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Abstract
Let Jt, J, J" represent the total angular momenta of
 the initial, iﬁtermedigte, and final states of a mucleus
respectively and J)» J, the total angular momenta of the
first and second emitted particles. Then, in terms of this
notation, the following results can be found in this thesis.
'o<-v and §-¥ correlation functions have béen calculatéd

explicitly in terms of 00829 for those transitionuschemes
satisfying the following condifions:

(1) 7= J+HJy, J==J“+J2 for arbitrary Jy, Jo=1, 24

(11) g1= J-34, J=J9-J, for arbitrary J,, Jp= 1, 2i

(111) Jr= J.-J, J’:J”+J for arbitrary Iys J2: 1, 2.

1
(iv) Jt= J=Jy, I = J2-J for J=1, 2, arbitrary J,.

These are called the "special transitions' in the text.
x-mixed¥ correlation functions have bseen tabulated.

explicitly in terms of-cos%6 for an & particle with total

angular momentum 1 or 2 and a photon corresponding to a

mixture of electric quadrupole and magnetic dipole radiation.

For an X particle with total angular momentum 3 the K=

m1xed( correlation functions can be obtained from a table

which lists the sums of products of angular momentum 8oef- -

ficlents appea®ing in these correlation functions. These cor-

relation functions are too clumsy to be expressed explicitly

in terms~of‘coszeiin general, however they can be fairly easily

gvaluated once numerical values of the angular momenta of the

nuclear states are prescribed.
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INTRODUCTION:- ; 4
If a macleus emits two particles or photons in quick
succession,  there will be a certa;n angle 8 between thelr
directions of emission. The function, W(e), representing the
\relative probability for an ang1e~9 be tween the directlons
of emission of the particles or photons is called the direction-
al or angular correlation function._-f oo |
The general expression for W(O) was flrst derived by
Hemilton! for the successive emission of twp photons (¥-7
correlation). He calculated W(8) explicitly for the cases
in which the nmltipo_le orders .of the emitted photons are either
quadrupole or dipole. GoertZel? extended the theory of}f-v
correlations by considering the effect on W(O):due to the
presence of an internal atomic field or an externally applied
magnetic‘field. He showed that the effect of the extra-miclear
electrons on the angular correlation between the successive
nuclear emissions can ‘be neglected provided the radiation width
of the intermediate state of the nucleus is mich greater than
the hyperfine splitting of that state. This was also shown by
__Haﬁilton. Goertzel also showed thet an externally applied
‘magnetic field may be used to reduce the effect ‘of the extra-
“ - mclear electrons .on t he angular correlation. "Falkoff and
Uhlenbeck?® calculated correlation functions in parametric
form (the parameters depending on the types of particles emitted)

for particles or phétons with angular momentum 1 or 2. Ling



and Falkoff# then extended the theory to include transitions
in which mixtures of multipoles are emitted. They tabulated
s-miged ¥ correlation functions, where ¥ refers to dipole or
quadrupole radiation emitted in the first traﬁsifion and mixed
¥ to mixed electric quadrupole and magnetic dipoi@ radilation
~emitted in the second transition. Finally, Spiers5—ha3»shown
how the general angular correlation function for any Successive
emissions may be derived using the quantum mechanical addition
of angular momenta. The same result was shown by Lloydé.using
'group theoretical methods. The above is a resume of some of
the theoretical papers on angular correlation which have been
used in the preparation of this thesis. For a more complete
survey of such papers the reader is referred to\réference S
This thesis consists of three main parts. In the first
part, the gemeral expressiop for the correlation function is
def;ved by following Spier's method. Théigeneral expression
‘is then written in a form useful-for calcﬁlﬁfiohs;; Iﬁ-the,
seéond part, a method of evaluating the summépions-which appear
in the formula for»W(B)'is presented. The method permits one
to calculate angular correlation functions for any angular
momentum for the first emitted particle or photgn'provided
the transitions involved satisfy certain special conditighs¢
Some «-¥ and ¥-¥ correlation functions are glven explicitl&’
for these special cases. In the third part, tablés arevgi#éhfﬂ

. from which «=~mixed¥ correlation functions can be obtained fbr‘



an o« particle with angular momentum 1, 2, or 3, and a photon
corresponding to mixed electric quadrupole and'mégnetié dipbie

radiation.



I. GENERAL EXPRESSION FOR THE DIRECTIONAL CORRELATION FUNCTION.

The corfelation function for the case 1h‘whiéh two particles
(not photons) are emitted in quick-succession by a ﬁué1éué is
derived below. REssentlally, the derivation due to'Spiérss is
followed. : : _ v

The following notation is used thpvoughout this thesis:
Jm',Jm,Jm",J;m ,Jomy; - represent the total angular momentum
and i1ts 2z component for the initial, intermediate, and final
states of the mucleus and the total angular momentum (intrinsic
plus_orpital) and 1ts z component for the first and second
emitted particles respectively. | |
W;n- 1s the normalized wave function for the micleus in the
state represented by t he quantum rumbers Jm.
¢Jm; is the normalized wave function for an emitted particle |
with quantized total angular momentum Jm. |

Henceforth the types of cérrelation between particles and
photons with gliven angular momenta will,bé denoted as follows:
_ “(Ji)-U(Jz) means that &n Xparticle with angular momentum J; is.
emitted in the first transition and a ppoton with angular momen-
tum Jo corresponding to a 2% miltipole 1s emitted in the second.
Q(Jl)fmixedKTJz)ﬁﬁeans the same as above for the first transition,
but indicates:tﬁéi a photon'cérresponding to a mixture‘of QJi
electric and‘gaqﬁagnetic muifipole radiation is emitted in the
second tran;iti;h. |

In the derivation, it is assumed that the effect of the



extra-miclear electrons on the correlation can bé neglected.
If this were not the case, the total angular momentum of the
nucleus would precess about the field due--to the .electrons and
hence could change its value. However, this value 1is assumed
constant throughout the derivation. This assumption is valid
if the radistion width of the muclear state is much larger than
the hyperfine splitting of that state. . : -
If'qg%drepresents.the‘state‘of the system consisting of
the intermediste nucle us and the first emitted particle then,

using the gquantum mechanical sddition of angular momenta,

Wi _Z,QTZ (T e T3 T Y W, Dy (1)

M\’ml—-m

Here the aj-are the probability amplitudes for the various
possible values of J, (\J'-JILJ 4J'+J) which the first emitted
particle can have; the bracketed expressions are the normalized
angular momentum coefficients which may be considered defined

by (1)}. TUsing (1), one may represent‘the'two transitions of

14

the nucleus by :

LPZT 1> Z Q %—:NSJ:,.J:“IMM l:r\T T o ) IPJ"W\ tb‘Ta’Wln
(2)
Wy, - z gy o (3" R o) 5T oW g
M&z‘m

Equation (2) may be written in the form

l\) f ml! Z: CU) LPJ’,W\
w;rm - Z C(’-) w;r“mn"

whers

elh Zaj (T3, e -ra | TT, Tt ) Dir. nlc

mma T

(3)

P/

(4)
C(l) . ~—Z‘; a:r (IMJ— pos M M'I)J“J—Q_JMBCbQ' ot~ /W\‘ R

m
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From (3) it is seen that the finsl state,qﬁu, of theléy9a
tem consisting of the final rucleus and the two emitted particles
is given by 0 '

Q)fw = %M“ Cﬂ;.,Wl Cf:\)m,..‘ LV;\'“M'I . (5)

Now, at any time,|Wf | av'av, av, 1s the probability that,
with.-the initial nucleus in the state Jfm!, particle 1 is in
the volume 4V, about the point rfd with intrinsic ang.uulka.l_n
momentum S‘ and its z component ¢, particle 2 is in the volume
dV, about the point rfd, with intrinsic angular momentum S,

r
TR
and its z component o7, and the final micleus is in the volume

2
dv" about the point r'p%4". dvV" and r"g"4" represent symboli-
cally-the volume elements and coordinates of all the nucleons.
In this thesis, only the directions of the two emitted particles
will be of 1interest, i.e. the total pfobability that particle

1 1s in dV, at r0,¢ and that particle 2 is in dV, at 544, is
desired.-.. To get this it i1s necessary to sum the probabilities
for the various spin orientations ¢,¢ of théﬂ%wo'emitted par-
ticles and to 1lntegrate the nuclear.coqrdinAEQS*oVer-all space.
Normally, the initial miclei will be randomly -oriented i.e. the
2J 41 degenerate states th“are equall} populated. . The average
correlation for all muclei is obtained by finding the welghted
avérage over the 2J'1 initial states. In the normal case,

this is done by summing over m' and dividing by 2J'+1. From

the above statements, it 1s seen that the average correlation

function W(r0d , nad) between the directions8d and 6, may



be defined by | 'Ir 2 .
\'\/(nét‘?l)rz.elt&)duld\ul: AVAVLZ; [ """\ AV”’ T | (6)

l m‘q"d" Vu

where r, 'and r, qre, take-p to be large but constaht. Only the
relative variation of W with 4, and 6,d, is of interest experi-
mentally and so, for this reason, factors independsnt of these
angles will be omitted from W. From gquations(5) and (6) one

obtains (omitting o)
]
W(.Y.B,cp,)ﬁgzcﬂ,_) Z‘ Cw* C‘\ Ca)‘ C(ﬂ f\/wf‘m" "/SA\/

\Mm'lrf oL

== (=el e

1] M‘M [mm"‘
7 ul I’.

using the orthogonality of the W.., .'s.

(7)

The -summa tion over m can be brought outside the square
modulus when 6 =d)-0, For, the wave function &;_ of an emitted
particle, which has total angular momentum J and z component m
and intringic angular momentum S with z component &, can be

written, using the addition of apgular monienta, as

¢, (roPa) - Sy (Lsm-«a—lLs:rmH(r) \{’”“"(gp)){ (8)

L=|T-5)
where Xs«— 1s the wave function representing the intrinsic ang-

ular momentum and. fL(r)YM:"?M) that representing the orbital
angula-g niomentum of the particle. The quantities b, are prob-
ebility amplitudes for the'varioué-possible;orbital angular
momente the particle can have. SincevY":'q(-'OOho unless m-0

it is seen that ¢:,.'«M'(I‘, 00¢;)<0 unless m=q;, and hence that
Qﬁ,i“(r\ 006, )=0 unless m'-m=q from (4}. Thus, if 6=-4-0 in (7},
there is only one value for m which'gives a8 non-vanishing term

once m'! and o are given and the summation over m can be discarded,



l.0... y
W(r 00,r,8,d,)-= 2: Z:,C '(_(r OO¢)|2§ lC 1

However, for later convenience, one can still sum OVeP mt,

m, and m" knowing that the terms of the summation will vanish
unless m'-mz0, and so 1t 1s possible to write :
W(r, 00, re&)Z 2l oo«)llec“J (ng.d.c; Ol (9)
W(r 00,7, 68d,) does not depend onCP because of the aver-
aging processes used in obtaining it. It depends only on the
angle B,=0 between the directions of emission of the two par—
ticles. .
From equations (3) 1t is seen that P..(0) and B, _J[90)
defined by o
(032 |08 (7 ooa)|?
(0) z:| ¢ (n 0.d,)|"
represent respectively the probability that the intermediate.

(10)

micleus is in the state Jm with the emission of the first par-
ticle in the z directlon (and at r ) and the probability that
the final micleus is in the state J4m* with the-emission-of the
second particle'at an anglelé to the first (andlat"rz)a ~§sing\~
(9) and (10), one may write the directional correlation function
in the form |
Cwie)r 2o B (0B _(0), a1
miman M ’ '
where it is understood that r and r, have large but constant

values.

It-shodld'beenoted that in equation (7) there exists an.



interferencs between the various ways in which-a transition
can occur frqm,a givep sublevel Jtm! to a final sublavel J'a" ...
via different intermediate sublevels Jm because the prbbabiiity
~amplitudes are summed. over the intermediate-subleyels,befOré
squgring rgther'than after and cross terms appear. As seen in
equation (9), 1t is possible to remove this interference by
taking the direction of emlssion of the first part;clé along
the .axis of quantization.. This result was also obtained by
Lloydb and digcussed by Lippmann’s -

If the direction of--emission of the second particle instead
of the first had been taken along the 2z axis of quantization,
then W(0) would have been written in the form

WO, B, (012, (0). (12)

o
The two expressions for W(8) in (11) and (12} must obviously

mll

be equal. - -
By substituting (4) into B (8) of (10) one obtains
- . a )
B oy.‘);.L |Z§l a, (39, m*m-m*| JVJ, Jm)J{E _— l - | (13)
a The above formulae have been derived for. the égserthat

particles and not photons are emitted. Ling and Falkoff‘4 have
treated the case for the emlssion of a photon corresponding
to mixed zq%electr;c end 2% magnetic mltipole radiation,
Thelr results are given by

P .{6) s:fr ;.k K- R=rr* k“Z_Z_‘ ag]” (14)

Where A Ax—LAY, A A'Z’ A Ax‘l’lA ~
u U M
and A O((J J mm, | I, Jm) A5 (3,m, M A (T T 1um ) J"g;lJm)A (3-1,m).
A.



Here.A%KJLnu), AZ(@?I, m;} are the components 6f.the.normé1126d
“vector potentials for a 27 glectric and a ézk'maghetié'mula-.
tipole respectively; o and g-represent the. probability ampli-
tudes for sach mltipole. Lloyd8 has shown that & and A can

be made real by a prop er cholce of the-nuclea%‘phases. How~
ever, in some calculations, it may 'be useful to have complex
values, hence the formilae are left in the above form.

- The result (14) can be incorporated into formla (13) if

S 1s taken to be 1 (g-1,0,-1) and 4>J;_ml,¢,‘t_,MLare replaced by
;ErkAi(J;_,ml) and ﬁrkA:.:({-l‘,ml) respectively. Of course, & =3y
and #=4 . Henceforth (13) will be considered valid for both
particles and photons,. the proper ¢'s_being substituted in
each case.

At this point one can see that the dependence of P,

and P,,,.and hence W(6) on r, and r, can be factored out and

thus -omitted. -For, in (13) the ¢'s (and Afs} depend on r through

the functions f, (r), which for large r are proportional to
L ¢ , ' : , ,
(-i):g:*r (spherical wave), where k is the magnitude of the
Kr :

propagation vector.

If only one value of J, 1s possible for the particle or
photon emitted in the transition -Jm +J"m" then the equation
(13) takes the form

B(8) = (30, mm, | 97, 50l S &, (e da)|*, (s

M-m? =y

~ the angular momentum cosfficients being real (see-gguafions (18)

and (19)). Omitting the dependence on r, , which can be

A%



factored out, this has the form |

B e(0) = (T8, m%m, | TV T, Jm)* P (8 ~- (18)
Thlsmfgz‘*‘;r;ﬁza can be found in F'alkoff‘ and Uhlenbeckts” paper.
In this thesfis only transitions in which an « particle or a
photon is emitted will be considered., Since an « particle has
no intrinsic angular momentum one can write P}:‘(e;);- IY,‘(GJ) )W
for it, using (8) and (13). General expressions for the F's
for a photogh arising from pure and mixed multipole transitions
are given by Ling and Falkofft who substituted expressions in
terms of spherical harmonics for the A's appearing in (13) and
(14). A 2J:e1ectric and a 2:Egmagnetic miltipole have the same
F74(8). For any partl cle or photon, F}‘:(e)= F';:‘(e) (see
reference 3).

For a mixed ¥(J,) transition, Ling and Palkoft* have

given the following formula:
Pyl 8) = 11 (3, o o | TG T ) F 7 (8) 10 (35t e | 1 T) F 275 (6)

wm~Mmzmm
I‘ T 2&(43*)(3:1 T, M\""‘h-\J" J’,_C)' "‘“XI'_'If‘m“mz_\J“Iz‘l TM) FT ;_‘(9) . (17)‘,

M 1.

T T4
ution functions for the interference contributions to P,.,..-(G)

Here 2R(XA*)=dp*+ o g, and the P (8) are the angular distrib-
arising from the mizmin g of the-2 Lelectric-and 2% magnetic
miltipole fields. The form of the result (17). follows from
(13) and (14). Some FII_(G) are listed in ¥able 1.

The angula_r momentum ceeffi.cients are given by (see
Appendix A, equations (A4) and (A'?))

B AT Y S
(aT+ 2 +1)) T T, s '




l¢

where J=J%+J, -2,3 0% Atminimam of 274, 2dy s "m--' “+m1; and

CJ’M.?\; S [ (nm)l (T}l |

"l I\.ML = A l (.T"—#m“)! ('f" "), (J',_-{-M‘)'(T‘_ w,_)' | :

| | gt (el (Tht) z:,.m)‘ ( Q») (19)
(5% g ! (T pn el (T, kama-)l LT oyt ) L 55

o
@‘-) A ~ e The summation over &« 1is carried out with the under-

stanc(l?n;) ctt:‘hat each fractlon m (A>0p= 0) appearing in the
summand. 1s to, be-written identically as A(A-1)...(A-p+1).

Then, if A-440, the term containing the fraction 55%6‘ will '
vanish. Using J=J%+J -2, and m:mY+m,, 1£ is easily shown that
each axlal quantum nﬁr_nber appearing in Cﬁ:.,?;tmst lie within
the smallest pdnge given by the foilowing conditions:.

~JemsJ, -JUeme IV, -Jemed , #(TUeT -2, am4m eIV T =205
~(J-J v 2 )em-m,£T-8, + Ry, =(J=T"+A,)em-m"eT=T"$2, . (20)

The C's, defined by (16) have the following symmetry

propertiegz
Conmiry o, = O™ C;’::}L,Mt - (21)
c;: 1;-'.‘..-- Y. c’ - :‘; - .. (22)
CJM :.I; A ()1,*m1+k,ca’-—w\?‘» (23)

mt T Tm T~

The C's used in this thesis are listed in Table 2,
Using (11), (18), and (18) one can obtain the directional
correlation function W(§) for a particle (J, ) or photon (J;)
" emitted in the first transition and a particle (J,;-) or photbn

(J ) emitted in the second transition. The result is
_ T aaran, A\L/p Tam Do -y 5 -M\_ :
Nie) - = [ (c MY VIFTOF @, (20

T 3, Tt ity Ty mr

Here, the normalization factors for the angular, momentum

coefficients have been factored out énd omitted; the summation


file:///tmlnlmum

o

over m! (-msm,), m, and nNA(=m~mziihas been replaééd'by oné
over m, , m,'andlml. The F's, as stated before, vary with the
type of particle emitted. The angles O and € can be inter-
changed (Cf.--(11) and. (12)).

The particle (J, )5mixed ¥(J,) or X(J,)-mixedk(qi) cof-
relation function is given by

R, LB NG SR

J “ MR-y

¥ Ma.(z:n.;,_u)(u At [Z.( J',..«m.?\) (CI e ” F2(0) 5“:(9) (25)

pogpang rmarm, T - snty Tl

IV S NN NN ) P | O Ghm O L2
-where common factors have been omitted.

The -formlae (24) and (25) are the ones which will be ‘
used in this thesis to calculate correlation functions. --The
formla (25) is valid except for A-0 and A =2J,. For, from
conslderations of the vector addition of angular momenta, it
can be seen-that only a pure QJi electric instead of a mixed

oR

electric and ZJ?' magnetic multipole transition will occur
for these two cases, For A,=0,2J, the formula (24) will be
used.

A method of evaluating the summations appearing in the square
brackets of (24) and (25) is given in Section II. of this thesis..
once these summstions are known, 1t is a fairly simple ﬁatter

to obtain W(8) if J, or J, 1s small.

W(P), as given by (24), 1s mlso the correlation function



't

for the reverse transition scheme J"-—;:J'—;»J" with the. emission
of the particles or photons occurring in. the reversé order.
For, by making use of the symmetry property (23) and the re=
lation F;"(Q): F'(6), and changing the summations over m, and
m, to summetions over -m, and -m,, one can show that (24) is
equal to | :
\\/(.9) =§ML [2;: (CT“M*M.‘LQIL‘A,.)1<CTM 23,72, )z] F:'(G) F;:’“(D), (26)

T o Ty A T e, T,

which 1s the 'correle.tion function for the reversed process.

If also J,=J,, then W(8) inm (24) further represents the dir-
ectional correletion function for the reverse transition scheme
J"?J —J;:J' but wit;h the emlission of:the bparticles or photons
occurring in the given order i.e. as in (24). This lest result
is obtained from ( 26) by interchanging m', and m,, which inter-
changé is possible since m, and m, run over the same range of
values (J,=J,). These results have been proved‘ already, al-.
though in a different wey, by Falkoff and Uhlenbeck?., These
authors have also shown that the F7's are polynomleals of
degree.» at most J in cos?¢, Since the: expre'ssjrpns (11) and (12)
are equal, it 1s seen that W(8) in (24} is a,po_lynomial in

cos?@ of degree at most the niinimum of J, and J, (see also

Yangl).
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II. CALCULATION OF.DIRECTIONAL.CORRELATION FUNCTIONS. ... -

- In order torexpress W(6) in-(24) explic¢itly in téxfms'bf’
cos?e aﬁd the angular momenta involved, 1t is.necgssaryxto 7
evaluate the summations over m appearing in the square brackets,
to substitute expressions for thé-F's in terms of coszo, and
then to carry out the summation over m, and m,. It is the
objeét of this section to present formulae which one can use
to simplify and performtsuchlcalculations.

A. Symmetry of the Summations.

It 1s possible to reduce the amount of calcuiation‘re-
quired to obtain W(B) explicitly by making use of the symmetry
properties (21)-and (22). 4

Applying (21) to the summa tion

J 'm+m. Ay 2(pdm Aa 2 '
:Z; C ne(C
. ( y= JYm-m, J, ml (27)
_ appea%ing in (24), and changing the summation over m to one

over -m, one can show that

(27) ZZ; (cgég’m;')z(cgﬁhlth wn,) % . (28)

“As soon as the types of particles emitted are given, the
formula (24) can be simplified since thehF?'(o) will vanish
but for certain values of m . Bépause Xy ;nd r-y correlations
are the subject of this thesis, the formlas for‘their cor-
relation functions will now‘beﬂobtained.

If an o particle 1s-emitted in the first transition

elong the axis of quantization then F (O) 0 unless m: ().



Using this result and applying the relations (28} and F‘?’-(éb
2
FI%2(p) to (24) one obtains

JL
o< [Zesmy e oo aS et o2y e
(29)

for the K(J;)-partigle(Jl) or o(J, }~%(J,}) correlation function.
' The interference summa tion appearing in the mixture term of
(25) for &(J, )-mixed ¥(J,) correlation functions can also 56
written in a simiiar form,-- The common factor FO(OY is omitted.
The emission of a photon in the first transition along
the ‘aRis of quantization requires that m,=fl in (24) since
 F§2(O)vaunléss m,zt1 for a photon. From (24)A§nd (28) - then,
one can write |

(o) ,,ZJ[ (Cpr (cgi?n-f‘_;&mz)]lvma(e) » (30)
for ¥(J, )-particle(J;) or ¥(J, )-¥(J,) correlation functions.,
Also, for ¥(J, )-mixed ¥(J,) correlation functions, the summation.
in the interference term of (?5) can be expressed in a similar
form.. The common factor QF}(O) is omitte@.:

- B. Correlation-Functions forf§pecial Transitions.

The * summa tions (27) can be evaluated quite easily for some

special transitions determined by the following;consideratiqns.

Jm Ax
Ju nJ

2J" as oné may check using Table Z'gnd the symmetry properties

The expressions-for C are:the simplest when A,z.0, 2§,,
(22), (23), 1In each of the (C)*'s in (27) the factor
(J+m)! (J-m)! will appe ar, elther in the rumerator or denomi-

nator, if the values of A, and A,are chosen from the set



0, 23, 27, and the set 0, 2J,, 20" respectively. The simplest
summand in (27) is obtained when a combination of 2 &nd A,1s
chosen from the above values in such a way that the factor
(J+m)! (F-m)! will be cancelled out. Of the codibinations pos-
sible on1y fogr permit such a cancellation. These are!

(1)« 2,205 A,=0.

{11). A=23, As20,.
(11{).m=2J, 2:0.

(1v) o 2= A, ot

2Ji, _
Hencefbrth, the transi tions satisfylng these conditions wili‘
be called the "special transitions. The summations (27) for
these four cases are eValuated below. The results may be used
to calculate any correlation functions for the specisl transi-
tions. In particular, some «-¥ and Y=Y correlation functions
are givep. o . ’
(1)« 270, A0 or J1=J4+J,, J=J’"+J2.l - '
For this case the total angular momenta of the particles
and muclei resulting from each transition are parallel to omne
another. It is seen from condition (1) that Jl and J, are the
smallest angular momenta that can be emitted compatible with

the angular:momenta of the muclear levels J', J, J%. 'The

summation (27) is evaluated as follows:.

)2

1]

J'mﬂmo
Zz(chJ m, ) ( Ju

— m—sz m,



N (Jfm, +m) (J¥em, =m)l -
=T m ) (T =m (7= vm) (T meml (e, T (3,

(from Table 2) 5,@\__“")

[T ¥ T +t+m+m) (J +J.-m -m) Jlem,+m ( Jlem, «m
e( ! JT*’m: )( JL‘_m: + Z;(J.*'Jﬂml*m* J+Jd, -m ~m,
(from (20)) -3'+(~T,.+-;) :

=[d ¥ +m, +m, ( J+ J -ml -m,)Z J +J,4m +m+ [ 2(T=-J. ) +J, +J, -mpm, -
J,ym, JyrJ, em +m, J+J, -m, -m,

)

(using m=v-J+J, +m, )

J, #J4m +m J+ Jy=m, -m,\[2F+1
= Im, ’>(' 7, -m, *)( 2J"), -G

iising the -summation formula (45) in Subsection C below.

One can substitute this result into’ (24) to obtain the
correlation function between a particle(J,) or photon (J,) -
and a particle (J ) or photon (J, ), subject to the condition
(1) on the angular momenta. In particular, if an o particle
or photon 1s emitted a long the axis of quantization in the
first transition, the correlation functions are ebtained by
substituting (31) into (29) and (30). The results are:

«(3, )-particle (J,) or o(J, )-5(J, )
W(Q) - (J. +JL>2FO(9)+2 (J’ +J,_+ m)(J’.fJ -m) le(g) (32)
¥ (J, )-particle(J) o; \"(J )- a’(J,_)

W) - 24 i+t (3 1w mi ), (32)

’)

{



where the-factor (25339 has been omitted. In the céée'ﬁhat
a photon is emitted in the second transition»with‘aﬁguiar
momentum J,=1 (dipole} or J,=2 (quadrupole) one can obtain the

correlation functions
®(J, )=¥(1): W(B): 1-33}'.@,00849

(3, }-¥(2): W(8)- 1t EEAES VRO € | R

(7, 4—3)(5.1 +8) (J,+3) (53,1 8)
. (%555 (34)
5(J, )-U(l) : W(9) = l-rs‘mcos
¥(3)-y(2): W(e) = 1+ GJ‘(J1+24'5) '?ucosle S(J"l)(J’+J'lO)"cos*9

(J+1) (57%¢233,+30) (J+1) (57%+233,+30)

using the distribution functions listed in Table 1. Non-zero
factors (i.e. those common faétors which are polynomials in J
having no integral roots) have been omitted from these for-
milae.
(11) . 2227, , A=2J, cor J1=J-J, , J=J'-J, .

.~ By using. the third symmetry property (23) together with

Table 2 one can sum (27) as in part (1) to get

J tm+m, 24, Jm2J 2 (I + dptm em) J-fJ ~m -m 23"+1 : ’
Z(c 'n)(ch;Jm) (e )(' *)(QJ, (35)

2J!
in part (1), then, comparing the results (35) and (31), one

Since ZJ"+1 can be factored out of W(p) just as (?J $9 was

can see that the correlation functions for this transition
- scheme are the same as those given in part (1) 1.e. the same

as equations (32), (33), and (34).



(111). 2223, A0 or J'=J, -J, T=J"+J,. ,

From this condition it 1s evident that J»J - in fact,
J is here the largest angular momentum which can be emitted
compatible with the angular momenta J!,J. The calculation of
correlation functions for this transitlion requires the usé of the

summa tion formula (46) ,»Thus, (27) becomes

Z(CJ'nH-m. 2J) ( )2

J“m m,J,m,

R R R S (R (Ll
(J'+m +m)l (JV-m, -m)! (Tym)) (J-m}! (Jﬁam St m)’ (J% m, -m)! (T tm, ) (J,~m, )

(from Tablef 2 end=s)

=f(Ti+m\[J -m, J'+J"+m +m,) J'+J“-m.-m1

Iy -m, I 4m, Jlymem Jl-m -m
=[d+ m,) , =1, Z J '+J"+m\+m,_ J 1434 -m, -m;>
J -m, 23 1-v

a_fmz .
[Tk m\[ 3, -mp\ (2T 427 ")
(J,_-m,)(JJmJ 231 /7 | (36)

~ ~

using -the summation formula.(46) in Subsection C below. This
result with (24) gives the correlation function between par-.
ticles or photons subject to condition (iii}. If an o particle
is emitted in the first transition,.t‘hen the correlation fun-
ction is obtained from (56) and (29) i.e.

wie) = (g-)zpownzi( )( J, )sz(g) - " (37).

J, +m

If a photon is emitted in the first transition, then from (3b)
and (30) ’ |



o g2 e

Jy =m, Lt
If a photon is also emitted in the second transition with/angua
lar momentum J,=1, or 2 then, as in (1), onhe obtains the follow=

ing correlation functions:

X(3 ) -¥(1): W)= J Ll-é%—'—_—i—'%—cosﬂ

}

«(J,)=¥(2):

6J. (5'"+"i$" 2 3(J,+1)(J+2) !
we)=J, (J,-l)[(J 2}+—T53—53T—cosé (53 -3Y cos ?] (39
$(3,)-%(1): W)= 1- (J +J =3) cos*0 o

o1

v(J, )-¥(2):

(3 28] (T +2) (3¥+3, -10) é
w(e)= (3 1)[-J+5J2_15J:12 cos'd - e

from (37), (38), and Table 1. Non-zero common factors have
been omitted from the formulae (39). For those values of'Ji.
which make the factors appearing outside the square brackets
vanish the transition can not take place. For, using the don-
ditioh-(iii), 1t 1s-seen that J =J1+J“+J 1.e. the equation

" J.2J must be satisfied if a transition occurs. Thus, for

172
OLJ tJ,no transition produclng an x(J ) particle can occur and

2
for l‘JlLJ2 no transition producing a.photgn (Ji) can occur,
= = L) 12 = -JYu -
(iv). 11 2J1, Ay 2J% or J!'=J Jl, J.J2 Ve -
Here J2=J"+J'+J1 and so it is larger than any of the

other angular momenta, One cannot calculate correlation func-
tions in terms of cos2p for this case with arbitrary Jl since

by the last equation J2 mst also be arbitrary. However,



correlation functions can be calculated with J,'?rbitrgry and
Jl having some small value. Such correlation functions are
given below.

To evaluate (27) for~this case the summation formula.(46$,
1s used with Table 2 and the symmetry properties (22) and'(és)‘
Following the same method employed in (1ii) one can show that
2SR (R T oo

M-

If -a photon 1s emitted along the axls of quantlzation in the

1 2T #2271
‘second transitiop, then, omitting the factor ZPJ(O)( 27 ’
2
the correlation function will be
e vl -1\ pm, (g 4
w()Z( DEn)me . (42}

from (21}. Comparing (41). -wi th (38), one observes that the
X(l)-x(J2) and ((2)-5(32) correlation functions for this case
are the same as the,Y(Jl)-V(l) and Y(Jl)-X(z) correlation

functions respectively in (39) with J, replaced by J,. The .

1 2.
corresponding «- ¥ correlutions are calculated from (41} using
Table 1. The results are!

X(l)-((Jz) : W(e)s1+ frst -

o(2)-¥(7,): . \

- (7 - [J -2 2(J,,-5J,_+36) 2, 3(F42) (J,,_+J,_..1o)= 4
w(e) = (J, 1) ( 2 )+ SJ‘-J,;’-S os.9+ SJ"'-J,.+6 cos
' (42)

Y(1)-%3,); w(e)=1 é.%;_:_ilcos o
¥(2)-%(3,) :

. 2 ' |
W(e)= (Jp -1) [J.L"' 6 (Tt} T2-b) cos?o - 3(51,:2-)(3':, t T, -10) cos 9]
§Tr- 137, +12 Frd-137, 112




omi tting non;zero factors. By the same reasoning as that in
(111), ome can show that no transition occurs for J,=1 in the
«(2)--15(.12) and r(’z)-;;(:rz) correlation functlons of (42).

C. General Method.

In the preceding Section certain summation formulae ((45),
(46)) have been used, which will be obtained now. To thils pur-
poée a general method of evaluating the summation (27) 1is
presented here. The method can also be used to evalﬁate summa -
tions of the type appearing tn'fhe interference term of (25) .

A very direct method. of evaluating (27) is as follows. 1In
Appendix B 1t is shown that the (C )2 appearing in (27) are
polynomials in m .and hence the summand of (27) 1s a pélynomial
in m. Thus'one can perform the indlcated summation over m

directly by using the known results for the sums Zznf} where k

mMs.3

, 2
are also prescribed, then the final result 1s a polynomial in .

1s & positive integer. If the numefical values of m, and m,
J. By finding the rational roots of this.polynomial in J, one
can express it in a partially factored_fgrm and some of the
factors can be factored out of W(e}). However, for J1 and J222,
the summend in (27) is a polynomial in m of degree 28 and so
thg direct procedu;e of_evaluating (27) and fhen calculating
W(8) becomes clumsy, |

| In the followlng method one does not have to expand the
"complete summand as a polynomial inm But only part of it.

. /
Furthermore, the final result is automd%ically factored in



terms of some of the rational roofs, in some cases all?of them
(e.g. the fgctor‘( 5539 in (31) is factored out of W(8)).
These advantages have permitted the .calculation of correlation
- functions as given in part B which would be difficult to get
using the direct method.

The method is based on the fact that (27} can be reduced

to the problem of summ ing either

QEMZM._,’ (Pw)(ni—c-v)(A v +Ar lv v +...+Aé) ,(43)

or

r _s'[P\/Q o r-1 ? (
anQ =;(v) n-v) (Arv i:Ar-lv Foe +AO)) s (44)

afﬁer substituting expression s for the C's and translating
the summation over m-to one over v. In (44), v takes on all
those values for which (5):(n9§> jdo not vanish, i.e. it:has
the range defined by n-Qevén and 0&v4P., The summation (27)
can always be placed in the form (43), since at the worst,
p=0 and q=0,‘thévbinomia1 coefficients become 1, and (43) is
then the direct summation of (27) whose summand is expandéd.
into a polynomial in v=m+J. The summations (43} and (44) have
been used to evaluate the summations (27) for the special trans-
itions in B, |

In Appendix C 1t is shown that

Zm:(p'{,v) (n+q“9 o {= (PR gr ko
q n -
=0 v (45)
- (p+al)l (n+p+o+9 o

é k“—E—-—p( pral) i w1



and that
Z(E) (307" {= P19 12 0

i (46)
- BV P&Q—a :
_Zfak =y ( 1f k3, .

,3
where theTaK&'s are obtained from Table 4.
Substituting these results into (43) and (44), it is

easily shown that
(p+°<)‘ n+p+q+1> n+p+q+1>
ST nq Z,[ZdAAaMJ lord): (npta +AO( (47)

Ry -Z[Z_ Aa ;L(P;?“d)_+A (P*Q>, (48)

Q= pan B (P-x)! n
. only the term containi ng AO sppearing in each formla for the
case r=z=0. - - |

| If p and q are set equal to zero in (45), the summation

reduces to the sﬁm of the.kth

power of the positive integers.
As mentioned before, t hese sums are wsed in the direct method.

The coefficients ay,; listed in Table @, are obtained
from the induction for mls '

8pud = 1 for k2l,«K =1

K~o¢+l -
k_ﬁ,d ]g(,d ) for ka2, £22,

proved in Appendix Ce

(49)

For a transition scheme next to a special one, i.e. a
transition scheme, characterized by xl, xz, for which the

quantity %1+$§ differs from that for a special transition by



1, the evaluation of the summation is a little more difficult.
than for the special case. As an example, take ‘the transition
scheme A=0,A,=1 or J'=J+J, , J;J"+JL+1 (next to the special

'transition\ (1)) and evaluate (27) as follows.

J fm4m, Oy 2 2
L(ch‘}m )2 (cimd )
_Z(J'-}-md—m)' (Jtem, -m)! 4l mJ, -m;_(J"-l—J,_ﬂ

(T, +m ) (J =m )1 (TV-m4m)! (F%m,-m)l (Tpem,)) (J, =m, )
J’H-J' + my

- Jtm+m Jtem, =m (e g
X (J +J -l+m,+m,_> (J'f Jz‘l’m\‘m:,_)[mJ" m,_(Jszﬂ |

"-f""sz"\’Ml
(1imits from (20))

TUm-m,J, m,

( Table 2)

o

27 :
J+Jz-lrm.+m1+v) 23U 3+ T, elam, ~m -V _qu 472
iZ(J +& =1tm, rm, ( 3, +J, <1-m, -m, [3,v-3" (3, 4m)

(using m=v-J%m,)

- K[FE G g mg ) (G S em) (14

(J:-szJf'('JL+m1))(q +Jz+m,+m15<§‘;;rl)+J""(J )<2‘;itl>] » (50}

(using (47) ). Hore K - R 3+ g, +m,’)(J‘+Jl o, -m;%

(J I P -(m +ml) J+m J, =,

From (20), -(J,+J, -l)ém‘-{-Amz_/_-J,+J;_,_<-.i1,jhen_ce th_e denominator
of K does not vanish. The result (50) is awkward to use unless
n!;_l‘meri'cal‘ values of the angular momenta are given. As the
valués of A, ,21 get farther away from those of the sp,e.ciai

transition the summation results will become more aswkward.,



III. ¥ -MIXEDY CORRELATION. FUNCTIONS, ’

In this -section, tables from which v~mixed¥(2) directional
correlation functions can be calcul’ated are given for an & |
particle having angular momentum 1, 2, or 3. In parts A and B
1t is shown '_how the &/(1)~ and &(2)-mixed (2) co?reiation fun-
ctions -are obtained from the Tables II. and III. of Ling and
Palkoff? for §(1)- and ¥(2)-mixed¥(2) correlation functions
respéctively. In part C, those summations appearing in the
o(('s)b-mixedb’(e) correlation functions are expressed in the form
(%a from which the correlafion functions can be fairly easily
evaluated once the values of the angular moméntum are pre-
scribed. _

Some &-¥ correlation functions are listed in references
3 and 11, Some curves of «-¥ correlation functions are given
in reference 1%. Devonsl? has 1listed some d-mixed¥ correlation
functions - however, some of his results do not agree with the
results obtained in this thesis. |

Since Hamilton's notation is used to tabulate the angular
correlation functions listed in several 'papers, it 1s used to
tebulate the correlation functions appearing here, - The tables
are listed in terms of 4j and 4J defined 'by J':J;Aj and
JU=J+8T, 1.0, &f =Ay=J) and &T=A,-T,.

A. (1) -mixed¥(2) correlation functions. -

The ®(J, ) -mixed ¥(2) correlatien functions can be calculated



from : ' \ ' :

we)= kU p(8)+ |g [Py ) (6) 4 2R(X ANy (6), (&

where ' S i

J 2(9) Z[Z(JmJlml] JJ J'm+m1)2Fm' (9)) [Z(J’“m-mQZmzN“éJm) 2?%‘*(0)] _

J11 () - Z[Z_.(JmJ m |37, 7 m+m1)2F (e)J[él (J m-m,,1m, | J"1Jm) mel(o»:]
(52)
wr(e) :Z:[Z'(JmJlmllJJ J'm*ml)zl"m‘ (9)‘]

Z(J“m-mzzmz\.]’" 2Jm) (J“m-m21m2 lJ"lJm)F (O)]

In the formulae (§Q), the angles b and @ may be interchanged.

P

-
Common; non<zero factors in W(8) will be omitted. Kand 13

represent the probabllity amplitudes for the electric. quadrupole

and magnetic dipole radiation respectively. (This notation agrees

with the text of Ling and Falkoff 's paper, but in thelr tables

IT. and III., xand g have been interchanged for some unexplained

reason.) | ' |
In Appendix D it is shown that from the ¥(1)-mixed¥(2)

correlation- functions, W(e) =z Q4+ Reos?o, listed in Table II. of |

" Ling and Falkoff's paper, the a(1l)-mixedv(2) correlation func-

tions, W(8) = Q'+ R'cos*e, can be calculated using Q'= Q.;_B

and R'= =R. - X (53

The o{1)-mixed¥(2) correlation functions thus obtained have

been tabulated in Table 4. Common, non-zero factors have been

omi tted,



B. 0((2)‘-mixed‘((2) correiation fuﬁgtipns .

By the method used in A it can be sh'own that frbm the-
b’(é)-mixedb’(z) correlation functions, W(8) = Q+Répsé'9 +Scos’e,
listed in Table III. of Ling 'and Falkoff‘ 's paper the «(2)-mixed
¥(2) correlation functions, W(e) = Q! +‘?'cos 9+S'cos49 can be
caleulated using Q'——[GQ-(?R{—SSJ R!= Lzmssj , and 8!z -3,
The o(2)-mixed¥(2) correlation functions th_gs obtained have been
tabulated in Table 5. Common, pon-zero factors are omitted from
w(e). - _ .

A misprint was noticed in Ling and Falkoff's Tabge III.

In the ¥(2)-¥(1) correlation functions listed, Q and R are
polynomials;of the same degreé in J for all transitions but
AJ=1 and 0f =-1. Calculating the Y(?)-‘((l) correlation function

for this case from Falkbff and Uhlenbeck's® paper one can ob-

tain W(8) = 1+ 5(‘”5) (ZJ’]-) cosgfe. ‘I'his shows that in Ling and

"110T% 26954174
Falkoff's Tabke 5(J+2)(110J*+269J+174) in Q should be replaced

by’ -J(J+2) (1105* +269J+1'74) This has been done to obtain the
«(2) -mixed¥(2) correlation function for this transition in Table 6.

C. &(3)-mixed¥ (2} correlation functions.
The (kBkxmixadtxfRYxEmrEEX) summa tions Z(CJ'mA,)g(CJm Ar 2

Jm30 J“m—m22m2
.J'm7\ 2y Jml -1 2 Jvm)‘ 2 Jm ;\1 Jm As-1

in Tables 7,8,9 respectively. They have been placed in the form
(43) and tabulated for all values of a3, AJ. They can then be

directly evaluated using the formila (47). The coefficients, A,



are too clumsy to tabulate for general values of the ‘angular
momenta J', J, J¥. However, since the Ay 's are obtained from
products of binomials and monomials as in the equation
Arvr+Ar_1vr41+ ooo ¥ Aé = [a2V.2+ a,v +aé”: b2v2 +byv¥ bOJ. .o [j.lv +9,0] ’
the set of coefficients 855 895 aO; b2, bl’ bo;...-;ll,hopan be
tabulated instead. Once rumerical values are assigned to Jt, J,
J" the Ai's are qulte easily obtained an& the summations can
then be evaluated using (47). - o

Th'é ol(8) -mixed¥(2) correlation function is obtained in terms
of cosZe by substituting the evaluated sums together with the
expressions for the F's given in Table 1 in the formla (25)
(simpiified by the result (28}). For &(3)-¥(2) or &(3)-¥(1)

correlation functions the formula-(29) 1is used.
An examplé showing how to xmxwd read the Tables 7, 8, and 9
i1s now given. For the transition in which AJ =1, Aj =2 or

A =5, A,=3 In Table 9 one obtains

TtmE2,dmE  oJm2 o n(med ~ . o1
%}(CJmso) Cima121Cmo111 S 16355 o744 With ap=1, &y= -2(3-2),

8y = (J-2)2; b1= 2, b= -(J-4). Using (43}, it 1s seen that this

0
summation 1s equal to

16 Gﬁzgv)(%’-‘*r‘ '*)[vz-Q(J-m v+(J-2) 2;] [2v- («]"-4);]. ’

which can now be evaluated using (47).
If m, has not been specified mumerically in Tables 7 and 8,

‘1t means that the results are true for all 'possible positive and



! - v

.

zero values of m,, . In Table 9, mécrl-since‘Fgéiz 0 unless
’ h -+ .
m, =%l and only m,= 1 is-required from these two ‘possibilities

to calculate the o«(3)-mixed’8(2} correlation function.

3/



Teble 1. Exhibition of the Anguler Distribution Functions, P7(e).

X Particle:
J=1. P’ = 2cos?0
P - 1-cos?s ‘
J=2 F. = 1-6cos? + 9codhe
F‘*I =6c08'f -6 cos“é
Ryl 3 (1-2cos*8 + cos*d )
M(O) 0 unless m=0.
Photon: o f_ ' .
(These_distribution functions gre properly weighted so
that the correct relative effect of each mltipole is rep~
resented when a mixed trensition oceurs.)
J=1. Electric or magnetic diéole}
F® =3 (2-2c08%0) |

. F'T’ = '.}i(1+ cos?e)

J=2. Electric or magnetic quadrupole.

P, - £(6cos?@-6cos*d)
F§’=5(1-500319+4cos“9)
P2 5(1-003‘*9)

Fa
"(O)"O'unless m=tl,
Mixed electric quadrup ole and magnetic dipole distribution
functions. _
F,, (6)=0
-FI‘ (6)=i’£_f(3¢os"6 -1)
o~

For any J, F,:,(o) :r.(s)-

For any particle or photon F:(0)= F}?(e).

34



Table 2. Explicit expressions for some Cguan " (equation (19)).

. e !

cJmo [ B (Jam) ' (T-mj !~ ‘ 1% *

J'm I m,  [(T%m ) (J°-m7)! (I, +maf(J -1,
cJml =2 J*m" ( J-m) S, e, 7
: +mo b {dJ7 Pderm )1 (d, % ﬂ.)—'

eI . (_1)J'i'-m (2J)I (J’ +m J“f 2J, -;\-m‘)}
J"m"J,_J-m“ -7\{! (2J ] 2JY.a, 2J “A;

Jo=1: : V

cJm0 [ (G (Fm)! J
J=lm-m, 1m (J-1+m1-mfl ?J 1§m?+mfl) (1*'31;)’ (lomzﬂ
Jml - J+m}! (Jam)!

CJm,-m,_lml_ - [(Tm;_*m)l (J’.‘.m -m)l (lfm1)| (l_m )'] [m mz_(J+lﬂ
Tm2 (-1)1+m, [(Ji-l-m;q—m)l (T+lim,-m)l - 1%
J+1m-m,_1m,_ (F+my T(T-m)? (T-m) ! (1+m, )

Jo= 2‘ . '

CJmO | g_ Ui (i ]jz
J=2m-m 21“1 J=2-m,+ m)! (.%’-2+r)n,_-(—mﬁ )( 2+m, )t ( 2-m27
Jml = Jym)! (J-m)!

CY tmem,zm, = 2| (T TR R (T~ Lm, 5) T (2Fa, ) T(E-5) ) Bo-n (31)]
Jm2

chZO" 3m* J’(J+l) .

Jm2 3

ey = =[3(Fm) (Fe1-al]* (on-]

cJm2 % (Jam)! (JH8-m)l 1%

Jm-222 ~ |2 Trm-2) (J-xzxﬁ ‘ i1 i 4
Jm3d 1+m Jrl-m, ¢ m}! (J+i4m, -m)l

Coprmem em,” 7V R\ o (2em, ) (2m, )'] bren. g
Jma = (- 1)m4, (J+2-m +m) (J+2+ma-m i’
J+2m—m12m,_ (J +m)! (J-m}‘ (2¢m,)! (2-m,_)']

J;=3, m=0:

od+3mo_1 [ (J*3em)! (J+3'-’:ﬁ)’*}

Jm30 " 3¢ L{Jm)’ (J=-m)!

cIveml | ((F+2am)l (Tiz-mfift
Jm30  [(Trm)t (F-m) -~ J

cItim2 . 1 ((5¢1em) (J«-l--m);lz [5m*-J(F+2)]

Jm30 2
oJm3 = Zmlpm®-(35*+35-1)}
clope = <3 [(sem) (F-u]* [5ut -] ,

CJ-2m5 - f(J+m)‘ (J-m)l " Y
Jm30-- L(J'+m-2)l (J-m-2)‘_\ s

cJ~3m6 1 [(Jm)' (J-m)' ]1
Jm30 * 3 [ {Jrm-3) (J-m-3)"




% 10
1.
2 .
5 .
PR
5 .
6 .
7.
8 .
o .

10 1

3. A tabulation of the coefficients a,, defined by (44).

45

36
750

28
462
5880

2l
2686
2646
22827

5 4

. 1

1 10

15 65
140 350
1050 1701
6951 7770
¢2hep) 34105

#2525

25
90
301
- 966
3025
9330

>

~

15

31
63
127
255
511

I R T Y T

'_n



Table 4. The following sbbreviations are used in Tables 5 and &.

d, = [155(5+2)] %

d, = (2J-1)}'_15.)‘(J+-2)J’3

d, = [5(25-1}(23+3)] %

d, = (’2J+3)[15(‘J2-1)_] 3

dg = [15(s2-1)] %

dg = (J=5)[157(3+2)] 2

dy = (23-3) (23+5)[ 155 (J+2)] 5

d8 =(J+2) (25-1) (T+8)] 153 (T+2)] 1
dg = (J+2)(23-1)[153 (J+2)] %

d, 5 3[5(23-1) (27+3)] d

di1= 5(-J-5)[5(2J-i)ﬁ(~2J+3)] 5

4, '= (27-3) (2J+5)[5(‘2J-1)(‘2J+3)]%
d) 5 =3(Jt6)[5(2I-1) (2743)] 2
d), -z;[s(zJ-l)(zJﬂs)J’Lr
4 -(J-l)(2J+5)[15(J2-1)]’£‘
dl = (J-1) (27+3) (7-5)[15(38-1)]%
d, = 3(2J-5)¢2J+5)[15(J2-1)]5
dg= (J+6)‘[_15(J 2.1)]%



Table 5. o(1l)-mixedd(2) correlation functions.
- W(e) = Q! +Rtcos?0 . ‘
AT &) x| * 181* 2 Rix g%
2 1 Q113
(F=O)a R' 3 .
0 Q' 163-7.
~ RY -3(23-7)
21 QU 267%71T+42

R' 3J(2J-1)

1. 1 q é%(zgg+5) g . -%dl
- RU-XIwE) T q

0o Q! §%(26J2+17J+6) I(63+7) .%dz

R %fJ+6)(2J-1) . Jfe3-1) jdg

-1 qr §§(SSJ2+151J+78) 14724333420 -%dz
R qg(J+6][23-1? -J(23-1) 4,
0. 1 Q' 5(2052-87-5) (27-1) (6J-1) d,
. RY Z§(2J+5)(2J-37 (27-1) (2743) -3d,

0o Q! §;8J2+8J+5) 83%+83-1 -d

R* 5(2J-3) (27+5) -(27-1) (27+3) 3d,

-1 Q §(20J2+48J+23) (23 +3) (6T +7) ds

R! -3(2J,5$(2J+5) (25-1) (27+3) -3d,

#Correlation functions for those transitions in which only a pure
~electric multipole 9350) 1s emitted, have been included in the
?ables 5 and 6 for the sake of completeness., These were ob-

tained from reference 3.



T&Hél s (cpn'l'l'nueJ),

a

a7 &y 1w* Al 2R(e@¥)
-1 1 Q¢ 5:'L_(sesJ -35J-15) 147°-5J+41 3d4
R! -775.(2J+5)'(J-5) -(I¥1) (2T +3) -d,
T o - -
0o Q! ET(QGJ +35J+15) (I+1) (83-1) ~zd,
RY %(2Jf3)(J-5) (T+1) (25+3) d4
& 5
-1 Q! -2-1(29J+25) 7(I+1) 3dg
| R! -7(J-5) -(J+1) | d5
-2 1 Qf 26J2-19J-3
(3=0) ,
- R' 3(J+1) (2T+3)
0 Q' 16J+3
R' -3(2J+3)
-1 Q' 13

Rt 3

Example: For AJ=<1, 8j=1, ohe obtains
.5 2 2 2 2, 1
Qr= gy(587 -357-15)1&l™ ¢ (145°-55+1)Ip1* + 34, 2R(48%)
_R|=..T?_(gqj+-5)\(J_5)ld|1 L =(341) (2743)|al* -d, 2R(&gs) ,
from which W(8) = Q'+R'cos®e is easily obtained,



Table 6. &(2)-mixed¥(2) correlastion functions.
- W(e) = Q! + R'cos26 + Stcos?s.
AT A3~ lec) 2 I3
2 2q'15

gg;o)

I BR(xg¥)

R' 8
5t -1
1 Q' -2(3T+2)
R! 2(J-3)
S! -2(2J-3)
, 3
0 Q! -4(2T+1)(J+2)
RY 4(23-3)
S 4(J-1)(2J-3)
-1 Q! -(12J5+54J2+78J+5o)
R! 2(2J-1)(J2+2J+6)
8¢ (J-l)(2J-l)(2J-5)
-2 Q! -(20J4+148J5+391J3+437J+168)
"R -27(27-1) (252477+9)
St $3(321) (23-1) (27-3) |
1 29! 5(37¢1) 157 -4,
R! -5(J44) 37 3d
S g(2J+5) ] '
1 Q! 5(5J%4+57+6) 33(9J+1) d
R' 25(J+3) (J-2) | 3J(J-5) -3d
st -2(27-3) (2745 |
0 1 5(47%+872337+6) %(52J5+136J+99) 1
R' -5(2J-3) (2J45) (J-2) J(23=3) (23+5) -d,



Table -6 (continued).

12

AJ aj B | -1 2R(xp%)
St 20(2J-5)(2J+5)(J-1) S ~ |
-1 Q! 5(10J4+47J5+62J2+i6J+12) | 3J(J+e)(1832+433+5o) dg
RY 5(27-1) (5%+67%+47+48) 33(T42) (548) (23-1) -3dg
s'--§Q(J-1)(2J-3)(2J+5)(2;-1) o |
-2 Q! 15(2J5+9J2+133f§) 3(J+2) (1072+235+14) -d,
R -5(27-1) (T%+27+6) -33(3+2) (23-1) 3d
S §(2J-l)(J-l)(2J-3) |
0 2 Q' 15(27+41)(J-1) 3(23-1) (43-1) 40
R' 15(2J+5) - 3(23-1) (23+3) -3d_
S' -5(J+2) (2J+5)
1 Q' 15(47%432-7-7) 3(23-1) (103%+7J-5) -d )
Rt -15(27-3) (2J+5) (J+3) -3(27-1) (2Jt3)(J3-8) = 3dy,
. 81 20(23-3) (27+5) (J+2) N
0 Q! 5(16J4+32J5+40J2+24J 63) %(2;-;)(2J+3}(32J?+32J-15) -d; g
R! 5(2J-5)(2J+5)(4J2+4J 9) -(27-1) (27+3) (2J-3) (2J+5) 34
St -20(2J-5)(2J+5)(J 1) (T+2) -
-1 Q' 15(47%83%% 37+5) 3(2J+6}(1OJ2+15J-2) ~d,,
R!' -15(27-3) (2J+5)} (J-2) -5(?J+6)(2J-1)(J+6) 3d,

ST 20(27-3) (27+5) (3-1)

<2 Q' 15(27+1) (J+2) | 3(2J+5)(4J45) d) s

RY -15(27-3) 3(2J+3) (25-1) =3d_,

ST =5(J-1) (27-3)
-1 2 Q' 15(23%-37%%+341) 3(J-1) (1072-33+1) a .

R! -5(27+3) (7% 5) | ~3(J=1) (2T+3) (T+1) -3d,

St %(2J+3)(J+2)(2J+5)



Table 6 (continued).

AT aj

) *

1 Q' 5(103%-73%-1052477+21)

-1

R?!

st

nR
R!?
S
Q!
Rt
St
QI
R!

T

-2

Q
R!
gt
Q!
RY
gt
Q’;
R!
g
Qv
R!

gt

'Q'

R!?
gt

5(25+3) (5734072%+77-45)
-%Q(2J+3)(2J-3)(2J45)(J+2)
5(47%472%.3-7)
-5(27-3) (2345) (T+3)
20(5+2) (23-3) (27 +5)
5(572+57+6)
5(57-10) (T +3)

-20(27-3) (27+5)

5(3J+2)

-5(J-3)
=(207%-687%+6732-193-6)
~2(J4+1) (27+3) (272 -3J+4)
1(an1) (2745) (3+2) (27+5)
-6(27%-37%+741)

2(27+3) (J%+5)
—g(2J+3)(J+2)(2J+5)
-4(232.3-1)

-4 (2J+5)

%(J+2)(2J+5)

-2(33+1)

-(J+10)

-2(27+5)

15

6

-1

al*
3(3+1) (F-1) (18327345}
3(341) (3-1) (2543) (J=5)

%(3+1)(5252-393+15)
(J+1) (2F-3) (2T+5)
3(I+1) (97-2)
3(J+1) (T +8)

15(J+1)
=3(J+1)

40

?R@ﬁ*)
B 15

335

=dyy
3dy 7

18

3d18

-3d5



Table 7.

1 g

0 my

-2 m2

1 30,1 116'(4*5‘“4)(451‘.‘*} 52

The smmmattions;~Z(Cgl:ﬁ_goA ')2(0%1{“2‘2 &)

or AJ = Rgc?, Aj= Al-3¢
ol 2 1
KSpnq v v

%XS-%) S-mz R 2J-o , 5+m2
(4§m2)(4 5m2) 4 542 -t , 254 ,4+ms
‘ 1 -2(J-2)

9_
-42933-m2,2J52 3+m,

5 -10(J-1)
5 =10(J=1)
£a6 |
§S2-m2,2J,2+m2 5 -10J
: S 5 -10J
_ 1 -2F
1.5 '
152-my,27,26my °  "107
' 5 -10J
1 -2F
s6 1 -2J
-m2,2J 2+m
1 -2F
1l -2J
1.4
753,27,3 1 5
1 -4J-3
-1.4 _oT.
1 “4J-3
1s 1 43-5
7°3,2J,4 mRe=
1

4-m2,2J-6 ,4+m2

4 -4(2J4m2J-6)

Jt=3-Aj, J= VAl

Voz 1

(3-2) %

(J-l)(4J-g)
(J-1) (47-8)
(J-1) (25-1}
(3-1) (27-1)

g2

2J(2J-1)
25(23-1)
-23-1
-43-4
-2J=1

g2

2

(2341) (274R)
-2J-3

(2J+1) (25+2)
(25+2) (25+3)
-2J-1

(25-my3-6) 2



Table 7 (contimed).

T 2 . vl
AT A} m2 I?,Spnq v
. 1
1 32 BOSS,QJ-S,G 1
. 2y 4
20,1 4(9-my) S5 1y ,25-4,54m,
1 -2(r-2)
4 -4(23-m,J-4)
H . 3 s
2 16032,2J;4,5% 1 -2(J-2)
- L
1m 88
2 “2-my,27-2,2+m,
5 -10(J-1)
5 -10(J-1)
B 4 4(2-2J+m,J)
R
00,1 s
| ’ —9(4' _mg_) 1-%,2;7,1“'1112 .
5 -10J
5 -10J
1 -2J
- 4 <47 (2-my)
1646
2 3—81,23'-1’3 5 "lO(J"l)
5 «10(J-1)
; 1. -2(J-1)
| 5 _
-1 0 Sl,2J,1 5 103
5 10T .
1 «2J
) 1 -2J
B Y 5 -107
3 1’2J’2 .
5 -10J
4 -4J

1l

vOe]

(3-2)2
(2F~m,T-4)

2
(7-2)2
2

(J-1) (45-6)
(J-1) (453-5)
(2-27+myJ) 2

(23-1) (3-1)
(2F-1) (7-1)
2
72 (2-my) 2
(25-1) (7-6)
(27-1) (J-5)
(3-1)2
J(4J-2)
J(4J-2)
~2d=1

J2

J(4J3-2)
J(4J-2)

J2

-2J=1



Table 7 (contimed} .

43 &) m,

1 -12

-2 0

r
KSpnq

5
-232,QJ"1,3

6
'1632 2F,2

5 2’2J’2

2455 25-1,3

4
485 57,3

54
353,27,3

«8ad
‘34 27-1,3

S5 2J-6, 3

3
655 27.6,4

5033 23-6,5

6
435 o07.4,2

T N T o T T = T I

-10(J-1) .

210(J3=1)

-2J
-2J
-2J
-2J
-AJ
-4J-3
-2(J-1)
-4J-1
-2
-23
-43-3
-4J
-43-3

-6(J3-3)

-6(J=-3)

-4 (2J=5}

-6(J-2)

_.-s(J-e)

-2(J-2)

vO=1
(2F-1) (235}
(23-1) (25«5)

(23+1) (234+2)
(3-1)°
2I(2J+1)
«2J-1

r

(2542) (2541)
JQ

(23+1) (2I+2)

-23

. -1§g+27

23°-197+27
KREkkkIaAk

(25-5)2
5

6
2.1,
%J -1§f+12

23%.137412

(3-2)%



Table 7 (continued).

J 3 m,

0 21

r
.KSpnq

)
1882’2J‘4 ,5

4
7285 o7.4,4

1S 7
1°1,25-2,1

3.7
o1,05-2,2

5 ,
2,27-3,3
4410

570,27,0

248
3°1,27-1,1

o = R TS ) SR S R B ¢ ) B¢

= o G g =

vl

-2(J-2)
-4 (25-3)
1
-2(r-2)
3
-10(J-1)
-10(J-1})

- =6(J-1)

-6(J-1}
~10(J-1)
-10(J=-1)
-4(27-1)
1o
-10(J-2)
-10(J-2)
l'x
-10J
-10J
-6J

-67

..2{[
-10(J-1)
-10(J-1)
-2(7-1)
-4(23-1)

vO0=1

(3-2)2
(27-3)2

8

(3-2)2

2
(J-l)(4J4g)

(J=-1)(47-6)

2IZ7I43
25%.13+3
(7-1) (43-6)
(3-1) (43-6)
(23-1)°

1 }
432205421
432.205+21
2

(27-1} (3-1)
(23-1) (3-1)
7(23-1)
J(23-1)

52

(23-1) (7-6)
(23-1) (3-6)
(3-1)2
(23-1)2



Table 7 (continued).

. R o R
Aq’ A m, Kspnq
| 846
2 =
0 0 332,2J-2,2
.10 18
41,27,1
-3.7
1 2%
4°2,27-1,1
2 955
2 3,2J-2,2
' 6
20 4S5 27,2
3
4
2 728 o502
4
=50 35 95,3
3
1 '684,2J-1,5

oS NG I < B 7~ B¢ S ¢ : B G | SR 3

>

o B B N

-10(J-2)
-10(J-2)
-2(J-2)
-10J
-10J
67

e
-10(J-1)
-10(J-1)
-4(27-1)
1
-10(J-2)
-10(J-2)
1

-6J

-6J

v0= 1

(25-1) (F-21)
(25-1) (5-21)
(3-2)%
J(33-2)
J(33-2)
J(2J-1)
J(23-1)
(23-1) (33-5)
(23-1) (27-5)
(23-1)?

-23 ,
2_225%20
45%_225420
-(23-1)
J(23-1)

4J

J(27-1)
2
(27-1)2
-2J
(7-2)%
23(27-1)
J(27-1)
J(2J51)
(27-1)2
-2J



Table 7 (contirued).

AJ 4] mg
0 =32

-1 30

20

10

ksT
Spnq

2
%085, 05.2,5 -

4
435 0r-6,3

.
o4
S3,27-5,3

-.g8 '
1,2J"2’1

A i
n
N 3

,27-3,1

585
SS,QJ—4,2

-(45-1)7'

~2(J-3)
~2(7-3)

Al 23-5)

5
3
1
-2(J-2)

-2(3-2)
-2(3-2)

-2(J-2)
3.
-12(J-1)
-2(J-3)
.

-10(7-1)

-10(J-2)
-2(J-1)
-2(3-1)
-10(J-2)
-10(J-2)
-12(J-1)
1.

'-IO(J-B)

-10(J-3)
l .

$é

vO-1
2J(27-1)

-3(233)
(3-3)°
(37-5)2
6

2

3
(3-2)2
(3-2)2
-4 (Jm1)
(3-2)2
2
9(3-1)2

,‘(343)2

6
(3-1) (43-6)
(3-1) (43-6)
(5-1)2
~(2J3-1)

2 _ -

~2QJ+21
gJ2-20J+21

47

9(3-1)2

2
43%_305+45
43%-307+46
3



Table % (contimed).

r 2 ]
43 &) m, Kspnq v v
'1, 00,1 9(4-m2) 1+m2,2J -2 1-m2
5 -1O(J-1-m2)
1 -2(J-1-m2)
4 -4 (-1} (2+mp)
15 6
2 §%,e03,1  ° C1009-9)
5 -10(J-3)}
1 ~2(J=3)
6 ' X
-1m, 82+m2,2J-2,2-m2 :
5 -10(J-1-m2)
5 -10(U-1-m2)
‘ 4 ' -4(J-1) (2‘\’1!12)
2, .4 '
-2 m,, 4(9 -m )SS+ 2,2(J 1) _— |
-Q%J- -m2)
4 -4(J- )(2+m2)

=5 my é( ’gm")( -mz) 4+m2,2J-2 4-m2

y 4 -4(J-1)(2+m2)
S - . ~
-2 3 = 1 -2(J-
' 0 485,2J-6,3 (7-3)
1 -2(J-3)
14 - ;
1 Ess,zJ-s,s . 2(7-3)
1 3
1.3
2 5%,25.7,3 1 5
‘ N l
20 . g8 1 -2(J-2)
2,25-4,2 ,
1 -2(J-2);
1

-2(7-2)

v0:-1

5(J-1 4m§)2~(533+3:-1)
5(J-1-mg) %~ (372437 1)
(3-1 -m2)2

(J-1) (2+m2)'2

032-33T+46
032 .33I+46

5(J41-m2)2-J(J+2)
5(3-1-m2)2aJ(J+2)
(3-1)%(2rm,) 2

(3-1-my)?
(J-1)2(2+m2)2

(J-1)2(2+m2)2

-3(2J-3)

-4(J-2)
=3(2J-3)

2

6

4

(5-2)2

-4 (J-1)

-2J+3



Table 7 (continued).

r : 2 <1 0_s
AT Ay m, KST v v vO=1
_5 _ L L5 ' N ., w
-2 21 -285 455 1 2(J-3) 5(23'3)
| 1 -2(3-3) (Fu3)2
| 1 2
P - 2
2. 234,23_6’2 1 -2(J-4) (T-4)
B 1 7 | 12
«1a6 .
10,1 3 2+m2,2J-4,2-m2 :
5 ~10(3-2-m,) 5(J-2- 2)2-(J2-1)
5 ~10(J-2-m,) 5(3-2-m,) %~ (35-1)
1 -2(3-2-m,) (3-24m2)2-32 |
1.5 ' 2
2 :1-54’2J_5’1 5 -10(J-4) 4J -4:O-J+8l.
5 ~10(J-4) 43°_405+82
[ 1 ~ 4[ |
0 " %Sg+ 2J-4,2 '
My, £l =2, o=y . . 5
| 5 ~10(J-2-m,) 5(J-2-m2)2-(3J2+5J-1)
5 -10(J-2-m) 5(J-2- 2)2-(5J2+5J-1)
\ 1 -2(3-2-my) (3-2-m,
- (9-m5) o4
1wy =3 szgxz,zJ-zl,s-mz | | I
s -10(9-2-my) 5(3-2-m ) *~7(742)
5 -10(3-2-m;) 5(J-2-m2)2-J(J+2)
A+m \A-m ) 2 '
2w, 4 (5 2)(-2 2> Satm,,25-4,4-m,
Y -2(3-2emy) | (J-Z-m2)2
54+m. )/ 5=-m.) O , N
-3
™ ( 3 2)( 3 2) 35+-m2,2J-4,5-m2 1



Table 8. The summations Zi(chm“')2(c§§£‘£11m2)2, Ir=Jonj, § = F0=AT
- or AJ—'Az“z, AJ =Al Qe

AJ Aj m, ks’ v2 vt vO=1
png
4+m -m 0 ;
123 m 2)( )S -m2,23-6 44m, .
, o
2 m, (9“ 2)(4-m2)s m,, 274 , 3+m, _
e oy 2
\ 1 -2(3-2) (7-2)
1m 4#@234 '
2 4 -m2,2J -2, 2-l-m2 , _ C
5 ~10(J-1) 4J2-10J+6
5 ~-10(J-1) 4J2~lOJ+6 4
, 6 ) 2
-2
0 m, 931-m ,27,14m_ J T
2 2. 2
5 -103 2J°-3J%1
B 5 - -10d 2523541
- =146
1w, Isl-m2,23,1+m2
5 -10J 2F(2J-1)
5 -10J 23(23-1)
1 -2J -23-1
A 2
-2 0 -452 27,2 1 -2 J
1 -2 -23-1
4 : 2
1 232 £7,2 1 -2J J
, 1 ~43-3 (23+1) (25+2)
- 2 - -27-
30 Ss 57,3 1 oJ 2J-1
l 2 ' ' , g " &
1 235 2J’3 1 43-3 _ _ (23+1) (2T+2)
o 30 482, 1 ~2(J-3) | (7-3)°
. 5,2{-5,5
1 885 2J_6 4 1 3



Table 8 (continued).

J j m,

0

20

bo

'-1m2

Kg¥
png

1584

846

9 1,2J-l,1

5
51,27-2.1

1,2J-2,2

g8

4
2,2J,2

168
4 .
1233,2J,1

4 (3+m2X5-m2 S
9\ 2 2

2,2J-4,2

[

S I G T TS, S S S RS SRS S S R o) -

T R T T e L)

S+m,

1

-2(7-2)

- =2(J7-2)

-2(3-2)

1

-2F

-2

-107
-10J
-2(J-1)
-10(J-1)
-10(J-1)
Qlo(J-ly
-10(J-1)
-2(J-1)
-10(J-1)
-10(J-1)
1.
—1Q(J-m2)
-10(J-m,)
—2J(l+m2)
-2J7

-27
~-2(J-1)
-4J

s 2J, 3‘1

-2
J 1+m2)

23%35+1
25223731
(5-1)2
27213746
2J°-15746
2(J-1) (23-3}
2(J3-1) (25-3)
(5-1)°
2(J-1) (27-3)
2(J-1) (27-3}

1

5(J-m,) 2-F(7+2)
S(J-mz) ~J(T+2)
72 (14m,)

J2

J2

(3-1)%

43

J’2(1+m2)2
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Teble 8 (continued).

AT A3 m_ KS¥ ve et
2 pnqg :
- -g2 - 1 -2(J-3
1 30 s3 23-5,3 (3-3)
{ea2 - B
} '553 2J-6,3 . °
4
g 0 -432’2J_4’2 1 Ar-2)
1 ~2(F-2)
4  .o(T-
1 232 0J-4,2 1 2(7-2)
B 1 -(43-5)
-1a5
1 1s
"2 T lemy,20-2,1-m, .
5 -10(J-1-m))
5 -1O(J-l-m2)
» 1 -2(J-l—m2)
om 256
2 9 1m_,2J-2,1-
2 )
5 -lO(J'l"mz)
5 -10(3-1-m2)'
1 -2(F-1-m )
NP 2
2 4 2+m2,2J-2,2-m2
5 -1O(J-1—m2)
5 -10(J-1-n,)
s .
-2 m, ( h%%( > 34m,,27-2, 5-m,
1 ~2(J-1 -m )

G+m 4-m,

.VO-: N _

(7-2)2
-4 (J-1)
(3-2)°
(27-2) (2F-3)

5(Fm1-m_) 2n(32-1)
2 .

5(J-1-m2)2-(J2-1)

(J-l-mz)z-Jg

5(JF-1-m,) - (3I°43F-1)

)
5(3-1~m2)2-(332+3J-1)

(J-l-m2)2

5(541-m2)2~J(J+27‘
S(J-l-mQ)Q-J(J+2)

2
(J-1 m2)
1



',

WJ tm2A

2.0m A J‘ng_-l ; 'j-' ‘__‘ Fa Aj ,

vO-1

2(3-6)
(3-2)2
-(J-4)
2(7-1) (25-3)
2(J-1) (27-5)
-A(J'_g)
21%-354

% Y TEY

32

-J

_27(27-1)
2J(25~1)
J(25+1)

J2

(23+1) (25+2)

=

(2J{1)(2J+2)

-3(23-5)
(3-2)°
=2(2J-3)

2(J7-1) (25-3)
2(F-1) (25-3)

m
:« \ J= J“"M OI‘AJ =Az_ “2, AJ = a' -3.
r ' 2 1
AT A& v
J jg%mq v
0wl - «
18 55,20-6,5 2
P
2 169355 51 4.4 1 -2(J-2)
‘ 2
.5 '
1 231,2J-2,3 5 -1Q(J-1)
5 -10(J-1)
2
847
) 6—- 0,27,2 5 -10d
5 - =10
1 -2J
- 2
1.6 : _
-l S@1,20,2 5 10J
) 5 -10J
' 2 -5J-2
4.5
“2 =5, 01,2 1 -2J
1 -4J-3
1.2 ey
=3 =53,27,3 1 -47-3
' ‘ 2 o ‘
0 3 4r33332J_§,4 2 -(27-11)
4
2 12J332’2J_4,5 1 -2(J-2)
2 =(23-7)
. 6 ) .
1 r-gsl,zJ-,z,z 5 -10(J-1)
- 5 ~10(J-1)
-(2J-3
2 zziinx%

A(ZJ-l)



Table 9.(contimued).
Ay 43 KsT
‘pnq

4 7
0 0 3p5,25-1,1

, Be
-l -%82,2!].‘1,1

4
-2 -12{385 55.1,2

o
-3 :4J384,2J-1,3

. -

-1 5!‘5‘33,2.1-5,5
4.5

2 BS2,27-4,2

1 §E§2,2J-3,1

. ::“é 7 .
O §§2’ 2J"2 ,O

5

5 {3,
-1 35582 o5.2,1

[

-

o v ¢ N oo o,

o H N o w;

vO=1

(23-1) (7-8)
(23-1) (3-6)
(3-1)°
-(27-1)
(23-1) (27-5)
(27-1) (27-5)
25 (27-1)
(3-1)%

25 (2J-1})

27 (27-1)

6
~(33-5)
(3-2)2

2

-3(J-1)
(27-3) (25-7)
(27-3) (23-7)
~6(3-1)
(5-2)2

(J-1) (23-21)
(5-1) (23-21)
-3(3-1) | -
2(25%-115%10)
2(232—11J$10)
-3(F-1)



Table 9 (contimmed).
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AT Aj KSpnq v

1 -2 164383 , 1
4,23‘2’2

2041 |
-5 S 5,2J-2,3



Apiaendix A. The Normalized Angular Momentum Ceef‘ficieni;s,

In equations (A3) and (A4) below, two expressions are -
given for the normalized anguler momentum coefficients. Since
the summation‘in (A4) 1s easier to evaluate than that in (A3),
an expression for the factor f(JJ“Jg};is desired so that (A4)
can be used in the caleulations. It 1s the object of this
sppendix to show how the normalization factor f(JJ”JZ) can be
ébtained and then to show that the two formulae (A3) and (A4)
a¥e the same by proving the summations in each formla are

, equivalent.f Fromleither of these two results the equations

(18).and (19) can be obtained. -

_The normelized angular momentum coefficients
(J"Jém" m,| "7 Jm) are defined by

WJ Z(J"sz" glJ“J Jm)WJnmn Tom,’ ' . '(Al)l-'f*'"“

M.‘pm =m
wherelygm 1s the normalized wave function describing the state

of the system consistl ng of a mueleus (angular momentum J%)
and an emitted particle (angular momentum J,) which are in the

states represented by the normalized wave functions d&nmu,

¢5 m‘ respectively. Jm refers to the total angular momentum
270 '

and 1ts z component, r espectively, of the system. If
szyém\de=1 is formed it can be seen that the normalized

coefficients satisfy '
D (3T “m |77, Jm)Zs1, -  (a2)

’M"+M1~~V\

This follows from the orthogonality of the wave functlons and
the fact that the coefficients are.real mumbers (Cf A3).



The expression given by WignerM for the normalized

coeffieients is (using different notgtion)

S ue b e g me i emas eh e el v me Ko o1t e 2% ba wh gagiemaeses L
('JuJ m"m.zl Jur Jm) - [(2J4-1} (2J“:_)$)! (23 =) 'Az!]”

‘ (2T+AL+1)!
(T+M)‘ (J’-AM)\ 2 Z(_')O("'Ta.*'ma-(‘z:& -\-J"-rm“ -Ax -d.)! (I"—M“+u)! (A )
(3% N (T = D (T m I (Lol (23, -2z~ ) (T am-wl ol (TH-T, - gyt ~amtec)) 3

where A 1s @efingd by J=J¥+J,-A,swhich means its values must
lie in the range OA.minimm of 27, 27, since LEE KPS FELTE A
m:m?+m2; o takes all those values for which negative argumeﬁts
do not appear in the factorials (0!=1) (All summation indices
which do not have their range- given will be summed in this
manner.). This formula is not easy to use because it 1s not
very symmetrical in the J's and m's. Van der Waerden%? gives

a symmetrical formula for the unnormslized coefficlents.

Using this formula the normalized angular momentum coefficients
may be written in the form

(J" sz"mz\.r" Jodm) = £(J J"T)»

L .
[ e amdl (Y-l v ‘Z{-:)d' (14 ) (7" M (Tytmm) {(Ta-mm ) v
(R G M T )] “6C Gl at B, 0] (7m0 (T -, -2, 400 GO ()
: £(ITNT )cgf,“ ’;,3 - (A5)

using (19). Here f(JJ“J ) is the normalization fector neces-
sary for (A4) to satisfy (A2) .
The normelization factor f is.now calculated following

16

the method used by Keller By substituting (AS) into (A2)

with msJ one can obtain~

7\
fzz:<cggm"3 AL (46)
0’\" 2



Pd
3

57

t
LY

the range for m" being determined from the relations in (20) .
The summation in (A6) is evaluated as follows: <first, express
the summand explicitly in terms of m" using Table 2; then
changs the summation over m" to one ovgf vemt =35, 5 finally,
use the. summa tion formula (45) with k=0 to gét the sumn.

Combining the result with (A6) one obtains

p(I7 T )= |(2I41} (2%=2)! (BTa= Ao}l 2412 (A7)
2 (2352,+1)! |
The equivalence of (A3) and (A4) is now shown by proving
that , - -
% (27, ";\z'“)l (4T, +m"+m,. ;\ -at)\ (J“-J m"&md-at)‘ « :
SN CLS W R CA T L A I €A U VS SR

‘< (T"4m" —x;fd)'(J"-m“-«}'(Jg;ml-u) (I, -mz-hlfd)!“’(ﬂ ~a )

qatma (3 Verma [ )a_**"“l Jmh T ,mu ¥ Ay
P (3 (B o o] o

Obviously, (b) cannot be obtained from (a) by a linear
substitution fore. It is nepesséry to prove (a) = (b) by
showing that both can be obtained from (c).
To get (a) from (c):

Use XJ"'-m" J"‘+m"<Y )2.3',_ A Z( ) (zJ‘,_- )YJ +2J, 'i'M"—?.—_OLXT"—m"‘!-o(

and perform the indicated differentiation using

LN k- Kl K-S . |
X = o,
(ik> (k- sH X ' ' (49)
To get (b) from (c):
' ) Jatm fem TN
First form (%;() T+ 1 x7 (Y—XY 7\:]

-

P MZ (:r,fm,.>[ Z N ’x ‘”“_]L(axftm‘ x-Y)NL-MJ

(using Leibnitz! theorem for the differentiation of a product’
of two functions)




Leae Ba e

_ o (I-Y’ J; -‘mlﬂ X;‘fﬂ(

BNERTLE TN N €A 9] N € U [ P 0] B
® (J+mu-n)! ¢! (TVemwat} (I omyen ta )

(using (A9)). Then form (%Y) :.'Ma,[-YJ'"—M"(‘_Y)J',_-Mz 'A,_+4J

o= (-M;.-&;-MM% (1;-:;)[(%,\/)13\,:-4 MJ[ (%Y)Tzfmx-ﬁ (Y_OJ;..,,,,‘l _Ale

(using Leibnitz' theorem)

o (1) A S (S L V(AT i 1 Rl T A gy Aaret
' p (Jy-mas}pt (Fm" f@)! (B=rptat}!

(using (A9)). Setting Y1 in the latter summation leaves only
the term for which p=2,-d. Substituting these formulae in (c)

one obtains (a).

Thus (a) = (b). This equality has also been shown_by
Racah'’ by a-different method. .

The expression for f(JJ“Jé),» given in (A7) could have been
obtained by using the result (A8) with (A3} and (A4).
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Appendix B. To show t hat (CJ 2% Yon'n.d m,

Jud m,
are polynomials in m. : :

If the latter quantity is a polynomial in m then so 1s the
former. Hence all that is necessary to show 1s the proof that
(cIm Pz .)2 1s a polynomial in m and this is given below

J“m-szzmz p y ] } ) - .

: From the. symmetry properties (21}, (23) one can see that
1£ (cF8 % g w,)” s & polynomial in m for O¢Aed, and Oemysd,
then it is a polynomial in m for-any kzlanc;i m,, in the ranges
0£at2T,, =Jotm,eJ,. In the definition (19), 1t is seen that
the summand is a polynomial in m. It must be shown thét the
factors (J"fa;}m".)'. (¥ -mt)! appearing in the denominator of
(C )2 are cancelled out for 01:32/:32, O'=mz‘=J2 .to complete the
proof. . |

Now, J*4m": Jrm=(J 4m,-2,) and is £J4m for 0£4,J, and
w20, Hence (J%m")! divides (J+m)! for 0£r,tJ and O4m,tJ,.
JVem¥ = J’-m—(J’z-‘.-mz-.-zz) and is £J-m if Jo-m,~A,20. For the case

2 27
that J,~m,=3,40, the factor [ R = L T
“m" )t - (F-m={Jy-m -2, )T
cancelled by the common factor (JVam"jl” _ " "T(FUimey!
: (J-m)! (FV-m+ T, -m,=2;)
which appears in all the terms, (J%-m")! ', of the summand
/ ( Ju _mu _“)(

in (19} since Jz-ml-kzﬂkéo for a non-zero term.



Appendix C_.v The Summation F’ormlag.
To derive-the formulae (45) and (49):

It will now be shown that

Z":(p;v) (nog-v>vk = (n+p;-lq+1) if k=0 (B1)
v:0 . :
w . oyt
- (p+x)! [n+pa+l) 1f k2 2
%:‘ak“__;_!___( P ) 1f k2l (B2)

where YRR 1l 1if kel,o(=1

K=+l (BS)

7 k-ﬂ,d-lcg{— If k32, x22,
These formlae-are the same as (45) and (49) of the text.
The result.—»‘.ﬁ(B'l) will first be proven, (B2) and (B3) then
follow from it by induction.
To prove (Bli)‘-‘, one forms (1-X) 'p"l(l-,-X)"q"l = (1-X) -p-g-2
and expands ear.h binomiél to get
Z (p+v) XVZ_(Q"'W)X‘" i (n+p+ a+ 1) xn,
v=o z0 n '

Collecting the coefficient of X® on both sides of this equation
one arrives at the result (Bl).

The formula (B2) is now proven for the case k=1,
X(p-w) (n+q—v) vy . (p+v)  [n+g-v\. (p*]_)z_"(p+l+w> (n—-lfq-w)
vio L P ! ver (v=L)pt (| @ weo\ P*1 Q

= (p+1)<n+gt%+l) using (Bl).

Now, assume (B2) is true f‘or all values of k up to k=r-1

(r22). ThenZ(P*V) (THQ" )vr Z_G(rj-git;]_l)_%r (m-g-v) vr-1

b



¢l

- (p+1) )3 eyl n-1+q"4W) (ws1) 7-1

weo !

- (p+1)Z(p+l+w n-1+ g-'w)[g Cr';])wk_‘_ 1]

<m0 R SRR ) + ()

(using the induction assumption)

r-1\| (p+i4Ajl /n+p4q - (n+p+q+
—(p+l)Z[Zau< )] (pri)! (n_(a+1)>+(p+l)( 1

~E=

ror -l e

=Z L ove-1 (r-; >] ( I:""‘()'l (n+p+q+l> + (p41) (n+P+Q+1

d‘l s@-{ ") H

y Y-St 1 ( A Y 1 ey + 1
S b (T2 L8 oy (R
o=alB=1 T AT-A P -« ’ nel
'ia '(g'”iééi)'!"(n+pfq+l>

o r« p! n=&

r-a+l!

where aro; gf.lar_ﬂd_l (/3- > if pi2,a=22
-~ g = 1 1f .21, |

This completes the proof of (B2) and (B3).
To derive formla (46) ~ . -

The formula (46? may be derived by using the same method
of proof as thaet already given for the formla (45} starting
‘with the equatién (1-X)P(1-X)R= (1-X}E*Q instead of
(1-X)-P=1(1.x)~-a-1 . (1-X)"P=2-2 gna expanding the binomials
using the formula (1-X) —i(P) (-X)V instead of _
(1-x)-F= [Z- ( ( X)J i( 1)\v P- 1+V)( X)V. However, the
relation (v) z (-l)v(P %’W is all that is-needed to get (46)
from (45). If one sets -p-1=zP and -q'-1=Q in (45} then (46)



can be obtained using this relatlon. The limits for the summa-
tions are determined from the range for Which the binomial

coefficients in the summand do not vanish.



¢

Appendix D. The proof of formila (535 . |

The o¢(1)- and ¥(1)-mixed 512) corralation functions can
be calculated from (§¢) and (53). The second bracke ted: 6xp-
ression in.each W(8) in (53) 1s independent of . Wlé(e) can
thus be Written Symbolically as (see reference 3)

Wy (0)- g0F0 (9) +darl(ey, S (w
where‘gg and d¢ are the coefficients of Fg(é) and Pi(e) ob-
tained from (53). - ‘ . .

The & (1)-¥(2) correlation wh function W o(8) will first
be obtained from the ¥(1)-¥(2) correlation function Wy (9¥
which-are‘tabulated in Ling and Falkoff's paper. Substituting
in (D1} expressions for the Fts from“§able 1 for an &(1)
particle and a KTl)'ray one obtains ?,

K(1)=¥(2): W o(6) = dG + (2g6-d6) cos®® (D2)
§(1)-¥(2): wlz(e) 2gG+—dG+(dG-2gG)~cos @.. =~ - & (D3)
The expression is given in Table II. of Ling and Falkoff's

paper in the fonm

¥(1)-¥(2): W ,(8) < Q+Rcos 0, (D4}
ithx=0.
v “ costd : :
- Hence, 2gG+—dG4—(dG-2gG) =K(Q + Reos 9), (D5)

wyere Kis a possible common factpr that has been omitted.
Equating the coefficlents of gosle, one ob%ains two equations
from which one can solve for gG and dG in terms of K, Q, and
R.' Substituting ‘the result in (D2) gives |

oc(l)-X(z) Wy 5(0) = KQQ-»R - Rcosze)



from which K can be omitted. This result 1is exactly the saib
for Wy,(8) and-Wp(8), a different G being used in each case.
The common factor K is the same in each case. Hence the |
*(1)-mized¥(2) correlation functions can be obtained from the
&(1?-m1xed§(l2);-_»»,_cofrelation fqnctions‘listed in Table II. of
Iing and Falkoff's paper by the relation (83).
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