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ABSTRACT -

The cross sections for the 016(p,'K)F17 transitions
to the ground d-stateland to an excited s-state of .Fl7 have been
- measured in this laboratory and elsewhere, at different energies
\in the range from about 100 kev to 2.5 Mev incident proton energy.
In this thesis an attempt is made to calculate these cross sec-
tions at several energies in the above range on the hypothesis of

direct proton capture. Similar calculations have been made at

the California Instituté™of Technology but have not been published.

The standard formula for the cross section for an elec-
tric dipole tramsition from an incident p state to a final d-or s-
state has been used. The matrix element appearing in this form-
ula was split up into an angular part which can be evaluated
exactly, and a radial integral which has to be calculated approxi-

mately.

In the case of transitions to the excited s-state num-
erical caléulatipns using tabulated wave-functions were made at
center of mass proton energies of 150, 378’gnd 940 kev. ‘The Cross
section at 150 kev was also calculated by the saddle point method
using WKB approximations to the wave-functions, but this method
was found to break down at energies above 200 kev due to diffi-
culties with the WKB functions. Reasonably good agreement

between the two methods was obtained. at 150 kev.

For transitions to the ground d-state the numerical

method could not be used since tabulations of the required d-state
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wave-function are unavailable. Calculations were made only

by the saddle point method\ét center of mass proton energies of
150, 378 and 500 kev, This method can not be used above 500 kev.

The calculated ratio of -_‘?_-_g_ ~ 9 at energies of 150

and 378 kev, and the absolute value;rgf the cross sections agree
reasonably well with the experimentally observed values Some
discrepancies are noted between these calculations and those
carried out at the California Institute of Technology which are
very briefly referred to in a preprint of an experimental paper,
but a detailed comparison was not possible,as the details of

those calculations are unavailable.
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INTRODUCTION

The 016 (p, ¥ )F17 reaction has been studied experiment-
ally in this laboratory (Warren et al 1954, Riley 1956, Robertson
1957), and elsewhere (Tanner 1958). In these papers experimen-
tal reasons are given for supposing that this pfocess is one of
direct radiative capture. Calculations of the magnitude of the
total cross section, based on the hypothesis of direct radiative
capture, and of its dependence on energy have been made at the
California Institute of Technology (Christy and Duck 1959). These
calculations are briefly referred to by Tanner but have not been
published in detail, and correspondence with the authors indicates
that they are not likely to be published in the near future. In
view of the interest in the theory of the direct capture process
by the experimental group in this laboratory it was decided to

repeat the calculations and to complement them as far as possible.

The shell model predicts that the F17 nucleus consists
of a single proton moving in the potential of the doubly closed
core. The lower energy levels of this system are shown in |
fig. 1. (Ajzenberg and Lauritsen 1955). According to the shell
model (Blatt and Weisskopf 1952) the additional proton outside
the second shell may be in a | da;,_ , 1d3, o a LS4 state.
That the two lowest levels are in fact ! dﬁi+ and 23-;+ has
been shown experimentally by stripping experiments (Ajzenberg
1951). For direct radiative capture the seléction rules for
- radiative processes lead us to expectvelectric dipole transitions
between p wave incident protons and these final single particle

states.
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N
For a single particle transition the cross section is

given by 2041

g7 [0+1) K

2——-——-——[(1{-")”31 _%_—-\-9' ) @Qt\l

T d) =

(see Appendix A).

The matrix elements GQL_may be reduced to a radial and
an angular part. The latter may be evaluated exactly (see Appen-

dix B).

Three methods are available for computing the radial
integral. |
(i) the 'exact' method.
(ii) W.K.B. method and counting squares,

(1iii) W.K.B. method and ‘'saddle point'.

.-The free particle wave functions known as Coulomb wave functionms,
and the boﬁnd state wave functions, Whittaker functions, are in-
vestigated in Appendix C. The saddle point method theory is.
given in Appendix D. In Appendix E a W.K.B. approxiﬁation to the
- Whittaker function has been worked out. Finally in Appendix E_fwo
auxiliary functions used in the saddle point method are written
down explicitly.b The calculations were carried thrOugh'using '
methods (i) and (ii)) for transitions to the s state, and by :(iii)
to the d state. 1In one case only was it possible to compare the.
two methéds, and here good agreement was found. The absolute
value of the cross section was computed in each case, and the;
ratio of the two transitions found at two energies. The ;esélts

- were compared with the experimental results of Riley (1956) and

fair agreement found.



CHAPTER I

The Radial Integral

It is shown in Appendix A that for direct radiative
capture, the total cross section in terms of the matrix element
of the transition is given by

PR
T

_ (L.-H) K
- (LM> - LLU_,_,,)_H] 'K\,— \QLM\ 1.1

where L. is the angular momentum of the multipole
K is the wave number of the incident radiation

V- is the velocity of the incident particle

We have found it convenient to ‘introduce

&Lf"l = QL"’ 2@ (2040 (Appendix A)

The matrix element éinycan be reduced into a radial

part and an angular part
I v

&Im = ') (QSJM' = lQS‘)M) 1.2
where I‘L ) Jﬂ; (£>L Qo. {md(. 1.3

and ‘QL-and ﬁ&aare the radial parts of the final and initial state
wave-functions d%-and (#a.,,and '"a" is the nuclear radius. The

angular part is defined by

Y ) = [0 e 1
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where. .O-(r and -(24 are the spherical harmonics multiplied by
spin functions contained in qb@ and chx: and the integration
over AW in 1.4 implies a scalar product of spins. To obtain

tﬁe experimental cross section averaging over the initial magnetic
quantum numbers ™ and summation over the radiation and final state
quantum numbers M and r\'. must be performed. This enables us

to reduce the anguiar contribution to a statistical factor S which
is a number (Appendix B). We find that for a transition from a

- -

p state to an s state this factor S = 1, and to a d state S==?y.

We are left with the problem of evaluating the radial
integral. For a dipole transition this is
. ”"
< 2
:[1 = ‘Jh (R o Ra v*as
=]

1.5

The wave-functions outside thd nucleus are investigated in Appen-

dix C. For positive energies they are the Coulomb functions
F“;) and G_g-;) (Bloch et al 1951), and for negative
ol

energies the normalized Whittaker functions N W89 ghere oL
’ ' ) r .
and ﬁ.qﬁ@are related to the center of mass energy E of the inci-

dent particle, and to the binding emergy E, of the bound states

by: £ _ »
°<'L = 7:_&1 ‘ (g'l.._ Z:t__E“},
: % X 1.6
’ Hence outside the nucleus
}MO s Flar) — s §Gwe) .
Qq = oLl = K o | 1.7

where S‘ is the nuclear phase shift,



" Inside the nuclear surface little is known about the
wave-functions. I1f a square well is assumed the wave-functions

are approximately as shown in fig. 2.

The radial integral is then made up of two parts viz.,

O

_ h L@ M < Wen |
| = f ka««f ar + j g- r v 1.8
L 4
[+]
Not much is known about the first part except'that the
interior portion of the wave-function «;.is small due to the
small penetrability through the Coulomb barrier. In this cal-

culation it was neglected completely. It has been estimated

as some 10% of the total at 600 kev (Duck 1959).

A rough estimate of the effect of the nuclear phase
shift g) can be obtained by assuming an extreme case, for in-

stance if hard sphere phase shift is assumed

Floa)
K\f\g = G‘l‘“‘)

1.9

which at 940 kev and a = 3.6 x 10°13 cm becomes tan 5 = .003.
Hence the contribution to the whole frdm
v o g s .
o o«
a .
is small in spite of the large value of G at small Y

Duck estimated this to be 20% at 600 kev. It was neglected in

this calculation.



The integral then reduces to

- N °° ’
1y = d_ez \/ F(ur)\a/((xr)w\

cos S‘ being approximately unity.

—-—
—

Spa



CHAPTER 11

Methods for Computation of the Radial Integral

Three methods are available:

Method 1: The 'exact' method (using 'exact' tabulated values for
both the initial and final state functions).

Since the Coulomb wave~functions are tabulated and in
the case of an s state Whittaker functions may be tabulated for
integer and half integer values of the parameter'ﬁ (see Appendix
C), the value of d in 1.11 may be compﬁted numerically by'plctting

the integrand and either counting squares or using Simpson's rulé.

»

Method 2: W.K,B. and counting squares method
W.K.B. approximations for the positive and negative

energy solutions are available (Schiff 1955).

Using the tabulated free particle solutions and a W.K.B.
expression for the bound particle solution, (see Appendix E) an

integration by counting squares is feasible.
N

Method 3: W,K,B. and ‘'steepest descents' method

The wave equation for the free state given by C.7

4,—- ¥+ [ | — :F' "‘2 Q+')tli‘ = 0 21

A("‘

is

) ,
where ( = oL



and for the bound state

d"W (e
de —[l+2-3%+ ( )]\A/ O 2.2

where ( = (3('
The W.K.B. approximations to the solution\_\ of 2.1 (suitably nor-

malized by proper choice of C) and 2.2 (normalised to unity at
the nuclear surface Y=a ) are:

2. Gy
P(o(d) f(()de 4 jepld(-z. (7
Fien = [ f ] ¢ [Plad cf 2 s
1 Q e - Qf\& )
a e d s - P e:
W) = Q ’] Jep e £&
(see Schiff 1955) N
| 2 L Q(Q+n) *
where P' " ) + l L‘}
e - L5 >
Qe - [1 + 2y «(w

If as before -

d - f\»l(r) ‘ F(r')o‘f
" j wf’) r Flr‘) Ar

(,))\QIQ. s ?,1
) ve
d - d [ - o)
~— I = d
' C[&!‘ax) PBA)] > ¢ >

~00



where L}Jbt\ = j& oL Q’(di +‘t0\ &Q-{QI\P -—'jIOFQ’LA)L -2

This form of q)é() is due to Christy and Duck (1959).

Then by the method of steepest descents (D.10)

J(x=)
J LS \I’

where Am is determined from the condition that the exponent be
a8 minimum . a\_'f =0 afF A4z%m (this equation must be solved
numerically). and X~\— %ff ’ is evaluated at X =dA~ |

Hence substituting back

/zx'i}: \/J‘Frh) F(d(a) fr

r1a"4)may be evaluated from the tables and for \J{ththe

W.K.B. expression (Appendix E) is used.

The -expressions for QJP and 4 are worked out in
as” p
Appendix F.

Normalisation of the Whittaker Function:

We are now left with the problem of normalising the
Whittaker Function. Vérious methods are available. We could
assume a square well and integrate over:all space. We could use
experimentally obtained reduced widths if they were available.
In this thesis the following procedure-was adopted, which thbugh

crude is simple and fairly accurate.
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The Whittaker functions were tabulated normalised to
unity at the nuclear surface. Normalised to unity over:all
space they then become

=M (ga) =
N N \/\/(U} whee M bs) = a,
Wé}f) _ @’g . (‘ f
We then assume that the internal wave-function is constant and
equal to its value at the nuclear surface, and also that most of

the contribution comes from the interior of the nucleus.
Hence N© LW{(’)} ‘% R

Limitations of Methods of Calculation:

The W.K.B. approximation for the free,particle fails
at the classical turning point < , since in (2.3) P((0=(33t
that point., The radial integrand is xv(@f)r F&) an exponen-
tially decaying function, a linear one, and an exponentially
increasing one(for ¥ {Yc), The overlap integrand then takes
the form of a hump as suggested in Fig. 3 if the W.K.B. approxi-
mation holds good. In method 3 to this hump we then fit a
Gaussian curve. However, if the actual saddle point of the hump
- is near the classical turning point, the free state wave-function.

may have already ballooned up, and in this approximation the



integrand may not have a sﬁddle point but always increase. The
method then fails. At low energies both the saddle point

and the classical turning point Yc are some way from the nuclear
radius and fc > {m as suggested in Fig. 3. However, as the
energy>increases, the saddle point moves in, and the classical
turning point also moves in at an even greater rate, so that even-
tually Yo X {m . Hence there is an ;nefgetic upper limit
above which the method fails, In the 016 nucleus this was 200
kev for the s state, and 550 kev for the d state.

Our neglect of the contribution from the interior of
the nucleus will become less and less justified as Ym—~> &

However, at the highest value of E = 940 Rev  (mx Sa. .

The contributions from successive humps of the Radial Integral

The radial integrand in Fig. 3 consists of a series of
ﬁumps alternatively positive and negative becoming progressively
smaller as the bound state decays. In method 3 only the first
hump is considered. An estimate was made of the contributions

of successive humps at 378 kev for transitions to the s state.

11.

[}
The free state wave-function is only tabulated out to (’=C.

For larger values of , ' the asymptotic form was used
F = salp- 1-445 Ja2p - -33¢7)

This function had been tabulated to large P by Dr, G. Griffiths.

The Whittaker functions were found using the W.K.B. expression

3



(Appendix E), and interpolation.

The integrand was then plotted.

The areas under the successive humps were found to be

‘in the following ratio

3_hump = 6.3 1072
2 hump -

2 hump - 3.8 1072
1 hump

Consequently only the first hump need be considered in the cal-

culation,

12,
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CHAPTER III

P =

Calculations

Evaluation of the radial integral

s étate ('exact' method)

Here the Whittaker functions were tabulated using C42
from Appendix C and the experimentally determined energy level.
The value EL = ,094 Mev was adopted for the binding energy.
This was suppiied by Dr. G. Griffiths on the basis of experimen-

tal data more recent than Fig. 1.

The bound state parameter'qj was fouﬂk‘to be 4,006,

-and thus taken, for purposes of calculation, to be 4.

The unnormalised value of VJT)is given by
o f CAE.(1p)+ 3Eai2p)— Ex(2p))
Wey = Eol2p) - 3Ea(2p)+ E4ltp)—Eg(EP k 3.1

ve
The radial integral Cl = of F‘f") \'J(() rdr was then evaluated
using the method of counting squares for three values of the in-
cident proton energy - 150 kev, 378 kev and 940 kev. (These
values were chosen so as to give tabulated values of the Coulomb
function). ThevW.K.B. method was found to fail at energies
higher than 200 kev, however a value was obtained at 150 kev for
comparison of the W.K.B. method with the more exact method using

Whittaker functions.



14,

d state

Here the Whittaker functions were not available and
the W.K.B. method was used at 150 kev, 378 kev and 500 kev, the
latter energy being the highest at which the method was found

to work.

The results for d are collected in Table 1.

Table 1

Values of the Reduced Radial Integral d (sq. cm.)

s_state d state
Energy (c of m) . . -
kev, l‘exact' ¥.K.B._ V.K.B.
150 2.0 10727 2.4 10727 1.5 10728
378 3.5 10726 - 3.0 10-27
500 - - 9.4 10727
940 ' ‘ 77,3 10-26 - _

-

The values of ..~ _ for the d state are 2.03, 2.61, 2.82, and
. : J
for the s state 4.25. The value of a was taken as (16)° x 1.45

10713 = 3,65 10713 cm.

Agreement between the two methods in the one case where comparison

was possible (s stafe, 150 kev) was fairly good.

Nowthe cross section for dipole radiation is given by B17

cil por 3.2
L3

( 3 R K]



where d is defined by 1.11.

The values of kx were obtained from
’kck( = E +El7"

where E is the incident proton energy (c of m), and El&s the

binding energy.

Substituting into 3.2 we obtained 'the following cross sections.

Table 2‘

Cross Section (sq. cms.)

Energy kev s state (exact) d state (W.K.,B.) Gt /q7).
150 4.5 10735 5.0 10736 9.0
378 2.3 10-32 2.6 10734 8.8
500 - 2.4 10732 -
940 2,9 10731 - -

Most of the variation could be taken out of these figures by
calculating S where ¢ =5 Ef‘¢kp(-1337) (Blatt and Weisskopf
1952). Table 3 contains these S values. .

Table 3
S kev (sq. cms . kev)

Energy kev 8 state d state .

150 o 2.7 10724 1.4 10725
378 2.5 10724 - 1.6 10725
500 - 3.1 10725

940 7.4 10725 : -



CHAPTER IV

Comparison with JExperiment

The experimental results from the thgsis of Peter Riley
(U.B.C. 1956) were reduced to total cross sectional form. As he
tabulated them as cross sections at ninety degrees, there was a

multiplicative factor in each case, necessary for conversion.

The angular distributions are for transitions from P
states to s and d states respectively (Blatt and Weisskopf 1952,
particular case of B.W, 3.16).
s(r\q'e and (1+ —t”‘\B)
‘ .

If the latter is taken to be isotropic, the multiplicative factors

ol .

arcla;'_ 1}{ 3D 5D 48 A¢?‘ - g_g

T I
and fjm@ d,@d»% = 4
° >
Riley's results then became

Table 4

Cross Sections (sq.cms.)

. | . 5
E (c of m) s state (5:n'9 ) d state (isotropic) S/Gji

583 3.45 10-31 Lo - -
793 8,71 10731 2.69 10731 ‘ 3.2
1110 24.8 10721 8.06 10-31 | 3.1

16.
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Table 5

S (kev‘sq.cms.)

E (c of m) in kev. s state ‘ d state
583 4.2 10724 -
793 4.0 10724 1.2 10724
1110 1.8 1024 6.1 10725

Conclusion

The only energies in Table 3 which lie close to the -
experimental values of the enefgy in Table 5 are 940 kev for
the s state and 500.kev for the d state. The S values corres-
ponding to these energies in the two tables are of the same order
of magnitude. |

The calcuiated value of ;‘_}_§9 agrees with the
value of = 10 at higher energies reg;:ted by Ajzenberg and Lau-
ritsen (1955), and is not too far off Riley's value of = 3 in
Tablé 4.

Over the energy range investigated our caiculated
values of S remain fairly constant in agreement with the results
of Christy and Duck reported by Tanner. However, our values of
S for transitions to the s state are lower than those of Christy
and Duck by about a factor 2, The reason for this discrepancy
could not be ascertained as the details of their calculatiop

are unavaillable to us.,



APPENDIX A

Determination of the Cross Section in Terms of the Matrix

Element of the Transition |

The derivation given below is a somewhat expanded ver-

sSion of the one given by Blatt and Weisskopf (1952).

The Maxwell Equations for a periodically varying field

with a source containing a distribution of currents it‘_’)and

charge (J(_f_) and magnetisation “:\_lﬁ) are

c VxE = wa (H & 4TM)

dw:)" = n.a(’

for _E_ {{_,t') = El_’.)_(_-h‘ok “+ ET;) o—u.\k

‘and a similar expression for H (i'k)

Eliminating E and H in turn and putting (- %

Ux (IxH)—x*n . 4L (Vg reK"D)

-

g x(VxE) - X'E . ALK (14 Vxr)
="

A2

A.3

A.5

18.
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The solutions of the corresponding sourceless equations are, for

electric multipoles

_’[z[fmv) _XOM (9'4’)

~ _
where }émﬁﬁ}¢0 is a vector spherical harmonic (defined in Blatt

A.8

and Weisskopf 1952, Appendix B),

4: (b r) satisfied , _
&~ M| Ly -0 e

Ar

We set

Hio) = aeltm) He (20

A.10.

where Hq_w"\)> = uQU) _?(_QNCQC})
< | A.11

_the function WU'(/) is that solution of (A.9) which for large ¥

behaves like

e
ug [¢) = opL(ns ’FW} | A.12

and (q(m) 1s a normalising constant to be determined later.

Similarly Lo - de ) Eg (2mi) | ' A.13
EelQ«;') =-—‘;€ 7 x Hellmi2) | A.14

| , >
Substituting A,8 into A.6, taking the scalar product with X, (o) ,



and integrating over all angles, we obtain

[-4. « 1.’112::) —x>) J[Q(Q,.‘,‘,) < K, (s

\

A.15

A.16

Ko lmy) = 4 J[ﬁ:@d’ﬂ.ivxé rox™ml 40

A similar equation is obtainefor magnetic multipoles.

The Green's fupction for A.15 leading to outgoing radia-
tion is

» +
-] .
GGt =x7 K (’4) de 7). A 17
)
where Y< denotes the smaller of ¥ and ¥ and ¥y the larger,
Fo /
while vﬁ% is the solution of A.9 which is regular at the origin
and for large ¥ behaves like sin(Rr-+l7T). oOutside the source
i
¢ '<~f hence we may put v =¥ and ¥y =v giving for the solu-

tion of A.15 ocutside the source

20,

JQ () = W"{ J Fyee' Kt"')d"l g () A.18

Comparisoﬁ of A.18, A.8 and A.11 yields the normalisation constant

Ge (A~) = JFE") Kelr) dr = %ﬁ‘(;‘ﬁ")xn-(v’tj rPYAV 4 10

0o <

* the integral extending over the source volume.

We now assume the wave length of the radiation is large



compared to the dimensions of the source, i.e. Kv«| for all v

which contribute to the integral. We can then replace FQV)by

its asymptotic form for small ¢

(K’}Q+'
(2.2l

" and using the identity Xom (O9) = L Yem (O¥)

YT

L= —iexV

A.20

A.21

-~ where );q' is a scalar spherical harmonic, we have the approximate

form

g kM A .

Uéing the vector identities

Looxg = =L e+ (9 - v ()

LA - V. (6

~and A,3 the integral in A,22 becomes

jQYq e¢)[wuv)f +1~°€+~V 1) +iex™V. (”‘““ﬂﬂ

Y3 §+L
5 _3[_ R PR [,’ r'& - f[h:s)v (,o\n

A.23

A.24

A.25

A.26

21
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and 0 '
e AV =0
‘)( v {£9) A.27
) - = 10 - T Dav » !
Aell~) (%Q:)-” (E_é) K™ ( Qo + CQIM) A.28
&Qk = j,( Yol (B.9) ((L) AY | A.29
l | | |
Qoo - “‘&% J((Q i 0% du(xxt2)av A.30-

with an analogous solution for the magnetic radiation,
Replacing the operator AV by ;‘; to obtain an estimate of ithe

relative sizes of (] and Q' where a is the nuclear radius &~ —%

Mo~
Qb Kt‘ _ ks -2 for
& [ T Mc*
transition of a few Mev. We thus neglect &'g..\ in comparison with
Qo .
To change to quantum mechanics we replace in A.29
o+ o
e(ab‘() by ‘Q_,d')b,lf) (ﬁ‘u\ A.31
where a and L’,refer to ithe initial and final states, obtaining
_ '] e
Ny (ab) = el Yo (09) (}5“1- JURAS A.32

In A.31 and A.32 the final bound state (. is normalised
to unity over all space, while the normalisation of the initial

state qsa in the continuum is discussed later.

The energy emitted is determined by the Poynting vector S.
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Far from the source E and H are perpendicular, so that

c <
'él_ao’" Py E v ~ g Haq" - A.33

where
L € A.34
E_m,.(rk) = LEwn. B :
Using A.11 we get for the energy emitted per second per unit solid

angle

U,_(Qm-,.ﬂ.) - L—}C—T(;ZOA(\ECﬁ) )4¢(0~)lL ' A.35

where

>
Zt~09) = Ko~ X
For example, in the case of dipole radiation with m=0

E,e (8.¢) = %ﬁ- -‘!-'.\\G

Integrating over the full solid angle

(Zgon(m$)d2 - |

J
The total energy emitted per second is then

Ue(0-) = Senlaeldm)]™ A.36

Here we see that the total number of quanta emitted per second,
which equals the rate of emission of energy divided by Ly , is

given by

. A .37
Teltn) = S(L) et ) Qoo™
Q Laenal]™ % o




o :
This is related to the cross section Gigpla“) by

, Tell~

T~y 1 = ) A.38
Flac

Therefore if the wave-function for the incident particle used to

evaluate LQQ~,.JWE(Qh)in A.37 is normalised to unit flux then

'(T§¢ = o (h~) A.39

In the case of incident plane waves or of plane waves modified by
a Coulomb field, which will be discﬁssed later, the wave-function
normalised to unit incident flux is obtained by multiplying the
wave-function normalised to unit incident amplitude, by the factor
Q%; where 19" is the velocity of the particle. Therefore the
final form of A.39 is |

¢ = wir (U+1) i b Qo)™ A.40
Toplle) = X220 K ) Qo)

Q;LLYD+0..3 o
where the free wave-function is normalised to unit incident ampli-
tude, and the bound wave function is normalised to unity over all
space. This well known formula appears in this notation for
example in Blatt and Weisskopf (1952). To transfer to notation

used by Kennedy and Sharp (1954), and in the body of this text,

we replace Q-a[_ and ™M > M.

In A.32 the angular part of the final bound state C}S{,..

is a spherical harmonic. The initial state Qba consists of a

24,
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space wave-function which should be taken as a positive energy
solution for a particle in a Coulomb field modified by a nuclear
potential at the origin, As discussed in the main text the

- effects of the nuclear ggtential are neglected in this thesis,

and the space part of ¢%_is taken to be the Coulomb wave-function i
regular at the origin. This may be written as the sum of an inci-

dent and a scattered wave of the form
1+ 9 —g—(e\ A.41

+ where the asymptotic formsof I and S may be found, for example in
. Mott.and Massey (1949) for the case of I normalised to unit ampli-
tude. There also Gordon's expression for the expahsion of the
space part of ¢L_so normalised, into partial waves, is recorded.
This is

> 0 N
@a = ZLE (’LQ.'*") vLoe ¢ F!T__,].‘(_}E / {%L ((‘98) . A.42
z0 e

vhere M) is defined by C30 and S8 by C3Z

If qu =§5;,}C where [ is the appropriate spin function, is sub-
stituted into A.32 in which the replacement (5. and ~-™ has
 been made, the integral (Yy., reduces to a sum of integrals each

involving one of the partial waves from A.42.

Due to angular momentum selection rules (properties of integrals
of three spherical harmonics), all but a small number of these
integrals vanish, and of these the one with the smallest value of

Q is dominant (see form of A20). VWe can then conveniently re-

e~ A \‘-r T
place Q;_n by x!:,.,'r(:_zr,) ‘\\’L,\, ~, where ®u~1 has the form



of A.32, but ¢&¢) »is replaced by q,-’,,g(') , Where
¢ae(") s X b ¥ ’2” Yi. () A.43

In the~abou6 Q has the lowest value consistent with the angular
momentum selection rules and J( is an appropriate spin function.
. + _
In terms of éQLq the cross section is given by
— A . LL4)
32T (LeD) (k) K

Q T >
Tepl™) = MAREN IS \ A.44
f L[ antl]s Ko -

In the case of electric dipole transitions (L = 1) to an s or d

state: from: a continuum p state Q=l this reduces to
» ’ —n y 3 T i :
PR Lb4-) K R
g ~ = —— — l s A.45
Top (IM) 3 o & |

26.
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APPENDIX B

Reduction of Matrix Element.

(See Kennedy and Sharp 1956)

For a single particle transition |
L&; - E’-j b P40 YL 04) d B.1
1f we define the radial integral by
I;__-‘— ({l ‘ \a" tde B.2

where Qleand (z;. are the radial parts of d\f and ¢aQ

| '
and if the initial and final states are denoted by ps,w\ st”*
. J

—— , =M .
Qm =€ ¢ '. (-1 (Q’L’\}-'-«' 1Y, Hsjm) . B.3
| e
= ea" Lo (-" (Ly ="ty (2 Syl Q‘J) B.4
("?—f+|)‘lx.
—r— LS - -Q PR /- 4 i
s e Ty T (e ) gy T B

AW (D LY (2t Q)

N\+L+S~\~Cl i
' = QC\ LL\") h ‘ LJ =M ‘J ~ ’/[/4-\#—1/ (ZJL'/ 2111.0-0!) B.6

{LJ -H) * L m

X \/J[QJ OIJ' ,sL") ( QQ’OOH_O)
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Using Clebsh-Gordan coefficients, the Wigner-Eckart Theorem and
the Racah coefficients (see Wigner 1959) setting g;fi , and

o
introducing the Z  coefficient

.L

2" () = [ (6890aths] WY s2) (R i) 5.7

we get

e (TN ILU Ry

Nuq =ea” Lo ) R Y J,tL) B.8

(417 L%"O -
Now 5’ “ﬂ-ﬂmlhq - B.9
M ;T:}

~ ~

hence .
T . . ‘-_'L _~—-'° , i

Oy = HLECk) g Rt T % 225 510

L.L(lL*'ﬂ!J v > Zd*"}

e .
is the value of Gﬁhf(L“ﬁ from A,44 averaged over the magnetic sub-
states of the initial state and summed over the magnetic substates

of the radiation field and the final state.

Now the Racah coefficients are defined by (Racah 1942)

4

(ks 0! e} k) bvea! (donml ot aneryl]
Wik dd: o)) [+t =) (\(m-f( 4_ Y (Aol
)Lt) T - B.11
llh+ +Q+U!(c+d+€+0’(a+c+#+04 G+d+++iy X¢A(AL¢%§



- Z
\(((fCJ.‘Q = & L-,
= ,+) z /?lr- 'A Y i I/ Y | i
(avlr-e-2) id eyl fa4=R). (bed+ )2l (erf -u-dd

((:.'Lt-fg.-hi-p‘ -'&)I

B.12
42))

C‘/(e r+ - -ué*)_l

Tor transition from a P state to an s state

2
Q:‘ J=%_ ’ﬂ';f) \}'-"L.
1 ; )
a—ZL/";_o"z.,"z_s) = 24"W(I%_Q’§.,{l)UDOo):D)-
| = L ' R.1%
\.
and _Z_ = | R.14
Y

N
3
1

Q”J:%_ ﬁ';l_ J':

2 (13 25 %)= wot wodaiianlizeene
, 5 | B.15
S
ZAN
= - % B.16

A table of these statisticzl factors may be found in the article

by MHoskowski in 'Reta- and Gemma-Ray 3pectroscopy’ edited by
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Kai Sﬁ@kbahn. Alternatively they may be calculated by integrating
: L]

the respective spherical harmonics correctly normalised.

The general formula B.10 in the case of electric dipole
transitions (L = 1) from an incident p state (£t=|) to a final

s or d state reduces to

L

N \b“ (Rf e K'IL-S-
< * o B.17

Py

where iEs and ld are given by B.2 with L = 1,’?& is chosen
to correspond to an s or a d state, Qa = Eﬂk’) as defined by

Cc.30, and the statistical factor has the values YT 34: %a
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APP NDIX C

Coulomb VYave IMunctions

The wave equation for the relative motion of a pair

of particles interacting oniy by a Coulomb field is

+ . _ I~
‘E.Vq; + [E - 23(—9‘)\P=O C.1

I
r&-j. the reduced mass of the pair, ® is their relative energy,
Ze .. 2Ze arg)'the charges on the pair)and v 1s their separation
distiace

The radisl dependence 1s given by

‘E’ d"(‘%) N (E - 2_?::9\-*:‘: Q*')>[ ‘Pe) »)

— Z2 c.2
2 T I T

where Q is the relstive anzgular momentum qusntum number, (see

Blatt =nd “eisskopf 1952).

Define \JQU) = V\PQ ' . C.3
K™ - lf“;f C.4
,e = K¢ C.5
S :
V): Zl'el C,6
AT K ‘

‘- . - . .
The * sign in X includes both nositive and negative energ

solutions, respectively.



We then obtain
df'j?1(f) + /‘t.l -4 - Qi;r) 2}Ew (py -0
et L g f“> Al

The solutions of C.7 with the positive sign regular at the origin

c.7

will be denoted by F§7 and irregular ones by(317 » while the
solution of C.7 with the negative sign regular at infinity will

be denoted by Wﬁ«)

Now consider the Confluent Hypergeometric Series

_ p\qi _‘L'é e ’ )
MR = 2 e ,l'-,' (‘LA-*”“Y{'>W'3%) C.8

h a - 1)y -
where lFl /@L{__) - l - (;_l L o+ 6\(&-4-) 2% e c.9

Gb+v

which is a solution of

X
78

; »(L-'E) Elf_z - 44=0 C.10

Fy

as can be verified by direct substitution.

To find an asymptotic expression we write the identity

I T N P
P VO R (o c.11

, ! A\ P
and f A !-3’ e ) = “’ e Lty — X Cc.12
( i) A CO k()M -1 )'.

where (. 1is ‘the coefficient of 2~ 1in the expansion of (L—x)‘“

if (A = L;fh -
I4

o M- ] ol IRRE Rt
F (aleye) = (=) > . e E At

(Y PR g

C.13

Now choose the path Y s.t. '§é 1.

32,



Then F{A‘!i%) P

To find asymptotic solution deform the psth as shown,

and let the portions & t"z’*

AR ~
of the path AB and CD A E=2 - )
tend to an infinite ) 7

Cen _ _ J
distence from the ] CL“‘“\-—-_W
imaginary axis. ' 3 E=s. \>
;g A 7
Then Fa®2) =M ubz) "+ Wiy (ab2)

L . RV A Sl
where W, (.\L&) :<(’ 1)! J[ (= %) ¢ t7TE

il ¥
and putting E-2-a
b-1)] ce sz
\r\ll. L*° t) : (:__i-). e Q—."H ; B
PR Y LAY %) -

‘J
~
b S
P
L
]
Yot
6'\
X
S—
r o~
v
Neer
£
[}
o T
o
—
AN
+
o¥|
[
o~
-
L gud
]
§
S g
T

But i1 = 1We

C.1Y7

C.19

C.20



\/J' = —Tj(‘l)- | .:i-_t)‘“ /"_ (f\ y a-irHl ')‘-"t)

Hence , ‘
k-
’ \’1(1'7) &= q—fr(x(‘_c\ b~ ;-é)

Wos == @TTRT

| @)
~ . ~=..l ¥ i.é. o((i-rl)
where G—(o((“t) = Py ST
- |  for large & .

Positive energy solutions

Taking the 4 sign in C.4

and substituting
. $29 v " \. . Wy

where (Q is a normalisation constant

we obtain

( ’l E" + ,QH.Hp)Aé'Qw +)_§( ,O+|)L »—\az{

h\

4.
Again substituting €= L\

=y (zc+L-r-)‘1®0_ (e be) Py -

d=z>

which is of the fdrm C.10

and has the'two solutionsﬂ‘

\Jl))_ (t""‘-}Q*l ) ;)--Q*‘)"l?>

34.

c.21

C.22

C.24

Efw =@ c.25

I

C.26

c.27



The solution which is regﬁlar and has the value unity at the

origin is
5 (ot -
‘ r“(lﬁ+i) \ -
For large W, = A <1‘F}
M-t
+Q1—\ _1
(- & L 7 \F
oo, D0 () 1L

f bq*g+0

If the normalisation constant ({ in C.24 is taken to give

Fiyz o 71100 e)l

(2Len)!

if we use t f

é‘tl\‘-‘) - Q_

Lol s)

e'f (1(’)2 i (W rv)

and if we put ) [lj TQ,,;) . 'f1(\1+ Q+4)\.2‘5

.k L
}'—ﬂw) ~ 0 Le

)’ Vg -'-]EQ ~;-°/Q.\’L(> f;gﬁ

-0

=4 Se. ( r - E:;_Q -v}ﬂ\l{y \—(SQ>

for large Q .

—p i e Q{le - SQJ

For the irregular solution it is convenient to choose

~tT' +1 4t
Gl o ie 1 LR

Ped)

which has aéymptotic form

an(‘(-—

W)
CZ P AL

TR '}Qf\lp rl<3€:>

\A/I =W "]

Q

.28

.29

.30

.31

.32

.33

.34

.35

35.



These functions have been tabulated (Bloech et al 1951).

We note that if the quantity CL!' = )r1(,*-v7)]1 Qfﬁﬂ
using 1(1( l+?.‘\ = iq(t)

1 ) N,
and @) r](l""‘) R TR
’ Ly J.-‘_ . .
/ PO : .
then (o = (= ) .36

This will be recognised as the Gamov factor for 1arge‘7

Negative energy solutions

These must vanish at large distances.

36.

The general expression for them is given for example by Thomas (1952).

./ o - -“‘\,Qxlp Lara h+4 e P._\
\,\1-1‘@.‘.{_(1-?) = Q‘f_f)._..._.‘._ ) ;.' t’l { g’{n(i'r'%_:p) ](“7 C.37
l’(t+ﬁ+7} o,
-
BTN ¢ i]WQqu_ 0 .38

They have not as yet been tabulated.

For the s state however, we can obtain solutlons in terms
of other tabulated functions for particular values of‘q (B. Davi-
son 1959). '



In this case from C.7

A RTE
dp o ('+_‘%)w

C.29
, s=t\T _sp ds
which has solution W = \73,) L (1) C.40
' <
This may be verified as follows
N 7 o A"’ ." _‘)P
/i \‘{‘ __\A’ - f ( }'+‘) C_ ’J\.)
ap”. ‘ -
_AP . » ‘5P ’
] S (2
JUNEA \é-Ol . ._;4'! 7
'f’ . e
Case 1. n Integrel: -
. = M\
Now substitute & = Lt -]
g ) | ) “lh"
W= f__('ilril )l C.41
L)

. ) ) j )
and expanding {" E) in powers of ~F and integrating term

by term -
P e b - - : -N{v-9 R
W & [Ebp -G Eee 0V g - )

s
c ¢ dt
where ?’F‘Q- and have been tabulated. Col43

C.42

(G. Placzek 1946)

If71 is an integer the series terminates.



Case 2,M half integral: ,
T \
L 1 . ]
é - C.l4

LT

' Fs=1 )], )
%I‘J \T*i') e & C.45

~
5
<
@
<
R
[ ¢

Tf \“/(If’)";)is the value of Wf()l for a particular value of'v}

obtain the recurrence relation:

\AI/O lw) ) ) f "\7*' —""J.-.Js
]_" J‘P)

it | m’_ ~—-—~—— T
! .

- Wiew) = _)% I- : + 1 _"Jp.j\J((’s’Y;) C.46

t{ . J )
Thus any W\P,w* b can be readily expressed in terms

of \/\/({)3{\ On the other hand

WPy = f (f,',)"e“’m;

= = fP ) :iiP q—l] KQ(P)

where K"~{’) are the modified Pessel functions of the second kind,

using the Facdonald delinition. (G.N. datson 1944),

38.
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C.48

We have,using the relestions _
)
()K’“f) _ " Km\p) = —e Kfw/f)
KQ-\(P) — K (f) = "’2-'-% K\)("!P) .
Wosh) - % p ukilipe D)ol

however for higher values of 1 the expression proves cumbersome.



APPENDIX D

The Method of Steepest Descents. (See D, Ter Haar 1954).

This method may be used for computing integrals of the fornm.

) : j wo_\w)cli

- .

Let 1=labe a saddle point of \P&)
Expand \yixj about this point,

[ S "L "» X - '3 |‘1
\P{)L) = Qh«) + "5_()1-1....) Y bl + O(‘x-l-) since '."J(h)vanishes

Define \PD\)~ ‘~}I’(_1’*) ==z {"

. v
i.e. (\)L—)Lm) ‘\’I(X-—-) N, - {'

and 1—: J A X (J
_ o
"o A
Y i
Q’ P A %
= J[ —7= d{
- l‘.P('X-))"
=l P~ A
- R X
° yua)
0 1a ——
But f 0 v Ay - 1%

v
where ¥ - | \PL"“"]-

40.
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.11
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APPTNDIX K

* Fvaluation of the W.K R, eyoreselon for the Whittacker function.

&(t; E.1
& J\P-lp &Q”)
= L& ’3“\)] j P)
. N d)k) E.2
[apd) o7
E.3

<

were PP - f ) t’; ““‘")7 oxﬁz‘“‘v«gﬂw&%@zﬂ

\

The integral is of the form

~ JI..
j(mt*“vf"h X

N " ' 4 ) k., 5

E.6
_l\- { (S'
‘ A 4 Q X +a - T4
while Xt T T e 3 a avo E.7
J\.
. _ . 2_ {
and - _— 4=90 E.8
).L
RN S 4 L b
also ve S U D GRS E.9

Thus rpd) : [ ((9\-# L\}ul‘p "f “(”";))1 4 w']i Q,\ (((}1’* Lv)l\() + “\( “\0:5‘-" +() +-r)’

o) e[l e J'—\AH

0 fmine)) v )

N
1
. . [~ R '\4)‘) .
s
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aWL

_ ot
. s 4 E_’l: + v\(v\w)\' ? (7‘,(‘ ()4 2_'_?11 _l_;, _‘,’ *Il(‘
Thus \,J{(Q) : f P’ ' - : L
. |+ Ly nim) r ( [ 14 Lpo4 n(n4o j
P P P
| . ( | 4 '_L_‘l_l + "\[f\'ﬂ))l\' t/r\[l-fl-u))i l4Y J "‘\(:;i?"l't'i)?
X g{ \P \‘I- + F /y\(-\,;,)) 511
T wi na ’|\_ v
(l + __Pl'n + "\i_o:g) + /V\"\q.)) 4 J—'_ ) _
% { \Po (“lo\él))
Ly, - . 3
_ [ e S w(n=) _ | -+ Ly v\tr\-n)))
x 2Lt L) e g

A better solution is obtained if (’-"\-ﬁ"\-)

Rchiff 1955).

(see

is substituted for 'x[n-n)



APPENDIX F

o "
A0 e

M :
The expresslons and
ax

‘P[)L) . ‘J &FQKC)X +’!\'-QAQ -+ J'\.,QAP — SP'C\Q"A’L — Z.)k

F.l

where p and (& are given by 2 2.2 .

Ay (e‘fi" et Mw»)) L"" SNt L00)

Aok ¢ JRer)
_ ( IPP- + n{n) — ( - '-*..,Lvr_*“— *“Qﬂ)> Z r.2

1({3 Q% 2l 2t enlae) 2(-%2
or in terms of -

s' : g ° (’ AL
| y Qlo’*'))
-r?.v)F -+ ‘\/‘\"')> - ( P M L') (

d () [ e ﬂ\ﬂ-u))
/w)‘)o-n(w-r') B I SR F.3
[ {__ TP Q(ﬁw'))
7[p *L]‘f' .\‘a\-ol)) 2_ (’ + V) (
Also )
L ((ft + )f ) - p ’ hp)
~ - - 3 - :_-———’“‘-_——_———
d 2 ( ?\._,1}"!3,»\(,\“))‘.- ( () Y4 Ly (7 -rﬂﬂ-n))
g et g oy
!_ - N\ A ! 0 "; -
‘ 2—( t) ., 'L')l\P - v,\\,-\q))) | ?_( (l 4—)—"]\.(\7 + k(g- )> . -

Tn 2ll_these W.K.R. expressions & better solution is obtained

if (\,Q*'{-),» is substituted for ﬂ/ﬁ*') (see Schbiff 1955).
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