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Abstract i

Abstract

‘Conditional Moment Closure for Methane Oxidation Using Two Conditional

Variables and Stochastic Processes’

by Jorge R. Lozada-Ramirez

The conditional moment closure method using two conditioning scalar variables is applied
to derive the transport equation of species mass fraction, temperature, and scalar dissipa-
tion in a decaying, isotropic, homogeneous turbulent methane-air flow. The strain tensor in
the transport equation of scalar dissipation of the conditioning variables is simulated using

stochastic processes. The results of this model are then compared to DNS and conditional

moment closure with one variable for the same test case.
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Chapter 1

Introduction

The complexity of the transport equations that describe turbulent combustion makes necessary
the use of averaging procedures so that practical problems can be analyzed numerically in an
efficient, timely fashion. This averaging process creates a closure problem by generating
terms which are not explicit functions of the averaged variables [2]. Generally speaking,
closure problems are solved by modelling the unclosed terms through the use of theoretical
or empirical hypotheses or experimental results. In the following chapters of this thesis, a
closure method for the tfansport equations of turbulent combustion will be formulated. The
results obtained from the computational implementation of the resulting model on a deca.ying,
isotropic, homegeneous, non-premixed turbulent flow of methane and air will be shown and

compared to a reference DNS database of a similar flow.

1.1 Objective

The main objective of this research project is to explore the application of stochastic processes
to the modelling of the strain tensor in the scalar dissipation transport equation that is de-
rived using the Doubly Conditional Moment Closure (DCMC) method. The resulting system
of equations is used to simulate the oxidation of methane by air in decaying, homogeneous,
isotropic turbulence. It is expected that the predictions of species mass fractions and tem-
perature will compare well with those obtained from a direct numerical simulation database
and show an improvement over the resulfs provided by é. singly conditional moment closure

simulation of the same test case.

1.2 Doubly Conditional Moment Closure (DCMC)

The Conditional Moment Closure (CMC) of Klimenko [3] and Bilger [4] was developed with the

purpose of finding closure for the chemical source term of the species mass fraction transport
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equation. This method is based on the assumption that the fluctuations of scalars, such as
the chemical species mass fraction and temperature, are related to variations of other scalars.
In this thesis, the CMC method has been expanded by using two different conditioning scalar
variables. One of those variables, mixture fraction, is used to express the degree of mixedness
of two or more elements in a non-premixed, reacting flow. A second non-reactive scalar
variable named a has been defined to capture the effects of fluctuations due to strain along
isosurfaces of mixture fraction. Through the use of the doubly conditional moment closure
(DCMC) methodology, macro-mixing phenomena can be decoupled from the chemistry, while

conserving the effects of micro-mixing via the scalar dissipation term.

1.3 Stochastic Processes

The strong coupling between fluid dynamics and chemistry in turbulent reacting flows is
frequently modelled using the scalar dissipation term for which a number of different models
have been proposed in the past. In this thesis, a transport equation is used to calculate scalar
dissipation. This transport equation includes the strain tensor which is often modelled in
turbulence research. Recognizing the chaotic behaviour of turbulence, the use of two stochastic
processes to model the strain tensor in the transport equation of scalar dissipation term is
proposed and analyzed. Stochastic processes are events that depend on stochastic variables
that exhibit an unpredictable behaviour. In the first model, a periodic force with random
phase shift (PF) is used to emulate the chaotic behaviour of the strain tensor. The second
model uses the Coupled Map Lattice (CML) of Beck [5] and Hilgers and Beck [6], [7] that
generates realisations of the fluctuating velocity increments as a function of time for a fully-
developed turbulent flow. The strain tensor is then calculated using those velocity increments.
The results from both codes are then compared to the Direct Numerical Simulation database

of Bushe et al [8] and the CMC results of Bushe and Bilger [9].

1.4 Thesis Outline

In this chapter, the fundamental grounds and motivation for this research project have been

discussed.

In Chapter 2, the fundamentals of combustion and turbulence, as well as turbulent com-
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bustion, are addressed. The transport equations that describe turbulent combustion, as well

as current turbulent combustion models, are also described.

In Chapter 3, the DCMC equations are derived. The closure assumptions and modelling

of the strain tensor and of scalar dissipation are also discussed in this chapter.

Chapter 4 pertains to the implementation of the equations and models discussed in Chap-
ter 3 to a decaying, homogeneous, isotropic turbulent reacting flow. The turbulence model and
chemical kinetic mechanism used for this project are addressed and compared with a direct

numerical simulation.

Finally, in Chapter 5, the conclusions about the research are articulated and recommen-

dations made for future research.




Chapter 2

Combustion, Turbulence, and

Stochastic Processes

Combustion can be defined as the self-sustaining process through which two or more com-
pounds, fuels and oxidizer, are modified through a chemical reaction with an associated release
of energy. The study of combustion phenomena implies a combination of thermodynamics,
fluid mechanics/dynamics, chemical kinetics, and transport phenomena. Combustion pro-
cesses can be classified according to the mixing behavior and the flow velocity regime of the
system. Premixed systems and non-premixed systems can exist in both the laminar and tur-
bulent regimes of fluid flow. This research utilizes mathematical modelling and computer
simulation of combustion in a deacying, isotropic, homogeneous, non-premixed turbulent low
of air and methane. The Doubly Conditional Moment Closure (DCMC) method has been used
to solve the transport equations of mass fraction of species. It is proposed to use a stochastic
process to model the strain tensor in the transport equation of scalar dissipation responsible

for the micro-mixing of species. Different options for the stochastic process are discussed.

2.1 Premixed Combustion

Premixed combustion occurs if the fuel and oxidizer are completely mixed before the chemical
reaction takes place. Examples of premixed combustion are Bunsen burners and spark-ignition

engines. Premixed combustion is often characterized by the burning velocity, which is a

function of the chemical composition, initial temperature, and pressure of the premixed flow.
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2.2 Non-premixed Combustion

In non-premixed combustion, the fuel and oxidizer are fed into a combustion chamber or
reactor from different sources. Practical examples of non-premixed combustion include diesel
engines, gas turbines and gas stoves. Unlike premixed combustion, where mixing has already
taken place before the chemical reaction occurs, and the fuel/air ratio is homogeneous in the
domain, in non-premixed combustion fuel and oxidizer have to mix in order for the reaction to
proceed. The state of mixedness of the reactants is characterized by mixture fraction, which

is defined as:

Z(.’Bi, t) YF — YO

Here, Yr and Yp are defined as the mass fractions of the fuel and oxidizer, respectively.

Mixture fraction for the fuel stream is, Z(z;,t) = 1, and Z(x;,t) = 0 for the oxidizer stream.

2.3 Transport Equations

In general, the transport equations used in combustion express the coupling between the fiuid
mechanical and chemical reaction phenomena taking place in the combustion event. When
dealing with reactive mixtures of gases, for example, the transport equations are usually
derived making use of the kinetic theory of gases in order to capture the specific behavior of
the system under study. Unless noted otherwise, the following equations a.re_dérived for their

application to problems involving ideal gases.

2.3.1 Transport of Mass, Momentum, and Energy

The transport of mass balances the amount of mass entering and leaving any given control

volume.

Op  Opu;
E + (9:1:,'

The equation of transport of momentum indicates the change in momentum caused by the

=0.

external forces (e.g. inertial, pressure, viscous, and body forces) acting on the fluid as,

Opu; 6pu,-uj _ _@ 6r,~,- .
ot + oz; T Oz + Ox; + Pgis
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where the viscous tensor for a Newtonian fluid, using the molecular viscosity, y;, and the

Kronecker delta d;5, is described by:

— aui_*.auj _2 Ois %
W= A az]-. 6x,~ 3’“ 4 6.’13]; ’

The equation of transport of energy balances the thermal, chemical, and kinetic energy of

the system. Following Veynante and Vervisch [10], the transport equation of energy can be

2
expressed in terms of the total specific enthalpy, hy = h + %i, of the system as follows:

Opht - Opu;hy O 0
ope P TP —(J,-"+ujrgj)+uipgi

ot oz; © Ot oz;

where the diffusion of energy, in this case of specific enthé.lpy, is described by the Fourier Law,

N
o | Oh Pr_ )oYt
Jz B Pr [6z,~+z(5c1 l)hkazi ’

as:

k=1
Here:

1. The Prandtl number, Pr = ’%’2, is the non-dimensional group that measures the ratio
of transport of momentum due to diffusion to the temperature. C; is the specific heat

at constant pressure and ) is the thermal conductivity.

2. Scr, the Schmidt number of the I*® species, is defined as FScI = ;%‘7, where Dj is-the

diffusivity of the I*? species relative to a major or reference species.

3. Y; is defined as the mass fraction of the I™* species, as L.

2.3.2 Transpdrt of Mixture Fraction

Mixture fraction is a conserved scalar. It is only used to keep track of the mixing process as

it evolves in time and in space.

%z 2% _ 9 (,p,92) _
5 + u; 71 B2, (pDZ 6:1,',) =0. (2.1)

2.3.3 Transport of Species Mass Fraction

The transport equation of the mass fractions for I = 1...N chemical species consists of accu-

mulation, advection, diffusion, and production terms:

Y) dpY, I
LA 2, (22)

ot T % og, dz;
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Using Fick’s Law of diffusion [2], the molecular diffusion of species is defined as:

oYr

P, (2.3)

J,,I = —pD]

2.4 Chemical Kinetics and Reaction Mechanisms

The chemical source term, wy, in Eq. (2.2) describes the net rate of production of species due

to chemical reactions. The chemical source term for M reactions is defined as [11],

M N X o\ YK
o1 =iy i) W T (7)™ (2.4
K=1 J=1

where Wy is defined as the molecular mass of the I*? species. u}’ 5 and u}" x are the stoichio-

metric coefficients in the K** chemical reaction,

N N
! 1"
E AIVI,K = E AIVI,K’
I=1 I=1

with A; being the chemical symbol of the I'" species in the chemical reaction. k is the

Arrhenius type constant of the form,

E
= BT® —
k = BT%ezp ( R°T) . (2.5)

Here, BxT®K corresponds to the frequency factor for the K reaction step, ax is used to
define the temperature dependence of the frequency factor for the K** reaction, while Ex
represents the activation energy required by the K reaction to proceed, and R° being the

universal gas constant. Finally, the mole fraction of the I** species X is defined as,

Y1 /Wi

1= =V o (2.6)
il (Yi/ W)
with the ideal-gas law,
pV =mR°T, (2.7)
and,
N .
m=p)_ (Yi/Wi). (2:8)
I=1
Substituting Eq. (2.8) into Eq. (2.7) leads to,
N
pV = RTp>  (Y1/Wp). (2.9)

I=1
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Using Egs. (2.5), (2.6), and (2.9), Eq. (2.4) can now be written as

ZM Bx \ vy (pYs\ "2
. " / [o 2
wr = WI P (VI,K - UI,K) BKT K exp (—R°T> lell (‘—VII—J) . (2.10)

The most basic analyses of combustion often rely on the assumption that the chemical
reactions occur at faster rates than those associated to the transport phenomena occurring
in the flow. This assumption is often referred to as ‘fast chemistry’ and usually denotes
equilibrium states for chemical systems. By invoking fast chemistry, systems can be analyzed
by using the basic laws of thermodynamics, which greatly simplifies the problem in hand.
However, some chemical reactions occur at rates similar to those of transport processes; most
transient phenomena like ignition, extinction, and re-ignition cannot be predicted with the
use of fast chemistry. Kinetic mechanisms express the rates at which species are created or

consumed during a chemical reaction. For a system of reactions r = 1...R and species s = 1...5,

s 'S
Z v A, oy Z v A,
s=1 s=1

where k, is the reaction rate coefficient, Eq. (2.5) and the stoichiometric coefficients of reac-
tants, V7(-:), and products Vg’). The rate of formation for the I*" species as a function of the

concentration of S species, cg, as given by Warnatz [2]:

(.;JIr = (a_CL) = kr (V(p) — I/(T)) ﬁcuga)'
’ ot chem,r m " s=1 g

Reaction rates are strongly non-linear functions of temperature via the reaction rate coefficient

k. Pressure is also known to affect the reaction rates by modifying the concentration of species.

Complex reaction mechanisms, e.g. for the oxidation of methane, can consist of many
different global reactions. Researchers have proposed methods to reduce the number of re-
actions to include only those that are deemed most relevant for the study of the phenomena
of interest. Most reduction processes are based on assumptions of partial equilibrium and
quasi-steady state, which implies that reduced mechanisms are applicable only under certain
limiting conditions. Peters [12], identified the reduction in computation time for the numeri-
cal simulation of combustion events, as well as the applicability of asymptotic methods to the

analysis of flame structures as the two most important applications of reduced kinetic mech-

anisms. As an example, Bilger et al [13] proposed a method to derive a four-step mechanism
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for a methane-air flame which is in good agreement with the more complex mechanisms from
which it originated for a limited class of combustion problems. The reduced chemical kinetic

mechanism used in this research project is described in Chapter 4.

2.5 Scales of Turbulence and Kolmogorov Scales

Turbulent flows can be found in different scales of magnitude ranging from large scales such
as those found iﬁ oceans or atmospherically relevant scales, to the very small scales such as
those studied in combustion. Turbulence is a high-energy phenomenon. This kinetic energy
is later dissipated, mainly through viscosity. The effects of molecular viscosity, however, are
relevant only at very small scales. This implies that, in order for the energy to be dissipated
at those scales, this energy must be transferred from the largest scales down to the smaller
scales. The vortices, also known as eddies, present in a turbulent flow vary in scale and they
can be correlated to the development of velocity gradients. It has been found that the largest
vortices are responsible for most of the transport of momentum. However, viscosity acting at
molecular scales is responsible for the dissipation of energy through a conversion of kinetic
energy into heat at the small scales of motion [14]. Since chemical reactions typically take

place at this same molecular level, it is important to consider these small turbulence scales.

The K41 theory, proposed by Kolmogorov [15], states that, at the smallest scales of turbu-
lence, the fluid motion is self-similar and isotropic, giving origin to the concept of universality
of turbulence at such small scales. Following Kolmogorov, the use of the kinematic viscosity of
the fluid, v, and the energy dissipation rate normalised per unit mass, ¢, permits the definition

of the following microscales, also known as the Kolmogorov scales.

e Characteristic length microscale,

e Characteristic time microscale,

e Characteristic velocity microscale,
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At these microscales, the resulting local Kolmogorov Reynolds number is equal to unity,

which means that there 1s no turbulence at smaller scales.

2.6 Cascade of Turbulent Kinetic Energy

Based on Kolmogorov’s ideas, researchers have developed the concept of the energy cascade,
which states that turbulent kinetic energy transfers from large to small scales via vortex
stretching and once the energy reaches the smaller scales of turbulence, viscous dissipation
occurs. Tennekes and Lumley [14] provide a complete discussion on the vortex-stretching
mechanism. Fig. 2.1 (from Peters [1]) shows the turbulent kinetic energy spectrum as a
function of wave number k, where k is the inverse of the vortex or eddy size. From this figure,
it can be seen that the kinetic energy exhibits a monotonic decay in the logarithmic plot, with
a slope of —5/3 along the inertial subrange. This is followed by an abrupt decay in the viscous

subrange, where viscous dissipation affects the smallest scales of turbulence.

viscous
subrange

inertial
subrange

large
scales

energy

containing
integral

log E(k) scales

Figure 2.1: Turbulent kinetic energy spectrum, from Peters [1]

2.7 Turbulence Simulation and Modelling

The Navier-Stokes equations that describe turbulence can, in principle, be solved directly using
numerical techniques. In reality, the strong coupling and non-linearity of the equations, along
with the wide range of length and time scales involved in the solution and the chaotic nature
of turbulence, make such direct calculations possible only in very limited cases. Time and

mass averaging techniques have been developed to circumvent this problem. The introduction

of such techniques, however, produces terms for which the solution is either not known or
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cannot be expressed as an explicit function of the averaged variables. Oftentimes, these terms
have to be modelled. The following sections describe the simulation and modelling techniques

most widely used in turbulence.

2.7.1 Direct Numerical Simulation (DNS)

In direct numerical simulation (DNS), the Navier-Stokes equations are solved numerically.

This requires very fine spatial and temporal discretisations so that the tranSport equations

" can be solved from the large scales down to the Kolmogorov microscales. In general, it is

estimated that the computation time for a DNS simulation increases approximately at a rate of
Re* [2]. Consequently, at present only low Reynolds number flows can be solved directly. This
limitation prevents the use of DNS for most practical applications. Currently, most research
using DNS is aimed at the analysis of small turbulent structures, and the development and

validation of closure models.

2.7.2 Large-Eddy Simulation (LES)

With Large-Eddy Simulation (LES), the large scales of turbulence are calculated directly.
in the same way as in DNS. The smaller scales are modelled using turbulence models and
through processes of numerical filtering. LES provides high-quality results at a much lower

computational expense than DNS. -

2.7.3 Time or Ensemble Averaging (Reynolds Decomposition)

The Reynolds decomposition [14], is frequently used to obtain statistical information from a

turbulent flow. The time-average velocity of the flow can be defined as,

: T
_ u;(z,t)
wi(z,t) /0 T dt,

which can also be expressed as:

(s, ) = Sk @) LALLL

so that instantaneous fluctuations of velocity around the time-average mean can be expressed

as,

’U,:((I,‘, t) = ’Ui(.’L', t) - ﬁ,(ﬂ))
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An important, and widely used parameter in turbulence characterization is the turbulent
kinetic energy k, which is obtained from taking the root mean square and time-averaging the

velocity fluctuations as follows [16],
B
which, for a three-dimensional flow field becomes,
uf? +u? + u?
5 .

If no additional energy is transferred to the system, the kinetic energy dissipates in time at a

K =

rate given by, _
Dk

EZE.

2.7.4 Turbulence Models

From probdbility theory, it can be shown that the ensemble average of the velocity fluctua-
tions around the mean value is equal to zero [14], or in mathematical form (u}) = 0. The
second moment (uju;) that represents the statistical correlation between u; and u; becomes
an extra unknown in the system of equations for which an equation as an explicit function of
the averaged variables is not available. This is commonly known as a closure problem and the

unclosed terms are often modelled using physical or mathematical tools.

Launder and Spalding [17], and Pope [18] summarise different mathematical turbulence
models. Those models range from one-equation to multi-equation mathematical expressions to
characterise turbulent phenomena and were derived as an alternative to previous models such
as the mixing-length model. The nur.ﬁerica.l designation for the models is based on the number
of partial differential equations which are needed to calculate the modelled'parémeters. Gatski
and Rumsey [19], for example, identified variations of previous models that have originated
‘zero-equation’ models, which are algebraic relations to define the vortical or eddy viscosity,
and ‘half-equation’ models where an ordinary differential equation is solved to calculate the
eddy viscosity. Results obtained from zero- to multi-equation models may vary considerably,
due to the different degrees of complexity and detail that they may include in their analyses.
Most models are derived for specific applications, e.g. flow around a cylinder, boundary-layer

flows, and so forth and they are usually tuned to provide acceptable to good approximations

to experimental results.
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2.8 Turbulent Combustion

Most practical applications involving combustion occur in turbulent regimes. Directly or in-
directly, all of the characteristics of turbulence have a major effect on the evolution of a com-
bustion event. Vorticity, for example, increases the interface area between fuel and oxidiser
in non-premixed combustion, or between reactants, intermediates, and products in preniixed

flames, which results in an increased rate of reaction.

In premixed combustion, turbulence has several important effects. It increases the area of
the reactant-intermediate-products interface, which in turn increases the rate of reaction. This
increase in area is due to the appearance of ‘wrinkles’ in the flame front which are produced
by the action of turbulent vortices. As a consequence of this stretching, the reaction zone be-
comes thinner, promoting higher flame-propagation velocities. If the accelerated mixing rate
produced by the stretch effect reaches a point where mixing takes place faster than reaction,

extinction of the flame occurs {20].

In non-premixed combustion, the most significant role of turbulence is to enhance mixing.
This is achieved through the increase in the surface area of the fuel-oxidiser interface due to the
strain and stretch created by vorticity and the high diffusion velocity present in turbulent flows
which is a result of an increase in gradients. Since non-premixed combustion is a primarily

mixing-limited phenomenon, the result of these effects is of paramount importance.

2.9 Turbulent Combustion Simulation and Modelling

There are a number of different techniques and approaches to solve the equations that describe
the evolution of a turbulent reacting flow. Well established methods have been used for the
study and analysis of turbulence. These methods have been modified and adapted to account
for the interactions between ﬂuid mechanics/dynamics and chemistry. Basically, most of thé

research work is dedicated to closure methods for the chemical source term. The works by
Mell et al [21}, Swaminathan and Bilger [22], Bilger [23], and Peters [1], amongst others, offer
a variety of options for the modelling of the chemical source term. A brief description of the

most widely used techniques and their applications is given below.
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2.9.1 DNS

Echekki et al [24] report the use of DNS, coupled with a multi-step chemical kinetics mechanism
for the simulation of a 2-D premixed turbulent reacting flow. Papers by Bushe et al [8]
and Swaminathan and Bilger [22] describe the use of DNS with reduced chemical kinetic
mechanisms in the study of non-premixed combustion. The DNS database of the oxidation of
methane in a turbulent flow of Bushe et al [8] is used as the baseline for the comparison with

the results of the model developed in this thesis.

2.9.2 Favre Averaging

Combustion processes are characterized by considerable density fluctuations, which has prompted |
the development of the density-weighted, or Favre averaging. The Favre average of a property,

such as mass fraction for example, can be defined as

Y =

S [¥

(2.11)

The instantaneous local value of mass fraction can be defined in terms of its average and

fluctuation as

Y(z,t) =Y (z,t) + Y'(x, 1) 4 (2.12)

Similarly, the instantaneous local value of mass fraction is defined in terms of its Favre average
and fluctuation as

Y(z,t) =Y (z,t) + Y"(z,1) (2.13)

Combining the definition of Eq. (2.11) with Eq. (2.12) leads to an expression for the Favre

average of mass fraction in terms of the average mass fraction as

Pt (Y +Y) & AV
p 2

7 (2.14)

The term p'Y’ in Eq. (2.14) denotes the correlation between the fluctuations of density and
mass fraction. This is an unclosed term which can be computed using a transport equation,

or modelled using theoretical or empirical relations.

2.9.3 LES

Chemical reactions occur at small scales where the flow is modelled in LES, not resolved; this

implies the need for models for the chemical source term in the transport equations of mass
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fraction of species {16]. LES results have been used as benchmarks for a priori testing of
other simulations. The piloted flame of Pitsch and Steiner [25], as well as that of Steiner and
Bushe [26], have been used in comparative studies of computer simulations. In the case of
the work by Steiner and Bushe, LES was incorporated with the newly-developed conditional
source-term estimation. Laurence [27] discussed applications of LES in industrial settings, and
identified the ongoing work on numerical methods for finite volumes in unstructured grids as
one of the main activities aimed at providing more opportunities to such applications of the

method.

2.9.4 Laminar Flamelets

Flow visualisation of reacting flows with low-intensity turbulence shows that curved flame
fronts propagate outwards from the source of ignition to the boundaries of the system. In
this fashion, the turbulent flame can be conceptualised as an aggregation of such flame fronts.
This is also known as the flamelet regime. Based on this concept, the Laminar Flamelets, as
described by Peters [28], [1], are thin (their width being smaller than the Kolmogorov length-
scale), reactive sheets that react and diffuse within a non-reactive field. This method assumes
that once ignition has occurred, the chemical time scale is greatly accelerated, reducing the
reaction zone into a thin sheet. This concept was further developed into assuming that if the
thin reaction zone is smaller than the Kolmogorov length-scale, then the flow in that zone is

laminar, due to the fact that there exists no turbulence below the Kolmogorov microscales.

Much research has been dedicated to the development of the flamelet model. Peters [1]
provided a complete description of the model, as well as its formal application to premjxed
and non-premixed turbulent combustion. Lentini [29] explored the application of the stretched
laminar flamelet method combined with the x — ¢ model for turbulence in a turbulent non-
premixed flow and reported good agreement with results obtained from experiments performed
at the flamelet regime. Cook et al [30] presented the large-eddy laminar flamelet model in
which the chemistry at the smaller scales was modelled using the flamelet theory. The flamelet
model offers good predictions of the major chemical species that originate in combustion of
hydrocarbon-based fuels at what is known as the ‘Jamelet regime’. However, the flamelet the-

ory applies under very specific conditions of the flow, e.g. the flamelet thickness is smaller than
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the smaller length-scales of turbulence, which limits the effective application of the flamelet
method. Swaminathan and Bilger [22] pointed out that the flamelet model falls short of pro-
viding good predictions of the minor species in combustion of hydrocarbon fuels. This point
was also discussed by Mell et al [21] when comparing the flamelet and the conditional moment
closure (CMC) models with a DNS database for different flow configurations to study the

effects of variations of scalar dissipation on flamelet and CMC results.

An improvement over the laminar flamelet model is the unsteady laminar flamelet theory,
which introduces a Langrangian time frame that records the time dependence in the flame
structure. Mauss et al [31] presented results that seem to indicate that the transient variations
of the flamelet structure of a steady turbulent non-premixed flame are responsible for the
scattering of experimental data points obtained with one-point Raman measurements. Pitsch
[32] obtained good agreement between experiments and the results of the unsteady flamelet

model for a turbulent non-premixed C Hy/Hs/Ny-air flame.

2.9.5 Probability Density Function (PDF) Modelling

In the PDF method, a transport equation for the joint PDF of relevant scalars is solved to
model the evolution of a combustion event. These scalars can include mass fraction of chemical
species, flow velocities, température, mixture fraction, and so forth. An important advantage
of this method is that the chemical source term is solved for directly, without the need of a
model. Modelling is necessary, however, for the molecular mixing terms in scalar space, as well
as for the turbulent transport terms in physical space [33]. Due to the high-dimensionality
inherent to this method, traditional computing techniques are insufficient. This has prompted
researchers to apply numerical methods capable of dealing with problems with a large number
of variables and dimensions, such as Monte Carlo methods. These applications will be reviewed

with more detail in the following sections of this thesis.

2.9.6 Conditional Moment Closure

The Conditional Moment Closure (CMC) of Klimenko [3] and Bilger [4] determines closure

for the chemical source term of the transport equation of the mass fraction of species. This

method is based on the assumption that the fluctuations of scalars, such as mass fraction
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of chemical species and temperature, are associated with variations of other scalars. The
advantage of using the CMC method is that macromixing phenomena can be decoupled from
the chemical kinetics, while conserving the effects of micromixing via the scalar dissipation

term. The method is described and its equations derived in Chapter 3.

2.10 Stochastic Processes and Monte Carlo Methods

The theory behind stochastic processes originated from the observations of the trajectories of
pollen particles moving on a water surface made by Brown in 1827 and later independently
developed into an elegant mathematical theory by Einstein [34], [35], Smoluchowski [36], and
Langevin [37]. The experiments by Perrin [38], [39], [40], [41], [42] confirmed the previous
theoretical analyses and his work was awarded the Nobel Prize of Physics in 1926. ‘The ni-
tial applications of the method concentrated on physics, mathematics and chemistry. Today,
stochastic processes are extensively applied in fields such as biology, finance, economics, de-
mography, atmospheric and ocean sciences, amongst many others. Different numerical meth-
ods, such as the Monte Carlo (MC) method, have been developed as tools for the study of
stochastic processes. The MC method is intended to solve multi-dimensional problems with
a large number of variables. This can be a very inefficient method when used to solve simple

problems given the large number of computations required.

2.10.1 Monte Carlo Simulations of Turbulence

Kramer [43] reviewed the application of the MC method in generic turbulence problems. In
this work, a thorough description of the two different (Eulerian and Lagrangian) types of MC
simulation is presented. The MC method is remarkably useful for the simulation of turbulent
flows given its ability to treat multi-dimensional problems with a large number of degrees of
freedom. Another attractive feature of this method is its ability to generate chaotic parti-
cle trajectories and velocity field structures. In the Eulerian approach, a stochastic velocity
field model replaces the turbulent velocity field to be simulated. This field is then solved in
a spatial domain, which is computationally less demanding when compared to the solution

of the Navier-Stokes partial differential equations. The stochastic field is tailored to the spe-

cific application and is frequently used to simulate trajectories of particles suspended in a flow.
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A number of methods exist to numerically solve the equations derived using the Eulerian
approach. The Fourier method is based on a spectral formulation for a homogeneous Gaussian
stochastic field. A major drawback of this method is the generation of a spatial period that
has detrimental effects on turbulent diffusion simulation. Using a randomization method, the
stochastic Fourier integral is discretised by stochastic wave numbers. Despite the fact that
this method provides useful data to simulate velocity fields with strong long-range correla-
tions, those fields have non-Gaussian statistics. According to Elliot et al [44] and Sabélfeld
[45] this limits the applications of this method for ideal mathematical or physical turbulence
models. More physically meaningful models have also been developed. Among them are the
moving-average and the wavelet methods. McCoy [46] introduced a Gaussian stochastic field
represented in physical space using white noise convolved against a kernel. Long-range corre-
lations in the velocity field can be appropriately simulated using the wavelet method. There
exists a combination of Fourier-wavelet methods that present improvements over its precur-
sors. This method has been reported to have shownj excellent results when simulating velocity

fields with the condition of self-similarity scaling of their structures.

A Lagrangian MC simulation utilises particles evolving in a stochastic model. All the
effects of turbulence are incorporated within the properties of each particle. Despite the fact .
that the Lagrangian MC simulation does not make reference to a fluid velocity field, Minier
and Pozorsky [47] and Welton [48] have used it to simulate the motion of a turbulént flow
by analysing the stochastic evolution of a group of particles. The average properties of this
group of particles (and of the ones in the vicinify of the target field) define the properties
of the fluid, and of the flow, at that specific location. The methods developed to deal with
MC simulations using the Lagrahgia.n approach include the simulation of fluid motion and

particles, the simulation of immersed bodies and hybrid LES/MC schemes.

In the simulation of fluid motion and particles, a set of fluid particles is followed accord-
ing to a stochastic formulation. Physical, or pseudo-physical properties are defined for the
particles. The evolution of the dynamics of the flow is assumed to be the average of the

simulated particles. This method offers flexibility in the way that it can provide some in-

sight into the mixing process of the unresolved scales of the turbulent flow by the use of a
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simple Langevin formulation. If more details are desirable, the stochéstic formulation must
be changed. Stochastic differential equations in the form of Markov processes are often used
with this purpose in mind [49]. The simulation of immersed bodies follows a similar proce-
dure. Pozorsky and Minier [50] reported an approach in which two sets of stochastic particles
are defined. The first set represents the immersed particles, while the second is intended to
simulate the flow. The physical and pseudo-physical properties of both sets of particles are
different from one another. A major drawback of these methods is that they can only simulate

homogeneous turbulent flows.

In the hybrid LES/MC schemes the flow field is resolved using a LES formulation, while the
mixing (and chemical reaction, if reacting flow is being considered) simulations are resolved
using a MC formulation. This scheme calls for the continuous feedback from one formulation
to the other. Jaberi et al [51] and Obliego et al [52] have reported an increase in accuracy
in their LES calculations after the addition of the MC component. The apparent reason for
this is that the MC simulation provides some information on the effects of the small scales
otherwise neglected by the LES model. This model has also been used successfully in non-
homogeneous turbulent flows, which extends its potential for applicability to more realistic
problems. Le Maitre et al [53] proposed a method in which a stochastic spectral finite element
method undertakes the formalism of a MC simulation and offered numerous results claiming
improvements in computational expenses, amongst other advantages over the MC method.
Unfortunately, this research group did not provide a comparison between the results of the

two formulations.

2.10.2 Monte Carlo Simulations of Turbulent Reacting Flows

Most applications of the MC method in turbulent reacting flows follow one of the Lagrangian
~ formulations described in the preceding section. Pope [54] described what appears to be the
first application of the MC simulation to a turbulent reacting flow. This method has shown
great usefulness given its capabilities of dealing with problems with a large number of variables

and dimensions. Its first and foremost application is intended to numerically solve the PDF

transport equations derived for a trubulent reacting flow.
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The advantages of the method are numerous. As described in different papers [54], [55],
the PDF method provides closure to the chemical source term in the equation without the
need of any modelling and can be applied to either premixed or non-premixed flows. It is also
known that this method incurs large computational demands, has no ability to model wall-type
boundaries, and is difficult to apply in complex flows. According to Pope [54], the computa-
tional requirements of this method increase linearly with the number of variables used (in this
case dimensions, as well), compared to the exponential increase of computations required by
traditional finite-difference formulations. This fact provides a way of dealing with problems
involving many species. As discussed in the previous section, the MC method can deal with
the simulation of walls and complex, inhomogeneous flows, hence solving the more relevant
drawbacks of the PDF method. As described by Pope [54], stocha.stic particles were used
to mimic the chemical and thermodynamic properties of the flow. These particles, however,
were defined as a numerical tool and have no physical meaning. A plug-flow reactor problem
with imperfect mixing was simulated using the MC method, using a single scalar to model the
concentration of reaction products. Pope’s numerical results were iI} good agreement to those

obtained in experiments performed by Batt [56].

Valino [57] proposed an Eulerian MC formulation for the simulation of the PDF of a single
scalar in a turbulent flow. His proposal was to use stochastic particles ‘jumping’ from node to
node in the spatial domain according to specific rules (a stochastic equation). Hulek and Lind-
stedt [58] offered a comparison between data obtained from DNS and from MC simulations.
Their formulation used the MC method to solve the terms modelled with the PDF method in
the flamelet equation. This method, called flamelet acceleration, was also tested and it ap-
peared to be an improvement when compared with the standard flamelet solution. Hulek and
Lindstedt [59] later modelled premixed turbulent flames using PDF and MC methods. The
MC simulation was used to solve the mass density function evolution equation. Stochastic par-
ticles evolved following deterministic processes representing the closed terms of the equation
and stochastic processes designed to model the effect of the unclosed terms. They showed the

comparison between several different numerical formulations and experimental results, where

it can be seen that the PDF-MC simulations were in good agreement with experiments.
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The special ability of the MC method to mimic turbulent mixing was explored by Kawan-
abe et al [60). The methodology was applied to a plug-flow flame in unsteady turbulent
combustion. The turbulence model used was a standard x — € and the mixture is forced to
avoid homogeneity. Cannon et al [61] and Kraft and Fey [62] have explored stochastic reactor
models using the PDF and MC methods. Cannon’s group offered some practical results, while
Kraft and Fey mainly developed a purely analytical solution to the stochastic reactor model.
Cannon’s research was aimed at the prediction of CO and NO in premixed combustion of
methane, using a partially stirred reactor (PaSR). Conceptually, the PaSR could be thought
of as a MC process itself, since it also randomly selects particles that are then forced to interact
amongst themselves. This method is an improvement over the perfectly stirred reactor (PSR)
since finite-rate mixing effects can be included in the solution. The mixing term was modelled
using a deterministic method rather than a MC method. The good agreement between the
9-step simulation and the detailed kinetic solution demonstrated the robustness and accuracy

of this particular model.

2.11 Summary

In this Chapter, the fundamentals of turbulent combustion, have been reviewed. Turbulence,
scales of turbulence, and turbulence simulation and modelling were also treated, along with
the interactions between turbulence and combustion. Descriptions of the regimes and equa-
tions that define turbulent combustion, as well as some of the most important analytical tools

available for the solution of those equations were also presented in this chapter.

A detailed description of the applications of the Monte Carlo simulations in turbulence and
turbulent combustion was provided. It has been observed that there exist a number of different
options in which the MC method can be used to solve numerically demanding problems in
turbulent combustion. Future possible applications include particulate matter and pollutant
formation mechanisms and mass transport in permeable membranes. Of particular interest
to this research is the capability of the method to be included to solve problems expressed
in terms of different modelling theories such as conditional moment closure, LES, or flamelet

models. An increasing number of research opportunities exist in this field, with promises of

continuous and prolific growth in the near future.
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Chapter 3

The DCMC Method with

Stochastic Processes

Conditional moments are averages which are calculated for those members or realisations that
satisfy some predefined condition. The conditional moment closure method (CMC), inde-
pendently developed by Klimenko (3] and Bilger [4], provides closure for the chemical source
term in the transport equation of species and enthalpy or temperature by assuming that the
variability in temperature and the mass fractions of species can be linked to the fluctuations
of a given scalar variable. The reaction progress variable and mixture fraction are common
choices of scalar variables for premixed and non-premixed combustion analysis, respectively.
- If the mass fractions of species are expressed as functions of not only space and time, but

also as functions of the conditioning variable, their conditional averages can then be used to

approximate the conditional average of the source term as w|Z = ( = w (TIZ =(,Y|Z = () .
The overbar in this notation indicates that the mean value has been calculated from averaging
over n = 1...N realisations. The vertical bar means ‘given’, and in the case of Y; denotes the

value of the mass fraction given that mixture fraction has a value of ¢.

As an illustration of the theoretical basis of the CMC method, Fig. 3.1 shows a plot
of individual n = 1...N realisations of a simulation of temperature (blue lines). Where the
unconditional average of temperature, T = Zfil Ti/N, is represented by the horizontal line
at around 7' = 500, and the red curve is the calculated conditional average of temperature,
T = (T|Z = (), where the angle brackets indicate that only those realisations that comply

with the condition of Z = ( are considered in the averaging process. It is clear from Fig. 3.1

that the information obtained from conditional averages is more representative of the actual

relationship between T" and Z than that obtained from unconditional averages.
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Figure 3.1: Conditional average of temperature; blue(.) DNS, red(-) (T'|Z), black(-) T

Researchers have previously explored the application of the CMC method and have found
that using only one conditional variable offers good results in terms of species mass fraction
and temperature predictions. However, the presence of triple flames and prediction of igni-
tion, extinction, and re-ignition phenomena are not well reproduced by just one conditioning
variable. Figure 3.2, from Bushe et al [8], shows a slice of a 3-dimensional DNS calculation
of temperature. The contour lines represent isopleths of mixture fraction, which were formed
by the intersection of the slicing plane and the corresponding isosurfaces of mixture fraction.

The white isopleth corresponds to the stoichiometric mixture fraction.

Figure 3.2: DNS calculation of temperature, from Bushe [8]

It is clear that this temperature field exhibits strong fluctuations in regions of constant
mixture fraction. This is evident in the ‘cold pockets’ shown in regions A and B in the

figure. These cold zones are typical of extinguishing flames. From this figure, it can also be
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observed that there is a transition between hot zones, located to the right of region B. This
transition could correspond to re-ignition or bifurcation of the flame. It has been proposed
that using a second conditional variable would solve those issues [9], [16], [63]. This result
is of paramount importance, given the close relationship between these phenomena and the
formation of pollutants. In this thesis, the use of two conditioning variables has been explored.
One variable is mixture fraction Z, which characterises the state of mixedness of the flow for a
given instant in time and space. The other conditional variable is named @ and is introduced
to capture fluctuations along an isosurface of mixture fraction. This is achieved through the
definition of the scalar a as a conserved scalar with a spatial gradient perpendicular to that

of mixture fraction.

3.1 | Conditional Moment Closure with Two Conditional

Variables (DCMC)

The use of a second conditional variable has been proposed as a way to solve the shortcomings
of the original CMC method. Bushe [16] used a second conditioning variable that filtered
between regions of a surface defined by a constant mixture fraction, hence detecting differences
in the stretch rate history of the flow. The results of a simulation of auto-ignition of n-Heptane
showed an improvement over the single-conditional method in detecting autoignition and
double flames when compared to DNS databases. However, the same results failed to show the
presence of triple flames present in the reference data. Cha et al [63] used the scalar dissipation
rate as the second conditioning variable for the simulation of a methane-air turbulent reacting
flow. After comparing their results with those obtained from an experimental jet and a
DNS simulation, it was found that there exists good agreement in the prediction of extinction
phenomena, but they obtained an early prediction of the onset of re-ignition. High fluctuations
around the conditional means, specifically for low values of the scalar dissipation rate, were

identified as a possible source for the discrepancies with the reference data.

3.2 Derivation of the DCMC Equations

During the development of this project, two conditioning conditional variables have been used.

e Mixture fraction Z = Z (z;,1) ,
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e and a = a(z;,t).

These two random variables are related to the non-random variables ( and o using:

W(Z=Ca=a) zcb(Tl (Z=C,a=a),Y1|(Z=§,a=a)), (3.1)

such that the result is a function of what values are chosen for the conditioning variables ¢

and a.

The definition of the conditional average of the mass fraction of the I'* species is
?I = .}TI(C’ a; $i,t) = (1/](.’3,‘, t)IZ(IL’,, t) = Caa(xiat) = a)v

so that the instantaneous value of species mass fraction using conditional average and fluctu-

ations around that mean can be expressed as

:Yf(x‘ia t; n) = YIlz(z;,t;n),a(zg,t;n) + YI”

Eq. (2.3) is substituted in Eq. (2.2) to obtain a new version of the transport equation of

species mass fractions as

0 iY] Y] .
Y1 | Opu¥y _ 0 (DI(9 I)+w1.‘

ot o; ~ Oz Oz;

- (3.2)

Using the experimental results from Vargaftik [64], it has been proposed [16] that pD; =
constant, and that Dz = Dy, implying that Le = 1. Using these assumptions, Eq. (3.2) can -
be written as

—(?—I—I—I—-i-uiaYI D *yr wr

ot dz; = 01;0z; p

To express Eq. (3.3) in terms of conditional averages, it is required to derive partial derivatives,

(3.3)

which were obtained by applying the chain rule of differential calculus.

e The partial derivative of species mass fraction with respect to time is

oY 9Y;  0Y;0Z 9Y;da Y}

ekt R e & = . 4
3 o o ot oadn ' ot (34)

e The first partial derivative of species mass fraction with respect to space is
aYr __671' 8_}_’?6_Z 8712(}_ oY/ (3.5)

dz; Oz; = OC Oz + da 8z; Oz
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e The second partial derivative of species mass fraction with respect to space is

#Y; 8%, 0Z 0Z | 0°Y; Ba Ba 0%*Y; 0Z 8a

Jo:dz; | O 0z 0a; 9o Ow; 0 | OC0a O; O
0%Y; 07 9 0%*Yr. 0a . 8Y; 0°Z

0z;0C Ox; + 0z;0a O0z; 8—C6:1:,~6:c,-
aY; 8% 0%Yr. 62YI'

B 0z:97; | Omidz; | Omidz (3.6)
Equations (3.4), (3.5), and (3.6) were substituted in Eq. (3.3) producing,
g By, g ST T
257
%g—ig; _ZDgcz?Cgf, 2D%§—Z+Ey;. (3.7)
where the following definitions are used:
e The transport equation of the conditional average of the species mass fraction is
— — o
e The transport equation of mixture fraction, Eq. (2.1), is Wr_iﬂ;en here as
E; = %+u,~g—i—D5% =0. (3.9
e The transport equation of the scalar a is
B, =224, Pa__, (3.10)

ot 8_1:, - Dax,-ax,-

e The transport equation of the fluctuations around the conditional average of species

mass fraction is
ay!  ay! V!

; - D . g1
ot %oz, " oz.0m (312)

Ey]l =

3.3 Modelling Scalar Dissipation

Scalar dissipation, x, = g—zzigx%, is used to represent the coupling that exists between fluid

dynamics and the chemical reactions taking place in a turbulent reacting flow [23]. Previous
research (1] indicated that large values of scalar dissipation rates lead to extinction of flames.

Conversely, ignition phenomena are associated to small scalar dissipation rates.
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Peters [1] proposed a model in which the scalar dissipation rate diminished as a function of
mixture fraction with time in a one-dimensional mixing layer. This model is frequently used in
the flamelet formulation discussed in section 2.6.4. However, the model is not capable of cap-
turing extinction or ignition. An improvement to better reproduce extinction phenomena was
proposed by Peters [1] in which a conditional stoichiometric scalar dissipation rate, assumed
to have a lognormal PDF, was used to calculate the right proportion of burning flamelets

during an extinction event.

Using CMC and the stretched diffusion concept, Bushe [16] proposed a model for the con-
ditional scalar dissipation rate, which was found to provide good approximations of values
of the scalar dissipation rate when compared to DNS of a non-reactive flow of Eswaran and
Pope [65]. This same model, however, did not provide good estimations of ignition due to
long decreasing times of the scalar dissipation [16]. An improvement of this model was to in-
corporate a second conditioning variable to the system of transport equations of species mass
fractions, which was also a passive scalar. This model was found to provide good predictions
of ignition and double-flame formation of an n-Heptane non-premixed flame when compared
to data obtained by other researchers [66], {67], [68]. However, this formulation did not predict

the presence of triple flames found in other research papers [67].

In this thesis, the DCMC method has been applied to define conditionally averaged trans-
port equations for the scalar dissipation of Z and a. The conditional average of scalar dissi-

pation is defined as

Xz = E(Caa; .’Bi,t) = (Xz(xiat)lz(ziv t) = C,a(ilii,t) = a)

leading to an instantaneous value of

Xz (xk,t) = XZ|(=Z(1:.-,t),a=a(:c,-,t) + X;' . (3'12)

Ruetsch and Maxey [69] proposed a transport equation for the scalar dissipation, with the
terms on the rhs of the equation representing production, dissipation, and diffusion:

Dx. _ _,0Z 0z [a (62)}2 p_FPx

Dt = a5 05,20 P |3z, \om 9z, 05,

The S;; term in Eq. (3.13) corresponds to the strain tensor that denotes the production

(3.13)

of scalar dissipation through vortex stretching mechanisms. In premixed, turbulent reacting
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flows, strain is known to have a strong effect over the stretch history of the flame, which
consequently affects the flame structure [11]. The definition of S;; [14] is,

1 (Ou; Ou;
Sij = 2 (8mj + 8:0,-) ’ (3:14)

In turbulent, non-premixed flames, high levels of strain imply high levels of scalar dissipa-
tion, which in turn generate local extinction of the flame, since the chemical reactions cannot
take place given the extremely high rate at which reactants are diffused into and through the
reaction zone. Williams [11] provided a flamelet-based analysis of this phenomenon. Thévenin
and Candel [67] studied the effect of variable strain on the ignition of a non-premixed flow
of air and hydrogen through the use of computer simulations. While their research predicted
self-ignition and ignition times in agreement with the experimental results of Cheng et al [70],

the triple-flame phenomenon was observed only for the case where there was no strain present.

Using the definition of a material derivative, Eq. (3.13) can be expanded to obtain

Ox: _  Oxz 0Z 0Z 0%x, 0z 0’z
ot~ oz, 26:1:,- 8sz']+D8:vj8:z:j 2D Ox;0z; ) \Ox;0x; ) | (3-15)

In order to express Eq. (3.15) in terms of the conditioning variables, it is required to
obtain derivatives analogues to Egs. (3.4), (3.5), and (3.6). The definitions of Egs. (3.9) and
1(3.10) are also used to produce

Xz Xz = X 07 0Z Xz
= - - —E —uy; — e/ Vi) Y
ot a¢ Bz Ja Ba X ¢ oz; 261:,- 6:1:]'57 + Daxiax;
62%?_?_6_Z Dazz aa.ﬂ_kz 627; 6Zﬁ+2 82% a_Z
BC 2 3:17,' 6:1:,' 302 a:vi 6.’1,‘,' 6{ Ja 6.’12,' 6:1:i 6:1:,'(9( a:L‘,'
0%x; Oa 0%z 0%z
+2D6:1:,-8ac7)_a; —2D [(8a:j6m,~> (ijax,-)] T (3-16)

where the transport équation for the conditionally averaged fluctuation of scalar dissipation

is
ox!
Em= Xz +u

o P

(3.17)

Xz ot * Ox; 0z;0x;
The conditionally averaged transport equation of the scalar dissipation x, follows analogously

to Egs. (3.16) and (3.17).
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3.4 Scalar Transport Closure Hypotheses

Equations (3.7) and (3.16) contain unclosed terms for which closure hypotheses are formulated
in this thesis. With the following scalar transport hypotheses, some of the terms in those

equations are closed:

e Z and a are conserved scalars, hence its lack of a source term as shown in Egs. (2.1)

and (3.10);

o The spatial gradient of @ is perpendicular to the spatial gradient of Z to better capture

the effects of fluctuations along isosurfaces of mixture fraction.

Using these hypotheses, Eq. (3.7) is reduced to

wr oo 0%Y; 8Z 8Z 6271@6_11
p Y 792 9z;01;  Oa? 8z; Oz;
0%Y; 07 0%Y; Oa
_2Da$,ag 53;' _ 2D axiaa 6.’1},’ + Ey]'. (3.18)
Eq. (3.16) is also reduced to
ox: ox: ,0Z 0Z %,
o P T %, 255,05, T P onaa,

32)(2 07 87 82)(2 da Oa 9D %x; 02

32 02, 00; T 9a? 0z; 0z | 02:0C 0z
0*x; Oa A 07
+2D6$,~6a dz; 2D [(6:1:]-8:0,-) (azjaz,-)] ) (3-19)

Multiplying Eq.(3.18) by p and taking its conditional average yields

- — —— %Y 07 0Z 62Y1 da Oa
“’""’E??“’E_’_Ypax,az, 92 "P oz, oz

Y 9Z Vi _da

252:0¢"P oz; ~ 295:0a"° 0m; (3.20)
Conditionally-averaging Eq. (3.19) yields
oz _ — . 0xz ,0Z0Z o’x;
o~ BT Yan, 255,05, T P agian
0%y, 07 0Z 0%z Oa Oa 0%y, 0Z
d¢? dx; Bx; + '0a? Oz; Oz; + 2D6m,~8§5—a—;
0%x, da 02z 0%2Z
+2D3z,8a Ox; -2D [(ijaa:,-) (axjaz.-)] ) (3.21)
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3.5 DCMC Closure Hypotheses

Equations (3.20) and (3.21) were reduced to a conditionally-averaged form in the previous
section. Whilst closure was determined for some unclosed terms, both equations still contain
terms that can be further closed using the DCMC closure hypotheses described in the following

modelling assumptions.

e DCMC Modelling Assumption 1: the fluctuations around the conditional mean of species
mass fraction and around the conditional mean of scalar dissipation are only functions

of the scalar variables Z and a, independent of time and space. This produces

oV oV _ @V

P o TP PP T O (3-22)
g o 5
ot " %og Pomon = (3:23)

e DCMC Modelling Assumption 2: assuming that the flow is homogeneous and isotropic,
the ensemble of conditional averages of species mass fractions and scalar dissipation are
equal at each point in space for the same instant in time, and the spatial gradient of the

conditional mean of the species mass fraction is equal to zero [16]. This yields

mg—z -0 (3.24)
”_Daig_;i = 0 (3.25)
Lo -
gg’a% =0 G
u,gz_: = 0 (3.28)
D 6‘121_’5_; =0 (3.29)
D aaj gz{gﬁ =0 (3.30)
i hinid
D a‘ii’ég 56:%- =0 (3.31)

Substituting Eqgs. (3.22) and (3.24) - (3.27) in Eq. (3.20) results in

= _1 Vi 0Z0Z Y ,0a da
T=P % = 52 P 52,01, 92 P 0x; 0z;

(3.32)
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Here, the term on the lhs represents the conditional average of chemical source term, while
the second and third terms on the rhs represent the conditional average of diffusion of the

species mass fractions in the scalar field.

Substituting Egs. (3.17) and (3.28) - (3.31) in Eq. (3.21) results in

0? xz_ 0?2z 0’z

o0 _ OTVT, O
R T TR SR o g v, e et e

Here, the first term on the rhs represents the conditional average of production of scalar
dissipation, the second and third terms represent the conditional average of diffusion of scalar
dissipation, and the third term represents the conditional average of dissipation of scalar

dissipation.

3.6 Mathematical solution of the Z-gradient squared term

We define
0’z 0%z
® = 6:1:j(9$i 8:1,‘]'6.’1:,' (3‘34)
_ Oxz Ox:
e = 9z, bz, . (3.35)
Expanding © yields,
O Ox. _
a.’IIj 6:I:j

(axz)2 3 0z az)]
0z; B z; \ Oz; Oz;

8z 0Z\1? 0 2 822 0z]?

8:1:, 63:, Bz, 0z;0z; 6:1:,
2 2 2 2 .
[ VA GZ] _ 4(6Z BZ)((?_ZBZ) (3.36)
Oz;0z; Oz; 0z j0x; 0z;0z; 0z; Ox; _

Comparing Eq. (3.36) to Eq. (3.34) it can be seen that

0 = 4<I>Xz,and

= —0. 3.37
4Xz ( )
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Using Eq. (3.12) and taking partial derivatives of x, with respect to space, Eq. (3.35) can

be expressed as

o - (55) ~(5e58) ~(ean) +(32)
Ozx; ¢ Ox; Ja 0 Oz;

OXz 0Xz 902 | 30Xz Xz Oa. | Xz OZ 9% Oa

O0z; O¢ (9:1:J Oz; Oa Oz; 0¢ Oz; Oa Ox;

8“3)( 9 Oxz 0Z 0x;, , ., 0Xz Oa OX;

Oz; Oz 8¢ dz; z; da 0z 0z

+

+2 (3.38)

Using the scalar transport closure hypotheses and the modelling assumptions, Eq. (3.38)

reduces to ) 0
_ (9 Xz \" .
0= ( a > Xz + (8(1 Xa- (3-39)
Substituting Eq. (3.39) in Eq. (3.37) and conditionally-averaging, yields
=_1(%\" 1 (%\"(x
— - = ]. 3.40
EHCIRH IR (340
It is further assumed that
' (ﬁ) = Xe C (3.41)
Xz Xz

Using this assumption in Eq. (3.40) and substituting this result in Eq. (3.33) produces the
final version of the conditionally-averaged transport equation of scalar dissipation of mixture

fraction and of the scalar a

0 _ _,020Z .._2(%)2_2 %\’ xa
ot Ox; Oz Y 2\ & 2 \ Oa Xz
azz_ %z __
+D aCZ +DWXG ) (342)
M _ _,0a0a. D(\_ D0\ x
ot dx; 0z; 7~ 2 \ 8¢ 2\ 0a/ %
p&Xa | OXa (3.43)

The first term on the rhs of these transport equations describes the conditional average of
production of scalar dissipation. This term represents the mapping of the strain tensor S;;
onto the corresponding diffusing scalar’s surface. The second and third terms represent the
conditional average of dissipation of scalar dissipation, while the last two terms represent

the conditional average of diffusion of scalar dissipation. All the terms in these equations

are closed, with the exception of the term containing the strain tensor S;;, which has to be

modelled.
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3.7 Models for the Transport Equation of Scalar Dissipation

Two different models using stochastic processes are proposed to model the strain tensor S;;.
The first model uses a periodic force with random phase shifting to simulate the chaotic be-
haviour of the strain tensor. A second model uses the Coupled Map Lattices (CML) developed
by Beck and Hilgers [5], [6], [7] to simulate velocity increments in an isotropic, homogeneous,

fully-developed turbulent flow, from which the corresponding strain tensor is calculated.

Pitsch and Fedotov {71} simulated the fluctuations of the scalar dissipation rate in non-
premixed combustion. They used this approach in combination with a flamelet formulation
to simulate a turbulent, non-premixed reactive flow of methane and air. They reported that
the extinction process occured at smaller time scales than those relevant to the overall phe-
nomenon, like turbulent or chemical time scales. This seems to indicate that the deviations are
due to Gaussian white noise, resulting in a Wiener process. This research group also found de-
limiting regimes that drive the burning and extinguishing states and that even small-amplitude
scalar dissipation fluctuations have considerable effects on the state of the flame, taking it from
the burning to the extinguished state. This finding in particular, further reinforced the need
to study the influence of the scalar dissipation rate on a turbulent, non-premixed reacting

flow, which is one objective of this thesis.

3.7.1 Periodic Forcing with Random Phase Shifting (PF)

The use of forcing schemes involving harmonic functions has been explored in DNS simulations
of isotropic, homogeneous turbulence [72], [73]. The general idea behind this method is to
generate an influx of energy at low Fourier wavenumbers that compensates for the dissipative

effects at the small scales of turbulence.

Eswaran and Pope [73], used a stochastic forcing scheme with an Ornstein-Uhlenbeck for-
mulation to study the validity and capabilities of the method in an isotropic, homogeneous
turbulent flow. Hilgers et al [74] explored the use of stochastic resonance to the study of

motion of an overdamped particle in a bistable potential, subject to a external periodic per-

turbations and coloured noise.




Chapter 3. The DCMC Method with Stochastic Processes 34

Similar to the work by Eswaran and Pope [73], the first model proposed in this thesis uses
a combination of harmonic signals to mimic the chaotic influence of the turbulent flow field

on the strain tensor by using the product of the signals in the z and y directions:
U, = Ap 8in (WnzZ + Ong) Sin (wWpyy + Ony) - (3.44)
Here,

e The magnitude of the amplitudes is A,+1 = A, /2, and is scaled by the Reynolds number
of the flow.

e The period of the signals is w11 = 2w, and is used as an emulator of the viscosity of the
flow. Larger periodicity implies a higher number of transitions, which are interpreted as

lower viscosity.

e The random phase shift 8, is produced with Gaussian random numbers. This shifting

N,

is used to produce random fluctuations in the strain field.

e n = 1...N is the number of signals that are then combined to obtain the assumed strain

tensor field in the z — y space:
n :
Sij (.’B, y) = Z V. (345)
=1

The coupling .between the strain field and the flow is obtained by forcing proportionality
between the amplitudes A, of the signals and the magnitude of the characteristic Reynolds
number of the flow. This implies that this scheme can only simulate strain fields for one
energy level at a time and must be calibrated for each energy level independently. For decay-
ing, isotropic, homogeneous, turbulence, characteristic parameters can be used to scale the

magnitude of the strain field accordingly with turbulence theory [14] as,

1Si;| = \/; (3.46)

The structure of the strain fields simulated with the PF model can be modified by varying
the number of signals used in the calculation of Eq. (3.45), by varying the scaling of the
amplitudes between signals, or by varying the periodicity of Eq. (3.44).

The PF scheme was used in this thesis to simulate strain fields with fluctuations and

magnitudes relevant to the combustion process studied. The magnitudes were compared to
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those obtained from the DNS of Bushe [8] and the simulated fields in the z — y space were
then transformed to the a — { space using a simple mapping convention. The mapping is

performed by assuming a linear correspondence between o and z, and ¢ = erf(y).

3.7.2 Coupled Map Lattices (CML)

The second model that has been implemented uses the turbulent flow simulation proposed in

the works by Beck [5] and Hilgers and Beck [6], [7]. This model is a coupled map lattice that

mimics the energy cascade in a turbulent flow. The system of equations is as follows
zan(i) = F(zan-1(1))
1 .
ugal) = Mugy () + 55 2D (Zudn 1 z+a)) + 240 (i)
k k
M 1 (0) + 55 (Euf,,l . z+a)>

+CCE ) (1 = Mem)uls ) (0. , (3.47)

I

ulf) (5)

In this model,

e F(z) is a map that models the energy input from the large scales and is defined as

F(x) =1 — 222, where z is the position of stochastic particles in D spatial dimensions.

e The parameter k corresponds to the energy level in the cascade. High-values of k& imply

higher energy-dissipation processes, which leads to a lower energy level.

The coupling parameter g is associated with, and should be scaled to, the molecular

viscosity, y, of the fluid.

e The damping parameter A is defined as A = exp(—y7k), where the product 7 is pro-

portional to the inverse Reynolds number.

The product C( is used to determine the random fraction of the driving momentum that

each of the ‘daughter’ eddies receive from the previous higher scale.

The calculated temporal velocity difference u is later used to calculate the strain rate tensor
using Eq. (3.46), or, under the assumption of decaying, isotropic, homogeneous turbulence, it

can be further demonstrated [14] that,

15 [ Oy 2
s [5(22). )
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Using the CML model, the strain fields were simulated in the £ — y plane and later mapped

onto the o — ¢ plane using the same mapping convention as used in the PF model: (a,() —

(z,erf (y))-

It is clear that while this model is capable of simulating strain fields for a wide range
of energy levels, the main focus of this research is on the simulation of strain fields at the
energy levels relevant to the combustion process studied. This means that the CML had to
be capable of simulating velocity increment fields at relatively small scales. This calibration
was made possible by using the variable k that denotes the energy level at which the velocity
fields are calculated. The target value of k was obtained by running a number of simulations
and comparing the results with statistics from the DNS of Bushe et al [8]. A consequence of
this is that all the previous energy levels still have to be calculated, whiéh inevitably increased

the computation time.

3.8 Summary

The DCMC equations that describe turbulent combustion events using two conditioning vari-

ables have been derived in this chapter, resulting in the following system of equations

oYr 0%, _0Z0Z 8*Y; _ Oa Oa

“I' T Pt T o2 P bg; 0z 902 P 0z 0z
0 _ _,0Z0Z, D(\'_D(%\'x
ot Oz; Ox; Y2\ 8¢ 2\0a/) Xz
P, PN
+D3—<2 z‘i‘DW a
M _ _za_aﬂs..__lz(my_e(a%)?z
ot 0zi0z; 7 2 \ & 2 \0a /) Xa
%a__  ?Xa__
+Da—c2xz + DWXG. (349)

The properties and characteristics of . the second conditional variable a have also been
described and applied during the derivation of the equations. In this chapter, closure for
the DCMC equations has been proposed using scalar transport and CMC closure hypotheses.
The resulting equation contains a strain rate tensor term that has been modelled using two

different stochastic processes. The results obtained from the use of these models are presented

in the following chapter.
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Chapter 4

Simulation of Methane Oxidation

‘with DCMC-SP

The system of equations developed in the previous chapter, Eq. (3.49), is used to simulate
the combustion of methane and air. The present chapter describes the results obtained from
this computational simulation. The chemical kinetic mechanism, as well as the initial and
Boundaay conditions developed for the generation of both the DNS and CMC databases have
been used in this research. The DNS database has also been used as a source of information
for the evolution of the turbulent flow. This means that the results presented in this. thesis
have been produced in an a priori sense. A comparison between the DCMC-SP results of
this thesis and the CMC [9] and DNS [8] for a similar test case shows that the DCMC-SP

implementation offers an improvement over the singly-conditional moment closure method.

4.1 The Reference DNS and CMC Databases

The DNS database of Bushe et al [8] described the results of a number of independent runs
of a shear-free, decaying, turbulent mixing layer. A CMC simulation of the same test case [9]
provided good predictions of temperature and mass fractions of the major species while falling

short of providing good predictions of NO and intermediate mass fractions.

4.1.1 Flow Field

The flow field simulated in the DNS database is a three-dimensional shea.r;free,~ temporal
mixing layer, discretised by a 240 x 120 x 120 grid, in which the governing equations for
incompressible flow were resolved. The domain is periodic in two directions, while allowing

outflow in the third direction. The domain is shown in Fig. 4.1. Here, region A denotes the

-approximate spatial domain where the mixing between fuel and oxidiser occurs.
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Figure 4.1: DNS computational domain

The initial turbulent flow field was forced using the pseudo-spectral scheme of Ruetsch
and Maxey [69] that simulates a statistically stationary, incompressible turbulent flow. The
initial Taylor Reynolds number was 59 and the Prandtl and Schmidt numbers used were both

set to a constant value of 0.75.

4.1.2 Chemical Kinetics

The chemical kinetic mechanism developed for the DNS database [8] has been used in this
research project to determine the effectiveness of the model proposed in Chapter 3. This
mechanism involves three steps and is a modification of the two-step reduced mechanism
originally proposed by Williams [75], and later modified by Swaminathan and Bilger [76]
for the oxidation of methane, with the addition of a third step for NO formation with the
Zel’dovich mechanism. The resulting three-step mechanism is written here as

F+QOzi - I+P

I+0zi — 2P

Np+Ozi — 2NO
where F' is CH,, Oxi is Oy, and

I

i

4 2
(§H2 + §CO>

2 1 _ .
P = (-H O+ ;C0,].
(3 20 + 3 2)
An important feature of this mechanism is the presence of a steady-state approximation for

the mass fraction of the Hydrogen radical. This expression has been designed to emulate the
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reduction in the concentration of the Hydrogen radical at low temperatures. The mechanism
was further simplified by Bushe et al [8] by assuming peak temperatures in the 1200-2230
K range, so that the computational expense is reduced, while keeping acceptable levels of
accuracy. The mechanism was non-dimensionalised by assuming that the constant pressure
specific heat Cp, the ratio of specific heats -y, and the speed of sound ¢ remain constant. It was
also found that the region where the chemical reaction takes place needed to be broadened to

avoid the computational expense associated with the calculation of sharp gradients.

4.1.3 Initial Conditions

Since the chemical kinetic mechanism used in the DNS is not capable of auto-ignition, the
initial conditions of the scalars were taken from a planar, laminar flame, which also served as
the initial conditions for the CMC simulations. The initial conditions as a function of mixture
fraction are shown in Fig. 4.2. This laminar flame was located in the plane formed by points

pgrs in Fig. 4.1.

0.35 2000 . .
s OZ ’/—\\
0l ~-. CH, 1800t // \
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) . NOx10” 1400+ \
Y| 0.2r T 1200t N
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(a) Initial Conditions of Species Mass Fractions (b) Initial Conditions of Temperature

Figure 4.2: Initial Conditions of the Scalar Fields

4.2 Simulation of CH, Oxidation Using DCMC-SP

Using the chemical kinetic mechanism described in the previous section, Eq. (3.49) is expanded

to include the species present in the chemical kinetics mechanism, as well as the conditioning
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scalar variables, resulting in the following system of equations

_0Yo - Yo, . 0%Yo, .
P at 2 = w02 + C2 pD Xz + aa2 2pDXa
_0Yp -  0%p o’Yp
5 - wr + 6_C2PDXZ + WPDXa
oY, Yy %Y,
o T YTt pe PPX T ee PPXe
p -~ 0%p _  0%p ___
JY yo = 62?1\]0 o %Y o
ot = wno + 6(2 PD z + 602 pD a
_0T - or T _
Por = wrt a—Cngxz + 5.2PPXa
Na _ _y0a 0a .._2(6%)2_2(%)22
ot Oz; Oz; Y ¢ 2\ 0a/) Xa
0%*Xa - PXa__ |
+D—55 C; s+ D5 5 Xa
G _ _26_26_23.._2(6?: "’_2(6% ‘Xa
ot Ox; Oz; Y2\ o 2\ 0o/ Xx:
g Xz s BZE_
+D—== 3C2 +D6‘ 5 X (4.1)

This system of equations was solved for a 50 x 50, a — ¢ grid, with the initial calculation of
the strain fields in the z — y space and later mapped onto the a — ¢ space using the simple
‘mapping convention described in Sections 3.7.1 and 3.7.2. The boundary conditions for the
strain fields were set to be periodic for both directions. The boundary conditions for all the
reacting scalars were set to be periodic in the direction of « and constant in the direction of
(. The initial conditions of thekrea;cting scalars and of scalar dissipation of mixture fraction

were taken directly from the laminar flame described in Section 4.1.3.

The results obtained from the numerical implementation of the system in Eq. (4.1) are
presented in this section. Once the strain field was simulated using either of the stochastic

processes, the ODE solver DVODE [77] was used to solve Eq. (4.1). Fig. 4.3 serves as an

illustration of the structure of the code.
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Figure 4.3: DCMC-SP code structure

4.2.1 Simulation of the Strain Field

As discussed in Chapter 3, the strain field has been simulated using two different stochastic
processes. This section summarises the results obtained for both cases. Unless expressed
otherwise, the figures in this section show results obtained after a calculation time of t = 5

time units. In this computational implementation, the following model has been used:

0Z 07

_2(9_.’121'67_7'Sij = —2xzni'n,jS,~j ~ -27(771,-,'71,]'5,']'.

Where n; and n; are unity vectors in the direction of the z; and z; directions of the gradients
of Z. The value of n;n; is then [—-1 + 1]. Bushe and Cant [78] showed that positive values
of n;n; are statistically more frequent; as a result, it is a.ésumed in this research that n;n; is
negative if the strain S;; is negative and positive otherwise. This model applies analogously

to the corresponding term in the transport equation of xq.
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Periodic Forcing with Random Phase Shifting (PF)

This model was validated using the stochastic variables X (z,y;t) and Y (z,y;t) in the solution
of Egs. (3.44) and (3.45). '

Using statistics from the DNS database of Bushe et al [8], it was found that the appropriate

values to simulate a strain field with similar characteristics using the PF model were,

e A; = 1.585 this parameter is proportional to the Taylor Reynolds number of the DNS

database

® wiz = wiy = 2w which indicates the periodicity of the signals. This parameter was set
empirically by comparing the structure of the strain fields from the DNS database and
the strain fields obtained using the PF model.

The magnitude of the strain tensor was calculated using the values of the parameters ¢ and
v from the DNS database. In all cases, the strain field was first calculated in the z — y plane

and later transformed to the o — ¢ plane following the mapping rules described in Section 3.6.

Figure 4.4(a) shows the results of the calculation of the strain field in the z — y plane using
¥ = 3 periodic signals. Figure 4.4(b) shows the same strain field after being transformed to
the a — ( plane. Comparing Figs. 4.4(a) and 4.4(b) it can be seen that the main effect of the
coordinate transformation is an apparent reduction of the area of influence of the structures
close to mixture fraction values of 0 and 1, followed by an elongation of the area of influence

of those structures between the aforementioned regions of Z.

These two figures also show that the overall magnitudes of the strain field are maintained,
while the reduction - elongation - reduction effect makes some of the structures disappear, es-
pecially for regions in the vicinity of Z = 0. This finding is of relevance since the areas where
the elongation effect is prevalent, is where values of mixture fraction indicate a more vigorous
mixing process, where chemical processes are taking place with more frequency. As expected,
the reduction - elongation - reduction effect does not take place along the a direction. The

strain fields are also shown to be periodic in the z, y, @, and { directions.
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Figures 4.4(c) and 4.4(d), show the strain fields in the o — ¢ space for * =4 and ¥ =5
periodic signals, respectively. From Figs. 4.4(b), 4.4(c), and 4.4(d), it can be seen that
the number of signals used has a significant effect on the structure and propagation of the

calculated field.

(¥=40a-¢ (d)¥=5a-¢

Figure 4.4: Strain fields simulated with PF

The strain field calculated with three periodic signals shows well-defined regions of positive
and negative values of strain, which have the physical meaning of stretch and compression
regions in the flow. These structures tend to be very large for this particular case and do
not show much intermittency. The structures can be considered to be eddies, which im‘p].ies

that large structures correspond to the energy-containing subrange or the inertial subrange
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in the cascade model. Consequently, smaller, finer structures would represent the behaviour
of a flow at the dissipation subrange, at which combustion is assumed to take place. Figures
4.4(c) and 4.4(d) show a much finer structure with more intermittency than Fig. 4.4(b) while

yielding similar strain magnitudes to those obtained from the DNS database.

Coupled Map Lattice (CML)

In Chapter 3, the CML equation of Hilgers and Beck [6], [7] that was used to calculate the
strain field in this thesis was described. Opposite to the PF model, the CML model simulates
velocities from which the strain field has to be calculated. Two independent velocity fields
were simulated and assigned arbitrary directions 4 and v, which are orthogonal to each other.
The simulations were run in the =z — y space, with parameters y7 = 0.02, ¢ = 0.0194, and
C = 1.411 in Eq. (3.47) and transformed to the a — ( space using the mapping rules described

in Section 3.6.

Figure 4.5(a) shows the the u-velocity field simulated using the CML model at a level of
k = 3, which is assumed to be in the integral sub-range of the energy cascade of Fig. 2.1.
Figures 4.5(b) and 4.5(c) show the results of the simulation of velocii;y for levels of K = 9 and
k = 15, respectively. The structures in these figures do not correspond to eddies, since eddies
represent a vortical motion and these figures are only a two-dimensional representation of one

component of velocity.

A comparison between Figs. 4.5(a), 4.5(b) and 4.5(c) shows that the velocity magnitude
decreases about 4 orders of magnitude from levels £ = 3 to k = 15. This proves the capabilities
of the model to represent the dissipation of energy from one level to the next. It can also be

seen that the structure of the velocity field is more uniform as the k level is increased.

Figures 4.6(a), 4.6(b), and 4.6(c) show the vector form of the two-dimensional velocity
fields at different levels of energy for the area delimited by 0.2 < a < 0.6 and 0.2 < ¢ < 0.6.

The fields were calculated using the results of the simulations of velocities in two orthogonal

directions for levels of £k = 3, k = 9, and k = 15, respectively.
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Comparing these figures, it can be seen that some of the structures present in Fig. 4.6(a)
have been completely dissipated, or have been dissipated into smaller structures in Fig. 4.6(c),

giving rise to a more orderly field.

(c) k=15

Figure 4.5: u-velocity fields simulated with CML

Figs. 4.7(a), 4.7(b), and 4.7(c) show the strain fields obtained using the CML model and
the definition of Eq. (3.48) for energy levels of k = 3, kK = 9, and k = 15, respectively.
The effects of the decaying energy on the strain fields are evident in these figures. It can
be seen that the magnitude of the strain field decays considerably as k advances further into
the viscous subrange of the cascade model. This leads to a strain field with fewer peaks and

more neutral, or zero-strain areas as shown in Fig. 4.7(c). Using the values of the turbulence
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parameters € and v from the reference DNS database, it was determined that the level of

energy in the CML model that would give the appropriate values corresponds to k£ = 9, which

is shown in Fig. 4.7(b).
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() k=3 (b) k=9

Figure 4.7: Strain fields simulated with CML

Comparing Fig. 4.7(b) with Fig. 4.4(d), it can be seen that there are important differences
and similarities between the structure of the fields produced by the PF and the CML models.
First, the PF model is based on spectral methods which are inherently smooth due to the
filtering that occurs as a consequence of Fourier-like transformations. This is proven by the
fact that the structures produced by the PF are larger than those simulated with the CML
model. It can also be observed that, in general, the fields produced by the PF behave very much
as an amplified portion of a selected area of the CML-produced field. This discrepancy could
be eliminated by using a larger number of signals in the PF model that would induce more
variability along the domain. One of the similarities between the models is their capability to
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provide the right orders of magnitude for the field when compared to the calculated value of
" the strain tensor using v and € parameters from the DNS database. At ¢t = 5 time units, the
- DNS data yields S;; = v/¢/2v = £0.5656, while the both the CML and PF models provide

values in the range —0.8 < S;; < 0.8 for the case of k = 9, and ¥ = 5, respectively.

4.2.2 Predictions of Reactive Scalars

Two different sets of calculations using the PF and CML models proposed in this thesis were
performed and compared to the DNS [8] and CMC [9] reference databases. In addition to these,
a third set of computations was performed using a generator of Gaussian random numbers
that was used in place of the PF and CML models to mimic the chaotic variations of strain.
This was done with the objective of determine whether or not a simple set of random numbers
would provide similar results to those obtained with the periodic forcing and coupled map
lattice models. The results obtained with this scheme are identified as DCMC-RAN in the
following figures. Figure 4.8 expresses results in terms of Favre averages which, for the case

of species mass fractions, were calculated in a similar fashion as in the CMC formulation as
_ Jy PICYTCP(C)d¢

Iy PICP(O)d¢
where P(() is the PDF of mixture fraction which is represented by the 8-PDF taken from the
DNS reference database [8]. |

Y

In Fig. 4.8(a) it can be seen that the DCMC-PF and DCMC-CML models provide predic-
tions of the Favre average of oxidiser mass fraction in excellent agreement with the DNS results
with a noticeable improvement over the CMC results, while the DCMC-RAN model provides
only a marginal improvement over the CMC predictions. The Favre-averaged methane mass
fraction is also well predicted by both the DCMC-PF and DCMC-CML models, as shown in
Fig. 4.8(b), with a tendency to under-predict, especially after 35 time units. Figures 4.8(c)
and 4.9(a) show that the DCMC-PF and DCMC-CML models provide good predictions of the
Favre average and conditionally-averaged intermediate mass fraction after 30.0 time units, re-
spectively. This result has important implications given that the intermediate includes CO. It

is expected that if the intermediate mass fraction is properly simulated, the ability to capture

its effect in the overall generation of pollutants will be positively affected.
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Figure 4.8: DNS, CMC, and DCMC Favre averages of species mass fractions
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The Favre-averaged mass fraction of products is over-predicted for all times by both
DCMC-based simulations as shown in Fig. 4.8(d). This over-prediction, along with the under-
prediction of the Favre average of fuel mass fraction, is merely a result of the overprediction

of the reaction rates.
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Figure 4.9: Conditional averages at t = 30.0

Probably the most significant achievement of this project is the good agreement between
the DNS and DCMC-PF and DCMC-CML predictions of NO. Figure 4.8(e) shows an im-
portant improvement in the predictions of the Favre average of NO mass fraction over the
CMC results. This improvement is also evident in the conditionally-averaged NO mass frac-
tion predictions shown after 30.0 time units in Fig. 4.9(b). The good predictions of NO
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mass fraction are closely related to the quality of the predictions of temperature, since the
Zel’dovich NO mechanism used to calculate the NO mass fraction is strongly dependent on
temperature. Figure 4.8(f) shows the Favre average of temperature, where it can be seen that
the DCMC-PF and DCMC-CML results show a considerably improvement in the predicted
results over the CMC results. This result is further confirmed by Fig. 4.9(c).

0.2 0'40.0'6 08

(a) T;ne, DCMC-PF (b) Mipe, DCMC-CML

02 04 06 08

(c) int, DCMC-RAN

Figure 4.10: a-variations in the intermediates field at ¢ = 30.0

Figures 4.10, 4.11, and 4.12 show comparisons between the variations around the condi-
tional mean in the direction of o for different scalar fields at 30.0 time units calculated with
the different models proposed in this research. Here, II; = Y7 (o, ¢) — (Y7|a).




Chapter 4. Simulation of Methane Oxidation with DCMC-SP 52

02 04 06 038

o

(2) Ixo, DCMC-PF (b) TIyo, DCMC-CML
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Figure 4.11: a-variations in the NO field at ¢ = 30.0

From these figures, it can be seen that the variations simulated by the PF and CML models
have similar structures and magnitudes for all cases shown, while the DCMC-RAN implemen-
tation simulates variations one order of magnitude smaller in the same fields. For all cases, it
is clear that the maximum and minimum variations occur in the vicinity of ¢ = 0.35, which is
where the chemical reaction is assumed to occur with more intensity. While the PF and CML

show consistent results with this hypothesis, the RAN implementation shows large variations

in the temperature field at a very different location, as shown in Fig. 4.12(c). This is due to

the lack of structure in the tensor field calculated with the DCMC-RAN model.
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The variations shown in Fig. 4.12(a) and 4.12(b) seem to indicate the presence of ex-
tinction and re-ignition phenomena, characterised by ‘cold’ regions between ‘hot’ regions. In
the case of the figures shown, these variations are rather small, but large enough to produce
changes in the simulated values of NO and intermediates, as shown in Fig. 4.11(a), 4.11(b),
4.10(a), and 4.10(b).

Both the PF and RAN simulations took approximately 2.7 hours to complete in a P4 Xeon
2.4 GHz cluster using a single processor, while the CML simulations took approximately 30.0

hours to complete using the same hardware.

x10°

02 04 o 06 08

(a) Iz, DCMC-PF (b) Tz, DCMC-CML

(c) Iz, DCMC-RAN

Figure 4.12: a-variations in the temperature field at ¢ = 30.0
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4.3 Summary

The results obtained from the numerical implementation of the models proposed in this thesis
have been presented in this chapter. The most important observations are summarised as

follows:

e The stochastic processes used to simulate the strain tensor proved to offer good results
in terms of magnitude and structure of the strain fields. The PF model requires at least
5 signals to offer consistent results, while the CML model provides the structure and

magnitude required for the test combustion process at a dissipation level of k = 9

e It was observed that by using a second conditional variable additional variations can be
simulated with the DCMC model. These variations would have been ignored using the

single conditional moment closure.

e In general, the DCMC-PF and DCMC-CML models provided improved predictions of
species mass fractions and temperature when compared with the CMC model. This
is especially evident in the Favre-averaged predictions of intermediates and NO mass

fractions and temperature.

e While the computational expense of the DCMC-RAN is comparable to that of the -
DCMC-PF model, it was observed that the lack of structure inherent to the RAN im-

plementation results in inconsistent simulations of the scalar fields.
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Chapter 5

Conclusions and Recommendations

The application of the DCMC method with stochastic processes to simulate turbulent com-
bustion has been explored throughout the development of this thesis. In this chapter the
findings produced with this research are summarised and recommendations for future work

are articulated.

The application of stochastic processes and Monte Carlo methods in combustion were de-
scribed in Chapter 2, along with the general fundamentals of turbulent combustion. Examples

of relevant applications to this research were also discussed in Chapter 2.

The derivation of the mathematical models proposed in this thesis took place in Chapter
3. DCMC transport equations of species mass fractions, temperature and scalar dissipation
were formulated and the unclosed terms were modelled using two tools: scalar transport and
conditional moment closure hypotheses. Two different stochastic processes were also proposed
in Chapter 3 of this thesis to model the strain tensor in the tfa.nsport equation of scalar dis-

sipation.

The numerical implementation of the models developed in Chapter 3 showed encourag-
ing results in terms of simulations of the strain tensor, as well as predictions of temperature
and intermediates and NO mass fraction. The addition of the second scalar variable induced
variations that cannot be simulated by the single conditional moment closure method. These

results are discussed and summarised in Chapter 4.

An example of the applicability and advantages of the DCMC method with stochastic

processes in simulation of turbulent combustion has been demonstrated with the results ob-

tained from this research. As with many other projects, however, areas of improvement have
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also been identified that would make the model more robust and applicable to a more general

range of problems. It is then proposed to:

e Explore ways in which this or a similar model could work linked to a CFD program.
With this model it is possible to use the fluid flow data provided by a CFD program as
a real-time input. The code would then calculate the strain field and the solution for
Eq. 4.1, returning updated values of density, temperature, viscosity, etc. to the CFD

code.

o Investigate the effects of increased variations around the conditional mean of a. These
variations could be induced by modifying the initial conditions and coupling between

the scalar dissipation of a and Z.

o Investigate the use of the models presented in this thesis including variations in space.
This implies a different approach for the closure of Egs. (3.20) and (3.21) to that
presented in Chapter 3. It is possible that the differences between the results presented
in this research and those found in the DNS reference database could be due to the lack
of a spatial variable. The use of such as a conditional variable will provide the model

with a capability to discriminate among isosurfaces of mixture fraction and a.

e Test a different case. As with most numerical models, it is important to verify the
validity and applicability of the hypotheses used in the development of the model. The
combustion of Hydrogen-Oxygen and Hydrogen-Air flames has been studied extensively

and could present itself as a good candidate for comparison purposes with the models

presented in this thesis.
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