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ABSTRACT

A study of the Ferml surface of coppar ot room tempersture has

~ baon made by means of & positron annihilation technlique.

A poslitron octive copper single crysta% was placad midway between
two “point! scintillation countars opersied In time coincidence, The cow
incldence count rote was measured for varfous crystal orisntations ond the

. count rata Interpretad as a measurs of tha diesmeter of the Farm! surface.

The exporiment ylalds a Fermi surfasco that is gpherics! h\?i%paca
- except for protrusions in the -{l!l}'dlracﬁlans which aro estimeted to
subtend an angle of about 20 at K = 0. Within experimental error the

 results are conslstont with those obtalned by othar mathods necr o° K.
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CHAPTER |

INTRODUCTION

One of the fundamental problems in the theory of the solid state is
to find a solution of the Schrodinger equation fof the many-body system de~
fined by a crystalline solid. Since a direct solution of this problem is not
possible considerable effort has been directed toward the production of
models which approximate the many-body system., By the use of these models it
is then possible to make predictions about the properties of the crystalline
system that can be compared with those derived from experiment. It is thus
desirable to be able to make reliable measurements of these properties so
that they can be compared with the predictions of the various theoretical
models and also because the data may be used to suggest newer and better

models,

A special case of this problem that is particularly interesting
occurs when the crystalline solid is a metal. Work on this aspect of the

problem can be considered to have started with the free~electron approximation



of Sommerfeld (1928) in which it was assumed that the electrons of the solid
do not interact with each other or with the ion cores of the crystal lattice.
Despite its oversimplification of the actual physical situation, the theory
usually gives good qualitative results, However, in order that satisfactory
quantitative results be obtained, it is usually necessary to include the
effect of the ion cores. The extensive theoretical work on this aspect of

the problem is essentially an extension of the studies of Hartree (1928),
Bloch (1928), and Fock (1930). Inclusion of the effect of the ion cores
greatly complicates the problem so that accurate calculations are difficult

to perform, but it usually leads to results that are in better accord with .
the large body of available experimental data than does the simple Sommerfé]d.
model, However, it is reasonable to assume that agreement with experiment
would be further improved if it were possible to include the effect of elec-
tron-electron interactions. Considerab]e progress on this aspect of the prob-
lem has resulted from the early studies of Bohm and Pines (Pines, 1955; Pines,
1963). Most calculations of energy bands in metals at present are still based
on the independent particle model (Chapter |1), however, because of the diffi-
culty of adequately including the effects of electron-electron interaction

(Reitz, 1955; Callaway, 1958).

Since the work of Wigner and Seitz (1933) on sodium, well over a
hundred band calculations for metals have been performed. In recent years
the advent of high-speed computing machines has made possible an increasing
number of extensive calculations that agree well with one another and with
experiment, However, with a few exceptions, good accord with experiment is
limited to metals of the alkali group or the alkaline earth’group (callaway,

1958) .



An exception that is of particular interest is copper. Here the
agreement of recent extensive band calculations with experiment is good
(Segall, 1962; Burdick, 1963). The experimental situation is also rather
unique since the electronic properties of copper have been mére thoroughly
investigated than those of any other metal (Segall, 1962). For example, the
Fermi surface which describes the highest occupied electron energy level at
absolute zero, has been studied by at least five major experimental tech=-
niques (Harrison and Webb, 1960), These include the methods of anomalous
skin effect, magnetoresistance, magnetoacoustic effect, cyclotron resonance,
and the de Haas~van Alphen effect. All five methods give results that are
in accord with the model of the Fermi surface for copper proposed by Pippard
(1957). In this model the Fermi surface consists of a spherical central
part (the 'belly'') together with eight protrusions (''necks') along the {]11}
directions, As discussed in Chapter ||, this model for the Fermi surface of
copper is in good accord with the surface predicted by recent band calcula-

tions (Segall, 1962; Burdick, 1963).

The experimental techniques mentioned above are all limited to use
on fairly pure metal specimens at very low temperatures ( 'Vhf K) due to the
requirement of long electronic mean free path (Harrison and Webb, 1960), This
requirement is rather restrictive. For example, it makes impossible a satis=
factory study of alloys. The requirement of lTow temperatures complicates the
study of metals such as sodium and potassium in which low temperature phase
transitions occur, The restriction to low temperatures also eliminates the
possibility of examining adequately the temperature dependence of the ''sharp-
ness'' of the Fermi surface boundary., Finally, it is to be noted that in these
methods one generally examires only the electron states that reside near the

Fermi surface, It would be of considerable interest to be able to probe the



entire valence band.

A technique that does not suffer from the above limitations in-
volves a study of the annihilation of positrons in metals. In this method
the metal to be studied is bombarded with positrons. Upon collision with
an electron, there is a chance that the pair may annihilate each other. In
nearly every such annihilation two nearly antiparallel photons result., The

3

small deviation from strict antiparallelism (~107° radians) is related to
the centre~of-mass momentum of the annihilating electron-positron pair by

the simple relation P, = mce where Py is the component of pair momentum
perpendicular to the nearly antiparallel photon pair, m the electronic rest
mass, ¢ the speed of light, and e the angular deviation from 1800. The
energy of the photons emanating from the sample is about 0.51 Mev (annihi-
lation radiation) so that gamma-ray attentuation and scattering by the sample
will be negligible if the sample is reasonably smail, Since calculations by
Lee-Whiting (1955) indicate that the positron is essentially at rest (therma-

lized) before it annihilates, the centre-of-mass momentum of the pair is

essentially that of the electron.

The angular correlation of the gamma-ray pairs emitted in positron
annihilation in solids has been observed by many workers. The éarly work of
Klemperer (1934) and that of Montgomery and Beringer (1942) established the
time coincidence and near collinearity of the two gamma~rays emitted jn
"~ positron annihilation, The first detailed angular distribution was obtained
by De Benedetti et al, (1950). Since then angular correlation studies of
many elements and compounds have been made, The subject has been reviewed

by Wallace (1960).

Most of the work on Fermi surfaces by the positron annihilation



technique has used the ''wide-slit'' method (Chapter I11)., On the basis of

the free-electron model it is easy to show that this wide~slit method samples
a slice through the Fermi sphere (Chapter 111), By the use of this technique
it has been possible to obtain the momentum distribution of the electrons
within a metal at temperatures ranging from 'VQO K (Stump, 1955) to beyond
the melting point (Gustafson et al., 1963), providing a rather direct veri-
fication of Fermi-Dirac statistics, However, due to finite resolution and
other complicating factors {(core annihilation and other higher momentum
effects arising from the presence of the crystal lattice) which are dis~
cussed in Chapter 11, the method has not been useful for yielding quanti-

tative information about the detai]ed'shapes_of Fermi surfaces.

A "point geometry' method which samples a cylindrical volume in
momentum space has been used by a few workers (Colombino et al., 1963; Fuji=
wara, 1965), Although this.method permits improved resolution compared to
the wide slit method, the results are again obscured by core annihilation
and other lattice effects making it diffjcult to use the method for an accurate

study of Fermi surface topology.

The work of this thesis describes a development of the ''point
geometry' technique which offers advantages for the study of Fermi surfaces,
With this method (Eol]inear point geometry'') it is possible to examine the
Fermi surface more quantitatively than appears possible by the '"wide-slijt"
or '""point geometry'' methods because core annihilation and higher momentum
effects arising from the presence of the crystal lattice play a relatively

less important role in the new technique,

The principles of this new '"collinear point geometry'' technique

are discussed in Chapter Ill of the present work. This chapter is followed



by Chapter IV in which the experimental arrangement is discussed in some
detail, Finally, in Chapter V some experimental results obtained from an
appliéation of this new method to a study of the Fermi surface of copper at
room temperature are presented. These results are used to construct a Fermi
surface for copper which is then compared with the copper Fermi surface
obtained at very low temperatures by the more precise conventional tech-
niques mentioned above. The discussion closes with a statement of the con-

clusions that have been drawn from the present study,



CHAPTER 11

MOTION OF ELECTRONS IN METALS

A, Introduction

if one considers a crystalline solid at fairly low temperatures
so that the motion of the relatively massive nuclei can be neglected, one
can to a good approximation (Ziman, 1960) write the Schrddinger equation

for the system as

N2 NZ ~e1- -t e )
[-éc It-’"V‘ b él j_{”i("’il ZgﬁJf“}‘Fj ]Y =EY (2-1)

Here it has been assumed that the lattice is perfect and that the crystal is
" composed of N atoms each with z electrons. The position vector of electron
4 is denoted by ¥ and that of nucleus j by E~; The remaining symbols have
the usual meaning; -e is the electronic charge, m the electronic rest mass,

2nh Planck's constant and E the energy eigenvalue for the system. The in-

"terpretation of the terms in the above Hamiltonian is well-known (Ziman,1960).



The first term represents the kinetic energy of the electrons, the second

the potential energy of the electrons in the nuclear Coulomb field; and

the third term the potential energy of the electron-electron Coulomb inter-
action, If more than one type of atom is present the Hamiltonian of equation
(2-1) is easily generalized and leads to an expression that is only slightly

more complicated.

B. The One-Electron Approximation

The above equation is quite general and is in fact one of the fun-
damental equations ‘in the theory of solids, However, since in a typical
solid one has a very large number of interacting particles it is quite im-
possible to solve the Schrodinger equation directly. Nevertheless the prob-
lem can be made more or less tractable if one treats the electrons as sta-
tistically independent (the one-electron approximation). The wave function

for the system then becomes (Anderson, 1963)

YT - Ky = tﬂo‘:’,wlm‘;)...w,;‘z(?,,} (2-2)

where the  %(X) are one-electron functions (including spin). If, in ad-
dition to the one-electron approximation, the electron-electron interaction
term is replaced by its average value one obtains the Hartree equation with

one-electron eigenvalue

L S dr
B Ser ey ()
[ —r‘rfj ; EJ ——L“-——L,,_ . ]”‘V“) (2-3)
where i = 1,2,...Nz. In these equations the average interaction term has a

simple interpretation if it is noted that since the charge density of electron

j at point ¥ is -e ( (” )‘ » the potential energy associated with electron i

}

and volume element »dr- is € |’¥j(5)}z0‘5

4

%= 7]



Then the quantity

can be interpreted as the potential energy of electron i in the charge cloud

of electron j (Raimes, 1961).

In order to solve the Hartree equations one assumes a set of Tf,

calculates V, (a ) and thence a new set of ¥, which are in turn used in the

Hartree equations and so on, until a self-consistent result is obtained.

Since efectrons are fermions the function ¥ must be antisymmetric
in the electron coordinates. However, the product function given by equation
(2-2) does not obey this condition. However, it is possible to satisfy the
antisymmetry requirement by forming a suitable linear combination of product

functions; the Slater determinant, given by:

'\V,(’.‘:) 1":(5(’1) e Y,()?Nz)

P[]

s (%
"f’Nz(XD o e "VI,VZ wz)
which is antisymmetric as required. |f for two electrons one has X, = %

1 2

(spatial and spin coordinates identical) the determinant vanishes, in accord

with the Pauli exclusion principle.

Using the determinantal function it is possible to construct a
better set of one-electron equations (Anderson, 1963)., These are the Hartree-

Fock equations-

. - i a
.ﬁv'g/(r) g 'ygr,),x( fl’?’«( )ldt.),?,gﬁ,) f Y:L (r)'y;,(‘r )’er(ﬁheﬂl’,r"‘-)




where ¢ denotes the spin label. Although these equations are known as the
Hartree~Fock equations, they are actually a special case of a more general
method (Messiah, 1962) that is of considerable importance in atomic (Hartree,
1957) , nuclear (Brown, 1964), and solid state problems (Anderson, 1963).
However, in what follows, the discussion of the method will be limited to

its use in the theory of metals,

Due to their mutual Coulomb repulsion, the electrons in a solid
will tend to avoid each other (Coulomb ;orrelation). Thus the electrons
will not move independently of each other as is assumed in the one-electron
model. In the Hartree and Hartree~Fock methods the Coulomb correlation of
the electrons is not taken into account. |In the Hartree-Fock method,however,
the Pauli exclusion principle does introduce a correlation between electrons
of like spin. In general, inclusion of the Coulomb correlations and spin
correlations will reduce the energy of a many-electron system because the
correlations are effective in making the electrons spend less of their time
nearveach other. In a treatment of metals by the one-electron method it is
often found better to ignore all correlations than to include only some of
them (Raimes, 1961). Thus the Hartree method frequently yields better re-

sults than does the unmodified Hartree-Fock method.

Despite its limitations, the Hartree method has often been used
in the theory of metals (Reitz, 1955). In particular, it can be used to
derive the properties of a free-electron gas. This is particularly useful

since a free-electron gas can be regarded as a crude model of a metal.

C. The Free-Electron Model

If one replaces the charge distribution of the ion cores by a



uniform distribution of positive charge, and the charge distribution of the
valence electrons by a uniform distribution of negative charge so that the

net charge is zero, the Hartree equation simplifies to

¥y = £V
= VY (2-4)

For a cube of side L, containing N electrons it is seen that a solution of

(2-4) is
Ak ¥
wen . FL_E ) . (2-5)
provided that
e = " (2-6)

Application of the usual periodic boundary conditions (Ziman, 1960; Raimes,

1961): Y (x+L,y,z) = W(x,y+L,z) =VY(x,y,z+L) then yields
- A » g '
‘ —%T_r(n] i+n, j*ng k) (2-7)

Ly . . a8 A X
where the n; are positive or negative integers or zero and i, j, k are unit

b

vectors along the cube edges,

From (2-7) it is seen that the integers n, representing ''orbital
states (Raimes, 1961) define a lattice in,ELspace. Since each cube of side

27 will contain one such orbital state, the number of orbital states per

L .

unit volume of k-space is L3 . Thus in a volume element dk of ﬂlspace there
3 g3

are L°dk orbital states. Generalizing slightly, it is seen that for a metal
gw?

of volume v there are 2vdk electron states (spin degeneracy included) in a

gx’

volume element dk of E-space.

It is evident from (2-6) that the surfaces of constant energy are

. spheres. Thus, as a consequence of Fermi-Dirac statistics, the occupied

11



region of E-space at the absolute zero of temperature will be a uniformly
dense sphere. Denoting the radius of this sphere (the Fermi sphere) by ke
and observing that there are N electron states within the Fermi sphere the

following condition is obtained:
(2v

(8nr?

v L

or, ke= [(_3_@)] 3

and the Fermi energy is

2,
€pshi b (270) &
zh 2m v

D. The Crystal Lattice

In a crystalline sélid the atomic nuclei form a periodic array
known as the crystal lattice. Due to the periodicity of this array it is
possible to generate the entire set of lattice points by use of the concept
of a unit cell, (Ziman, 1964) If the unit cell can be chosen to be a paral-
lelepiped containing one atom, the crystal ltattice is said to be a Bravais
lattice, On the other hand, if a unit cell with more than one atom is re-
quired the crystal lattice is said to be a Bravais lattice with a basis since
the positions of the various atoms in the unit cell must be specified. [t is
easily seen that if the crystal lattice is considered to be made up of unit
cells, each -containing one atom (Bravais lattice), any lattice point can be

reached from any other by a translation through a vector of the form

T= ]]a] + 12a2 + l3a3 (2-8)
where 3], 5&, and 3% are vectors defined by the edges of the unit cell, and
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TIPY and 13 are integers. Equation (2-8) is also valid for a crystal

lattice made up of unit cells containing more than one atom each (Bravais

1 1

lattice with a basis)., However, in this case the two atoms so linked must

reside at equivalent sites within their respective unit cells,

Most metals crystallize in one of three structures. These three
are the body-centered cubic, the face-centered cubic and the hexagonal close-
packed structures, diagrams of which are shown in Figures 1, 2, and 3, re=-
spectively., Nearly all of the common metals have one of these structures.
For example, lithium, sodium, and potassium are body~centered cubic whereas
copper, silver and gold are face-~centered cubic. Examples of the hexagonal

close-packed structure are beryllium, magnesium and zinc.
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~-[Figure 1: Body-Centered.Cublc Structure
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Flgure 2: Face-Centered Cubic Structure
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Figure 3: Hexagonal Close-Packed Structure -




E. The Reciprocal Lattice

In the theory of metals it is convenient to introduce a lattice
known as the reciprocal lattice. (Ziman, 1964) This lattice can be defined

by means of the reciprocal lattice vector

-> - -
G = m]B] + m2b2 + m3b3 (2-9)
where b] = 2n-32 x a,, b2 = 27ra3 x &, 33=2ﬁa] X a3 and m ., m,, and m3
g, a2 X a3 3-8, x 33 3]‘32 X a3

may be positive or negative integers or zero.

The unit cell, or zone, in the reciprocal lattice is then obtained
(Kittel, 1956) by finding the shortest non-zero reciprécar’lattice vectors

satisfying the Bragg condition
R+ B = K2 (2-10)

where K is a general vector in the reciprocal space. From this equation it

can be seen that 2k-§ = -G so that each zone boundary is normal to a recip-~
G

rocal lattice vector at its midpoint. The cell thus formed is known as the

first Brillouin zone or the reduced zone,

In particular, for a face-centered cubic lattice one may take the

primitive translation vectors to be

3]=%(?+3)
32 = %(j + k)
5 a1
3730

where a is the length of a cube edge and T, 7, and % are unit vectors along



the cube edges. From the above equations one then easily obtains

g = ggL [ (m -m +m3) + (m]+m2-m3)j + (-m m+m )k}

Thus the shortest non-zero reciprocal lattice vectors are the eight vectors

2% k)
: | =
2x(+2k) The intersection of the planes normal to these vectors (at their

(+7+]+k) and the next shortest are the six vectors gf(t27);.g§(t2§);
)

m|dp0|nts) defines the first Brillouin zone shown as the truncated octahedron

in Figure 4,

F. Motion of an Electron in a Crystal Lattice

If the first two terms in the Hamiltonian of (2-1) are retained and
the assumption made that the ion cores are closed shells of electrons rigidly
attached to their nuclei so that one has a system of non-interacting electrons

moving in a lattice of ion cores, equation (2-1) reduces to

-% :

(£ +Vaf)]—q; £y (2-11)
where V(?) is the periodic potential due to the lattice. Now consider a
simple Bravais lattice with dimensions N]a], N2a2’ and N3a3 along 3 2, and

&, respectively; where N, N, and N, are integers. The potential energy of

3 172 3
an electron in the lattice will have the periodicity of the lattice:
V(F) = v(@E + 1 - (2-12)
It is well known(Heine, 1960; Tinkham, 1964) that solutions.Ef‘(Z-ll) subject
to the conditions (2~12) are the Bloch functions Wé(?) = e | 'ruE(F) where

UE(F) has the periodicity of the lattice: up (t) = up (7+7). Application of
the usual periodic boundary conditions‘Vﬁ(?) = QE(?+N]5]) =’?k(?+N232)
‘WVE(F+N ) gives k-3 —2Tn RK:3 = 2rn,, K:53, = 2xn. whence

—1’ 7272 =2’ 7373 =3
N] N N3
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Figure L: Brillouin Zone for Face-Centered Cubic Lattice




where nys n2, and n3 are integers, From this expression for K it is seen
that, just as in the free electron case, there will be XQEB orbital states
; 8T ig-T

in a volume element dk of k-space. Use of (2-8) and (2-9) gives e =]
since 3.-b, = 2w§;. . Thus it follows that the vector K is not uniquely de-

[ ] . - e N

i(R+8 .7 -iGF
termined since W&(?) = e [g E.(Fﬂ is also of Bloch form. For this
k

reason the vector K is often restricted to the first Brillouin zone (reduced

zone scheme). In this scheme the energy is a many-valued function of K.

By translating regions of the first Brillouin zone through recip-
rocal lattice vectors G, one can form polyhedra that symmetrically surround
the first zone. The faces of these polyhedra are again given by condition
(2-10)., The volume between the first zone and the next polyhedron defines
the second Brillouin zone. Higher zones are defined in a similar manner, By
use of this extended zone scheme the energy € (k) can be written as a single-
valued function of K for all K. The extended zone scheme then permits easy
comparison of an energy spectrum £ (k) with the parabolic free electron spec-

trum E?k) = ﬁzkz.

2m

1. Perturbation Theory for Weak Periodic Potentials

If the periodic potential V(¥) of the crystal lattice is assumed
small, standard perturbation theory (Anderson, 1963; Ziman, 1964) yields for

the electron energy

Ly

€@ = €@ +<RKIvAI B>+g KEIv@ | &>
| €R)

(
R#K €K -
o 2,2 . ' -
where € (k) = A7k" is the energy of the unperturbed free electron state (k> .
zm
However, since V (¥) has the periodicity of the lattice it may be written as

a Fourier series (Ziman, 1964)

20
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iG-r
V() = Z’V e
G
9-.
- =1 . . - -l -
so that the matrix element <R | V(?) | K > is nonzero only if K - K+ G = 0.
If this condition is satisfied, the matrix element is simplyCK|V(®) ) K= Ve
and the expression for the energy reduces to
€@ = €@ + v Y [vg ] ? (2-13)
G¥o @ — €°(K+6)
From this equation it follows that the energy surfaces €= €(R) will in
general not be spherical. In particular, the Fermi surface € (K) =€¢
where €, is the highest occupied energy level at the absolute zero of tem-
perature, need not be spherical, in contrast to the perfectly free electron

case for which €= ﬁfﬁi.
2m

From the perturbation expansion (2-]13) it can be seen that the
method fails if a degeneracy €& =€(R+&) occurs. This degeneracy con-
- X . . 2 2
dition is equivalent to the Bragg condition kK~ = (R + B)° of (2=10). In
other words, the perturbation expansion (2-13) is not valid when k lies near
a Brillouin zone boundary. However, near a zone boundary it is still possible
(Ziman, 196L4) to expand the electron wave function in a series of the form

-

ik iGr

ik.r
'WR; () =-e UR(F) = e (5_@ 3ep © ) (2-14)

wWhen K lies near the zone boundary defined by EZ = (E+§)2 it is possible, as

~a first approximation, to ignore ali coefficients a except a, and a

k+G K ktG,

in order to obtain an expression for the energy., The energy is then given by

t' © .
E® = v+ 172 (€®+ E(R+) 2 1/% (€-£0% +1 lvl®  (2-15)

where the minus sign refers to states "inside' the zone boundary ( IK-GlJG/ )
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and where the plus sign refers to states ''outside'' the zone boundary

( [E;§l>{§(). From (2-15) it is again seen that in general the Fermi surface
wiisﬁée n§n~spherical. In addition, the energy spectrum £= §(K) will gener-
ally possess discontinuities at the zone boundaries. A detailed discussion
of these discontinuities may be found in many textbooks, for example, Kittel

(1955), Anderson (1963), or Ziman (1964).

Since the concept of a well-defined Fermi surface is based upon
the one-electron approximation which largely neglects electron-electron effects,
it is of conéiderable interest to examine the effects of electron-electron
interaction on the Fermi surface. Such considerations (Luttinger, 1960;
Cornwell, 1964) show that a system of .interacting electrons in a crystal does
possess a ''sharp'' Fermi surface (Luttinger, 1960) although in general it will
differ in shape (but not in symmetry) from the Fermi surface of a system of
non-interacting electrons. (Cornwell, 1964) Such an analysis also shows that
the Fermi surface for interacting electrons has the same symmetry as the
Fermi surface for electrons interacting throdgh a Hartree-Fock self-consistent

field (Cornwell, 1964).

3. Justification of the One~electron Approximation

A justiffcation of the one-electron approximation for a system of
interacting electrons is provided by the Bohm~Pines theory of plasma oscil-
lations. In this theory (Raimes, 1957; 1961) a metal is regarded as a plasma
compésed of a uniform distribution of ppsitive background charge in which the
eiectrons are embedded. This theory shows that plasma oscillations may be

associated with a quantum of energy (plasmon) hwp > % and that plasmons in

22
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a metal at ordinary temperatures will normally be in their ground state and
consequently may be often ignored. The theory also shows that the long-range
part of the effective Coulomb interaction is associated with the plasmons.
The remaining Coulomb interaction has an effective range of ~|1 R which is so
short that often it too may be neglected. The experimental work on plasma

oscillations has been discussed by Pines (1955, 1956).

L. Energy Band Calculations by use of the One-electron Model

Energy band calculations are in principle based on the numerical
solution of the Hartree-Fock equations (Callaway, 1958), As these calcula-
tions are difficult various approaches and approximations have been empioyed.
Since the first calculation for sodium by Wigner and Seitz (1933), well over
a hundred energy band calculations for metals alone have been published. Many
of these calculations have been for the same metal. For example, the cal-
culation for sodium has been made more than ten times by use of various ap-

proaches (Slater, 1963).

The agreemént of energy band calculations with experiment is often
not satisfactory. For the alkali metals the agreement with the available
experimental data is fairly satisfactory (Callaway, 1958). On the other
hand, with the exception of copper, few detailed calculations for the noble
metals have been publiished. For copper, however, at least a dozen calcula-~
tions have been performed (Slater, 1963). Agreement of the recent work by
Segall (1962) and Burdick (1963) with experiment is good. For the few di-
valent metals for which detailed band calculations exist, it appears that
only for beryllium is %here satisfactory agreement between theory and ex-
periment (Callaway, 1958). Relatively few calculations have been performed

for trivalent, quadrivalent or pentavalent metals. However, the calculations
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for aluminum appear to be in qualitative accord with experiment (Caltaway,
1968). For the transition elements the calculations are very difficult and

the results tend to be rather qualitative (Callaway, 1958).

5. The Fermi Sﬁrface of Copper: Theory and Experiment

The energy band calculations of Segall (1962) and Burdick (1963)
for copper show quantitative agreement with experiment. For exampie, Segall
has calculated the radius of the '‘necks't which lie in the {111} directions

as well as the average ''belly' radius of the Fermi surface. For the neck

8 -
radius Segall obtains a value of 0.28 * 0.03 x 10 cm which compares well
8 -1 '
with the experimental value of 0.26 x 10 cm  (Joseph and Thorsen, 1964). For
8 -l
average ''‘belly' radius he obtains 1.33 * 0.01 x 10 cm which is in good
8 -1

accord with the experimental value of about 1.32 x 10 cm obtained from the
work of Morse (1960). The detailed results of Burdick and Segall are com-
pared with experiment in Table |, The symbols used in Table | are defined in
Figure 5. All dimensions are8expressed in terms of the free-electron Fermi
sphere radius k. = 1.365 x 10 cm-]. in the table the number (1) under kr
refers to the neck radius as measured along a line passing through the center
of the hexagonal zone face and the midpoint of one edge, whereas (2) under kr
refers to the neck radius as measured along a line passing through the center
of the hexagonal Briilouin zone face and one corner. The numbers (1) to (4)
appeéring under k]00 and k”0 refer to the different values obtained when the

direction of the sound waves used in the magnetoacoustic measurements is

changed. Further details may be found in the paper by Bohm and Easterling

(1962).
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Flgure 5: Copper Fermil  Surface Details




COMPARISON OF THEORET{CAL AND EXPERIMENTAL FERMI

FOR COPPER (AFTER BOHM AND EASTERLING, 1962)

FERMI SURFACE -

DIMENSION
k (1)
100 Ezg
K ]
10 (5]
(3)
()
k
o
tj’: (1)
(2)
k100”110
SEGALL (c)
k 1.04 ¢ 0,015
100 019 + 0,012
ky 0.87 t 0.015
k 0.76 t 0.015
K" 0.29 + 0,02
K (1) 0.14 t 0.02
r
(2)
K100”%110 1.10

(a) Magnetoacoustic effect

(b) Dimensions deduced by Roaf (1962) from Shoenberg's
data (1962), Pippard's (1957), and Morton's (1960)

measurements.
(c) Band theory calculation (Chodo

(d) Band theory calculation ({-dependent potential)

(e) Band theory calculation (Chodo

TABLE |

BOHM-
EASTERLING (a)

SEGALL

1,02
0.87
0.81

0.24
0.21

row potential)

row potential)

(LA SET T TS

S T T e A L L

SURFACE DIMENSIONS

0.021
0.060
0.011
0,011
0.032
0,011
0.009
0.021
0.042
0,011
0.011

(d)
.015
.015
.015
.015
.02
.02

[oNaoNoNeNolal

Il =NeoReoNeNoNeR

ROAF (b)

1.076

0.943

0.200
1.4

BURDICK (e)

.05
.97
.84
.77
.31
.15
7
.09

t

[ENE SR E AV D ST

0.02
0.02
0.02
0.015
0.04
0.04
0.02

de Haas-van Alphen
anomalous skin effect
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CHAPTER 111

ANNIHILATION OF POSITRONS

A, Introduction

In recent years considerable theoretical and experimental work has
been done in the field of positron annihilation. This chapter outlines some
of the theoretical and experimental results relevant to the study of Fermi

surfaces by positron annihilation.

B. Free Annihilation of Positrons

Free positron-electron annihilation may proceed by 1, 2, 3 or more
photon;, as long as linear momentum, angular momentum, energy and other se-
lection rules are satisfied (Jauch and Rohrlich, 1955), In this respect,
one-photon annihilation can only occur in the presence of an external system
able to take up the recoil momentum. The one-photon. process is rather un-

Tikely and in a typical solid over 95% of the positrbns annihilate by two

27



or more photons,

For positron~electron pairs, aside from selection rule considera-
tions, the probability for annihilation into n+l photons is smaller than
that for annihilation into n photons by a factor of order « where « i{s the
fine structure constant and n Z 2, Thus little error will be incurred if
processes for which n>»3 are ignored. |In fact detaiied considerations in-
dicate that the ratio of the spin-averaged cross sections for the two-photon
and three-photon processes isozyﬁ, = 372 (Berko and Hereford, 1956). This
ratio is in reasonéble agreement with the experimental result of Basson
(1954) for aluminium, viz. 61’6;, = L06% 50, Thus, the annihilation of posi-
trons with conduction electrons in a metal occurs predominantly by the emis-

sion of two photons (Graham and Stewart, 1954).

The cross section for two-photon annihilation of a free positron
with a free electron was first obtained by Dirac (1930) by means of a ''plane
wave'' calculation (implying no Coulomb distortion). In the non-relativistic
limit, this result for the spin-averaged cross section per electron reduces

to

o 2
G;8~ ﬂﬁ;cer

where r, = gg is the classical electron radius and v the relative velocity
mc

of the positron and electron. Although this cross section diverges as the

relative velocity v approaches zero, the annihilation rate (i.e.probability

per unit time of annihilation) of a positron in an electron gas is independ-

ent of velocity, being given by

R = Nv& =7m" cN (3-1)

where N is the electron density.
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Because of the success of the electron gas model of the conduction
electrons in metals, it might be expected that the mean lifetimes of posi-

trons in metals would be approximately those expected on the basis of (3-1)

yielding values of T = 1~10 sec and inversely proportional to the con-
R
duction electron density. The observed lifetimes, however, are surprisingly
-10 '

constant (T~ 2 x 10 sec) despite the large variation in electron density
from one metal to another (Wallace, 1960). Much of this disagreement proba-
bly arises from the neglect of the positron~electron interaction involved in
deriving (3-1) and will be examined in the discussion of lifetimes below

(Section H).

C. Positron Annihi]atibn‘from a Bound State

1. Bound Electron~Positron Systems

The possible existence of a bound positron-electron system (e €)
analogous to the hydrogen atom was suggested by Mohorovidid (1934) shortly
after the experimental discovery of the positron (Anderson, 1932; Blackett
and Occhialini, 1933)., In addition to this two-electron system known as posi-

+ -+ .+ -
tronium (Ruark, 1945) several other '"polyelectron' systems (e € e, € e e, and

g e Z e) were calculated to possess stable bound states (Wheeler, 1946), the
three~electron systems being stable by 0.20 ev (Hylleraas, 1947) and the
four-electron system by 0.11 ev (Hylleraas and Ore, 1947). However, these
three and four-electron systems are unlikely to be observed both because of
the small probability of their being formed, and because.of their ready break-
up by collisions‘(Deutsch, 1953). The lifetime against annihilation of these

. . ~10
three and four~-electron systems is estimated to be ~10 sec.

In addition to these polyelectron systems, dynamically stable

bound states of positrons with molecules or ions are also possible. For



example, calculations indicate that positron hydride e+ H™ should be stable
by about 0.23 ev (Neamtan-et al., 1962) and positron chloride by about 4.65
ev (Simons, 1953)., Again, as in the case of the three and four-electron

systems, little experimental work has been done on these ''compounds' (Green

and Lee, 1964),
2, Positronium

Positronium bears a }esemblance to the hydrogen atom in that it is
also composed of a pair of oppositely charged particles, Since the reduced
mass of positronium is half that of the hydrogen atom, the positronium ener-
gy levels will be half those of hydrogen and its Bohr radius twice as large,
Thus the positronium ionization energy is 6.8 ev and the positron Bohr radius
is 1.06 R. A dfscussion of the fine structure of positronium may be found

in, for example, Deutsch (1953).

3. Positronium Annihilation

Positronium decays by two and three quantum annihilation; the ]S

3

o)

(para-) state decaying by two-photon annihilation and the

3
S]

selection rules, The'lifetime for two-photon annihilation is given by

S (ortho-) state

by three photons, two~photon decay of the state being forbidden by the

T, = 1.25 x 15'% n3 sec and that for three-photon annihilation by T3 = 1.4 x
=7 3

10" n” sec, Thus for annihilation from the ground state (n = 1) the life-

10 sec and 7= 1.4 x 157 sec. If the positronium

3
Sl

should radiate optically to the ground state before annihilating (Deutsch,

times become T71.25 x 10

is formed in any excited state (other than ]SO states or the 2 state) it

1953).

Since positronium formation does not seem likely in metals

30



(Wallace 1960; Kanazawa et al., 1965; see also, for example, the recent work
on lifetimes by Kugel et al., 1966, positronium will not be discussed further
in the present work. The rather extensive subject of positronium formation
and decay in solids, liquids, and gases has been reviewed by Wallace (1960).

Positronium chemistry has been discussed by Green and Lee (1964).

Energy and momentum afe conserved if the two photons (each of ener-
gy m;z) are emitted in opposite directions in the center-of-mass frame
(Heitler, 1954), If the center of mass frame is in motion relative to the
laboratory reference frame, the angle between the photon directions may de-
part from 180°. The departure from collinearity of the two photons can be
found by transferring the collinear two-photon system from the center of
mass frame to the laboratory frame by means of an appropriate Lorentz trans-
formation. The calculation is similar to that used to calculate the aber-

ration of light in relativistic optics (Becker and Sauter, 1964).

If the relative electron velocity v is very small compared to the
velocity of light ( ?/c“'163) it is possible to derive a simple expression
for the deviation of the photon directions from antiparallielism. In this
case the kinetic energy of the pair is very small compared to the energy
carried off by the two photons so that each photon will have an energy very
nearly equal to mcz. Thus each photon has momentum mc, and since is small
it is seen from Figure 6 that the transverse component of pair momentum is

given by
e & mco :
(3-2)

This is the fundamental angle-momentum relation used in two-photon angular

correlation studies,
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Figure 7: wide Slit Geometry
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E. Angquiar Correlation Geometries

1. Introduction

There are essentially three ways by which the Fermi surface has
been studied by use of angular correlation of annihilation radiation. -Mést
angular correlation experiments have used the '"wide slit'' geometry described
below (Stewart, 1957) although some recent work has been done by use of a
"'boint'' geometry (Colombino et al., 1963, 1964' Fujiwara 1965). The work
described in this thesis utilizes a tEird method (''collinear point geometry')

in which the angle does not vary. These methods are outlined below,

2 (a) Wide Slit Geometry

There are several variations of the wide slit method (Stewart,l957;
Berko and Plaskett, 1958) but it is sufficient to consider Stewart's arrange-
ment since the methods are equivalent. In this arrangement, shown in Figure
7, the gamma~ray pairs are counted in time coincidence by means of detectors
mounted behind two slits that can be taken to lie in the horizontal plane.
The radioactive sample containing annihilating electron-positron pairs is
allowed to move in a line perpendicular to the plane of, and midway between,
these two slits, By moving the source vertically, photons emitted in time
coincidence at various angles may be observed. Some typical dimensions

(Stewart, 1957) for the distances shown in the figure are

D = 100 in.
A = 1.5 in.
h = 0.050 in.

Further experimental details can be found in Stewart's paper.



From Figure 7 and by (3-2) it is seen that, approximately,
p = mcO® = 2mcz/D (3-3)

where z is the vertical displacement. Thus in this method the transverse

component of pair momentum P, is directly proportional to the displacement z.

If now this approach is considered in terms of the free-electron
model it is seen that for each setting z of the displacement, one samples a
slice through the Fermi volume as shown in Figure 9. The slice thickness,
of course, is determined by the finite resolution of the experimental arrange~

ment.

Following the analysis of Stewart (1957) it is seen that the co-

incidence count rate will be given by

n(p,) fff(ﬁ) dp, dp,,

where P (3) is the density of momenta of the annihilating pairs. lf/f(ﬁ) is

assumed isotropic so that f(ﬁ) =‘f(p), the count rate becomes
% 0o
nip,) « ff(p) 2xp, dp = ‘ZWf(p) pdp
3 fz
where p2 = pi + pi = pi + p§v+ &2. Thus, differentiation of this expression

for n(p,) gives

f’(p‘z )« = 1 dn (ps
B dp,
so that by (3-3) it follows that
f(Pz) & -1 dn(z). (3-4)
z dz

For the ideal free-electron case in which it is assumed that:

3L
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Figure 8: Wide S1it Geometry Results
(After Stewart, 1957)°

Figure'9: Reglon Sampled by Wwide Sl1lit Geometry
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(a) The momentum of fhe positron is zero (i.e. the momenta of
the thermalized positrons are neglected compared to the
electron momenta.

(b) The electron momentum distribution is isotropic and taken
to be of uniform density f up to the maximum, or Fermi

momen tum P and zero for P> P

one has
fe
n(p,) « p|pdp
F

or

n (b))% (2 - p)) (3-5)

z

which is the equation of an inverted parabola.

As might be expected, the experimental counting rate curves deviate
from an exact inverted parabola. In the case of the alkali metals the de-
viation is small. This confirms the statement that the alkali metals exhibit
very nearly free electron behaviour. But as one passes through the aikaline
earths and beyond, increasingly larger ''tails'' are superimposed on the in-
verted parabola, For comparison, the resuits for sodium and copper (Stewart,
1957) are shown in Figure 8. In this figure ® denotes the angle corresponding
to the Fermi momentum p. - Berko and Plaskett attribute most of the tail of
the copper curve to annihilation of'positrons with the electrons of the ion
cores (cofe annihilation). They have estimated the core contribution for
copper and find that their estimate is in reasonable agreement with experimznt,

“"However, it should be noted that theré are difficulties associated with these

core annihilation calculations. These difficulties will be discussed below.
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2 (b) Determination of Fermi Surfaces by Wide Slit Geometry

If a particular direction of a metal single crystal is aligned with
the z axis in the wide slit method, it is found that the shape of the ahgular
correlation curve may depend upon the choice of crystal orientation (Berko
and Plaskett, 1958). Although this anisotropy has been interpreted as being
due to a nonspherical Fermi surface it is usually difficult to make quanti-
tative statements about the topology of the Fermi surface on the basis of
such measurements, A major source of difficulty is the fact that the method
samples a slice through momentum space, giving a result that is an average
over a considerable region. In addition, this averaging makes it difficult
to observe the sharp '"break'' in the angular correlation curve which should
(Majumdar, 1965) occur at angles corresponding to the Fermi momentum. Also,
recent work with lithium by Donaghy et al., (1965) suggests that the higher
momentum components of the electron wave function may modify the shape of
the angular correlation curve sufficiently so that the observed '"breaks'' in
the angular correlation curve no longer correspond tq radii (Stewart et al.,
1962) of the Fermi surface. Despite these limitations, the method has been
used to study the Fermi surface of a number of metals; in several cases con-
firming qualitatively the results obtained by the more precise conventional
methods. Metals in the form of single crystals that have been examined by
this methéd include sodium (Donaghy et al., 1965), beryllium (Stewart et al.,
1962; Berko, 1962), magnesium (Berko, 1962), aluminum and copper {(Berko and

Plaskett, 1958) as well as holmium, erbium, and yttrium (Williams et al,,1966).

3 (a) Point Geometry

In this method two '"'point'" detectors are used in place of the wide

slit arrangement discussed above, With this arrangement the region of momen~
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tum space that is sampled is an infinite cylinder whose diameter is deter-
mined by the detector geometry. The arrangement is illustrated in Figure 10,

Using a notation similar to that used in the discussion of the wide

slit case, it is seen that for counting rate at p, one expects (Figure 11)

Npw) « [P0 dpy = Se) plp (3-6)
/ INP= P

The solution of this integral equation (Appendix |} is
0

dx-4L 4 | Pnpd ' (3-8)
V f(P)q Pz dfz Lﬁ%

If, as for the wide slit case, f(p) is taken to be constant inside the Fermi
surface and zero outside, it is seen from (3-6) that the counting rate is

given by

)% \p7 -po | (3-9)

so that a plot of n2 Vs, pi is linear,

3 (b) Determination of Fermi Surfaces by Use of Point Geometry

The use of point geometry would be expected to yield angular cor-
"relation curves containing more structure than those characterizing the wide
slit geometry since the method samples a smaller region in momentum space.
A preliminary study of the Fermi surface of copper has been made by this
method (Fujiwara, 1965). Although the results definitely show more detail
than do those of Berko and Plaskett (1958), the copibus presence of higher
momentum components again makes quantitative interpretation in terms of the

Fermi surface difficult.
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Flgure 12: Collinear Point Geometry




L, Collinear Point Geometry

In this method the radioactive metal single crystal and the two
'ooint'' detectors remain collinear and the coincidence count rate obtained
as a function of.crystal orientation (Figure 12). On the basis of the free-
electron model this method also samples a cylindrical volume of momentum
space. This volume element rotates about the origin of momentum space as
the crystal orientation varies so thaf one would expect variations in count-
ing rate with crystal orientation to be interpretable in terms of radii to.
the Fermi surface. That is, from (3-9), if © (and hence pz) is zero, then
n % op . If it is assumed that contributions to the counting rate from
core annihilations are isotropic and if it is assumed that the net effect
of all other highér momentum effects is roughly isotropic, then variations
in the coincidence counting rate are a direct measure of fluctuations of the

Fermi surface radius.

F. Annihilation of Positrons in Electron Gases

When positrons annihilate in a dense gas of interacting electrons
the momentum distribution of the photon pairs should differ from the simple
Fermi~-Dirac momentum distribution characteristic of non-interacting electrons
and shown as curve a of Figure 13. This deviation arises from the effect of
electron-electron and electron-positron correlations (Daniel and Vosko,1960;
Kahana, 1960; 1963). Several attempts have been made to calculate the effect
of these various correlations on the momentum distribution of the gamma-ray

pairs (Hatano et al., 1965).

1. Effect of Electron-electron Interactions

If the electron~positron correlations are ignored and only the

Lo
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electron-electron correlations taken into consideration, the momentum dis-
tribution of the gamma-ray pairs will be identical to that of the inter-
acting electrons (Hatano et al,, 1965). Daniel and Vosko have calculated
the momentum distribution of such a system of interacting electrons, and
for an electronic density corresponding to that in sodium they obtain the
results shown in curve b of Figure 13. It is to.be noted that in this case
the positron acts as an ideal probe since electron-positron correlations

have been ignored.

2. Effect of Electron-Positron I[nteractions

By an approximate solution of a Bethe-Goldstone equation for a
positron~electron pair in a sea ofkintefacting electrons, Kahana (1960;1963)
obtained the photon pair momentum distribution given by curve c of Figure 13.
In this calculation the two-body correlations between the positron and the
annihilating electron have been accurately accounted for. However, with the
exception of the correlations associated with the screening of the attractive
electron-positron force, no other correlations are considered. Hatano et al.
(1965) have suggested that the neglect of these other correlations may be
justified only for high electron densities and not for the relatively low

electron densities found in real metals,

3. Effect of Electron-electron and Electron-positron Interactions

By starting with a wave function of Bijl-Dingle~Jastrow type,
Hatano et al. have been able to approximately include both electron-electron
and electron-positfon correlations. Their result is shown in curve d of
Figure 13. For the relative momentum distribution of the photon pairs they

obtain
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w(p) = l+0.]3(p/pf)2 - o.oz(p/pf )L* + ...

w(0)
in which the coefficients are independent of electron density., This is to
be compared with Kahana's result(for an electron density corresponding roughly

to sodium)

= 1 + 0.262(p/pf)2+ 0.233(p/py )4

W
w(0)
where Pe = ﬁkf is the usual Fermi momentum. |t is seen that there is a sub-

stantial difference between the two results,

L, Comparison with Experiment

Since the conduction electrons in sodium can be considered to
roughly approximate an electron gas it might be reasonable to assume that
experimental studies of sodium could be used to choose the 'best'' of the
theoretical curves shown in Figure 13 and thus give some insight into the
annihilation process, However, this is rather difficult to do because of
experimental uncertainties. For example, although the computations by Hatano
et al. appear to be in better agreement with Stewart's experimental results
for sodium than are those of Kahana or Daniel and Vosko, Stewart's results
(1961) are explained just as satisfactorily by the simple Sommerfeld model
(curve a, Figure 13), .On the other hand, recent work by Donaghy et al. (1965)
with sodium appears to give results that are in good accord with Kahana's
curve shown in Figure 13, It is important to note however, that the results
‘of Donaghy et al. involve a correction for core annihilation (to be dis-

- cussed below) which is rather difficult to estimate (Carbotte, 1966). Thus
on the basis of angular correlation work alone it is difficult at present to

make a definite choice between the various models.
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Figure 13: Momentum Distribution of Annihilation
Photons Emanating From an Interacting
Electron Gas (After Hatano-et al.,, 1965)
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G. Annihilation of Positrons in Real Metals

1. Introduction

A quantitative treatment of the effect of the crystal lattice upon
the angular correlation of annihilation radiation from metals is exceedingly
difficult (Wallace, 1960; Carbotte, 1966). One of the sources of difficulty
is the presence of higher momentum components in both the positron and elec-
tron wave functions due to the periodic potential of the crystal lattice.
Another complication arises from the annihilation of positrons with core
electrons, Both of these effects yield a contribution to the angular cor-
relation at values of & greater than those which would arise from annihila-

tion with free conduction electrons alone.

2, Effect of the Periodic Crystal Lattice Potential

An early attempt to consider the effect of the crystal lattice was
made by De Benedetti et al. (1950), They considered a simple model in which,
due to Coulomb repulsion, the positron wave function is excluded from a vol-
ume v (the "excluded volume') around the nucleus. Outside this excluded
volume the positron wave function is taken to be a constant and the electron
wave function is considered a simple plane wave. The restriction of the
positron to regions surrounding the "'excluded volume' regions thereby intro-
duces higher momentum components into the positron wave function as would be
expected, for example, from the Heiéenberg uncertainty principle. The rela-
tive intensity of these higher momentum components is related to the quantity
ve/v which is the ratio of the excluded volume to the voiume of a unit cell.
Typical values of ve/v range from 0.05 in beryllium to 0.29 in barium (Lang,

1956; Lang and De Benedetti, 1957). The results however generally disagree
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with experiment (Lang, 1956; Berko and Plaskett, 1958), the disagreement
probably being due to core annihilation and to contributions from the elec-

tron positron interaction (Wallace, 1960).

3. Effect of Core Annihilations

By use of uncorrelated one-particle electron wave functions Berko
and Plaskett (1958) have calculated the angular distribution of photons re-
sulting from the annihilation of positrons with core electrons. The calcu-
lations were done for copper and aluminum and are in fairly good agreement
“with experiment. However, the computed momentum distribution is quite sensi-
tive to the shape of the positron wave function so that it is difficult to
assess the validity of the method. Also, recent calculations by Carbotte
(1966) indicate that the electron~positron interaction may be of considerable
importance in core annihilation calculations, The Berko-Plaskett method has
been applied to other metals by Rockmore and Stewart (1965) and by Terrell

et al. (1965),

H, Lifetimes of Positrons in Metals

If typical values of the electron density of metals are substituted
into (3-1), lifetimes of the order of 169 sec are obtained. This is in dis-
agreement with the experimentally observed lifetimes of ~2 x 16‘0 sec. In
addition, the observed lifetimes are essentially independent of electron
density, (Wallace, 1960) whereas (3-1) predicts a direct dependence on the
electron density. Thus annihilation in metals cannot be regarded as free
‘annihifation in which the effects of the Coulomb forces can be neglected.

Neither can the lifetimes be interpreted in terms of positronium formation

since triplet positronium would have a long tifetime of about 167 sec which
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is not observed. On the other hand, rapid triplet to singlet conversion
would lead to a lifetime of ~5 x 16]0 sec, four times that of singlet posi-
tronium (Wallace, 1960). However, this is also considerably targer than the

observed lifetimes of ~ 2 x 16'0 sec,

The effects of electron-positron correlations on the annihilation
rate in metals have been investigated by Ferrell (1956), Kahana (1963),
Carbotte and Kahana (1965), and Kanazawa et al, (1965). These studies in-
dicate that the positron lifetime is very sensitive to correlation effects,
the annihilation rate being directly dependent on the probability that the
positron and electron are at the same place. The recent work of Kahana(1963),
which accurately takes into account the two-body correlations between the
positron and the annihilating electron, predicts positron lifetimes that are
in order of magnitude agreement with experiment (Figure 14). His work also
gives an angular correlation curve that is in rough agreement with the ex-
perimental wofk of Stewart (1961). Kanazawa et al. (1965) have calculated
the annihilation rate for electrons of zero momentum, their results being
shown in Figure 14, Inclusion of effects of the crystal lattice into life-
time calculations is also very difficult although preliminary work by Car-
botte (I966)Ihas already provided somé insight into the core annihilation

process.



CHAPTER 1V

EXPERITMENTAL ARRANGEMENT

The schematic diagram in Figure 15 shows the experimental arrange-
ment for the ''collinear point geometry' method used in the present work., In
order to be detected, photons from the positron-active single crystal of
copper had to pass through the 0.25 inch diameter aperture of the lead colli-
mators that were placed at a distance of about 12 feet from thé>copper crystal,
|f a gamma-ray pair was detected by the two counters within the coincidence
circuit resolving time of 10 nsec, a coincidence was recofded by the scaler.
In this way, within the resolution of the apparatus, only photon pairs of
zero transverse momentum were counted. For each oriéntation of the crystal
the time interval required for recording a predetermined number of counts
was measured. This made it possible to accurately correct for the decay of

the positron activity (T] = 12.9 hr) and thus obtain a measure of momentum

2 .
space anisotropy as discussed in Chapter III,

L
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A. Metal Crystal and Positron Source

The copper crystal used in this experiment was cylindrical, 3.56 mm
in diameter by 3.84 mm high, with [ll]] direction along its axis. Copper.

was chosen as the metal to be examined by this method for several reasons;

1. The topology of the Fermi surface of copper is well known
(Chapter 11) thus making it relatively easy to ascertain the
usefulness of the new positron annihilation technique used
in this experiment,

2, Copper is stable at ordinary temperatures and is readily
obtained in the form of very pure single crystals so that
sample environment or sample impdrities need not be considered.

3. The use of a conventional positron source was rendered
unnecessary since by thermal neutron irradiation the copper

crystal itself became an adequate positron source.

The present approach was advantageous since it provided a nearly
uniform distribution of positrons throughout the crystal whereas conventional
source geometries ''shine'' positrons on the sampbe surface (Berko and Plaskett,
1958). Also, in contrast to some positron sources, the gamma radiation ema-
nating from the crystal is nearly all annihilation radiation thus ensuring
noninterference from other radiations. Another important consideration is
that -of economy, A conventional long-lived source of comparable strength

would have been prohibitively expensive.

The main disadvantage of this type of positron source is the in-
convenience associated with the short half-l1ife. Due to the refatively low

coincidence counting rates resulting from use of ''point'' geometry it was

L9
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necessary to have a relatively high initial positron activity (~50 mC}).
Although the coincidence counting rate at the beginning of a run was adequate
( ~1 count per second) this rate falls with time, making it difficult to
establish many experimental points with good statistics. The use of a long-

lived source would have obviated this difficulty.

The size of the crystal was determined after consideration of
several conflicting requiremeﬁts. From the point of view of angular resolu-
tion, the ideal crystal should be vanishingly small. On the other hand, it
is necessary to have the cfystal larger than a certain minimum size in order
that it have sufficient positron activity upon irradiation with the thermal
neutron fluxes currently available. In addition, it was desirabie to choose
the crystal large enough so that few of the positrons produced in the crystal
escape. Taking these considerations into account, the sample was chosen to
be a cylinder with diameter roughly equal to height so that its extent, as
seen from the '"point' detectors, would be as small as possible. With the
dimensions given above it is easy to estimate, by use of results from Price
et al. (1957) and Evans (1955), that less than five percent of the positrons

will escape from the sampie.

B. Orientation of Crystal

The copper crystal used in the present work was a cylinder pos-
sessing a [lll] direction along its axis. By means of x-ray diffraction
(Laue back-reflection) the other {lll} directions of the crystal were de-
termined relative to a fiducial line on the crystal base, The crystal was
‘then placed in a ''"notch and pin'' arrangement (Figure 16) which, upon rotation,
brought successive {3]1} directions of the crystal into the direction de-

fined by the two ''point'' detectors. Thus, as can be seen from the discussion
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in Chapters Il and 111, the necks of the Fermi surface (which for copper occur

in the {]II} directions) can be examined by this arrangement.

C. Spatial Stability of Notch and Pin Assembly

In the design and construction of the notch and pin assembly con-
siderable care was taken to maximize the spatial stability of the arrange-
ment. Stability measurementé were made by varying the vernier dial setting
and carefully observing the crystal position. The measurements indicated
that motion of the centre of mass of the crystal from its mean position was
less than 0,10 inches along the direction (vertical) of the detectors and
less than 0.004 inches horizontally. This residual mechanical instability
causes an uncertainty of ~0.2 percent in the coincidence count-rate, As
will be seen from the results presented in Chapter V, this uncertainty is
small compared to the uncertainty eﬁgendered by counting statistics or elec-

tronic drift.

D. Crystal Holder

In the first run the copper crystal was attached by means of epoxy
adhesive to a small cylindrical holder made of high purity aluminum, High
.purity aluminum was used for the holder since aluminum has a small neutron
absorption cross section and in addition, the activity induced in irradiated
aluminum has a very short half-life (2.30 min.). The cylinder composed of
crystal and holder was designed to fit into a tube containing a notch which

engaged a small pin on the holder (Figure 16).

This method was used for the first experimental run, but contrary
to expectation (Livingstone, 1963) the epoxy suffered considerable radiation

damage so that upon arrival the crystal was found separated from the holder.
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This made it necessary to remount the copper crystal on a new cylinder by

use of fresh epoxy before a run could be made.

In the second run the crystal was force fitted (before irradiation)
into the end of a thin-walled aluminum holder as indicated in Figure 17.
This holder had about the same gross dimensions (4.72 mm diameter by 39.4 mm
long) as did the first except that -it had a hollow central region to further
reduce scattering of the annihilation radiation. With this arrangement
there is little attenuation of the gamma radiation by the thin covering

(0.033 inches) of aluminum,

E. Holder Support

A simplified schematic diagram of the holder support is shown in

Figure 16. The crystal holder fits into the supporting tube which contains

a notch that engages the pin on the crystal holder. This tube was attached
to a verﬁier dial (Armaco DV4) that was securely bolted to a heavy aluminum
plate. This heavy plate in turn wés bolted to an aluminum beam that was
cantilevered at its other end. The supporting tube was stabilized by means
of a system of discs and rods which, for clarity, have been omitted from the
figure. The use of these stabilizing elements made it possible to reduce the
residual mechanical instability of the crystal to the negligible amount men-

tioned in the stability discussion above.

To the end of the vernier shaft was attached a simple pulley wheel
which could accommodate a small diameter cord. By use of the cord and another
- pulley wheel attached to a long, supported rod it was possible to easily con-
trol the vernier dial setting from a distance of about ten feet from the

radioactive copper crystal. (Figure 18) The vernier dial was conveniently
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read from this distance by means of a telescope mounted on a tripod. With
this arrangement the radiation hazard to the operator was found to be small

(less than 5 mrem per 8 hours).

F. Gamma Counters

The "point' detectors consisted of two Harshaw NAI(T1) crystals
mounted on RCA 6342 photomultiplier tubes. These crystals were cylinders
one inch in diameter by two inches long. The 6342 photomultiplier tube was
chosen because it was economical and readily available. The 6342 also has
a small transit time spread ( ~L nse;), thus facilitéting the short co-
incidence resolution time. On the other hand, the detector crystals were
chosen as a compromise between economy and efficiency. For example, the
measured efficiency of the individual detéctors was about 0.45, to double
this would probably require a crystal at least four inches in diameter and

four inches in height,.

The detector assemblies were enclosed in light-tight cylindrical
aluminum housings, each photomultiplier tube being magnetically shielded by
means of a '"Co-netic Netic'" alloy shield. (manufactured by Perfection Mica
Co.) In addition each aluminum housing was wrapped with about 0.2 inches
of lead foil for radiation shielding purﬁoses. Each detector was rigidly
bolted to a large (6x6x3 in) lead block containing a cylindrical aperture
0.25vinches in.diameter and 3 inches long, The source to detector distance

"was twelve feet.

The choice of source to detector distance and collimator aperture
size was based on several considerations., These will how be briefly dis~

cussed.



The most important consideration was that of resolution. From
Table | it can be seen that the diameter of the Fermi surface ''necks' is
ar;%10-3 mc. Henée, in order to observe a reasonable coincidence counting
rate change (about half that expected for a point source‘and point detectors)
at crystal orientations associated with the necks, a resolution function
(Chapter V) with full width at half maximum of w]/£=4ro is required. This

choice of W]/Z will be further discussed below.

In the present work, a choice of D = 12 feet for the source to
detector distance was particularly convenient since this was the vertical
distance between successive floors of the tower which housed the experimental
arrangement., Since the condition 2D» c 7, where ¥ is the coincidence
circuit resolving time, is amply satisfied it is seen that the cosmic ray
contribution to the coincidence count rate should be negligible. Indeed,
an experimental check (Chapter V) showed that the total background co-
incidence rate (i.e. the rate with the radioactive copper crystal absent)
was also very small, For D = 12 feet a choice of d = 0.25 inches for
the collimator aperture diameter then gives (Chapter V) a resolution function

halfwidth of W, évhro as required,

/

The choice of w]/;;hro was a compromise between coincidence count
rate and sensitivity to the Fermi surface topology. For example, reduction
of the resolution function width from W, . Lr to W, ,.® 2r would reduce

1/2 o 1/2 o)
the coincidence count rate by a factor ~ 16 (from about 60 counts per minute
(maximum) to about 4 counts per minute (maximum).) Problems associated

with the specific activity of the source must also be taken into consideration.

These problems are further discussed in Chapter V,

56
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G. Electronics

The schematic diagram of Figure 15 indicates the electronics
used in the experiment. A photomultiplier current pulse arising_from a
gamma-ray impinging on one of the Nal(T1) crystals is amplified, discriminated,
and shaped, giving as output a positive pulse about 25 nsec wide. Such
pulses were fed into a coincidence unit with resolving time set at ~ 10 nsec.
The resulting coincidences were then recorded by a E 110A decade scaler.
The E 110A was manufactured by Oxford Engineering Corp. (this firm is no

longer in existence).

The circuit diagrams of the preamplifier and shaping circuit and
of the coincidence circuit are shown in Figures 19 and 20 respectively.
After differentiation and preaﬁplification, the negative current pulse from
the photoaultiplier collector was clipped by a shorted delay line, giving
a bipolar zero-crossing signal. This sfgnal, when of sufficient amplitude,
triggered a Schmitt-type, zero-crossover discriminator circuit. The output
from the discriminator was then shaped to give a 25 nsec output pulse which
went into the coincidence circuit shown in Figure 20, In this circuit adjust-
ment of the coincidence sensitivity control varies the input threshold level,
For the present work this control was adjusted to give a standiﬁg current
of about 1 ma thmough the tunnel diode., This current was small enough to
ensure that an output pulse (-~ 10 volts) occurred only when two 25 nsec
pulses from the pulse shapers arrived simultaneously (ie. within the re-

solving time of 10 nsec) at the coincidence circuit input.

H., Stability of Electronics

Since the count-rate variation expected from the present method is

fairly small (about six percent) it is important that drifts in the coincidence
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counting rate be minimized; Several precautions were taken to ensure that
large drifts in the coincidence count rate did not occur, One such pre-
caution involved minimizing.the fluctuations in the ambient temperature of
the tower which housed the apparatus. This was easily done by opening doors
in the experimental area so free circulation of air from the main building
to the tower was possible. The ambient temperature was monitored throughout
the course of the two experiments, the maximum fluctuations from the mean
ambient temperature being about % 0.8°C. During both runs, certain points
df the experimental curves (Chapter V) were repeated to ensure that large
drifts in the set-up did not occur. To within the statistical uncertainty,
the points were found to be reproducible. Tests with a Na22 source indicated
that the coincidence counting rate was stable to better than ¥ 0,6 percent

over a 24 hour period.



61

CHAPTER' V

RESULTS AND CONCLUSIONS

A, Introduction

The experimental arrangement is as shown in Figure 15 of Chapter
IV, The crystal support was inclined at an angle,'as shown, so that the
DII] axis was the axis of rotation and so that upon rotation, {lll} direc-
tions would successively point in the direction of the detectors. These
'{l]l} directions of the copper crystal had previously been determined by

standard x-ray techniques at the Department of Metallurgy x-ray facilities.

As pointed out in Chapter IIl, one would expect the coincidence
count rate to rise at crystal orientations corresponding to the ''necks' of
the Fermi surface, which for copper occur in the {lll} directions., Also,
as a consequence of the three-fold symmetry about a {lll} axis one would
expect peaks in the coincidence count rate at intervals of 120°.  From the

available experimental data on the Fermi surface of copper (Table 1) one
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would expect for a point crystal and point detectors an effect of about
13 percent on the basis of the assumptions of Chapter 1V, This estimate

does not include higher momentum effects such as core annihilation.

B. Experiment

For the two runs described below, the discriminator threshold
settings of the pulse shapers were about 0,6 volts. This voltage corresponds
to a gamma-ray energy of about 0,3 Mev so that each gamma-ray expending more
than 0,3 Mev of energy in one of the Nal(T1) crystals gave rise to a 25

nsec output pulse from the associated shaping circuit,

The source strength at the beginning of each run was about 50 mCi
of positron activity, the duration of each run being abopt four half-lives
or about 50 hours. For 50 mCi of positron activity the random coincidence
rate will be negligible (~0.1 percent of the true coincidence rate), No
attempt was made to measure this rate since the half-life of the source was
so short (12.9 hours). The background coincidence rate (i.e., the rate Qith
the radioactive copper crystal absent) was measured and found to be about
two counts per hour. This rate is negligible compared to the true coinci-
dence rate, except near the end of the runs where it contributed about 0.4

percent to the true coincidence rate.

The axis defined by the center of mass of the copper crystal and
the centers of the '"point'! detector faces was vertical so that alignment of
the crystal and detectors could be achieved by means of a simple plumb bob
arrangement, THe error in this alignment was estimated to be less than 1 mm,
-This residual misalignment affects the coincidence count rate by less than

0.1 percent,
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The high purity copper single crystal used in the present work was
obtained from Metals Research Ltd. of Cambridge, England and was thermal
neutron irradiated at the Chalk River facilities of Atomic Energy of Canada
Ltd. The {lll} directions of the érystal were determined by standard
x-ray techniques at the Department of Metallurgy x-ray facilities before the

neutron irradiations were performed.
C. Results

To test the co]lfnear.point geometry method two runs were made.
The results are shown in Figure 21, In the first run, an exploratory one,
most points were taken with only 2.5 percent statistics, making it necessary
to‘pair points in order to reduce the error (by~1/ yZ ). However, in the
second run a smaller angular range was covered, making possible better
statistics. The results of the second run are also shown in Figure 21, In
the results for the second run most points represent about 6400 counts thus
giving 1.25 percent statistics, an improvement by a factor of two over the
first run, In this second run the relative orientation of crystal and holder
differed from that of the first run by about 60°. The peak in the counting
rate curve was also shifted by about 600, as expected., It is seen that the
results presented are consistent with an effect of about six percent, At
the left hand side of the curve for the first run can be seen some evidence
of the expected 120° periodicity, The curves shown in Figure 21 have been
corrected for decay of the source (T]/2 = 12,9 hours) and for background

coincidences. All readings were taken at room temperature,

If one assumes a uniformly dense Fermi volume and assumes that
higher momentum effects can be neglected, then the peaks in the curves

shown above should be a measure of the diameter of the Fermi volume in the
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{lll} directions., The width of these peaks should be a measure of the
diameter of the ‘''necks' that occur in the {lll} directions. The dis-
cussion below indicates that this simple interpretation of the results is

consistent with the known dimensions of the copper Fermi surface.

D. Interpretation of the Results

1., Effects of Finite Source and Detector Size

With the present experimental configuration the change in coinci-
dence counting rate due to the presence of the ''necks' of the Fermi surface
.wi]l be substantially reduced from the expected 13 percent because of the
finite crystal and detector size, In order to estimate the expected size of
this effect, the experimental Fermi surface as given in Table | can be roughly
approximated by a sphere (''the belly') of radius P, upon which are mounted
eight ''mecks' which are truncated cones. The relevant dimensions of such a
cone are indicated in Figure 22, The finite detector and crystal size can

be approximately accounted for by use of a resolution or ''density'' function,

R

Figure 22: Fermi Surface Neck Details
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By the use of this density function the ''Mass'' or effective volume of
appropriate regions of momentum space can be found and an estimate made of

the expected coincidence counting rate change.

This is done by performing an elementary volume integration over
a cylinder containing a neck at each end and then comparing the result with
that obtained from a similar integration perfofmed in a direction in which
there are no necks.' Letting the effective volume of ‘@ cylinder in a direction
ih which there are no necks be Zm] and that of a pair of necks be 2m2, it is

seen that a measure of the relative count rate variation is given by the

ratio m where

2
-n;] an b e
mo= r f(r) d¥ dz de and
by o o T° b+ eofe (5-1)
m, iJj{FT f(r) dz dr da + éﬁ ry(ﬁ[h+“~9+¢nd] dr
99 ° b

and f(r) is the resolution function,

2. Resolution Function for Finite Detectors and Point Crystal

For the case of circular detectors of diameter d and a '"'point"

crystal source the resolution function is

p(r) = 1 - Dr r < d
d D
(5-2)
4
= r > £
f(r) 0 5
where D is the source to detector distance, This expressfon for J°(r)

was obtained as a generalization of a numerical example; an analytic deriva=-

tion appears to be quite difficult, For the present experimental arrangement
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one has d = 1.70 x 10'3. If one now chooses (Chapter 1)
D ' -
b= 5.00mc x 107
O L ]
b = 1.00 mc x 1073 |
‘ _3 (5"3)

h = P Po = 0.70 x 10 “mc
% = T

L

equations (5-1) and (5-2) yield m, = 0,12, Here pé is taken to be the

m

average belly radius (Chapter I). It is interesting to note that if the
necks are taken to be cylinders of radius b instead of truncated cones, the

effect drops tom

m

, = 0.087, a substantial change.

1

3. Resolution Function for Finite Detectors and Finite Crystal

Since the copper crystaT used in the present work was a cylinder
whose axis was inclined at aﬁ angle of 70.50 with the line defined by the
detectors, it is difficult to give a simple analytic expression for the
resolufion or density function. A reasonable first choice of resolution

function would appear to be the following;

- 57§L1é.”

Lo e 7EP (5-4)
where § is an effective source dimension (as "seen' by a detector)., This
function is similar to the resolution function used by Lang (1956) for cor-
re;tion of angular correlation results (wjde slit geometry) in which the
ratio of source width to detector slit width was 0.5. |If, for the present
arrangement one assumes an effective source size of § = L mm one finds

-

f(r)c(e 2
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Using this resolution function and the parameters (5-3) one

5 = 0.082 which is somewhat smaller than the previous value 0,12

1
obtained assuming negligible source size, Including, now, for variations in

obtains m

m

b permitted by the present low~temperature data (Table 1), the resultant

uncertainty in m is 0,004, The dependence of the calculated values of

m
™

TZ on other parameters such as the value chosen for « is illustrated by
" :
1

repeating the calculation for & = 7. The calculation yields m, = 0,072
3 .

1
+ 0,004, Thus the present method should be quite sensitive to the detailed

m

shape of the Fermi surface,

It should be noted that the experimental results are consistent

with a considerable number of resolution functions. For example the reso=-

2 2
-r

-l il
lution functions . f(r) X e 2 and r(r) g el give values of m, of 0,082

™

and 0,050 respectively.both of which are consistent with the results shown

in Figure 21, The full width at half maximum of the corresponding angular
correlation curves is 32° and 45° respectively (Appendix B) however; so that
the second resolution function may give a better fit to the data shown in
Figure 21, Despite this difficulty, it is seen that the experimental results
are consistent with a model of the Fermi surface in which ''necks' occur in

-

the {lll} directions, subtending an angle of A 5'20O at K = 0 (see
Table ). This angle is defined by the (circular) region of contact of the
Fermi surface with the Brillouin zone boundary; ) = 2 taﬁ?]gf) where.kr
is the neck radius at the zone boundary and Ko is the dit:;nce of this

zone boundary from R = o.

. Thus, taking into consideration the uncertainties in the available
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Fermi surface dimensions (Table |} and in the resolution function one is led
to expect an effect of about five to eight percent in the present work if

the Fermf volume is assumed to be uniformly dense and if higher momentum
effects can be neglected. Although this is consistent with the results shown
in Figure 21, it is evident that a more accurate knowledge of the resolution
function is essential if the method is to beiﬁuantitative value, It is
believed that a more convenient choice of crystal orientation should permit

a good estimate of the resolution function, thus obviating this source of

difficulty.

E. Interpretation of the Results

The above interpretation of the results neglected complications
due to higher momentum effects and ion core annihilation contributions.
However, the higher momentum components associated with the contact of the
Fermi surface with a hexagonal zone face will not cause difficulty since the
affected momentum states will usually be merely translated by a reciprocal
lattice vector that lies essentially along the axis of the sampling cylinder,
For other directions normal to a zone boundary, a similar consideration applies,
However, if the cylinder axis is not approximately perpendicular to a zone
face small losses in the counting rate will occur, Since in copper the non-
hexagonal zone faces are relatively distant from the center of the zone, it
appears reasonable to assume that this contribution will be fairly small and

will probably be masked by the much larger core annihilation contribution.

By use of the results on core annihilation given by Berko and
Plaskett (1958) an estimate of the core annihilation contribution can be made.
This estimate is made by approximating the core annihilation angular corre-

lation curve by a parabola and considering this parabola to correspond to a
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Fermi surface with Po = 18 mc x 10-3. By properly weighing the con=-
tribution of the ''ion core Fermi sphere' with that of the (concentric) Fermi
sphere associated with the conduction electrons, it can be roughtly estimated
(Appendix C) that core annihilation should lower the expected effect of 8.2
percent to about 6 percent, This is not inconsistent with the present
results. A more detailed calculation does not appear to be justified by the
statistics or réso]ution of the present work. In addition, recent calcula-
tions by Carbotte (1966) indicate that core annihilation calculations may be

considerably more difficult than earlier believed,

F. Accuracy Attainable with the Method

It is perhaps of interest to consider the ultimate accuracy
attainable with the present method, in order that it may be compared with the
other methods used for Fermi surface determination. Various aspects of this

topic are discussed below.

1. Resolution and Counting Rate

An important limiting factor in the present method is the low

counting rate. In order to improve the resolution by a factor of two (i.e,

to reduce the half-width of the resolution function by a factor of two) it

is necessary to reduce the detector solid angle by a factor of four. This
reduction in detector solid angle reduces the coincidence counting rate by

a factor ~16, This estimate is for a "point' crystal. For a finite crystal
the decrease would be even more severe. Thus, in order to improve the reso-
lution by a factor of two, with the rest of the experimental arrangement un-
changed, the source strength used in the present work would need to be in=-

creased from ~ 50 mCi to about a Curie. Problems associated with the handling

of such sources would become much more severe than those encountered so far,
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However, a more important limitation arises from considerations of specific
activity; With presently available thermal neutron fluxes at AECL, Chalk
River, it would be difficult to obtain a positron activity of much more than

a Curie in the present crystal.

Other possible improvements involve an increased detection ef-

ficiency. This could be accomplished by lowering the discrimination levels
of the pulse shapers and by using larger Nal(T1) crystals. 1t may then be
possible to improve the individual detector efficiency of 0.45 by a factor

~2 so that the coincidence count rate could be improved by a factor L,

It is thus evident from this discussion that the resolution (using the present
crystal as a source) cannot be improved by more than a factor ~3 if reasonable
(1ess than 40 feet) source to detector distances are to be used. An appro-
priate long-lived source, of course, would be prohibitively expensive, at

present,

2, Stability

Another important limiting factor is the mechanical and electrical
stability of the arrangement. The system could be made sufficiently stable
mechanically so that the uncertainty in the coincidence counting rate could
be reduced to less than 0,1 percent, However, the uncertainty in the co~
incidence counting rate due to the instability of the electroncis cannot be
reduced below ~ 0,1 percent without éreat]y increased complexity of instru-
mentation. Thus, for coincidence count rates in the 1 to 10 sec-] range,
counting statistics would appear to set the practical limit on the precision
attainable. Allowing, at most, a few hours per point, total counts of no
more than a few tens of thousands could be obtained leading to statistical

uncertainties ~ 1 percent per point,
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G, Discussion

By decreasing the solid angle associated with a detector by a
factor of four and increasing the detector efficiency by a factor ~2 and
using the maximum available thermal neutron fluxes it should be possible to
improve the resolution of the present arrangement by a factor of two while
maintaining statistics of ~1 percent, The electronic drift could be re~
duced to ~ 0,1 percent by use of recycling procedures. In addition, a more
convenient choice of crystal orientation should permit a good estimate of
the resolution function., Thus, in the absence of core annihilation effects
and other higher momentum effects, the present technique would be competitive
with the other methods (Table 1) except perhaps for the de Haas van Alphen
effect with which, for example, the Fermi surface of potassium was found to

be spherical to ~ 0.1 percent (Shoenberg, 1965),

If careful measurements, for various crystal orientations, are
made with such improved resolution it may be possible to separate the co-
incidence counting rate contribution due to annihilation of positrons with
electrons of the ion cores from the coincidence counting rate due to an-
nihilation of positrons with valence electrons, |If such a separation proves
possible, it may permit measurements of Fermi surface diameters to an accuracy
of ~ 1 percent in certain alloys composed of such tractable metals if certain
assumptions can be made about the éffect of alloying on core annihilation of
the constituent metals, |t might also be possible to investigate higher
momentum effects associated with the lécalization of the positron in the
periodic crystal potential or it may be possible to examine higher momentum

effects associated with proximity of the Brillouin zone boundaries,
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H. Conclusions

By use of a new positron annihilation technique employing
"collinear point geometry'' the Fermi surface of copper was found to be
anisotropic at room temperature, The results of the present work are con-
sistent with the picture of the Fermi surface having '‘necks'' whose contact
with the hexagonal faces of the first Brillouin zone subtends an angle of
about 20° at the origin of K-space as indicated by the more accurate work

done by other workers near absolute zero.

The results obtained in this work are not of suffiéient precision
to indicate the extent of the contribution from core annihilations., However,
with better statistics and resolution, a more detailed treatment of the con-
“tribution of core annihilations will be required before further details of

the Fermi surface topology can be ascertained,

Since the statistics and resolution can be improved substantially
over those employed in the present work it should be possible to study, in
detail, over a much larger temperature range than is the case for other
methods, the Fermi surface of various metals, In addition it should be
possible to apply the method to a systematic study of alloys. This is of
considerable interest since little work has been done on the Fermi surface

of a]loysQ.

In addition to its promise as a tool for the investigation of
Fermi surfaces, the method of collinear point geometry may prove to be of
some value in the study of core electron annihilation., With improved reso-
lution and statistics it may be possible to separate the contfibution to the

coincidence counting rate due to core electrons from the contribution arising



from the conduction electrons. This would make possible an experimental

test of core annihilation calcuiations.

In closing it should perhaps be noted that very littlie work on
Fermi surfaces has been done by means of point geometry., In view of the
fact that the preliminary results of Fujiwara (1965) obtained by use of non-
collinear point geometry show much more structure than do those obtained by
Berko and Plaskett (1958) using the wide slit method, the noncollinear point
geometry method may prove to.be a useful_comp]ement to the collinear point

geometry method,

Finally, it can be noted that the advent of lithium drifted
germanium detectors (Dearnaley and Northrop, 1966) possessing excellent
energy resolution: may make possible further improvements in the point
geometry method, For example, by combining some Doppler shift discrimination
together with the usual angular selection, one.could achieve a system with
very much more sensitivity to the Fermi surface topology since the region of
momentum space sampied by the proposed method could be made very small,

Thus, for the collinear case, one could sample a cylinder in momentum space
extending from Py = &P, to P, =Fpo instead of from P, = = P, to
p, = + Pye Here o and / are positive constants and P is the Fermi momentum,

It is seen that the method holds promise for the study of higher momentum

components ( p> po) since o andf could be chosen to be greater than unity.
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APPENDIX A

SOLUTION OF ABEL'S INTEGRAL EQUATION

The solution of Abel's integral equation

X
S (x) =luly)d oKa< 1, f(a) = 0
(x = y)¥
A a
is given (Bocher, 1929) by
*x
u(x) = sinT« d S(t)dt :
L} dx f (x.- t)'"™¥ (A=1)
a

It is desired to find the solution of the related integral equation

f(x) = { t)dt

Let W = = x , V = and dv. = =2tdt and consider

r( _-xz) = r (w) = -f(x) jigﬁ;lg;_ vf:ixlgl__ where
(t* = X )L (w = v)X
Gv) = qft) SL__l_ 3
- 2t (A=2)
Application of (A-~1) gives
w | g
G(w) =-1_d r(v)dy = - 1 d r{v)dv since
T dw a_:_(w - V) 2rx dx (w - V)4
p I

dy = dy dx = -1 dy
dw dx dw 2x  dx



Substitution for v and w yields

Gw) = - _1 d fc—f(t) J0 -2t dt]
a

27wx  dx (t* = xM)% (A=3)

From (A-2) one has G(w) = g y=w = g(x)
=2 V% -2x

Combining this last equation with (A-3) then gives the desired result

2
g(x) =& =2 d t £(t) dt |
T dx (™ - x*)*
X
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APPENDIX B
EXPECTED ANGULAR CORRELATION CURVE WIDTH

Certain geometric relations needed for the calculation will be
first outlined. Consider the rotation, through an angle % , of a vector B

about the p  axis., For the two positions (1 and 2) one'has from the adjacent

figure that
3] = (pb Sin\y H 0 ’ pO COSY/) ( B-])
%
. . . L
B, = (po siny cos¢ P, siny 5|n¢ s P, cosy )

The perpendicular distance from point B] to the line defined by

BZ can be obtained after determination of the constant« in the equation

- P -2 —
(«f, - 7)) 7, =0 (B~2)
Solving for the perpendicular distance ql = kxﬁz - B]l one finds
d, = sin Jl + c:os2 - cos¢ ( cos sinzf + 2 cody)
L = P sinp Y $ y

In order to calculate the shape (hence the halfwidth of the

angular correlation curve several approximations are made;

1. The Fermi surface ''necks'' are assumed to be approximated by

cylinders of height h and diameter-§7¥= b + Here b and

_}:!'

2
h have the same meaning as in Chapter V,

2; An effective distance (in momentum space) d s used, This

distance is the distance between the tips of the vectors'Bl



and Py- The quantity Po is assumed to be given by Pg = P

+ h where Pe is the magnitude of the Fermi momentum,
2
3. Core annihilation and other higher momentum effects are

neglected,
With the above simplifications, the probiem reduces to the cal-
culation of the ''mass' or effective colume of a cylinder of base a7¥ ~and

2

height h if its density varies as <f(F) « e”9 This density is assumed

to be independent of h., The (circular) base of the cylinder rests on the
P - py plane, its center lying on the P, axis a distance ql, from the

origin. The equation of the circle is

_ A . o
r = rn = d; cose +Ja§% - df sin% 8>®= sin (_@_% )
2 y 7 . A
r = g = d cose +Ja% - d sing Q= sin (g% )
d
Herej dl7a%

The effective volume of the cylinder (i.e. a '"‘neck') is

@ r
m(+) = Zh'fff(r) r dr da
o “h

and the angular correlation curve is given by

£(4) - o) R

m (o)
where R = m, is the coincidence count rate anisotropy expected at f = (
1.
(  equation (5-1) ).
A choice of ¢ = 1 gives a curve with height mz = 0,082 and a
El
full width at half maximum of about 32°, For g = 1 one obtains 0.050 and

450 respectively. It would thus appear that better agreement with the ex~
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perimental curves is obtained if one chooses the resolution function
>
-r

f(r) = e 3 (see also Chapter V) since one then obtains‘m2 =

m

and W, = 400, in fair accord with the experimental curves.

0.062
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APPENDIX C

EFFECT OF CORE ANNIHILATION

If it is assumed that the core electrons can be roughly described
by a sort of '"ion core Fermi sphere'' with radius Pe and the conduction
[4
electrons by a (concentric) Fermi sphere of radius;* one has, for wide slit

geometry, for the ratio of the coincidence counting rate contributions at

z = 0
' 2
N cond = h] = .IE;I rodr = F
— _ ST
N core h2 fZ N{r dr

80

h
were $ is the momentum space density (assumed constant) for the core electrons,

be the belly'mass” contribution, m, the neck mass contribution

Letting m 2

1

(Chapter V), and m, the contribution of the ion core electrons, it is seen

3

that for point geometry the coincidence counting rate anisotropy is reduced

from TZ to TZ [___ ] ;] = TZ [ 1 ‘1
moo o mLlhov o " P bt

m
™ hy P
From Berko and Plaskett's paper one can estimate h2 = 1,15 and
hl
p_ ~ 18 x 1073 mc so that 1 = 0.75
k 1 + m
_3
m

Thus core annihilation would be expected to affect the coincidence count rate

anisotropy by about 25 percent,
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