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Abstract i i 

Abstract 

'Conditional Moment Closure for Methane Oxidation Using Two Conditional 

Variables and Stochastic Processes' 

by Jorge R . Lozada-Rajiurez 

The condi t ional moment closure method using two condi t ioning scalar variables is applied 

to derive the t ransport equation o f species mass f ract ion, temperature, and scalar dissipa

t i o n in a decaying, isotropic, homogeneous turbulent methane-air flow. T h e strain tensor in 

the t ranspor t equation of scalar dissipation of the condi t ioning variables is simulated using 

stochastic processes. T h e results o f this model are then compared to DNS and condi t ional 

moment closure w i t h one variable for the same test case. 
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Chapter 1 

i 

Introduction 

T h e complexi ty of the t ranspor t equations tha t describe turbulent combustion makes necessary 

the use o f averaging procedures so that pract ical problems can be analyzed numerical ly in an 

efficient, t ime ly fashion. Th is averaging process creates a closure prob lem by generating 

terms wh ich are not expl ici t funct ions of the averaged variables [2]. Generally speaking, 

closure problems are solved by model l ing the unclosed terms th rough the use of theoret ical 

or empir ical hypotheses or experimental results. I n the fol lowing chapters of this thesis, a 

closure method for the t ransport equations o f turbulent combustion w i l l be formulated. The 

results obta ined from the computat ional implementat ion of the resul t ing model on a decaying, 

isotropic, homegeneous, non-premixed turbulent flow of methane and air w i l l be shown and 

compared to a reference DNS database of a similar f low. 

1.1 Objective 

T h e main objective o f th is research project is to explore the appl icat ion of stochastic processes 

to the model l ing of the strain tensor i n the scalar dissipation t ranspor t equat ion t h a t is de

r ived using the Doub ly Condi t ional Moment Closure ( D C M C ) method. T h e resul t ing system 

o f equations is used to simulate the oxidat ion of methane by air i n decaying, homogeneous, 

isotropic turbulence. I t is expected that the predictions of species mass fractions and tem

perature w i l l compare well w i t h those obtained from a direct numerical s imulat ion database 

and show an improvement over the results provided by a singly condi t ional moment closure 

s imulat ion o f the same test case. 

1.2 Doubly Conditional Moment Closure (DCMC) 

T h e Condi t ional Moment Closure ( C M C ) o f Kl imenko [3] and Bi lger [4] was developed w i t h the 

purpose o f f inding closure for the chemical source te rm of the species mass f ract ion t ranspor t 
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equat ion. This method is based on the assumption that the fluctuations of scalars, such as 

the chemical species mass f ract ion and temperature, are related to variat ions of other scalars. 

I n th is thesis, the C M C method has been expanded by using two different condi t ioning scalar 

variables. One o f those variables, m ix tu re fract ion, is used to express the degree o f mixedness 

of two or more elements i n a non-premixed, reacting flow. A second non-reactive scalar 

variable named a has been defined to capture the effects o f fluctuations due to st ra in along 

isosurfaces of m i x t u r e f ract ion. Th rough the use o f the doub ly condi t ional moment closure 

( D C M C ) methodology, macro-mix ing phenomena can be decoupled from the chemistry, wh i le 

conserving the effects of micro-mix ing v ia the scalar dissipation term. 

1.3 Stochastic Processes 

The st rong coupl ing between fluid dynamics and chemistry i n turbu lent react ing flows is 

frequent ly modelled using the scalar dissipation t e r m for wh ich a number of different models 

have been proposed i n the past. I n th is thesis, a t ransport equat ion is used to calculate scalar 

dissipat ion. Th is t ransport equation includes the strain tensor which is often model led i n 

turbulence research. Recognizing the chaotic behaviour of turbulence, the use of two stochastic 

processes to model the st ra in tensor i n the t ransport equation of scalar dissipat ion te rm is 

proposed and analyzed. Stochastic processes are events tha t depend on stochastic variables 

that exh ib i t an unpredictable behaviour. I n the first model , a periodic force w i t h random 

phase shif t (PF) is used to emulate the chaotic behaviour o f the s t ra in tensor. T h e second 

model uses the Coupled M a p Lat t ice (CML) o f Beck [5] and Hilgers and Beck [6], [7] t h a t 

generates realisations of the fluctuating velocity increments as a funct ion o f t ime for a fu l ly -

developed turbulent flow. T h e strain tensor is then calculated using those velocity increments. 

The results from b o t h codes are then compared to the Direct Numerical S imulat ion database 

of Bushe et al [8] and the C M C results o f Bushe and Bilger [9]. 

1.4 Thesis Outline 

I n th is chapter, the fundamental grounds and mot ivat ion for th is research project have been 

discussed. 

I n Chapter 2, the fundamentals o f combustion and turbulence, as wel l as turbu lent com-
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bust ion, axe addressed. The t ranspor t equations that describe turbu lent combust ion, as well 

as current turbu lent combust ion models, are also described. 

I n Chapter 3, the D C M C equations are derived. T h e closure assumptions and model l ing 

o f the strain tensor and o f scalar dissipation are also discussed i n th is chapter. 

Chapter 4 pertains t o the implementat ion o f the equations and models discussed i n Chap

ter 3 to a decaying, homogeneous, isotropic turbulent react ing flow. The turbulence model and 

chemical k inet ic mechanism used for this project are addressed and compared w i t h a direct 

numerical s imulat ion. 

Final ly, i n Chapter 5, the conclusions about the research are ar t icu lated and recommen

dat ions made for future research. 
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Chapter 2 

Combustion, Turbulence, and 

Stochastic Processes 

Combust ion can be denned as the self-sustaining process th rough wh ich two or more com

pounds, fuels and oxidizer, are modif ied through a chemical reaction w i t h an associated release 

of energy. The study of combustion phenomena implies a combinat ion o f thermodynamics, 

fluid mechanics/dynamics, chemical kinetics, and transport phenomena. Combust ion pro

cesses can be classified according to the mix ing behavior and the flow velocity regime of the 

system. Premixed systems and non-premixed systems can exist i n b o t h the laminar and tur 

bulent regimes of fluid flow. Th is research util izes mathemat ical model l ing and computer 

s imulat ion of combustion i n a deacying, isotropic, homogeneous, non-premixed turbu lent flow 

of air and methane. The Doub ly Condi t ional Moment Closure ( D C M C ) method has been used 

to solve the transport equations of mass fract ion o f species. I t is proposed to use a stochastic 

process to model the strain tensor i n the transport equation o f scalar dissipation responsible 

for the micro-mix ing o f species. Different options for the stochastic process are discussed. 

2.1 Premixed Combustion 

Premixed combustion occurs i f the fuel and oxidizer are completely mixed before the chemical 

reaction takes place. Examples o f premixed combustion are Bunsen burners and spark- igni t ion 

engines. Premixed combust ion is often characterized by the burn ing velocity, wh ich is a 

funct ion o f the chemical composit ion, i n i t i a l temperature, and pressure o f the premixed flow. 
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2.2 Non-premixed Combustion 

I n non-premixed combustion, the fuel and oxidizer are fed into a combustion chamber or 

reactor f rom different sources. Pract ical examples of non-premixed combust ion include diesel 

engines, gas turbines and gas stoves. Unlike premixed combustion, where m i x i n g has already 

taken place before the chemical reaction occurs, and the fue l /a i r ra t io is homogeneous i n the 

domain , i n non-premixed combustion fuel and oxidizer have to mix i n order for the react ion to 

proceed. The state of mixedness o f the reactants is characterized by mix tu re f ract ion, wh ich 

is defined as: 

Here, Yp and Yo axe defined as the mass fractions of the fuel and oxidizer, respectively. 

M i x t u r e f ract ion for the fuel stream is, Z(xj,t) — 1, and Z(xi,t) = 0 for the oxidizer stream. 

2.3 Transport Equations 

I n general, the t ransport equations used in combustion express the coupl ing between the fluid 

mechanical and chemical reaction phenomena tak ing place in the combustion event. W h e n 

deal ing w i t h reactive mixtures of gases, for example, the t ransport equations are usual ly 

derived making use of the kinetic theory of gases in order to capture the specific behavior of 

the system under study. Unless noted otherwise, the fol lowing equations axe derived for the i r 

appl icat ion to problems involv ing ideal gases. 

2.3.1 Transport of Mass, Momentum, and Energy 

T h e t ranspor t o f mass balances the amount o f mass entering and leaving any given contro l 

volume. 

dp dpuj _Q 

dt dx{ 

T h e equation of t ranspor t of momentum indicates the change i n momentum caused by the 

external forces (e.g. iner t ia l , pressure, viscous, and body forces) act ing on the fluid as, 

dt dxj dxj dxj 
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where the viscous tensor for a Newtonian fluid, using the molecular viscosity, pi, and the 

Kronecker del ta 8%j, is described by: 

(dui duj\ 2 / duk\ 
"3 

The equat ion o f t ransport o f energy balances the thermal , chemical, and kinetic energy of 

the system. Fol lowing Veynante and Vervisch [10], the t ranspor t equation of energy can be 

u2 

expressed i n terms o f the to ta l specific enthalpy, ht = h + -_-, o f the system as follows: 

dpht dpuiht dp d opuiht op d ( rh \ 
+ ~dx~ =di + dx-iVi+ UjTij) + UiP9i dt 

where the diffusion of energy, i n this case of specific enthalpy, is described by the Fourier Law, 

as: 
N 

Ji ~ pr 

dh ^fPr \ dYj 
dxi _—' \Sci J dxi 

Here: 

1. The P rand t l number, Pr = ^j^-, is the non-dimensional group tha t measures the rat io 

of t ranspor t o f momentum due to diffusion to the temperature. Cp is the specific heat 

at constant pressure and A is the thermal conductivi ty. 

2 . Scj, the Sdun id t number of the Ph species, is defined as Sc j = where Dj is the 

di f fus iv i ty of the Ph species relative t o a major or reference species. 

mi 
m 3. Yj is defined as the mass fract ion o f the Ph species, as 

2.3.2 Transport of Mixture Fraction 

M i x t u r e f ract ion is a conserved scalar. I t is only used to keep track of the mix ing process as 

i t evolves i n t ime and i n space. 

dpZ | udpZ d f p D z

d Z \ _ o ( 2 i ) 
dt 1 dxi dxi \ dxij 

2.3.3 Transport of Species Mass Fraction 

T h e t ranspor t equation of the mass fractions for J = 1...N chemical species consists o f accu

mula t ion , advection, diffusion, and product ion terms: 

dpYj doYj dJ\ 
^ + Ui-dx- = -dx-+0}I- M 
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Using Fick's Law of dif fusion [2], the molecular diffusion of species is defined as: 

J! = - A D , ^ : (2.3, 

2.4 Chemical Kinetics and Reaction Mechanisms 

The chemical source te rm, CJJ, in Eq. (2.2) describes the net rate of p roduct ion o f species due 

to chemical reactions. The chemical source t e r m for M reactions is defined as [11], 

M N / Y K 

* / = w £ K * - 4 , * ) * n ( ^ ) ' » (2-4) 

K=l J = l V ' 

where Wj is defined as the molecular mass of the Ith species. i/T K a n d v" K are the stoichio

metr ic coefficients in the Kth chemical reaction, 

N N 

7=1 7=1 

w i t h Aj being the chemical symbol o f the Ith species i n the chemical reaction, k is the 

Arrhenius type constant o f the form, 

k = BTaexp(-^y (2.5) 
Here, J3/fTQfir

 corresponds to the frequency factor for the Kth react ion step, OLK is used to 

define the temperature dependence o f the frequency factor for the KTH reaction, while EK 

represents the act ivat ion energy required by the Kth react ion to proceed, and R° being the 

universal gas constant. F inal ly , the mole fract ion o f the Ph species Xj is defined as, 

w i t h the ideal-gas law, 

and, 

x,= f'W m 

pV = mR°T, (2.7) 

N 

m = p^(yr/Wi). (2.8) 
7=1 

Subst i tu t ing Eq. (2.8) in to Eq . (2.7) leads to, 

N 

PV = R0TpY,(Yj/Wr). (2.9) 
i=i 
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Using Eqs. (2.5), (2.6), and (2.9), Eq . (2.4) can now be wr i t ten as 

*/ = W, £ ) K « - BKT«« exp ( - J | ) JJ (^y^ • (2-10) 

The most basic analyses of combustion often rely on the assumption tha t the chemical 

reactions occur at faster rates t han those associated to the t ranspor t phenomena occurr ing 

i n the flow. This assumption is often referred to as 'fast chemistry ' and usually denotes 

equ i l ib r ium states for chemical systems. B y invoking fast chemistry, systems can be analyzed 

by using the basic laws of thermodynamics, which greatly simplif ies the problem i n hand. 

However, some chemical reactions occur at rates simi lar to those o f t ransport processes; most 

transient phenomena like ign i t ion, ext inct ion, and re- igni t ion cannot be predicted w i t h the 

use of fast chemistry. K inet ic mechanisms express the rates at which species are created or 

consumed dur ing a chemical reaction. For a system of reactions r = 1...R and species s = 1...S, 

s=l s=l 

where kT is the reaction rate coefficient, Eq . (2.5) and the stoichiometric coefficients o f reac-

tants, frl\ and products uf). T h e rate of format ion for the Ith species as a funct ion o f the 

concentrat ion of S species, cs, as given by Warnatz [2]: 

*"=(#) =»{#-#)n<#-
V / chem,r s = \ 

Reaction rates are strongly non-linear functions of temperature v ia the react ion rate coefficient 

k. Pressure is also known to affect the reaction rates by modi fy ing the concentrat ion o f species. 

Complex reaction mechanisms, e.g. for the ox idat ion of methane, can consist o f many 

different global reactions. Researchers have proposed methods to reduce the number o f re

actions to include only those tha t are deemed most relevant for the study o f the phenomena 

o f interest. Most reduct ion processes are based on assumptions of par t ia l equ ihbr ium and 

quasi-steady state, wh ich implies tha t reduced mechanisms are applicable on ly under certain 

l i m i t i n g condit ions. Peters [12], identif ied the reduct ion in computat ion t ime for the numer i 

cal s imulat ion of combustion events, as well as the appl icabi l i ty o f asymptot ic methods to the 

analysis o f flame structures as the two most impor tan t applications of reduced kinet ic mech

anisms. As an example, Bilger et al [13] proposed a method to derive a four-step mechanism 
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for a methane-air flame wh ich is in good agreement w i t h the more complex mechanisms f r o m 

which i t or iginated for a l im i ted class o f combustion problems. The reduced chemical k inet ic 

mechanism used i n this research project is described i n Chapter 4. 

2.5 Scales of Turbulence and Kolmogorov Scales 

Turbu lent flows can be found in different scales o f magni tude ranging f r o m large scales such 

as those found i n oceans or atmospherical ly relevant scales, t o the very small scales such as 

those studied i n combust ion. Turbulence is a high-energy phenomenon. This k inet ic energy 

is later dissipated, mainly th rough viscosity. The effects of molecular viscosity, however, are 

relevant only at very small scales. Th is implies tha t , i n order for the energy to be dissipated 

at those scales, th is energy must be transferred f rom the largest scales down to the smaller 

scales. The vortices, also known as eddies, present i n a turbu lent flow vary in scale and they 

can be correlated to the development o f velocity gradients. I t has been found tha t the largest 

vortices are responsible for most of the transport o f momentum. However, viscosity act ing at 

molecular scales is responsible for the dissipation of energy through a conversion of k inet ic 

energy in to heat at the smal l scales of mot ion [14]. Since chemical reactions typ ica l ly take 

place at this same molecular level, i t is impor tant to consider these smal l turbulence scales. 

T h e K41 theory, proposed by Kolmogorov [15], states tha t , at the smallest scales of t u r b u 

lence, the fluid mo t ion is self-similar and isotropic, giving or ig in to the concept o f universal i ty 

of turbulence at such small scales. Fol lowing Kolmogorov, the use of the kinematic viscosity o f 

the fluid, v, and the energy dissipation rate normalised per un i t mass, e, permits the def in i t ion 

of the fol lowing microscales, also known as the Kolmogorov scales. 

• Characterist ic length microscale, 

• Characterist ic t ime microscale, 

• Characteristic velocity microscale, 
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A t these micro-scales, the result ing local Kolmogorov Reynolds number is equal t o unity, 

wh ich means that there is no turbulence at smaller scales. 

2.6 Cascade of Turbulent Kinetic Energy 

Based on Kolmogorov's ideas, researchers have developed the concept of the energy cascade, 

wh ich states tha t tu rbu len t k inet ic energy transfers f rom large to small scales v i a vortex 

stretching and once the energy reaches the smaller scales of turbulence, viscous dissipation 

occurs. Tennekes and Lumley [14] provide a complete discussion on the vortex-stretching 

mechanism. F ig . 2.1 ( f rom Peters [1]) shows the turbu lent k inet ic energy spectrum as a 

funct ion o f wave number k, where k is the inverse of the vortex or eddy size. F rom this figure, 

i t can be seen that the kinet ic energy exhibi ts a monotonic decay i n the logar i thmic p lo t , w i t h 

a slope of —5/3 along the inert ia l subrange. Th is is followed by an abrupt decay i n the viscous 

subrange, where viscous dissipation affects the smallest scales of turbulence. 

log E(k) 

large energy inertial viscous 
scales containing subrange subrange 

integral 

I 1 1 
0 r 1

 7,-' 

log k 

Figure 2 .1 : Turbulent kinetic energy spectrum, from Peters [1] 

2.7 Turbulence Simulation and Modelling 

T h e Navier-Stokes equations that describe turbulence can, i n pr inciple, be solved di rect ly using 

numerical techniques. I n reality, the strong coupling and non-l ineari ty of the equations, along 

w i t h the wide range of length and t ime scales involved i n the solut ion and the chaotic nature 

o f turbulence, make such direct calculations possible on ly in very l im i ted cases. T i m e and 

mass averaging techniques have been developed to circumvent this problem. T h e in t roduct ion 

o f such techniques, however, produces terms for which the solut ion is either not k n o w n or 
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cannot be expressed as an explicit function of the averaged variables. Oftentimes, these terms 

have to be modelled. The following sections describe the simulation and modelling techniques 

most widely used in turbulence. 

2.7.1 Direct Numerical Simulation (DNS) 

In direct numerical simulation (DNS), the Navier-Stokes equations are solved numerically. 

This requires very fine spatial and temporal discretisations so that the transport equations 

can be solved from the large scales down to the Kolmogorov microscales. In general, it is 

estimated that the computation time for a DNS simulation increases approximately at a rate of 

Re* [2]. Consequently, at present only low Reynolds number flows can be solved directly. This 

limitation prevents the use of DNS for most practical applications. Currently, most research 

using D N S is aimed at the analysis of small turbulent structures, and the development and 

validation of closure models. 

2.7.2 Large-Eddy Simulation (LES) 

With Large-Eddy Simulation (LES), the large scales of turbulence are calculated directly 

in the same way as in DNS. The smaller scales are modelled using turbulence models and 

through processes of numerical filtering. L E S provides high-quality results at a much lower 

computational expense than DNS. 

2.7.3 Time or Ensemble Averaging (Reynolds Decomposition) 

The Reynolds decomposition [14], is frequently used to obtain statistical information from a 

turbulent flow. The time-average velocity of the flow can be defined as, 

so that instantaneous fluctuations of velocity around the time-average mean can be expressed 

which can also be expressed as: 

Ui{x,t) 
N 

u'iixjt) = Ui{x,t) — Ui(x). 
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A n impor tant , and widely used parameter i n turbulence characterization is the turbu lent 

k inet ic energy K , which is obtained f r o m tak ing the root mean square and t ime-averaging the 

veloci ty fluctuations as follows [16], 

- 1 — 
2 

wh ich , for a three-dimensional flow field becomes, 

'2 . *2 i '2 _ _ Uj + + M3 

K ~ 2 • 

I f no addi t ional energy is transferred to the system, the kinet ic energy dissipates i n t ime at a 

rate given by, 
DK 

e=m-
2.7A Turbulence Models 

F r o m probabi l i ty theory, i t can be shown tha t the ensemble average of the velocity fluctua

t ions around the mean value is equal to zero [14], or i n mathemat ical fo rm (u[) = 0. The 

second moment (u^u'^j t ha t represents the stat ist ical correlat ion between u,- and Uj becomes 

an ex t ra unknown in the system of equations for which an equation as an expl ic i t func t ion of 

the averaged variables is not available. This is commonly known as a closure prob lem and the 

unclosed terms are often modelled using physical or mathemat ical tools. 

Launder and Spalding [17], and Pope [18] summarise different mathemat ica l turbulence 

models. Those models range f rom one-equation to mult i -equat ion mathemat ica l expressions to 

characterise turbulent phenomena and were derived as an al ternat ive to previous models such 

as the mix ing- length model. The numerical designation for the models is based on the number 

of par t ia l differential equations which are needed to calculate the model led parameters. Gatsk i 

and Rumsey [19], for example, identi f ied variat ions of previous models tha t have or ig inated 

'zero-equation' models, wh ich are algebraic relations to define the vort ical or eddy viscosity, 

and 'hal f-equat ion' models where an ordinary differential equation is solved to calculate the 

eddy viscosity. Results obtained f r o m zero- t o mul t i -equat ion models may vary considerably, 

due to the different degrees of complexi ty and detai l that they may include i n their analyses. 

Most models are derived for specific applications, e.g. flow around a cyl inder, boundary- layer 

flows, and so f o r t h and they are usual ly tuned to provide acceptable to good approximat ions 

to experimental results. 
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2.8 Turbulent Combustion 

Most practical applications involving combustion occur in turbulent regimes. Directly or in

directly, al l of the characteristics of turbulence have a major effect on the evolution of a com

bustion event. Vorticity, for example, increases the interface area between fuel and oxidiser 

in non-premixed combustion, or between reactants, intermediates, and products in premixed 

flames, which results in an increased rate of reaction. 

In premixed combustion, turbulence has several important effects. It increases the area of 

the reactant-intermediate-products interface, which in turn increases the rate of reaction. This 

increase in area is due to the appearance of 'wrinkles' in the flame front which are produced 

by the action of turbulent vortices. As a consequence of this stretching, the reaction zone be

comes thinner, promoting higher flame-propagation velocities. If the accelerated mixing rate 

produced by the stretch effect reaches a point where mixing takes place faster than reaction, 

extinction of the flame occurs [20]. 

In non-premixed combustion, the most significant role of turbulence is to enhance mixing. 

This is achieved through the increase in the surface area of the fuel-oxidiser interface due to the 

strain and stretch created by vorticity and the high diffusion velocity present in turbulent flows 

which is a result of an increase in gradients. Since non-premixed combustion is a primarily 

mixing-limited phenomenon, the result of these effects is of paramount importance. 

2.9 Turbulent Combustion Simulation and Modelling 

There are a number of different techniques and approaches to solve the equations that describe 

the evolution of a turbulent reacting flow. Well established methods have been used for the 

study and analysis of turbulence. These methods have been modified and adapted to account 

for the interactions between fluid mechanics/dynamics and chemistry. Basically, most of the 

research work is dedicated to closure methods for the chemical source term. The works by 

Mel l et al [21], Swaminathan and Bilger [22], Bilger [23], and Peters [1], amongst others, offer 

a variety of options for the modelling of the chemical source term. A brief description of the 

most widely used techniques and their applications is given below. 
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2.9.1 DNS 

Echekki et al [24] report the use of D N S , coupled w i t h a mult i -step chemical kinetics mechanism 

for the s imulat ion of a 2-D premixed turbulent reacting flow. Papers by Bushe et a l [8] 

and Swaminathan and Bi lger [22] describe the use of D N S w i t h reduced chemical k inet ic 

mechanisms in the study o f non-premixed combustion. The DNS database of the oxidat ion o f 

methane in a turbu lent flow of Bushe et al [8] is used as the baseline for the comparison w i t h 

the results of the model developed i n th is thesis. 

2.9.2 Favre Averaging 

Combust ion processes are characterized by considerable density fluctuations, wh ich has p rompted 

the development o f the density-weighted, or Favre averaging. The Favre average o f a property, 

such as mass f ract ion for example, can be defined as 

y = ^ - (2.11) 
P 

T h e instantaneous local value o f mass fract ion can be defined i n terms of i ts average and 

fluctuation as 

Y{x,t)=Y{x,t)+Y'{x,t) (2.12) 

Similar ly, the instantaneous local value of mass f ract ion is defined in terms of i ts Favre average 

and fluctuation as 

Y(x,t)=Y(x,t)+Y"(x,t) (2.13) 

Combin ing the def in i t ion o f Eq. (2.11) w i t h Eq . (2.12) leads to an expression for the Favre 

average of mass f ract ion i n terms of the average mass f ract ion as 

~ (p + d) (7 + Y') — pfY1 

Y = \PTl>)\ —I = Y + P^_ , 2 M ) 

P P 

The t e r m p'Y' i n Eq. (2.14) denotes the correlation between the fluctuations o f density a n d 

mass f ract ion. Th i s is an unclosed t e r m which can be computed using a t ranspor t equation, 

or model led using theoretical or empir ical relations. 

2.9.3 LES 

Chemical reactions occur at small scales where the flow is modelled i n LES, not resolved; th is 

implies the need for models for the chemical source term i n the t ranspor t equations of mass 
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f ract ion o f species [16]. LES results have been used as benchmarks for a priori test ing of 

o ther simulations. T h e pi loted flame of Pi tsch and Steiner [25], as well as t h a t of Steiner and 

Bushe [26], have been used in comparative studies o f computer simulat ions. I n the case of 

the work by Steiner and Bushe, LES was incorporated w i t h the newly-developed condi t ional 

source-term est imat ion. Laurence [27] discussed applications of LES in indus t r ia l settings, and 

ident i f ied the ongoing work on numerical methods for finite volumes in unst ructured grids as 

one of the m a i n activit ies aimed at provid ing more opportuni t ies to such applications of the 

method. 

2.9.4 Laminar Flamelets 

F low visualisation of reacting flows w i th low-intensity turbulence shows t h a t curved flame 

fronts propagate outwards from the source of ign i t ion to the boundaries o f the system. I n 

th is fashion, the turbulent flame can be conceptualised as an aggregation o f such flame fronts. 

T h i s is also known as the flamelet regime. Based on th is concept, the Laminar Flamelets, as 

described by Peters [28], [1], are t h i n (their w i d t h being smaller t han the Kolmogorov length-

scale), reactive sheets tha t react and diffuse w i t h i n a non-reactive field. Th i s method assumes 

t h a t once ign i t ion has occurred, the chemical t ime scale is great ly accelerated, reducing the 

react ion zone in to a t h i n sheet. Th i s concept was fur ther developed into assuming tha t i f the 

t h i n reaction zone is smaller t h a n the Kolmogorov length-scale, then the flow in tha t zone is 

laminar , due to the fact that there exists no turbulence below the Kolmogorov microscales. 

Much research has been dedicated to the development of the flamelet model . Peters [1] 

provided a complete descript ion o f the model , as well as its formal appl icat ion to premixed 

a n d non-premixed turbulent combustion. Len t in i [29] explored the appl icat ion o f the stretched 

laminar flamelet method combined w i t h the K — e model for turbulence i n a tu rbu lent non-

premixed flow and reported good agreement w i t h results obtained f rom experiments performed 

at the flamelet regime. Cook et al [30] presented the large-eddy laminar flamelet mode l in 

wh ich the chemistry at the smaller scales was modelled using the flamelet theory. The flamelet 

mode l offers good predictions of the major chemical species tha t originate i n combust ion of 

hydrocarbon-based fuels at what is known as the 'flamelet regime'. However, the flamelet the

o ry applies under very specific condit ions of the flow, e.g. the flamelet thickness is smaller than 
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the smaller length-scales of turbulence, which limits the effective application of the flamelet 

method. Swaminathan and Bilger [22] pointed out that the flamelet model falls short of pro

viding good predictions of the minor species in combustion of hydrocarbon fuels. This point 

was also discussed by Mell et al [21] when comparing the flamelet and the conditional moment 

closure (CMC) models with a DNS database for different flow configurations to study the 

effects of variations of scalar dissipation on flamelet and C M C results. 

A n improvement over the laminar flamelet model is the unsteady laminar flamelet theory, 

which introduces a Langrangian time frame that records the time dependence in the flame 

structure. Mauss et al [31] presented results that seem to indicate that the transient variations 

of the flamelet structure of a steady turbulent non-premixed flame are responsible for the 

scattering of experimental data points obtained with one-point Raman measurements. Pitsch 

[32] obtained good agreement between experiments and the results of the unsteady flamelet 

model for a turbulent non-premixed CH^ffyf^-air flame. 

2.9.5 Probability Density Function (PDF) Modelling 

In the P D F method, a transport equation for the joint P D F of relevant scalars is solved to 

model the evolution of a combustion event. These scalars can include mass fraction of chemical 

species, flow velocities, temperature, mixture fraction, and so forth. A n important advantage 

of this method is that the chemical source term is solved for directly, without the need of a 

model. Modelling is necessary, however, for the molecular mixing terms in scalar space, as well 

as for the turbulent transport terms in physical space [33]. Due to the high-dimensionality 

inherent to this method, traditional computing techniques are insufficient. This has prompted 

researchers to apply numerical methods capable of dealing with problems with a large number 

of variables and dimensions, such as Monte Carlo methods. These applications wil l be reviewed 

with more detail in the following sections of this thesis. 

2.9.6 Conditional Moment Closure 

The Conditional Moment Closure ( C M C ) of Klimenko [3] and Bilger [4] determines closure 

for the chemical source term of the transport equation of the mass fraction of species. This 

method is based on the assumption that the fluctuations of scalars, such as mass fraction 
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of chemical species and temperature, are associated with variations of other scalars. The 

advantage of using the C M C method is that macromixing phenomena can be decoupled from 

the chemical kinetics, while conserving the effects of micromixing via the scalar dissipation 

term. The method is described and its equations derived in Chapter 3. 

2.10 Stochastic Processes and Monte Carlo Methods 

The theory behind stochastic processes originated from the observations of the trajectories of 

pollen particles moving on a water surface made by Brown in 1827 and later independently 

developed into an elegant mathematical theory by Einstein [34], [35], Smoluchowski [36], and 

Langevin [37]. The experiments by Perrin [38], [39], [40], [41], [42] confirmed the previous 

theoretical analyses and his work was awarded the Nobel Prize of Physics in 1926. The ini

t ial applications of the method concentrated on physics, mathematics and chemistry. Today, 

stochastic processes are extensively applied in fields such as biology, finance, economics, de

mography, atmospheric and ocean sciences, amongst many others. Different numerical meth

ods, such as the Monte Carlo (MC) method, have been developed as tools for the study of 

stochastic processes. The M C method is intended to solve multi-dimensional problems with 

a large number of variables. This can be a very inefficient method when used to solve simple 

problems given the large number of computations required. 

2.10.1 Monte Carlo Simulations of Turbulence 

Kramer [43] reviewed the application of the M C method in generic turbulence problems. In 

this work, a thorough description of the two different (Eulerian and Lagrangian) types of M C 

simulation is presented. The M C method is remarkably useful for the simulation of turbulent 

flows given its ability to treat multi-dimensional problems with a large number of degrees of 

freedom. Another attractive feature of this method is its ability to generate chaotic parti

cle trajectories and velocity field structures. In the Eulerian approach, a stochastic velocity 

field model replaces the turbulent velocity field to be simulated. This field is then solved in 

a spatial domain, which is computationally less demanding when compared to the solution 

of the Navier-Stokes partial differential equations. The stochastic field is tailored to the spe

cific application and is frequently used to simulate trajectories of particles suspended in a flow. 
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A number of methods exist to numerically solve the equations derived using the Eulerian 

approach. The Fourier method is based on a spectral formulation for a homogeneous Gaussian 

stochastic field. A major drawback of this method is the generation of a spatial period that 

has detrimental effects on turbulent diffusion simulation. Using a randomization method, the 

stochastic Fourier integral is discretised by stochastic wave numbers. Despite the fact that 

this method provides useful data to simulate velocity fields with strong long-range correla

tions, those fields have non-Gaussian statistics. According to Elliot et al [44] and Sabelfeld 

[45] this limits the applications of this method for ideal mathematical or physical turbulence 

models. More physically meaningful models have also been developed. Among them are the 

moving-average and the wavelet methods. McCoy [46] introduced a Gaussian stochastic field 

represented in physical space using white noise convolved against a kernel. Long-range corre

lations in the velocity field can be appropriately simulated using the wavelet method. There 

exists a combination of Fourier-wavelet methods that present improvements over its precur

sors. This method has been reported to have shown excellent results when simulating velocity 

fields with the condition of self-similarity scaling of their structures. 

A Lagrangian M C simulation utilises particles evolving in a stochastic model. A l l the 

effects of turbulence are incorporated within the properties of each particle. Despite the fact 

that the Lagrangian M C simulation does not make reference to a fluid velocity field, Minier 

and Pozorsky [47] and Welton [48] have used it to simulate the motion of a turbulent flow 

by analysing the stochastic evolution of a group of particles. The average properties of this 

group of particles (and of the ones in the vicinity of the target field) define the properties 

of the fluid, and of the flow, at that specific location. The methods developed to deal with 

M C simulations using the Lagrangian approach include the simulation of fluid motion and 

particles, the simulation of immersed bodies and hybrid L E S / M C schemes. 

In the simulation of fluid motion and particles, a set of fluid particles is followed accord

ing to a stochastic formulation. Physical, or pseudo-physical properties are defined for the 

particles. The evolution of the dynamics of the flow is assumed to be the average of the 

simulated particles. This method offers flexibility in the way that it can provide some in

sight into the mixing process of the unresolved scales of the turbulent flow by the use of a 
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simple Langevin formulation. If more details are desirable, the stochastic formulation must 

be changed. Stochastic differential equations in the form of Markov processes are often used 

with this purpose in mind [49]. The simulation of immersed bodies follows a similar proce

dure. Pozorsky and Minier [50] reported an approach in which two sets of stochastic particles 

are defined. The first set represents the immersed particles, while the second is intended to 

simulate the flow. The physical and pseudo-physical properties of both sets of particles are 

different from one another. A major drawback of these methods is that they can only simulate 

homogeneous turbulent flows. 

In the hybrid L E S / M C schemes the flow field is resolved using a L E S formulation, while the 

mixing (and chemical reaction, if reacting flow is being considered) simulations are resolved 

using a M C formulation. This scheme calls for the continuous feedback from one formulation 

to the other. Jaberi et al [51] and Obliego et al [52] have reported an increase in accuracy 

in their L E S calculations after the addition of the M C component. The apparent reason for 

this is that the M C simulation provides some information on the effects of the small scales 

otherwise neglected by the LES model. This model has also been used successfully in non-

homogeneous turbulent flows, which extends its potential for applicability to more realistic 

problems. Le Maitre et al [53] proposed a method in which a stochastic spectral finite element 

method undertakes the formalism of a M C simulation and offered numerous results claiming 

improvements in computational expenses, amongst other advantages over the M C method. 

Unfortunately, this research group did not provide a comparison between the results of the 

two formulations. 

2.10.2 Monte Carlo Simulations of Turbulent Reacting Flows 

Most applications of the M C method in turbulent reacting flows follow one of the Lagrangian 

formulations described in the preceding section. Pope [54] described what appears to be the 

first application of the M C simulation to a turbulent reacting flow. This method has shown 

great usefulness given its capabilities of dealing with problems with a large number of variables 

and dimensions. Its first and foremost application is intended to numerically solve the P D F 

transport equations derived for a trubulent reacting flow. 
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The advantages o f the method are numerous. As described i n different papers [54], [55], 

the P D F method provides closure to the chemical source te rm i n the equat ion w i t h o u t the 

need of any model l ing and can be applied to either premixed or non-premixed flows. I t is also 

known t h a t this method incurs large computat ional demands, has no abi l i ty to model wal l - type 

boundaries, and is di f f icul t to apply i n complex flows. According to Pope [54], the computa

t ional requirements o f this method increase linearly w i t h the number of variables used ( in this 

case dimensions, as wel l ) , compared to the exponential increase of computat ions required by 

t rad i t iona l finite-difference formulations. Th is fact provides a way of dealing w i t h problems 

involv ing many species. As discussed i n the previous section, the M C method can deal w i t h 

the s imulat ion of walls and complex, inhomogeneous flows, hence solving the more relevant 

drawbacks of the P D F method. As described by Pope [54], stochastic particles were used 

to mimic the chemical and thermodynamic properties of the flow. These particles, however, 

were defined as a numerical too l and have no physical meaning. A plug-flow reactor problem 

w i t h imperfect mix ing was simulated using the M C method, using a single scalar to model the 

concentrat ion of reaction products. Pope's numerical results were in good agreement to those 

obtained i n experiments performed by B a t t [56]. 

Val ino [57] proposed an Euler ian M C formulat ion for the s imulat ion of the P D F o f a single 

scalar i n a turbulent flow. His proposal was to use stochastic part icles ' j ump ing ' f r o m node to 

node in the spatial domain according to specific rules (a stochastic equation). Hulek and L ind-

stedt [58] offered a comparison between da ta obtained from D N S and f r o m M C simulations. 

The i r formulat ion used the M C method to solve the terms model led w i t h the P D F method i n 

the flamelet equation. This method, called flamelet acceleration, was also tested and i t ap

peared to be an improvement when compared w i t h the standard flamelet solut ion. Hulek and 

L indstedt [59] later modelled premixed turbulent flames using P D F and M C methods. The 

M C simulat ion was used to solve the mass density funct ion evolut ion equation. Stochastic par

ticles evolved fol lowing determinist ic processes representing the closed terms of the equation 

and stochastic processes designed to model the effect o f the unclosed terms. They showed the 

comparison between several different numerical formulat ions and experimental results, where 

i t can be seen that the P D F - M C simulations were in good agreement w i t h experiments. 
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The special ability of the M C method to mimic turbulent mixing was explored by Kawan-

abe et al [60]. The methodology was applied to a plug-flow flame in unsteady turbulent 

combustion. The turbulence model used was a standard K — e and the mixture is forced to 

avoid homogeneity. Cannon et al [61] and Kraft and Fey [62] have explored stochastic reactor 

models using the P D F and M C methods. Cannon's group offered some practical results, while 

Kraft and Fey mainly developed a purely analytical solution to the stochastic reactor model. 

Cannon's research was aimed at the prediction of CO and N O in premixed combustion of 

methane, using a partially stirred reactor (PaSR). Conceptually, the PaSR could be thought 

of as a M C process itself, since it also randomly selects particles that are then forced to interact 

amongst themselves. This method is an improvement over the perfectly stirred reactor (PSR) 

since finite-rate mixing effects can be included in the solution. The mixing term was modelled 

using a deterministic method rather than a M C method. The good agreement between the 

9-step simulation and the detailed kinetic solution demonstrated the robustness and accuracy 

of this particular model. 

2.11 Summary 

In this Chapter, the fundamentals of turbulent combustion, have been reviewed. Turbulence, 

scales of turbulence, and turbulence simulation and modelling were also treated, along with 

the interactions between turbulence and combustion. Descriptions of the regimes and equa

tions that define turbulent combustion, as well as some of the most important analytical tools 

available for the solution of those equations were also presented in this chapter. 

A detailed description of the applications of the Monte Carlo simulations in turbulence and 

turbulent combustion was provided. It has been observed that there exist a number of different 

options in which the M C method can be used to solve numerically demanding problems in 

turbulent combustion. Future possible applications include particulate matter and pollutant 

formation mechanisms and mass transport in permeable membranes. Of particular interest 

to this research is the capability of the method to be included to solve problems expressed 

in terms of different modelling theories such as conditional moment closure, L E S , or flamelet 

models. A n increasing number of research opportunities exist in this field, with promises of 

continuous and prolific growth in the near future. 
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Chapter 3 

The D C M C Method with 

Stochastic Processes 

Condi t ional moments are averages which are calculated for those members or realisations that 

satisfy some predefined condi t ion. The condit ional moment closure method ( C M C ) , inde

pendently developed by K l imenko [3] and Bi lger [4], provides closure for the chemical source 

t e r m in the t ranspor t equation of species and enthalpy or temperature by assuming tha t the 

var iabi l i ty i n temperature and the mass fractions of species can be l inked to the fluctuations 

o f a given scalar variable. The reaction progress variable and mix tu re f ract ion are common 

choices of scalar variables for premixed and non-premixed combustion analysis, respectively. 

I f the mass fractions o f species are expressed as functions of not only space and t ime, but 

also as funct ions of the condi t ioning variable, their condit ional averages can then be used to 

approximate the condi t ional average of the source t e r m as d\Z = £ « u \T\Z = £, Yj\Z = £ j . 

T h e overbar i n this nota t ion indicates that the mean value has been calculated f rom averaging 

over n = 1...N realisations. The vert ical bar means 'given' , and i n the case o f Yj denotes the 

value of the mass f ract ion given tha t m ix tu re fract ion has a value of £. 

As an i l lus t ra t ion o f the theoretical basis of the C M C method, F ig. 3.1 shows a plot 

o f ind iv idua l n = 1..JV realisations of a simulat ion o f temperature (blue fines). Where the 

uncondi t ional average o f temperature, T = YliLiTi/N, is represented by the hor izontal line 

at around T « 500, and the red curve is the calculated condit ional average o f temperature, 

T = (T\Z = Q, where the angle brackets indicate t h a t only those realisations that comply 

w i t h the condi t ion of Z = £ are considered i n the averaging process. I t is clear from F ig . 3.1 

t h a t the in format ion obtained from condit ional averages is more representative of the actual 

relat ionship between T and Z t han that obtained from uncondi t ional averages. 
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Z 

Figure 3.1: Conditional average of temperature; blue(.) DNS, red(-) (T\Z), black(-) T 

Researchers have previously explored the application of the C M C method and have found 

that using only one conditional variable offers good results in terms of species mass fraction 

and temperature predictions. However, the presence of triple flames and prediction of igni

tion, extinction, and re-ignition phenomena are not well reproduced by just one conditioning 

variable. Figure 3.2, from Bushe et al [8], shows a slice of a 3-dimensional DNS calculation 

of temperature. The contour lines represent isopleths of mixture fraction, which were formed 

by the intersection of the slicing plane and the corresponding isosurfaces of mixture fraction. 

The white isopleth corresponds to the stoichiometric mixture fraction. 

Figure 3.2: DNS calculation of temperature, from Bushe [8] 

It is clear that this temperature field exhibits strong fluctuations in regions of constant 

mixture fraction. This is evident in the 'cold pockets' shown in regions A and B in the 

figure. These cold zones are typical of extinguishing flames. From this figure, it can also be 
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observed that there is a transition between hot zones, located to the right of region B. This 

transition could correspond to re-ignition or bifurcation of the flame. It has been proposed 

that using a second conditional variable would solve those issues [9], [16], [63]. This result 

is of paramount importance, given the close relationship between these phenomena and the 

formation of pollutants. In this thesis, the use of two conditioning variables has been explored. 

One variable is mixture fraction Z, which characterises the state of mixedness of the flow for a 

given instant in time and space. The other conditional variable is named a and is introduced 

to capture fluctuations along an isosurface of mixture fraction. This is achieved through the 

definition of the scalar a as a conserved scalar with a spatial gradient perpendicular to that 

of mixture fraction. 

3.1 Conditional Moment Closure with Two Conditional 

Variables ( D C M C ) 

The use of a second conditional variable has been proposed as a way to solve the shortcomings 

of the original C M C method. Bushe [16] used a second conditioning variable that filtered 

between regions of a surface defined by a constant mixture fraction, hence detecting differences 

in the stretch rate history of the flow. The results of a simulation of auto-ignition of n-Heptane 

showed an improvement over the single-conditional method in detecting autoignition and 

double flames when compared to DNS databases. However, the same results failed to show the 

presence of triple flames present in the reference data. Cha et al [63] used the scalar dissipation 

rate as the second conditioning variable for the simulation of a methane-air turbulent reacting 

flow. After comparing their results with those obtained from an experimental jet and a 

DNS simulation, it was found that there exists good agreement in the prediction of extinction 

phenomena, but they obtained an early prediction of the onset of re-ignition. High fluctuations 

around the conditional means, specifically for low values of the scalar dissipation rate, were 

identified as a possible source for the discrepancies with the reference data. 

3.2 Derivation of the D C M C Equations 

During the development of this project, two conditioning conditional variables have been used. 

• Mixture fraction Z — Z (x{,t) , 
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• and a = a (xi,t). 

These two random variables are related to the non-random variables £ and a using: 

w |(Z = C,o = a) * co (r|(Z = C,« = a) ,Y/ |(Z = C,a = a)) , (3.1) 

such that the result is a function of what values are chosen for the conditioning variables £ 

and a. 

The definition of the conditional average of the mass fraction of the Ph species is 

Y[ = Yi{t,a;Xi,t) = (Yi(xi,t)\Z{xi,t) = C,a(xi,t)=a), 

so that the instantaneous value of species mass fraction using conditional average and fluctu

ations around that mean can be expressed as 

Yi(xi,t;n) = 17U(Xj)t;n))a(xi,t;n) +YI-

E q . (2.3) is substituted in Eq. (2.2) to obtain a new version of the transport equation of 

species mass fractions as 

dpYi + dpuiYj = _d_ ( Di9YI\ + ^ 2 ) 

dt dxi dxi \ dxi J 

Using the experimental results from Vargaftik [64], it has been proposed [16] that pD\ = 

constant, and that Dz = Di, implying that Le = 1. Using these assumptions, Eq. (3.2) can 

be written as 

dYr | udYr D b^Yj = Co! 
dt 1 dxi dxidxi p 

To express E q . (3.3) in terms of conditional averages, it is required to derive partial derivatives, 

which were obtained by applying the chain rule of differential calculus. 

• The partial derivative of species mass fraction with respect to time is 

dt dt dC dt da dt dt ' ( ' ' 

• The first partial derivative of species mass fraction with respect to space is 

m = w + mM + m ^ + dY[ 
dx{ dx{ dC, dxi da dxi dxi 
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The second partial derivative of species mass fraction with respect to space is 

&Yi dWjdZdZ c ^ l ? d a d a d2Yj dZ da 
dxidxi dC,2 dxi dxi da2 dxi dxt dC,da dxi dxi 

3 2 Y} dZ n d2Yj da dYi d2Z 
+2 1-2 1-

'dxidC,dx{ ' ~dxidadxi ' d( dxtdxi 

+ dYLJ^+F*_+&YL ( 3 6 ) 

da dxidxi dxidxi dxidxi 

Equations (3.4), (3.5), and (3.6) were substituted in Eq. (3.3) producing, 

*' *• +dY*r + d T l F n&Y'MOz ^Yj da da 
Yj dC, da ° dC,2 dx\ dxi da2 dxi dxi 

dC,da dxi dx{ dx^dC, dxi dxida dxi 1 

where the following definitions are used: 

• The transport equation of the conditional average of the species mass fraction is 

E =

 dyi ! dy? D d2Y 
Y l dt dxi dxidxi 

• The transport equation of mixture fraction, E q . (2.1), is written here as 

Z dt * dx{ dxidxi ^ ^ 

• The transport equation of the scalar a is 

„ da da ^ d2a n ,„ „„. 
E a = m + U i d ^ - D d ^ d x - = 0- ( 3 - 1 0 ) 

• The transport equation of the fluctuations around the conditional average of species 

mass fraction is 

Y* dt * dxi dxidxi ^ ^ 

3.3 Modelling Scalar Dissipation 

Scalar dissipation, Xz = M7!^' ^ used to represent the coupling that exists between fluid 

dynamics and the chemical reactions taking place in a turbulent reacting flow [23]. Previous 

research [1] indicated that large values of scalar dissipation rates lead to extinction of flames. 

Conversely, ignition phenomena are associated to small scalar dissipation rates. 
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Peters [1] proposed a model in which the scalar dissipation rate diminished as a function of 

mixture fraction with time in a one-dimensional mixing layer. This model is frequently used in 

the flamelet formulation discussed in section 2.6.4. However, the model is not capable of cap

turing extinction or ignition. A n improvement to better reproduce extinction phenomena was 

proposed by Peters [1] in which a conditional stoichiometric scalar dissipation rate, assumed 

to have a lognormal P D F , was used to calculate the right proportion of burning flamelets 

during an extinction event. 

Using C M C and the stretched diffusion concept, Bushe [16] proposed a model for the con

ditional scalar dissipation rate, which was found to provide good approximations of values 

of the scalar dissipation rate when compared to DNS of a non-reactive flow of Eswaran and 

Pope [65]. This same model, however, did not provide good estimations of ignition due to 

long decreasing times of the scalar dissipation [16]. A n improvement of this model was to in

corporate a second conditioning variable to the system of transport equations of species mass 

fractions, which was also a passive scalar. This model was found to provide good predictions 

of ignition and double-flame formation of an n-Heptane non-premixed flame when compared 

to data obtained by other researchers [66], [67], [68]. However, this formulation did not predict 

the presence of triple flames found in other research papers [67]. 

In this thesis, the D C M C method has been applied to define conditionally averaged trans

port equations for the scalar dissipation of Z and a. The conditional average of scalar dissi

pation is defined as 

Xl = Xl(t,(x;xi,t) = (xz{xi,t)\Z(xi,t) = t,a{xi,t) = a) 

leading to an instantaneous value of 

Xz{%k,t) = Xz\c=Z(xi,t),a=a(xi,t) + x'z- (3.12) 

Ruetsch and Maxey [69] proposed a transport equation for the scalar dissipation, with the 

terms on the rhs of the equation representing production, dissipation, and diffusion: 

DXz 
Dt OXi OXj 

d fdZ\ 
dxj \dxi J 

+ D ______ 
dxjdxj 

(3.13) 

The Sjj term in Eq . (3.13) corresponds to the strain tensor that denotes the production 

of scalar dissipation through vortex stretching mechanisms. In premixed, turbulent reacting 



Chapter 3. The DCMC Method with Stochastic Processes 28 

flows, strain is known to have a strong effect over the stretch history of the flame, which 

consequently affects the flame structure [11]. The definition of Sij [14] is, 

(3-14) 

In turbulent, non-premixed flames, high levels of strain imply high levels of scalar dissipa

tion, which in turn generate local extinction of the flame, since the chemical reactions cannot 

take place given the extremely high rate at which reactants are diffused into and through the 

reaction zone. Williams [11] provided a flamelet-based analysis of this phenomenon. Thevenin 

and Candel [67] studied the effect of variable strain on the ignition of a non-premixed flow 

of air and hydrogen through the use of computer simulations. While their research predicted 

self-ignition and ignition times in agreement with the experimental results of Cheng et al [70], 

the triple-flame phenomenon was observed only for the case where there was no strain present. 

Using the definition of a material derivative, Eq. (3.13) can be expanded to obtain 

dt 
z dxz 

= ~Ui-1 dxj OXjOXj 
-2D 

d2Z 
dxjdxi i J \dxjdxij 

(3.15) 
uj dxi dxj 

In order to express Eq. (3.15) in terms of the conditioning variables, it is required to 

obtain derivatives analogues to Eqs. (3.4), (3.5), and (3.6). The definitions of Eqs. (3.9) and 

(3.10) are also used to produce 

dxi 
at HiZ ^ &n 

AC da 
TP 

X z dxi 2 ° l ™ S i + D - ^ 
dxidxj lJ dxidxi 

^ x l d Z dZ d2xl da da ^^d2^ dZ da d2Xz dZ 
dC2 dxi dxi da2 dxi dxj dCda dxi dxi dxidC dxi 

( d2z \ f d2z \ 
\ dxj dxij \ dxj dxi J 

(3.16) 
dxida dxi 

where the transport equation for the conditionally averaged fluctuation of scalar dissipation 

is 

Ezr = dx'z , dx 
+ Ui- D d2x!z (3.17) 

X z dt dxi dxidxi 

The conditionally averaged transport equation of the scalar dissipation Xa follows analogously 

to Eqs. (3.16) and (3.17). 

file:///dxjdxij
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3.4 Scalar Transport Closure Hypotheses 

Equations (3.7) and (3.16) contain unclosed terms for which closure hypotheses are formulated 

in this thesis. W i t h the following scalar transport hypotheses, some of the terms in those 

equations are closed: 

• Z and a are conserved scalars, hence its lack of a source term as shown in Eqs. (2.1) 

and (3.10); 

• The spatial gradient of a is perpendicular to the spatial gradient of Z to better capture 

the effects of fluctuations along isosurfaces of mixture fraction. 

Using these hypotheses, Eq . (3.7) is reduced to 

— = & Y, 
D&Yi dZ dZ ^Yj da da 

dC2 dxi dxi da2 dx{ dxi 

2D d 2 T l d Z 2D d W l d Q 1 E , 
dxidC, dxi dxida dxi Yj 

Eq. (3.16) is also reduced to 

dx~z 
dt 

_E dxz 
x* * dx{ 

2™ B*S„+ 
' dxi dxj %3 dxidxi 

dC2 dxi dxi da2 dxi dxi dxidC, dxi 

+2DS^^-2D ( &z \ f d2z \ 
\dxjdxiJ \dxjdxi J 

dxida dxi 

Multiplying Eq.(3.18) by p and taking its conditional average yields 

dWt LOI = pEyT + pEyJ DC" 0  

„ <?Y, dZ 
dxidC, dxj 

Conditionally-averaging Eq . (3.19) yields 

dZ_dZ_ 
dxi dxi 

d2Yj 

&Yj Dda da 
da2 dxi dxi 

-pD— 
dxida dxi 

dt 
dxi dZ dZ d2x 

= -E^r-ui^-2——Sij + D X 

dxi dxi dxj dxidxi 

d2Tz dZ dZ d2Tzda da d2Xz~ dZ 
+ J J r,>o ~—z= h U - » -—— V IU-dC2 dxi dxi da2 dxi dx{ dxidC, dxi 

dxida oxi 
/ d2Z \ ( d2Z \ 
\ dxj dxi J \ dxjdxi J 

(3.18) 

(3.19) 

(3.20) 

(3.21) 

file:///dxjdxi
file:///dxjdxi
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3.5 D C M C Closure Hypotheses 

Equations (3.20) and (3.21) were reduced to a conditionally-averaged form in the previous 

section. Whilst closure was determined for some unclosed terms, both equations still contain 

terms that can be further closed using the D C M C closure hypotheses described in the following 

modelling assumptions. 

• D C M C Modelling Assumption 1: the fluctuations around the conditional mean of species 

mass fraction and around the conditional mean of scalar dissipation are only functions 

of the scalar variables Z and a, independent of time and space. This produces 

tW1 BY7 cPY' 

^ + m ^ - D ^ - = 0. (3.23) 
ut OX, OXiOXi 

• D C M C Modelling Assumption 2: assuming that the flow is homogeneous and isotropic, 

the ensemble of conditional averages of species mass fractions and scalar dissipation are 

equal at each point in space for the same instant in time, and the spatial gradient of the 

conditional mean of the species mass fraction is equal to zero [16]. This yields 

_ 3 * i 
^dx-

= 0 (3.24) 

~D d W l 

dxidxi = 0 (3.25) 

d2Yj DdZ 
dxidC, dxi 

= 0 (3.26) 

cPYj p D da 
dxjda dxi 

= 0 (3.27) 

dxz 

OXi 
= 0 (3.28) 

D d2T> 
dxidxi = 0 (3.29) 

D d2Xl dZ 
dxidC, dxi 

= 0 (3.30) 

d 2x~z da 
dxida dxi 

- 0. (3.31) 

Substituting Eqs. (3.22) and (3.24) - (3.27) in Eq. (3.20) results in 

T _dYj PTi ndZdZ d2Yi nda da 
" I = p-d7- WP dx^dx- - L^^dx-dx-- ( 3 - 3 2 ) 
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Here, the term on the lhs represents the condit ional average o f chemical source t e r m , whi le 

the second and t h i r d terms on the rhs represent the condit ional average of di f fusion of the 

species mass fract ions in the scalar f ield. 

Subst i tu t ing Eqs. (3.17) and (3.28) - (3.31) i n Eq. (3.21) results i n 

dxTz 
= - 2 

dZ dZ 
oc2 Sij + D—^xl + D 

da2 Xa 2D-
82Z d2Z (3.33) 

dt ~dxidxj"lJ ' dC2 ' da2 /v" dxjdxidxjdxi 

Here, the first t e r m on the rhs represents the condit ional average of produc t ion o f scalar 

dissipat ion, the second and t h i r d terms represent the condit ional average of di f fusion of scalar 

dissipat ion, and the th i rd t e r m represents the condit ional average o f dissipat ion of scalar 

dissipation. 

3.6 Mathematical solution of the Z-gradient squared term 

We define 

9 = 

Expand ing 6 yields, 

d_ 

dx* 

dXz dxz 
dxj dxj 

(MdZ\ " 
\dxi dxi J 

, d2Z dZ 
dxjdxi dxi 

d2z d2z 
dxjdxi dxjdxi 
dXz dxz 
dxj dxj 

(dxj) 

d (OZ^dZY 
dxj \dxi dxi J 

„ d2Z dZ 

dxjdxi dxi 

Compar ing Eq. (3.36) to Eq. (3.34) i t can be seen that 

0 = 4$;vvs>and 
1 

4x. 
0. 

(3.34) 

(3.35) 

\dxjdxidxjdxi) \dxidxi) 

(3.37) 

file:///dxjdxidxjdxi
file:///dxidxi
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Using Eq . (3.12) and tak ing par t ia l derivatives of Xz w i t h respect to space, Eq. (3.35) can 

be expressed as 

\ dxj J \ dC 9XJ ) \da dxj ) \ dxj ) 
.^dx^dx^dZ | dxidxi da | ^dxl dZ dxi da 

dxj dC, dxj ' " dxi da dxj ' " d£ dxj da dxj 

x ^dXzdx'z ^ 2dx~z dZ dx!z | jTXz da dX'z ( 3 3 g ) 

dxj dxj c?C dxj dxj da dxj dxj 

Using the scalar t ranspor t closure hypotheses and the model l ing assumptions, Eq . (3.38) 

reduces to 

Subst i tu t ing Eq. (3.39) i n Eq. (3.37) and condit ionally-averaging, yields 

4 V d( J A\da) 

I t is fur ther assumed that 

/ Xa \ Xa 
\Xz) xl' 

(3.41) 

Using th is assumption i n Eq. (3.40) and subst i tu t ing th is result i n Eq. (3.33) produces the 

final version o f the conditionally-averaged t ransport equation of scalar dissipation o f m ix tu re 

f rac t ion and o f the scalar a 

dxi = -2-^L^S -^(^V-^/^Vxi 
dt dxi dxj 13 2 V dC j 2\da)x~z 

+D^Xz + D ^ x a (3.42) 

dxZ = r>da da _ P_ (dx^\ _ & (d)g\ Xz 
dt dxi dxj i3

 2 V dC J 2 V da J xi 

+D^Xz + D ^ T a . (3-43) 

T h e first t e r m on the rhs of these transport equations describes the condi t ional average of 

p roduc t ion o f scalar dissipation. Th is te rm represents the mapping of the st ra in tensor Sij 

onto the corresponding diffusing scalar's surface. The second and t h i r d terms represent the 

condi t ional average of dissipation o f scalar dissipation, whi le the last two terms represent 

the condi t ional average o f diffusion of scalar dissipation. A l l the terms i n these equations 

are closed, w i t h the exception of the te rm containing the strain tensor Sij, which has t o be 

model led. 
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3.7 Models for the Transport Equation of Scalar Dissipation 

Two different models using stochastic processes are proposed to model the strain tensor Sij. 

The first model uses a periodic force with random phase shifting to simulate the chaotic be

haviour of the strain tensor. A second model uses the Coupled Map Lattices (CML) developed 

by Beck and Hilgers [5], [6], [7] to simulate velocity increments in an isotropic, homogeneous, 

fully-developed turbulent flow, from which the corresponding strain tensor is calculated. 

Pitsch and Fedotov [71] simulated the fluctuations of the scalar dissipation rate in non-

premixed combustion. They used this approach in combination with a flamelet formulation 

to simulate a turbulent, non-premixed reactive flow of methane and air. They reported that 

the extinction process occured at smaller time scales than those relevant to the overall phe

nomenon, like turbulent or chemical time scales. This seems to indicate that the deviations are 

due to Gaussian white noise, resulting in a Wiener process. This research group also found de

limiting regimes that drive the burning and extinguishing states and that even small-amplitude 

scalar dissipation fluctuations have considerable effects on the state of the flame, taking it from 

the burning to the extinguished state. This finding in particular, further reinforced the need 

to study the influence of the scalar dissipation rate on a turbulent, non-premixed reacting 

flow, which is one objective of this thesis. 

3.7.1 Periodic Forcing with Random Phase Shifting (PF) 

The use of forcing schemes involving harmonic functions has been explored in DNS simulations 

of isotropic, homogeneous turbulence [72], [73]. The general idea behind this method is to 

generate an influx of energy at low Fourier wavenumbers that compensates for the dissipative 

effects at the small scales of turbulence. 

Eswaran and Pope [73], used a stochastic forcing scheme with an Ornstein-Uhlenbeck for

mulation to study the validity and capabilities of the method in an isotropic, homogeneous 

turbulent flow. Hilgers et al [74] explored the use of stochastic resonance to the study of 

motion of an overdamped particle in a bistable potential, subject to a external periodic per

turbations and coloured noise. 
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Similar to the work by Eswaran and Pope [73], the first model proposed in this thesis uses 

a combination of harmonic signals to mimic the chaotic influence of the turbulent flow field 

on the strain tensor by using the product of the signals in the x and y directions: 

= An sin (wnxx + 6nx) sin (u>nyy + 0ny). (3-44) 

Here, 

• The magnitude of the amplitudes is An+i = An/2, and is scaled by the Reynolds number 

of the flow. 

• The period of the signals is w n +i = 2w n and is used as an emulator of the viscosity of the 

flow. Larger periodicity implies a higher number of transitions, which are interpreted as 

lower viscosity. 

• The random phase shift 0n is produced with Gaussian random numbers. This shifting 

is used to produce random fluctuations in the strain field. 

• n = 1...N is the number of signals that are then combined to obtain the assumed strain 

tensor field in the x — y space: 
n 

Stf(x,y) = _T*n. (3.45) 
i=l 

The coupling between the strain field and the flow is obtained by forcing proportionality 

between the amplitudes An of the signals and the magnitude of the characteristic Reynolds 

number of the flow. This implies that this scheme can only simulate strain fields for one 

energy level at a time and must be calibrated for each energy level independently. For decay

ing, isotropic, homogeneous, turbulence, characteristic parameters can be used to scale the 

magnitude of the strain field accordingly with turbulence theory [14] as, 

I S y l = ^ (3-46) 

The structure of the strain fields simulated with the P F model can be modified by varying 

the number of signals used in the calculation of Eq. (3.45), by varying the scaling of the 

amplitudes between signals, or by varying the periodicity of Eq. (3.44). 

The P F scheme was used in this thesis to simulate strain fields with fluctuations and 

magnitudes relevant to the combustion process studied. The magnitudes were compared to 
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those obtained from the DNS of Bushe [8] and the simulated fields in the x — y space were 

then transformed to the a — £ space using a simple mapping convention. The mapping is 

performed by assuming a linear correspondence between a and x, and £ = erf(y). 

The second model that has been implemented uses the turbulent flow simulation proposed in 

the works by Beck [5] and Hilgers and Beck [6], [7]. This model is a coupled map lattice that 

mimics the energy cascade in a turbulent flow. The system of equations is as follows 

In this model, 

• F(x) is a map that models the energy input from the large scales and is defined as 

F(x) = 1 - 2a:2, where x is the position of stochastic particles in D spatial dimensions. 

• The parameter k corresponds to the energy level in the cascade. High-values of A; imply 

higher energy-dissipation processes, which leads to a lower energy level. 

• The coupling parameter g is associated with, and should be scaled to, the molecular 

viscosity, p, of the fluid. 

• The damping parameter A is defined as A = exp(—jrk), where the product JT is pro

portional to the inverse Reynolds number. 

• The product C£ is used to determine the random fraction of the driving momentum that 

each of the 'daughter' eddies receive from the previous higher scale. 

The calculated temporal velocity difference u is later used to calculate the strain rate tensor 

using Eq. (3.46), or, under the assumption of decaying, isotropic, homogeneous turbulence, it 

can be further demonstrated [14] that, 

3.7.2 Coupled Map Lattices (CML) 

Xd,n{i) F(xd,n-i{i)) 

+<«-1i)(0(i->»-i)«iJr-}(o. (3.47) 

(3.48) 
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Using the C M L model, the strain fields were simulated in the x — y plane and later mapped 

onto the a — £ plane using the same mapping convention as used in the P F model: (a, C) —> 

(z,erf(y)). 

It is clear that while this model is capable of simulating strain fields for a wide range 

of energy levels, the main focus of this research is on the simulation of strain fields at the 

energy levels relevant to the combustion process studied. This means that the C M L had to 

be capable of simulating velocity increment fields at relatively small scales. This calibration 

was made possible by using the variable k that denotes the energy level at which the velocity 

fields are calculated. The target value of k was obtained by running a number of simulations 

and comparing the results with statistics from the DNS of Bushe et al [8]. A consequence of 

this is that all the previous energy levels still have to be calculated, which inevitably increased 

the computation time. 

3 . 8 Summary 

The D C M C equations that describe turbulent combustion events using two conditioning vari

ables have been derived in this chapter, resulting in the following system of equations 

ZJ - ~DYL d 2 * / DdZ dZ d 2 Y 7 Dda da 
W l ^ dt dC,2 ̂  dxi dxi da2 ^ dx% dxi 

dt dxi dxj 13 2 V #C / 2 \da ) x~z 

dC,2 X z da2 X a 

dXa~ 
dt 

daaa _ D fdxA2 _ D fdxZ\2 xl 
dxi dxj 13 2 V d£ J 2 V da J x~a 

+D^Xz+D^x-a. (3.49) 

The properties and characteristics of the second conditional variable a have also been 

described and applied during the derivation of the equations. In this chapter, closure for 

the D C M C equations has been proposed using scalar transport and C M C closure hypotheses. 

The resulting equation contains a strain rate tensor term that has been modelled using two 

different stochastic processes. The results obtained from the use of these models are presented 

in the following chapter. 
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Chapter 4 

Simulation of Methane Oxidation 
with DCMC-SP 

The system of equations developed in the previous chapter, Eq . (3.49), is used to simulate 

the combustion of methane and air. The present chapter describes the results obtained from 

this computational simulation. The chemical kinetic mechanism, as well as the initial and 

boundary conditions developed for the generation of both the DNS and C M C databases have 

been used in this research. The DNS database has also been used as a source of information 

for the evolution of the turbulent flow. This means that the results presented in this thesis 

have been produced in an a priori sense. A comparison between the D C M C - S P results of 

this thesis and the C M C [9] and DNS [8] for a similar test case shows that the D C M C - S P 

implementation offers an improvement over the singly-conditional moment closure method. 

4.1 The Reference D N S and C M C Databases 

The DNS database of Bushe et al [8] described the results of a number of independent runs 

of a shear-free, decaying, turbulent mixing layer. A C M C simulation of the same test case [9] 

provided good predictions of temperature and mass fractions of the major species while falling 

short of providing good predictions of NO and intermediate mass fractions. 

4.1.1 Flow Field 

The flow field simulated in the DNS database is a three-dimensional shear-free, temporal 

mixing layer, discretised by a 240 x 120 x 120 grid, in which the governing equations for 

incompressible flow were resolved. The domain is periodic in two directions, while allowing 

outflow in the third direction. The domain is shown in Fig. 4.1. Here, region A denotes the 

approximate spatial domain where the mixing between fuel and oxidiser occurs. 
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q 

Oxidiser Fuel 

Figure 4.1: DNS computational domain 

The initial turbulent flow field was forced losing the pseudo-spectral scheme of Ruetsch 

and Maxey [69] that simulates a statistically stationary, incompressible turbulent flow. The 

initial Taylor Reynolds number was 59 and the Prandtl and Schmidt numbers used were both 

set to a constant value of 0.75. 

4.1.2 Chemical Kinetics 

The chemical kinetic mechanism developed for the DNS database [8] has been used in this 

research project to determine the effectiveness of the model proposed in Chapter 3. This 

mechanism involves three steps and is a modification of the two-step reduced mechanism 

originally proposed by Williams [75], and later modified by Swaminathan and Bilger [76] 

for the oxidation of methane, with the addition of a third step for NO formation with the 

Zel'dovich mechanism. The resulting three-step mechanism is written here as 

F + Oxi-> I + P 

I-\-Oxi -> 2P 

N2 + Oxi -> 2NO 

where F is CH4, Oxi is O2, and 

/ - (\* + lco) 

P = \^H20+\c02 

A n important feature of this mechanism is the presence of a steady-state approximation for 

the mass fraction of the Hydrogen radical. This expression has been designed to emulate the 

file://-/-Oxi
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reduct ion in the concentration of the Hydrogen radical at low temperatures. The mechanism 

was fur ther simpli f ied by Bushe et al [8] by assuming peak temperatures in the 1200-2230 

K range, so that the computat ional expense is reduced, while keeping acceptable levels of 

accuracy. The mechanism was non-dimensionalised by assuming that the constant pressure 

specific heat Cp, the rat io of specific heats 7, and the speed of sound c remain constant. I t was 

also found that the region where the chemical reaction takes place needed to be broadened to 

avoid the computat ional expense associated w i t h the calculat ion of sharp gradients. 

4.1.3 I n i t i a l C o n d i t i o n s 

Since the chemical kinetic mechanism used in the DNS is not capable of auto- igni t ion, the 

in i t ia l condit ions of the scalars were taken f rom a planar, laminar flame, which also served as 

the in i t ia l conditions for the C M C simulations. The in i t ia l conditions as a funct ion of m ix tu re 

f ract ion are shown in F ig . 4.2. This laminar flame was located in the plane formed by points 

pqrs i n F ig. 4 .1 . 
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(a) Initial Conditions of Species Mass Fractions (b) Initial Conditions of Temperature 

Figure 4.2: In i t i a l Condit ions of the Scalar Fields 

4.2 Simulation of CH4 Oxidation Using D C M C - S P 

Using the chemical kinet ic mechanism described in the previous section, Eq. (3.49) is expanded 

to include the species present i n the chemical kinetics mechanism, as well as the condi t ioning 
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scalar variables, resulting i n the following system of equations 

z 

_dY02 -- , d2Yp2 n _ , d2Yp2 

_d¥F -- d2YF n _ 2 2 F F P-^- = "F + -^rpDXz + -^rpDXa 

_dYj -- d2Yj n _ _ 9 2 F / 
P~W = w ' + ^ ^ + ^ r ^ * ° 

_d¥P d2YP n - M d 2 Y P 

p~dT = »p + ^ P D x > + -fo?-PDx* 

_3YNO -r- , d2YNO , d2YNO 

P—QJ- = UNO + —^-pDXz+ d a 2 pDXa 

_&T -. d 2T d 2T „ 
p~dt = "T+dcJ^X'+da*^ 

dXa = 2 da da ? _ __ _ __ __ 
d< ftr* ft^ V 2 V aC 7 2 V da ) Xa~ 

___ = _2dZdZ_- _P_(9xi\2 __V___T\2__ 
dt dxi dxj tJ

 2 V d£ J 2\da) xl 

+D^Xz + D^x-a. (4.1) 

This system of equations was solved for a 50 x 50, a — £ grid, with the initial calculation of 

the strain fields in the x — y space and later mapped onto the a — £ space using the simple 

mapping convention described in Sections 3.7.1 and 3.7.2. The boundary conditions for the 

strain fields were set to be periodic for both directions. The boundary conditions for al l the 

reacting scalars were set to be periodic in the direction of a and constant in the direction of 

C The initial conditions of the reacting scalars and of scalar dissipation of mixture fraction 

were taken directly from the laminar flame described in Section 4.1.3. 

The results obtained from the numerical implementation of the system in Eq . (4.1) are 

presented in this section. Once the strain field was simulated using either of the stochastic 

processes, the O D E solver D V O D E [77] was used to solve Eq. (4.1). Fig. 4.3 serves as an 

illustration of the structure of the code. 
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Initial conditions 
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stochastic process 

ODE solver 

dt 
df _ 
~dt~ 

<?X . 
dt ' 

Write output fields. 
Compare to DNS and 

CMC data. 

DNS database 

|Sy| = (2u ( t ) /E( t ) ) 1/2 

Figure 4.3: D C M C - S P code structure 

4.2.1 Simulation of the Strain Field 

As discussed in Chapter 3, the strain field has been simulated using two different stochastic 

processes. This section summarises the results obtained for both cases. Unless expressed 

otherwise, the figures in this section show results obtained after a calculation time of t — 5 

time units. In this computational implementation, the following model has been used: 

ndZ dZ „ n — 
-2-—-—Sij = -2xzniUjbij 

-2xzniUjSij. 
dxi dxj 

Where re, and rij axe unity vectors in the direction of the Xi and Xj directions of the gradients 

of Z. The value of niUj is then [—1 + 1]. Bushe and Cant [78] showed that positive values 

of niTij are statistically more frequent; as a result, it is assumed in this research that niUj is 

negative i f the strain Sij is negative and positive otherwise. This model applies analogously 

to the corresponding term in the transport equation of Xa-
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Periodic Forcing with Random Phase Shifting (PF) 

This model was validated using the stochastic variables X(x, y; t) and Y(x, y; t) in the solution 

of Eqs. (3.44) and (3.45). 

Using statistics from the DNS database of Bushe et al [8], it was found that the appropriate 

values to simulate a strain field with similar characteristics using the P F model were, 

• Ai = 1.585 this parameter is proportional to the Taylor Reynolds number of the DNS 

database 

• &ix = uiy = 2n which indicates the periodicity of the signals. This parameter was set 

empirically by comparing the structure of the strain fields from the DNS database and 

the strain fields obtained using the P F model. 

The magnitude of the strain tensor was calculated using the values of the parameters e and 

v from the DNS database. In all cases, the strain field was first calculated in the x — y plane 

and later transformed to the a — C plane following the mapping rules described in Section 3.6. 

Figure 4.4(a) shows the results of the calculation of the strain field in the x — y plane using 

^ = 3 periodic signals. Figure 4.4(b) shows the same strain field after being transformed to 

the a — £ plane. Comparing Figs. 4.4(a) and 4.4(b) it can be seen that the main effect of the 

coordinate transformation is an apparent reduction of the area of influence of the structures 

close to mixture fraction values of 0 and 1, followed by an elongation of the area of influence 

of those structures between the aforementioned regions of Z. 

These two figures also show that the overall magnitudes of the strain field are maintained, 

while the reduction - elongation - reduction effect makes some of the structures disappear, es

pecially for regions in the vicinity of Z = 0. This finding is of relevance since the areas where 

the elongation effect is prevalent, is where values of mixture fraction indicate a more vigorous 

mixing process, where chemical processes are taking place with more frequency. As expected, 

the reduction - elongation - reduction effect does not take place along the a direction. The 

strain fields are also shown to be periodic in the x, y, a, and £ directions. 
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Figures 4.4(c) and 4.4(d), show the s train fields i n the a — ( space for \I> = 4 and \& = 5 

periodic signals, respectively. F r o m Figs . 4.4(b), 4.4(c), and 4.4(d), i t can be seen that 

the number of signals used has a significant effect on the structure and propagation of the 

calculated field. 

(c) * = 4, Q - C (d) * = 5, a - C 

Figure 4.4: S t ra in fields simulated wi th P F 

T h e strain field calculated wi th three periodic signals shows well-defined regions of positive 

and negative values of strain, which have the physical meaning of stretch and compression 

regions i n the flow. These structures tend to be very large for this part icular case and do 

not show much intermittency. T h e structures can be considered to be eddies, wh ich implies 

that large structures correspond to the energy-containing subrange or the iner t ia l subrange 
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in the cascade model. Consequently, smaller, finer structures would represent the behaviour 

of a flow at the dissipation subrange, at which combustion is assumed to take place. Figures 

4.4(c) and 4.4(d) show a much finer structure with more intermittency than Fig. 4.4(b) while 

yielding similar strain magnitudes to those obtained from the DNS database. 

C o u p l e d M a p L a t t i c e ( C M L ) 

In Chapter 3, the C M L equation of Hilgers and Beck [6], [7] that was used to calculate the 

strain field in this thesis was described. Opposite to the P F model, the C M L model simulates 

velocities from which the strain field has to be calculated. Two independent velocity fields 

were simulated and assigned arbitrary directions u and v, which are orthogonal to each other. 

The simulations were run in the x — y space, with parameters 7T = 0.02, g = 0.0194, and 

C = 1.411 in Eq. (3.47) and transformed to the a — C, space using the mapping rules described 

in Section 3.6. 

Figure 4.5(a) shows the the u-velocity field simulated using the C M L model at a level of 

fc = 3, which is assumed to be in the integral sub-range of the energy cascade of F ig . 2.1. 

Figures 4.5(b) and 4.5(c) show the results of the simulation of velocity for levels of fc = 9 and 

fc = 15, respectively. The structures in these figures do not correspond to eddies, since eddies 

represent a vortical motion and these figures are only a two-dimensional representation of one 

component of velocity. 

A comparison between Figs. 4.5(a), 4.5(b) and 4.5(c) shows that the velocity magnitude 

decreases about 4 orders of magnitude from levels fc = 3 to fc = 15. This proves the capabilities 

of the model to represent the dissipation of energy from one level to the next. It can also be 

seen that the structure of the velocity field is more uniform as the fc level is increased. 

Figures 4.6(a), 4.6(b), and 4.6(c) show the vector form of the two-dimensional velocity 

fields at different levels of energy for the area delimited by 0.2 < a < 0.6 and 0.2 < £ < 0.6. 

The fields were calculated using the results of the simulations of velocities in two orthogonal 

directions for levels of fc = 3, fc = 9, and fc = 15, respectively. 
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Compar ing these figures, i t can be seen that some of the structures present i n Fig. 4.6(a) 

have been completely dissipated, or have been dissipated into smaller structures i n Fig. 4.6(c), 

g iv ing rise to a more orderly field. 

0.2 0.4 0.6 0.8 

a 
0.2 0.4 0.6 

a 

(a) k = 3 

0.8 

0.6 

3 0.4 

0 , 

(b) it = 9 

l o . 0 2 

0.02 

• H ___-0.04 
0.2 0.4 0.6 0.8 

a 

(c) k = 15 

Figure 4.5: u-velocity fields simulated w i t h C M L 

Figs. 4.7(a), 4.7(b), and 4.7(c) show the strain fields obtained using the C M L model and 

the def in i t ion of Eq. (3.48) for energy levels of k = 3, k = 9, and k = 15, respectively. 

The effects of the decaying energy on the strain fields are evident in these figures. I t can 

be seen that the magnitude of the strain field decays considerably as k advances fur ther in to 

the viscous subrange of the cascade model. This leads to a strain field w i t h fewer peaks and 

more neutral, or zero-strain areas as shown in Fig. 4.7(c). Using the values of the turbulence 
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parameters e and v from the reference DNS database, it was determined that the level of 

energy in the C M L model that would give the appropriate values corresponds to k = 9, which 

is shown in Fig. 4.7(b). 
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Figure 4.6: Velocity fields simulated with C M L 
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0.2 0.4 _ 0.6 0.8 

(c) k = 15 

Figure 4.7: Stra in fields simulated w i t h C M L 

Compar ing Fig. 4.7(b) w i t h F ig. 4.4(d), i t can be seen that there are impor tant differences 

and similarit ies between the structure of the fields produced by the P F and the C M L models. 

F i rs t , the P F model is based on spectral methods which are inherently smooth due to the 

filtering that occurs as a consequence of Fourier-like transformations. Th is is proven by the 

fact that the structures produced by the P F are larger than those simulated w i t h the C M L 

model. I t can also be observed that , i n general, the fields produced by the P F behave very much 

as an ampl i f ied por t ion o f a selected area of the CML-produced field. Th is discrepancy could 

be el iminated by using a larger number of signals i n the P F model that would induce more 

var iabi l i ty along the domain. One of the similarit ies between the models is their capabi l i ty to 
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provide the right orders of magnitude for the field when compared to the calculated value of 

the strain tensor using v and e parameters from the DNS database. A t t = 5 time units, the 

DNS data yields Sij = y^e/2i/ = ±0.5656, while the both the C M L and P F models provide 

values in the range —0.8 < Sij < 0.8 for the case of k = 9, and ^ = 5, respectively. 

4.2.2 Predictions of Reactive Scalars 

Two different sets of calculations using the P F and C M L models proposed in this thesis were 

performed and compared to the DNS [8] and C M C [9] reference databases. In addition to these, 

a third set of computations was performed using a generator of Gaussian random numbers 

that was used in place of the P F and C M L models to mimic the chaotic variations of strain. 

This was done with the objective of determine whether or not a simple set of random numbers 

would provide similar results to those obtained with the periodic forcing and coupled map 

lattice models. The results obtained with this scheme are identified as D C M C - R A N in the 

following figures. Figure 4.8 expresses results in terms of Favre averages which, for the case 

of species mass fractions, were calculated in a similar fashion as in the C M C formulation as 

f ^ lopWKpjQdc: 

fiP\CP(Q<K 

where P(Q is the P D F of mixture fraction which is represented by the /3-PDF taken from the 

DNS reference database [8]. 

In Fig . 4.8(a) it can be seen that the D C M C - P F and D C M C - C M L models provide predic

tions of the Favre average of oxidiser mass fraction in excellent agreement with the DNS results 

with a noticeable improvement over the C M C results, while the D C M C - R A N model provides 

only a marginal improvement over the C M C predictions. The Favre-averaged methane mass 

fraction is also well predicted by both the D C M C - P F and D C M C - C M L models, as shown in 

Fig. 4.8(b), with a tendency to under-predict, especially after 35 time units. Figures 4.8(c) 

and 4.9(a) show that the D C M C - P F and D C M C - C M L models provide good predictions of the 

Favre average and conditionally-averaged intermediate mass fraction after 30.0 time units, re

spectively. This result has important implications given that the intermediate includes CO. It 

is expected that i f the intermediate mass fraction is properly simulated, the ability to capture 

its effect in the overall generation of pollutants wi l l be positively affected. 
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Figure 4.8: DNS, C M C , and D C M C Favre averages of species mass fractions 
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The Favre-averaged mass fract ion of products is over-predicted for al l times by bo th 

DCMC-based simulations as shown i n Fig. 4.8(d). Th is over-prediction, along w i t h the under-

predict ion of the Favre average of fuel mass fract ion, is merely a result of the overpredict ion 

of the reaction rates. 

(c) (T\Z) 

Figure 4.9: Condi t ional averages at t = 30.0 

Probably the most significant achievement of this project is the good agreement between 

the DNS and D C M C - P F and D C M C - C M L predictions of NO. Figure 4.8(e) shows an i m 

por tant improvement i n the predictions o f the Favre average of NO mass f ract ion over the 

C M C results. Th is improvement is also evident in the conditionally-averaged NO mass frac

t i on predictions shown after 30.0 t ime uni ts i n Fig. 4.9(b). The good predictions of NO 
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mass f ract ion are closely related to the qual i ty of the predictions of temperature, since the 

Zel 'dovich NO mechanism used to calculate the NO mass fract ion is strongly dependent on 

temperature. Figure 4.8(f) shows the Favre average of temperature, where i t can be seen that 

the D C M C - P F and D C M C - C M L results show a considerably improvement i n the predicted 

results over the C M C results. This result is fur ther confirmed by Fig. 4.9(c). 

_x1CT 6 __„x10^ 

0.2 0.4 0.6 0.8 

(c) n i n t , D C M C - R A N 

Figure 4.10: a-variations in the intermediates field at t = 30.0 

Figures 4.10, 4.11, and 4.12 show comparisons between the variations around the condi

t iona l mean i n the direct ion o f a for different scalar fields at 30.0 t ime uni ts calculated w i t h 

the different models proposed in this research. Here, Hi = Y} (a, £) — (Y / |a ) . 
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Figure 4.11: a-variations in the N O field at t = 30.0 

From these figures, it can be seen that the variations simulated by the P F and C M L models 

have similar structures and magnitudes for all cases shown, while the D C M C - R A N implemen

tation simulates variations one order of magnitude smaller in the same fields. For all cases, it 

is clear that the maximum and minimum variations occur in the vicinity of ( « 0.35, which is 

where the chemical reaction is assumed to occur with more intensity. While the P F and C M L 

show consistent results with this hypothesis, the R A N implementation shows large variations 

in the temperature field at a very different location, as shown in Fig. 4.12(c). This is due to 

the lack of structure in the tensor field calculated with the D C M C - R A N model. 
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The variations shown in F ig . 4.12(a) and 4.12(b) seem to indicate the presence of ex

t inc t ion and re- igni t ion phenomena, characterised by 'cold ' regions between 'hot ' regions. I n 

the case o f the figures shown, these variations are rather small, bu t large enough to produce 

changes i n the simulated values of N O and intermediates, as shown i n F ig . 4.11(a), 4.11(b), 

4.10(a), and 4.10(b). 

B o t h the P F and R A N simulations took approximately 2.7 hours to complete i n a P4 Xeon 

2.4 GHz cluster using a single processor, while the C M L simulations took approximately 30.0 

hours to complete using the same hardware. 
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(c) UT, D C M C - R A N 

Figure 4.12: a-variations i n the temperature field at t = 30.0 
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4.3 Summary 

T h e results obtained from the numerical implementat ion of the models proposed i n this thesis 

have been presented i n this chapter. The most important observations are summarised as 

follows: 

• T h e stochastic processes used to simulate the s t ra in tensor proved to offer good results 

i n terms of magnitude and structure of the strain fields. T h e P F mode l requires at least 

5 signals to offer consistent results, whi le the C M L model provides the structure and 

magni tude required for the test combustion process at a dissipation level of fc = 9 

• It was observed that by us ing a second condit ional variable addi t ional variations can be 

simulated w i t h the D C M C model . These variations would have been ignored us ing the 

single condi t ional moment closure. 

• In general, the D C M C - P F and D C M C - C M L models provided improved predictions of 

species mass fractions and temperature when compared w i t h the C M C model . T h i s 

is especially evident in the Favre-averaged predictions of intermediates and NO mass 

fractions and temperature. 

• W h i l e the computat ional expense of the D C M C - R A N is comparable to that o f the 

D C M C - P F model , i t was observed that the lack of structure inherent to the R A N i m 

plementation results i n inconsistent simulations of the scalar fields. 
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Conclusions and Recommendations 

T h e appl ica t ion of the D C M C method w i t h stochastic processes to simulate turbulent com

bust ion has been explored throughout the development of this thesis. In this chapter the 

findings produced w i t h this research are summarised and recommendations for future work 

are art iculated. 

T h e appl ica t ion of stochastic processes and Monte Car lo methods i n combust ion were de

scribed i n Chapter 2, along w i t h the general fundamentals of turbulent combustion. Examples 

of relevant applications to this research were also discussed i n Chapter 2. 

T h e derivat ion of the mathematical models proposed i n this thesis took place i n Chapter 

3. D C M C transport equations of species mass fractions, temperature and scalar dissipat ion 

were formulated and the unclosed terms were modelled using two tools: scalar t ransport and 

condi t ional moment closure hypotheses. T w o different stochastic processes were also proposed 

i n Chapter 3 of this thesis to model the strain tensor i n the transport equation o f scalar dis

sipat ion. 

T h e numerical implementat ion of the models developed i n Chapter 3 showed encourag

ing results i n terms of simulations of the strain tensor, as wel l as predictions of temperature 

and intermediates and NO mass fraction. The addi t ion of the second scalar variable induced 

variations that cannot be simulated by the single condi t ional moment closure method . These 

results are discussed and summarised i n Chapter 4. 

A n example of the appl icabi l i ty and advantages of the D C M C method w i t h stochastic 

processes i n s imulat ion of turbulent combustion has been demonstrated w i t h the results ob

tained from this research. A s w i t h many other projects, however, areas o f improvement have 
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also been identified that would make the model more robust and applicable to a more general 

range of problems. It is then proposed to: 

• Explore ways in which this or a similar model could work linked to a C F D program. 

Wi th this model it is possible to use the fluid flow data provided by a C F D program as 

a real-time input. The code would then calculate the strain field and the solution for 

Eq. 4.1, returning updated values of density, temperature, viscosity, etc. to the C F D 

code. 

• Investigate the effects of increased variations around the conditional mean of a. These 

variations could be induced by modifying the initial conditions and coupling between 

the scalar dissipation of a and Z. 

• Investigate the use of the models presented in this thesis including variations in space. 

This implies a different approach for the closure of Eqs. (3.20) and (3.21) to that 

presented in Chapter 3. It is possible that the differences between the results presented 

in this research and those found in the DNS reference database could be due to the lack 

of a spatial variable. The use of such as a conditional variable will provide the model 

with a capability to discriminate among isosurfaces of mixture fraction and o. 

• Test a different case. As with most numerical models, it is important to verify the 

validity and applicability of the hypotheses used in the development of the model. The 

combustion of Hydrogen-Oxygen and Hydrogen-Air flames has been studied extensively 

and could present itself as a good candidate for comparison purposes with the models 

presented in this thesis. 
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