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ABSTRACT

Mathematical methods for investigating'power—system
phenomena arising from non-linearities are developed in this
thesis.

Most information available about power-system phenomena
arising from non-linear effects is obtained from two main sources
of research: field tests and miniature representation experiments,

The use of equivalent circuits describing the physical
system and the application of circuit analysis techniques is
another approach to this problem. This thesis is concerned with
the establishment of procedures for methods ba;ed on this approach.

The incremental method is simple in theory but its
application was difficult in the past because of the necessity
of numerous calculations. The facilities of the digital computer
overcome this difficulty and this method is fully explored.
Certain aspects of the phenomena are investigated and some
programming details of the method discussed.

In contrast, the other methods require less calculations
as the solutions are in the form of simple algebraic expressions.
An insight into the system behaviour rather than accurate
numerical results are obtained., Under the broad heading of
analytical methods, the Method of Isoclines, the Principle of
Harmonic Balance and the Method of Integral curves are
investigated and used.

The establishment of the equivalent circuits representing



the physical system is studied and the adequacy of these‘
representations is discussed. An interesting method of
approaching the transient solution of the long-line equations
is also developed. Comparison between the representations of
the power transmission line by a finite number of T-sections
and the use of distributed parameters is made.

Underlying the whole study is the growing importance of
non-linear effects and transient phenomena in power-system

planning, design and operation.
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CHAPTER 1I.

1-1 Introduction

The title of this thesis is purposely general although the
subject matter itself is quite specific, The justification for
this is based on the fact that whereas a particular non-linear
effect under definite system conditions is treated in detail,
the emphasis is on establishing a method of treatment rather
than discussing the solution of this particular problem. The
ideas developed are themselves quite general and certainly will
have application iﬁ the rather broad field of non-linear effects
in power-system analysis.

The two key-words in this title are non-linearities and

power systems and it is important that the sense in which these

are used be established. This in turn requires a discussion of
the circuit concept which will be used exclusively in this

study.



1-2 The Circuit Concept.

Electric circuit theory finds its true foundation in Maxwell's
theory of the electromagnetic field. This theory expressed by the
well known Maxwell's equations has been very successful in
explaining all electric and magnetic phenomena in terms of fields
resulting from charges and currents. Despite the success of this
field theory, the circuit concept has found widespread use and
acceptance especially in the formulation of many phenome@a of
engineering interest. Its simplicity of application and use of
easily measurable quantities--voltages and current--have been
responsible for its development independent of field theory and
this fact has hidden its foundation, its limitations and approxim-
ations.

High frequency phenomena, transient behavior and non-linear
effects have been responsible for a more critical examination of
the circuit concept. Its practicability in analysis of these
effects is still a big attraction but its value as an approxim-
ation must be examined and the results of any study must be
coloured by its limitations. There are five main parameters
which usually enter a circuit analysis--current, voltage, resis-
tance, inductance and capacitance. The other quantities of inter-
est--charge, fields, power, etc.--can be computed from these.

In defining these quantities, three different approaches
are possible, each finally giving the same mathematical result,
and it is a matter of choice whether one starts with the easily
visualizable concept of charge, the more physically significant

concept of current or the more mathematical basis of Maxwell's



equation(l)Two.of these toncepts will be used and the choice
is ..based~on convenience.

l-2~1 The Electriec Current.

Using the concept of charge as understood in present -day
atomic theory, a single electron is credited with having the
basic unit of charge. The phenomenon of charge transfer or
velocity ¥s described by the term electric current. If g denotes
the charge and i the electric current, in equation form, the
relation

current i = g—% is established (1-1)

1-2-2 The Electric Potential or Voltage.

The movement of charge requires energy of one form or another
and the term voltage or potential is defined as the energy per
unit charge--i.e. it is the amount of energy required to trans-
port a unit charge under certain definite conditions. In equation

form, if dWe is the energy required to move dg charge, then
aw

' - e
voltage v= aq - (1-2)
also
dwe a dw
vi = aq a% = —€9 = rate of doing work or expending energy '= power
.. power Pp = Vi (1-3)
energy W _= j;dt = .];idt (1-4)

1-2-3 The Magnetic Field. The Inductance Parameter.

For a fuller appreciation of the description non-linear as
applied to an inductive element, the concept of energy and

Maxwell's equations are used as a basis.

(1).

Maxwell's equation. state



from

arezi

= ab
Curl H=J + It
aB
Curl E = = It
which
diVE:O

div b = 53

(1-5)

(1-6)

(1-7)

(1-8)

As expressed in these equations, the basic quantities

H = magnetic field intensity
E = electric field intensity
B = flux density

D = displacement density

J = current density

)D: charge density

(1-9)
(1-10)
(1-11)

(1-12)

{1-13)

-(1-14)

In the circuit concept, all relations must be expressed

by quantities of voltage, current and circuit parameters.

A necessary step is to establish the correspondence between

the field quantities and the quantities used in the circuit

concept.

then

Considering equation (1-6) and referring to Fig (1~1),

aB

Curl E = - it

(1-15)



B LINES

FLUX TUBE

PATH OF INTEGRATION (L) "SURFACE OF INTEGRATION (S)

FIG. 1 -1



B.ds = constant (1-9)
‘. equation (1-8) can be written
LI fB a"SISH a1 (1-10)

w
gﬁﬁ.zﬁ - (7.3
J

a
where a = surface area bounded by a B line, therefore a

quantity M can be defined

M égﬁﬁ,‘m‘ = fﬁ.&; (1-11)
a |

V + W' = f M B.ds (1-12)

S

from which

aw ) = [ T).T + [@is). & (1-13)
Compariﬁg this equation with (1-6) suggests that
av = fM dB.ds. (1-14)
s ‘ .
and
av' = de 5.3s. (1-15)

S

In ¢ircuit theory, the variables are the terminal voltages
and currents, and a relationship must be established betweeen
these and the field quantities.

Now terminal current i = j’ J.da* (1-16)

a*
where a* = area of the cross-section of the conductor.

From the form of equations (1-11) and (1-16), it follows.



Considering equation (1-5) and neglecting the term

%%, a procedure justifiable in this context, a relation

S

&H.ﬁ = gfér.dE ~hi (1-23)
1 .

can be established., J. is the constant of proportionality
between ijdg'and'r; the current,

Eq.$(1—22) gives a relation between voltage and flux-
linkage; eq. (1=-23) gives a relation between current and
magnetic field intensity. In any medium, there is a
correspondence between B and H. This correspondence can

then be used to relate:v. and i.
ind

In some media, the correspondence between B and B is
linear. In such a case, the relation between A and i is

linear. Then-

di di
V. :H;—'di‘a—%:l”ﬁ (1-24)

The constant L is called the inductance parameter.

In other media such as iron, the correspondence between
B and B is rather complex, especially when hysteresis effects
are present. The simple relationship given by eq. (1-24)
is no longer valid., Instead some complex function referred
to as
A= A(i)
(1~25)
or i=1i(A)

has to be used. It may not even be possible to express



such a function analytically and the methods of handling

such functions form an important part of this study.

1—-2-4 The Electric Field. The Capacitance Parameter.

Using the same approach as is sec. (1-2-3) and

referring to Fig (1-2), the relation

%i‘).d's' = gdiv D.av

s b
is used,
Now
diV ]—) =P
therefore
égﬁ.d's' = J)D av
S v
Defining

charge = q = S})dv
A

the relation

q :q%ﬁ.dg

8

is established.

(1-26)

(1-27)

(1-28)

(1-29)

(1-30)

Considering a potential difference v, between two

termina15
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( E.dal = v (1-31)
) C
1

Eq. (1-30) establishes the relation between v, and E.

If the relation between D and E in a medium is simply

given by
D =¢.E (1-32)

where € = some constant (permittivity), (1-33)
then the relation between q and Vo is expressed by the
linear equation

q=2Cv, (1-34)

C is called the capacitance parameter.

For other cases, some complex relationship

a = qlv,)

(1-35)

or v,= vc(q)

must be used. This type of non-linearity does not arise
in this investigation and will not be considered any

further.

1-2-5 Simulation of Losses. The Resistance Parameter.

In power~systems, losses are always present. These

losses may arise from current flow in conductors, the corona



11

phenomenon, secondary effects of the magnetising field, etc.
The currents and voltages corresponding to these phenomena
satisfy the principle of conservation of energy,

dWg .
aT = PR = 1R VR (1—36)

If the relation between iR and Vi is linear, this relation

may be expressed as

TR =R i

R (1-37)
However, with the increasing importance of the more complex
phenomena of corona, arc-behaviour, hysSteresis losses etc. for
the simulation of these losses, eq. 1-37 is not valid. In this
study, the question of the hysteresis losses is investigated
with this in mind and some interesting results are obtained.

Except for this case, it will be assumed in this study that

the resistance parameter R is constant.

1-3 Non-Linearity.

In the circuit concept, the circuit parameters are used to
represent a physical system which displays certain electrical
phenomena. It is realized that such representation can only be
an approximation, as a complete and true description of the phy-
sical behaviow will introduce endless combinations of circuit
parameters and thus defeat the simplicity of the method.

The same physical system may be represented by different
parameters depending on the phase of the behaviour being studied.
The choice of the representation depends on experimental fact
and engineering judgement but a wide range of phenomena can be

studied by the use of linear analysis. This implies that the
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physical system is represented in a circuit by parameters which
are constant for variations of the magnitude of current, charge
and voltage.

The mathematics and procedure of linear analysis are well
developed and follow a set pattern but, as will be seen, the
introduction of non-linear elements requires individual mathem-
atical treatment and the establishment of a procedure to suit
the sperific problem.

Before being able to study a system, there are other ques-
tions to be asked about the elements or parameters. Are they

bilateral, time-invariant, 1umped?(2)

In this study, the ass-
umption will be made that all parameters are bilateral and time-
invariant but the question of a lumped-network representation of

a transmission line will be fully discussed in Chapter 2.

1-4 Mathematical Implication of Non-Linearity.

If linear behaviour is assumed, then equations (1-22),

(1-35), (1-37) can be written

A _ 1 4
Vind T %2 T 3%
1 . (1-38)
Vc=af1d't
v =R i
r

where C, L, R are constants and depend only on the geometry
of the physical system.

If however, any of these elements are non-linear, no values
of C, L, R, can be defined, therefore the functions A(i), q(vc),
and VR(iR),have to beriised .directly -and asuitable ‘mathematical
approach has to be deweloped.

If any form of mathematical analysis is to be attempted,
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the non-linear characteristic must be established for the non-
linear element. This requires further approximation and the
use of engineering judgment as the mathematical complexities
must be balanced against the usefulness of the result.

To clarify some of the points discussed, an example will
be briefly discussed.

Consider the circuit shown in Fig. (1-3). All the elem-
ents are linear. This is recognised as the simple series res-
onant circuit, with a single frequency excitation.

The mathematical equation governing this circuit is given

by
e = E sin(ot + 0) = iR + = [iat + $& (1-39)
C dt g
Differentiating,
. 2
GE Cos(wt +0) =R & +21 i ' 4+42 (1-40)
dt C 2
dt

Assuming linearity throughout,

dr _dr  di . di

dt ~ai at - U at (1-41)
where

L 2 %% (since linear) (1-42)
.". Equation (1-40) reduces to

2. .
L%+R%—};+%i:mEcos(wt+o) (1-43)
dt

This is a simple linear second-order differential equation
and the various methods available for the solution of this equ-

ation yield an explicit solution for i as a function of +t.
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The complete solution gives both transient and steady~- .
state behaviour ; the terms in the solution containing exponen-
tial decrement factors become insignificant when the circuit
reaches its steady-state (t—oo ),

If instead of the previous conditions, the inductor exhibits
non-linearity, before the solution of the equation can be
attempted, a relationship between i and A must be established.
The function i = i(A) is usually given iﬁ the form of a graph but
for the purpose of this example, it will be assumed that an exact
relationship

. 3 5
i = a1A + a37\ + as?\ (1-44)

exists, where a5 a3, and a5 are known constants.

This relationship can be substituted in equation (1-40)

yielding
dA 2 dA 4 dA
«E cos(wt + 0) =R§ai Tt 3a3 AT Tt 5a5 A
2
+ L (ad + a0 +a. 2%) + 2 (1-45)
C 1 3 5 2
dt
Further manipulation of this equation yields
2
d=A 2 24y dA 1 3 5
E;E + R(al + 3a3k + 5a5A ) xte (all + a3A + asl )
= @E cos(wt + 0). (1-46)

The solution of this non-linear differential equation

(3)

provides an interesting mathematical exercise and the results
are certainly not as straight forward or simple as in the previous
example.

Although the introduction of a non-linear element comp-

licates the mathematics, the basic problem of what effect this

has on the physical phenomena still has to be answered. In all
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cases, verification of the wvalidity of any analysis depends
ultimately on experimental results but, in non-linear problems,
there is the added difficulty that general methods for direct
interpretation of non-linear equations are not available.

Fig (1-4) shows the volt-ampere relationships obtained
experimentally(B) for the circuit of Fig.(1-3). Curve (a), a
straight line characteristic, is obtained if an air-cored reactor
is used--i.e. one that can be truly represented by a linear
inductance. Curve (b) is obtained with the same parameters but

(3)

an iron-cored reactor is used. Obviously, . . obtaining a
solution for such a physical system will involve more complex
representation and techniques. Eq. (1-46) as an approximate
description of such a system is one example of the difficult
mathematical problems involved in studying such phenomena.

In the simple series linear circuit shown in Fig. (2) a

familiar term is the resonance frequency. If either w, L or C

is varied, there occurs a point when wz = %C and the current i
reaches a maximum value, imax = % ; this value of @ is called the

resonant frequency.

There is no such simple occurrence in a non-linear circuit.
Instead, the terms higher harmonics, sub-harmonics, ferro-reson-
ance and jump phenomenon are common throughout the literature of
non-linear studies. The significance of these terms will be
considered as they occur in this study.

1-5 Power-Systems.

The transfer of energy from one point to another requires

a system diagrammatically shown in Fig. (1-5).(4) Three main
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features characterisé .an electrical power system as used in this
context:
(1) The transmission medium and coupling are solid
conductors.
(2) Relatively low freqdencies ( 100 c.p.s.) are
used for transmission.
(3) The quantities of energy transferred aze usually
very large.

Because of these factors, the circuit concept is admirably
suited for studying power systems. If a proper representation of
the elements of the system is determined, the application of the
simple laws of Kirchhoff in combination with the voltage-current
relations for the lﬁmped parameters reduces the problem to the
solution of a set of differential equations.

The lumped transmitter or source is usually a 3-phase .a.c.
generator or a combination of such generators. The couplings at
either end depend on the system but in most cases. power trans-
formers are required.

In d.c. transmission, a combination of transformers, recti-
fying and conversion equipment is necessary. The transmission sys-
tem is solid conductors with the earth sometimes being used as
part of the system.

Each component in a power system as described is capable of
complex behaviour. In the representations of these devices using
the circuit concept, many simplifications have to be introduced
but even then, non-linear techniques must be employed if the

entire range of performance is to be studied.
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A review of the literature pertinent to this field reveals
the necessity of such studies., It is remarkable that power
system design and analysis has reached its present advanced stage
relying principally on linear techniques.

Rotating machines with their complex field distribution and
geometrical asymmetries, transformers characterised by the non-
linear flux-current relationshipz non-linear resistors used as
protective devices are all essential elements of any modern power
system, Under steady-state conditions, the mode of operation of
these devices and phenomena experienced are éuch that linear
differential equations can usually be used to describe them. The
solution of these equations in combination with some empirical
information provide useful and . sufficiently accurate results
for normal, steady-state analysis of power systems. The size and
complexity of the system may warrant the use of network analysers
or digital computers, using the techniques of linear analysis.

1-6 Non-Linear Effects in Power Systems.

Fault occurrences, switching operations can set up disturb-
ances on a system resulting in phenomena which cannot easily be
represented by linear parameters. Experimental tests have proved
that knowledge of the effects caused by these disturbances is
necessary for the design and operation of power systems.

In the economic design and operation of any power system,
two factors are of prime importance: firstly, the coordination
of insulation level throughout the system; secondly, the setting
up of a reliable, selective and quick-acting protective system.
The first factor requires a knowledge of the voltages that will be

experienced by the equipment in all parts of the system under
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expected conditions, and the second requires a knowledge of both
voltage, current and associated relationships mainly at key points
of the system.

Field tests verified in part by theoretical considerations
have shown that abnormal voltages may either be externally
induced--principally from lightning--or result from switching
operations. Lightning surges have been the most frequent cause
of outages, following insulation breakdown, and a great deal of
research work has been devoted to this field. Development of
ingenious transformer designs, improvement of insulating materials
and the introduction of lightning arresters have all contributed
to making power systems more immune from such failures.

With the growing use of extra high voltages, long transmission
distances, and such devices as series capacitors and d. c.
conversion equipment, prediction of abnormal voltages caused by
switching operations has become increasingly important in system
planning. The term switching operation as used here implies a
change of state of the system from one set of conditions to
another. Associated with this change of state is a new distrib-
ution of voltages and currents which is accompanied by a transient
behaviour. The causes of such changes of state are varied and
the consequent behaviour covers a very wide range but there is
one essential difference between this phenomenon and lightning
surges. In this case, exponential or near-expenential voltages
and currents are experienced whereas in lightning phenomena,
wave—shapes of varied patterns occur.

It must be noted at this point that in fact the phenomena of

abnormal voltages and currents need not necessarily be associated
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with non-linear behaviour and in fact, some severe overvoltages
can be studied completely by means of linear techniques. Specif-
ically, fundamental frequency voltages that occur due to the
occurrence of a system fault can be determined by the use of
symmetrical componentsES)This technique may rely on certain
assumptions which exclude non—linearity)e.g.)the,non-existence

of arcing or assigning a constant impedance to rotating machines.
However, in this study, attention will be confined to the part-
icular case of the energising of a system in which the non-linear
flux~current relationship of a transformer plays an important
part. This particular probiem will be studied in some detail with
the emphasis on methods of approach to certain problems rather
than on the significance of the results. Some of the ideas exp-
lored will be pertinent to most non-linear behaviour in power
systems and similar types of switching conditions, e.g., the
dropping of load and the paralleling of transformers.

Eo appreciate how some of these effects arise, two interes-
ting phenomena will be examined.

Consider a transmission line, fed by a single-phase a.c.
generator. The line is terminated by a reactor. The flux-linkage
vs current relationship of the reactor is given by curve (a)

Fig (1-6). The circuit representation of such a system is shown
in Fig (1-7) where R and L (both linear) are the resistance and
inductance respectively of the line.

The equation describing such a circuit is

di

e = Emax Sin{(wt + ) =i R + L it T e : ,

i di , da o
=iR+L 3G +35 | (1-47)
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As a first approximation, it can be assumed that

ex'>?> i R
di
ex>> L 33

Then eq. (1-47) simplifies to

E

max

il.e.

A =

—2X  cos (wt + 8) + K
(6]

dA

Sin (et + 0) = =%

dt

1

If the initial conditions are

A
o
at t
then
Ky
i.e
A =

(1 - Cos ot)

Eq. (1-56) shows that for

ot

A

2 Ema

2 A
m

X

w

2 x normal steady-state value of A

ax
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(1-48)
(1-49)

(1-50)

(1-51)

(1-52)
(1-53)
(1-54)

(1-55)

(1-56)

(1-57)

(1-58)

(1-59)

Curve (a) Fig. (1-6) shows that as A approacnhes this value

2 A large values of current result.

max

The inclusion of

line resistance in these considerations results in a damping

effect, the peak value of A approaching its steady-state value

A with increase in time.

max

However, in any case, large values
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of current occur initially.

A transformer terminating a transmission line behaves like a
reactor with a non-linear flux-current relationship. This
phenomenon of large currents occurring initially on energising

is the well known transformer current inrush.

Because of the fact that fhe peak value of this inrush
current may exceed the current rating of the transformer, know-
ledge of the wave shape and magnitude of this current is necessary.
in the setting up of protective devices for the transformer.

Some attention has been given to this problem--the more

(6)

significant contributors in{ +this field being Turner y, Finzi

(8)

and Blume . The approach has been primarily experimental as a

(7)

complete rigorous mathematical treatment will be complex and diff-

(9)

icult. This phenomenon described over 60 years ago- has a
continued interest for system designers and planners. Because of
the use of higher flux densities and the need for more exacting
specifications of protective equipment, more precise results must
be obtained.

A simple demonstration of the occurrence of overvoltages
requires the use of the circuit shown in Fig. (1-8). A long trans-
mission line terminated by a non-linear reactor is represented by
Fig (1-8). Resistance is neglected and the A(i) function is
given by Fig. (1-9). The system is assumed to be suddenly de-

energised.

The equation describing such a circuit is

1 /. )
g j; dt + e, = 0. (1-60)
Differentiating eq. (1-60)
de
i A
ctaw 0O . (1-61)
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Now, referring to Fig (1-9)
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i =1i(x)
i = kA in region (a) (1-62)
and i = mA +b in region (b) (1-63)
dA
e;\ = a‘_—t' (1—64)
o de 2
E% = d——g— (1—65)
dt
.. Eq. (1-61) becomes
2
45 +tim =o (1-66)
dt
Multiplying this equation by 2dA ’
: dt
2
2 dA i_% + 2 i(A). a _ 5 (1-67)
dt 4t C dt
Integrating eq. (1-67),
2
dA 2.
( el Cfl(x) dA = 2h (1-68)

where h is some constant determined by initial conditions.

Eq. (1-68) can be put into a more convenient form

@, -\/2 (b - v(0)) (1-69)
vhere
V() =% fi(l) ar. (1-70)
In region (a)
V(A), =% fk:l ar = 15%3 (1-71)
In region (b)
V() = & j(ml +b) ar = 22_2 % (1-72)
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The significance of these results is mofe easily shown
graphically,

A plot of V(A) versus A is shown in Fig (1-10)3 both V(A)a
and V(?\)b are parabolas but V()x)b increases more rapidly. The
phase-plane trajectory is then plotted.

For some initial condition given by V(A) = ha, the phase-
plane trajectory %% versus A can be plotted using the relation
given by eq. (1-69).

This gives the closed trajectory (a) and no abnormal con-
ditions occur.

However, for some initial condition hb the phase-plane
trajectory takes the shape given by curve (b) and very high
values of %% and hence e, are possible just outside the normal
operating region (a). These over-voltages are often referred to
in the literature as ferro-resonance voltages but in fact since
a resonance frequency is rather difficult to define under such
circuit conditions, the term ferro-resonance is misleading.

1-7 Methods of Investigation.

In the investigation of problems of this nature, the methods
used can be classified under the broad headings of
(1) Field Tests.
(2) Mathematical Analysis.
(3) Model Methods.
Field tests in fact, provide the most accurate information
about a particular system and have to be relied upon eventually
to verify any results obtained otherwise. However, the expense

and inconvenience of performing these field tests, exclude them
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from most investigations.

Another method which has proved very successful is the
simulation of the system to be studied in miniatﬁre and carrying
out measurements of voltages and currents where needed. The suc-
cess of this method lies in the fact that with the system set
up, many different conditions can be tried and the effects seen
almost immediately. Great ingenuity has gone into the design
of these very specialized analogue computers and the transient
analyser(ld)and the "Anacom"(1D are some of the better known
developments in this field. Efforts have continued to improve
the miniature representation of transformers and generators and
the simulation of effects like coronahz), arcing etc.

Peterson, (referring to this type of problem) in the pre-
face to his book(Lﬁ published in 1951 wrote "any method of
calculation is either extremely and prohibitively time consuming
or is so riddled with simplifying assumptions that the finally
calculated result is itself of questionable value". In view of
this statement, the question arises whether today, ten years
later, a mathematical analysis is any more attractive.

A significant part of this study-Chapter 3-will be devoted to
the use of the digital computer in investigating this problem
and‘the answer to the above question is a very definite affirmat-
ive. The digital computer has made possible the exploring of
a few mathematical methods which were previously considered
unattractive because of their tediousness. The continuing imp-
rovement in digital computer design as regards speed, capacity
and simplicity in programming will establish it as a very use-

ful tool in these investigations.
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The comparison between these two methods will not be
discussed here as the accuracy désired, economics and equip-
ment availability will have to be considered but, although . the
analogue method is well established and has proved successful,
it is felt that there will be a place for analyses which rely
on the digital computer.

Quite often, an insight to the influence of changes of
design or operating conditions is needed without having to
resort to either analogue or digital computers. This naturally
involves some simplifying assumptions and minimum numerical
computation. Chapter (4) will be devoted to discussing such
an approach. Available non-linear analytical techniques are
examined with the possibility of applying them to this problem.
Some numerical examples demonsirate some of these techniques

and several interesting general conclusions arise.
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CHAPTER 2

2=1 Introduction

The circuit conceptual scheme is used exclusively in this
study, and before attempting a solution of the behaviour of the
system, a circuit representation or equivalent circuit must be
established. Such a circuit, describing many complex phenomena,
will be the result of some simplifications and approximations;
therefore, another objective will be to obtain an appreciation cf
the adequacy of the representation by a particular equivalent
circuit.

As described by Fig (1-5), a power system requires principally
four different types of physical apparatus: a source, a coupling,
a transmission medium and a load.

In this study, emphasis will be on the coupling—-the power-
transformer~—~and the transmission medium—-the high-voltage trans-—
mission line.
| The 3-phase synchronous generator which normally is the
generating source, will be represented by its simplest equivalent
circuit--a sinusoidal voltage of constant amplitude in series with
a linear inductance. Proper representation of synchronous machines
under different conditions has been extensively studied and forms
an important and interesting part of machine thecry.(l4)9 (15), (16)

The transformer's flux—-current relationship provides the non-
linearity of concern in this study and thus, the circuit represent-
ation of this device will be considered fully with particular

emphasis on the simulation of the hysteresis losses.
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In contrast with the 3-phase generator and transformer, little
attention has been given in the literature to the proper represent-
ation of the power-transmission line. Its conventional represent-
ation as a simple lumped resistance in series with a lumped induct-
ance or as a four-terminal T or m circuit has always been adopted
and the adequacy of such representations has not often been studied.
This can be somewhat justified by the fact that the behaviour of
the transmission line i1tself is usually overshadowed by that of more
complex components of the system.

However, the use of longer lines and extra-high voltages, the
growing interest in transient behaviour of power systems.and the
need for more knowledge of system losses have created greater interest
in the transmission line as a circuit element.

In this Chapter, transmission line behaviour and the various
circuit representations of such lines will be studied, relying
principally on numerical results for any conclusions drawn.

2-2 The Power-Transformer.

A transformer is a device which transfers electrical energy
at.one terminal voltage. to another. 1Its operation depends on the
existence of a magnetic field. Thus, there are two major inter-
dependent phenomena associated with such a device--the transfer of
electrical energy and the existence of a magnetic flux. All the
effects of interest in this study occur when the transformer is
unloaded or at very light load; therefore, the transformer as an
energy transfer device will not be considered in any detail.

A very useful and widely accepted concept is the treatment of

the transformer as the combination of an 'ideal' energy transfer-
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device with a circuit simulating the other effects. This section is
devoted to the development of the circuit that simulates the more
important effects.

The most significant component of the field of magnetic flux
is established in specially shaped structures of ferromagnetic
material with appropriately located current-carrying conductors.
The analysis of such a device with the necessary computation of
flux density B and the field intensity H is essentially a field
problem. The quantities B and B are functions of both space and
time; they depend on the geometry, magnetic properties and history
of the structure and the currents in the conductors.

In effect, stated as a field problem, three equations have to
be satisfied:—(rn

B. ds =0 (2-1)

S

over any closed surface
in the region,

9&3. dl = M (2-2)
and thirdly, the inherent relationship between the flux density and
field intensity. This depends on the material of the transformer
core. (2-3)

Examination of the normal construction of a power transformer
reveals that for the frequencies and currents involved, one major
simplification can be immediately introduced. The flux lines are
confined almost entirely to the high permeability paths of the ferro-
magnetic material and in fact, this three-dimensional field problem
can be simplified to a one-dimensional magnetic circuit problem.

Equations (2-1) and (2-2) are now open to easier interpretation

and with the use of a given B(H) relationship of the material,
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analysis of the field problem is theoretically possible. However,
at this point, the existence of certain other effects has to be
kept in mind because these are of some influence if the electric
circuit representation is to be used.

These effects are:-

(1) The nature of the exciting current.

(2) The hysteresis and eddy-current losses in the
core.

(3) The conductors' losses.

(4) Magnetic leakage.

(5) The Capacitive effect of the windings at high
frequencies.

Effects (1) and (2) are closely related and tied to the
condition given by eq. (2-3).

Obtaining the B(H) relationship for a transformer core is an
interesting measurement problemﬂg) (9) e A set of curves as
shown in Fig (2-1) is obtained when a sample of core material is
excited through complete cycles in continuous succession. These

curves reveal that

(1) g(jﬁ. B £ o.

(2) The B(H) relationship is not single-valued.

(3) After the first few cycles, a steady-state
condition is reached when the B(H) contour
becomes a closed loop--the hysteresis loop.

(4) The size and shape of the steady-state B(H) locus
varies with the peak value of H.

The integral “[ﬁ. dB = %¥ is interpreted
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as an energy loss per unit volume of ferromagnetic material per
cycle. This loss, called the hysteresis loss is the result of the
material's property of retaining magnetism or opposing a change in
magnetic state.

The eddy-current losses are produced by currents in the
magnetic material, and these currents result from the varying flux
density B under a.c. excitation.,

Fig. (2-2) shows théeése totallosses for a particular trans-
former at a definite frequency and impressed voltage of excitation.
FormulaeQO) have been derived, giving expressions for these losses
in terms of the circuit parameters but these have been mostly
empirical and in any case are difficult to simulate using circuit
elements.

These physical phenomena present a major problem in circuit
representation(iig mathematical analysis and three different sets
of assumptions are made if any computation or analysis is to be
carried out.

(1)

(a) The B(H) relationship is at most, a two-valued
function.

(b) The eddy-current losses at no load for a particular
transformer are simulated by a resistive element.

(2)

(a) The B(H) relationship is single-valued.
This single-valued curve is obtained by drawing
a curve through the tips of a series of increas-
ingly larger symmetrical hysteresis loops. This
curve is called the magnetisation characteristic
and is further assumed to be symmetrical about

the origin.
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(b) The total core losses are represented by a lumped
resistor.

(3)

(a) The magnetisation characteristic is used.

(b) All core losses are neglected.
Assumption (1) can rarely be used as it is difficult to formulate
an analytical expression for the two=valued relationship and in any
case such an expression would be awkward to use. In Chapter 3, a
method utilising the digital computer is described through which an
“actual hysteresis loop can be followed in the computation. Such
an approach is based on assumption (1).

In most steady-state considerations, the circuit represent-
ation arising from assumption (2) is used. Such a circuit consists
of a single inductive element in parallel (or in series) with a
resistive element. The inductive element simulates the magnetic
pﬁenomena and the resistor accounts for all core losses. The
transient response of the series circuit does not approximate the
transient behaviour of the transformer and is of no value in trans-
ient studies., The parallel combination indicates two separate
currents where only one exists but is a more reasonable approxi-
mation.

When non-linear analytical techniques are employed, assumption
(3) provides the simplest possible representation--a single non-
linear element.

. Using the incremental method developed in Chapter 3, three
separate computations of the inrush-current to a transformer are

done. The graphs of Fig. (2-3) show the results. Curves (a), (b),



39

> Seconds

0.06

INRUSH CURRENT

0.05

0.04
FIG. 2-3

Losses simulated by lumped resistor

No transformer losses
Hysteresis loop used
-

r
wa
|
|
L
=

TRANSFORMER

0.03

0.02

" — e e

0.01

A
800
600
400

200



20

(c) are obtained using assumption (1), (2) and (3) respectively.
Current waveforms are plotted as these give a better indication of
the differences and are also the quantities of interest.

The losses of the system ;hosen are principally the trans-
former core losses as this allows an appreciation of the differences
between the three assumptions.

. With all transformer losses ignored, curve (c) Fig. (2-3)
is obtained. Although having a slightly lower maximum peak value
than curve (b), its decay is.much less rapid since curve (b)
results from a circuit in which the losses are simulated by a con-
stant resistive element.

The actual tracing of the hysteresis loop which can be done
using the incremental method (Chapter 3)--results in curve (a).

Theée fact that decrease in current magnitude results in a reduction
of the size of the hysteresis loop and hence the hysteresis..losses,
is demonstrated by the initial decay of curve (a) being more rapid
than that of curve (c¢) and the tendency for these two curves to
coincide at smaller peak current values.

The use of a linear resistor to simulate the core losses res-
ults in the continuing rapid decay of curve (b). The fact that the
amplitude of the voltage across the transformer does not change
appreciably keeps the R. M. S. losses simulated by the resistor
almost constant. These losses, in fact, vary with the peak value of
the current and the accuracy of such a representation for transient
studies will depend on the walue of the resistivé element ¢thosen. ..

The losses of the conductors of the transformer can be simulated
by a lumped resistance in which the total current flows and the

©2)

magnetic leakage can be represented by a linear inductance.
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The capacitive effectsof the windings are of no significance
in the frequency range experienced in the phenomena being invest-
igated and will be neglected in these considerations.

Finally, then, the equivalent representation of the transformer
as a circuit element consists of an ideal energy transfer device,
a non-linear element and a set of linear resistive and inductive
elements. The choice of combination of these is based on the type
of behaviour being studied and the extent of simplification: +that
can be tolerated.

2=3 The Transmission Line,

In any problem that involves the parameters of a transmission
line, two approaches are possible. The familiar T or m-section
representation using lumped elements can be used as an approximate
circuit representation;or the solution of the actual partial
differential equations describing the transmission line behaviour,
with prescribed boundary and initial conditions, can be sought.

Both these methods will be described and the results of
numerical examples are presented in graphical form to obtain .
appreciation of the magnitude of the differences involved.

In particular, a solution of the partial differential equations
is fully developed. The method used here can be quite useful in
other power system applications, especially under transient conditions.
As will be realized, its success depends on many numerical calcul-
ations and the use of a digital computer is almost essential.

2=3-1 The Transmission Line--Lumped Parameters.

Consider the network shown in Fig. (2-4), in which the elements

and zﬁ+l denote arbitrary impedances.

Zk 1
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FIG. 2—4
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Applying Kirchhoff's laws and with the use of the La-place

Transformation, mesh.equations are established.

Let .
oo (2-4)
I (s) = Ii[ik]
B, (s) 2 <I[ek]
Then considering any interior mesh,
I T+ By (g = D) + 25y (I =T y) =0
(k =1, 2, .......N-1). (2-5)
For the zeroth mesh i.e. K = 0.
(Zh +2'4) 15 - 2'3 I) =Ky (2-6)
and for the Nth mesh.
“Zy_1 Iyg ¢t (Zﬁ_% + ZN)'IN = - By (2-7)
These N + 1 equations can be written more systematically as
(ZO + Z'%) IO - Z'% I1 = EO
—Z'% IO (Z'% + Z'l% + Zl) I1 - Z'l% 12 =0
-2'1 Iy (z'l% + 2oy 4+ z2)112 - L', I, =0
“Zyo1y Tneo (Byoag t éﬁ-% *oyy) Iy - oy IO
- ﬁ_% IN_1 + (Zﬁ_% + ZN) IN o = - EN
These are a set of difference equations and if
Zy =Z) =2y = ceiuens Ly g =1 (2-9)
and 2'y = Zjy = 231 ... = Zy 4 = 2
with Zo = Iy = 32 (2-10)



44

(23)
the solution for Ik is given by
E, cosh [2(N - k) a] - Ey cosh (2ka)
Ik(s) = T (2-11)
(zz' + 3z%2)° sinh (2Na)
(2-12)

7 1
where sinh(a) == )2
1

47
In the case of a transmission line, EO is usually some specified

voltage and
Ey = Zp Iy (2-13)

where
(2-14)

= an impedance function..

Z:R =
Substituting this relation in eq. (2-11) and putting k = N
E. cosh (0) - Z_, I, cosh (2Na). ‘
I, (s) = 0 T E N (2-15)
(zZ' + 32°)°  sinh (2Na)
Further
- E o
In(s) - — (2-16)
(zz' + %22)5 sinh (2Na) + Zp cosh (2N« )

if a transmission line is to be represented by T or

Hence,
(2-16) can be used to determine the

m-sections, N in number, eq.
current response at the end of the line when some voltage eo(t)

is applied.

Defining
1
by & (22t +42%)%  sinh (2N«) + Zp cosh (2Na)  (2-17)

for N number of T-sections,

Z =R + sL

k] 1
2= G
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where

R = total lumped resistance of line in ohms

- N
L = total lumped inductance of line in henries (2-18)

- N
C = total lumped shunt-capacitance of line in farads

- N
Then

1
[(R+sL) . (R+ sL)2) z
By _( ~C + 7 sinh (2Na) + Zy cosh (2Na)

and

1
sinh o = ( §Q—LE—}—§E))2
1
cosh o = (1 + SCAR * sL)y? (2-19)

To find the current response for any number of sections when a
step—function voltage is applied at one end of the line, the inverse

Laplace transform of Kg has to be found.
N

i.e. iN(t) =:J1fl [EQKE]

where Vo = amplitude of the step-voltage.
In this case, the problem amounts to findingcf -1 [E—%——] .
N

This requires putting the expression ELZ— into partial fractions
N

and then finding the inverse transforms of the simpler fractions.
For a terminating inductance, the polynomial s AN has 2 real zeros

one of which is s = 0, and N conjugate pairs of complex zeros.

Expressing slA as a sum of partial frac®ions allows the evaluation
N
of iN(t) as a function of time.
N+1
__l____=~A_Q+__A_1_+Z Bis * Ay .
s AN s s + ay (s + o + jBk)(S R P JBk)
2

(2-20)
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N .
. . -t \" -
L 1N(t) = Vo (AO + Ale 1° + 2;1 Dke k cos(Bk +¢]x)
(2-21)
where 2 1
a2 (B oy = AY) :
D = | By + 3
By
and (2-22)
g, 2 tan™t (By ope= &)
By By

The solution of the polynomial s An of order 2(n + 1), the
conversion to partial fractions and the final evaluation of iN(t)
become an almost impossible task without the aid of machine comp-
utation., Programmes to perform these numerical tasks were written
and a wide range of behaviour could be studied.

2-4 T-sections terminated by a linear inductance.

For 1, 2, and 4 T-sections, the current and voltage responses
at the end of various lengths of lines are computed., Each length
of line was terminated by various values of linear inductances,
varying from 0.1 henry to 9000 henries and the more interesting of
these results are presented graphically in Figs. (2-6) to (2-22).
In each case, a 1000 volt step-input was applied at the beginning
of the line,

The algebraic expressions for AN in terms of R, L, C and LR
are given by equations (2-24), (2-25), (2-26) and (2-27) for
1, 2, 3 and 4 T-sections respectively. R, L, C are as defined
previously by equations (2-18) and LR is the value of the termin-
ating inductance in henries.

The results of the current responses as given by equation

(2-21) and the voltage responses as given by
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iy
Yo = Lp 3% (2-23)

oY

are discussed in greater detail in section 2-T7 .

One.- -T—-section

3 2

Al = s~ CL (0.25L + O.SLR) + s“ CR (0.5L + O.SLR)
+s (L +Lg+ 0.25CR% ) + R (2-24)
Two T-sections
b, = 5% 12 (0.25L + 0.5Lp) + s* Le%R (0.75L + Lp)
+ s2|c2R? (0.75L + 0.5L.) + LC(1.5L + 2L.)
) *°"R ’ R (2-25)

+ s2[CR(L + 2Lp) + 0.2502R3)

+s [(2L + Lg) + 1.5 CR2 )+ oR.

Three T-=sections

6 .2 .3

A =st 13 e3 (0.25L + 0.5Lp) +s® L% ¢® B (L + 1.5Lp)

2

51 12 ¢2 (2L + L) + LrZ ¢3 (1.5Ly + 1.5L)

3
+ s +

4 (2-26)

+ s 3

3 2
¢’ R” (L + 0.5Lp) + ¢~ RL (6L + 6LR))

2

{
+ 53{ c? §? (6L + 3Lp) + LC (4.75L + 4.5;) + 0.25¢°> R4)
+ s (

CR (9.5L + 4.5Ly) + 2R3 ¢2 )

+ s ( 4.75 C R® + 3L + L. | + 3R

R

Four T-sections
A= s) 1t ¢t ® m1?c* (1.250 + 2Lp)

4 (0.25L + O.SLR) + s

2

+s7| R 12 ¢* (2.5L + 3Lg) + L3

¢ (2.5L + aLp)

+ s8¢ R L (2.5L + 2L;) + 1> ¢ R (101 + 12LR)\

5[ o4 p4 3 p2

+ s’ ¢CT R (1.25L + O.SLR) + C° R°L (15L + 12L

g

+ 1% c? (8.5L + 10L;)
(2-27)



s* | ¢® B? (100 + 4p) + L C%R (25.5L + 20Lp) + Ci

s R® (25.5L + 10Ly) + LC (8Lg + 11L) + 2,5C° R4)

s?| CR (22L + 8Ly) + 8.5C° R3) (3-27)
+s | L, + 4L + 11C R%| + 4R

R

2-5 The transmission Line—-Distributed Parameters.

Nomenclature.,

r = line resistance, ohms per unit distance

1 = line inductance, henries per unit distance

g = line conductance, whos per unit distance

¢ = line capacitance, farads per unit distance

d = length of line

X = distance along the line measured from the sending-end

t = time in sec.

s = complex frequency variable
_ r + sl
ZO_ Z (s) 5 g + sc.

J@ﬂkr + sl) (g + sc)

Zg= ZR(s) = terminating impedance

ZO - Z

R
N(s) = 75—
ZO + ZR
io(x) = value of i(x,t) at t = O
vo(x) = n " v(x,t) at t =0

Consider an element of a transmission line as shown in
Fig. (2-5).
Then using notation shown in Fig. (2-5)

- Jv

—B}.AX::(I‘i+1al)

. Ax (2-28)

|
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' ~
|

Ax

FIG. 2-5
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- %l *Ax = (gv +c %%). Ax (2-29)

Transforming these equations,

g% V(x,s) = =(r + s1) I {x,s) +'lio(x) (2-30)
2 I(x,s) = ~(g + s5¢) ¥ (x,8) + cvgy(x) (2-31)

The distributed-parameter solution to the transmission line
requires the solution of the equations (2-28) and (2~29) with
the appropriate initial and boundary conditions.

Three steps are required for a complete solution.

(1) Determination of the functions V(x,s) and I(x,s) satisfying
equations (2-30) and (2-31).

(2) Satisfying initial and boundary conditions.

(3) Determination of the inverse transformations v(x,t)
and i(x,t).

The final step usually provides the greatest difficulty and
an important feature of this section is the development of a
method for accomplishing this final step.

The general solution of equations (2-30), (2-31) is well

known(24)

and will not be repeated here. Let Vo(x,s) be the
transforms representing the effect of the initial wvoltage and
initial current distribution along the line respectively; the

complete solution of the equations (2-30), (2-31) yields,

V(x,s) = Vo(x,s) + A cosh(yx) + B sinh(yx). (2-32)
I(x,s) = Io(x,s) - %0 sinh (Xx) - %O cosh (Xx) (2-33)
where A and B are to be determined from the boundary conditions.
At x = 0 V(x,s) = V(0,s) 4 Vg 4 Ji [sending—end voltage)
I(x,s) = I(0,s) 4 Ig 4 (il Eending-end current]
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e VS =V, (0,s) + A (2-34)
Ig =1, (0,s) - %O (2-35)

cele A=V, - v, (0,s) (2-36)
B=-Zy|I, -1, (0,s) (2-37)

e . V(x,s) = Vo(x,s) - VO(O,s) cosh (Jx) + ZOIO(O,s)sihh({x)
(2-38)

+ VS cosh (Xx) - ZOIS sinh (XX)

and

I(x,s) =1 (x s) -1 (O,s) coshg'x)+ (0,s) 51nh9/x)

(2-39)
VS
- 28 51nhg’x)+ IS coshQ{x).
At x = d, V(x,s) = V(d,s) vy é(i rreceiving—end voltage]
I(x,s) = I(d,s) L1 é<i_[receiving—end currenf]

Putting this condition in eqs. (2-38) and (2-39), an exact

relationship between V IS’ and VR and IR is obtained.

Si
This is given by
VR = Vo(dps) - VO(O,S) cosh (Yd) + ZOIO (O,s) sinh (yd)

(2-40)

+ Vg cosh (yd) - zjIg sinh (yd)

0"S
Vv
Ip = I,(d,s) - I,(0,s) cosh (yd) + z% (0,s) sinh (ya)
v

-~ =2 sinh (ya) + I

Z g cosh (yd)

At this point, depending on the range and type of behaviour
of interest, these equations can be put into various forms.

For example, if changes in conditions after some disturbance
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are of interest, the most convenient form is

AVp (d,s) = AV (0,s) cosh (Kd) - 20T, (0,s) sinh de)

0°-s
(2-42)
AV
Al (d,s) = - —2§ sinh (Xd) + I cosh de)
(2-43)
where
A
AV = Ve -V
A
AL 2 Iy - I

for K=S and R
On the other hand, if steady-state sinusoidal behaviour is
of interest, the correct mathematical relationships are established

if the following substitutions are made

(1) VO (O,S) = O; IO (O,S) =0

(2-44)
(2) s =jm

where @ = frequency of the excitation

Such substitutions result in the equations involving the
familiar generalised line cireuit constants(zﬂ.

In this study, of particular interest is transient behaviour,
i.e. Dbehaviour for small values of t after t = 0. There are
two reasons for this interest. Firstly, the main purpose of this
chapter is to evaluate the T or m-section as a circuit represent-
ation of the power transmission line in comparison with the
distributed parameter solution. It is recognised that in the
steady-state or for large t, the T and m-section representations
are accurate certainly as regards terminal conditions but that
inaccuracies do occur for small t. Secondly, in the larger field

of transients in power-systems, it is felt that the method dev-

eloped here may have some definite applications.
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In this comparison, the initial conditions are not signifi-

cant and both V, and I, will be put = O.

0 0

Therefore Equations (2-40) and (2-41) can now be written

-V (x,s) VS cosh (Xx) - ZO IO sinh (XX) (2-45)
v
I (x,s) -5 sinh (yx)+ I

g cosh (J/x) (2-46)

o

If the line of length 'd' is terminated by some finite

impedance ZR’
then at x = d

V. = 2.1 (2-47)

s I = Vg cosh (ya) - Z, Ig sinh (ga)  (2-48)

<
l

and from (2-46),

Zy Ig= - Vg sinh (Xd) + Zy Ig cosh (Xd) (2-49)
Z A h (yd) - 2, I. sinh (yad)
ZR s cosn Yy 0 *s S ! (2-50)

0 —VS sinh de) + Z

o IS cos\h ((}/d)

IS is determined from this equation in terms of VS and

substituted in eqs. (2-45) and (2-46). Sinh gyx) and cosh &rx)
are replaced by their exponential equivalents and the following

equations result,
V(s,x) = vS(s)( eV % _ N(s) o= £(28-%) L y(g) o= &(204x)
~ N(s)? e d(4d-x) N(s)? o—f(4d+x)

alnd +...0°0'.. (2-51)

V_(s)
x) = zi‘;—zg (e—XX + N(s) e~ X(Qd—x) + N(s) e—X(2d+x)

I(s,

+ N(s)2 e—X(4d_x) + N(s)2 e_X(4d+x)

+ll°.l¢..0‘0 )
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0 "R

"ReTe sy & ;%—;;;ﬁ (2-52)
. for x =d
v(s,d)=vR=vS<s)(e-¥d_N<s) e ¥y N(s) o N2(s) VM
AN2(5)e T N (s) o 89 ...) (2-53)
I(s,d)=Ip = \-Zrif;;)—(e'lfdm(s) e () o P?(s) o748

+N2(s) e~¥od +N3(s) e~dPd 4 .. | (2-54)

This form of representing the expressions for V(s,x) and
I(s,x) is considered more convenient than the hyperbolic functions
as the functions N(s) and X(s) can then be thought of as reflec-
tion and loss coefficients respectively. This idea correlates the
above approach with the travelling wave concept normally used in
this type of analysis.

Since all the distributed circuit parameters are considered
in arriving at equations (2-51) and (2-52), exact values for
v(x,t) and i(x,t) can be obtained for all t if the inverse trans-
forms of the expressions for V(s,x) and I(s,x) can be détermined.
Since these expressions are infinite series in s and x, exact determ-
ination of the inverse transforms will be difficult for a general
case  ,but for small t% an approximate evaluation of i(x,t) and
v(x,t) is possible.

Now,

2 I g rg
s + x(1 + c) +

X:( (r+s1) (g+sc) )% = (10)% cl

B+ 0?2

2 (2-55)
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and 1 1 1
7 -|r* sl G Ly s 2_ QZ)E R %s+g}2— «2)?
0O {g + sc T e s+p) —a 70 stp - o)
(2-56)
where
1
B 2 (10)?
A 1,3
R.= (5)2
0 ‘e (2-57)
A
D
Al (r g
« =5 (-9
also
Z. - Z
0 R
N(s) = (2-58)
Z0 + ZR
1 Z
Ks+p) - azjz - EE (s + p - a)
, R a—— (2-59)
(sAp)“- a2 + R (s +p - a)
R,

Since in all these expressions s occurs coupled with u, use

26,
of the s-translation theoreé gimplifies the computation.

Then
i(d,t) = o—ht (J:fl (s=a) Vs(s-p) . (2-60)
R, (sz—az)%
e-Bd(sz—az)% + N(s-p) e—Bd(sz-az)%

+ N(s=p) e-ZBd(sz—aZ)% + eseens )

.°. in fact, evaluation of i(d,t) amounts to the evaluation

of terms of the form

~ (s=a) S= n , N
e—Ht X(é[-l [( ; ( ZS ( 2:;)x (N(s—p))(e_tj (sz_az)
o s - a :

toj=

|

(2-61)
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1
where (SZ_QZ) E@ (5-u)
(s-1) f
N(s=-p) = T
F —az)z + EE (s=p)
o
and tj = some constant for a particular term.

In this expression for N(s—p), the substitution

_ 8 - 52_a2)% _ = ( + l) (2 62)
z = 3 or s = 3 (z s -
is made.
M(z
Then N(s-p) = e
=1 + mlz + m2z2 + m3z3 + .......mnzn + ecaeo
Therefore
N(S—H)n - (1+m1.z + m222 + m323 + .'b’l'.olcnmnzn + ocon)n
o oD 2 2 1 k (2—63)
_ E:c 5 Ej . (s—(s —a)?2 )
- ik - jk o
(2-64)
where cjk is determined from the cogfficients m -
and o
i(d,t) = Bt o E: Jl—l (s-a) Vg (s=p) .
j=0 RO

; 1

A, jf? s-(s2-a?) 7K ot (s2-a?)¥
22 ik J
5T k=0

® (2-65)
The purpose behind this manipulation is to obtain functions of

s for which inverse transforms are available,

The transform pair

£ ((fgi?)_%_ s + (52-}12)%) f‘”(e‘tj .(;sig.-.,@'z?'%)

=(%§%@)k/2 I, (a(tZ-tg)%) (2-66)

is given in Bateman'sQ7) tables. t:>‘b;j
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1 2_ 2y37
Multiplying the term (s + (sz-aznz py s=(s=a®)?

1
s-(s2—a2) 2
gives the following pair
. 1 2_42y3
21 s - (sPoa?)PVE | oty (87-af) t-t. k/2 2 2.1
L 72 1 =(zm) I [« (47-45)%)
@ i (s“-a”) 2 + J J

(2-67)
where Ik is the modified Bessel function of the first kind

of order k, given by

T ()
L) = ) 22 — (2-68)
p=0 p ! (k+p)!
N(s—p) " e~ Y5 (527“2)%
. "« all the terms of the form B J R
2 2.
(s“-a

can be evaluated in time. To evaluate the complete expression for
i(d,t) exactly, an infinite number of terms will have to be evaluated.
In practice, for small (t—tj), the series can be terminated at a
finite value of k
as
e b=t k/2

1
o gm) I o 63— o (2-69)
S

as k becomes large.
The value of k at which the series is terminated depends on
the accuracy required and the maximum value of (t—tj) for which
results are to be computed. The value of tj which has the dimen-

sion of time, is some multiple of Bd.

The evaluation of the coefficients cjk’ the Bessel functions
Ik and the final computed value of i(d,t) require:.the use of a
digital computer for speed and accuracy.

2-6 A Finite Line Terminated By a Linear Inductor. ..

Using the method developed in sec. 2-5, the current responses
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as given by eq. (2-65), aré found for various lengths of lines,
terminated by a linear inductance with a 1000 volt step-input
applied.

Algebraically, the above conditions imply

1000
VS(S) = _S
. 1000
° ° VS(S-IJ«) = S—IJ,. (2—70)

ZR(s—p) = (s—p)LR

.°. from eq. (2-58)

1
R 52—a2 2~ (s=p)(s=a) LR
N(s—p,) = > 1 (2—71)
Ry ‘s —a2)? + (s-p)(s=a) Ly
The substitution
s =% (2 +3)
gives
4 v o220 (14 %o ) + 22 (2+3)4 2 (EQ— +1 + By4d
- z z a aLR z o z aLR x
Nemw)o= — 3 o 2 .4 R
- - - - - — By _
z 2z (1+1(“)LL + ocLR) z (2+§i) 2z ( L, + 1+ 5)-1
(2-72)

>0
=ZC Zk
ik =t

0

It was found by numerical computation that for the time
range of interest, only terms up to the order z6 need be considered
and for high values of LR’ terms up to z4 proved sufficient.

Equation (2-65) now becomes

i(d,t) = e Wt 2: {1
j=0

(s=a) x 1000
RO (s-p) ) X

n 2
B 3 e o ]
R — )
s2—a2 2 L ik

i=0
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A s—(sz—az)%
where n now has some finite value and z =

o
If the line conductance g is neglected--a reasonable approxim-

ation--then eq. (2-57) becomes

B = (1lc)
1 1
R.= (£)2
O e (2-74)
o = 0,5 T
r
l.lv = 005 T
o’.o a = Wt
Hence
t ~ 1000 E Kk —t.(s2-0?)?
. =k - -1 . -
i(d,t) =e i m chk(Z) e J
j=0 “0‘"® k=0
-1 900 k/2 2 2.1
_e 71000 _12y%
=R, E: E: ik (t+t ) L(a(35-15)%)

j=0 k=0

The coefficients ¢ are tabulated in Table 2-1 up to k=6

ik
for j=0 to j=4.
With the tabulated cjk values computed and the use of the

series for the modified Bessel function I, -- eq. (2-68), i(d,t)

k
can now be computed.
The voltage across the inductance, v(d,t) can be computed

from the relationship

v(d,t) = Ly éié%&i). | (2-78)

2=7 Numerical Resultse.

Equations' (2-21), (2-23), (2-76), (2-78) can provide foyr
different results for the current and voltage response at the end

of a long line terminated by a linear inductance.



k =| O 1 2 3 4 5 6
j=0 |1 | o 0 0 0 0 0
Ji= -1 cy ¢y Cq Cy Cg Ce
1 2c1 202 203 2c4 + ¢C3 Cy1Cy + 0203 2clc5 + ChCy + e
2 2 2
j= + c1 . + c102 + 02 + 05 + 03
-1 301 302 303 cy + chc3 305 + 6clsc4 6c1c5 + 202c4+ Cg
2
+ c + 6e¢,c¢ 2 2 2 2
j=3 1 172 5 + c1¢5 602c3 + c1¢5 cs + CiCy
3
+ c 2 3
1 + c1¢5 + c5 + 201c2c3
1 401 4c2 4c3 4c4+ 12clc3 405+ 12c1c4 12c1c5+ 1202c4+ 4c6
2 2 4
+ 6¢ + 12¢,c +12¢c, et C 2 2
1 31 2 172 1 1202¢3+12clc3 12clc4+ 24010203
+ 4c 2
. 1 + 6¢ 2 3
j= 2 12c¢c,c5+ 4c,c 3 3 2
172 271 ~402 + 4clc3+ 6c3
2
60102
Table 2-1, defined in
(cl’cz’c3’c4,c5’06’ Appendix 1.)

09
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Inspection of the algebraic expressions given by these
equations&beénot reveal the differences between the results and
to obtain some appreciation of these differences, computation of
numerical examples 1is necessary. The computation is involved but
the speed and accuracy of the digital computer permit:: the calcu-
lation of various examples and thus a very wide range of line
lengths and inductance values can be covered,

The design data of a typical high~voltage power transmission
line was chosen and the various parameters calculated.

The line constants are

r = 0.0376 ohms per mile (2-79)

1 =1.52x 10~ henries per mile

c = 1.43 x 1077

farads per mile

g =20

For lengths of line, from 40 miles to 600 miles, the current
and voltage responses are calculated when a 1000 volt step-input
is applied at one end of the line and the other end is terminated
by an inductance.

The more interesting of these results are presented graph-
ically in Figs. (2-6) to (2-22). These are the results for line
lengths of 40, 80, 160 and 320 miles terminated in inductances of
values 0.1, 10, and 100 henries. It is felt that this range of
line lengths and inductance values covers the behaviour exper-
ienced in this particular study: o . °

2-8 The Current Response. Figs. (2-6) to (2-17).

These results show +that both in magnitude and wave-shape,
there are definite differences between the current values obtained

using the long-line equations and those computed from the 1, 2, or
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4 T-section representations. The differences are more pronounced
at the lower values of inductances and for longer line lengths.

2-9 The Voltage Response.

These results obtained for ,the voltage response reveal the
significant differences between a lumped circuit and the distri-
buted parameter approach. Using the expressions developed from
the long line equations, the familiar travelling wave phenomenon
is demonstrated. The time delay and then doubling of the voltage
wave 1s seen in these graphs.

On the other hand, the 1, 2 and 4 T-section representations
give an oscillating voltage wave shape and in no case., approach
the behaviour pattern obtained from the distributed parameter
method, over the period of time considered.

Only four sets of results are presented in this case and
these represent the extreme range of behaviodur, Fig. (2-18)
gives the voltage response for a 40 mile length of line termin-
ated by an inductance of 0.1 henry, while Fig. (2-21) is from
results for a 320 mile line and 100 henry terminating inductance.

Since normally, the main quantity of interest in voltage
"behaviour. is the peak value, Fig. (2-22) provides a better indic-
ation of the errors involved if a lumped circuit representation is
used. These graphs of maximum value of the voltages show that
large, intolerable errors occur at the lower values of inductances,
especially for the longer lengths of line. The reason for this is
simple. In the final section of a lumped circuit representation,
if the current flowing is iN then the voltage across the load

inductance

R=Lp T (2-80)
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and across the inductance of the section itself is
di
- L. XN
N 44 (2-81)

Therefore, if LR is of comparable value with LN’ although the
current response iN may be correct, the voltage response will
be incorrect. Accurate representation requires an infinite
number.of sections to ensure that LR7’7 LN’ and hence

R

Therefore, for small L, and a small number of T-sections, (i.e.

R

relatively large LN), large errors in voltage values will occur.

2~-10 General Conclusions.

Examination of these numerical results,provides some general
conclusions.

Firstly, the differences in the current response are not
intolerable and certainly for the larger values of terminating
inductances, either the 1, 2, or 4 T-sections are good approxim-
ations to the transmission line so far as current behaviour is
concerned. Secondly, the simple one T-section seems to give just
as good results as the 2 or 4 T-sections and because of the easier
analysis involved, will be a suitable choice for many analytical
methods.

The errors in the wave-shapes of the voltage responses are
pronounced, when the T-section representation is used. However,

correct peak values are obtained , provided L, is large and these

R
limitations must be borne in mind in the interpretation of results
obtained using a finite number of T-sections.

2=11 Equivalent Circuit.

In light of these considerations, the components of the power
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system are represented as followé
(1) The source is represented as a sinusoidal voltage of
constant amplitude and frequency in series with a linear
inductive element.
(2) Whenever possible, a double-valued hysteresis curve is

used to account for the nofi-linear flux characteristic’

and the hysteresis losses of the transformer. The single-
valued magnetisation characteristic is used in the ana-
lytical methods and hysteresis losses are neglected.

(3) A single T-section is used as an equivalent for the

transmission line although the same method of solution--

the incremental method--is applicable to a 2 or 4 T-sec-
tion representation., The analytical methods as used in
Chapter 4 become +too involved if any but a single T-
section is used. The effect of neglecting the lumped
shunt-capacitive element in dealing with shorter lengths
of lines is discussed in Chapter 3 (sec 3-8w6),

(4) Corona losses which are becoming increasingly signif-

icant in high-voltage systems are not taken into account
in this study. Suggestions are made how this non-linear
effect can be simulated when a technique such as the
incremental method is used.

(5) A single-phase rather than the more complex three-phase
equivalent circuit is used. Exténsion of these invest-
igations to three-phase.systems is bgyond the scope . of
this thesis:. However, a single phase analysis is of quite

general nature as any general three-phase linear electro-
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magnetic system can always be transformed into
four eigenvectors<282 each of which, by definition
of the eigenvector, has a set of single-phase
equivalent circuits.
In conclusion, it must be borne in mind that the final evalu-
ation of the adequacy of any equivalent circuit whether used in

mathematical analysis or for miniature representation must depend

on results from comparative field testse.
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CHAPTER 3.

3-1 Introduction

In investigating for a solution to the type of non-linear
problem under study, two approaches are possible. An analytical
solution with its simple numerical calculations and its appreci-
ation of the system behaviour without too many calculations has
the disadvantage of depending on too many approximations and
simplifications. On the other hand, there may be available a
mathematical method, simple in theory but with many difficulties
in practical application. These difficulties may stem principally
from the tedious and numerous calctilations necessary to obtain a
complete:r solution but if such objections are overcome, g mindimam
of approximations :is necessary and a-reasonable degree of
accuracy can be obtained.

In this chapter, the latter approach is fully explored and
the facilities of the digital computer are utilised.

Certain familiar linear techniques are based on more general
methods which can be applied to non-linear problems. One approach
to the solution is the application of some such general method.
The actual procedure is usually similar to some linear method
and this is an advantage. The equivalent linearization process,ng)
the’incremental method and certain iterative techniques are
examples of this approach.

In this study, the incremental method and an iterative
technique are decided upon and although both are described and
used, the incremental .method is far superior in dealing with this
type of problem. The iterative technique. has some attractive

features and may prove more successful in some other applications.
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In deciding upon a particular method, the following
requirements are desirable:

(1) Need for few approximations and simplifications of
the circuits.

(2) Possibility of studying the entire range of system
behaviour in time 1i.e. both transient and steady-
state.

(3) Suitability for programming on a digital computer.

3-2 Incremental Method.

Consider any circuit in which there is a non-linear element—-
e.g. an iron-cored reactor about which is known the relationship
between A, the flux linkage and i, the current flowing in the
reactor.

Consider any value of current i, which occurs at time t.

The Taylor's expansion around i=i(t) yields

(i) = G+ (i - i(t)) Ml—(il>+ ee.  (3-1)

and differentiating

da(i) dx{ (t)> - i) ) . ii*_i_liil>+ cee (3-2)

di -

But ey = voltage induced

_ da

T dt

_ dl di

- dt

=————-—§—l"<1t CE -] __L_L_ldl LtV R h L (3-4)
therefore, if i - i(t) is chosen small enough, terms with higher
powers of i - i(t) approach zero and

ar i i(t).  di
e, = = . 53 (3-5)
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Any non-linear element can be dealt with in a similar manner
and this forms the basis of the incremental method.

In the particular case of a reactor, the relationship (3-5) is
valid over a small excursion from i(t) and therefore, over that
corresponding period of time the circuit can be treated by a linear
technique.

At t=0, initial conditions of voltages and currents are known;
the differential equations describing the circuit are established
and a solution over some increment of time or current is obtained.
After the valid range of i is exceeded the new initial conditions
are calculated; %% <i(t)} for a new t=0 is found and the process
is repeated. This approach proves highly successful and is admirably
suited for digital computing techniques., Varioﬁs examples, with
their complete solutions, will show the flexibility and usefulness
of this method.

The Laplace operational calculus is used exclusively as it
offers two distinct advantages;

(1) A systematic solution of simultaneous differential
equations.

(2) Simplicity in taking into account various initial
conditions.

To demonstrate the validity of this approach, a simple linear
example of a resistance R in series with an inductance L energised
by a voltage e = Emax sin &t is considered in Appendix- 2,

3-3 The EquivalenttCircuits.

Of concern in this study is the system which includes a
generator, a transmission line and an unloaded transformer. Figs.
(3-1) to Figs. (3-7) give the equivalent circuits of some typical

arrangements.
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Fig. (3-1) is the familiar representation of a transformer at
the end of a 'short-line'; the line is considered short enough so
that the shunt capacitance may be neglected. This circuit is often
used in the investigation of inrush current phenomena.

Fig. (3-2) represents a series-capacitor compensated version
of Fig. (3-1). This circuit although of great interest in certain
fields is of not too great importance in this study as usually. in
energisation of a power transmission line, the series-capacitors are
out of circuit.

Fig. (3-3) represents a 'long-line' terminated by a transformer;
the line is considered long enough so that the effects of the shunt-
capacitance must be taken into account. The lumped element C simu-
lates these effects., ©Simulation of corona losses is not investi-
gated in this study but introduction of some non-linear element,
W(vc) -~ is a possible method of so doing.

Fig. (3-4) represents the compensated 'long-line’.

Fig. (3-5) represents a system which includes two transformers.
This system is rather typical of the normal arrangement in a
transmission system, although; both transformers need not be in
circuit simultaneously on energisation,

Fig., (3-6) is equivalent to a network when a capacitor poten-
tial divider is used for relaying or measuring purposes. The non-
linear element in this case is a high-voltage potential transformer.

In each of these representations, the transformer losses can

be simulated by the inclusion of a resistor R, in parallel with

T

the non-linear element.

As observed in sec. .2-2 - the use of this incremental method
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allows the actual hysterésis loop to be closely approximated but
eddy-current losses still have to be accounted for. In Fig. (3-7)
a resistor Rk is included to:simulate such transformer losses.

The systems represented by Figs. (3-1), (3-3), (3-5), (3-7)
are completely solved using the incremental method and numerical
examples are worked out using actual network parameters and charac-
teristics.,

3-4 The Laplace Transforms and Their Inverses.

In the solutions of the differential equations arising from
these circuits, certain Laplace transforms and their inverses are
used frequently. For convenience in referring to them, they are
tabulated and classified in Appendix-3 .. This idea,also proved
useful in programming as the marious inverses are programmed as
sub-routines, and used when necessary.

(31), (32),

These inverses are obtained from two sources as

(26)
will be noticed in some cases, 'the multiplication-by~s-theorem' -
is used in obtaining some inverses,

3=5 The Equations.

 3=521 TheAUncompensatéd"'Shbrt#Lihel'jFTQQOBQL)E

Using the foldowing nomenclature

R, ohms = (sum of source and line resistances) per phase

Ls henries = (sum of source, line and transformer leakage

inductances) per phase

e = Emax sin (et + 0),

0 = vbltage switching angle,

i = current,

A = total flux linkage in transformer,

T = total time
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the basic equation is

e = 1Rt + Ls it + 9T (3-6)
: . i, dr  di
. E .x Sin (0t + 0) = iRy +L, 35+ 35 * at
. di dAa
= iR, + 3% (LS + 35) - (3-7)
Defining —
dA A .
az = b (1)
Equation (3-16) can be transformed
®w cos © s sin © ( Ly B
E + = (R, + s(L_ + L, (i) 1(s)...
max S2 + “2 S2 + m2 t S A )

- (Lg + 1, (1)) . i(0).  (3-8)

where i(0) = value of i at t=0.

and I(s) = J:[i(t)]
From eq. (3-8),

E . .
max @ cos @ + s sin O u 3
I(s) = Lt | é : mé . Bt% + Rt (3-9)
(s + @) (s + %) L,(s + 7).
L t:0 4 L ,
£ o t
where
A .
L't = LS + L}\(l)u
and (3-10)
u 1, i(0).
i(t) can be computed from the transform pairS'l‘aﬁd;B‘ © given in
Appendix-3. |

The value of i(t) after a small increment of time At is computed;
this value i(t)tzAt is used to determine

(1) a2 new value of Ll(i) and hence L.

(2) a new value of i(0) and hence u.

O is increased to OO + ©,T" where 90 = initial voltage switching
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angle and the process repeated. The corresponding value of
. di
can be easily computed as it involves simple differentiation of

trigonometric functions.

3-5-2 The Uncompensated 'Short-Line' with Simulated Transformer
Core Losses. '

Using the nomenclature of sec. 3-5-1 with the additional
term
RA é resistive element to simulate core losses,

circuit equations are

di
. . 1
Emax Sin (et + 68) = Rt’ i, + L. I3 + ey
) dil di1 di2
= B iy + L. g+ 1Ly (11 - 12) . (dt - I3 ) (3-12)
and
di2 dil
= L}\ (11 - 12) -l - 33 + R;\‘ i, (3-13)
Transforming eqs. (3-12) and (3-13), with the further
definitions
A
I, :i i (t) (3-14)
A
I, 2 [1 (t)] (3-14a)
A ( . . .
u, = (L + L (1 -i ) . i,(0) - (L (i,-1,)]. 1 (O)
1 A 1 ATl T2 (3 15)
A i . . .
u, = ( —12) (12(0) - 11(0)) (3—16)
and
L, 2L + 1L, (i,-i.) (3-17)
t 7 s A 1 2
then
E .
“max (s Sin © + @ Cos ©)+ uy = (Rt+ SLt)’Il_SLA'Iz (3-18)

240



+ (R. +sI -19°
Solving these two equations yields

I.(s) = Emax Ls sin © + @ws cos ©)
Ly (s? +(o2) (s +a) (s +p)

' R
. L
E Ay(é'éin 0 + wTos 9) s(ul + u2)+ f; uy
4 _max .

Ls LA (S + )(s + a)(s + p) Ls (s +a)(s + pn)

(3-20)

and | |
1, = “nax iﬁ? sin © + ¢s cos ©) S(Lt u, + L, ul) + R, u,
2 LS (s'2 + (02)(8 + CX)(S + H) LS L}\ (S + (x)(s + M)

(3-21)
where -a and -p are the roots (always real and negative) of the

quadratic equation

(R '+ R, L,) R, R
2 A Ly + A A
s + s L, T, t T = 0 (3-22)

In computing the currents il(t) and i2(t), the transform pairs

.5. and 2 in Appendix-3 are used.
Computation of il(t) and iz(t) over a period At is carried out and

the values 11(t)t=At and i2(t)t=At are used to determine new values

of uy and Uye The process is then repeated.
d 3, di
d

2
FES can also be computed.,

(3-23)
3-5-3 Transformer at the Receiving-End of a 'Long-Line' Fig., (3-3)

e, = |1, (i, _1))

Nomenclature
LS henries = (sum of source inductance + 3 total line
inductance) per phase.
L2 henries = (3 total line inductance + transformer leakage

inductance) per phase
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R1 = R2 ohms = 1 total line resistance per phase
C farads = lumped shunt capacitance per phase
Vo volts = voltage across the capacitance at t=0

A refers to the transformer

LA = %%2 for some value of i2.

Differential equations of the system:

di :
. 1 . 1/, . .
E .x Sin (0t+0) = L. g5 + Byei) + Elel—lz) dt
(3-24)
1 di,
0 = - "6[(-1]:—12)(11; +-B.2.12 + L2. it + ey
10, . . di,
= - EJQll-lz)dt + BRyei, + (L, + L) 35= (3-25)
Transforming these equations and using
A .
u; = Ls.ll(O) (3-26)
L 21 +1L (3-27)
q.” T2 A
u, 21 .i,(0) (3-28)
2 qQ 72 ")
equations (3-24) and (3-25) become
s Emax sin © “Emax cos O Vo ( 1 ) —12 ( )
+ + u, - — = (r,+sL + =x).I. —=% (3-29
s2 + “2 S2 + w2 1 s 1 s sC 1 :sC
Ve 4 1
Uy + = = s¢ + (R2 + s Lq + "S-E).IZ (3-30)
The determinant[&l of the impedance matrix is given by
R, R, +L_+1L
A LeLg i3 o Lo Bt Lo By e =
17" s |8t T T ) ts L L
s q 5 q
R, + R
1 2
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which can be put in the form

K 4
AL =L (sr) [ (s4a)? + 82 (3-32)
u, o, and B are obtained from the factorization of the .cubic
Rl R2 + Ls + L

L R, +L_'R T2 R. +R

P22 9 ), - C 22 (3-33)
L L L L CL L
5 q s q s q

and will always be real and positive.

The solution of these equations yields,

, 2 Lo 2 .
Emax s((oR2 Cos O+Slg 0w Lq Sln.Q)fm(QOé.Qfm Lq.Cos Osz2&81nO)
I. =
1
K, (s+n) ((s+a)2 + 62 (s2+w2)
2 . .
. S Lqul+s(Emax Lq Sin O+u1R2—vC Lq)+Emax(R2 Sin 6+w Lq Cos ©)+
K, (s+u) | (s+a)? + 32)
u, + u
+ 71 = 2 _ VCRZ
(3-34)
K, (s+p) [(s+x)? + 92)
E (s Sin 6 + @ Cos 0)
I. _ _max
2 2 2 2,2
K,C (s+u) |(s4a)? + } (s2402)
2 o
N S Lsu2 + s(Rlu2 + LSVC) + C + Vch (3_35)
K, (s+u) | (s+a)? + 82

il(t) and iz(t) can be computed from the expressions for the
inverse transformations as given by 4 and 6 -Appendix 3.

il(t) and iz(t) are evaluated for some small time At; the

voltages
di2
ey = LA It (3-36)
. dil
v, =E . sin (0t + 6) - R, i} - L, 35 (3-37)

are calculated,
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With these values, new values of uy and u, are then calculated and
the process repeated for a new t=0 and O:OO + oT.

where 6, = initial voltage switching angle. (3-38)

3_5-4 Transformers at Both Ends of a 'Long-Line'. Fig., (3-5).

Nomenclature:

LS henries = source inductance per phase.

nj=

total line resistance per phase.

total line inductance per phase.

[SIES

Ll henries =

L2 henries = (} total line inductance + transformer leakage

inductance)per phase.

C farads = lumped shunt capacitancefpéw phase
Vo volts = voltage across the capacitance at t=0.
io, il’ i, = currents in amps. as marked.

' dA/-
6 refers to sending-end transformer——sz iTgéETi) for some Valug

Ofi—ic

071
d%p
)Drefers to receiving-end transformer——yp =33 for some value
2
of i2.
The basic equations are
dio dil
e = (LS + LJ’). E‘E— - Lcc—l't— (3—39)
dio di1 1
0 =Ip. gg= + Ryoiy + (L) + L) b + & j(11-12) dt.  (3-40)
d12 1
0 = Ryuiy + (L, + Lp) 732 - § f(ll-lz) at. (3-41)
Introducing,
A
LP =L, + Lg (3-42)
L = L L
q =L +Lg , (3-43)
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L, 81, + Ip (3-44)

w & (L, + Lg) iy(0) - Ly i,(0) (3-45)

uy & (L, +1L5) 1,(0) = Ly ig(0) (3-46)

uy £ (L, + Lp) i,(0) | (3-47)
where iO(O), il(O), i2(0) are the values of iO’ i, and ?2

respectively for any t=0, the‘transformed equations are

“

E (s sin © + @ cos ©)
ax

m
» . tu =sL Ij-s Lyl (3-48)
S + @
v I
C _ \ 1 -2
- 5o tu, =-s LI+ (Rl +'s Lq + EE_)'Il - G (3-49)
v I
C 1 1
+ 5 +tuy=0- %+ (R2 +s L, + EE).I2 (3-50)

The determinan‘bA2 of the impedance matrix is given by

A 3 2 2 ‘ 2
p=s (L, L Lo -L L-%) +s° (L, (B L. +RyL) - Ryl
L, +L,  I¢ ) L,
+ s LP (R1 R, + 5 ) - = |+ ¢ (R1 + R2) (3-51)
which can be put in the form
‘A2 = K2 (s+p) (s+oc)2 + 62 . (3-52)

The values of p, a and B will always be real and positive.

The solution of these equations yields

E s> L L Sin ©
1. - _max q_r
0 =

K2(s+p)

+
(s+ax)? + Bz) (s%+02)

\
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L +L
. . .
+ Enax S (S {Sln o(R)L +R, Lq) * @ Cos 0L, L] + Sin O(R1R2+—ﬂa—_)
K, (s+u) (s+2)? + B2 (s%+02)
+E .. 5@ Cos & (R)L_ +R, Lq)
K2(S+M) (s+a)? + 32 (s2+02)
R, +R L +L
E sin © 42~ + & Cos O{R/R, + —I—T
+ —2aX -G 172 C
K, (s+y) (s+a)? + B2 | (s%40°)
R1+R2

Emax @ Cos © G
* (3-53)

K, s (s+u) (s+a)? + B> )(s2+m2)
2 Lr+L
. u; s Lqu + s(RlLr + R2Lq) + RR, + __6_1
K,(s+p) (s+a)? + B2
u, (R, +R,)
+ C
K, s (s+u) (s+oc)2 + 32)
E s> L L_Sin ©
1. = max r g
l - 4 ’
K2(s+g) (s+x)2 + pz) (s%+02)
Ep.x 5 Ls[S(R, Sin 0 + @ L_ Cos 0)+ &R, Cos ¢ + 3128 )
4+ —max J 2 T 5 G
K, (s+p) (s+x)? + g2 )(s2+m2) «
(3-54)

E ‘OLKCOSO
+ max C

K2(s+u) ((s+a)2 + 32)’(s2+w2)
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2 Lp(u2+u3)+ L !
. s (LGLru1+Leru2) + s,(RZLb_u1 + R2Lqu2 - cher)+ 5 )
K, (s+p) | (s+a)? + p°
- ch R2
= (3-54)
(s+u) (s+oc)2 + Bz
E L. - s Sin 8 + ®w Cos ©
max O
I - C
5 =
2
(s+p) | (s+x)® + 62 (52+ﬁ2)
(3~55)
L + u,L_+ u,L
2 Yoty 10 3 p
. Lo Lyuy +s(uBL + L L v - Gv )+ 5 +v RiL

(s+p)

(s+a)? + 32)

Using the appropriate transform-pairs of Appendix-3 , io,

il and i2 can be evaluated as functions of time and computed over

some small increment of time dt.

The voltages €4 %P ~ and v, are given by
dio
$=°¢-Lsax (3-56)
. . d 2
eP= ﬂ; dt . (3—57)
. di,
V.= ?P R2 i, + L2. i (3-58)

The process is repeated as in previous sections.

3-6 Programming Notes.

For results of any accuracy when the incremental method is
used, a digital computer is necessary. The solution of the cubic
equation; the wide range of numbers utilised~(from the very small
microfarad values to the large megavolt values); the accurate

evaluation of the trigonometric functions, all point to the need for
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machine computation.

In the actual solution of these problems, two points are to be
noted in the programming.

(1) The solutien of the cubic equation.,

The knowledge that the values of o, B and p are real and posi-
tive in all cases, eliminates any testing of the coefficients of the
cubic. The evaluation of a, B and p follows directly as shown

(33)

below .

The cubic expression

3 2

s + ps” +qs + 1 (3-59)
1s considered, «, B and p is obtained as follows:

qa 2 293—_13__ (3-60)

o O 2p° g49pq + 27r (3-61)

£ 26?1+ a° (3-62)

g =3V(f - e). (3-63)
h =V -t - e) (3-64)

V3o
u:—g—h+R'a—gﬂ+]32'B=-‘—%. (g - h) (3-65)

(2) Determination of LA from the corresponding value of
current.

For each increment of current or time, a value of LA has to be
determined. The obvious method of doing this is the use of some
form of Y'1',ab1e--look.—up'noutine. The complexity of such a routine
will depend on the flux-linkage vs. current characteristic and the
accuracy required. Considerable time saving can be achieved if the
correct routine is used since this routine will have to be used - . -

many times in a complete solution.

Using the magnetisation characteristic as shown in Fig. (3-8),
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instead of a 'table look—QP' routine, a simpler and time

saving method is possible; The magnetisation characteristic
curve (a) Fig. (3-8)is divided into 3 sections—-two straight line
sections, joined by a logarithmic curve. For each straight

line section, LA is a constant and for the curved section, LA

is determined from the relationship

constant
LA = (3-66)

This method which is suitable for this particular curve,
eliminated a great deal of calculation. In the constant LA
sections of the curve, all calculations using L, are required
to be done only once. These values are stored and used as
required.

A further simplification is the use of two straight lines
to approximate the magnetisation characteristic. Two such lines
are marked Lr and Lt in Fig. (3-8). This approximation to the
curve (a), Fig. (3-8) is used and the resulting current wave-
form over the first cycle are shown in Fig. (3=9)==curve (a).
These results are for a 320 milef‘length of line and corresponding
Wave-fnrmsbbtainéd using the complete characteristic are plotted
on the samé graph (curve (b)). The positive peak values are
similar:'but there are wide differences on the negative side of
the wave-forms. Since in the incremental method, any computed
value of current or voltage depends on the previous computed
values, an error in one result may set up a pattern of diéergence.
For this reason, approximation of the magnetisation characteristic
by two straight lines is likely to give incorrect results.

3-7 The Iterative Method.

Iterative methods for the solution of differential equations are
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well known and well developed but for problems that arise from some
physical phenomena, the following fequirements are desirable in
the choice of a method:

(1) Few approximations in establishing the differential
equations in a form for solution.

(2) Close tie between the method and the actual phenomena.

(3) Accurate answers in a reasonable time.

One method that satisfies these conditions in this type of
investigation is described in this section but is not used extensi-
vely as the incremental method proved far superior.

In this iterative method, the terms involving the non-linear
element are separated from the others. The linear elements are then
ignored and a solution obtained. A correction computed from the
linear elements is then applied to the solution and the process

64) G5

repeated. There are a few variations of this approach but the
following example shows the method as used in this investigation.

3-F-1 Transformer Terminating a T-section.- The Iterative

Method.
The eguivalent circuit is shown in Fig. (3-3),

The transformed equations for this circuit are

i,[]+u . (Riest + L)Lt 2 (3-67)
e 1~ s T VMTSbT /1 T SC -
v I
C 1 1
u2 -+ 'S— = - S—- + (R2+S].2+ SC)'IZ + E}\ (3—68)

where

LS henries é (sum of lumped source inductance + % total

lumped line inductance)per phase.

1l

L2 henries (# total lumped line inductance + transformer

leakage inductance)per phase
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R, = R, ohms = ¥ total lumped line resistance per phase
1 2
C farads é lumped shunt capacitance of the line per phase
Ve volts £ voltage across the capacitance at t=0
. . A
i,y 1, amps = currents as marked
. A .
11(0) = value of i, at any t=0
i2(0) 8 value of i, at any t=0
I, =i i, (¢)
N -
I, =i i,(t)
Eliminating I1 from eqs. (3-67) and (3-68)
i'%(tﬂ +u, - v,
Z& I [ 1 L v,
E, + 3 2 = T+ u, + <= (3-69)
R +sl + ZF sC(Rl + sL + ga)
where
AW 2 Ls + L2
3= L, L, s°+ (R Ly+ R, L) s + Ry Ry, + =—F—= (3-70)
. R1 + R2
sC

The function e'(t)é -1

) Ve
t u, - - V.
i [I[e()i bl W uyt = J(3-71)

1 +
sC (R1.+ sL, + 56)

is expressed as a function of time.

e'(t) = T8 (sin 0. sin (0t + % - Bl)
2 :
L_C ((38 - ©2) + 4a° @2 (3-72)
om0t 1 ot
+ g Bo.sin(Bt+Bz—BB)+m cos © E.sin(wt-61)+ 8 .sin(Bt+BB)))
+ ule-at sin Bt v, 1 -at

+ % .sin(B§+Bz)+u2d(t) + ch(t)'

Ls CB LsCBO BO
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where
B2 £ a? + g2 (3-73)
B, 8 tan~l —__..23“ 5 . (3-74)
By — @
B, & tan”t & . (3-75)
A -1 -2 a B
B, = tan (3-76)
3 a2 _ BZ + m2
d(t) =1 +=0 u(t) =1 t 20 (3-77)
a(t) =0 >0 (3-78)
a By A (1 2| 2
x = 2L H B = L C - (3—79)
S s
Ignoring the linear elements, eq. (3-69) is solved.
e, = e'(t) (3-80)
$ooer(t) (3-81)
therefore,
T
A = f e'(t) at (3-82)
0

For some chosen value of T, A can be determined by a numerical
integration process.
With values of A tabulated over the period of time T, corres-

ponding values of 12 can then be determined.

From eq. (3-72),the correction term is

-1 AL L1
A e’ (4) :i[n i s J (3-83)

1 SLS +S_C

Defining

-1 A
(1) éj\ [R 3 (3-84)

al”

1 + sLs +
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from Appendixw-3 and eq. (3-70)
r R2e"°‘t 5 5
£(t) =1, {d(t) + —=S—— (ay - «)° + B° sin (Bt + B,)
B L,
R, + R
2 1 1 L —at .
+ (z + 5 e sin (Bt - B,) } (3-85)
CLS L2 BO BO B 2
where
R
1
ag = fl + g and 34 = arc tan %—:a (3-86)
s 2 0
T

Using the convolution theorem, Ae'(t) = J’ i,(t).£(T-t) dat (3-87)

0

values of Ae!'(t) can be tabulated as a function of time.

These correction values are subtracted from e'(t) and a new
set of values for ei(t) =e'(t) - Ae'(t) found.

The process is then repeated, starting from eq. (3-8) and a
successful iterative procedure depends on decreasing values.of Ae'(t).

This method, admirably suited for machine computation has in
many cases the advantage of speed over the incremental method. How-
ever, the value of T is critical., Too large a value of T leads to
divergence(34)and incorrect results. If this condition occurs,
then the process can be stopped and a smaller value of T chosen. To
obtain a continuous solution, after a successful iteration for some
value of T, with new initial conditions, the process is repeated.

In the numerical example attempted, it was found that the maxi-
mum suitable values of T were so small that any advantage of speed

over the incremental method was lost.
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3-8 Discussion of Results.

Solutions of voltages and currents for some specifiic examples
are obtained for a two-fold purpose. Some general ideas about
the phenomenon itself can be obtained and secondly, some detailed
procedures about the use of the different equations, equivalent
circuits, programming techniques etc. . . can be established.

In this study, greater emphasis is on the second objective.
The use of the techniques established in the investigation of

various aspects of system behaviour will not be considered in
any detail.

All results for this discussion are obtained using the
incremental method.

3-8-1 The 'Short-Line! Current and Voltage Wave~Forms.

Fig. (3-10) shows the current and voltage wave-form for a
40 mile system. The 'short-line' equivalent circuit is used -
Fig. (3-1), and the system is energised when the instantaneous
value of the sinusoidal driving voltage is zero with positive
slope. 1i.e. ©=0 at t=0.

The current wave-form displays high initial positive peak
values and low initial negative peak values. The decay of the
current peaks as t increases is also evident.

The voltage wave-form displays no peak values greater than
E « This i1s to be expected from the equivalent circuit used.

max

3-8~2 The 'Long-=Line' Current and Voltage Wave-Forms,

Using the 'Long-Line' equivalent T-section -- (Fig. 3-3) -,
solution wave-forms are obtained for the energisation of a

320 mile system.
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Fig. (3-11) shows the wave-forms of the. line current
fil‘, the transformer current ’i25 and the voltage across
the transformer €y The system is considered to be energised
ag%ﬁlat 6=0 for t=0.

ﬁ Both current wave~forms d}splay the familiar inrush
current phenomenon, reaching almost the same peak values but
there are distinct differences in the wave-shapes.

Peak values of the transformer terminal voltage are of
the order of 1.6 Emax and values greater than Emax persist
throughout the oscillations. This phenomenon of overvoltages
is . experienced in the energisation of long-lines and their

persistence can be dangerous.

3-8-3 Energisation of a System With a Transformer at Both
Ends of the Line,

Fig. 3-6, shows the equivalent circuit for a 'long-line'
with transformers at either end of a 320 mile line.

Energisation of such a system with a. 6=0, t=0 initial
condition, results in the voltage wave-forms displayed in
Figs. (3-12a) and (3-12b). gpurefers to the receiving-end
transformer and egwu)the sending—-end transformer.

In both cases, peak values of over 1.6 Emax are experienced
and these overvoltages persist for some time. Associated with
these overwvoltages:are high - frequency oscillations in the
transient state.

3-8-4 De-energisation of a 'Long-Line' System.

When a system such as that represented by Fig. (3-3) is
de~energised, transient overvoltages may be experienced

depending on the initial conditions.
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A 320 mile system is considered to be de-energised
with two different sets of initial conditions.
(1) t=0

Transformer voltage ey = 0

Transformer current i2 = 750 amps. (maximum transient

value).
(2) t+=0
Transformer voltage ey = 1.1 Emax
Transformer current 12‘= 0.

Fig. (3-13) shows the transformer.voltage wave-forms.
Curve (a) corresponds to conditions (1). Overvoltages exceeding
2 Emax are experienced and these decrease as t increases.
Curve (b), corresponding to conditions (2), shows a decay
of the voltage oscillations and no overvoltages are experienced.

3-8-5 The Transient Current Inrush,

The term 'inrush current' is often used in describing the
transient current of a system which consists of a transmission
line terminated by an unloaded transformer.

If the 'short-line' equivalent circuit is used, - Fig. (3-1)
- this term refers to current ‘i’. If however, the ¢long-line'!

equivalent circuit is used, two currents 'i’' and ‘i then

2
exist. and the term 'inrush current' can be misleading as the
behaviour of these two currents differs in some respects.

If the behaviour of the transient current for such a system
is an important system design criterion, then it becomes important

to distinguish between these currents.

In this study, when a T-section equivalent circuit is used,
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Til? will be referred to as the line inrush current and the

term transformer inrush current will refer to 12 .

3-8-6 The 'Short-Line' and the 'Long-Line’'.

Figs. (3-1) and (3-2) show the equivalent circuits for
the 'short-line' and 'long-line' systems respectively. In
the first case, the line is considered short enough so thét
shunt capacitance may be neglected; in the second case, a
lumped capacitance at the middle of the line is used to
simulate the effects of the line shunt capacitance.

To offer some appreciation of the differences between
these two representations, a 40 mile system and a 320 mile
system are solved using one representation, then the next.

Fig. (3-14) shows the line current wave-forms for a 40
mile system. There are no appreciable practical differences
between these wave-forms and certainly the important peak values
are nearly identical. The corresponding voltage wave-forms
are shown in Fig. (3-15).. The differences in this case are more
pronounced but not large enough to be of concern.

Similar wave-forms. -are shown in Figs. (3-16) and (3-17)
for a 320 mile system. The differences in the current wave-
forms are in shape rather than in the more important quantity of
peak values. The voltage wave-forms are, however, quite
different both in shape and amplitude. Inspection of the
"short~line' equivalent circuit reveals that no transformer
voltages greater than Emax are possible whereas, in fact,
transformer voltages of the order of 1.6 Emax are experienced.

These considerations indicate that if transformer voltages
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are important in a particular investigation, the 'long-line'
equivalent circuit is necessary for reasonable results. Another
pertinent factor is that in this particular study, use of the
'long-line' equivalent circuit rather than the 'short-line'
requires approximately three times as much computing time on a
digital computer.

3-8-7 The Accuracy of the Incremental Method.

The accuracy of the incremental method depends almost
entirely on small enough current changes over each interval. If
the programming is arranged so that these current changes are
extremely small to ensure maximum accuracy, the computation time
involved may become excessive.

In all the programmes that use the incremental method, a
time increment rather than a current increment is used. This
choice is based solely on programming convenience. The value of
the time increment then becomes the criterion for accuracy and
speed of computation.

A 320 mile system is solved using three different time
increments - At = 0.0002 sec.; At = 0.0001 sec.; At = 0.00005
sec. Figs. (3-18) and (3-19) show the resulting current and
voltage wave~forms for the system.

A time increment of 0.00005 sec. gives the most accurate
results but on the other hand, computation time for a solution
is twice the time needed for a 0.0001 sec. increment. The time
increment of 0.0002 sec. is too large and gives inaccurate results.

Since computation time is an important factor in digital

computer techniques, it is necessary to carry out some preliminary
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investigations to decide upon the optimum time increment. Its
value may change not only from system to system but may also
be influenced by the stage of behaviour being studied.

3-9 Computation Procedures.

The numerical results of chapters 2 and 3 are computed by
digital computer programmes.

With the exception of the programme used for the finding of
polynomial zeros, all programmes were written especially for this
study.

The programme for determining the zeros of the polynomials is
based on Bairstow's method and a slightly modified version is
used to suit the wide range of coefficients that occurred in
this studye.

An I.BsM. 1620 machine was used for most of the computation
and the programmes were written in the 1anéuage of Fortran 1A.

Most of the proérammes are written in a generallform so
that they may be available to other researchers in this field.
One set of input data cards is necéssary for all the prégrammes
based on the incremental method; the programme make use of
the necessary data, ignoring the rest.

For efficient, accurate and quick plotting of the results,
an X-Y plotter and tape converter were utilised. Théseldevices
removed a great deal of the tediousness of graph-plotting.

For certain utility routines, preliminary runs and checks,
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an Alwac III-E machine was used and this was programmed in

machine language.
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CHAPTER 4

4-~1 Introduction

There are many advantages in an analytical solution of a non-
linear differential equation. A good solution in algebraic form
gives a better insight into the range of behaviour of the system
without the need for tedious numerical calculations and the effects
of change of parameters and new initial conditions can be better
visualized. These reasons justify the efforts spent in searching
for analytical methods which suit a particular problem.

There has been widespread interest in non-linear analysis and
some very useful methods have been developed for the solution of
various types of differential equations. The work done by Kryloff
and Bogoliuboff, Minorsky etc. is finding application in all fields.

The concepts and techniques used in engineering analysis can
be broadly classified into two groups: those of a general nature
applicable at all times and those that are only valid in linear
analysis. In non-linear analysis, the general concepts and tech-
niques are immediately applicable but the familiar linear technigues
have to be examined for validity and in most cases, a more general
form must be determined before application.

Methods of particular usefulness in non-linear analysis have
been developed but unlike linear analysis where differential equa-—
tions can be easily classified into groups, each particular equa-
tion has to be treated individually, in either of two ways: a comp-
letely new method may be developed to suit that equation or various
well developed methods may be tried in search for a reasonable solu-~
tion.

The latter approach is adopted in this study and the proced-

ures for three different methods applicable to this type of problem
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are established. Each method is particularly useful over a defi-
nite range of behaviour and numerical examples demonstrate this
usefulness.

4-2 The Flux-Linkage vs Current Relationship.'

An important requirement before an analytical solution is
sought is the expressing of all relations describing the physical
system in analytical terms. The use of the linear circuit concept
in itself does this for all linear behaviour but for non-linear
phenomena, some additional mathematical relations must be established.
In the problem of interest, the non-linearity is introduced by the
flux-linkage vs current relationship.

The first approximation is the use of the single-valued
magnetisation characteristic--i(A)--instead of the multi-valued flux-
linkage vs current relationship. Various expressions have been used
to describe the magnetisation characteristic of a transformer.

These include polynomial expressions, exponential and hyperbolic
functions. The u;e of one function or another obviously depends on
the shape of the characteristic but in some cases, a particular

{
function is used with the possible sacrifice of some accuracy to

take advantage o% some special analytical technique. For example,

i =a ekl (4-1)

although it is not a good approximation for the magnetisation
characteristic near the origin and for negative A values can(§6)
and will be used with reasonable success.

One af the more successful approximations to the functions i(A)

is the polynomial fit

i = all + a,nln (4_2)

where n is some positive integer.
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There are three main reasons for this success:
(1) Such a function gives a reasonably good fit
to most magnetisation characteristics.
(2) ay and a, are easily determined.
(3) In many cases, the use of this expression results
in a differential equation to which well developed
solution techniques are applicable.
The inclusion of additional terms of the form . Kk is sometimes
considered necessary but the techniques employed in the solutions
are the same although the algebra and trigonometry become somewhat
more involved.
In this study, except for one instance, it will be assumed
that the flux-linkage current relationship can always be expressed
by the relationship

. n
i = all + a, A .

~Sec.(4-6)deals with the relationship given by eq. (4-1) in the disc-
ussion of transient current inrush phenomena.

4-2-1 Determination of ay and e

For a given set of values of A and i, many methods exist for
the determination of the constants ay and a, for a particular value
of n.

The art of interpolation is quite a developed one and many of
these elegant and accurate methods make very good use of the facil-
ities of a digital computeral *  Since the intention behind this
chapter is the keeping of numerical calculations to the minimum,
the method suggested here is &% one of the simplest and most fami-

liar--the method of least squares(38)
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If the magnetisation characteristic is some function i(A),
then ay and a, here have to be determined so that alk + ankn is
the best approximation to i(A). In the method of least squares,

this requirement is fulfilled if

;‘m

d . n 2

T, ](1(” - a;A - a dr =0 (4-3) 
0

and

}‘m

d . . n 2

Enf (1(1) - an = ana® an =0 (4-4)
g .

where O to Am gives the range of values of interest. A simple
differentiation and integration yields two simultaneous equations
the solution of which gives values for ay and an(38).

If i(A) is expressed as a set of tabulated data-or in the form
of a graph, the integration process may have to be done numeri-
cally.

It is realized that the difficulty of numerical calculations
depends to a great extent on the relation assumed between i and A.
The higher the value of n, the higher the order of the resulting
equations in A with the added difficulties in solutions.

A typical magnetisation characteristic for a power trans-—
former is shown in Fig. (4-1) curve (a). Polynomial expressions of
the form i = alh + ankn for various values of n were fitted and the
resulting curves are shown for n = 3, 5, 7, and 9.

Use of the expression i = all + a9A9 gives a better approxi-

mation than any of the others and certainly, if large current
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values are expected)intolerable errors will result if the expr-
ession i = all + a3h3 is used in calculations. A further effect
of the choice of polynomial expression will be discussed in
sec.4.~-9. ‘

4-3 The Ritz Method and the Principle of Harmonic Balance.

One of the techniques used in this chapter is based on the
well—established Ritz Method(Bgz In this particular case, the
procedﬁre followed is& equivalent to that of the Principle of
Harmonic Balance which arises naturally from the Ritz method when
(49)

oscillatory systems are considered.

Consider a non-linear equation of the form

£ (D, x, t) =0 - (4-5)
An approximate solution X(t), a linear combination of suitably
chosen linearly independent functions, is assumed:

x(t)E X(+) = Cq ¢O(t) + C4 ¢1(t). . e e o C., ¢m(t)

(4-6)
The choice of: functions ¢O, ¢letc. i¢ not arbitrary but pre-
supposes some knowledge of the properties of the solution and may
also be influenced by initial conditions. The constgnisCO, Cl’ 02...
C, are to be adjusted to optimize the solutioniw

The assumed solution X(t) is substiuted in eq. (4-6) and the
residual

e(t) = £ (D, X(t), t) | (4-7)

gives a measure of unbalance in the differential equation;

The interval over which the assumed solution is a reasonable

approximation may be limited and in the case of oscillatory solu-

tions in a steady-state, this interval will normally be the length
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of a period.
There are various approaches possible in the determination of
the constants CO’ Cl’ 02 cee Cm’ and the solutions obtained to a

particular problem need not be identical.

In Galerkin's method, the minimization of the integral

)

7= Iefm (4-8)

%o
is the criterion for an optimum solution.
In the Ritz method, the minimization of thé. integral
t1
1 = J' F(D, X(t), t) at (4~9)

o

is the criterion and this leads to the condition(41)

4

fe(t) ¢i(t) dt = 0 (4-10)

k20

i =O,1,2,3, LY . « M

t
provided the functions ¢i s are periodic

i.e.
where tl - to = length of a period.
If a solution X = C1 cos @t + Cm cos (net + Qm) (4-12)

1s assumed, then the Ritz Method requires
21-

i e(t) cos wtd (wt) =0 (4-13)
0

that
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21
and [-e(t) cos not d (wt) =0 (4-14)
04
Because of orthogonality all terms of the form

27

J[.cos ot cos net d(ewt) = 0 for m £ n (4-15)

0
Therefore, in fact, the requirement is equivalent to the simple
condition that the coefficients of terms in cos &t and cos net
appearing in the residual must individually sum to zero. This
interpretation is referred to as the Principle of Harmonic Balance.

4-4 The Fundamental, The Higher-Harmonics and The Sub-Harmonics.

The expressions Fundamental, Higher-Harmonics and Sub-Harmonics
are commonly used in electrical engineering literature; in this
chapter, these terms .appgar,frequently. It is, therefore, necessary
to emphasize their origin and significance as used in ' this study.

In determining the Fourier components of some wave-form,
integration has to be carried out over a full-cycle (i.e. the curve
repeats itself exactly after its period--the length of one cycle),
In such a Fourier analysis, . one can obtain an infinite number
of components where frequencies are multiples of the full-cycle
frequency.

One of the components thus obtained may have some special sig-
nificance in the physical system being studied. It may have the
largest amplitude or be associated with one of the natural freq-
uencies or may be the frequency of one of the sources. 1In any case,

in engineering practice, such a chosen component is called the

Fundamental and the components with higher frequencies are called

the Higher-Harmonics while those with lower frequencies are called
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the Sub-Harmonics.

It must also be observed that if })/is defined as the ratio of
the frequency of the Z/th harmonic to the fundamental frequency,
it is possible that fractional )}J)'s will appear both for higher
and lower haf¥monics.

4-5 The Method of Isoclines,.

The method of Isoclines(42)is a graphical method that can be used
for the solution of some types of differential equations.

Consider the first-order equation
t) (4-16)
For any given point on the x-t plane, the numerical value of

%% can be calculated. This value can be interpreted as 'm' - the
slope of the solution curve at that point. With a sufficient
value of points, the significant isoclines (curves of constant m)
can be plotted and using these, the solution curve x(t) can be
drawn.

4-6 The Method of Integral Curves.

A combination of graphical and algebraic methods often gives

a better insight into some problems.‘ The method of Integral Curves

combines the Principle of Harmonic Balance with a graphical tech-

nique and proves very useful in the study of higher harmonics, sub-
harmonics and the effect that initial conditions have on these. It

can also establish graphically the relation between the transient and

steady~-state behaviours.
In dealing with oscillatory motion, a solution made up of
terms of the form xn(t) Sinnet and yn(t) Cosnwt is assumed. xn(t)

and yn(t)mare constants in the final steady-state but may be some

(43

)
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function of t in the transient state.
Using the Principle of Harmonic Balance, expressions are
obtained for

A
%% = X(x,y)

(4-17)
and X L oy(x,y)

The curves given by the equation

dy _ M (4-18)

dx X(x,y)
are called the integral curves and since these functions are not
explicit functions of t, these curves can be drawn in the x-y plane.

The singular points given by

C Y(x,y) =0 (4-19)
and X(x,y) =0 (4-20)
are then determined and the behaviour of the solution can be dis-
cussed.

An important step in this method, having determined the sing-
ular points is the determination of the nature of the singularities
as the stability of a particular solution depends on the nature of
the singularities.

The question of singular point and their behaviour is well
covered in the 1iterature(44)and only the briefest outline is given
here.

A numerical application of this method amplifies this approach.

4-6-1 Singular Points.

The Singular Points are values of x and y which satisfy the
simultaneous equations (4-19), (4-20). These values may be

dendted"BnyO,ye. S0, e
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and Y(xo, yo) = 0 (4-21)
Small variations near a singularity, i.e. at a point (xO + px’

Yo t py) are considered, these conditions determine whether these
deviations approach zero or not with increase in time.

Now, using eq. (4-17),

vy .
ﬁ = Dx. %X}'{' + Dy. éry’ (4"22)
4 dX

T = % Sty §-§- (4-23)

The solutions(44)for !)x and py are of the form eoit

where ) is given by

X )

X

=0 (4-24)

Ul o
S
(1

Defining

ne>

o/
e
e

(4-25)

e

o/
3=
»

f
»
Qo
li>
o
N

then
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2 H
bl’ 62 =A +B, ((a,4B,)° + 4(A,B -AB, | (4-26)
2

The nature of Dl and Cb whether real, imaginary etc. decides
the type of singularity.QA)

(a) bl, IE real and of same sign - Node

(b) bl, 62 real and of opposite sign - Saddle
(c) bl, :5 imaginary - Vortex

(d) 01’ tE complex conjugates - Focus

4-7 The Non-Linear Equations.

Conditions leading to three different non-linear differential
equations are considered. Suitable and reasonable approximations
can be made and using the three techniques discussed, an insight
into the system behaviour is possible.

The choice of these three equations is based on two reasons.
Firstly, the conditions described are of practical importance and
secondly, the different methods previously outlined can be effec-
tively applied. The procedures for their use are established, an
important objective of this study.

4-7~1 The 'Short-Line' - Shunt-Capacitance Neglected.

Nomenclature
Rt ohms = (sum of source and line resistances) per phase
LS henries = (sum of source, line, and transformer
leakage inductances) per phase
e =2E Sin (et + ©)
max
e = Voltage switching angle
i = current

Referring to Fig. (4-2), the equation describing this circuit is



Bk
e@ | J ={ N
F16. 4-2
R, Ls R, L

FIG. 4-3
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e =L %% +1 Ry + ey (4-27)
Putting
dA
e}\ = a? ’ (4“’28)

equation (4-27)becomes

dA di dA

H+LSEX'E+Ri(A)—EmaXSin (0t +0) =0
(4-28)
(1) The substitutions
i(A) = a;h + a A" : (4-30)
and 6 =0 (its value at t=0 is used as an (4-31)
initial condition).
and the approximation
R, =0 (losses neglected) (4-30)
result in the equation
dr Emax Sin @t (
T = — 4-33)
1 + L (al + na_ A ).
(2) The substitutions
. Ak
i(A) = a et (4-34)
and 6 =0 (4s35)
result in the equation for current
1
. . .2 .2
Dy : éi ~ di di
L E. Sin ot - L_.57 2 (B Sin ot - L_.5F - 4 B, .k.52)
2 R
t
(4-36)
or the equation for flux
L
- ; da s dA
A =k Log, (Emax Sin et - dt)—Loge a.(k Tt Rt)

(4=-37)
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Either of these equations (4-36) or (4-37) can be used in an
isocline plot and it may appear that eq. (4-36) is more suitable
as 1t gives a direct solution for current, the quantity that is
normally of interest.

However, the high rates of change in current that are

experienced make the use of eq. (4-36) impractical from the
point of view of a graphical method. On the the other hand,

putting eq. (4-37) in the form

A - k| L (si £ ) L (_I:‘ﬁ Ei’__
= og, in @t -p ) - Log_ alg + 5 )
max max
(4-38)
where
A
P = %; / Bk (4-39)

allows an easy graphical construction as p then lies in
the range -1 <p <1.

The use of eq. (4-36) or eg. (4-38) depends on which
approximation can be more easily tolerated. In equation (4-36),
system losses are neglected but a good approximation is
possible for the magnetisation characteristic. In equation
(4-38), losses can be considered but the expression for
i(A) = act/E
is not as good a fit.

Solution curves are obtained for both these equations
using the method of isoclines and the differences between these

solutions are discussed in section 4-8.

4-7-2., The 'Long-Line' - Energisation of the System.

Nomenclature



Referring to Fig. (4.3), the

LS henries

L2 henries

R1=R2 ohms

C farads

1,2

i
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(sum of source inductance + % total line

inductance)per phase.

(# total line inductance + transformer leakage

1
2

inductance) per phase

total line resistance per phase

Lumped shunt capacitance per phase

currents in

E

Sin @t

max

amps. as marked

equations describing this circuit

are
i, ]
e =1B +L g5 *§ f (1)-i,)ds (4-40)
di, 1
0 =i,R, +L, 35° - & j' (i,-i,)dt + e5. (4-41)
Eliminating il yields,
Lsd2el de, ey d312 d2i2
-+ Rl, — + = + LSL2. 5 + (LSR2+L2R1.). —5 +
at dt C at at
L +L di R.+R
(s 72 2 172 e _
+ G + RlRZ')'dt + i, C - = 0.
(4-42)
The substitutions
aa
€y = a{ (4—43)
and.
i=1i(a) (4-44)
yield3 5 5
a’a a“ax 1 da . i aa
L —a + R 3 —A + ~© e + (L R +L R )o (l’()\).— +1'?(A) j
$T q¢3 1° 442 C°at s 272 ™M 442 {Eﬂ
3 2 3 +R
. dA . dA d<A - a’a 27
+LL, |1 (A).dt + 31"(x)°dt,E;§ + i (k).g;g + g i(A)




L,+L
2 s
|+ B, R

. dA
| =% .« 1'(A)ozy

+ 2

where the notation

it(A) = T
2.
in(A) = d—lz'
dA
3.
im(?\;) - d-i
dA

is used.

E
max
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Sin (@wt+8)

il
o

5 (4-45)

(4-46)

Equation (4~45) as it stands, even with the simple expression

for i(A) = a A + a3l3 is rather complex and certain simplific-

ations will have to be introduced before any attempt at an

analytical solution is made.

The approximations

L, = 0 (neglecting line inductance) (4-47)

R, =R, =0 (neglecting losses)

1 2

result- in the modification of equation (4-45) to

3
L 2, g (i'(A) + 1) dA _ o - o. (4-48)
s 3 S dt

dt —

C
Integrating this equation,

a1 AL, i(d)) -  S— dt = J (4-49)

32 LG ( s LC ¢ = de
S S

Jd = a constant

The substitution for i(A),

i(d) =a) A+ an;n

further yields

(4-50)
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2
2 w~e
A2 L Phta AL 462 L a o 9 35 (4-51)
0 1 S 0 s “n @
dat
where
2 A1
g = g o (4-52)

S

This simplified form of the equation is investigated using
both the Principle of Harmonic Balance and the Method of Integral
Curves.

4-7-3 The 'Long-Line', De—-energisation of the System.,

Using the nomenciature of section 4-7-2 and the same
approximations (4-47), the equation describing such a system

condition is

de
A 1 .
53 tg i(d) =0 (4-53)
and integrating
a2
(E? + c[i(x) dA = 2h (4-54)
where 2h = some constant fixed by initial conditions.,
Hence
1
2
%ﬁ =+ (2 (h - V(h))) (4-55)
where
v(r) & %-in(x) ars (4-56)
The substitution i(A) = all + anln (4-57)
yields
1 1 aIA% f“n)‘ml
g Jil) an =5 | 5 + = (4-58)
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and hence

2 n+l 1
1 a A a_A 2
T o=+ 2lh - = 1 n (4-59)

In the form given by eq. (4-59),this equation can be soived
graphically by the Method of Isoclines. However, using the
original form of the equation (4-53) and the substitution (4—57),
the following equation results

a1

: n
dtz + g (all + ank ) =0 (4-60)

This final eq. (4-60) will be used in this study.

4-8 The Transient Behaviour.-Energisation of a 'Short-Line'.

Equations (4-33) and (4-38) are used and solved by the Method
of Isoclines.

Equation (4-33) states

ar E Sin ot
dA  Tmax e (4-61)
dt =y 41 (a,+n a An_l)
s 1 n
Defining
dr A
at - b (4-62)
and putting n=9
ie. i() = ajh + a9x9. (4-63)
Then
8 .
m +m L (al + 9a9A ) = E .. Sin «t. (4-64)
.oﬂ l
q Sin ¢t -1 -a, L 8
A = 1_s (4-65)
9 ag LS
where

e

q R~ (4-66)
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Using eq. (4-38) based on the substitution

i = aek/k (4-67)
the corresponding equation is
A Ly By
5 =k Loge(Sin «t - p) - Log, a( P *tE ) (4-68)
max max
where

Q

p 2 @A//ﬁ (4-69)
' max

The isoclines and solution curves uéing these relations
for a 60 mile system are shown in Figs. (4-4) and (4-5).
Figs (4-4) curve (a) is obtained using equation (4-61) and
Fig. (4-5) curve (b) is obtained using equation (4-68). Curve
(c) on both figures is the result obtained using the incremental
method.

In both cases, the initial condition corresponds to a
switching condition - e=0 for t=0.

4-9 The Steady~State ~ Energisation of a 'Long-Line’,

The Principle of Harmonic Balance.

In this section, it is assumed that a steady-periodic state is
reached and the approach will be to determine the amplitude and
nature of the various components of flux and from these, voltages
and currents. The basis for this treatment is the Principle of
Harmonic Balance.

In the steady—state, the differential equation of interest
when the system is energised, is eq. (4-49) with J=0, thus,

2
2 “O e

d™A 2 n -
+ @ (A + alnl Ls) + Ls anl -

at2

= = 0. (4-70)
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where

2 A1

(00 = f‘:é— (4-71)

4-9-1 The Fundamental Component.

As a first approximation, it will be assumed that

A =mk1n Cos wt (4=72)

Substituting this in equation (4-70)

2

n . Cos” @t -
o A

2
- Aln Cos @t + @2 (A g

Cos wt + a.A. L,)+ L a
In n s 8

1
- G Cos @t = 0 (4-73)

where 5
A %o Emax
G = —‘——‘o———' (4-74)
n 3 (45)
Cos @t can be expressed as ) a; Cos m wt (4-75)
1

and using the Principle of Harmonic Balance, the individual

components of Cos wt are equated.

For practical values of ay and Ls lﬁ?alLs. This
9
approximation is made without any loss of generality in the
2 2 1
method. Then, &, (1 + alLS)fé “y = E;E‘ (4-76)

With this substitution, and putting n=3

ile. i=a,h + a3x3 (4=77)
AlB(mg-aZ) + 28, L 0 133 -G =0 (4-78)

and with n=9

i.e. i=ajgh + agh’ (4-79)
Ao lwi-0®) + %%% ag L, 65 Agg —G=0 (4-80)

Note that in the notation Amn m refers to the Rarmonie, order of
’

the component and n refers to the order of the polynomial being
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used.

For any assumed polynomial relation between i and A,
an equation of the above type will be obtained.

The solution of the nth order equation, besides giving
an approximate value of the fundamental amplitude of the flux,
can also provide an insight into the behaviour of the system.
If for example, there is more than one real value of A for
particular values of w, the familiar 'backbone' response

curves (46)

are obtained indicating the possibility of jump-
phenomenon. Under these conditions, for these values of w,
the amplitude of A can change quite rapidly with resulting
over-voltages.

The question now arises whether this jump phenomenon
can occur in the system described by eq. (4-78) and (4-80).

For n=3, a direct answer to this question is possible.

Consider the cubic equation

x> + P X2 + q x +r =0. (4-81)
(33)
This equation has 3 real, unequal roots if
2 3
p] + 47 <O (4-82)
where .
3 ‘ 2-
_27Dp =9 pg + 27r _ 34 -p" .
Py = 54 A (4-83)
Equation (4-78) is
. 2 2 ,
3 L 4(eg-0")rh,, 4 E
7\13 + 0 ) 13 . maXx =0 (4—84)
3a3 sto 3a3 Lsm

Therefore, in eq, (4-81)

p=0 (4-85)
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4(0g - °)

3a3LSmO°

4E
P (11-2: S, (4-87)
3a3st
The relationship given by eq. (4-82) will occur only if
0? > mgo (4-88)

In power systems, since wg & %—6_ and ¢ is the power
S

frequency, this condition is unlikely to occur for practical
values of LS and C and thus occurrence of the jump phenomenon
is improbable in the energisation of such a power-system.

For the case n=9, a direct answer is not possible but
examination of the coefficients of the equation showed that
except for a real root of the order of Al9 = —E%E—, all the
other roots of the equation are imaginary. This fact was

verified by actual numerical solution of various examples.

4-9-2 The Higher Harmonics.,

A solution is now assumed

A=2xy Cos et +A  Coé m et (4-89)

where n and m are integers.

This expression for A is substituted in equation (4-70) and

using the Principle of Harmonic Balance, the individual

components of Cos t and Cos m wt are equated. Two simultaneous

equations result, the solution of which determines values of Aln

and A__ .
mn
As will be seen, the solution of the equations can present

certain practical difficulties which may eliminate some of

the niceties of an analytical solution.
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4-9-2-1 The Third Harmonic.

Applying the above procedure in investigation of the

3rd harmonic, the resulting eqhations are:
, . 3
(1) with i=aj;h + agh (4-90)
2 2 3, .3 _
(00 )A 3+ FhaATg+3h A  4hy4 (A3 42h55) - G = 0
(4-91)
and ' 5
3h h,A
2 .2 3 .3 3% 13 3 _
(mo—9wl)x33+ - Mg ——Z———(A13+6A33) =0 (4-92)
where
A 2
hy = a,L.6f (4-93)
) - 9
(2) with i=ajgh + agh (4-94)
2 2 126 9 378 8 B
(0g=01)A g+ 55¢ horig + T5g Borighyg = & = 0 (4-95)
and
2 .2 84 9 351 8 B
(6g-901)h35+ S5ehgrig + T35 Bgrighsg = O (4-96)
where
A 2
hg = aglL 6 (4-97)

4-9-3 Amplitudes of the Higher Harmonics.

Numerical analysis solutions of equations (4-91), (4-92),
(4-95), (4-96) :giie; values of the fundamental and 3T
harmonic component of A. The computation necessary for such
exact answers 1s tedious and will not be carried out.

Instead, the assumption that Al >2 A is made.

n mn *
i.,e, the fundamental predominates over the higher harmonics
and certainly in the steady state, this is almost always a

correct assumption. Then equations (4-91), (4-92), (4-95),
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and (4-96) simplify to

2 2 3. .3 3
(0g= €])A5 + Fhyd]s = G =0 (4-98)
2

235 _ MM (4-99)
. o~ 2 2 -

13 4(“0 - 9¢°)

2 2 126 9
(wo - “1)A19 + 55¢ hgllg -G =0 | (4-100)
8

ﬁl& ) 84h9A19J\V (4e101)
A - 2 2 i
19 256(w0 - 9¢°)

These simplified equations determine the procedure for
obtaining approximate values of the fundamental and any other
higher harmonic component. The fundamental component can be
determined from an equation of the form given either by equations
(4-98) or (4-100). With the fundamental component determined,
the amplitude of any harmonic component results from an equation
of the type (4-100) or (4-101).

Equations (4-99) and (4-101) give rise to a useful

criterion. Consider equation (4-99),

>
W

3 %

2
- 13

- ‘ (4-102)
13 4(@8—9@2)

>

A i.e, the amplitude of the 3rd harmonic will be large

if
mg - 962 (4-103)

i.e, if
(36)% = & (4-104)
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An interpretation of this condition is that dangerous 3rd
harmonic over-voltages occur if the 3rd harmonic output impedance
from the transformer terminals is infinite. This conclusion can
also be reasoned from physical considerations.(47) Thecvalue
of A33 for this condition is not infinite as eq. (4-102),suggests
but is some finite value. This is realized if the more exact
form of the third harmonic equation is used - eq. (4—91)'

Then,withl

2 2

by - %° =0 (4-105)

eq. (ﬁ—92) becomes

2 % A =0 (4-106)

3
A + 2A LA A3

33 33713

Eq. (4-106) gives one real root

Ayy = 0.16 A, (4-107)
Hence under the condition,
1 2
o = (3e) N (4-108)

S
the amplitude of the third harmonic component of the flux-linkage
increases to 16% of the peak value of the fundamental. Such a
high third harmonic content can lead to dangerous persistent
over-voltages.
A similar procedure can be adopted in the investigation of
any higher harmonics but an important observation must be made.
Assuming a polynomial fit of order 3,

ive. i(A) = sk + a3x3 | (4-109)
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if the procedure outlined in this section is used in the

investigation of the fifth harmonic, equations corresponding to

eqse (4-91) and (4-92) are

(mé-w%)le + % hy Ai3 ~G=0 (4-110)
and 5 3
3h.A2.A 3h.A

(mg-zsmf)ASB + 21353 , 7333 _ g, (4-111)

2 4
Eq. (4-110) gives a result for Ay, identical with eq. (4-91)

but inspection of eq. (4-111) reveals that one real root is

given by
Asy =0 (4-112)
and that other real roots exists only if
2 2
2507 > @g (4-113)

This condition may lead to some interesting conclusions
if the polynomial fit

. 3
i(A) = a13A+ aBA (4-114)

is an exact one. However, assuming a polynomial fit of order 9

. oy 9
ices i(X) = ajght agh (4-115)
the equation corresponding to eq. (4-111) is
8
A h,A
| 9| lolie (4-116)
Ao 256(63-2567 )

This equation gives real roots for A59 with no such condition
as given by eq. (4~113). Since in this particular case, eq. (4-115)
is a better approximation to the magnetisation characteristic
than the one given by eq. (4~109), the condition suggested by

eq. (4=113) is incorrect and may lead to misleading conclusions.
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Examination of the algebra of the method suggests that if
a particular higher harmonic is of interest, then a polynomial
approximation of order greater than or equal to the order of
the harmonics being investigated must be used to avoid incorrect
results. This statement assumes that the higher order polynomial
approximation used is a better fit to the magnetisation
characteristic than any of lower order.

4-9-4 A Numerical Example.

The circuit to be studied is shown in Fig. (4-6) and
represents a transmission line of length 320 miles terminated
by a transformer whose i(A) characteristic is given by Fig.(4-1),
curve (a). The following values are also used.

Ls = 0.75 henry

C = 4.54 x 10”7 Farads.
375000 Sin 377+t.

e

Two values for n will be considered

n=3

. A 3

i = 0,00024x + 9.84 ( T555) (4-117)

n=9

. A D,

i = 0.003x + 13 (§555) (4-118)

ajy = 0.24 x 1073 ay = 0.984 x 1078 (4-119)

=2 _ =25

a1g = 0.3 x 10 ag = 0.13 x 10 (4-120)

2 1 107 6

“ =17 = = 2.94 x 10 (4-121)
) 0.75 x 4.54

©? = (377)2 = 0,142 x 106 (radians per sec)2 (4-122)
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@ 6
¢ - mag®0 _ 375000 x 2.94 x 10° _ , o5 4 109 (4-123)
© 377
h.= a.L &2 = 2.16 x 10~2 (4=124)
37 %9%s ®¥0 T -
2 -20-
hg= aghy «g = 2.86 x 10 (4-125)
4 , '
= = 61,6 . (4-126)
3h : ,
3
256 _ 0,71 x 10720 (4-127)
126h
9
For n=3, the fundamental component A13 results from
3 4(“3 - “5)113 G x 4
3 3
l1e€4a
Ai3 +1.72 x 10° ALy - 1.80 x 101! = o. (4-129)

The only real root of this equation is given by A13 = 1050 wb-

turns. : (4-130)
For n=9, the corresponding equation is
26 .
Ao + 1.99 x 10%°2,, - 2.08 x 10%% = o, (4-131)

The only real root of this equation is given by

A19 = 1010 wb-turns (4-132)

For the higher harmonics

n=3
2
A h., A
A33 -3 213 s— = 0.324 x 10~2 (4-133)
13 4(“0 - 9“)
et A33 = 0.324% of the fundamental. , (4-134)
n=
Ayg 84h9}‘29 2
e = = 0.55 x 10~ (4-135)

19 256(«3 ~ 94?)
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.. A39 = 0.55% of the fundamental, (4-136)

Using the polynomial of order 3 instead of the 9th order
results in a small difference in the amplitude of the fundamental
flux but an ‘appreciable difference in that of the third harmonic.

The added accuracy in using the more complex relationship may
or may not be justified but in any case, an appreciation of the order
of magnitude of a particular harmonic can be obtained.

4-10 Transient to Steady-State. The Method of Integral Curves,

Examination of some of the current and voltage wave-forms
obtained using the incremental method (Chapter 3) shows that in
general, the transient béhaviour of the systems under study can be
ex¢reme1y complex. This complexity does not encourage an analyt-
ié;l solution of the transient state and there have been few
efforts in this regard, recorded in the literatures48) (49) (50)

The Method of integral Curves can give an insight into the
behaviour of a particular harmonic component and its main usefulness
is the prediction of the existence of some higher harmonic or sub-
harmonic in the steady-state.

To establish the procedure and show its usefulness, the method
is applied\{n the investigation of the third harmonic and the one

third sub-harmonice.

4-10-1 Energisation of a 'Long-Line', The Third Harmonic.

The equation describing the energisation of a 'long-line! is

(eqo (4-49)- sec. 4-7-2)

2 3
=5 + 0o\ + hA” - G Cos @t = 0 (4-137)
at '
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A solution
A = x(t) Sin 30t + y(t) Cos 30t + A, Cos &t (4-138)
is sought, where x(t), y(t) functions of time are associated with
the 3rd harmonic.
The substitutions

x(t) = a(t).Al

(4-139)
y(t) = b(t).A,
are made, then eq. (4-~138) becomes
A = Al Cos 3wt + a(t). Sin 3wt + b(t). Cos @t | (4-140)

Substituting this value of A in eq. (4-137), the Principle
of Harmonic Balance is applied and the following equations result

from equating the 3rd harmonic terms,

3% da 2 o 3B 5
AI.EZE + ) (60 5% - 96 b) +Ay.e0b + ——= (5 + b+ a b= 0
(4-141)
3
2 3hA
d“b db 2 2 1 .3 2y
Al.gzz - Al (6(oldt - %" a )+ Al““Oa + (2a+a +ab )- 0
(4-142)
Assuming that a(t) and b(t) are slowly varying
2 2
i—% and ——% can be neglected.
dt dat
Equations (4-141) and (4-142) are then put in the form
da 1 2 gy 3WAT 2
= - 5 [Pwg-90?) + —-( 5+ b7 + 2b +a%) | (4-143)
2
3hA
%% = %E (a(«é—9w2) + —zfl (a’ + 2a + abz)) (4-144)

Therefore, following the procedure outlined in sec (4-6) the

functions Y(a,b), X(a,b) are now defined
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2
3hA
Y(a,b)_ %% = %z a(wg—9w2)+ 41 (a3+2a+ab2) (4-145)
2
3hA
da =1 2 5.2 1 (1 3 2
X(a,b)— it " ta b(m0—9m )+ - (3 + b +2b+a“D) ) (4-146)

4-10—151 The Integral Curves of the 3rd Harmonic.
Prom egs. (4-145) and (4-146), the equations to the Integral

Curves are "
” a(w§-9m2)+ 3h3kf (a>+2a+ab?)
- Y(a,b) db 4

X(g3b)~ @t ~ (4-147)
b(w —9@2) + 3h3A ( + b +2b+a b)
4
also
2
M (a,b) 1 3bjry
3 ( ) 3h A2
X(a,b) _ 1 3™ -
2D = - %a \ —3 - ab) (4-149)
ol Y . X _
St * 52 = 0 (4-150)
e e the eq.
Y da - X db =0 (4-151)

is an exact. integral and the integral curves are given by

2
2 3h,A 4 2,2
a 2 2 31 a 2 a’b
5 (mo-9w )+ — (4 +a” + =3 ) +
2
2 3h,A 4 2,2
b 2 2 371 (b b 2 a“b _
+ 3 (w0-9w )+ y (3 +7 *tb o+ ) = C, (4-152)
where 02 is acconstant,
The substitution
r§ B a2 412 (4-153)

in eq. (4-152), gives
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el e e m? r B (P |+ R - s, =0
3 T3 m 22 0 3 2
3713 (4-154)

o

Eq. (4-154) is a gquadratic in r§ and for various values of 02

’
solution of this quadratic as b is varied gives values of rg.
Using these values, an a-b piot can be made.

4-10-1-2 The Singularities of the Third Harmonic.

The singularities (a bo) are given by the solution of

0,
the simultaneous equations,
2
3h,A
2 2 3713 1 3.4 2 _
bo(0g-967) + —5—= ( 5 + b+2by+acb,) = O (4-155)
and
RTST 2
2 2
ag(eg=967) + ——= (ag + 2ag+agby) = O (4-156)
From (4-156), ag = O is one root.
Putting ay=0 in eq. (4-155)
. 2
3n,A
2 .2 33 1, .3, . |
by (0g-9¢°) + —% (3 +bg + 2by) =0 (4-157)
T b + b, (2 + 22— (P-0e?) | + L =0 (4-158)
0 0 2 0 3
3h3hy,

Equation (4-158) gives 3 values for b.
Using the condition stated in eq. (4-82), for normal power-—
system values of ©5 and @, egq. (1-58) has only one real root.

Therefore, only one singularity exists and this is given by

an~ =0
O npaf
by = -——51——5-— (4-159)
4(w0—9m )

4-10-1-3 The Nature of the 3rd Harmonic Singularity.

From eq. (4-145) and (4-146),
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2
3h,A%,
X _ 1 3t A _
= - (—3— 28b) = 4 (4-160)
2
h, A
dX 1 2 o2y, 2Bt o 2\ &
5 =~ Ca ((oo—9oo)+ . (3b° + 2+a“) = A,
(4-161)
2
dY 1 2 2, b3ty o 2 ) A
(4-162)
2
dY 1 by A
Sb = e Tz - 2ab) = B
(4-163)
From eq. (4-26), '
2 :
0., 0, = A +B, + ((A-B,)° + 448 ) (4-164)
2
For the singularity,
ag = 0 bO = some finite value
i Ay =B, =0 (4-165)
2
3h,A
1 2 5.2 3713 2 _
Ay, =~ g~ (6g-9e%) + - (3bg+2) ) (4-166)
2
3h,A
1 2 .2 3713 2
B, = b |(e3-96?) + =312 (3p342) (4-167)
Hence, provided wg 7’9@2 -~ a usual cbndition in power systems,
4A,B, < 0 (4-168)

and thus, 01’ bz are imaginary and the singularity is a

vortex,

4-10-1-4 The Isoclines. The 3rd Harmonic. .

The isoclines are sometimes helpful in the a-b plot of a
particular harmonic.

The isoclines for the‘3?dearmonic plot are given by
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2 2y .. .2 3 2
| a(moj9w ) + 3h3}\13 (a” + 2a + ab“)
m = db 4 (4-169)
aa b(©2-962) + 3h.A%. (2 + b2 + 2b + a’b)
0 13 3 a
4

This equation can give corresponding values of a and b for
various values of m.

4-10~1-5 The Transient to Steady-State behaviour of the
rd
3

Harmonic.

Sections (4-10-1-1) to (4-10-1-4) provide information for
a plot of the Integral Curves of the 3rd Harmonic component
of the flux-linkage, However, some interesting results can be
derived from inspection of some of the equations.

The equation for the integral curves - eq. (4-154) states

e 24+ % B (02-96?) |+ AR - ptes . =0
3 3 3h 12 0 3 2
3713
(4-170)
Normally,
8(@8-9«2) 2
g >7 4+ 27 (4-171)
2
3h3>\13
eq. (4=170) then becomes
r4 + r2 (w2-9m2). §“——T—— + 4b _ 2b4 -4 C, =0
3 3 0 3h 12 3 2
3713 (4-172)

If C, is very small, and|b/< 1, this equation has a large

negative root and a small (<ﬂH2) root for r2 In neither case,

3.
are real values for a and b obtained.
If 02 is large, and|bl<1, the roots are then independent of

the values of b and rg remains reasonably constant as b is varied.
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The integral curves are then very nearly circles. The

approximate value of the singularity obtained in sec (4-10-1-2)

is
ag = 0 (4-173)
hyAs,
by = ——=— (4-174)
2 2
4 ((oo-9(o )

This corresponds exactly to the peak value of the steady-
state third harmonic component given by eq. (4-99) obtained in
the steady-state analysis.
These facts suggest- that the integral curves are a set
of near-circular loci, concentric around the steady-state value
of the 3rd harmonic. If losses are considered, these loci will
become a continous curve spiralling towards the singularity.
Using the system parameters of the numerical example -
sec. (4-9-4)- integral curves for three different values of 02
are shown in Fig. (4-8). This plot verifies the conclusions

arrived at in this section.

4-11-1 Energisation of a 'Long-Line', The Third Sub-Harmonic.

Eq. (4-49) is repeated

2
9—% + wgl + h3l3 — G Cos 3@t = O (4-175)
at

As previously, a solution

A = x(t) Sin @t + y(t) Cos wt + A Cos «t (4-176)

13 -
is sought. Note that to avoid fractions, the driving frequency
is now 3@.

The substitutions

x(t) = a(t). A5 (4-177)
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y(t) = b(t)...x13 (4-177)

are made and with these substitutions,; the expression for
A - eq. (4-176) - is substituted in eq. (4-175).

Assuming that a(t), and b(t) are slowly varying

2 2
Q—% and Q—% can be neglected.

dt dat™

The equations corresponding to eqs. (4-143) and (4-144)

are then
3h. A2
da -1 2 3”13 3 2 2 2 _
it = e b(mo 0°) + y) (b +a“b+2b+b“- a“) (4-178)
3h.A2, (a>+ab%+ 2a—2ab) (4-179)
db 1 a(wz 2y , 3 13
it = 2@
The functions Y(a,b), X(a,b), are then
3hA2
Y(a,b) & 1| o(02-6?)+ 213 (a’+ab?+2a-2ab) | (4-180)
2
3h,A
da 1 2 2 3%13 .3 2 2
X(a,b) = it =" e b(coo-co )+ — (b7 +a b+2b+b—a )
(4-181)

4=11-1~1 The Integral Curves of the Third Sub-Harmonic:.

The equation Y.da-X.db = O (4-182)

is again a complete integral and the integral curves are given

by
4 2.2 4 2,2
&, oab b 202 (14 2 (02-6?)|+ 22T
4 2 4 3hA2. 0 2
3713
2. b
-2ab + 3 - 03 =0 (4-183)

where 03 is some constant.
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The substitution

r§/3 = a2 + b2 is made and the resulting equation

is
4 2 2, 8 .
r1/3 + r1/3 4 - 8b + 2b°+ Y.
(4-184)

This quadratic in rf/3 can be solved for various values of
b and C3 and an a-b plot is made from these results.

4-11-1-2 The Singularities of the Third Sub-Harmonic.

The singularities (ao bo) are given by the simultaneous
14

equations
2
3h,A .
2 2 3713 3 2 _
ag(0g—) + —5—= (agtagbg + 2a5-2apby) = 0 (4-185)
and
2 2, 33As 5 2 2
bo(mo—w ) + —5—= (bgtagby+ 2by+bg-ag) =0 (4-186)
a0=0 b0=0 is one singularity.
The other roots are given by
2 2
ag = 3bg (4-187)
and 5
333 2 2
1,2 213 =
4bg-2by+2 + —% (wg—%) =0 (4-188)
Solving for b, from eq. (4-188)
f 3, .2 (.2 .2y\%
by = 0.25 # \-0.4375 - FhaA] 4 (0g-07) (4-189)

2

Hence, singularities other than (0,0) can exist only if m2>»m0,

an unlikely condition in power-systems.

4-11-1-3 The Nature of the Singularity. Third Sub-Harmonic.

For the singularity (0,0) from eqs. (4-178), (4-179)

A, =B, =0 : (4-190)
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2
—3h,A
313 _
Ay = g (4-191)
2
3h.,A
3413 1,22 _
B1 = ——ZE—— + Zm(mo-m ) (4-192)
) _, 3 .
. V, = 4 (44,8)) (4-193)

From eqs. (4-190), (4-191), (4-192), (4-193), bl b2 are
. 9
equal and imaginary for normal values of wg. The singularity
(0,0) is therefore a wortex.:

4-11-1-4 The Isoclines. The Third Sub-Harmonic.

A
The isoclines in this case are given by

a |4 (w2—m2) + a2+bZ+2-2b
db 3h3}‘f3 0
M= 2= (4-194)
N - S ((oz—(oz) + a2+b2+2 +a,2—b2)
3h.,A2 0
3713
or in another form
a”+a®(mb-m) + a| — (mg—w2)+2(l—b)+b2
3h37\13
+m | botbe4 4R 5 (wg—w2) + 2b ) -0 (4-195)
3h37\13

The solution of this cubic equation in 'a' for fixed values
of mas 'b° is varied gives points for plotting the isoclines
which are helpful in the integral curve plot.

4-11-1-5 Transient to Steady-State Behaviour of the Third

Similar considerations as used in discussing the Third

Harmonic show that the integral curves are very nearly circular



170

b (t)

010) 0.5

SINGULARITY a(t)
c,=0

INTEGRAL CURVES'

FOR
THIRD SUB-HARMONIC ) -w? =2.924 X |0°

FIG. 4-9



171

about the singularity - in this case the point (0,0). This
suggests that no stable sub-harmonic oscillation of flux-
linkage exists in the steady-state.

The integral curves corresponding to the % Sub~-Harmonic is

Voo
PR

shown in Fig. (4-9).

4-12 The Condition for the Maximum.Third Harmonic Component.

In sec. (4-9), the condition

2

oS = 96 (4-196)

0=
1s discussed. This condition leads to a maximum value of the
third harmonic component.

Substituting this condition in eq. (4-155) and (4-156),
the singularities are given by

3 4 2b.+ a%b.= O (4-197)

+bO 0 0°0

W~

and

ag + a b2

+ 2ao oPo

l

0 (4-198)

These equations give one singularity

ag = 0 (4-199)

and

bO — the only real root of the equation

3 Lo+

by 0

=0 (4-200)

Wi

Since bO = xo(t).kl3’ eq. (4~200) corresponds exactly with
eq. (4-106)arrived at in sec. 4-9.

This behaviour is shown graphically in the integral curve
plot - Fig. (4-10). The singularity given by

=0 bo:= 0.16A;

0 3
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represents the steady-state and the loci represent the a(t),
b(t) behaviour for various values of C,.
For comparison, the integral-curve plot corresponding to the

Third Sub-Harmonic for conditionﬂmg—m2 is shown in Fig. 4-11.

4-13_.De=energisation of a 'Long-Line'. The Method of Integral
Curves,

A similar procedure can be adopted in considering the flux-
linkage behaviour when a 'long-line' terminated by a
transformer is de-energised.

Such a system is considered in Appendix 3. The system is
lossless and this factor, in this particular case, detracts from
the usefulness of the result. However, the establishing of the
procedure when ;ore than one singularity exists (in this case,
five singularities are found) is considered important enough

to include such an example.

The numerical details and integral curves are in Appendix 4.
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4-14 Discussion of the Analvtical Methods.

The three methods used in this chapter are of definite
usefulness in the investigation of this type of problem but their
application may be limited by the desired accuracy.

4-14-1 Use of the Method of Isoclines.

The Method of Isoclines has the disadvantages of any
graphical method. The accuracy is limited and the graphical
construction can be time consuming.

These two factors suggest that this method as used in this
investigation may only be suitable for obtaining good approximations
for peak values rather than solutions for the entire waveform.
This is not entirely correct as with the computing devices
available, reasonably accurate results are possibles

In this study, the numerical results for the isocline plot
were computed by a digital computer and plotted by an x-y’
plotter. The use of these devices provided in a reasonable time,
quite accurate results.

4-14-2 Use of The Principle of Harmonic Balance.

The main usefulness of this method is in giving an indication
of possible abnormal conditions arising in the steady-state.

The criterion established for abnormally high flux and
voltage values of a particular higher harmonic can be useful in
preliminary investigations. The accuracy of the actual value
computed by this method will be limited by the approximations
that are made in arriving at a solution.

4-14-3 Use of The Method of Integral Curves.

This method can give an insight into the system behaviour over
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a wider range of behaviour than the other two. The numerical
computation needed is greater than in the previous methods but
the fact that it gives an insight into the complex transient
behaviour of the system justifies this.

Further comments on this method are included in Chapter 5.
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CHAPTER 5

5-1 Introduction

This chapter will be devoted to some general conclusions
arising from this study. It will necessarily be brief as the
final sections of each previous chapter are used in discussions
and conclusions arising from the topics studied in it.

In this chapter, attention will be restricted to some general
ideas about the phenomena being investigated; the approach used
in this study; and suggestions for future work.

2—2 The Phenomena.

The behaviour of the transformer current inrush has been for
a long time a matter of great engineering interest* and the
question of overvoltages as a result of 'saturation effects'
has become increasingly important over the past ten yearsq+ The
results presented in chapter 3 indicate to some extent the reasons
for this.

Figs. (3-10) to (3-17) show the large transient current peaks
and the associated overvoltages that are expected under certain
normal system conditions. Information about this particular
aspect of system behaviour will be an important necessity in most
power system designs and the accuracy of this information will
become more critical as systems grow larger, transmission distances
become longer and transmission voltages are increased to higher

levels.

* See references (36), (51), (52), (8), (53), (54), (55), (6).
+ See references (56), (57), (58), (59), (60), (61), (62).
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Present day economic considerations do not permit large
design tolerances, and techniques for dealing with the most
complex phenomena must be developed.

5=3 The Methods.

The digital computer has proved itself an extremely useful
tool in certain aspects of power system studieso(é?) (64) t
Since the success of the incremental method is completely
dependent on the availability of a fast and accurate digital
computer, this type of investigation can be another example of
its usefulness.

The incremental method has some inherent advantages which
makes it an attractive approach to these problems. Firstly,
more than one non-linear effect can be taken into account and
this is of particular importance in power-systems.(sec. 3-5-4,
is an example where this is utilised)., With the increasing-
importance of certain non-linear effects such as corona losses,
this advantage may become quite an important one. Secondly,
closely related as it is to a familiar linear technique, the
mathematical details necessary for computation are relatively
simple and the availability of comprehensive tables of Laplace
transform pairs etc. simplifies some of the mathematical
computation necessary. Thirdly, strict control of the accuracy and
of the solution time, continuity of the solution - all important
factors in programming - are available.

In contrast, the iterative method lacks these three
advantages to some extent and its main attraction lies in its

speed and the independence of a final solution on any small errors
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made during the computation.

Some comments about the analytical methods have already been
made in sec. 4=~14 but further remarks about the method of integral
curves are justified.

Because of the complexity of the transient phenomena
associated with this problem, any analytical method that gives
an insight into the transient behaviour is worthy of consideration.
The method of integral curves, providing a graphical picture of
the transient behaviour of the harmonics with definite inform-
ation about the steady-state condition offers a quick and simple
approach to this problem., As with most analytical methods for
non-linear problems, it does not give precise answers but can |
provide helpful information for further studies or in preliminary
investigations.

5-4 Suggestions for Future Work.

In the course of this study, many ideas and questions arose
and these, although promising to be of great interest could not
- be dealt with in these investigations.

The more interesting of these are included here as suggestions
for future worka

5-4-1 The Distributed-Parameter Solution for a Transmission
Line.

Interest in transient behaviour of power systems has been
growing and because of this, the need for adequate represent-
ations of the system components under transient conditions has
become more necessarys.

Representation of the power transmission line by its distributed
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parameters and the solution of the equations arising from this

has received some recent attention.( 65)

In the past, there have been some worthy contributions and
in some cases, termination of a line by a non-linear element has
received considera,‘t.:i.on.(5‘01)j

5=4-2 The Source-Reactance.

The simplest representation of the a.c. synchronous generator
is used in this study.

The adequacy of such a representation ‘sec.2-1]1 under these
system conditions can be a matter of investigation. The simplicity
of the representation is an attraction but the question of the
values and characteristics of the source reactance will need
further study. |

5~-4-3 System Losses.

Because of the close system design tolerances demanded by
economic considerations, system losses and the effect these have
on system behaviour are becoming,increasingly important.

In this -study, attention is given to transformer and line
losses. Corona losses are not considered but a suggestion how
these can be accounted for using the incremental method is made
in sec.3 - 3 ., With sufficient information of the magnitude
and variation of corona losses, some such suggestion can be used
to account for these additional losses.

5-4-4 The Analytical Methods,

The application of methods of non-linear analysis will
be helpful in many aspects of this type of investigation.

Exact solutions for equations similar to the types studied
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are receiving some attention<66)(6g&d in this regard, the method
of integral curves offers some possibilities., The inclusion of
a term in the equation to account for system losses, the estab-

lishing of a relationship between the constant of integration C

and actual switching initial conditions are subjects which may

provide fruitful research.
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The Coefficients for Table 2-1

A

=

2E +1 -9
[0 4

R

Q

2u
.2(1 + 2 )

2® 1+ 22)
[0 4

g0ty
a3,(a1-a3)

2
(a3—al)(a3-a2—l)

3
(a3—a1)(2a3a2—a1—a3 + a3)
2 2, 4

(a3—a1)(a§+ a2—3a2a3 - aS+a, 420,

3°'73
2

3 2
a3(1-a3+4a2)-2a2(a3-a1)-a3+a1+3a3(1—a2)
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Appendix 2
A Linear Example Solved Using the Incremental Method.
To demonstrate the validity of the Incremental method used
in Chapter 3, a simple linear example of a resistance R in

series with an inductance L energised by a voltage.
e = Emax(Sin «t + 0) (A 271)

1s considered.
Assuming that the initial conditions are
t=0

©=0 (A 2-2)

i(o)=i0

then after a time t2, using any suitable linear technique, the

current i(tz) is given by

- Et2 Em X - 2%,
i(t,)= ige” L + 2 — e L Sin(@-6,)
2
(R2 + m2L2)
max .
+ + Sin(wt, + 6, - @) (A 2-3)
(R® + 2L2)? 2 0
where
«L
tan @ = R
Similarly
- B’-tl Em X - Etl
i(t;) =ige” L~ + 3 5.1 ¢ L Sin(¢-oo)
(R + &“L<)?2
Emax
+ Sin(wt; + 64 - &) (A 2-4)

1
(R2 + 02L2)2
In using the incremental method to obtain i(tz), initial

conditions at t=t, (t2)>tl) are considered. These are



184

t=t,
i=i(t1) (A 2-5)
O:OO‘ + @tl
.. after a time t2—t1,
R(t,-t,) E R(t,~t,)
i=i(t))e” L 2 717, _max — o L 21 Sin(g-wt,-0,)
(R + «412)
Em ax
+ -4 sln(m(tz-tl)+,atl+ oo-¢) (A 2-6)

(R? + «’1%)?
Substituting the value of i(tl) from eq. (4) and simplifying

this expression for i yields

Rt, E_ _ Bt,
i=ie” L < + 28X r e~ L € sin(@g-0.)
0 2 . 2:2,2 0
(R + «“L°)
Emax - Et2
+ —T ¢ L “ Sin(et, + 6, - @) (A 2-7)

2
(R2 + asz)

i(t2) as given by eq. (3) (A 2-8)
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Appendix 3

Laplace Transform Pairs for Chapter 3

The following definitions are used:

gy = o bt
-at
By = o? + 8°
p% = (a-p,)2 + B2
0, = Tan™! &
8
-1 206
92 = Tan 32_m2
0
0, = Tan™! B—
p-o
-1 =2af
6, = Tan
4 22324 o2
95 = Tan-l E—
-

c,f - constants

The following nine pairs and their combinations are used

in the computations for

F(s)
1 1
s + «
2 s +c¢
(s+a) (s+p)
3 s +¢

(s+p) (s+u)?

+ g2

Chapter 3.

f£(t)

-0t
e

(c—u,)eﬂ"t—(c-oc)e-ont

-
ey (cmn) ep We-w)®+ p% Sin(Bt44,-6;)
uf Buq

-1
¢l = Tan Cc-Q
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4 s° 4+ fc +c (p2— fu + c)e1

(s+u) ((s+a)2+ Bz)

2
By

. ig‘b(az-ez-fa +c)2+ p2(£-20)° Sin(Bt+,-0,)

Buq
B(f-2a)
¢2 = Tan'l a2-B2—fa + c
2
s+ fi. + ¢ 2
(W= fu + ce
5 32 1
(s4p) (sd)  (s4)%+ B (4-p) (fo-)? + 82)

. (-t + ce,
(p-d) ((a=d)%+ 82))

j=

+ l{ (az—Bz—fa+c)2+ Bz(f—2a)2

B ((J—a)2+ 32) ((M-a)2+ 52 ) } € ,SinBt+§,-0.

¢3= Tan™ 1 Béf—ga) - Tan™1 Q:E—
a“-B=fa + ¢

- §.ee (c-pley Vo242
6 ( 2 2 2. 3| 22 + 27
s+u) (s“+0°) [ (s+a)“+ B ) ok @RokS

Sin(at+¢3-el-92)

eéV(c—a)2+ BZ

Sin(Bt+¢4-93—94)

p ulug
¢4 = Tan~t %
¢5 = Tan~! %:E
7 s(s +c) 5 This inverse function is obtained

(s+p) (s°+6%) (s+x)%+ B
by differentiating the inverse

function (6).
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8 s(s2 + cs)
(s+p) (s%+?) [(s+a)?+ 2

Differentiation of the inverse

function (7) yields this function.

1 €, Sin(wt-Ol-Oz)
2,2 2 2 = +
+ +@ +a ) "+ 2 2 2
(s+p) (s%+0%) ((s+a)*+ B2 0202 o pop2
€2

+ Sin(Bt-0,-0,)

2
B R
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Appendix 4

De—energisation of a 'Long-Line' System, The Method of
Integral Curves.

To establish the procedure when more than one stable
singularity exists;,an example of a loss-less system is considered.
The 30 c.p.s. frequency is investigated when a 320 mile system
is de-energised.

The fact that losses are excluded in this example detracts
from the usefulness of the result. The inclusion of losses
naturally exclude the existence of any singularities other than
(0,0).

The equation describing such a system (eq. 4~60) is

2
d”A 1l 3y _
5 + G (a13k + agh ) =0 (A 4-1)
dt
Using the parameters of sec. 4-9 and proceeding in the

manner of sec. 4-11 the following equations result:

3h. A2

Y(a,b) 882 - L { a(0g—?)+ ——%—13(a3+ab2+2a-2ab)J (A 4-2)
2
3hoA2, . 2,2 3
pda _ 1 2 2, 2P3ti3 a°b 2 b
X(a,b) = it = " 5 { b(wo-w )+ T +—>— -2a"b+ 3 -C}
(4 4-3)

The integral curves are given by

4 a2b2

a
4 2

4 2, 2
+b 2 (26?) |+ 2B aa% 4+ Bc 20
3h,A 3
3713 (A 4-4)

+u?m2)(1+

where C is a constant.
The Isoclines are given by eq. (4-195).

Singularities exist at the five points

(0,0); (0.99,0.57); (~0.99,0.58); (0.116,-0.07); (-0.116,-0.07)
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Application of the criterion to determine the nature of the
singularities establishes the three points (0,0); (0.99,0.57);
(-0.99,0.58); as vortices and the remaining two (0.116,-0.07);

(-0.116, -0.07) as unstable saddle points.

The integral curve plot - Fig.(l) shows these results in

graphical form,
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INTEGRAL CURVES, 30 C/S

FIG. |
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