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ABSTRACT

Methods of setting up generalized Bloch equations
governing the time dependence of mgbroscopic"magnetization
for a system of nuclei of spin I, in given magnetic and
‘electric fields; have been proposed for the degenerate case
by Bloom, Hahn. and Herzog and by Lurgat, and for the non- ‘_
degenerate'case by ﬁloog, Robihson'ahd Volkoff, In this thesis
‘an attempt is made to.give.atuﬁified”discussioﬁ of these
methods by utilizingﬁthe denéity matrix formalism and to
deﬁbnétrate the interrelationship between them, Relaxation
effects are not considered.

_The general theory is developed in terms of the
density matrix formalism‘and is applied to the non-degenerate
and the degenerate cases, The results afé discussed and

compared with those of the previous investigators.
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CHAPTER I

INTRODUCTIOK

A nucleus of spin I having a magnetic moment,U-and
(for I 1 ) an electric quadrupole moment eq has 214-1 energy
levels (which in some speclal cases become degenerate in pairs)
when placed 1n a combination of a non-uniform electric field
(characterized by an electric field gradient tensor with or
without axial symmetry) and a constant uniform magnetic field

H Transitions between such levels usually fall in the radio-

oo
frequency region, and can be studied experimentally by
subjecting the similarly situated nuclei in a single crystal
to a weak oscillating magnetic field (usually linearly
polarized along‘the axis of the coil producing 1t) of variable

radio frequency <

’ and by observing as‘a function_of w the
resonances in the absorption or the‘induction‘signals in some
of the by non conventional types of spectrometers. Alternatively,
free precession or spin-echo techniques can‘be utilized,

The observed signal strength in all such experiments
is proportional to the time derivative of the component along
‘the axis of a receiver coil of the macroscopic magnetization
of the sample, Methods of setting up generalized Bloch
equations governing the time dependence of this macroscopic
magnetization have been proposed for different cases in which

relaxation effects are neglected by Bloom, Hahn and Herzog(l),
by Lurgat(4) and by Bloom, Robinson and Volkoff(z). The<ﬂﬁect



of the present thesis is to give'a unified discussion of
these methods by utilizing the density matrix formalism
(cf., for example, Fano(3) )‘and to demonstrate the.
interrelationship between them. o _
An assembly of H mutually non-interacting nuolei
of epih I subjected to identical electric and magnetic
fielde can be described by a Hermitlan density matrix'p of 2I+1
rows and columns contalnlng (2I+ 1) real parameters. The

expectation value of any operator A is given by
<A> TY(A(J Z/\ ; | ()

Taking A to*bﬁ!the identlty;operator we have Tr(p)=2f, =
leavinggAAI-(I%—l);%ndegendent real parameters to describe the
system.;This\ﬁeane-thatr4I (I+71) independent physical
quent;tiestare‘needed td»deeeribevcpmpletely the macroscopiec
beha&kmrmof the system. For such macroscopic guantities it is
inusome;geses convenient to utilize tﬁe three components of
the macroscopie magnetization, the five -components of “the
electric guadrupo;e'moment,densi$y¢1theasevengcomponente of
the magnetic octopole:moment-dengity;=etc., each :set .exXpressed
in tensorial form .. U,«L transforming under co-ordiné.te- rotations
like the_spherica} ha:mogice d\i% with. .k..being an integer
:pnndng up to 121, and. q: running in integral steps from

- k to k, Thus, for nuclei of I = % the three'coﬁponents-ef"
the magnetizgtion.deéeribeathe system completely, for I =1 the
five compqnents Of‘thegquadrupole moment  density are in general

needed inﬁaddition;td giveaa complete description in terms of



eight quantities, while for I = 3/2 the seven octopole

moment density components are also_hegded-toAprovide-ls

‘quantities, ete. Equationé‘-(l)w-establish-the.connection

befween thevdensiﬁy matrix gleménts and these'macroscopic

quantities iwaeatake A to be in»turn equal to each one

of the . appropriate :4,I'A(I=F1)<«mu1tipolp moment operators.
Since the time dependénce.of the density'matrix

when_;elaxétion.proceSSes are neglected is governed:by the

equation.- . . .. - A
LT _ (2
At + [ Fftam P /J }ftota‘ ] )
where i?ﬂomuv is the total Hamiltonian for a single nucleus

.~ acted upon byvthe given,magnetic.and electric:fiélds, the time
dependence of the 4 I (Ifkl)”-macfoScopicaphysicallQuantﬂﬁes
describing the.system}cgﬁ-in.fhis;c§ge‘be'expressed‘in the * -
form.of 4 I (I+1) aimuitanedus:first~qrder differential "
equations;obtained By,cpmbining' (i) {gndgﬁ(glﬁ,f

. For I =4 the complete ﬁ&q@g@?éﬁié‘behavio@r.of
the‘syétem"is:déspribed by;three;gquations_in;tg:gg of the
three magnetization -components .. ™. , M, M., =, or
alternatively I, can~5euelimipated;by.Lntroducingzthe.
differpnce;,n-s‘betweeﬁAthg,fractional populations .of the m=t3}
states,. . S _' L s

-}Luréa@rdiscusses*the special pure quadrupole case with

an axially=syﬁmet:io-fie1d gradiept andtfirst;pbgainalfor nuclei
with. I.= 1, 3/2 and. 5/2 complicated sets.of - 8, 15 .and 35

Vsimultanepueuequations4rqspective1y..-Hefthensshows how under



rgsoqanceuééhditgbnsjeach of these sets reduces to,thrée
approximate{éguqtipnq analogouSgto.the three equations
determining the magnetization in the case of I =} ,j“,

- Bloom, Hahn and Herzog and also Bloom, Robinson

and Volkoff'a;rivq more digectly¥at.sets of three approximate

.equations for nuclei of arbitrary spin-I under certain

speeified cenditions. )

e + In this thesis we .start with equations (2) for

the 4.1 (I + 1) independent parameters of the dénéity matrix

: cerrespondihg toﬂgnfgirly general Hamiltonian and examine the

method of feducing’this system of équations under' resonance
conditions to three approximate equations whlch are then .

compared to the results of the previous 1nvestigatione.



" CHAPTER IT

TIME DEPENDENCE OF THE DENSITY MATRIX

~ The Hamiltonian "jﬁ;ﬁd for a nucleus of spin I
inferactfng with“arbftrgry"sfétic élgctrié aﬁd magnetic fields
andfélweak‘dscillating“magnéﬁfc”field can be split into two
parts ‘7 ‘and ‘Jf ‘where [ does not and / does depend
on the time, so that™ - ' |

o = Hoedt @

' where, for example,r(cg. Bloom, Robinson and Volkoff)

- jLL = _ﬂ&_ [(3 - fz‘) +“('LL._V I,zj 7]

4T (21-1)
4k I-H o 4)
and .
j’f _ 7% f Ht) (5)

In (4) X, ¥,z are the principal axes of the electric field
gradient tensor whose component along the Zz - axis (usually
chosen to be the one of greatest absolute_valﬁe) is 43% sy and
whose'asymmet;y parameter is 7) = (4ax—<h]l/2%%, The time
dependent part of the Hamiltonian (5) is assumed to be due to
a weak applied r . £f ., field FT(t) of ffequency W which
isg usually linearly‘polarized.

The eigenvalue problem

H;Wk = Ek q/k ©)

can be solved (numerically if necessary) and leads to 2 I + 1



eigenvalues E;k and time-independent eigenfunctions
Wi = 2 U Cy B kle,Z,' (2T +1),
where the U, are eigenfunctiene of ' I " An example for
I =5/2 ("/\1= 'in Spodumene) is discuseed”by‘Bloem;iu
Robinson"and VOIKofE. . -~ L : -t ey oo
7 If-we define the-transition frequemeies' 'Wjk/am
by ‘

L;Ojk = (EJ“Ek)/‘F, :.—-L‘ij ' (7)

then in tneﬁlﬂﬁ féprésentation equations (2) = (7) lead to
the (2I+ 1) equations '

%1 @k sl Jk ﬂ} /ik)
(Z[’ljf ZTI/)>

Lx k

fﬂe

vhere

o . , o o . C
o }:—Jk _: h Ik .H(U ' ) (8)
is the matrix element ef the tlme dependent perturbing |

operaton. ff of equation (5) between the statee W’ and W@ ’
ana:tijnlis the time-independent matrix element ofzapin
: operator I between these states which can be explieltly
evaluated in terms of the known Cen in q@ = Zi‘l Cou .

- "In the absence of an applied r. f, field H =0, and

equations (8) have the solutions



ﬁ'k = ([)ﬂ?)o c_‘wkt (9)

J
where the (p ), . are constants determined by the-.initial
conditions, so that /jgg~osciliate harmonically with the
frequencies Wi/ -
We-are:interesyed,in<inves¢igatingﬂthe;behaviour
of the system of nuclei when a weak perturbing magnetic field
of'frequency'w/177 is applied to the system with w very
close to a particular one of the Wik characterizing the
system, say w, ,=«,, The discussion will differ somewhat
depending on whether'ail'thgﬂ.uyk,'afbadiffbrent . (we shall
speak of this as a non-degenerate system) , or nof (we shall
speak of a system having two or more 05@ the same as
.'degenerate evenﬂwhenfno energy levels aré degenerate). The
perturbing effect of the time dependent Jf can be o
conveniently discussed by introducing a transformatlon to
replace the f& by the possibly also time-dependent trans~

*

formed quantities . related to /ék“ and”tqhsomqﬂgrbitrarlly

J J :
selected constant frequencies W’ ,, . Dby

L Vi
Sl e T

| /?k - ]j g | oo ,” - .‘" | " o)

whére, as we-shall presently 'see, it will be convenient to
chdobéfthé arbitrary quantities Lﬂl "to be either exactly or
very nearly’édu&l"to*the'corresponding "Wk . characterizing

“the ‘System, In terms of /d*' .equations (8) become
: ik o



+ - Zil‘fl* H ‘eb(‘i g )t C
K 'e*‘j‘u Taom T e )
=l s ¢ (W:(/(“*’z;()t
- 2 Y " e !
b ek

| The.system of (2 I.+e 1)1 v simdltsneeus equations
(8) o; (il) glves the exact time dependence of /1 or
| » /if for both degenerate and non-degenerate systems
: (negleeting all relaxatlon effects) but is tedious to set
- up and to integrate exaotly for I > % . Ve therefore»use an
approximate method of solving systems of differential
equations described by Bogoliubov and Mitropol'skli (as quoted
vy Lurqat(5) Yo |

Conslder a system of simultaneous differential

eduatiens

A x ’ :
k
e = é'Xk‘(t, X.,xz,”-"in) k=1t2z,...m | (IZ)

where . & ‘ig:a Sﬁallﬂparametereeandi'>(£ are of ‘the form

S T e e T i’;z",,; A AL
X (Foxinx) =5 e " X ( x (t3)
. the Vs being aey‘fiied freguencies.' Theh'eccording to

Bogoliubov and Mitropol'skii the solution of (12) is given



to a first approximation by the solution of

G(xk — £ Xk(t7xl1"')cﬁ) ('4)
Lt :
where X, denotes the time average of X, .
i /
We assume 'ﬁ’(t)_ in equations (5) and (8) to be
a weak time dependentupagnetie field involéiﬁg a‘sinélé
frequency «/qr in such a way as to make the time average of

—> It
"H (t) e equal to a small constant vector

—>

and the time average of H (t) e equal to zero for any

:

- bl
%

other vcgﬁx|o . For'éiémﬁlé,_fdfda'iinéaflﬁ poiépized“field
we hé&eiﬁA " ' | 7

— _—

H () = H cos wt ° V= - H {1¢)

Eéuationsﬂf(11)'-where;the  ‘Fﬁkw are ‘given by (16)
 can be brought into the form (12), since [Hw( is assumed to
be small, and we éan choose the arbitrary transformation
frequencies W/ in equation (10) to make w;-w;, in
equations (11) to be either zero or small, In the following

- we.assume that the time average of ~eﬁ¢ is 'l if .#v=-0, and
is zero if b differs appreciably from zero. To obtain the
latter result it is necessary for »  to be large in
.eomparison with the reciprocal of the time over which the time-

average is taken,



‘At this‘point it is convenient to discuss first the
non-degenerate case (all W different), and then to
return to the degenerate case when two or more of the )

coincide,’

10
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-CHAPTER ‘III

NON - DEGENERATE CASE

In this chapter first we shall treat the non-
degenerate case (all Lg#s different) on the basis of the
theory developed in Chapter IXI, We shall then compare the
results with those of'Bloom, Robinson and Volkoff, who also

have considered the_non-degenerate case,

If w 1is very close to some one particular
W, = w, >0 9 then we can choose all the uﬁz = Wiy except
for w,, , which is chosen equal to w , rather than to

Wys=uw, in order to avoid ambiguity in evaluating the average
value of ez(wl aadad . Equations (11) then become on
taking the time averages of the right hand sxdes.

for non-diagonal terms (k)

»*

é_(!q )= o unless j = r and k = s simultaneously
At Ik ‘

A N ‘ N ; * . —" — Cwt
Zt(ﬂﬁ) = L(Q-W”(&j)o+' /(&4 ﬂs% I“ H&)e

(17a)

for diagonal terms (j = k)

I}

2R () - of o) Ty e i) T e

(17)



where (/i;)o denotes the leading time-independent term in

| the expansion of- f{* in.powere‘of (V| and (W—wo) .

These equations are in the form of equations (14)
“with the right hand sides completely independent of the t1me.
'“To the first approx1mation the eolutions of these equations
are the same as the solutions of any othér set of equatlons

whose right hand 51des reduce to (17) on being averaged with
| regpect to time; In particular equations 4(17) may be replaced
by a similar gset with the subecrlpt Zero left off the ﬁ
the time averaging left off H (t) e‘“i“‘)t ", and it is
convenient to carry out this replacement |

Transforming back to the original density matrix

elements with the aid of equations (10) we then obtain:

for non-diagonal terms (j x k)

ji/%k — —i“%k/}k ‘unless j =Tr and k = eogeimultaneously
el . — — ('ga)
T F&s = i, /;_5 + (Y (/JA_)L—/JSS) th' H )

~ for diagonal terms (= k)

d ﬁ,::o unless Jj = r or J =18
At ')j .

(134)
oA
TelLa) = (f) = p T He - p T Hw)

12
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‘Although no :elaxatipn mechanisms have been
incOrporated into the abové formalism such mechan;sms do in
fact exist in an éotﬁal system;;and’the»initial state before
the radio-frequency field is applied will be one of thermal
equilibrium which isideseribe¢ by

(/)Jk)ﬂa ;,::O:» K | ((JJk )j.;,:f" | ’ J-Xk

L6 -(19)
e

'(ﬁ‘->;h = const. = s é-éle

JJ .
J

i

The expectatibp value of any operétor A for a system in

thermal equilibrium is thgé given by
_ . o . (20
<\A>+;, - Zﬂ A”n (an)ﬂ‘ o )

. Bquations (17) (or (18)) together with the
initial conditions (19) imply that to our degree of |
approximation all the ’/Qk {and consequently all the ﬁk*A),

) J

J %k, remain zero except &s » and all the pP (:f*)

) JJ

remain constant in time except A and ¢ whose sum remains
constant but whose difference varies. If we denote this

difference by

"= f,u _/)55 = /j\: "/)s: F: n* (21)

the time varying properties of the system which determine the

deviation of <A > from <A >%h will be given by



- (ef. modified equation (17) )

. A P
/) — ‘_ —W, ) + < \4] :
o ) (22)
R r : . RY __? - e
dn* u/ <f H(t)e -pr I HE e “)t)
B At o )Ls ?)L R Lo s

or equivalently by (ef. equation (18) )

- idn T - H
& (&s) > fas fr Lo A (23)
dn = 2_“'/ (/27.5 i);- ﬁ(t) - (75)\ is- FT(U>
d

We note*thati'bzzo or (23)’-each‘represehts'afset”of'thiee_

equations since P 'and~'/7*'are‘eomplex. Thus if we write
fAs As

Ro= XY @

where X and Y are real parameters, then we can rewrlte
equations‘ (23) explicitly in terms of the three real

parametgrs.vx‘; Y and n:

d X o s —»
=7z w, Y = Y Im (I)LS' H(t))
o @9)

- of_\_(_ —_-: —~Q° X + nY Re (I:s H(t))

o 4‘/[>< T ( He)) =Y Re (L ﬁ(t))]

14



| fhe deviation of the expectation value of any
“operator <A> given by (1) from its thermal equilibrium

‘value <A>, given by (20)' is equal to
<A> —‘<A>+h = s Asa * Foa Ars
L= J At [ () | A
= (X e Y)K)\s_{r(x—t‘y)/_\)u
[0 £ (), | (A A)

+ 1"_ {<FA&+[)§5)‘(F}LA+FS$>+L- (A)u?— Ass)

= 2XRelA) + 2 Y Im(An) 7 (5q)

L (A A) ()

Thus the time dependence of all the 4 I (I + 1) mécroscopic
physical quantities wdggqribing_the systgm iszgxprgssedvin
terms of the three variables X, Y, n  which can in turn
be expressed in terms. of, for_example, the three components
of the macroscopig mggnetizatien.

To relate these results to those of Bloom, Robinson

and Volkoff we consider their Hamiltonian for which

1l

(T =P, (L)=¢S L (I, =T (27)

with P, S8, T real, Then we have

15



LY =070 = 2P 44 (1), -(.),.] (n- )

| (23)

<IL,>-<TL,, = 2Ys + {[(Iy )o- (iy)ss](;,"_ﬂ;h)
If we introduce the variables
T,l = <I&>'“<Ix>ﬂ, , f) =<I,>- <I7>m (29)

and neglecting the terms containing the diagonal matrix

elemente in (28) substitute
X = i_—x /?_ P ? \( = 1—7 /2'S

and (27) into (25) we obtain equations ({13 ] of Bloom,
Robinson and Volkoff(2),

16
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CHAPTER 1V

DEGENERATE CASE

In the'degeneraté caéé.ﬁhé}e two or more transition
frequencies may be equal g‘gorrespéndtngly greater number of
matrix elements /fk may vary in time (not just 4 as in the
non-degenerate'case);~-The-general formulatien-bgcomes too

complicated, and hence we discuss below some special cases.

“

We willffirst outline tpe method developed by Lurgat
for the degenerate case in general Then we shall 1nvest1gate
by the method of previous chapters ‘the special cases treated

by hlm, and Shall compare and discuss the results.

1. Lurgat's Method

We shall outline in this section Lurgat's method
in general. o .
The Sch:ddinggr's pime dependent equation for a
physical qﬁantity A can be written in the form
d<A> _ (30)
At 5 <[H, Al>
For a nucleus of spin I, placed.in an electric field gradient
of axial symmetry (q::o) and in a magnetic field 'ﬁz the

Hamiltonian is



18

Htota{: tﬂ"[j;_ ;“ I(I+l')] = L)_w‘-t\ (Hﬂkfﬂ-k H L%+ zH}I})

t — iﬁ_@_
- ) ji . . (3|)

4T (21-1) 2z

where %:.%gi - is the value of the electric field gradient.

Let .¥k# . be tensor operators defined by‘the

commutation relations

[I7 Y1 = VkGon e Y e

= 132
- [ L., Y] = » Y, (32)
with the normalization condition -
k + k ’ ‘
N = 0" (17

As a fésult of these definitions we get

Y =vz [

to 3 ’

LTuvn Over
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o Y;,tz = «(IL*) = Lt (b, - Dy, ) = ¢ Dy

L 3eQ (34)

where D, are'tthcompohents'Of the quadrupole moment
operators. Taking the average values of Y. we get the
follow1ng formulae for the components of the macroscopic

magnetization ¥ and of the macroscopie quadrupole moment

o~

tensor @ @

Nyh <Y, > =Vz My

'\lYt<Y.~H I(Mxttmj)

N« <Y, 7

m

(35)
NE <YLy = F (Qay £ Qy)

N o<

S Yo e? = 1 (@,n-Q,,)tQ

with similar expressions for Y%p etc.,» in terms of octopole

and higher moments.

Making use of the properties of tensor operators it

“ean Be shown that



[ I;’\{k,‘] = I}[I}’ Ykﬁj + [ Is’Y_ku] I}

I

M [ 13 Yk» + \'/k»u Is]

- At (z2I+k+t)(2I- k”)\/k(k-f/“)(k/“) Y (36)
2k + 1 2 (2 k-1) ki,

2( Chk+t—p)
+/ (ke 1+m) Y,

(k+1)(2k +1) Kty pm

Suﬁstitutfng (31) in (30) and making use of equation (36)

we get . :
A <Y D — e QI rke) 2Tkt [ () o v
~ W—A‘f 2Kk+1 W < k"’/‘>

» . (k,+r+/u}(k+l-/l)
+ ¢ R z
o/M\/(k+/) (2k+1) <Y’<+'M’~>

- < ""/: (k+1 +p) (k-pm) H—<\/k,/u+'>
- Lo \/(k-/uﬂj(lﬁ/ul HT < Yk,/u—l>
o Hype <Y > (37)

We note at this point that this eciuation'is an exact equation
where a.ll the energy levels are taken into account, and holds
for integral as well as for half-mtegral values of spin.
Using equations (37) and (35) Lurgat then obtains for the
special cavse's‘ I = 1, ‘3/2 vmand 5/2 equa-tions éiviné the time

20



Rl

dependence of the macroséopic physical quantities if,‘a ete,
In order to see the basic eduivalénce of Lurgat's
method with the one presented in this thesis we recall'that
the mean value of any operato: can be expressed in terms of
the density matrix (ef. equation (1) ). Thus the mean values

of the operators Yk; ’ and also those of M, , M M

y ¢ 3 ¥

R« » " Q, ete., ganlbe written down in terms of the density
matrix P« To get the Variation in time of the macroscopic
physical quantities ¥, § etc., one may utilize the time
depeﬁdence of <Y,..> ', as Lubggt_has doﬁe, or one may use
the'time dependence of the densify matrix directly, as is done

in the present thesis,

2.  Case of spin -1'='1;

We shall first state the results of Lurgat for this
case and then shall show how the same.eduations cén be
obtained by the method of previous‘chapters:

Using equations (37) and definitions (35) Lurgat
obtains the following equationé for the time dependénée of fhe

—~7

components of the macroscopic physical quantities i, Q:

o My B v h
‘7\)0;, Tl Q_y} .

1l
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Y

'j£<35“q%¥f?'fka (ééti%)‘ h-Jk

Fote that the’éiéht?équétionS*bregfgintd:threb.subsystemst.‘
) ;II and *IIi,~fthat-ié variabres‘in~onéisubSyégemado not
Occuf’iﬁ'any‘éther~subsyétem;-1Iffinitiéllyﬁthe sygtem is in
thermal equilibrium, -then thefinitial'conditionsfﬁré:;
Quy (o) = Qyy (o) = =1 Q) SR
- o e Tl {éﬁ)
Qe (0) =0 (¢Xxk), ™. (o) =0
Consequently the quantities appearing in equations (38 II) are constant
and w (38 III) are zero initially and remain zero at any later
time;' Thus we are left with only three useful equations,
namely (38 I). It is convenient to introduce the

transformation
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My = ™ co t _ ok *
x S oW — QY3 sim Wl
vk st = MJS sin wt ¢ 7h Q* cos wt o)
< = 73
Ry = Qyy L Q,y = R

Lurgat considers the case where there is no static magnetic

field and where the time varying magnetic field is
Hx:HlCoswt H, =o H}:o

? - 1

Applying transformation (40) to (38 I) and neglecting

terms in sin 20t and c¢o08 2wt the transformed equations
are :
%:?'+ﬁ%“@)%%CﬂL=P
é; (’/—E Q;>l— (wo-—'-w)"'\./’:“* “t i;H"% Qiz;Q;; e . (4l)
(2 Spa)- 7 tha) -

where w, 1s the resonance frequency.

'As pointed out by Lurgat these equations become
formally identical with equations ‘(2537 of Bloom, Hshn
~ and Herzog(l_)#, except for a ‘factor of '>25”"in"the coefficient

of 'H, “in-the second equation, if one makes the following



transformation s

Bloom, Hahn and Herzog Lurgat
u > "; Mx
\% > "i Q;3

of couréé thé diséréPanc& df fhe.faégeflof‘z ié}hot
surprising. There is no reason to expect the two sets

to be identical (even formally) since the Bloom, Hahn and
Herzog equationl hold only for half 1ntegra1 spins where

it was possible to censider enly half of the total number‘
of nuclei corresponding to +m states., This can not be
done fg; the present case of spin I =1, since the m = o
state can not be classified as belonging to +m state?%o
-m state,

However, if we start with the complete system of
nuclei as in chapter II and then follow a procedure similar
to the one followed in chapter III (hon-degenerate case) ,
then we are led exactly to the Lurgat's equations, as is
shown below. |

| For(tﬁe'degene?ate caéé;(éigfo,F{==o) two of the
three energy levels, say 1  and 2, will-coincide .so that

wll_: © , ."‘)2-3-“-.'—."‘313 = W, | o (4 2*)

Let the frequency w .of the -applied =», f, field be close

24



to the transition frequency «,,=w;=w,. We choose the
arbitrary tragsformation frequencies  w; and w,, to satisfy
W/, = w,s = w. Then equations (11) lead, with the

approximation discussed in the previous chapters, to the

following equations for the transformed matrix elements

PY ik =g
J )

a * ) N | * | * = T
o T R S Chey L L A
i *» T — (1)
- fe Ta
8(.’; . . | . ;:. c/ _ : —_-?'-"
ST N A L ea) T
PR T -——W>
‘_’_(_ * 7 i T v % —}_7 __(m)
dt ()“' = -;:- f I?l' H' o ._?—: f%L I13 !
(1
0( (:“/ * = I — (_‘/ ¥ = ’ﬁ (IV)
dt /)“* - Tz fl3 3 ot 2 fs: Lis '
O_:T—t (7:.:_ .= E’:_" 23 :[3?-' H, Tz /31_ Izs H| _J
- (43)

Note that the equations involve eight independent real

parameters ( f'*, PP * , Ybeing complex  give six and
413 23 12
*

£7 . LY , being real,give two).

In the special case diécussed’by"Lurdaf



(H2,.(t) = H pecoswt ,wH=H =0 ) weget I, - H =
I.,, H . I/, - is'equal to !/5 for all non-vanishing
matrix elements of [, which are in fact the ones that appear
in (43). - It is now pbégibié to choose a complete set of 8
linearly independent parameters .. (which are combinations of
the matrix elements /3k } such that only three parameters
are time dependent., The corresponding equations for these
parameters are then enough to describe the behaviour of the

system.

Thus we define

«t4)

i
N

»* »* > * *
PrrpT -2 + + P
1 22 33 kS 21

where X, Y, Z are real parameters, Moreover let (CFv@41U
W,y = W, = W, for convenience of notation. Then the
equations for Q" (obtained by adding (i) and (ii) of
(43) ) and 2" (obtained from (iii), (iv), (v) of (43) )

are 3

3—;(()\) = (w—wo} Q%# ¢ ¥ H, 7

%(Z*) = o s (prrps) 34_ (ﬁ;+p;)

o &‘ *
= 4 ‘;TE ('0“ +fzz) ) sinee o‘t(f" f“ =3L f F)

(C,‘F Gii) and (iv) of (43’)

e
=4 T(QA -t
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X . |
Or writing in terms of X , Y, 2 these equations give:

xr I

Tt T (»UQ“‘“JO)‘.Y% .

Ay’ o v H, . ,
P (W‘wo)x* +_1‘[:2: P Z (45)
‘ *

Jj; - —a = fgh 2 Y

Applying equations (1) and (35)
case of I =1,

to the present
a straightforward calculation leads to the

following expressions for the components of the macroscopic

physical quantities W, q in terms of the density matrix:

Mes MR (pp e en)

™ = Nyh ;'b + - _
J \;;—_- (/0!3 32 /031 /39-3)
M} = th' (/)"_/,;2_)

Qxy = <N« ((’n_—ﬁu) (46)

QY% = %—:’i‘ (ﬁg""ﬂ_g_ﬂ!.n_fz:.)
Qi = DX (futfy=fu-1os)
Qxx 'ny: ‘%i(ﬁq_ +F7-I)

Q}3’~ QVY = N (rn 4.[)21—1 33+/’|1+ P’u )i Q’“"+QY7+Q3}:0
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Using (44) and (46) we get

X* _ _L,\'[-L:M:
Nrh
* * . 4
Y= ;“_ vi. Qs ( 7)
N <
7Y - Q- Q)
N

Substituting (47) in (45) we finally get

T T W) @,y =
S . ¥ o ) . "",,_ X
(2 ) e M, - A EE.L 4Q” =6 (48)

These are exactly the equations. (41) which are
obtained by Lurgat, The apparent difference in the signs of
the terms invelving H, is due to the fact that whereas
we teke the time-dependent Hamiltonian Jf to be

— v h

+ vk f?.FTQQ) {ef. equation (5) ), Lurgat takes it to be
'f- Ertr).
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We have thus illustrated, for the case of spin
I =1, the complete equivalence of our treatment with that

of Lurgat,

3, The case of spin I = 3/2¢

We now consider the case of I = 3/2 as an example
of half integral spins. Lurgat obtains'for this case the

following equations

*
.J:J’cr + (wo-w)(liéi@:})zo_
G GRA) e TR (R0 )0 @Y

Gy - (i 4 -

o

where w, is the resonance frequency and w the frequenocy
of r. f, field.

We shall assume with Lurgat that the electric field
gradient is axially symmetric (qzxv and that the static
magnetic field Ho-: 0. Let 1, 2;13;;-and3“4 bé:the four

(m=-3) 4 —

———— 1. (= 3L

(m=-Y) 3 e 2. (m=14%)

states corresponding to m =3/2, ¥, -4 and -3/2
respectively. Then



(50)
W, = (,04_3 = u)42 = W, = Woe , say.

Then equations (11) -lead, with the approximation discussed

in previous ché,pfers, to the following equations for the

transformed matrix elements /’k L jak=tz2,3,4.
o S sk 7 D

oA > 2 . 2 . - — —
af0)= Clomwgp™ s oo ey T

I
o . : - - -
wll)=-4 () = S (LA -ATLH)

-
tz

!

ol N RS T A A B

3’;(!"3;):.~j—t((’4‘;) = i{(ﬁ*f-ﬁ—/’* I;H)

—|

4 “43 | 43 T34

(51)

A/ ox e, T *7.H
G (1) = o e (P TSH L L)
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Note that (51) 1is made up of three separate subsets
I, II and III (that is, variables appearing in one
‘éubset do nbt occur in another subset).

Initially when the system is in thermal equilibrium
we have seen (ef. equations (19) ) that the off-diagonal
density maérik eleménts are zero., From (51 III) we then
gsee that all thé density ﬁétrix elements appearing therein
remain zero at any later time and play no part in the change
of the system in time. Moreover equations (51 I) and
(51 II) are formally identical, (Replacing indices 1 and
2 everywhere in (51 I) by indices 4 and 3 Trespectively
we get equation (51 II) ). That ié to say, the nuclel in
the states 1 and 2 behave in exactly the same way as
would the nuclei in the states 4 and 3 and therefore it
is sufficient to consider only half of the total number of
nuclei, namely those belonging to the + m states. As a
matter of fact Bloom, Hahn and Herzog use this concept right
at the start of their development of the theory for the half=-
integral spins; equations (51 1), if written down explicitly
in the parameters Re(ﬁ:) , Ir%(ﬁ:) and n (= p%-pr)
become identical formally with equation [23] of Bloom, Hahn
and Herzog(z). |

(We choose for this purpose the r. f, field to be
linearly polarized in the x-y plane, which is equivalent to
two opposite circularly polarized r., f., fields. One of the

two components gets eliminated in the process of approximation.
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Bloom, Hahn and Herzog take circularly polarized r. f. so
that no approximgtion is-pgcgssaryuin.this respec£ in their
transformation.)

We ‘have thus-demonstrated that .out of the sixteen.. .
equations (51) . only three are useful, namely Qquafions
(51 1) which govern the behaviour of.the~aystem pfvnup1ei.

We shall now show, as in the .previous section, .
that 1f suitable linear.combinations of /i(“ are. éhosen,v
then-equations - (51) 1lead to the three .equations. (49) of
Lurgat. Thus let

S A .. (5z)

Y

* * ¥* *
- f, Y + [544 *—_/)33 g = Z -

1}

where X ,hﬁYﬁh and 2% are real parametérs. “For Lﬁréét's
case which we are diseussing, we havevv?'y S Lo el

UE (4) = .= H, Ccoswt | CH L Hy,= o
Equattone (5‘1‘ I) and (52 11) ‘lead to the foilowing

N
.

equations for Q and 2% ”

olQ ,‘ Y H, 3 >

o T wiw) QT 2
* g ' - 5
~ ¥ —

O—(—Z'— = 2 3 ¢ 7H (Q*- Q*)

dt 2 2
Or equivalently, in.termg of X Y and. 2 we can write
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O{X — ’(W’WO,)*Y*
ot '
AY* _ (owy) X* o+ 3 7T 53)
dt
»> { *
D‘Z - ——Z.J—3_’. % Y
ot

As in the case of spin I =1, a straightforward calcglation
‘leads to the following expressions for M, , Q,, and Q..

(the parameters appearing in_(49)-).uintterms of the density
matrix /2 ¢

’\/l" : \E?_: ’\l{t (fzq+ﬁ2+()43+ ()34)4' '\]Yt (/?314-[)13)

1 Ry

I

SERVEN -
‘ % N (—fa_v +flz +F43_ ()34)

s4)
e e

Using (52) and (54) and recalling that S, -and p always
. ) R . ry /32

remain zero (cf. equation 51 III and the initial conditions)
we get

>
x*¥ = L ™M,
3 Ny k
x ' | * 3
Yo s (+ @) (55)
\ ¥ ! X *
'z = 2 N % Q“’

Substituting (55) in (53) leads finally to the equations:
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E@uations -(56)‘ are identicalnwith C49) which are Lurgat's
equatlona. (The appaféﬁf différenée in thé“signs of the‘terms
involving Hy{ 1is due to the same reason as that explained in
the previous section, namely that whereas we have taken the
time dependent Hamiltonian J{ to be + »h T-H)

(ef. equation (5) ), Lurgat takes it to be - % T-H®).

In this sectioﬁ we have thus demonstrated once again
the equivalence of Lurgat's method with the one presented in
this thesis, The treatment also brings out the
interrelationship between the theories of Lurgat, and of‘glpgm,

Hahn, Herzogc . 4 i i | T . : :_ . F; TR

4, The casge of higher sping:

The cases for higher values of spin will be naturally
more complicated and shall not be discussed here in detail,
because the essential features of the general case are
contained in the formalism of the previous two sections, as
applied to the two speclal cases of spin I =1 and &/2

For half integral spins, as 111ustrated for I 3/2,

one need consider those nuclei that belong to the +m - states
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and then the case reduces essentially to the non-degenerate

case, since degeneracy occurs in pairs of +m states,

For intgg;a} spin the transitions involving the

m-= 0 state can be treated in the same way as the I =1

case was treated. Transitions not invelving m - o state

can be treated like the half-integral case in the sense that

the transitions +m, — + m, and the transitions

-m, — -m, can be treated separately.
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