i s i n the form of.a B e r n o u l l i equation [ 6 ], which 

may be integrated a f t e r the s u b s t i t u t i o n 
-2 

z = a 
The f i n a l r e s u l t f o r a(t) i s : 
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i(t) g-A •+- exp 
L 1+k JL - *A 

2 
*0 

-1/2 (82) 

where i s the i n i t i a l value of the amplitude envelope (from equation (71)). 
0) 

As P i s , not an e x p l i c i t f u n c t i o n of time A ^ = 0 and hence, from 

equation (80): 

B<1L - P p a 2 t 2(l + k 2 ) ( U p a 2 ) l / 2 

or, s u b s t i t u t i n g f o r T from equation (78): 

,0) 2, 
- pa t + fl- pa tA 

2 ( l + k 2 ) ( H p a 2 ) l / 2 2 ( H k 2 ) ( l + P a 2 ) l / 2 

Integrating t h i s expression, and t r e a t i n g 'a' as a constant [13]: 

e(t) - p p a 2 t 2 

4(l + k 2 ) ( U p a 2 ) l / 2 

#Aa -1 (83) 

Equations (82) and (83) now define the f i r s t order approximate s o l u t i o n . 

To reduce these r e s u l t s to apply to Van der Pol's o r i g i n a l equation (see [30 ] 

and equation (69)), l e t ^ - 1 and p = 0. Then, i f x(o) = 0 and'x(o) = a, 

the approximate s o l u t i o n of equation (69) i s given by: 

:(t) = j_ +- exp(-Bt) 
4 

1 - 1 * 2 4 

0 

-1/2 s i n t (84) 

since 6(t) = 0 . 

The equation of the stable o s c i l l a t i o n i s obtained by l e t t i n g t 

tend to i n f i n i t y ( i . e . exp(-Bt) 0), and hence i n the l i m i t : 

x(t) = 2 s i n t. 

The r e s u l t 9(t) = 0 was also found by K r y l o f f and Bogoliuboff [ 1 3 ] , 

and produces a c i r c u l a r t r a j e c t o r y of the l i m i t cycle i n the phase plane (x-x) 

f o r equation (69). In p r a c t i c e the t r a j e c t o r y i s of a more complex nature [31], 

but i t should be noted that the present analysis (and the K-B analysis) produces 

averaged r e s u l t s which do not take into consideration the second-order e f f e c t 
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of amplitude v a r i a t i o n (e.g. the term 0(s) i n equation (74))- A n .analysis 

of Van der P o l ' s equation by the q u a s i - l i n e a r method of B o g o l i u b o f f - M i t r o p o l s k y 

can be found i n Minorsky [ 17 ]. A f t e r some manipulation i t can be shown 

that equation (84), i s e q u i v a l e n t to the f i r s t order approximate s o l u t i o n i n 

[ 1 7 ] . 

For the modified Van der P o l equation (equation (7 0 ) ) , the a p p r o x i 

mate s o l u t i o n i s , from equations (82) and (83) 

:(t) #A + exp 

n 2 4 - 2 

Bpa t 

-8±. 
U k 2 

-1/2 Cn ( U p a 2 ) l / 2 t - K 

4 ( H k 2 ) ( l + p a 2 ) l / 2 

• Aa - 1 (85) 

where x(o) = 0, and i ( o ) i s de f i n e d by equation (73) w i t h a = a^, the i n i t i a l 

envelope amplitude. 

A s o l u t i o n of the equation 

x + x + 2 x 3 - 0.1 (1 - x 2 ) i = 0 , ( 8 6 ) 

u s i n g the f i r s t approach of s e c t i o n 3 - 4 , " i s shown i n f i g u r e 5.1. The i n i t i a l 

amplitude a n was chosen as 1.0, g i v i n g (from equation (73)) i ( 0 ) = 1.4.14. 

The parameters of equation (86) correspond to 

6 = 0 . 1 , ^ = 1.0, p = 2.0, k 2 = 0.3333, K = 1 .734 

and hence (from equation ( 7 6 ) ) : 

A = 0.283 . 

S u b s t i t u t i n g these values i n t o equation (82), the amplitude envelope becomes: 

t(t) = 0.283 + 0.717 exp (-0.075t -1/2 

and the amplitude of the s t a b l e o s c i l l a t i o n a i s , t h e r e f o r e , 
s 

a s = ( y - A ) - l / 2 = ( 0 . 2 8 3 ) - l / 2 = 1.88 . 

2 2 
As a _ J , the term ( >fAa - 1) i n equation ( 8 3 ) vanishes when 

S ——— \j 
the s t a b l e o s c i l l a t i o n i s reached, and the s o l u t i o n of equation (86) then 
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0.4 
ttt) 

• 1.4 

]o.?83 * 0.717 expt-0.07S f}J J 

H H 
2.0 4.0 

—I— 
1.0 H f h - -4-^ 1-

(00 

-a/ 

-i.o-4- - — ^ 

Time (seconds) computer solution 
approximate solution — — 
K-B solution a a a o 

F i g . 5.1 Approximate and exact s o l u t i o n s of 
. . x -f x + 2 x 3 - 0.1 (1 - x 2 ) x = 0 

X(l) 

F i g . 5.2 Phase p o r t r a i t of the s o l u t i o n to 
x -f x + 2 x 3 - 0.1 (1 - x 2 ) i = 0 



becomes- c ' . 

x(t) =• 1 .88' Cn[ (8.06) 1./ 2 t - I . 7 3 4 ] . (87) 

Differentiating equation (87) with respect to time, the maximum value of 

x(t) i s obtained from the equation 

x = a. Cny - ay/Sny/Dny . 
When the stable o s c i l l a t i o n i s reached, a. — 0 and hence . 

x = a y Sn \» Dn y max ' / ' max 
2 2 

For small values of k (i.e. k « l ) |Sny/Dny I w i l l be close to i t s 
maximum value when \j/ = (2n+1 ) K, and then 

a g j/ [ 1-k 2] (88) x 
max o 2 2 pa where k = -^T - s - (89) 

2 [ l + P a 2
s _ 

Finally, from equations (87), (88) and (89): 

i 4 . 0 0 . 

max 

The phase portrait for equation (86), obtained from an analog 

computer simulation, i s shown i n figure 5 . 2 , where the limit cycle behaviour 

may clearly be seen. Actual values of x and x (from this simulation) 
max max 

were 1.92 and 4 . 1 5 respectively, which compare favourably with the predicted 

value of 1.88 and 4 . 0 0 . 

5 . 4 The damped Duffing equation 

For the Duffing equation 

x 4- x + px 5 + 8x = 0 (p > 0 ) (71.) 

with x(o) = 1 . 0 and i ( o ) = 0 , the function 6f(x,x,t) i s , to a f i r s t approxi

mation 

Bf(x,x,t) =' Bx = -8a SnfDnf ( 1+pa 2) 1^ 2 . 
Following the method of section 3-2, and applying equation (33), 
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(1) the expression.defining A may be obtained as 

+ 4 ( l + e p a 2 ) ( l + k 2 ) = -2a (Uepa 2) (83) 

where 

k 2 = pa 
2(1+Pa ) 

Hence, taking the particular integral of equation (83): 

(1) - a 
2(Uk 2) 

and 

t(t) = exp j:Bt_ 
2(Hk 2) 

(84) 

From the analysis of section 5-2, the f i n a l solution for x(t) i s 

therefore 

:(t) = exp " -Pt Cn 1 + p exp ̂ Bt_" 1/2 t -

- 2 ( l + k 2X J+k 2. 

since 9(o), the i n i t i a l phase, is zero (for the choice of i n i t i a l conditions). 

The local maxima, minima and zeroes of the approximate solution can be obtained 

by a graphical solution of the equation 
1/2 1 -t- p exp -P i . 

i + k

s 

n K (0) (n = 0,1 ,2, ). 

A solution of the equation 

x + ' X + 2x 3 + x = 0 

with x(o) = 1, i ( o ) = 0 i s shown i n figure 5-3, where although the parameter 

8 i n equation (71) is equal to 1, solution phase accuracy, i s seen to be maintained. 
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86 

5.5 Comparison with the K-B Method 

It has not previously been possible to make a comparison between 

the e l l i p t i c f u n ction approximation and the K-B approximation, as the l a t t e r 

cannot be applied ,to non-autonomous systems of the type considered i n 

chapters 2-4 . For the two nonlinear autonomous systems of section 5 .3 and 

5-4, however, such a comparison can be made. 

Consider f i r s t the modified Van. der Pol equation 

3 2 x + x + px - B ( 1 - X ) X = 0 

with x(o) = 0 , and assume (following the K-B method [ 1 3 ]) a s o l u t i o n of the 

form 

x(t) = a(t) s i n (cot + 0 ( t ) ) , where co = 1 . 

Now the function f(x,x) i n the equation 

2 

x + co x -+- e f ( x , i ) = 0 

. . . . . . !1 
assuming e =1 . 

S u b s t i t u t i n g f o r x and i : 

3 2 i s given by f(x,x) = px - B(1 - x )x , 

f ( a s i n y , a y c o s y ) = pa 3 s i n y - s i n 3 y 
4 L 

+ 6 a 2 - 1 
L4 

c o s y - J L c o s 3 Y 
4 ' _ 

where y = cot + 9 . The f i r s t order K-B approximation equations f o r a. and 0 

may then be obtained as [ 13 ] : 

2 a = pa 
2 

1 a. 
4 

9 = 3 pa 
8 

For the equation chosen i n sec t i o n 5 . 3 , where p = 2 , B = 0 . 1 , and 

assuming a(o) = 1 . 0 , the r e s u l t i n g K-B approximation s o l u t i o n i s : 
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:(t) = ^ 2 s i n ( l . 7 5 t ) . 0 . 2 5 + 0 . 7 5 exp ( - 0 . 1 t ) 

The f i r s t one and a h a l f periods of t h i s s o l u t i o n are pl o t t e d i n 

f i g u r e 5 .1» where the superior accuracy of the e l l i p t i c f u n ction approximation 

i s evident. . . • . 

Now consider the he a v i l y damped Duffing equation considered i n 

section 5 . 4 : 

3 

x + x + px + Bx = 0 , 

with x(o) = 1 and x(o) = 0 . Assuming an approximate s o l u t i o n of the form 

x(t) = a(t) cos (cot +• 0 ( t ) ) , 

where again co = 1 , the K-B approximations . f o r a and 9 are: 
a = -Ba 

2 

and 
2 

9 = 3pa . 
8 

For the equation 

3 -

x + x + 2 x + - x = 0 

with x(o) = 1 . 0 and x(o) = 0 , the K-B approximate s o l u t i o n i s then 
x( t ) = exp ( - 0 . 5 t ) cos ( l . 7 5 t ) . 

The f i r s t period of t h i s s o l u t i o n i s shown i n f i g u r e 5-3, and 

again the e l l i p t i c f unction approximation i s seen to he considerably more 

accurate. 

In f a i r n e s s to the K-B method i t should be noted that both of 

the equations considered here are grossly nonlinear and, as such, are not 

s t r i c t l y amenable to an a l y s i s by a q u a s i - l i n e a r approach. This comparison 

does, however, serve to accentuate the misrepresentation of nonlinear system 

performance when l i n e a r i t y , or even q u a s i l i n e a r i t y , i s assumed. 



5.6 Conclusion 

The a p p l i c a t i o n of the r e f i n e d approximation of chapters. 3 and 4 

to non-linear autonomous equations of the normalized form 

3 

x + x + rx + Bf (x,x) = 0 (-1 < r < o o ) 

i s demonstrated i n t h i s chapter, by considering a modified Van der Pol 

equation [17 ] and a damped, forced Duffing equation [34 ]. I t i s shown, 

i n s ection 5-2, that an e x p l i c i t form of the s o l u t i o n to the equation 

'x + x + rx +• Bx = 0 (-1 < r < oo ) 

can be obtained, making use of a complete c a n c e l l a t i o n of f i r s t - o r d e r terms 

i n the expression f o r ^ , where i s the argument of the e l l i p t i c f unction 

used i n d e r i v i n g the approximate s o l u t i o n . This i s a s i g n i f i c a n t r e s u l t , 

and represents an improvement both i n accuracy and s i m p l i c i t y over e x i s t i n g 

s o l u t i o n methods. 

I t i s also shown i n s e c t i o n 5.3, as the d e f i n i n g equations of the 

r e f i n e d approximation (equations (33) and ( 5 4 ) ) are independent of i n i t i a l 

conditions,, approximate solutions can r e a d i l y be obtained f o r x(0) = 0 when 

x(o) i s defined. 

A comparison of solutions obtained from the e l l i p t i c f u n ction 

approach and from the K-B method, demonstrates the superior accuracy of the 

e l l i p t i c f u n ction approximation. 

The a n a l y s i s of t h i s chapter completes the development and 

a p p l i c a t i o n of the f i r s t order e l l i p t i c f unction approximation to solutions 

of the normalized equation 

x + x + rx + Bf (x,x, t ) = 0 (-1 < r < oo ). 

In chapter 6 some physi c a l systems described by t h i s equation are considered 

to demonstrate possible areas of a p p l i c a t i o n of the approximation method. 



89 

6. SOME APPLICATIONS 

6.1 Introduction 

The theory developed in the preceding chapters relates to second 

order d i f f e r e n t i a l equations exhibiting a cubic nonlinearity and small 

perturbing functions. It i s the purpose of this chapter to.show how such 

equations arise in practice by considering examples chosen from the fields 

of mechanics, astrophysics, ci r c u i t analysis and control systems. Detailed 

derivations have been avoided, the intention being to obtain differential 

equations corresponding to those chosen as examples in previous chapters. 

6.2 Environmental studies of mechanical systems 

As a familiar example of an oscillatory mechanical system, consider 

a particle, of mass m, suspended on a non-linear spring of the hardening 

type L 6 J, which exerts a restoring force F = c (x + px ) (p > 0). 

Suppose that the system i s operating i n an environment subject to rapid tem

perature change, and that the effect of linearly decreasing temperature on 

system performance i s to be investigated. 

Contraction of the spring resulting from the temperature decrease 

[ 19] w i l l produce' an increase in spring stiffness with time. If x i s the 

displacement, of the particle from i t s equilibrium position, then this increase 

in stiffness can be represented by a term Btx i n the expression for the restoring 

force F of the spring: 

F = c(x + px + Btx) 

where c, p and B are constant positive parameters, and 8 is small. 

The equation of motion of the particle can then be written as 

x + _c (x + px + Btx) =0 
m 

or, taking for simplicity c_ = 1 : 
m 
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x + x + px + ( 3 t x = 0 , 

which i s the equation of the f i r s t example of chapters 2 and 3. The f i r s t 

example of chapter 4 applies to a spring with a softening c h a r a c t e r i s t i c [.6 ] , 

hut subject to the same increase i n s t i f f n e s s as a r e s u l t of decreasing tempera

ture, and f o r which the r e s t o r i n g force F i s of the form 

F = c (x - px 3 + Btx) 

Then, i f o =1, the equation of motion of the p a r t i c l e i s 
m 

x + x - px 4 ptx = 0 . (0 <: p < 1 ) 

Now consider the same mass-nonlinear spring system which i s operating 

i n an environment of varying v i s c o s i t y , such as a l i q u i d which i s r a p i d l y 

c o o l ing [ 8 ]. I f i n i t i a l l y the v i s c o s i t y i s n e g l i g i b l e , and increases 

l i n e a r l y with time and decreasing temperature, then the damping force may 

be taken as A.tx (\> 0 ) . The equation of motion of the p a r t i c l e i s then 

. x -+- c_ (x -t- rx ) +• X tx = 0 . 
m m 

Taking c. =1 and X = B gives, f o r r > 0 , the equation considered i n the 
m m 

second example of chapters 2 and 3, and f o r -1 < r < 0 , the equation of the 

second example of chapter 4 . 

6 .3 S t e l l a r pulsation 

Stars of the Cepheid type e x h i b i t v a r i a t i o n s i n luminosity which 

are of a periodic nature, and a possible explanation of t h i s phenomenon i s 

that the surface area of such stars i s varying. I f the s t a r i s assumed to 

be r a d i a l l y symmetric, qua n t i t a t i v e r e s u l t s f o r the periodic v a r i a t i o n i n 

radius can be obtained by observing frequency changes i n the emission spectrum 

of the Cepheid. As the v e l o c i t y of the l i g h t - r a d i a t i n g source i s r e a d i l y 

determined from such observations, i t i s usual to plot r a d i a l v e l o c i t y as a 

function of time. Such a c h a r a c t e r i s t i c i s c a l l e d a Cepheid v e l o c i t y curve. 
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The phenomenon of s t e l l a r p u l s a t i o n has at t r a c t e d the att e n t i o n of 

many .astrophysicists, and W.S. Krogdahl [12 ] proposed a p a r t i c u l a r l y i n t e r 

e s t i n g mathematical model. Krogdahl based h i s analysis on the e x i s t i n g 

i d e a l i z e d models of Cepheids which, a f t e r c e r t a i n approximations, he derived 

i n the form 

2 2 2 3 d_q = -q + 2. q + U q + + 2.(1 - q) 
d / 3 27 3 L d X . 

•7 

•Here q i s given by q •= g(a , f ) where 'a' i s the mean or equilibrium radius 
3 ~ 

of the star, g(a , t ) being a fun c t i o n which i s assumed small i n comparison 

3 

with a . 

From the assumptions that 

a) Cepheids are s t a t i c a l l y unstable stars 

b) Real thermodynamic systems are d i s s i p a t i v e 

and a somewhat h e u r i s t i c argument, he then proposed that t h i s equation be 

modified by the a d d i t i o n of a term 

2 
1 - q 

X* J 
dq , 
dtr 

where jX and X are small empirical constants. 

The r e s u l t i n g equation i s s e l f - e x c i t e d [ 6 ], and a f t e r a change 

of v a r i a b l e can be obtained i n the f i n a l form 

Q " +- Q - 2 X Q2 + H X2 Q3 - JU.(1 - Q2) Q' - 2X (1 - X Q ) ( Q')2 - 0 . 
3 27 ' 3 

When A. = 0 t h i s equation reduces to Van der Pol's equation (equation (69), 

and therefore should, f o r small X, e x h i b i t l i m i t - c y c l e behaviour i n the 

Q - Q' phase-plane. Krogdahl used a graphical technique to determine 

l i m i t - c y c l e t r a j e c t o r i e s which exhibited behaviour s i m i l a r to that of Cepheid 

v e l o c i t y curves. To quote H.T. Davis [ 7 ] (p. 371), "the general argument of 



the author seems to be confirmed". 

In section 5-3 i t was shown that the amplitude of the stable 

oscillation of the modified Van der Pol equation was a
s ~ Now 

for Krogdahl's equation, and comparing the terms 

^ x jx (from equation 70) and 6(1 - y x 2)x 

i t can be seen that = 1 . 

- Q ) Q1, 
Taking, for purposes of approximation, A = 0 . 2 5 , 

the f i n a l amplitude of the solution Q w i l l be approximately 2. This implies 
2 3 

that the term J_4 X Q i s not negligible, and that Krogdahl's equation may 
27 

be written i n the form 

Q« + Q + J_4 \ 2 Q 5 - \ 
27 

2 Q +/* (1 - <T) Q' + 2 (1 - X Q)( Q1) = 0 
.3 X 3 

This equation i s comparable to that of the modified Van der Pol 

equation considered i n section 5.3, and may be analysed i n a similar manner. 
i' 

6.4 Nonlinear frequency modulation 

Many applications of non-linear and time-varying differential 

equations are to be found i n the f i e l d of c i r c u i t theory, but the analyses 

of recent papers [35 ] - [43 ] are limited by existing techniques to a quasi-

linear approach. The modified Mathieu equation [15 ], [17 ], considered in 

chapters 2, 3 and 4 i s not restricted by considerations of quasi-linearity, 

and a c i r c u i t described by such an equation i s discussed below. 

Consider the c i r c u i t shown i n figure 6.1. 

v 

Fig. 6.1 L - C c i r c u i t with nonlinear and time-varying capacitors. 
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where L i s a linear inductor, C Q represents nonlinear capacitance effects 

in the c i r c u i t and is a time-varying capacitance device such as a varactor 

diode [ 3 9 ] , [ 4 3 3 • Such a resonant c i r c u i t i s found i n frequency-modulated 

oscillators [ 6 ] . 

Suppose C Q i s a saturating capacitance such that 

C Q = a - bq 

where 'a* and 'b' are positive constants, b i s small and q i s the total charge 

stored i n the c i r c u i t . 

I f the varactor diode i s modulated by a simple harmonic signal, then 

the capacitance C ^ may be written as [ 6 ] 

Cj = c (1 4 - d cos toQt) 

where c i s the mean capacitance of the varactor diode, d i s a small constant 

and U)Q i s the frequency of the modulating signal. Neglecting terms of order 
2 2 

b and d , the differential equation describing the system may be obtained 
i n terms of the total stored charge q as: 

q +- _q_ 
aeL 

a + c •+ be q 2 - ad cos to 

Taking, for simplicity, p = be , acL = 1, a + c = 1 and ad = 6, 
a 

this equation becomes 
3 

q + q + pq - Bq cos to^t = o 
which i s the form considered by Minorsky [17 ] and in the f i n a l examples of 

chapters 2 and 3-

6 . 5 Nonlinear control systems 

As a f i n a l example, a feedback control system containing a nonlinear 

element i s considered. Such systems have attracted considerable attention 

[ 4 6 ] - [ 5 4 ] > a n d control systems containing both linear and nonlinear com-
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ponents of the form shown in figure 6.2 are generically designated as 

"problems of Lur.'e" [ 51 ], provided ef(e) > 0 and f(o) = 0. An acceptable 

nonlinearity would be an odd function f(e) = e + re . 

x + ^ e 

f( ) f(e) G(s) y 
_ 

f( ) G(s) 

Fig. 6.2 The Lur'e type control system. 

G(s) represents a linear element in operator form, and f( ) represents a 

nonlinear element. 

- To investigate control systems which can give rise to nonlinear 

differential equations of the type analysed in chapters 2-5, consider a servo-

mechanism preceded by a saturating amplifier. The servomechanism may be. 

represented by the transfer function 

G(s) = _ c 
2 

s -+- as +b 

where a, b and c are constant parameters, and the saturating amplifier 

represented by the function f(e) = e - pe (0 < p <1). 

Then, i f x(0~) = y(0") and x(t) =0 V t > 0, and since f(-e)= -f ( e ) , 

the di f f e r e n t i a l equation of the control system shown i n figure 6.2 w i l l be 

y +ay 4 y(b4c) - pcy = 0 . 

This i s of the form considered in section 5.4 for the damped Duffing equation, 

and hence certain nonlinear control systems are amenable to a transient 

analysis by the methods developed in chapters 2-5-



6.6 Conclusion 

In this chapter some possible areas of application of the approxi

mation method have been indicated by considering four systems which result i n 

equations of the form 

x + x + rx + Bf(x,x,t) =' 0 (-1 < r < oo ). 

An exhaustive survey of practical applications was not intended, but the 

examples chosen serve to show some areas to which the general analysis pertains 



7. CONCLUSION 

In this thesis a method has been presented for determining approxi

mate solutions to a class of grossly nonlinear, non-autonomous second order 

differential equations characterized by 

dfx + m (x +• rx^) + uf (x, dx, x) — 0 (-1 < r <co) 
d* 2 d r 

with the restriction that resonance effects be negligible. A solution i s 

assumed in the form of a Jacobian e l l i p t i c function with variable amplitude, 

'a*, and a phase modification term, 9. The analysis takes, as i t s starting 

point, perturbation series representations of a and 9 similar to that chosen 

by Bogoliuboff and Mitropolsky. The approximate solution i s obtained by 

integrating expressions for a and 9 but, in contrast to the K-B and B-M 

methods, no assumptions about solution frequency need be made. This i s an 

important advance over existing techniques, as substantially less error i s 

incurred during this integration. 

The refined approximation takes into consideration the variation of 

solution frequency with amplitude, a characteristic of nonlinear systems. 

Factors involving k, the modulus of the e l l i p t i c function, are introduced into 

the expressions for a and 9 by this approach and give solutions which are 

directly related to the degree of nonlinearity. This feature i s unique to 

the e l l i p t i c function approximation, and i s particularly important in the 

analysis of grossly nonlinear oscillatory systems. 

It i s shown that a differential equation which w i l l generate the 

approximate solution can be formulated for any particular example, where the 

coefficients are derivatives of the amplitude envelope and the argument of the 

e l l i p t i c function. The error of the approximate solution can then be 

determined, and an integral-error definition i s used in deriving error results 

for the three general examples considered in the analysis. In practice 



approximate solutions show much greater accuracy than would be expected 

from the error a n a l y s i s , and use of the i n t e g r a l error diagram leads to a 

.pessimistic estimate of s o l u t i o n accuracy. 

In the a p p l i c a t i o n of the a n a l y s i s to autonomous systems, a compari

son i s possible between r e s u l t s obtained from the e l l i p t i c f u n ction approach 

and those obtained from the K-B method. Such a comparison cannot be made 

fo r non-autonomous systems of the type considered here.because of l i m i t a t i o n s 

of the K-B method. I t may be seen that such a task exceeds the c a p a b i l i t i e s 

of the 'K-B method, but f i r s t - o r d e r approximate solutions of high accuracy are 

obtained from the e l l i p t i c f u n ction approach. Because of an exact c a n c e l l a t i o n 

of c e r t a i n f i r s t order terms, a s o l u t i o n of the heavily, .damped Duffing equation 

x + x + rx + Bx = 0 (-1 < r < oo ) 

can be obtained i n a simple but accurate form which represents a s u b s t a n t i a l 

improvement i n accuracy over e x i s t i n g approximate so l u t i o n s . 

A u s e f u l extension of t h i s work would be to include systems i n v o l v i n g 

time-delay, and also to analyse the e f f e c t of r e t a i n i n g more terms i n the 

perturbation s e r i e s . The a n a l y s i s can, i n p r i n c i p l e , be extended to any 

order of accuracy at the expense of tedium. Polynomial truncation to a 

cubic would enable approximate solutions of the equation 
oo 

" 2 ( ?\ ^ \ ' (2n+l) 0 . / . ,x _ x + m ( x + r x ; + y a(2n+1 ) +8fAx,x,t; = 0 
n=2 

to be determined. This problem also merits a t t e n t i o n . 

In conclusion, a new a n a l y t i c a l method has been presented f o r 

i n v e s t i g a t i n g the.transient response of non-resonant, non-autonomous, gr o s s l y 

nonlinear second order systems. The approximation technique i s shown to 

have a p p l i c a t i o n to the f i e l d s of astrophysics, mechanical systems, e l e c t r o n i c 



oscillators, frequency modulation processes and nonlinear control systems, 

but can in general be applied to most oscillatory nonlinear problems where 

the K-B method has been used in the past. 
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9. APPENDIX 

9.1 E l l i p t i c f u n c t i o n relationship§_ 

2 2 Sn u + Cn u = 1 

2 2 2 Dn u + k Sn u = 1 

k - [ l - k 2 ] 1 / 2 

a (Snu) = Cnu Dnu 
du 

d (Cnu) = - Snu Dnu 
du • ' 

2 
d (Dnu) = - k Snu Cnu 
du 

TC/2 

K _ J (1 - k 2 s i n 2 0 ) l / 2 

0 

7i/2 

K ' " J (1 - ( k - ) 2 s i n 2 0)1/2 ; : 
.0 

These formulae summarize the r e l a t i o n s h i p s of e l l i p t i c f u n c t i o n s 

used, or i m p l i e d , i n the t e x t . For a d d i t i o n a l i n f o r m a t i o n the reader i s 

r e f e r r e d to Bowman [ 5 ]» which a l s o contains a s e l e c t e d b i b l i o g r a p h y on 

e l l i p t i c f u n c t i o n s . 

9.2 T a b u l a t i o n of e and o" 

The constants e and o , defined by equations (10) and (53) 

r e s p e c t i v e l y , were evaluated u s i n g the UBC IBM 360/67 d i g i t a l computer. The 
2 

constants p, k ,,e and K appear i n t a b l e 1, f o r increments i n p of 0.01. 

The constants p, k 2, h and K are t a b u l a t e d i n Table 2, f o r increments i n p 

of 0.005-
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K 
0.010 
0.020 
0.030 
0 .040 
0.050 
0.060 
0.070 
0.080 
0.090 
0. 100 
0.110 
0. 120 
0.130 
0 . 140 
0.150 
0.160 
0.170 
0.180 
0.190 
0.200 
0.210 
0.220 
0.230 
0.240 
0.250 
0 .260 
0.270 
0.280 
0.290 
0 .300 
0.310 
0.320 
0.330 
0.340 
0.350 
0.360 
0.370 
0.3-80 
0.390 
0.400 
0.410 
0.420 
0.430 
0 .440 
0.4 50 
0 .460 
0.470 
0.480 
0.4 90 
0.500 

0, 
0, 
0, 
0, 
0, 
0, 
0, 
0, 

005 0 
0098 
0146 
0192 
02 3 8 
0283 
0327 
0370 

0.0413 
0.0455 
0.0495 
0.0536 
0.0575 
0.0614 

0652 
0690 
072 6 
0763 
079 8 
0833 

0, 
0, 
0, 
0, 

0868 
0902 
0935 
0968 
1000 

0.1032 
0.1063 

1094 
1124 
11 54 
1183 

0.1212 
0.1241 
0.12-69 
0.1296 

1324 
1350 
1377 
140 3 
1429 
1454 
1479 
1503 

0. 1528 
0.1552 

1575 
1599 
1622 
1644 
1667 

0, 
0, 
0, 
0, 
0. 

0, 
0, 
0, 
0, 

0.6664 
0.6662 
0.6660 
0.6658 
0.6656 
0.66 54 
0.6652 
0.6650 
0.6648 
0.6646 
0.6644 
0.6642 
0.6640 
0.6639 
0.6637 
0.663 5 

6633 
6632 
6630 
6628 

0.6626 
0.66 25 
0.6623 
0.6622 
0.6620 
0.6618 
0.6617 
0.6615 
0.6614 
0.6612 
0.6611 
0.6609 
0.6608 
0.6607 
0.6605 
0.6604 
0.6602 
0.6601 
0.6600 
0.6598 
0.6597 
0.65 96 
0.6595 
0.6 5 93 
0.6592 

6591 
6590 
65 88 
6587 

0.6586 

5727-
5 747 
5766 
5784 
5803 
5821 
5839 
5 85 6 
5 874 

1.5891 
1.5908 
1.5925 
1.5941 
5958 
5974' 
5 990 
6005 
6021 
6036 

1.6051 
1.6066 
1.6081 
1.6096 
1.6110 
1.6124 
1.6138 
1.6152 
1.6166 
1.6180 
1.6193 
1.6206 
1.6219 
1.6232 
1.6245 
1.6258 
•1.6270 
1.6283 
1.6295 
1.6307 
1 .6319 
1.6331 
1 .6343 
1.6354 
1.6366 
1.6377 
1.6388 
1.6399 
1.6410 
1.6421 
1.6432 

0.510 
0. 520 
0.530 
0. 540 
0.550 
0. 560 
0. 57 0 
0. 580 
0. 59 0 
0. 600 
0.610 
0.620 
0.630 
0.640 
0.650 
0. 660 
0.67 0 
0. 680 
0.690 
0.700 
0.710 
0.720 
0.730 
0.740 
0.750 
0.7 60 
0.770 
0.780 
0.790 
0.800 
0.810 
0.8 20 
0.3 30 
0.8 40 
0.850 
0.860 
0.870 
0.880 
0.890 
0.900 
0.910 
0.920 
0.9 30 
0.940 
0.950 
0.9 60 
0.97 0 
0.980 
0.990 
1.000 

0.1689 
0.1711 
0.1732 
0.1753 
0.1774 
0.1795 
0.1815 
0.1835 
0.1855 
0.1875 
0.1894 
0." 1914 
0. 1933 
0. 1951 
0.1970 
0.19 88 

200 6 
20 24 
2041 
20 59 
2076 
2093 
2110 
2126 

0.2143 
0.2159 
0.2175 
0.2191 
0.2207 
0.2222 
0.2238 
0.22 53 
0.2268 
0.2283 
0.2297 
0.2312 
0.2326 
0.2 340 
0.2 3 54 
0.2368 
0.2382 
0. 2396 
0.240 9 
0.2 423 
0.2436 
0.2449 
0.2462 
0.2475 
0.2487 
0.2500 

0.6 5 85 
0.65 84 
0.6583 
0.6581 
0.65 80 
0.6579 
0.6578 
0.6577 
0.6576 
0.6575 
0.6574 
0.6573 
0.6572 
0.6571 
0. 6 5 70 
0.6569 
0.65 68 
0.6567 
0.65 66 
0.6565 
0.6564 
0.6563 
0.6562 
0.6561 
0.6560 
0.6559 
0.6558 
0.6558 
0.6557 
0.6556 
0.6555 
0.6554 
0.6553 
0.655 2 
0.6552 
0.6551 
0.6 5 50 
0.6549 
0.6548 
0.654 7 
0.6547 
0.654 6 
0.6 545 
0.6544 
0.6544 
0.6543 
0.6 542 
0.6541 
0.6541 
0.6540 

_K 
6443 
6453 
64 64 
6474 
64 84 

1 .6494 
1.6504 
6514 
6524 
653 4 
6543 

1.6553 
1.6562 
6572 
65 81 
6590 
6599 

1 .660 8 
1.6617 
1 .662 6 

1, 
1 . 
1 
.1 . 
1. 

1 
1 
1 , 
1, 

1, 
1 , 
1, 
1 , 
1, 
1 , 

,6635 
,6643 
,6652 
,6661 
,6669 
,6677 

1.6686 
1 .6694 
1.6702 
1 .6710 
1.6718 
1 .6726 
1.6734 
1 .6 742 
1.6749 
1 .675 7 
1 .6765 
1 .6772 
1.6779 
1 .6787 
1.67 94 
1 .6 80 1 
1 .6809 
1 .6816 
1.6823 
1 . 6 83 0 
1.6837 
1 .6 844 
1.6851 
1 .6857 
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1.010 
1 .020 
1.030 
1 .040 
1.050 
1 .060 
1.070 
1 .080 
1.090 
1 , 
1 
1 , 
1, 
1 , 
1. 
1, 

100 
110 
120 
130 
140 
150 
3.60 

1.3 70 
180 
190 
200 
210 
220 
2 30 
240 
250 
260 

1.270 
1 .280 
1.290 
1 .300 
1.310 
1 .320 
1.330 
1 .340 
1.350 
1 .360 
1.370 
1 .380 
1.390 
1 .400 
1.410 
1 .420 
1.430 
1 .440 
1.450 
1 .460 
1.4 70 
1 .480 
1.490 
1 .500 

0, 
0, 
0, 
0, 
0, 
0, 

0.2512 
0.2525 
0.2537 
0.2549 
0.2561 
0.2573 
0.2585 
0.2596 
0.2608 
0.2619 
0.2630 
0.2641 
0.2653 
0.2 664 
,2674 
,2685 
,2696 
,2706 
,2717 
,2727 

0.2738 
0.2748 
0.2758 
0.2768 
0.2778 
0.2788 
0.2797 
0.2807 
0.2817 
0.2826 
0.2835 
0.2845 
0.2 8 54 
0.2863 
0.2872 
0.2881 
0.2890 
0.2899 
0.2908 
0.2917 
0.2925 
0.2934 
0.2942 
0.2951 
0.2 95 9 
0.2967 
0.2 976 
0.2984 
0.2 99 2 
0.3000 

0.6 53 9 
0.6538 
0.6538 
0.6537 
0.6536 
0.6536 
0.6535 
0.6534 
0.6534 
0.6533 
0.6532 
0.6532 
0.6531 
0.6530 
0.6530 
0.65 29 
0.6528 
0.6528 
0.6527 
0.6526 
0.6526 
0.6525 
0.6525 
0.65 24 
0.6523 
0.6523 
0.6522 
0.6522 
0.6521 
0.6521 
0.6520 
0.65 19 
0.6519 
0.6518 
0.6518 
0.6517 
0.6517 
0.6516 
0.6516 
0.65 15 
0.6514 
0.6514 
0.6513 
0.6513 

6512 
65 3.2 
6511 
6511 

0.6510 
0.65 10 

K 
1.6864 
1.6871 
1.6878 
1.6 884 
1.6891 
1.6897 
1.6904 
1.6910 
1.6916 
1.6923 
1.6929 
1.6935 
1.6941 
1.6 947 
1.6953' 
1.6959 
1.6965 
1.6 971 
1.6977 
1.6983 
1.6988 
1.6994 
1.7000 
1.7006 
1.7011 
1.7017 
1.7022 
1.7028 
1.7033 
1.7 039 
1.7044 
1.7 049 
1.7054 
1.7060 
1.7065 
1.7 070 
1.7075 
1.7080 
1.7085 
1.7090 
1.7095 
1.7100 
1.7105 

7 3.10 
1.7115 
1.7120 

7125 
7129 
7134 

1 

1 
1 
1 
1.7139 

1.510 
520 
530 
540 
550 
560 
57 0 

1. 580 
1.59 0 
1.600 
1.610 
1.620 

630 
640 
650 
660 
670 
680 
690 
700 

1.710 
1.720 
1.730 
1.740 
1.750 
1.760 
1.770 
1.780 
1.790 
1.800 
1.810 
1.820 
1.830 
1, 
1, 
1. 
1, 
1, 

840 
,850 
860 
,870 
,880 

1 .890 
1.900 
1.910 
1.920 
1.930 
1.940 
1.950 
1.960 
1.97 0 
1.980 
1.990 
2.000 

0.3008 
0.3016 
0.3024 
0.3031 
0.3039 
0.3047 
0.3054 
0.3062 
0.30.69 
0.3077 
0.3084 
0.3092 
0.3099 
0.3106 
0.3113 
0.3120 
0.3127 
0.3134 
0.3141 
0.3148 
0.3155 
0.3162 
0.3168 
0.3175 
0.3182 
0.3188 
0.3195 
0.3201 
0.3208 
0.3214 
0.3221 
0.3227 
0.3233 
0.3239 
0.32 46 
0.3252 
0.3258 
0.3264 
0.3270 
0.3276 
0.3282 
0.3288 
0.3293 
0.3299 
0.3305 
0.3311 
0.3316 
0.3322 
0.332 8 
0.3333 

0.6509 
0.6509 
0.6508 
0.650 8 
0.6507 
0.6507 
0.6506 
0.6506 
0.6506 
0.6505 
0.6505 
0.6504 
0.6504 
0.6503 
0.6 503 
0. 650 2 
0.6502 
0. 650 1 
0.6 501 
0.650 1 
0.6500 
0.6500 
0.6499 
0.6499 
0.6498 
0.6498 
0.6498 
0.6497 
0.6497 
0.6496 
0.6496 
0.6496 
0.6495 
0.6495 
0.6494 
0.6494 
0.6494 
0.6493 
0.6493 
0.6492 
0.6492 
0.6492 
0.6491 
0.6491 
0.6491 
0.6490 
0.64 90 
0.6489 
0.64 89 
0.648 9 

1, 
1 , 
1 
1 , 
1 

1 
1. , 
1 
1 . 
1 
1 , 
1 
1 
1 

K 
7144 
7148 
7153 
7157 
7162 

1.7166 
1.7171 
1.7175 
1. 71 80 
1 .7184 
1.7188 
1 .7193 
1.7197 
1 .720 1 

7206 
7210 
7214 
7218 
7222 
7227 
7231 
7235 
72 39 

1.7243 
1.7247 
1 .7251 
1.7255 
1 .7259 
1.7262 
1.7266 
1.7270 
1 .72 74 
1.72 78 
1.72 82 
1.7285 
1.7289 
1.72 93 
1 .7296 
1.7300 
1 .7304 
1.7307 
1 .7311 
1 .7315 
1.7318 

7322 
732 5 
7329 
7332 
7336 
733 9 

1 
1 , 
1 
1 , 
1, 
1 , 
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2.010 
2 .020 
2.030 
2 .040 
2.050 
2 .060 
2.070 
2 .080 
2.090 
2 , 
2, 
2, 
2, 
2, 
2, 
2 , 
2, 
2 , 
2, 
2, 
2, 
2. 
2, 
2 . 

, 100 
,110 
,120 
,130 
140 
,150 
,160 
,170 
, 180 
,190 
,200 
,210 
,220 
,230 
240 

2.250 
2.260 
2.270 
2.280 
2.290 
2.300 
2.310 
2 .320 
2.330 
2 .340 
2.350 
2.360 
2.370 
2 .380 
2.390 
2 .400 
2.410 
2 .420 
2.430 
2 .440 
2.4 50 
2 .460 
2.470 
2 .480 
2.490 
2 .500 

0, 
0. 
0, 
0, 
0, 
0. 

0.3339 
0.3344 
0.3350 
0.3355 
0.3361 
0.3366 
0.3371 
0.33 77 
0.3382 
0.3387 
0.3392 
0.3397 
0.3403 
0.3408 
,3413 
3418 
,3423 
342 8 
,3433 
3437 

0.3442 
0.3 447 
0.3452 
0.3457 
0.3461 
0.3466 
0.3471 
0.3476 
0.3480 
0.3485 
0.3489 
0.3494 
0.3498 
0.3503 
0.3507 
0.3512 
0.3516 
0.3521 
0.3 52 5 
0.3529 
0.3534 
0.3538 
0.3542 
0.3 546 
0.3551 
0.3555 
0.3559 
0.3563 
0.3567 
0.3571 

0.64 8 8 
0.6488 
0.6488 
0.64 87 
0.6487 
0.6487 
0.6486 
0.6486 
0.6486 
0.64 85 
0.6485 
0.6485 
0.6484 
0.6484 
0.6484 
0.6483 
0.6483 
0.6483 
0.6482 
0.6482 
0.6482 
0.6481 
0.6481 
0.6481 
0.6480 
0.6480 
0.6480 
0.6479 
0.6479 
0.6479 
0.6478 
0.6478 
0.647 8 
0.6478 
0.6477 
0.6477 
0.6477 
0.6476 
0.6476 
0.6476 
0.6476 
0.6475 
0.6475 
0.6475 
0.6474 
0.64 74 
0.6474 
0.6474 
0.6473 
0.6473 

K 
1.7343 
1.7346 
1.7349 
1.7353 
1.7356 
1.7359 
1.7363 
1.7366 
1.7369 
1.7372 
1.7376 
1.7379 
1.7382 
1.7385 
1.7388 
1.7392 
1.739 5 
1.7 398 
1.7401 
1.7404 
1.7407 
1.7410 
1.7413 
1.7416 
1.7419 
1.7 422 
1.7425 
1.7428 
1.7431 
1.7434 
1.7437 
1.7440 
1.7442 
1.7 445 
1.7448 
1.7451 
1.7454 
1.7457 
1.745 9 
1.7462 
1.7465 
1.7468 
1.747 0 
1.7473 
1.7476 
1.747 8 
1.7481 
1.7484 
1.7486 
1.7489 

K 
2.510. 
2. 520 
2.530 
2. 540 
2.5 50 
2. 560 
2.57 0 
2. 580 
2.590 
2. 600 

610 
620 
630 
640 
650 
660 

2.670 
2, 
2, 
2, 
2, 
2. 
2, 

680 
690 
7 00 
710 
7 20 
730 

2.740 
2.7 50 
2.760 
2.770 
.780 
.790 
.800 
.810 
.820 
.830 
,840 

2.850 
2.860 
2.87 0 
2.880 
2.890 
2. 
2, 
2. 
2, 
2. 
2, 
2, 
2, 
2. 
2, 
3. 

900 
910 
920 
930 
940 
9 50 
960 
97 0 
980 
990 
000 

0.3575 
0.3579 
0.3584 
0.3588 
0.3 59 2 
0.3595 
0.3599 
0.3603 
0.3607 
0.3611 
0.3615 
0.3619 
0.3623 
0.3626 
0.3630 
0.3634 
0.3638 
0.3641 
0.3645 
0.3649 
0.3652 
0.3656 
0.3659 
0.3663 
0.3667 
0.3670 
0.3674 
0.3677 
0.3681 
0.3684 
0.3688 
0.3691 
0.3694 
0.3698 
0.3701 
0.3705 
0.3708 
0.3711 
0.3715 
0.3718 
0.3721 
0.3724 
0.3728 
0.3731 
0.3734 
0.3737 
0.3741 
0.3 744 
0.3747 
0.3750 

0.64 73 1 .74 92 
0.6472 1 .7494 
0.6472 1 .7497 
0.6472 1 .7499 
0.6472 1 .7502 
0.6471 1 .7505 
0.6471 1.7507 
0.6471 1 .7510 
0.64 71 1 .7512 
0.6470 1 .7515 
0.6470 1 .7517 
0.6470 1 .7520 
0.6470 1.7522 
0.646 9 1 .752 5 
0.6469 1 .7527 
0.6469 1 .752 9 
0.6469 1 .7532 
0.646 8 1 .7534 
0.6468 1 .7537 
0.6468 1 .7539 
0.6468 1 .7541 
0.646 7 1 .7544 
0.6467 1 .7546 
0.6467 1 .7548 
0.6467 1 .7551 
0.6466 1 .7553 
0.64 66 1 .7555 
0.6466 1 .7558 
0.6466 1 .7560 
0.6465 1 .7562 
0.6465 1 .7565 
0.6465 1 .756 7 
0.6465 1 .75 69 
0.6464 1 .7571 
0.64 64 1 .7573 
0.6464 1 .7576 
0.64 64 1 .7578 
0.6464 1.7580 
0.6463 1 .7582 
0.6463 1 .7584 
0.64 63 1 .75 87 
0.6463 1 .7589 
0.6462 1 .75 91 
0.6462 1 .7593 
0.6462 1 .75 95 
0.646 2 1 .7597 
0.6462 1 .7599 
0.6461 1 .760 1 
0.6461 1 .7604 
0.6461 1 .760 6 
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3, 
3 , 
3, 
3, 

3.010 
3.020 
3.030 
3 .040 
3.050 
3 .060 
3.070 
3 .080 
3.0 90 
3.100 
3.110 
3.120 
3.130 
3 . 140 
3.150 
3.160 
,170 
180 
190 
200 

3.210 
3 .220 
3.230 
3 .240 
3.250 
3.260 
3.2 70 
3 .280 
3.290 
3 .300 
3.310 
3 .320 
3.330 
3.340 
3.350 
3.360 
3.3 70 
3 .380 
3.390 
3.400 
3.410 
3 .420 
3.430 
3 .440 
3.4 50 
3 .460 
3.470 
3 .480 
3.490 
3 .500 

0, 
0, 
0, 
0, 

0.3753 
0.3756 
0.3759 
0.3762 
0.3765 
0.3768 
0.3771 
0.3 774 
0.3777 
0.3780 
0.3783 
0.3786 
0.3789 
0.3792 
0.3795 
0.3798 
,3801 
,3804 
,3807 
,3809 

0.3812 
0.3815 
0.3818 
0.3821 
0.3823 
0.3826 
0.3829 
0.3832 
0.3834 
0.3837 
0.3840 
0.3843 

3845 
3 848 
3851 
3853 

0.3856 
0.3858 
0.3 861 
0.3864 
0.3866 
0.3869 
0.3871 
0.3 874 

3876 
3879 
3 881 
3884 
3886 
3889 

0, 
0. 
0, 
0, 

0.6461 
0.6460 
0.6460 
0.6460 
0.6460 
0.6460 
0.6459 
0.6459 
0.6459 
0.6459 
0.6459 
0.6458 
0.6458 
0.6458 
0.6458 
0.6458 
0.6457 
0.6457 
0.6457 
0.6457 
0.6457 
0.64 56 
0.6456 
0.6456 
0.6456 
0.6456 
0.6455 
0.6455 
0.6455 
0.6455 
0.6455 
0.6455 
0.6454 
0.64 54 
0.6454 
0.6454 
0.6454 
0.6453 
0.6453 
0.6453 
0.6453 
0.64 53 
0.6453 
0.6452 
0.6452 
0.6452 
0.6452 
0.6452 
0.6451 
0.64 51 

K 
1.7608 
1.7610 
1.7612 
1.7614 
1.7616 
1.7618 
1.7620 
1.7622 
1.7624 
1.7626 
1.7628 
1.7630 
1.7632 
1.7634 
1.7636 
1.7638 
1.7640 
1.7641 
1.7643 
1.7645 
1.7647 
1.7649 
1.7651 
1.7653 
1.7655 
1.7657 
1.7658 
1.7660 
1.766 2 
1.7664 
1.7666 
1.7668 
1.7669 
1.7671 
1.7673 
1.7675 
1.7676 
1.7678 
1.7680 
1.7682 
1.7683 
1.7685 
1.7687 
1.7689 
1.7690 
1.7692 
1.7694 
1.7695 
1.7697 
3. .7699 

3 
3, 
3 
3, 

3.510 
3. 520 
3. 530 
3. 540 
3. 550 
3. 560 

57 0 
580 
590 
600 

3.610 
3. 620 
3.630 
3.640 
3.65 0 
3. 660 
3.670 
3.680 
3.690 
3.700 
3.710 
3.720 
3.730 
3.740 
3.750 
3.760 
3.770 
3.780 
3.79 0 
3.800 
3.810 
3.820 
3 = 83^ 

8 40 
850 
860 
870 

3.880 
3.890 
3.900 
3.910 
3.920 
3.930 
3.940 
3.950 
3.960 
3.97 0 
3.980 
3.99 0 
4.000 

3 
3, 
3 

0.3891 
0.3894 
0.3896 
0.3899 
0.3901 
0.3903 
0.3906 
0.3908 
0.3911 
0.3913 
0.3915 
0.3918 
0.3920 
0.3922 
0.3925 
0.3927 
0.3929 
0.39 32 
0. 3934 
0.3936 
0.39 3 8 
0.3941 
0.3943 
0.3945 
0.3947 
0.3950 
0.3952 
0.3954 
0.3956 
0.3958 
0.3960 
0.3963 
0.3965 
0.3967 
0.3969 
0.3971 
0.3973 
0.3975 
0.3977 
0.3980 
0.3982 
0.39 84 
0.3986 
0.3988 
0.3990 
0.3992 
0.399 4 
0.3996 
0.3998 
0.4000 

0.6451 
0.6451 
0.6451 
0.6451 
0.64 50 
0.6450 
0.64 50 
0.6450 
0.6450 
0.6450 
0.6449 
0.644 9 
0.6449 
0.644 9 
0.6449 
0.644 9 
0.6448 
0.644 8 
0.6448 
0.644 8 
0.6448 
0.644 8 
0.6447 
0.644 7 
0.6447 
0.644 7 
0.6447 
0.6447 
0.6447 
0.644 6 
0.6446 
0.6446 
0.6446 
0.644 6 
0.6446 
0.644 5 
0.6445 
0.644 5 
0.6445 
0.644 5 
0.6445 
0.644 5 
0.6444 
0.6444 
0.6444 
0.6444 
0.6444 
0.6444 
0.6444 
0.6443 

1, 
1 , 
1 
1 , 
1 

K 
7701 
770 2 
7704 
770 6 
7707 

1 .770 9 
1.7710 
1 .7712 
1.7714 
1 .7715 
1.7717 
1 .7719 
1.77 20 
1 .772 2 
1.7723 
1 .772 5 
1.7726 
1 .772 8 
1.77 30 
1 .7731 
1 .77 33 
1 .773 4 
1.7736 
1 .773 7 
1.7739 

7740 
7742 
7743 
7745 
7746 
7748 

1 .7749 
1.7751 
1 .775 2 
1.77 54 
1 .7755 
1.7757 
1 .775 8 
1.7760 
1 .7761 
1.7762 
1 .7764 
1.7765 
1 .7767 
1.7768 

7770 
7771 
7772 
77 74 

1 .777 5 

1 , 
1 
1 , 
1 
1 , 
1, 

Table 1 



108 

4.010 
4.020 
4.0 30 
4.040 
4.050 
4.060 
4.0 70 
4.080 
4.090 
4.100 
4.110 
4. 120 
4.130 
4.140 
4.150 
4. 160 
4.170 
4.180 
4.190 
4.200 
4.210 
4.220 
4.2 30 
4.240 
4.250 
4.260 
4.2 70 
4.280 
4.290 
4.300 
4.310 
4.320 
4.330 
4.340 
4.350 
4.360 
4 . 3 70 
4.380 
4.390 
4.400 
4.410 
4.420 
4.430 
4.440 
4.450 
4.460 
4.4 70 
4.480 
4.490 
4.500 

0.4002 
0.4004 
0.4006 
0.4008 
0.4010 
0.4012 
0.4014 
0.4016 
0.4018 
0.4020 
0.4021 
0.4023 
0.4025 
0.4027 
0.4029 
0.4031 
0.4033 
0 .4035 
0.403 7 
0.4038 
0.4040 
0.4042 
0.4044 
0.4046 
0.4048 
0.4049 
0.4051 
0.4053 
0.4055 
0.4057 
0.4058 
0.4060 
0.40t2 
0.4064 
0.4065 
0.4067 
0.4069 
0.4071 
0.4072 
0.4074 
0.4076 
0.4077 
0.4079 
0.4081 
0.4083 
0.4084 
0.4086 
0.4088 
0.4089 
0.4091 

0.6443 
0.6443 
0.6443 
0.6443 
0.6443 
0.6443 
0.6442 
0.6442 
0.6442 
0.6442 
0.6442 
0.6442 
0.6442 
0.6441 
0.6441 
0.6441 
0.6441 
0.6441 
0.6441 
0.6441 
0.6441 
0.6440 
0.6440 
0.6440 
0.6440 
0.6440 
0.6440 
0.6440 
0.643 9 
0.6439 
0.643 9 
0.6439 
0.6439 
0.6439 
0.6439 
0.6439 
0.6438 
0.6438 
0.643 8 
0.6438 
0.6438 
0.6438 
0.643 8 
0.6438 
0.643 8 
0.6437 
0.643 7 
0.643 7 
0.6437 
0.6437 

K 
,7777 
,7778 
,7779 
,7781 
,7782 

1.7783 
1.7785 
1.77 86 
1.77 87 
1.7789 
1.7790 
1.7791 
1.7793 
1.7794 
1.7795 
1.7797 
1.7798 
1.77 99 
1.7801 
1.7802 
1.7803 
1.7804 
1.7806 
1.7 807 
1.7808 
1.7810 
1.7811 
1.7812 
1.7813 
1.7815 
1.7816 
1.7817 
1.7818 
1.7820 
1.7821 
1.7822 
1.7823 
1.7824 
1.7826 
1.7827 
1.7828 
1.7829 
1.7830 
1.7832 
1.7833 
1.7 834 
1.7835 
1.7836 
1.7838 
1.7 8 39 

4.510 
4. 520 
4.530 
4. 540 
4.550 
4. 560 
4.570 
4. 580 
4.590 
4. 600 
4.610 
4. 620 
4.630 
4. 640 
4.650 
4. 660 
4.67 0 
4. 680 
4.690 
4.700 
4.710 
4.7 20 
4.730 
4.7 40 
4.7 50 
4.7 60 
4.77 0 
4.780 
4.790 
4.8 00 
4.810 
4.820 
4.830 
4.840 
4.850 
4.860 
4.870-
4.880 
4.890 
4.900 
4.910 
4.920 
4.930 
4.940 
4.950 
4.9 60 
4.97 0 
4.980 
4.990 
5. 000 

0.4093 
0.4094 
0.409 6 
0.4097 
0.409 9 
0.4101 
0.4102 
0.4104 
0.4106 
0.4107 
0.4109 
0.4110 
0.4112 
0.4113 
0.4115 
0.4117 
0.4118 
0.4120 
0.4121 
0.4123 
0.4124 
0.4126 
0.4127 
0.4129 
0.4130 
0.4132 
0.4133 
0.4135 
0.4136 
0.4138 
0.4139 
0.4141 
0.4142 
0.4144 
0.4145 
0.4147 
0.4148 
0.4150 
0.4151 
0.4153 
0.4154 
0.4155 
0.4157 
0.4158 
0.4160 
0.4161 
0.4162 
0.4164 
0.4165 
0.4167 

0.6437 
0.643 7 
0.6437 
0.643 6 
0.6436 
0.643 6 
0.6436 
0 . 643 6 
0.6436 
0 . 643 6 
0.6436 
0.643 5 
0.6435 
0.643 5 
0.643 5 
0.643 5 
0.6435 
0. 643 5 
0.6435 
0.643 5 
0.6434 
0.643 4 
0.6434 
0.643 4 
0.6434 
0.643 4 
0.6434 
0.643 4 
0.6434 
0.643 3 
0.6433 
0.6433 
0.6433 
0.643 3 
0.6433 
0.6433 
0.6433 
0.643 3 
0.6433 
0.643 2 
0.6432 
0.643 2 
0.6432 
0.643 2 
0.6432 
GU. 643 2 
0.6432 
0.643 2 
0.6431 
0.643 1 

K 
1.7 840 
1 .7841 
1. 7 8 42 
1 .7 843 
1.7 844 
1 .7 84 6 
1.7 847 
1 .7848 
1.7 849 
1 .7850 
1.7851 
1 .7852 
1.7 8 54 
1 .785 5 
1.7856 
1 .785 7 
1.7858 
1 .785 9 
1.7860 
1 .7861 
1.7862 
1 .7863 
1.7865 
1 .7866 
1.7867 
1 .7868 
1.7869 
1 .7870 
1.7 8 71 
1 .7872 
1.7873 
1 .7874 
1 . 7 8 75 
1 .7876 
1.78 77 
1.7878 
1.7879 
1 .7880 
1.78 81 
1 .7882 
1.78 83 
1 .7884 
1.7885 
1 .7886 
1.7888 
1 .7889 
1.78 90 
1 .7891 
1.78 92 
1.7893 
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p .k 2 c* K P k 2 h K 

0 .00 5 0 .002 5 0.6668 1 .5718 0. 2 55 0. 1461 0. 6131 1 .6334 
0.010 0 .0050 0.6669 1 .5728 0. 260 0. 149 4 0. 6739 1 .63 50 
0.015 0 . 0076 0.6670 1 .5 738 0. 265 0. 1527 0. 6741 1 .6365 
0.020 0 .0101 0.6671 1 .5748 0. 27 0 0. 1561 0.6 742 1 .63 81 
0.025 0 .0127 0.6672 1 .5758 0. 27 5 0. 1594 0. 6744 1 .63 97 
0.030 0 .0152 0.6673 1 .5768 0. 280 0. 1.62 8 0. 6746 1 .6413 
0.035 0 .0178 0.6675 1 .5779 0. 285 0. 1662 0. 674 8 1 .6430 
0.040 0 .0204 0.6676 1 .5789 0. 290 0. 1696 0. 6 7 50 1 .6446 
0.045 0 .02 30 0.66 77 1 .5800 0. 295 0. 1730 0. 6751 1 .6463 
0.050 0.0256 0.6678 1 . 5 810 0. 300 0. 1765 0.6753 1 .6479 
0.055 0 .0283 0.6679 1 .5821 0. 305 0. 1799 0. 675 5 1 .6496 
0.0 60 0 .0309 0.66 81 1 .5832 0. 310 0. 1834 0. 6757 1 .6514 
0.065 0 .0336 0.6682 1 .5842 0.315 0. 1869 0. 675 9 1 .6531 
0.070" 0.03 6 3 0.66 83 1 .5853 0. 320 0. 190 5 0. 6761 1 .6549 
0.075 - 0 .0390 0.66 84 1 .5 864 0. 325 0. 19 40 0. 6763 1 .6566 
0.080 0 .0417 0.6686 1 .5876 0. 330 0. 1976 0. 6 765 1 .65 84 
0.085 0 . 0444 0.66 87 1 .5 887 0. 335 0. 2012 0. 676 7 1 .6602 
0.090 0 .0471 0.6688 1 .5898 0. 340 0.2048 0.6769 1 .6621 
0.095 0 . 0499 0.6689 1 .5909 0. 345 0. 20 85 0. 6771 ]. .663 9 
0.100 0 .0526 0.6691 1 . 5921 0. 350 0.2121 0. 6 773 1 .6658 
0 . 105 0 . 0554 0.6692 1 .5933 0. 3 55 0. 2158 0. 677 5 1 .66 77 
0.110 0 .0582 0.6693 1 .5944 0. 360 0.2195 0. 6 7 77 1 .6696 
0.115 0 .0610 0.6695 1 .5956 0. 3 65 0. 2232 0. 6779 1 .671 5 
0.120 0 .0638 0.6696 1 .5968 0. 370 0. 2270 0. 6782 1 .6735 
0.125 0 . 0667 0.66 97 1 .5 980 0. 375 0. 2 308 0. 67 8 4 1 .6755 
0.130 0 .0695 0.6699 1 .5992 0. 380 0. 2346 0.6786 1 .6 775 
0. 135 0 .0724 0.6700 1 .6004 0. 385 0. 2 3 84 0. 67 8 8 1 .6795 
0.140 . 0 .0753 0.6702 1 .6017 0. 390 0. 2422 0. 6791 1 .6816 
0.145 0 .0782 0.6703 1 .6029 0. 395 0. 2461 0. 6793 1 .6836 
0.150 0 .0811 0.6704 1 .6042 0.400 0. 2500 0. 6 795 1 .6857 
0 .155 0 . 0840 0.6706 1 .6054 0. 40 5 0. 2539 0. 679 8 1 '.6 87 9 
0.160 0 .0870 0.6707 1 .606 7 0. 410 0.2 57 9 0.6 800 1 .6900 
0.165 0 . 0899 0.67 09 1.6080 0.415 0. 2618 0. 680 2 1 .69i2 
0.170 0 .0929 0.6710 1 .6093 0.420 0. 2658 0. 6 80 5 1 .69 44 
0.175 0 .0959 0.6712 1 .6 106 0. 42 5 0. 2698 0. 6 80 7 1 .6967 
0.180 0 .0989 0.6713 1 .6120 0. 430 0. 2739 0.6 810 1 .6989 
0.185 0 . 1 019 0.6715 1 .6133 0. 43 5 0. 2780 0. 6812 1 .7012 
0.190 0 .1050 0.6716 1 .6146 0. 440 0. 2821 0. 6815 1 .7035 
0.195 0 .1080 0.6718 1 .6160 0. 44 5 0. 2862 0. 681 7 1 .7059 
0.2 00 0 .1111 0.6719 1 .6174 0. 450 0. 2903 0. 6820 1 .70 83 
0.205 0 .1142 0.6721 1 .6188 0. 4 55 0. 2945 0. 6 82 3 1 .7107 
0.210 0 .1.173 0.6722 1 .6202 0. 460 0. 2987 0. 6825 1 .7131 
0.215 0 .1204 0.67 24 1 .6216 0. 465 0.. 3029 0. 682 8 1 .715 6 
0.220 0 .1236 . 0.6725 1 .6230 0. 47 0 0. 3072 0. 6 831 1 .7181 
0 . 225 0 .1268 0.67 27 1.6245 0. 47 5 0. 3115 0. 6 83 4 1 .720 7 
0.2 30 0 .1299 0.6729 1 .6259 0. 48 0 0. 3158 0. 6836 1 .72 32 
0.235 0 .1331 0.6 730 1 .6 274 0. 48 5 0. 3201 0. 683 9 1 .7259 
0.2 40 0 .1364 0.6 73 2 1 .6289 0. 49 0 0. 3245 0. 6 842 1 .72 85 
0.245 0 . 13 96 0.6734 1 .6 304 0. 49 5 0. 3289 0. 684 5 1 .7312 
0.250 0 .1429 0.6 73 5 1 .6319 0. 500 0. 333 3 0. 6 848 1 . 73 39 
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0 . 5 0 5 
0 . 5 1 0 
0 . 5 1 5 
0 . 5 2 0 
0 . 5 2 5 
0 . 5 3 0 
0 . 5 3 5 
0 . 5 4 0 
0 . 5 4 5 
0 . 5 5 0 
0 . 5 5 5 
0 . 5 6 0 
0 . 5 6 5 
0 . 5 70 
0 . 5 7 5 
0 . 5 8 0 
0 . 5 8 5 
0 . 5 9 0 
0 . 5 9 5 
0 . 6 0 0 
0 . 6 0 5 
0 . 6 1 0 
0 . 6 1 5 
0 . 6 2 0 
0 . 6 2 5 
0 . 6 3 0 
0 . 6 3 5 
0 . 6 4 0 
0 . 6 4 5 
0 . 6 5 0 
0 . 6 5 5 
0 . 6 6 0 
0 . 6 6 5 
0 . 6 7 0 
0 . 6 7 5 
0 . 6 8 0 
0 . 6 8 5 
0 . 6 9 0 
0 . 6 9 5 
0 . 7 0 0 
0 . 7 0 5 
0 . 7 1 0 
0 . 7 1 5 
0 . 7 2 0 
0 . 7 2 5 
0 . 7 3 0 
0 . 7 3 5 
0 . 7 4 0 
0 . 7 4 5 
0 . 7 5 0 

0 . 3 3 7 8 
0 . 3 4 2 3 
0 . 3 4 6 8 
0 . 3 5 1 4 
0 . 3 5 5 9 
0 . 3 6 0 5 
0 . 3 6 5 2 
0 . 3 6 9 9 
0 . 3 7 4 6 
0 . 3 7 9 3 
0 . 3 8 4 1 
0 . 3 8 8 9 
0 . 3 9 3 7 
0 . 3 9 8 6 
0 . 4 0 3 5 
0 . 4 0 8 5 
0 . 4 1 3 4 
0 . 4 1 8 4 
0 . 4 2 3 5 
0 . 4 2 8 6 
0 . 4 3 3 7 
0 . 4 3 8 8 
0 . 4 4 4 0 
0 . 4 4 9 3 
0 . 4 5 4 5 
0 . 4 5 9 9 
0 . 4 6 5 2 
0 . 4 7 0 6 
0 . 4 7 6 0 
0 . 4 8 1 5 
0 . 4 8 7 0 
0 . 4 9 2 5 
0 . 4 9 8 1 
0 . 5 0 3 8 
0 . 5 0 9 4 
0 . 5 1 5 2 
0 . 5 2 0 9 
0 . 5 2 6 7 

,5326 
,5385 
,5444 
,55 04 
,55 64 
.5625 
5636 

,5748 
,5810 

0 . 5 8 7 3 
0 . 5 9 3 6 
0 . 6 0 0 0 

0, 
0, 
0 . 
0, 
0 , 
0, 
0 . 
0, 
0 , 

0 . 6 8 5 1 
0 . 6 8 5 4 
0 . 6 8 5 7 
0 . 6 8 6 0 
0 . 6 8 6 4 
0 . 6 8 6 7 
0 . 6 8 7 0 
0 . 6 8 7 3 
0 . 6 8 7 7 
0 . 6 88 0 
0 . 6 8 8 4 
0 . 6 8 8 7 
0 . 6 8 9 1 
0 . 6 8 9 4 
0 . 6 8 9 8 
0 . 6 9 0 2 
0 . 6 9 0 6 
0 . 6 9 0 9 
0 . 6 9 1 3 
0 . 6 9 1 7 
0 . 6 9 2 1 
0 . 6 9 2 5 
0 . 6 9 3 0 
0 . 6 9 3 4 
0 . 6 9 3 8 
0 . 6 9 4 3 
0 . 6 9 4 7 
0 . 6 9 5 2 
0 . 6 9 5 6 
0 . 6 9 6 1 
0 . 6 9 6 6 
0 . 6 9 7 1 
0 . 6 9 7 6 
0 . 6 9 8 1 
0 . 6 9 8 6 
0 . 6 9 9 1 
0 . 6 9 9 6 
0 . 7 0 0 2 
0 . 7 0 0 7 
0 . 7 0 1 3 
0 . 7 0 1 9 
0 . 7 0 2 5 
0 . 7 03 1 
0 . 7 0 3 7 
0 . 7 043 
0 . 7 0 5 0 
0 . 7 0 5 6 
0 . 7 06 3 
0 . 7 070 
0 . 7 0 7 7 

K 
1.7 367 
1 . 7 3 9 5 
1 .742 3 
1 . 7 4 5 2 
1.7 481 
1 .7511 
1 .7541 
1 . 7 5 7 2 
1 . 7 6 0 3 
1 . 7 6 3 4 
1 . 7 6 6 6 
1 . 7 6 9 9 
1 . 7 7 3 2 
1 . 7 7 6 5 
1 . 7 8 0 0 
1 . 7 8 3 4 
1 . 7 8 6 9 
1 . 7 9 0 5 
1 . 7 9 4 2 
1 . 7 9 7 9 
1 . 8 0 1 6 

,8055 
, 8094 
,8133 
, 8174 
, 8215 

1 . 8 2 5 7 
1.8 299 
1 . 8 3 4 3 
1 . 8 3 8 7 
1 . 8 4 3 2 
1 . 8 4 7 8 
1 . 8 5 2 5 
1 . 8 5 7 3 

8621 
,8671 
8722 

, 8774 
1 . 8 8 2 7 
1 . 8 8 8 1 
1 . 8 9 3 6 
1 .899 3 
1.9 05 1 
1 . 9 1 1 0 
1 . 9 1 7 0 
1 . 9 2 3 2 
1.9 296 
1 . 9 3 6 1 
1 . 9 4 2 7 
1 . 9 4 9 6 

0 . 7 55 
0 . 7 6 0 
0 . 7 6 5 
0 . 7 7 0 
0 . 7 7 5 
0 . 7 8 0 
0 . 7 8 5 
0 . 7 9 0 
0 . 7 9 5 
0 . 8 00 
0 . 8 0 5 
.0.8-10 

0 . 8 20 
0 . 8 2 5 
0 . 8 30 
0 . 8 3 5 
0 . 8 4 0 
0 . 8 4 5 
0 . 8 5 0 
0 . 8 5 5 
0 . 8 6 0 
0 . 8 6 5 
0 . 8 7 0 
0 . 8 7 5 
0 . 8 8 0 
0 . 8 8 5 
0 . 8 9 0 
0 . 8 9 5 
0 . 9 0 0 
0 . 9 0 5 
0 . 9 1 0 
0 . V I 5 
0 . 9 2 0 
0 . 9 2 5 
0 . 9 3 0 
0 . 9 3 5 
0 . 9 4 0 
0 . 9 4 5 
0 . 9 5 0 
0 . 9 5 5 
0 . 9 6 0 
0 . 9 6 5 
0 . 9 7 0 
0 . 9 7 5 
0 . 9 8 0 
0 . 9 8 5 
0 . 9 9 0 
0 . 9 9 5 
1 . 0 0 0 

0 . 6 0 64 
0 . 6 1 2 9 
0 . 6 1 9 4 
0 . 6 2 6 0 
0 . 6 3 2 7 
0 . 6 3 9 3 
0 . 6 4 6 1 
0 . 6 5 2 9 
0 . 6 5 9 7 
0 . 6 6 6 7 
0 . 6 7 3 6 
0 . 6 8 0 7 
0 . 6 8 7 8 
0 . 6 9 4 9 
0 . 7 0 2 1 

7 0 9 4 
7167 
7241 
7316 

0 . 7 3 9 1 
0 . 7 4 6 7 
0 . 7 5 4 4 
0 . 7 6 2 1 
0 . 7 6 9 9 
0 . 7 7 7 8 
0 . 7 8 5 7 
0 . 7 9 3 7 
0 . 8 0 1 8 
0 . 8 1 0 0 
0 . 8 1 8 2 
0 . 8 2 6 5 
0 . 8 3 4 9 
0 . 8 4 3 3 
0 . 8 5 1 9 
0 . 8 6 0 5 
0 . 8 6 9 2 
0 . 8 7 7 9 
0 . 8 8 6 8 
0 . 8 9 5 7 
0 . 9 0 4 8 
0 . 9 1 3 9 
0 . 9 2 3 1 
0 . 9 3 2 4 
0 . 9 4 1 7 
0 . 9 5 1 2 
0 . 9 60 8 
0 . 9 7 0 4 
0 . 9 80 2 
0 . 9 9 0 0 
1 . 0 0 0 0 

0 . 7 0 84 
0 . 7 0 9 1 
0 . 7 0 99 
0 . 7 1 0 7 
0 . 7 1 1 5 
0 . 7 1 2 3 
0 . 7 1 3 1 
0 . 7 1 4 0 
0 . 7 1 4 8 
0 . 7 1 5 7 
0 . 7 1 6 7 
0 . 7 1 7 6 
0 . 7 1 8 6 
0 . 7 1 9 6 
0 . 720 7 
0 . 7 2 1 8 
0 . 7 2 2 9 
0 . 7 2 40 
0 . 7 2 5 2 
0 . 7 2 6 4 
0 . 7 2 7 7 
0 . 7 2 9 0 
0 . 7 3 0 4 
0 . 7 3 1 8 
0 . 7 3 3 3 
0 . 7 3 4 9 
0.. 73 65 
0 . 7 3 8 2 
0 . 7 3 9 9 
0 . 7 4 1 8 
0 . 7 4 3 7 
0 . 7 4 5 7 
0 . 7 4 7 9 
0 . 7 5 0 2 
0 . 7 5 2 6 
0 . 7 5 5 2 
0 . 7 5 8 0 
0 . 7 6 0 9 
0 . 7 6 4 1 
0 . 7 6 7 6 
0 . 7 7 1 4 
0 . 7 7 5 6 
0 . 7 8 0 3 
0 . 7 8 5 5 
0 . 7 9 1 6 
0 . 7 9 8 9 
0 . 8 0 7 8 
0 . 8 1 9 5 
0 . 8 3 7 3 
0 . 9 3 1 3 

K 
1 . 9 5 6 6 
1 . 9 6 3 8 
1 . 9 7 1 1 
1 . 9 7 8 7 
1 . 9 8 6 5 
1 . 9 9 4 5 
2 . 0 0 2 7 
2 . 0 1 1 2 
2 . 0 2 0 0 
2 . 0 2 9 0 
2 . 0 3 8 2 
2 . 0 4 7 8 
2 . 0 5 7 7 
2 . 0 6 7 9 
2 . 0 7 8 5 
2, 
2 
2 
2 , 
2, 
2 , 

,08 95 
,1008 
,1126 
,1248 
,13 75 
1 50 7 

2 . 1 6 4 4 
2 . 1 7 8 8 
2 . 1 9 3 8 
2 . 2 0 9 5 
2 . 2 2 5 9 
2 . 2 4 3 2 
2 . 2 6 1 3 
2 . 2 80 4 
2 . 3 0 0 6 
2 . 3 2 2 0 
2 . 3 4 4 7 
2 . 3 6 8 9 
2 . 3 9 4 7 
2 . 4 2 2 5 
2 . 4 5 2 3 
2 . 4 8 4 7 
2 . 5 1 9 9 
2 . 5 5 8 4 
2 . 6 0 1 1 
2 . 6 4 8 6 
2 . 7 0 22 
2 . 7 6 3 5 
2 . 8 3 49 
2 . 9 2 0 2 
3 . 0 2 5 7 
3 . 1 6 3 1 
3 . 3 5 9 0 
3 . 6 9 8 0 
7 .6 70 8 

Table 2 


